Transaction Hash:
Block:
20089075 at Jun-14-2024 09:13:59 AM +UTC
Transaction Fee:
0.001184039143545272 ETH
$2.25
Gas Used:
154,259 Gas / 7.675656808 Gwei
Emitted Events:
393 |
PaymentProcessor.NonceInvalidated( nonce=69005277841611552456666767078621072521642912468796321438269508217196416860163, account=0xc2ff83a6bbd0ad8cc5ae824a8463752592aaebd5, wasCancellation=False )
|
394 |
FunMint.Transfer( from=0xc2ff83a6bbd0ad8cc5ae824a8463752592aaebd5, to=[Sender] 0xf39a8228a8127e4920d11055c9d20b330272f7dd, tokenId=8773 )
|
395 |
PaymentProcessor.BuyListingERC721( buyer=[Sender] 0xf39a8228a8127e4920d11055c9d20b330272f7dd, seller=0xc2ff83a6bbd0ad8cc5ae824a8463752592aaebd5, tokenAddress=FunMint, beneficiary=[Sender] 0xf39a8228a8127e4920d11055c9d20b330272f7dd, paymentCoin=0x00000000...000000000, tokenId=8773, salePrice=10200000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x00000000...28bC6628C | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 9.643865772942362373 Eth | 9.643865927201362373 Eth | 0.000000154259 | |
0x9A1D00bE...22Aac6834 | |||||
0xC2Ff83A6...592aAEBd5 | 0.016529389186211938 Eth | 10.216529389186211938 Eth | 10.2 | ||
0xf39A8228...30272F7dD |
10.210758445503329149 Eth
Nonce: 2
|
0.009574406359783877 Eth
Nonce: 3
| 10.201184039143545272 |
Execution Trace
ETH 10.2
TrustedForwarder.forwardCall( target=0x9A1D00bEd7CD04BCDA516d721A596eb22Aac6834, message=0xC32DACAE00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000380366C197F70B07438A884ACC9C6424F7A2B935BA6EC54C8064A2527B1338A5A950000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C2FF83A6BBD0AD8CC5AE824A8463752592AAEBD5000000000000000000000000F39A8228A8127E4920D11055C9D20B330272F7DD000000000000000000000000CA9337244B5F04CB946391BC8B8A980E988F9A6A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005AFFE6623A1753F7C055A28BC6628C000000000000000000000000000000000000000000000000000000000000224500000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000008D8DADF544FC0000988F9A6A0000000000000000000000000000000000000000000000000000000300000000000000000000000000000000000000000000000000000000669396300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001CF34ED8DAB8B0C9ACACACE37CE360F4A14E4EC673ACD6737F65384235847403B63E33262CCD02BE925119E23C99C94789210AFBF0408A3E31C59166B7C4E8B0F000000000000000000000000032DA57E736E05F75AA4FAE2E9BE60FD904492726000000000000000000000000F39A8228A8127E4920D11055C9D20B330272F7DD00000000000000000000000000000000000000000000000000000000666C0A0B000000000000000000000000000000000000000000000000000000000000001B13BD38C9ABCCEEE5D1E8F10135D8B6A1C21539BF54EA9804B0B761F2FF0B423039A33A9EC864601190AE54C2FDA36A314A255544A56666720963F1A05E368C4800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ) => ( returnData=0x )
ETH 10.2
TrustedForwarder.forwardCall( target=0x9A1D00bEd7CD04BCDA516d721A596eb22Aac6834, message=0xC32DACAE00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000380366C197F70B07438A884ACC9C6424F7A2B935BA6EC54C8064A2527B1338A5A950000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C2FF83A6BBD0AD8CC5AE824A8463752592AAEBD5000000000000000000000000F39A8228A8127E4920D11055C9D20B330272F7DD000000000000000000000000CA9337244B5F04CB946391BC8B8A980E988F9A6A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005AFFE6623A1753F7C055A28BC6628C000000000000000000000000000000000000000000000000000000000000224500000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000008D8DADF544FC0000988F9A6A0000000000000000000000000000000000000000000000000000000300000000000000000000000000000000000000000000000000000000669396300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001CF34ED8DAB8B0C9ACACACE37CE360F4A14E4EC673ACD6737F65384235847403B63E33262CCD02BE925119E23C99C94789210AFBF0408A3E31C59166B7C4E8B0F000000000000000000000000032DA57E736E05F75AA4FAE2E9BE60FD904492726000000000000000000000000F39A8228A8127E4920D11055C9D20B330272F7DD00000000000000000000000000000000000000000000000000000000666C0A0B000000000000000000000000000000000000000000000000000000000000001B13BD38C9ABCCEEE5D1E8F10135D8B6A1C21539BF54EA9804B0B761F2FF0B423039A33A9EC864601190AE54C2FDA36A314A255544A56666720963F1A05E368C4800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ) => ( returnData=0x )
ETH 10.2
PaymentProcessor.buyListing( data=0x366C197F70B07438A884ACC9C6424F7A2B935BA6EC54C8064A2527B1338A5A950000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C2FF83A6BBD0AD8CC5AE824A8463752592AAEBD5000000000000000000000000F39A8228A8127E4920D11055C9D20B330272F7DD000000000000000000000000CA9337244B5F04CB946391BC8B8A980E988F9A6A0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005AFFE6623A1753F7C055A28BC6628C000000000000000000000000000000000000000000000000000000000000224500000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000008D8DADF544FC0000988F9A6A0000000000000000000000000000000000000000000000000000000300000000000000000000000000000000000000000000000000000000669396300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000001CF34ED8DAB8B0C9ACACACE37CE360F4A14E4EC673ACD6737F65384235847403B63E33262CCD02BE925119E23C99C94789210AFBF0408A3E31C59166B7C4E8B0F000000000000000000000000032DA57E736E05F75AA4FAE2E9BE60FD904492726000000000000000000000000F39A8228A8127E4920D11055C9D20B330272F7DD00000000000000000000000000000000000000000000000000000000666C0A0B000000000000000000000000000000000000000000000000000000000000001B13BD38C9ABCCEEE5D1E8F10135D8B6A1C21539BF54EA9804B0B761F2FF0B423039A33A9EC864601190AE54C2FDA36A314A255544A56666720963F1A05E368C4800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 )
ETH 10.2
ModuleTrades.buyListing( domainSeparator=366C197F70B07438A884ACC9C6424F7A2B935BA6EC54C8064A2527B1338A5A95, saleDetails=[{name:protocol, type:uint8, order:1, indexed:false, value:0, valueString:0}, {name:maker, type:address, order:2, indexed:false, value:0xC2Ff83A6BBD0AD8CC5Ae824a8463752592aAEBd5, valueString:0xC2Ff83A6BBD0AD8CC5Ae824a8463752592aAEBd5}, {name:beneficiary, type:address, order:3, indexed:false, value:0xf39A8228A8127e4920d11055c9d20B330272F7dD, valueString:0xf39A8228A8127e4920d11055c9d20B330272F7dD}, {name:marketplace, type:address, order:4, indexed:false, value:0xCA9337244B5F04cB946391bC8B8A980e988f9A6A, valueString:0xCA9337244B5F04cB946391bC8B8A980e988f9A6A}, {name:fallbackRoyaltyRecipient, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:paymentMethod, type:address, order:6, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:tokenAddress, type:address, order:7, indexed:false, value:0x00000000005AFfE6623a1753f7C055a28bC6628C, valueString:0x00000000005AFfE6623a1753f7C055a28bC6628C}, {name:tokenId, type:uint256, order:8, indexed:false, value:8773, valueString:8773}, {name:amount, type:uint248, order:9, indexed:false, value:1, valueString:1}, {name:itemPrice, type:uint256, order:10, indexed:false, value:10200000000000000000, valueString:10200000000000000000}, {name:nonce, type:uint256, order:11, indexed:false, value:69005277841611552456666767078621072521642912468796321438269508217196416860163, valueString:69005277841611552456666767078621072521642912468796321438269508217196416860163}, {name:expiration, type:uint256, order:12, indexed:false, value:1720948272, valueString:1720948272}, {name:marketplaceFeeNumerator, type:uint256, order:13, indexed:false, value:0, valueString:0}, {name:maxRoyaltyFeeNumerator, type:uint256, order:14, indexed:false, value:0, valueString:0}, {name:requestedFillAmount, type:uint248, order:15, indexed:false, value:1, valueString:1}, {name:minimumFillAmount, type:uint248, order:16, indexed:false, value:1, valueString:1}], sellerSignature=[{name:v, type:uint8, order:1, indexed:false, value:28, valueString:28}, {name:r, type:bytes32, order:2, indexed:false, value:F34ED8DAB8B0C9ACACACE37CE360F4A14E4EC673ACD6737F65384235847403B6, valueString:F34ED8DAB8B0C9ACACACE37CE360F4A14E4EC673ACD6737F65384235847403B6}, {name:s, type:bytes32, order:3, indexed:false, value:3E33262CCD02BE925119E23C99C94789210AFBF0408A3E31C59166B7C4E8B0F0, valueString:3E33262CCD02BE925119E23C99C94789210AFBF0408A3E31C59166B7C4E8B0F0}], cosignature=[{name:signer, type:address, order:1, indexed:false, value:0x32dA57E736E05f75aa4FaE2E9Be60FD904492726, valueString:0x32dA57E736E05f75aa4FaE2E9Be60FD904492726}, {name:taker, type:address, order:2, indexed:false, value:0xf39A8228A8127e4920d11055c9d20B330272F7dD, valueString:0xf39A8228A8127e4920d11055c9d20B330272F7dD}, {name:expiration, type:uint256, order:3, indexed:false, value:1718356491, valueString:1718356491}, {name:v, type:uint8, order:4, indexed:false, value:27, valueString:27}, {name:r, type:bytes32, order:5, indexed:false, value:13BD38C9ABCCEEE5D1E8F10135D8B6A1C21539BF54EA9804B0B761F2FF0B4230, valueString:13BD38C9ABCCEEE5D1E8F10135D8B6A1C21539BF54EA9804B0B761F2FF0B4230}, {name:s, type:bytes32, order:6, indexed:false, value:39A33A9EC864601190AE54C2FDA36A314A255544A56666720963F1A05E368C48, valueString:39A33A9EC864601190AE54C2FDA36A314A255544A56666720963F1A05E368C48}], feeOnTop=[{name:recipient, type:address, order:1, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:amount, type:uint256, order:2, indexed:false, value:0, valueString:0}] )
-
TrustedForwarderFactory.isTrustedForwarder( sender=0x5ebc127fae83ed5bdd91fc6a5f5767E259dF5642 ) => ( True )
-
Null: 0x000...001.6d798157( )
-
Null: 0x000...001.c3bd9c3b( )
-
FunMint.transferFrom( from=0xC2Ff83A6BBD0AD8CC5Ae824a8463752592aAEBd5, to=0xf39A8228A8127e4920d11055c9d20B330272F7dD, tokenId=8773 )
-
FunMint.2a55205a( )
- ETH 10.2
0xc2ff83a6bbd0ad8cc5ae824a8463752592aaebd5.CALL( )
-
File 1 of 6: TrustedForwarder
File 2 of 6: PaymentProcessor
File 3 of 6: FunMint
File 4 of 6: TrustedForwarder
File 5 of 6: ModuleTrades
File 6 of 6: TrustedForwarderFactory
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /** * @title TrustedForwarder * @author Limit Break, Inc. * @notice TrustedForwarder is a generic message forwarder, which allows you to relay transactions to any contract and preserve the original sender. * The processor acts as a trusted proxy, which can be a way to limit interactions with your contract, or enforce certain conditions. */ contract TrustedForwarder is EIP712, Initializable, Ownable { error TrustedForwarder__CannotSetAppSignerToZeroAddress(); error TrustedForwarder__CannotSetOwnerToZeroAddress(); error TrustedForwarder__CannotUseWithoutSignature(); error TrustedForwarder__InvalidSignature(); error TrustedForwarder__SignerNotAuthorized(); struct SignatureECDSA { uint8 v; bytes32 r; bytes32 s; } // keccak256("AppSigner(bytes32 messageHash,address target,address sender)") bytes32 public constant APP_SIGNER_TYPEHASH = 0xc83d02443cc9e12c5d2faae8a9a36bf0112f5b4a8cce23c9277a0c68bf638762; address public signer; constructor() EIP712("TrustedForwarder", "1") {} /** * @notice Initializes the TrustedForwarder contract. * * @dev This should be called atomically with the clone of the contract to prevent bad actors from calling it. * @dev - Throws if the contract is already initialized * * @param owner The address to assign the owner role to. * @param appSigner The address to assign the app signer role to. */ function __TrustedForwarder_init(address owner, address appSigner) external initializer { if (owner == address(0)) { revert TrustedForwarder__CannotSetOwnerToZeroAddress(); } if (appSigner != address(0)) { signer = appSigner; } _transferOwnership(owner); } /** * @notice Forwards a message to a target contract, preserving the original sender. * @notice In the case the forwarder does not require a signature, this function should be used to save gas. * * @dev - Throws if the target contract reverts. * @dev - Throws if the target address has no code. * @dev - Throws if `signer` is not address(0). * * @param target The address of the contract to forward the message to. * @param message The calldata to forward. * * @return returnData The return data of the call to the target contract. */ function forwardCall(address target, bytes calldata message) external payable returns (bytes memory returnData) { address signerCache = signer; if (signerCache != address(0)) { revert TrustedForwarder__CannotUseWithoutSignature(); } bytes memory encodedData = _encodeERC2771Context(message, _msgSender()); assembly { let success := call(gas(), target, callvalue(), add(encodedData, 0x20), mload(encodedData), 0, 0) let size := returndatasize() returnData := mload(0x40) mstore(returnData, size) mstore(0x40, add(add(returnData, 0x20), size)) // Adjust memory pointer returndatacopy(add(returnData, 0x20), 0, size) // Copy returndata to memory if iszero(success) { revert(add(returnData, 0x20), size) // Revert with return data on failure } // If the call was successful, but the return data is empty, check if the target address has code if iszero(size) { if iszero(extcodesize(target)) { mstore(0x00, 0x39bf07c1) // Store function selector `TrustedForwarder__TargetAddressHasNoCode()` and revert revert(0x1c, 0x04) // Revert with the custom function selector } } } } /** * @notice Forwards a message to a target contract, preserving the original sender. * @notice This should only be used if the forwarder requires a signature. * @notice In the case the app signer is not set, use the overloaded `forwardCall` function without a signature variable. * * @dev - Throws if the target contract reverts. * @dev - Throws if the target address has no code. * @dev - Throws if `signer` is not address(0) and the signature does not match the signer. * * @param target The address of the contract to forward the message to. * @param message The calldata to forward. * @param signature The signature of the message. * * @return returnData The return data of the call to the target contract. */ function forwardCall(address target, bytes calldata message, SignatureECDSA calldata signature) external payable returns (bytes memory returnData) { address signerCache = signer; if (signerCache != address(0)) { if ( signerCache != _ecdsaRecover( _hashTypedDataV4( keccak256(abi.encode(APP_SIGNER_TYPEHASH, keccak256(message), target, _msgSender())) ), signature.v, signature.r, signature.s ) ) { revert TrustedForwarder__SignerNotAuthorized(); } } bytes memory encodedData = _encodeERC2771Context(message, _msgSender()); assembly { let success := call(gas(), target, callvalue(), add(encodedData, 0x20), mload(encodedData), 0, 0) let size := returndatasize() returnData := mload(0x40) mstore(returnData, size) mstore(0x40, add(add(returnData, 0x20), size)) // Adjust memory pointer returndatacopy(add(returnData, 0x20), 0, size) // Copy returndata to memory if iszero(success) { revert(add(returnData, 0x20), size) // Revert with return data on failure } // If the call was successful, but the return data is empty, check if the target address has code if iszero(size) { if iszero(extcodesize(target)) { mstore(0x00, 0x39bf07c1) // Store function selector `TrustedForwarder__TargetAddressHasNoCode()` and revert revert(0x1c, 0x04) // Revert with the custom function selector } } } } /** * @notice Updates the app signer address. To disable app signing, set signer to address(0). * * @dev - Throws if the sender is not the owner. * * @param signer_ The address to assign the app signer role to. */ function updateSigner(address signer_) external onlyOwner { if (signer_ == address(0)) { revert TrustedForwarder__CannotSetAppSignerToZeroAddress(); } signer = signer_; } /** * @notice Resets the app signer address to address(0). * * @dev - Throws if the sender is not the owner. */ function deactivateSigner() external onlyOwner { signer = address(0); } /** * @notice Returns the domain separator used in the permit signature * * @return The domain separator */ function domainSeparatorV4() external view returns (bytes32) { return _domainSeparatorV4(); } /// @dev appends the msg.sender to the end of the calldata function _encodeERC2771Context(bytes calldata _data, address _msgSender) internal pure returns (bytes memory encodedData) { assembly { // Calculate total length: data.length + 20 bytes for the address let totalLength := add(_data.length, 20) // Allocate memory for the combined data encodedData := mload(0x40) mstore(0x40, add(encodedData, add(totalLength, 0x20))) // Set the length of the `encodedData` mstore(encodedData, totalLength) // Copy the `bytes calldata` data calldatacopy(add(encodedData, 0x20), _data.offset, _data.length) // Append the `address`. Addresses are 20 bytes, stored in the last 20 bytes of a 32-byte word mstore(add(add(encodedData, 0x20), _data.length), shl(96, _msgSender)) } } /** * @notice Recovers an ECDSA signature * * @dev This function is copied from OpenZeppelin's ECDSA library * * @param digest The digest to recover * @param v The v component of the signature * @param r The r component of the signature * @param s The s component of the signature * * @return recoveredSigner The signer of the digest */ function _ecdsaRecover(bytes32 digest, uint8 v, bytes32 r, bytes32 s) internal pure returns (address recoveredSigner) { if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { revert TrustedForwarder__InvalidSignature(); } recoveredSigner = ecrecover(digest, v, r, s); if (recoveredSigner == address(0)) { revert TrustedForwarder__InvalidSignature(); } } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
File 2 of 6: PaymentProcessor
// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "./Constants.sol"; import "./Errors.sol"; import "./interfaces/IPaymentProcessorConfiguration.sol"; import "./interfaces/IPaymentProcessorEvents.sol"; import "./interfaces/IModuleDefaultPaymentMethods.sol"; import "./storage/PaymentProcessorStorageAccess.sol"; import "@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol"; /* @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@ #@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@* @@@@@@@@@@@@ @@@@@@@@@@@@@@@ @ @@@@@@@@@@@@ @@@@@@@@@@@@@@@ @ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@ #@@ @@@@@@@@@@@@/ @@@@@@@@@@@@@@. @@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@&%%%%%%%%&&@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@& @@@@@@@@@@@@@@ *@@@@@@@ (@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ .@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@% @@@@@@@@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ contract PaymentProcessor is EIP712, PaymentProcessorStorageAccess, IPaymentProcessorEvents { using EnumerableSet for EnumerableSet.AddressSet; /// @dev The Payment Settings module implements of all payment configuration-related functionality. address private immutable _modulePaymentSettings; /// @dev The On-Chain Cancellation module implements of all on-chain cancellation-related functionality. address private immutable _moduleOnChainCancellation; /// @dev The Trades module implements all trade-related functionality. address private immutable _moduleTrades; /// @dev The Trades module implements all advanced trade-related functionality. address private immutable _moduleTradesAdvanced; constructor(address configurationContract) EIP712("PaymentProcessor", "2") { ( address defaultContractOwner_, PaymentProcessorModules memory paymentProcessorModules ) = IPaymentProcessorConfiguration(configurationContract).getPaymentProcessorDeploymentParams(); if (defaultContractOwner_ == address(0) || paymentProcessorModules.modulePaymentSettings == address(0) || paymentProcessorModules.moduleOnChainCancellation == address(0) || paymentProcessorModules.moduleTrades == address(0) || paymentProcessorModules.moduleTradesAdvanced == address(0)) { revert PaymentProcessor__InvalidConstructorArguments(); } _modulePaymentSettings = paymentProcessorModules.modulePaymentSettings; _moduleOnChainCancellation = paymentProcessorModules.moduleOnChainCancellation; _moduleTrades = paymentProcessorModules.moduleTrades; _moduleTradesAdvanced = paymentProcessorModules.moduleTradesAdvanced; unchecked { uint32 paymentMethodWhitelistId = appStorage().lastPaymentMethodWhitelistId++; appStorage().paymentMethodWhitelistOwners[paymentMethodWhitelistId] = defaultContractOwner_; emit CreatedPaymentMethodWhitelist(paymentMethodWhitelistId, defaultContractOwner_, "Default Payment Methods"); } } /**************************************************************/ /* MODIFIERS */ /**************************************************************/ /** * @dev Function modifier that generates a delegatecall to `module` with `selector` as the calldata * @dev This delegatecall is for functions that do not have parameters. The only calldata added is * @dev the extra calldata from a trusted forwarder, when present. * * @param module The contract address being called in the delegatecall. * @param selector The 4 byte function selector for the function to call in `module`. */ modifier delegateCallNoData(address module, bytes4 selector) { assembly { // This protocol is designed to work both via direct calls and calls from a trusted forwarder that // preserves the original msg.sender by appending an extra 20 bytes to the calldata. // The following code supports both cases. The magic number of 68 is: // 4 bytes for the selector let ptr := mload(0x40) mstore(ptr, selector) mstore(0x40, add(ptr, calldatasize())) calldatacopy(add(ptr, 0x04), 0x04, sub(calldatasize(), 0x04)) let result := delegatecall(gas(), module, ptr, add(sub(calldatasize(), 4), 4), 0, 0) if iszero(result) { // Call has failed, retrieve the error message and revert let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } } _; } /** * @dev Function modifier that generates a delegatecall to `module` with `selector` and `data` as the * @dev calldata. This delegatecall is for functions that have parameters but **DO NOT** take domain * @dev separator as a parameter. Additional calldata from a trusted forwarder is appended to the end, when present. * * @param module The contract address being called in the delegatecall. * @param selector The 4 byte function selector for the function to call in `module`. * @param data The calldata to send to the `module`. */ modifier delegateCall(address module, bytes4 selector, bytes calldata data) { assembly { // This protocol is designed to work both via direct calls and calls from a trusted forwarder that // preserves the original msg.sender by appending an extra 20 bytes to the calldata. // The following code supports both cases. The magic number of 68 is: // 4 bytes for the selector // 32 bytes calldata offset to the data parameter // 32 bytes for the length of the data parameter let lengthWithAppendedCalldata := sub(calldatasize(), 68) let ptr := mload(0x40) mstore(ptr, selector) calldatacopy(add(ptr,0x04), data.offset, lengthWithAppendedCalldata) mstore(0x40, add(ptr,add(0x04, lengthWithAppendedCalldata))) let result := delegatecall(gas(), module, ptr, add(lengthWithAppendedCalldata, 4), 0, 0) if iszero(result) { // Call has failed, retrieve the error message and revert let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } } _; } /** * @dev Function modifier that generates a delegatecall to `module` with `selector` and `data` as the * @dev calldata. This delegatecall is for functions that have parameters **AND** take domain * @dev separator as the first parameter. Any domain separator that has been included in `data` * @dev will be replaced with the Payment Processor domain separator. Additional calldata from a * @dev trusted forwarder is appended to the end, when present. * * @param module The contract address being called in the delegatecall. * @param selector The 4 byte function selector for the function to call in `module`. * @param data The calldata to send to the `module`. */ modifier delegateCallReplaceDomainSeparator(address module, bytes4 selector, bytes calldata data) { bytes32 domainSeparator = _domainSeparatorV4(); assembly { // This protocol is designed to work both via direct calls and calls from a trusted forwarder that // preserves the original msg.sender by appending an extra 20 bytes to the calldata. // The following code supports both cases. The magic number of 68 is: // 4 bytes for the selector // 32 bytes calldata offset to the data parameter // 32 bytes for the length of the data parameter let lengthWithAppendedCalldata := sub(calldatasize(), 68) let ptr := mload(0x40) mstore(ptr, selector) calldatacopy(add(ptr,0x04), data.offset, lengthWithAppendedCalldata) mstore(0x40, add(ptr,add(0x04, lengthWithAppendedCalldata))) mstore(add(ptr, 0x04), domainSeparator) let result := delegatecall(gas(), module, ptr, add(lengthWithAppendedCalldata, 4), 0, 0) if iszero(result) { // Call has failed, retrieve the error message and revert let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } } _; } /**************************************************************/ /* READ ONLY ACCESSORS */ /**************************************************************/ /** * @notice Returns the EIP-712 domain separator for this contract. */ function getDomainSeparator() public view returns (bytes32) { return _domainSeparatorV4(); } /** * @notice Returns the user-specific master nonce that allows order makers to efficiently cancel all listings or offers * they made previously. The master nonce for a user only changes when they explicitly request to revoke all * existing listings and offers. * * @dev When prompting makers to sign a listing or offer, marketplaces must query the current master nonce of * the user and include it in the listing/offer signature data. */ function masterNonces(address account) public view returns (uint256) { return appStorage().masterNonces[account]; } /** * @notice Returns true if the nonce for the given account has been used or cancelled. In comparison to a master nonce for * a user, this nonce value is specific to a single order and may only be used or cancelled a single time. * * @dev When prompting makers to sign a listing or offer, marketplaces must generate a unique nonce value that * has not been previously used for filled, unfilled or cancelled orders. User nonces are unique to each * user but common to that user across all marketplaces that utilize Payment Processor and do not reset * when the master nonce is incremented. Nonces are stored in a BitMap for gas efficiency so it is recommended * to utilize sequential numbers that do not overlap with other marketplaces. */ function isNonceUsed(address account, uint256 nonce) public view returns (bool isUsed) { // The following code is equivalent to, but saves gas: // // uint256 slot = nonce / 256; // uint256 offset = nonce % 256; // uint256 slotValue = appStorage().invalidatedSignatures[account][slot]; // isUsed = ((slotValue >> offset) & ONE) == ONE; isUsed = ((appStorage().invalidatedSignatures[account][uint248(nonce >> 8)] >> uint8(nonce)) & ONE) == ONE; } /** * @notice Returns the state and remaining fillable quantity of an order digest given the maker address. */ function remainingFillableQuantity( address account, bytes32 orderDigest ) external view returns (PartiallyFillableOrderStatus memory) { return appStorage().partiallyFillableOrderStatuses[account][orderDigest]; } /** * @notice Returns the payment settings for a given collection. * * @notice paymentSettings: The payment setting type for a given collection * (DefaultPaymentMethodWhitelist|AllowAnyPaymentMethod|CustomPaymentMethodWhitelist|PricingConstraints) * @notice paymentMethodWhitelistId: The payment method whitelist id for a given collection. * Applicable only when paymentSettings is CustomPaymentMethodWhitelist * @notice constrainedPricingPaymentMethod: The payment method that min/max priced collections are priced in. * Applicable only when paymentSettings is PricingConstraints. * @notice royaltyBackfillNumerator: The royalty backfill percentage for a given collection. Used only as a * fallback when a collection does not implement EIP-2981. * @notice royaltyBountyNumerator: The royalty bounty percentage for a given collection. When set, this percentage * is applied to the creator's royalty amount and paid to the maker marketplace as a bounty. * @notice isRoyaltyBountyExclusive: When true, only the designated marketplace is eligible for royalty bounty. * @notice blockTradesFromUntrustedChannels: When true, only transactions from channels that the collection * authorizes will be allowed to execute. */ function collectionPaymentSettings(address tokenAddress) external view returns (CollectionPaymentSettings memory) { return appStorage().collectionPaymentSettings[tokenAddress]; } /** * @notice Returns the optional creator-defined royalty bounty settings for a given collection. * * @return royaltyBountyNumerator The royalty bounty percentage for a given collection. When set, this percentage * is applied to the creator's royalty amount and paid to the maker marketplace as a bounty. * @return exclusiveBountyReceiver When non-zero, only the designated marketplace is eligible for royalty bounty. */ function collectionBountySettings( address tokenAddress ) external view returns (uint16 royaltyBountyNumerator, address exclusiveBountyReceiver) { CollectionPaymentSettings memory collectionPaymentSettings = appStorage().collectionPaymentSettings[tokenAddress]; return ( collectionPaymentSettings.royaltyBountyNumerator, collectionPaymentSettings.isRoyaltyBountyExclusive ? appStorage().collectionExclusiveBountyReceivers[tokenAddress] : address(0)); } /** * @notice Returns the optional creator-defined royalty backfill settings for a given collection. * This is useful for legacy collection lacking EIP-2981 support, as the collection owner can instruct * PaymentProcessor to backfill missing on-chain royalties. * * @return royaltyBackfillNumerator The creator royalty percentage for a given collection. * When set, this percentage is applied to the item sale price and paid to the creator if the attempt * to query EIP-2981 royalties fails. * @return royaltyBackfillReceiver When non-zero, this is the destination address for backfilled creator royalties. */ function collectionRoyaltyBackfillSettings( address tokenAddress ) external view returns (uint16 royaltyBackfillNumerator, address royaltyBackfillReceiver) { CollectionPaymentSettings memory collectionPaymentSettings = appStorage().collectionPaymentSettings[tokenAddress]; return ( collectionPaymentSettings.royaltyBackfillNumerator, collectionPaymentSettings.royaltyBackfillNumerator > 0 ? appStorage().collectionRoyaltyBackfillReceivers[tokenAddress] : address(0)); } /** * @notice Returns the address of the account that owns the specified payment method whitelist id. */ function paymentMethodWhitelistOwners(uint32 paymentMethodWhitelistId) external view returns (address) { return appStorage().paymentMethodWhitelistOwners[paymentMethodWhitelistId]; } /** * @notice Returns true if the specified payment method is whitelisted for the specified payment method whitelist. */ function isPaymentMethodWhitelisted(uint32 paymentMethodWhitelistId, address paymentMethod) external view returns (bool) { return appStorage().collectionPaymentMethodWhitelists[paymentMethodWhitelistId].contains(paymentMethod); } /** * @notice Returns the pricing bounds floor price for a given collection and token id, when applicable. * * @dev The pricing bounds floor price is only enforced when the collection payment settings are set to * the PricingContraints type. */ function getFloorPrice(address tokenAddress, uint256 tokenId) external view returns (uint256) { PricingBounds memory tokenLevelPricingBounds = appStorage().tokenPricingBounds[tokenAddress][tokenId]; if (tokenLevelPricingBounds.isSet) { return tokenLevelPricingBounds.floorPrice; } else { PricingBounds memory collectionLevelPricingBounds = appStorage().collectionPricingBounds[tokenAddress]; if (collectionLevelPricingBounds.isSet) { return collectionLevelPricingBounds.floorPrice; } } return 0; } /** * @notice Returns the pricing bounds ceiling price for a given collection and token id, when applicable. * * @dev The pricing bounds ceiling price is only enforced when the collection payment settings are set to * the PricingConstraints type. */ function getCeilingPrice(address tokenAddress, uint256 tokenId) external view returns (uint256) { PricingBounds memory tokenLevelPricingBounds = appStorage().tokenPricingBounds[tokenAddress][tokenId]; if (tokenLevelPricingBounds.isSet) { return tokenLevelPricingBounds.ceilingPrice; } else { PricingBounds memory collectionLevelPricingBounds = appStorage().collectionPricingBounds[tokenAddress]; if (collectionLevelPricingBounds.isSet) { return collectionLevelPricingBounds.ceilingPrice; } } return type(uint256).max; } /** * @notice Returns the last created payment method whitelist id. */ function lastPaymentMethodWhitelistId() external view returns (uint32) { return appStorage().lastPaymentMethodWhitelistId; } /** * @notice Returns the set of payment methods for a given payment method whitelist. */ function getWhitelistedPaymentMethods(uint32 paymentMethodWhitelistId) external view returns (address[] memory) { return appStorage().collectionPaymentMethodWhitelists[paymentMethodWhitelistId].values(); } /** * @notice Returns the set of trusted channels for a given collection. */ function getTrustedChannels(address tokenAddress) external view returns (address[] memory) { return appStorage().collectionTrustedChannels[tokenAddress].values(); } /** * @notice Returns the set of banned accounts for a given collection. */ function getBannedAccounts(address tokenAddress) external view returns (address[] memory) { return appStorage().collectionBannedAccounts[tokenAddress].values(); } /**************************************************************/ /* PAYMENT SETTINGS MANAGEMENT OPERATIONS */ /**************************************************************/ /** * @notice Returns true if the specified payment method is on the deploy-time default payment method whitelist * or post-deploy default payment method whitelist (id 0). */ function isDefaultPaymentMethod(address paymentMethod) external view returns (bool) { address[] memory defaultPaymentMethods = IModuleDefaultPaymentMethods(_modulePaymentSettings).getDefaultPaymentMethods(); for (uint256 i = 0; i < defaultPaymentMethods.length;) { if (paymentMethod == defaultPaymentMethods[i]) { return true; } unchecked { ++i; } } return appStorage().collectionPaymentMethodWhitelists[DEFAULT_PAYMENT_METHOD_WHITELIST_ID].contains(paymentMethod); } /** * @notice Returns an array of the immutable default payment methods specified at deploy time. * However, if any post-deployment default payment methods have been added, they are * not returned here because using an enumerable payment method whitelist would make trades * less gas efficient. For post-deployment default payment methods, exchanges should index * the `PaymentMethodAddedToWhitelist` and `PaymentMethodRemovedFromWhitelist` events. */ function getDefaultPaymentMethods() external view returns (address[] memory) { return IModuleDefaultPaymentMethods(_modulePaymentSettings).getDefaultPaymentMethods(); } /** * @notice Allows any user to create a new custom payment method whitelist. * * @dev <h4>Postconditions:</h4> * @dev 1. The payment method whitelist id tracker has been incremented by `1`. * @dev 2. The caller has been assigned as the owner of the payment method whitelist. * @dev 3. A `CreatedPaymentMethodWhitelist` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `createPaymentMethodWhitelist(string calldata whitelistName)` * @return paymentMethodWhitelistId The id of the newly created payment method whitelist. */ function createPaymentMethodWhitelist(bytes calldata data) external returns (uint32 paymentMethodWhitelistId) { address module = _modulePaymentSettings; assembly { // This protocol is designed to work both via direct calls and calls from a trusted forwarder that // preserves the original msg.sender by appending an extra 20 bytes to the calldata. // The following code supports both cases. The magic number of 68 is: // 4 bytes for the selector // 32 bytes calldata offset to the data parameter // 32 bytes for the length of the data parameter let lengthWithAppendedCalldata := sub(calldatasize(), 68) let ptr := mload(0x40) mstore(ptr, hex"f83116c9") calldatacopy(add(ptr, 0x04), data.offset, lengthWithAppendedCalldata) mstore(0x40, add(ptr, add(0x04, lengthWithAppendedCalldata))) let result := delegatecall(gas(), module, ptr, add(lengthWithAppendedCalldata, 4), 0x00, 0x20) switch result case 0 { let size := returndatasize() returndatacopy(0, 0, size) revert(0, size) } default { return (0x00, 0x20) } } } /** * @notice Transfer ownership of a payment method whitelist list to a new owner. * * @dev Throws when the new owner is the zero address. * @dev Throws when the caller does not own the specified list. * * @dev <h4>Postconditions:</h4> * 1. The payment method whitelist list ownership is transferred to the new owner. * 2. A `ReassignedPaymentMethodWhitelistOwnership` event is emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `reassignOwnershipOfPaymentMethodWhitelist(uint32 id, address newOwner)` */ function reassignOwnershipOfPaymentMethodWhitelist(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_REASSIGN_OWNERSHIP_OF_PAYMENT_METHOD_WHITELIST, data) {} /** * @notice Renounce the ownership of a payment method whitelist, rendering the list immutable. * * @dev Throws when the caller does not own the specified list. * * @dev <h4>Postconditions:</h4> * 1. The ownership of the specified payment method whitelist is renounced. * 2. A `ReassignedPaymentMethodWhitelistOwnership` event is emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `renounceOwnershipOfPaymentMethodWhitelist(uint32 id)` */ function renounceOwnershipOfPaymentMethodWhitelist(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_RENOUNCE_OWNERSHIP_OF_PAYMENT_METHOD_WHITELIST, data) {} /** * @notice Allows custom payment method whitelist owners to approve a new coin for use as a payment currency. * * @dev Throws when caller is not the owner of the specified payment method whitelist. * @dev Throws when the specified coin is already whitelisted under the specified whitelist id. * * @dev <h4>Postconditions:</h4> * @dev 1. `paymentMethod` has been approved in `paymentMethodWhitelist` mapping. * @dev 2. A `PaymentMethodAddedToWhitelist` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `whitelistPaymentMethod(uint32 paymentMethodWhitelistId, address paymentMethod)` */ function whitelistPaymentMethod(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_WHITELIST_PAYMENT_METHOD, data) {} /** * @notice Allows custom payment method whitelist owners to remove a coin from the list of approved payment currencies. * * @dev Throws when caller is not the owner of the specified payment method whitelist. * @dev Throws when the specified coin is not currently whitelisted under the specified whitelist id. * * @dev <h4>Postconditions:</h4> * @dev 1. `paymentMethod` has been removed from the `paymentMethodWhitelist` mapping. * @dev 2. A `PaymentMethodRemovedFromWhitelist` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `unwhitelistPaymentMethod(uint32 paymentMethodWhitelistId, address paymentMethod)` */ function unwhitelistPaymentMethod(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_UNWHITELIST_PAYMENT_METHOD, data) {} /** * @notice Allows the smart contract, the contract owner, or the contract admin of any NFT collection to * specify the payment settings for their collections. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * @dev Throws when the royalty backfill numerator is greater than 10,000. * @dev Throws when the royalty bounty numerator is greater than 10,000. * @dev Throws when the specified payment method whitelist id does not exist. * * @dev <h4>Postconditions:</h4> * @dev 1. The `PaymentSettings` type for the collection has been set. * @dev 2. The `paymentMethodWhitelistId` for the collection has been set, if applicable. * @dev 3. The `constrainedPricingPaymentMethod` for the collection has been set, if applicable. * @dev 4. The `royaltyBackfillNumerator` for the collection has been set. * @dev 5. The `royaltyBackfillReceiver` for the collection has been set. * @dev 6. The `royaltyBountyNumerator` for the collection has been set. * @dev 7. The `exclusiveBountyReceiver` for the collection has been set. * @dev 8. The `blockTradesFromUntrustedChannels` for the collection has been set. * @dev 9. An `UpdatedCollectionPaymentSettings` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `setCollectionPaymentSettings( address tokenAddress, PaymentSettings paymentSettings, uint32 paymentMethodWhitelistId, address constrainedPricingPaymentMethod, uint16 royaltyBackfillNumerator, address royaltyBackfillReceiver, uint16 royaltyBountyNumerator, address exclusiveBountyReceiver, bool blockTradesFromUntrustedChannels)` */ function setCollectionPaymentSettings(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_SET_COLLECTION_PAYMENT_SETTINGS, data) {} /** * @notice Allows the smart contract, the contract owner, or the contract admin of any NFT collection to * specify their own bounded price at the collection level. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * @dev Throws when the specified floor price is greater than the ceiling price. * * @dev <h4>Postconditions:</h4> * @dev 1. The collection-level pricing bounds for the specified tokenAddress has been set. * @dev 2. An `UpdatedCollectionLevelPricingBoundaries` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `setCollectionPricingBounds(address tokenAddress, PricingBounds calldata pricingBounds)` */ function setCollectionPricingBounds(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_SET_COLLECTION_PRICING_BOUNDS, data) {} /** * @notice Allows the smart contract, the contract owner, or the contract admin of any NFT collection to * specify their own bounded price at the individual token level. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * @dev Throws when the lengths of the tokenIds and pricingBounds array don't match. * @dev Throws when the tokenIds or pricingBounds array length is zero. * @dev Throws when the any of the specified floor prices is greater than the ceiling price for that token id. * * @dev <h4>Postconditions:</h4> * @dev 1. The token-level pricing bounds for the specified tokenAddress and token ids has been set. * @dev 2. An `UpdatedTokenLevelPricingBoundaries` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `setTokenPricingBounds( address tokenAddress, uint256[] calldata tokenIds, PricingBounds[] calldata pricingBounds)` */ function setTokenPricingBounds(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_SET_TOKEN_PRICING_BOUNDS, data) {} /** * @notice Allows trusted channels to be added to a collection. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * @dev Throws when the specified address is not a trusted forwarder. * * @dev <h4>Postconditions:</h4> * @dev 1. `channel` has been approved for trusted forwarding of trades on a collection. * @dev 2. A `TrustedChannelAddedForCollection` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `addTrustedChannelForCollection( * address tokenAddress, * address channel)` */ function addTrustedChannelForCollection(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_ADD_TRUSTED_CHANNEL_FOR_COLLECTION, data) {} /** * @notice Allows trusted channels to be removed from a collection. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * * @dev <h4>Postconditions:</h4> * @dev 1. `channel` has been dis-approved for trusted forwarding of trades on a collection. * @dev 2. A `TrustedChannelRemovedForCollection` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `removeTrustedChannelForCollection( * address tokenAddress, * address channel)` */ function removeTrustedChannelForCollection(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_REMOVE_TRUSTED_CHANNEL_FOR_COLLECTION, data) {} /** * @notice Allows creator to ban accounts from a collection. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * * @dev <h4>Postconditions:</h4> * @dev 1. `account` has been banned from trading on a collection. * @dev 2. A `BannedAccountAddedForCollection` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `addBannedAccountForCollection( * address tokenAddress, * address account)` */ function addBannedAccountForCollection(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_ADD_BANNED_ACCOUNT_FOR_COLLECTION, data) {} /** * @notice Allows creator to un-ban accounts from a collection. * * @dev Throws when the specified tokenAddress is address(0). * @dev Throws when the caller is not the contract, the owner or the administrator of the specified tokenAddress. * * @dev <h4>Postconditions:</h4> * @dev 1. `account` ban has been lifted for trades on a collection. * @dev 2. A `BannedAccountRemovedForCollection` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `removeBannedAccountForCollection( * address tokenAddress, * address account)` */ function removeBannedAccountForCollection(bytes calldata data) external delegateCall(_modulePaymentSettings, SELECTOR_REMOVE_BANNED_ACCOUNT_FOR_COLLECTION, data) {} /**************************************************************/ /* ON-CHAIN CANCELLATION OPERATIONS */ /**************************************************************/ /** * @notice Allows a cosigner to destroy itself, never to be used again. This is a fail-safe in case of a failure * to secure the co-signer private key in a Web2 co-signing service. In case of suspected cosigner key * compromise, or when a co-signer key is rotated, the cosigner MUST destroy itself to prevent past listings * that were cancelled off-chain from being used by a malicious actor. * * @dev Throws when the cosigner did not sign an authorization to self-destruct. * * @dev <h4>Postconditions:</h4> * @dev 1. The cosigner can never be used to co-sign orders again. * @dev 2. A `DestroyedCosigner` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `destroyCosigner(address cosigner, SignatureECDSA signature)` */ function destroyCosigner(bytes calldata data) external delegateCall(_moduleOnChainCancellation, SELECTOR_DESTROY_COSIGNER, data) {} /** * @notice Allows a maker to revoke/cancel all prior signatures of their listings and offers. * * @dev <h4>Postconditions:</h4> * @dev 1. The maker's master nonce has been incremented by `1` in contract storage, rendering all signed * approvals using the prior nonce unusable. * @dev 2. A `MasterNonceInvalidated` event has been emitted. */ function revokeMasterNonce() external delegateCallNoData(_moduleOnChainCancellation, SELECTOR_REVOKE_MASTER_NONCE) {} /** * @notice Allows a maker to revoke/cancel a single, previously signed listing or offer by specifying the * nonce of the listing or offer. * * @dev Throws when the maker has already revoked the nonce. * @dev Throws when the nonce was already used by the maker to successfully buy or sell an NFT. * * @dev <h4>Postconditions:</h4> * @dev 1. The specified `nonce` for the `_msgSender()` has been revoked and can * no longer be used to execute a sale or purchase. * @dev 2. A `NonceInvalidated` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `revokeSingleNonce(uint256 nonce)` */ function revokeSingleNonce(bytes calldata data) external delegateCall(_moduleOnChainCancellation, SELECTOR_REVOKE_SINGLE_NONCE, data) {} /** * @notice Allows a maker to revoke/cancel a partially fillable order by specifying the order digest hash. * * @dev Throws when the maker has already revoked the order digest. * @dev Throws when the order digest was already used by the maker and has been fully filled. * * @dev <h4>Postconditions:</h4> * @dev 1. The specified `orderDigest` for the `_msgSender()` has been revoked and can * no longer be used to execute a sale or purchase. * @dev 2. An `OrderDigestInvalidated` event has been emitted. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `revokeOrderDigest(bytes32 orderDigest)` */ function revokeOrderDigest(bytes calldata data) external delegateCall(_moduleOnChainCancellation, SELECTOR_REVOKE_ORDER_DIGEST, data) {} /**************************************************************/ /* TAKER OPERATIONS */ /**************************************************************/ /** * @notice Executes a buy listing transaction for a single order item. * * @dev Throws when the maker's nonce has already been used or has been cancelled. * @dev Throws when the order has expired. * @dev Throws when the combined marketplace and royalty fee exceeds 100%. * @dev Throws when the taker fee on top exceeds 100% of the item sale price. * @dev Throws when the maker's master nonce does not match the order details. * @dev Throws when the order does not comply with the collection payment settings. * @dev Throws when the maker's signature is invalid. * @dev Throws when the order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when the maker or taker is a banned account for the collection. * @dev Throws when the taker does not have or did not send sufficient funds to complete the purchase. * @dev Throws when the token transfer fails for any reason such as lack of approvals or token no longer owned by maker. * @dev Throws when the maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * @dev Any unused native token payment will be returned to the taker as wrapped native token. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Maker's nonce is marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Maker's partially fillable order state is updated for ERC1155_PARTIAL_FILL orders. * @dev 5. An `BuyListingERC721` event has been emitted for a ERC721 purchase. * @dev 6. An `BuyListingERC1155` event has been emitted for a ERC1155 purchase. * @dev 7. A `NonceInvalidated` event has been emitted for a ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for a ERC1155_PARTIAL_FILL order, if fully filled. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `function buyListing( * bytes32 domainSeparator, * Order memory saleDetails, * SignatureECDSA memory sellerSignature, * Cosignature memory cosignature, * FeeOnTop memory feeOnTop)` */ function buyListing(bytes calldata data) external payable delegateCallReplaceDomainSeparator(_moduleTrades, SELECTOR_BUY_LISTING, data) {} /** * @notice Executes an offer accept transaction for a single order item. * * @dev Throws when the maker's nonce has already been used or has been cancelled. * @dev Throws when the order has expired. * @dev Throws when the combined marketplace and royalty fee exceeds 100%. * @dev Throws when the taker fee on top exceeds 100% of the item sale price. * @dev Throws when the maker's master nonce does not match the order details. * @dev Throws when the order does not comply with the collection payment settings. * @dev Throws when the maker's signature is invalid. * @dev Throws when the order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when the maker or taker is a banned account for the collection. * @dev Throws when the maker does not have sufficient funds to complete the purchase. * @dev Throws when the token transfer fails for any reason such as lack of approvals or token not owned by the taker. * @dev Throws when the token the offer is being accepted for does not match the conditions set by the maker. * @dev Throws when the maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Maker's nonce is marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Maker's partially fillable order state is updated for ERC1155_PARTIAL_FILL orders. * @dev 5. An `AcceptOfferERC721` event has been emitted for a ERC721 sale. * @dev 6. An `AcceptOfferERC1155` event has been emitted for a ERC1155 sale. * @dev 7. A `NonceInvalidated` event has been emitted for a ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for a ERC1155_PARTIAL_FILL order, if fully filled. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `function acceptOffer( * bytes32 domainSeparator, * bool isCollectionLevelOffer, * Order memory saleDetails, * SignatureECDSA memory buyerSignature, * TokenSetProof memory tokenSetProof, * Cosignature memory cosignature, * FeeOnTop memory feeOnTop)` */ function acceptOffer(bytes calldata data) external payable delegateCallReplaceDomainSeparator(_moduleTrades, SELECTOR_ACCEPT_OFFER, data) {} /** * @notice Executes a buy listing transaction for multiple order items. * * @dev Throws when a maker's nonce has already been used or has been cancelled. * @dev Throws when any order has expired. * @dev Throws when any combined marketplace and royalty fee exceeds 100%. * @dev Throws when any taker fee on top exceeds 100% of the item sale price. * @dev Throws when a maker's master nonce does not match the order details. * @dev Throws when an order does not comply with the collection payment settings. * @dev Throws when a maker's signature is invalid. * @dev Throws when an order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when any maker or taker is a banned account for the collection. * @dev Throws when the taker does not have or did not send sufficient funds to complete the purchase. * @dev Throws when a maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * @dev Will NOT throw when a token fails to transfer but also will not disperse payments for failed items. * @dev Any unused native token payment will be returned to the taker as wrapped native token. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Makers nonces are marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Makers partially fillable order states are updated for ERC1155_PARTIAL_FILL orders. * @dev 5. `BuyListingERC721` events have been emitted for each ERC721 purchase. * @dev 6. `BuyListingERC1155` events have been emitted for each ERC1155 purchase. * @dev 7. A `NonceInvalidated` event has been emitted for each ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for each ERC1155_PARTIAL_FILL order, if fully filled. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `function bulkBuyListings( * bytes32 domainSeparator, * Order[] calldata saleDetailsArray, * SignatureECDSA[] calldata sellerSignatures, * Cosignature[] calldata cosignatures, * FeeOnTop[] calldata feesOnTop)` */ function bulkBuyListings(bytes calldata data) external payable delegateCallReplaceDomainSeparator(_moduleTrades, SELECTOR_BULK_BUY_LISTINGS, data) {} /** * @notice Executes an accept offer transaction for multiple order items. * * @dev Throws when a maker's nonce has already been used or has been cancelled. * @dev Throws when any order has expired. * @dev Throws when any combined marketplace and royalty fee exceeds 100%. * @dev Throws when any taker fee on top exceeds 100% of the item sale price. * @dev Throws when a maker's master nonce does not match the order details. * @dev Throws when an order does not comply with the collection payment settings. * @dev Throws when a maker's signature is invalid. * @dev Throws when an order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when any maker or taker is a banned account for the collection. * @dev Throws when a maker does not have sufficient funds to complete the purchase. * @dev Throws when the token an offer is being accepted for does not match the conditions set by the maker. * @dev Throws when a maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * @dev Will NOT throw when a token fails to transfer but also will not disperse payments for failed items. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Makers nonces are marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Makers partially fillable order states are updated for ERC1155_PARTIAL_FILL orders. * @dev 5. `AcceptOfferERC721` events have been emitted for each ERC721 sale. * @dev 6. `AcceptOfferERC1155` events have been emitted for each ERC1155 sale. * @dev 7. A `NonceInvalidated` event has been emitted for each ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for each ERC1155_PARTIAL_FILL order, if fully filled. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `function bulkAcceptOffers( * bytes32 domainSeparator, * BulkAcceptOffersParams memory params)` */ function bulkAcceptOffers(bytes calldata data) external payable delegateCallReplaceDomainSeparator(_moduleTrades, SELECTOR_BULK_ACCEPT_OFFERS, data) {} /** * @notice Executes a sweep transaction for buying multiple items from the same collection. * * @dev Throws when the sweep order protocol is ERC1155_PARTIAL_FILL (unsupported). * @dev Throws when a maker's nonce has already been used or has been cancelled. * @dev Throws when any order has expired. * @dev Throws when any combined marketplace and royalty fee exceeds 100%. * @dev Throws when the taker fee on top exceeds 100% of the combined item sale prices. * @dev Throws when a maker's master nonce does not match the order details. * @dev Throws when an order does not comply with the collection payment settings. * @dev Throws when a maker's signature is invalid. * @dev Throws when an order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when any maker or taker is a banned account for the collection. * @dev Throws when the taker does not have or did not send sufficient funds to complete the purchase. * @dev Will NOT throw when a token fails to transfer but also will not disperse payments for failed items. * @dev Any unused native token payment will be returned to the taker as wrapped native token. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Makers nonces are marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Makers partially fillable order states are updated for ERC1155_PARTIAL_FILL orders. * @dev 5. `BuyListingERC721` events have been emitted for each ERC721 purchase. * @dev 6. `BuyListingERC1155` events have been emitted for each ERC1155 purchase. * @dev 7. A `NonceInvalidated` event has been emitted for each ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * * @param data Calldata encoded with PaymentProcessorEncoder. Matches calldata for: * `function sweepCollection( * bytes32 domainSeparator, * FeeOnTop memory feeOnTop, * SweepOrder memory sweepOrder, * SweepItem[] calldata items, * SignatureECDSA[] calldata signedSellOrders, * Cosignature[] memory cosignatures)` */ function sweepCollection(bytes calldata data) external payable delegateCallReplaceDomainSeparator(_moduleTradesAdvanced, SELECTOR_SWEEP_COLLECTION, data) {} }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; // keccack256("Cosignature(uint8 v,bytes32 r,bytes32 s,uint256 expiration,address taker)") bytes32 constant COSIGNATURE_HASH = 0x347b7818601b168f6faadc037723496e9130b057c1ffef2ec4128311e19142f2; // keccack256("CollectionOfferApproval(uint8 protocol,address cosigner,address buyer,address beneficiary,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 nonce,uint256 masterNonce)") bytes32 constant COLLECTION_OFFER_APPROVAL_HASH = 0x8fe9498e93fe26b30ebf76fac07bd4705201c8609227362697082288e3b4af9c; // keccack256("ItemOfferApproval(uint8 protocol,address cosigner,address buyer,address beneficiary,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 tokenId,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 nonce,uint256 masterNonce)") bytes32 constant ITEM_OFFER_APPROVAL_HASH = 0xce2e9706d63e89ddf7ee16ce0508a1c3c9bd1904c582db2e647e6f4690a0bf6b; // keccack256("TokenSetOfferApproval(uint8 protocol,address cosigner,address buyer,address beneficiary,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 nonce,uint256 masterNonce,bytes32 tokenSetMerkleRoot)") bytes32 constant TOKEN_SET_OFFER_APPROVAL_HASH = 0x244905ade6b0e455d12fb539a4b17d7f675db14797d514168d09814a09c70e70; // keccack256("SaleApproval(uint8 protocol,address cosigner,address seller,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 tokenId,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 maxRoyaltyFeeNumerator,uint256 nonce,uint256 masterNonce)") bytes32 constant SALE_APPROVAL_HASH = 0x938786a8256d04dc45d6d5b997005aa07c0c9e3e4925d0d6c33128d240096ebc; // The denominator used when calculating the marketplace fee. // 0.5% fee numerator is 50, 1% fee numerator is 100, 10% fee numerator is 1,000 and so on. uint256 constant FEE_DENOMINATOR = 100_00; // Default Payment Method Whitelist Id uint32 constant DEFAULT_PAYMENT_METHOD_WHITELIST_ID = 0; // Convenience to avoid magic number in bitmask get/set logic. uint256 constant ZERO = uint256(0); uint256 constant ONE = uint256(1); // The default admin role for NFT collections using Access Control. bytes32 constant DEFAULT_ACCESS_CONTROL_ADMIN_ROLE = 0x00; /// @dev The plain text message to sign for cosigner self-destruct signature verification string constant COSIGNER_SELF_DESTRUCT_MESSAGE_TO_SIGN = "COSIGNER_SELF_DESTRUCT"; /**************************************************************/ /* PRECOMPUTED SELECTORS */ /**************************************************************/ bytes4 constant SELECTOR_REASSIGN_OWNERSHIP_OF_PAYMENT_METHOD_WHITELIST= hex"a1e6917e"; bytes4 constant SELECTOR_RENOUNCE_OWNERSHIP_OF_PAYMENT_METHOD_WHITELIST= hex"0886702e"; bytes4 constant SELECTOR_WHITELIST_PAYMENT_METHOD = hex"bb39ce91"; bytes4 constant SELECTOR_UNWHITELIST_PAYMENT_METHOD = hex"e9d4c14e"; bytes4 constant SELECTOR_SET_COLLECTION_PAYMENT_SETTINGS = hex"fc5d8393"; bytes4 constant SELECTOR_SET_COLLECTION_PRICING_BOUNDS = hex"7141ae10"; bytes4 constant SELECTOR_SET_TOKEN_PRICING_BOUNDS = hex"22146d70"; bytes4 constant SELECTOR_ADD_TRUSTED_CHANNEL_FOR_COLLECTION = hex"ab559c14"; bytes4 constant SELECTOR_REMOVE_TRUSTED_CHANNEL_FOR_COLLECTION = hex"282e89f8"; bytes4 constant SELECTOR_ADD_BANNED_ACCOUNT_FOR_COLLECTION = hex"e21dde50"; bytes4 constant SELECTOR_REMOVE_BANNED_ACCOUNT_FOR_COLLECTION = hex"adf14a76"; bytes4 constant SELECTOR_DESTROY_COSIGNER = hex"2aebdefe"; bytes4 constant SELECTOR_REVOKE_MASTER_NONCE = hex"226d4adb"; bytes4 constant SELECTOR_REVOKE_SINGLE_NONCE = hex"b6d7dc33"; bytes4 constant SELECTOR_REVOKE_ORDER_DIGEST = hex"96ae0380"; bytes4 constant SELECTOR_BUY_LISTING = hex"a9272951"; bytes4 constant SELECTOR_ACCEPT_OFFER = hex"e35bb9b7"; bytes4 constant SELECTOR_BULK_BUY_LISTINGS = hex"27add047"; bytes4 constant SELECTOR_BULK_ACCEPT_OFFERS = hex"b3cdebdb"; bytes4 constant SELECTOR_SWEEP_COLLECTION = hex"206576f6"; /**************************************************************/ /* EXPECTED BASE msg.data LENGTHS */ /**************************************************************/ uint256 constant PROOF_ELEMENT_SIZE = 32; // | 4 | 32 | 512 | 96 | 192 | 64 | = 900 bytes // | selector | domainSeparator | saleDetails | sellerSignature | cosignature | feeOnTop | uint256 constant BASE_MSG_LENGTH_BUY_LISTING = 900; // | 4 | 32 | 32 | 512 | 96 | 32 + (96 + (32 * proof.length)) | 192 | 64 | = 1060 bytes + (32 * proof.length) // | selector | domainSeparator | isCollectionLevelOffer | saleDetails | buyerSignature | tokenSetProof | cosignature | feeOnTop | uint256 constant BASE_MSG_LENGTH_ACCEPT_OFFER = 1060; // | 4 | 32 | 64 | 512 * length | 64 | 96 * length | 64 | 192 * length | 64 | 64 * length | = 292 bytes + (864 * saleDetailsArray.length) // | selector | domainSeparator | length + offset | saleDetailsArray | length + offset | sellerSignatures | length + offset | cosignatures | length + offset | feesOnTop | uint256 constant BASE_MSG_LENGTH_BULK_BUY_LISTINGS = 292; uint256 constant BASE_MSG_LENGTH_BULK_BUY_LISTINGS_PER_ITEM = 864; // | 4 | 32 | 32 | 64 | 32 * length | 64 | 512 * length | 64 | 96 * length | 64 | 32 + (96 + (32 * proof.length)) | 64 | 192 * length | 64 | 64 * length | = 452 bytes + (1024 * saleDetailsArray.length) + (32 * proof.length [for each element]) // | selector | domainSeparator | struct info? | length + offset | isCollectionLevelOfferArray | length + offset | saleDetailsArray | length + offset | buyerSignaturesArray | length + offset | tokenSetProof | length + offset | cosignatures | length + offset | feesOnTop | uint256 constant BASE_MSG_LENGTH_BULK_ACCEPT_OFFERS = 452; uint256 constant BASE_MSG_LENGTH_BULK_ACCEPT_OFFERS_PER_ITEM = 1024; // | 4 | 32 | 64 | 128 | 64 | 320 * length | 64 | 96 * length | 64 | 192 * length | = 420 bytes + (608 * items.length) // | selector | domainSeparator | feeOnTop | sweepOrder | length + offset | items | length + offset | signedSellOrders | length + offset | cosignatures | uint256 constant BASE_MSG_LENGTH_SWEEP_COLLECTION = 420; uint256 constant BASE_MSG_LENGTH_SWEEP_COLLECTION_PER_ITEM = 608;// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; /// @dev Thrown when an order is an ERC721 order and the amount is not one. error PaymentProcessor__AmountForERC721SalesMustEqualOne(); /// @dev Thrown when an order is an ERC1155 order and the amount is zero. error PaymentProcessor__AmountForERC1155SalesGreaterThanZero(); /// @dev Thrown when an offer is being accepted and the payment method is the chain native token. error PaymentProcessor__BadPaymentMethod(); /// @dev Thrown when adding or removing a payment method from a whitelist that the caller does not own. error PaymentProcessor__CallerDoesNotOwnPaymentMethodWhitelist(); /** * @dev Thrown when modifying collection payment settings, pricing bounds, or trusted channels on a collection * @dev that the caller is not the owner of or a member of the default admin role for. */ error PaymentProcessor__CallerMustHaveElevatedPermissionsForSpecifiedNFT(); /// @dev Thrown when setting a collection or token pricing constraint with a floor price greater than ceiling price. error PaymentProcessor__CeilingPriceMustBeGreaterThanFloorPrice(); /// @dev Thrown when adding a trusted channel that is not a trusted forwarder deployed by the trusted forwarder factory. error PaymentProcessor__ChannelIsNotTrustedForwarder(); /// @dev Thrown when removing a payment method from a whitelist when that payment method is not on the whitelist. error PaymentProcessor__CoinIsNotApproved(); /// @dev Thrown when the current block time is greater than the expiration time for the cosignature. error PaymentProcessor__CosignatureHasExpired(); /// @dev Thrown when the cosigner has self destructed. error PaymentProcessor__CosignerHasSelfDestructed(); /// @dev Thrown when a token failed to transfer to the beneficiary and partial fills are disabled. error PaymentProcessor__DispensingTokenWasUnsuccessful(); /// @dev Thrown when a maker is a contract and the contract does not return the correct EIP1271 response to validate the signature. error PaymentProcessor__EIP1271SignatureInvalid(); /// @dev Thrown when a native token transfer call fails to transfer the tokens. error PaymentProcessor__FailedToTransferProceeds(); /// @dev Thrown when the additional fee on top exceeds the item price. error PaymentProcessor__FeeOnTopCannotBeGreaterThanItemPrice(); /// @dev Thrown when the supplied root hash, token and proof do not match. error PaymentProcessor__IncorrectTokenSetMerkleProof(); /// @dev Thrown when an input array has zero items in a location where it must have items. error PaymentProcessor__InputArrayLengthCannotBeZero(); /// @dev Thrown when multiple input arrays have different lengths but are required to be the same length. error PaymentProcessor__InputArrayLengthMismatch(); /// @dev Thrown when Payment Processor or a module is being deployed with invalid constructor arguments. error PaymentProcessor__InvalidConstructorArguments(); /// @dev Thrown when the maker or taker is a banned account on the collection being traded. error PaymentProcessor__MakerOrTakerIsBannedAccount(); /// @dev Thrown when the combined marketplace and royalty fees will exceed the item price. error PaymentProcessor__MarketplaceAndRoyaltyFeesWillExceedSalePrice(); /// @dev Thrown when the recovered address from a cosignature does not match the order cosigner. error PaymentProcessor__NotAuthorizedByCosigner(); /// @dev Thrown when the ERC2981 or backfilled royalties exceed the maximum fee specified by the order maker. error PaymentProcessor__OnchainRoyaltiesExceedMaximumApprovedRoyaltyFee(); /// @dev Thrown when the current block timestamp is greater than the order expiration time. error PaymentProcessor__OrderHasExpired(); /// @dev Thrown when attempting to fill a partially fillable order that has already been filled or cancelled. error PaymentProcessor__OrderIsEitherCancelledOrFilled(); /// @dev Thrown when attempting to execute a sweep order for partially fillable orders. error PaymentProcessor__OrderProtocolERC1155FillPartialUnsupportedInSweeps(); /// @dev Thrown when attempting to partially fill an order where the item price is not equally divisible by the amount of tokens. error PaymentProcessor__PartialFillsNotSupportedForNonDivisibleItems(); /// @dev Thrown when attempting to execute an order with a payment method that is not allowed by the collection payment settings. error PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); /// @dev Thrown when adding a payment method to a whitelist when that payment method is already on the list. error PaymentProcessor__PaymentMethodIsAlreadyApproved(); /// @dev Thrown when setting collection payment settings with a whitelist id that does not exist. error PaymentProcessor__PaymentMethodWhitelistDoesNotExist(); /// @dev Thrown when attempting to transfer ownership of a payment method whitelist to the zero address. error PaymentProcessor__PaymentMethodWhitelistOwnershipCannotBeTransferredToZeroAddress(); /// @dev Thrown when distributing payments and fees in native token and the amount remaining is less than the amount to distribute. error PaymentProcessor__RanOutOfNativeFunds(); /// @dev Thrown when attempting to set a royalty backfill numerator that would result in royalties greater than 100%. error PaymentProcessor__RoyaltyBackfillNumeratorCannotExceedFeeDenominator(); /// @dev Thrown when attempting to set a royalty bounty numerator that would result in royalty bounties greater than 100%. error PaymentProcessor__RoyaltyBountyNumeratorCannotExceedFeeDenominator(); /// @dev Thrown when a collection is set to pricing constraints and the item price exceeds the defined maximum price. error PaymentProcessor__SalePriceAboveMaximumCeiling(); /// @dev Thrown when a collection is set to pricing constraints and the item price is below the defined minimum price. error PaymentProcessor__SalePriceBelowMinimumFloor(); /// @dev Thrown when a maker's nonce has already been used for an executed order or cancelled by the maker. error PaymentProcessor__SignatureAlreadyUsedOrRevoked(); /** * @dev Thrown when a collection is set to block untrusted channels and the order execution originates from a channel * @dev that is not in the collection's trusted channel list. */ error PaymentProcessor__TradeOriginatedFromUntrustedChannel(); /// @dev Thrown when a trading of a specific collection has been paused by the collection owner or admin. error PaymentProcessor__TradingIsPausedForCollection(); /** * @dev Thrown when attempting to fill a partially fillable order and the amount available to fill * @dev is less than the specified minimum to fill. */ error PaymentProcessor__UnableToFillMinimumRequestedQuantity(); /// @dev Thrown when the recovered signer for an order does not match the order maker. error PaymentProcessor__UnauthorizedOrder(); /// @dev Thrown when the taker on a cosigned order does not match the taker on the cosignature. error PaymentProcessor__UnauthorizedTaker(); /// @dev Thrown when the Payment Processor or a module is being deployed with uninitialized configuration values. error PaymentProcessor__UninitializedConfiguration();// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../DataTypes.sol"; /** * @title PaymentProcessor * @custom:version 2.0.0 * @author Limit Break, Inc. */ interface IPaymentProcessorConfiguration { /** * @notice Returns the ERC2771 context setup params for payment processor modules. */ function getPaymentProcessorModuleERC2771ContextParams() external view returns ( address /*trustedForwarderFactory*/ ); /** * @notice Returns the setup params for payment processor modules. */ function getPaymentProcessorModuleDeploymentParams() external view returns ( uint32, /*defaultPushPaymentGasLimit*/ address, /*wrappedNativeCoin*/ DefaultPaymentMethods memory /*defaultPaymentMethods*/ ); /** * @notice Returns the setup params for payment processor. */ function getPaymentProcessorDeploymentParams() external view returns ( address, /*defaultContractOwner*/ PaymentProcessorModules memory /*paymentProcessorModules*/ ); }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../DataTypes.sol"; /** * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ interface IPaymentProcessorEvents { /// @notice Emitted when an account is banned from trading a collection event BannedAccountAddedForCollection( address indexed tokenAddress, address indexed account); /// @notice Emitted when an account ban has been lifted on a collection event BannedAccountRemovedForCollection( address indexed tokenAddress, address indexed account); /// @notice Emitted when an ERC721 listing is purchased. event BuyListingERC721( address indexed buyer, address indexed seller, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 salePrice); /// @notice Emitted when an ERC1155 listing is purchased. event BuyListingERC1155( address indexed buyer, address indexed seller, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 amount, uint256 salePrice); /// @notice Emitted when an ERC721 offer is accepted. event AcceptOfferERC721( address indexed seller, address indexed buyer, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 salePrice); /// @notice Emitted when an ERC1155 offer is accepted. event AcceptOfferERC1155( address indexed seller, address indexed buyer, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 amount, uint256 salePrice); /// @notice Emitted when a new payment method whitelist is created. event CreatedPaymentMethodWhitelist( uint32 indexed paymentMethodWhitelistId, address indexed whitelistOwner, string whitelistName); /// @notice Emitted when a cosigner destroys itself. event DestroyedCosigner(address indexed cosigner); /// @notice Emitted when a user revokes all of their existing listings or offers that share the master nonce. event MasterNonceInvalidated(address indexed account, uint256 nonce); /// @notice Emitted when a user revokes a single listing or offer nonce for a specific marketplace. event NonceInvalidated( uint256 indexed nonce, address indexed account, bool wasCancellation); /// @notice Emitted when a user revokes a single listing or offer nonce for a specific marketplace. event OrderDigestInvalidated( bytes32 indexed orderDigest, address indexed account, bool wasCancellation); /// @notice Emitted when a coin is added to the approved coins mapping for a security policy event PaymentMethodAddedToWhitelist( uint32 indexed paymentMethodWhitelistId, address indexed paymentMethod); /// @notice Emitted when a coin is removed from the approved coins mapping for a security policy event PaymentMethodRemovedFromWhitelist( uint32 indexed paymentMethodWhitelistId, address indexed paymentMethod); /// @notice Emitted when a payment method whitelist is reassigned to a new owner event ReassignedPaymentMethodWhitelistOwnership(uint32 indexed id, address indexed newOwner); /// @notice Emitted when a trusted channel is added for a collection event TrustedChannelAddedForCollection( address indexed tokenAddress, address indexed channel); /// @notice Emitted when a trusted channel is removed for a collection event TrustedChannelRemovedForCollection( address indexed tokenAddress, address indexed channel); /// @notice Emitted whenever pricing bounds change at a collection level for price-constrained collections. event UpdatedCollectionLevelPricingBoundaries( address indexed tokenAddress, uint256 floorPrice, uint256 ceilingPrice); /// @notice Emitted whenever the supported ERC-20 payment is set for price-constrained collections. event UpdatedCollectionPaymentSettings( address indexed tokenAddress, PaymentSettings paymentSettings, uint32 indexed paymentMethodWhitelistId, address indexed constrainedPricingPaymentMethod, uint16 royaltyBackfillNumerator, address royaltyBackfillReceiver, uint16 royaltyBountyNumerator, address exclusiveBountyReceiver, bool blockTradesFromUntrustedChannels, bool blockBannedAccounts); /// @notice Emitted whenever pricing bounds change at a token level for price-constrained collections. event UpdatedTokenLevelPricingBoundaries( address indexed tokenAddress, uint256 indexed tokenId, uint256 floorPrice, uint256 ceilingPrice); }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; /** * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ interface IModuleDefaultPaymentMethods { /** * @notice Returns the list of default payment methods that Payment Processor supports. */ function getDefaultPaymentMethods() external view returns (address[] memory); }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../DataTypes.sol"; /** * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ contract PaymentProcessorStorageAccess { /// @dev The base storage slot for Payment Processor contract storage items. bytes32 constant DIAMOND_STORAGE_PAYMENT_PROCESSOR = keccak256("diamond.storage.payment.processor"); /** * @dev Returns a storage object that follows the Diamond standard storage pattern for * @dev contract storage across multiple module contracts. */ function appStorage() internal pure returns (PaymentProcessorStorage storage diamondStorage) { bytes32 slot = DIAMOND_STORAGE_PAYMENT_PROCESSOR; assembly { diamondStorage.slot := slot } } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/draft-EIP712.sol) pragma solidity ^0.8.0; // EIP-712 is Final as of 2022-08-11. This file is deprecated. import "./EIP712.sol"; // SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; /** * @dev Used internally to indicate which side of the order the taker is on. */ enum Sides { // 0: Taker is on buy side of order. Buy, // 1: Taker is on sell side of order. Sell } /** * @dev Defines condition to apply to order execution. */ enum OrderProtocols { // 0: ERC721 order that must execute in full or not at all. ERC721_FILL_OR_KILL, // 1: ERC1155 order that must execute in full or not at all. ERC1155_FILL_OR_KILL, // 2: ERC1155 order that may be partially executed. ERC1155_FILL_PARTIAL } /** * @dev Defines the rules applied to a collection for payments. */ enum PaymentSettings { // 0: Utilize Payment Processor default whitelist. DefaultPaymentMethodWhitelist, // 1: Allow any payment method. AllowAnyPaymentMethod, // 2: Use a custom payment method whitelist. CustomPaymentMethodWhitelist, // 3: Single payment method with floor and ceiling limits. PricingConstraints, // 4: Pauses trading for the collection. Paused } /** * @dev This struct is used internally for the deployment of the Payment Processor contract and * @dev module deployments to define the default payment method whitelist. */ struct DefaultPaymentMethods { address defaultPaymentMethod1; address defaultPaymentMethod2; address defaultPaymentMethod3; address defaultPaymentMethod4; } /** * @dev This struct is used internally for the deployment of the Payment Processor contract to define the * @dev module addresses to be used for the contract. */ struct PaymentProcessorModules { address modulePaymentSettings; address moduleOnChainCancellation; address moduleTrades; address moduleTradesAdvanced; } /** * @dev This struct defines the payment settings parameters for a collection. * * @dev **paymentSettings**: The general rule definition for payment methods allowed. * @dev **paymentMethodWhitelistId**: The list id to be used when paymentSettings is set to CustomPaymentMethodWhitelist. * @dev **constraintedPricingPaymentMethod**: The payment method to be used when paymentSettings is set to PricingConstraints. * @dev **royaltyBackfillNumerator**: The royalty fee to apply to the collection when ERC2981 is not supported. * @dev **royaltyBountyNumerator**: The percentage of royalties the creator will grant to a marketplace for order fulfillment. * @dev **isRoyaltyBountyExclusive**: If true, royalty bounties will only be paid if the order marketplace is the set exclusive marketplace. * @dev **blockTradesFromUntrustedChannels**: If true, trades that originate from untrusted channels will not be executed. * @dev **blockBannedAccounts**: If true, banned accounts can be neither maker or taker for trades on a per-collection basis. */ struct CollectionPaymentSettings { PaymentSettings paymentSettings; uint32 paymentMethodWhitelistId; address constrainedPricingPaymentMethod; uint16 royaltyBackfillNumerator; uint16 royaltyBountyNumerator; bool isRoyaltyBountyExclusive; bool blockTradesFromUntrustedChannels; bool blockBannedAccounts; } /** * @dev The `v`, `r`, and `s` components of an ECDSA signature. For more information * [refer to this article](https://medium.com/mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7). */ struct SignatureECDSA { uint8 v; bytes32 r; bytes32 s; } /** * @dev This struct defines order execution parameters. * * @dev **protocol**: The order protocol to apply to the order. * @dev **maker**: The user that created and signed the order to be executed by a taker. * @dev **beneficiary**: The account that will receive the tokens. * @dev **marketplace**: The fee receiver of the marketplace that the order was created on. * @dev **fallbackRoyaltyRecipient**: The address that will receive royalties if ERC2981 * @dev is not supported by the collection and the creator has not defined backfilled royalties with Payment Processor. * @dev **paymentMethod**: The payment method for the order. * @dev **tokenAddress**: The address of the token collection the order is for. * @dev **tokenId**: The token id that the order is for. * @dev **amount**: The quantity of token the order is for. * @dev **itemPrice**: The price for the order in base units for the payment method. * @dev **nonce**: The maker's nonce for the order. * @dev **expiration**: The time, in seconds since the Unix epoch, that the order will expire. * @dev **marketplaceFeeNumerator**: The percentage fee that will be sent to the marketplace. * @dev **maxRoyaltyFeeNumerator**: The maximum royalty the maker is willing to accept. This will be used * @dev as the royalty amount when ERC2981 is not supported by the collection. * @dev **requestedFillAmount**: The amount of tokens for an ERC1155 partial fill order that the taker wants to fill. * @dev **minimumFillAmount**: The minimum amount of tokens for an ERC1155 partial fill order that the taker will accept. */ struct Order { OrderProtocols protocol; address maker; address beneficiary; address marketplace; address fallbackRoyaltyRecipient; address paymentMethod; address tokenAddress; uint256 tokenId; uint248 amount; uint256 itemPrice; uint256 nonce; uint256 expiration; uint256 marketplaceFeeNumerator; uint256 maxRoyaltyFeeNumerator; uint248 requestedFillAmount; uint248 minimumFillAmount; } /** * @dev This struct defines the cosignature for verifying an order that is a cosigned order. * * @dev **signer**: The address that signed the cosigned order. This must match the cosigner that is part of the order signature. * @dev **taker**: The address of the order taker. * @dev **expiration**: The time, in seconds since the Unix epoch, that the cosignature will expire. * @dev The `v`, `r`, and `s` components of an ECDSA signature. For more information * [refer to this article](https://medium.com/mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7). */ struct Cosignature { address signer; address taker; uint256 expiration; uint8 v; bytes32 r; bytes32 s; } /** * @dev This struct defines an additional fee on top of an order, paid by taker. * * @dev **recipient**: The recipient of the additional fee. * @dev **amount**: The amount of the additional fee, in base units of the payment token. */ struct FeeOnTop { address recipient; uint256 amount; } /** * @dev This struct defines the root hash and proof data for accepting an offer that is for a subset * @dev of items in a collection. The root hash must match the root hash specified as part of the * @dev maker's order signature. * * @dev **rootHash**: The merkletree root hash for the items that may be used to fulfill the offer order. * @dev **proof**: The merkle proofs for the item being supplied to fulfill the offer order. */ struct TokenSetProof { bytes32 rootHash; bytes32[] proof; } /** * @dev Current state of a partially fillable order. */ enum PartiallyFillableOrderState { // 0: Order is open and may continue to be filled. Open, // 1: Order has been completely filled. Filled, // 2: Order has been cancelled. Cancelled } /** * @dev This struct defines the current status of a partially fillable order. * * @dev **state**: The current state of the order as defined by the PartiallyFillableOrderState enum. * @dev **remainingFillableQuantity**: The remaining quantity that may be filled for the order. */ struct PartiallyFillableOrderStatus { PartiallyFillableOrderState state; uint248 remainingFillableQuantity; } /** * @dev This struct defines the royalty backfill and bounty information. Its data for an * @dev order execution is constructed internally based on the collection settings and * @dev order execution details. * * @dev **backfillNumerator**: The percentage of the order amount to pay as royalties * @dev for a collection that does not support ERC2981. * @dev **backfillReceiver**: The recipient of backfill royalties. * @dev **bountyNumerator**: The percentage of royalties to share with the marketplace for order fulfillment. * @dev **exclusiveMarketplace**: If non-zero, the address of the exclusive marketplace for royalty bounties. */ struct RoyaltyBackfillAndBounty { uint16 backfillNumerator; address backfillReceiver; uint16 bountyNumerator; address exclusiveMarketplace; } /** * @dev This struct defines order information that is common to all items in a sweep order. * * @dev **protocol**: The order protocol to apply to the order. * @dev **tokenAddress**: The address of the token collection the order is for. * @dev **paymentMethod**: The payment method for the order. * @dev **beneficiary**: The account that will receive the tokens. */ struct SweepOrder { OrderProtocols protocol; address tokenAddress; address paymentMethod; address beneficiary; } /** * @dev This struct defines order information that is unique to each item of a sweep order. * @dev Combined with the SweepOrder header information to make an Order to execute. * * @dev **maker**: The user that created and signed the order to be executed by a taker. * @dev **marketplace**: The marketplace that the order was created on. * @dev **fallbackRoyaltyRecipient**: The address that will receive royalties if ERC2981 * @dev is not supported by the collection and the creator has not defined royalties with Payment Processor. * @dev **tokenId**: The token id that the order is for. * @dev **amount**: The quantity of token the order is for. * @dev **itemPrice**: The price for the order in base units for the payment method. * @dev **nonce**: The maker's nonce for the order. * @dev **expiration**: The time, in seconds since the Unix epoch, that the order will expire. * @dev **marketplaceFeeNumerator**: The percentage fee that will be sent to the marketplace. * @dev **maxRoyaltyFeeNumerator**: The maximum royalty the maker is willing to accept. This will be used * @dev as the royalty amount when ERC2981 is not supported by the collection. */ struct SweepItem { address maker; address marketplace; address fallbackRoyaltyRecipient; uint256 tokenId; uint248 amount; uint256 itemPrice; uint256 nonce; uint256 expiration; uint256 marketplaceFeeNumerator; uint256 maxRoyaltyFeeNumerator; } /** * @dev This struct is used to define pricing constraints for a collection or individual token. * * @dev **isSet**: When true, this indicates that pricing constraints are set for the collection or token. * @dev **floorPrice**: The minimum price for a token or collection. This is only enforced when * @dev `enforcePricingConstraints` is `true`. * @dev **ceilingPrice**: The maximum price for a token or collection. This is only enforced when * @dev `enforcePricingConstraints` is `true`. */ struct PricingBounds { bool isSet; uint120 floorPrice; uint120 ceilingPrice; } /** * @dev This struct defines the parameters for a bulk offer acceptance transaction. * * * @dev **isCollectionLevelOfferArray**: An array of flags to indicate if an offer is for any token in the collection. * @dev **saleDetailsArray**: An array of order execution details. * @dev **buyerSignaturesArray**: An array of maker signatures authorizing the order executions. * @dev **tokenSetProofsArray**: An array of root hashes and merkle proofs for offers that are a subset of tokens in a collection. * @dev **cosignaturesArray**: An array of additional cosignatures for cosigned orders, as applicable. * @dev **feesOnTopArray**: An array of additional fees to add on top of the orders, paid by taker. */ struct BulkAcceptOffersParams { bool[] isCollectionLevelOfferArray; Order[] saleDetailsArray; SignatureECDSA[] buyerSignaturesArray; TokenSetProof[] tokenSetProofsArray; Cosignature[] cosignaturesArray; FeeOnTop[] feesOnTopArray; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct SplitProceeds { address royaltyRecipient; uint256 royaltyProceeds; uint256 marketplaceProceeds; uint256 sellerProceeds; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct PayoutsAccumulator { address lastSeller; address lastMarketplace; address lastRoyaltyRecipient; uint256 accumulatedSellerProceeds; uint256 accumulatedMarketplaceProceeds; uint256 accumulatedRoyaltyProceeds; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct SweepCollectionComputeAndDistributeProceedsParams { IERC20 paymentCoin; FulfillOrderFunctionPointers fnPointers; FeeOnTop feeOnTop; RoyaltyBackfillAndBounty royaltyBackfillAndBounty; Order[] saleDetailsBatch; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct FulfillOrderFunctionPointers { function(address,address,IERC20,uint256,uint256) funcPayout; function(address,address,address,uint256,uint256) returns (bool) funcDispenseToken; function(TradeContext memory, Order memory) funcEmitOrderExecutionEvent; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct TradeContext { bytes32 domainSeparator; address channel; address taker; bool disablePartialFill; } /** * @dev This struct defines contract-level storage to be used across all Payment Processor modules. * @dev Follows the Diamond storage pattern. */ struct PaymentProcessorStorage { /// @dev Tracks the most recently created payment method whitelist id uint32 lastPaymentMethodWhitelistId; /** * @notice User-specific master nonce that allows buyers and sellers to efficiently cancel all listings or offers * they made previously. The master nonce for a user only changes when they explicitly request to revoke all * existing listings and offers. * * @dev When prompting sellers to sign a listing or offer, marketplaces must query the current master nonce of * the user and include it in the listing/offer signature data. */ mapping(address => uint256) masterNonces; /** * @dev The mapping key is the keccak256 hash of marketplace address and user address. * * @dev ```keccak256(abi.encodePacked(marketplace, user))``` * * @dev The mapping value is another nested mapping of "slot" (key) to a bitmap (value) containing boolean flags * indicating whether or not a nonce has been used or invalidated. * * @dev Marketplaces MUST track their own nonce by user, incrementing it for every signed listing or offer the user * creates. Listings and purchases may be executed out of order, and they may never be executed if orders * are not matched prior to expriation. * * @dev The slot and the bit offset within the mapped value are computed as: * * @dev ```slot = nonce / 256;``` * @dev ```offset = nonce % 256;``` */ mapping(address => mapping(uint256 => uint256)) invalidatedSignatures; /// @dev Mapping of token contract addresses to the collection payment settings. mapping (address => CollectionPaymentSettings) collectionPaymentSettings; /// @dev Mapping of payment method whitelist id to the owner address for the list. mapping (uint32 => address) paymentMethodWhitelistOwners; /// @dev Mapping of payment method whitelist id to a defined list of allowed payment methods. mapping (uint32 => EnumerableSet.AddressSet) collectionPaymentMethodWhitelists; /// @dev Mapping of token contract addresses to the collection-level pricing boundaries (floor and ceiling price). mapping (address => PricingBounds) collectionPricingBounds; /// @dev Mapping of token contract addresses to the token-level pricing boundaries (floor and ceiling price). mapping (address => mapping (uint256 => PricingBounds)) tokenPricingBounds; /// @dev Mapping of token contract addresses to the defined royalty backfill receiver addresses. mapping (address => address) collectionRoyaltyBackfillReceivers; /// @dev Mapping of token contract addresses to the defined exclusive bounty receivers. mapping (address => address) collectionExclusiveBountyReceivers; /// @dev Mapping of maker addresses to a mapping of order digests to the status of the partially fillable order for that digest. mapping (address => mapping(bytes32 => PartiallyFillableOrderStatus)) partiallyFillableOrderStatuses; /// @dev Mapping of token contract addresses to the defined list of trusted channels for the token contract. mapping (address => EnumerableSet.AddressSet) collectionTrustedChannels; /// @dev Mapping of token contract addresses to the defined list of banned accounts for the token contract. mapping (address => EnumerableSet.AddressSet) collectionBannedAccounts; /// @dev A mapping of all co-signers that have self-destructed and can never be used as cosigners again. mapping (address => bool) destroyedCosigners; }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
File 3 of 6: FunMint
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import {Ownable} from "openzeppelin/access/Ownable.sol"; import {ERC721A} from "ERC721A/ERC721A.sol"; import {IERC721} from "openzeppelin/token/ERC721/IERC721.sol"; import {IERC721Metadata} from "openzeppelin/token/ERC721/extensions/IERC721Metadata.sol"; import {IERC165} from "openzeppelin/utils/introspection/IERC165.sol"; import {MerkleProofLib} from "solmate/utils/MerkleProofLib.sol"; import "./IERC4906.sol"; import "./IMetadataRenderer.sol"; contract FunMint is ERC721A, IERC4906, Ownable { address public metadataRenderer; address public metadataUpdater; mapping(uint256 => bool) public mintedSpecialByTokenId; uint256 public mintEnd; bytes32 merkleRoot; bytes32 merkleRootSpecial; // Refund constants uint256 public constant REFUND_BASE_GAS = 30_000; uint256 public constant MAX_REFUND_GAS_USED = 200_000; uint256 public constant MAX_REFUND_BASE_FEE = 200 gwei; uint256 public constant MAX_REFUND_PRIORITY_FEE = 2 gwei; bool private _initialized; string private _name; string private _symbol; error InvalidTokenId(); error InvalidProof(); error MerkleRootNotSet(); error MintClosed(); error MintedAlready(); error OnlyOwnerOrMetadataUpdater(); constructor() ERC721A("", "") {} receive() external payable {} function init(string memory name_, string memory symbol_, address owner) public onlyOwner { if (_initialized) revert("Already initialized"); _initialized = true; _name = name_; _symbol = symbol_; transferOwnership(owner); } function _packAux(bool mintedNormal, bool mintedSpecial) internal pure returns (uint64) { uint64 result = 0; result = (result << 1) | (mintedNormal ? 1 : 0); result = (result << 1) | (mintedSpecial ? 1 : 0); return result; } function _unpackAux(uint64 packedData) internal pure returns (bool mintedNormal, bool mintedSpecial) { mintedSpecial = (packedData & 1) != 0; mintedNormal = ((packedData >> 1) & 1) != 0; } function mint(bytes32[] calldata _proof) public refundsGas { if (block.timestamp > mintEnd) revert MintClosed(); (bool mintedNormal, bool mintedSpecial) = _unpackAux(_getAux(msg.sender)); if (mintedNormal) revert MintedAlready(); bool isValid = MerkleProofLib.verify(_proof, merkleRoot, keccak256(abi.encodePacked(msg.sender))); if (!isValid) revert InvalidProof(); // Perform all state changes before refunding gas to prevent reentrancy _mint(msg.sender, 1); _setAux(msg.sender, _packAux(true, mintedSpecial)); } function mintSpecial(bytes32[] calldata _proof) public refundsGas { if (block.timestamp > mintEnd) revert MintClosed(); (bool mintedNormal, bool mintedSpecial) = _unpackAux(_getAux(msg.sender)); if (mintedSpecial) revert MintedAlready(); bool isValid = MerkleProofLib.verify(_proof, merkleRootSpecial, keccak256(abi.encodePacked(msg.sender))); if (!isValid) revert InvalidProof(); // Perform all state changes before refunding gas to prevent reentrancy mintedSpecialByTokenId[_nextTokenId()] = true; _mint(msg.sender, 1); _setAux(msg.sender, _packAux(mintedNormal, true)); } modifier refundsGas() { uint256 startGas = gasleft(); _; _refundGas(startGas); } // slightly modified from https://github.com/nounsDAO/nouns-monorepo/blob/10bb478328bdb5f4c5efffed9a8c5186f9fe974a/packages/nouns-contracts/contracts/governance/NounsDAOLogicV2.sol#LL1033C2-L1048C21 function _refundGas(uint256 startGas) internal { unchecked { uint256 balance = address(this).balance; if (balance == 0) { return; } uint256 basefee = _min(block.basefee, MAX_REFUND_BASE_FEE); uint256 gasPrice = _min(tx.gasprice, basefee + MAX_REFUND_PRIORITY_FEE); uint256 gasUsed = _min(startGas - gasleft() + REFUND_BASE_GAS, MAX_REFUND_GAS_USED); uint256 refundAmount = _min(gasPrice * gasUsed, balance); tx.origin.call{value: refundAmount}(""); } } function _startTokenId() internal pure override returns (uint256) { return 1; } function _min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function tokenURI(uint256 id) public view override returns (string memory) { if (ownerOf(id) == address(0)) revert InvalidTokenId(); return IMetadataRenderer(metadataRenderer).tokenURI(id); } function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } // Admin functions function refreshMetadata() public { if (msg.sender != metadataUpdater && msg.sender != owner()) { revert OnlyOwnerOrMetadataUpdater(); } emit BatchMetadataUpdate(_startTokenId(), _nextTokenId() - 1); } function setMetadataRenderer(address _metadataRenderer) public onlyOwner { metadataRenderer = _metadataRenderer; refreshMetadata(); } function setMetadataUpdater(address _metadataUpdater) public onlyOwner { metadataUpdater = _metadataUpdater; } function setMerkleRoots(bytes32 regular, bytes32 special) public onlyOwner { if (regular == bytes32(0) || special == bytes32(0)) { revert MerkleRootNotSet(); } merkleRoot = regular; merkleRootSpecial = special; } function setMintEnd(uint256 _mintEnd) public onlyOwner { if (_mintEnd > 0 && (merkleRoot == bytes32(0) || merkleRootSpecial == bytes32(0))) { revert MerkleRootNotSet(); } mintEnd = _mintEnd; } function withdraw() public onlyOwner { payable(owner()).call{value: address(this).balance}(""); } function supportsInterface(bytes4 interfaceId) public pure virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId || interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC4906).interfaceId || interfaceId == type(IERC721Metadata).interfaceId; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return _currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr) if (curr < _currentIndex) { uint256 packed = _packedOwnerships[curr]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `curr` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. while (packed == 0) { packed = _packedOwnerships[--curr]; } return packed; } } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) public payable virtual override { address owner = ownerOf(tokenId); if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && // If within bounds, _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. // The duplicated `log4` removes an extra check and reduces stack juggling. // The assembly, together with the surrounding Solidity code, have been // delicately arranged to nudge the compiler into producing optimized opcodes. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) // The `iszero(eq(,))` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. // The compiler will optimize the `iszero` away for performance. for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Gas optimized merkle proof verification library. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from Solady (https://github.com/Vectorized/solady/blob/main/src/utils/MerkleProofLib.sol) library MerkleProofLib { function verify( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool isValid) { assembly { if proof.length { // Left shifting by 5 is like multiplying by 32. let end := add(proof.offset, shl(5, proof.length)) // Initialize offset to the offset of the proof in calldata. let offset := proof.offset // Iterate over proof elements to compute root hash. // prettier-ignore for {} 1 {} { // Slot where the leaf should be put in scratch space. If // leaf > calldataload(offset): slot 32, otherwise: slot 0. let leafSlot := shl(5, gt(leaf, calldataload(offset))) // Store elements to hash contiguously in scratch space. // The xor puts calldataload(offset) in whichever slot leaf // is not occupying, so 0 if leafSlot is 32, and 32 otherwise. mstore(leafSlot, leaf) mstore(xor(leafSlot, 32), calldataload(offset)) // Reuse leaf to store the hash to reduce stack operations. leaf := keccak256(0, 64) // Hash both slots of scratch space. offset := add(offset, 32) // Shift 1 word per cycle. // prettier-ignore if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) // The proof is valid if the roots match. } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IERC4906 { /// @dev This event emits when the metadata of a token is changed. /// So that the third-party platforms such as NFT market could /// timely update the images and related attributes of the NFT. event MetadataUpdate(uint256 _tokenId); /// @dev This event emits when the metadata of a range of tokens is changed. /// So that the third-party platforms such as NFT market could /// timely update the images and related attributes of the NFTs. event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); } // SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; interface IMetadataRenderer { function tokenURI(uint256 id) external view returns (string memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
File 4 of 6: TrustedForwarder
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /** * @title TrustedForwarder * @author Limit Break, Inc. * @notice TrustedForwarder is a generic message forwarder, which allows you to relay transactions to any contract and preserve the original sender. * The processor acts as a trusted proxy, which can be a way to limit interactions with your contract, or enforce certain conditions. */ contract TrustedForwarder is EIP712, Initializable, Ownable { error TrustedForwarder__CannotSetAppSignerToZeroAddress(); error TrustedForwarder__CannotSetOwnerToZeroAddress(); error TrustedForwarder__CannotUseWithoutSignature(); error TrustedForwarder__InvalidSignature(); error TrustedForwarder__SignerNotAuthorized(); struct SignatureECDSA { uint8 v; bytes32 r; bytes32 s; } // keccak256("AppSigner(bytes32 messageHash,address target,address sender)") bytes32 public constant APP_SIGNER_TYPEHASH = 0xc83d02443cc9e12c5d2faae8a9a36bf0112f5b4a8cce23c9277a0c68bf638762; address public signer; constructor() EIP712("TrustedForwarder", "1") {} /** * @notice Initializes the TrustedForwarder contract. * * @dev This should be called atomically with the clone of the contract to prevent bad actors from calling it. * @dev - Throws if the contract is already initialized * * @param owner The address to assign the owner role to. * @param appSigner The address to assign the app signer role to. */ function __TrustedForwarder_init(address owner, address appSigner) external initializer { if (owner == address(0)) { revert TrustedForwarder__CannotSetOwnerToZeroAddress(); } if (appSigner != address(0)) { signer = appSigner; } _transferOwnership(owner); } /** * @notice Forwards a message to a target contract, preserving the original sender. * @notice In the case the forwarder does not require a signature, this function should be used to save gas. * * @dev - Throws if the target contract reverts. * @dev - Throws if the target address has no code. * @dev - Throws if `signer` is not address(0). * * @param target The address of the contract to forward the message to. * @param message The calldata to forward. * * @return returnData The return data of the call to the target contract. */ function forwardCall(address target, bytes calldata message) external payable returns (bytes memory returnData) { address signerCache = signer; if (signerCache != address(0)) { revert TrustedForwarder__CannotUseWithoutSignature(); } bytes memory encodedData = _encodeERC2771Context(message, _msgSender()); assembly { let success := call(gas(), target, callvalue(), add(encodedData, 0x20), mload(encodedData), 0, 0) let size := returndatasize() returnData := mload(0x40) mstore(returnData, size) mstore(0x40, add(add(returnData, 0x20), size)) // Adjust memory pointer returndatacopy(add(returnData, 0x20), 0, size) // Copy returndata to memory if iszero(success) { revert(add(returnData, 0x20), size) // Revert with return data on failure } // If the call was successful, but the return data is empty, check if the target address has code if iszero(size) { if iszero(extcodesize(target)) { mstore(0x00, 0x39bf07c1) // Store function selector `TrustedForwarder__TargetAddressHasNoCode()` and revert revert(0x1c, 0x04) // Revert with the custom function selector } } } } /** * @notice Forwards a message to a target contract, preserving the original sender. * @notice This should only be used if the forwarder requires a signature. * @notice In the case the app signer is not set, use the overloaded `forwardCall` function without a signature variable. * * @dev - Throws if the target contract reverts. * @dev - Throws if the target address has no code. * @dev - Throws if `signer` is not address(0) and the signature does not match the signer. * * @param target The address of the contract to forward the message to. * @param message The calldata to forward. * @param signature The signature of the message. * * @return returnData The return data of the call to the target contract. */ function forwardCall(address target, bytes calldata message, SignatureECDSA calldata signature) external payable returns (bytes memory returnData) { address signerCache = signer; if (signerCache != address(0)) { if ( signerCache != _ecdsaRecover( _hashTypedDataV4( keccak256(abi.encode(APP_SIGNER_TYPEHASH, keccak256(message), target, _msgSender())) ), signature.v, signature.r, signature.s ) ) { revert TrustedForwarder__SignerNotAuthorized(); } } bytes memory encodedData = _encodeERC2771Context(message, _msgSender()); assembly { let success := call(gas(), target, callvalue(), add(encodedData, 0x20), mload(encodedData), 0, 0) let size := returndatasize() returnData := mload(0x40) mstore(returnData, size) mstore(0x40, add(add(returnData, 0x20), size)) // Adjust memory pointer returndatacopy(add(returnData, 0x20), 0, size) // Copy returndata to memory if iszero(success) { revert(add(returnData, 0x20), size) // Revert with return data on failure } // If the call was successful, but the return data is empty, check if the target address has code if iszero(size) { if iszero(extcodesize(target)) { mstore(0x00, 0x39bf07c1) // Store function selector `TrustedForwarder__TargetAddressHasNoCode()` and revert revert(0x1c, 0x04) // Revert with the custom function selector } } } } /** * @notice Updates the app signer address. To disable app signing, set signer to address(0). * * @dev - Throws if the sender is not the owner. * * @param signer_ The address to assign the app signer role to. */ function updateSigner(address signer_) external onlyOwner { if (signer_ == address(0)) { revert TrustedForwarder__CannotSetAppSignerToZeroAddress(); } signer = signer_; } /** * @notice Resets the app signer address to address(0). * * @dev - Throws if the sender is not the owner. */ function deactivateSigner() external onlyOwner { signer = address(0); } /** * @notice Returns the domain separator used in the permit signature * * @return The domain separator */ function domainSeparatorV4() external view returns (bytes32) { return _domainSeparatorV4(); } /// @dev appends the msg.sender to the end of the calldata function _encodeERC2771Context(bytes calldata _data, address _msgSender) internal pure returns (bytes memory encodedData) { assembly { // Calculate total length: data.length + 20 bytes for the address let totalLength := add(_data.length, 20) // Allocate memory for the combined data encodedData := mload(0x40) mstore(0x40, add(encodedData, add(totalLength, 0x20))) // Set the length of the `encodedData` mstore(encodedData, totalLength) // Copy the `bytes calldata` data calldatacopy(add(encodedData, 0x20), _data.offset, _data.length) // Append the `address`. Addresses are 20 bytes, stored in the last 20 bytes of a 32-byte word mstore(add(add(encodedData, 0x20), _data.length), shl(96, _msgSender)) } } /** * @notice Recovers an ECDSA signature * * @dev This function is copied from OpenZeppelin's ECDSA library * * @param digest The digest to recover * @param v The v component of the signature * @param r The r component of the signature * @param s The s component of the signature * * @return recoveredSigner The signer of the digest */ function _ecdsaRecover(bytes32 digest, uint8 v, bytes32 r, bytes32 s) internal pure returns (address recoveredSigner) { if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { revert TrustedForwarder__InvalidSignature(); } recoveredSigner = ecrecover(digest, v, r, s); if (recoveredSigner == address(0)) { revert TrustedForwarder__InvalidSignature(); } } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
File 5 of 6: ModuleTrades
// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "./PaymentProcessorModule.sol"; /* @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@ #@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@* @@@@@@@@@@@@ @@@@@@@@@@@@@@@ @ @@@@@@@@@@@@ @@@@@@@@@@@@@@@ @ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@ #@@ @@@@@@@@@@@@/ @@@@@@@@@@@@@@. @@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@&%%%%%%%%&&@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@& @@@@@@@@@@@@@@ *@@@@@@@ (@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ .@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@% @@@@@@@@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ contract ModuleTrades is PaymentProcessorModule { constructor(address configurationContract) PaymentProcessorModule(configurationContract){} /** * @notice Executes a buy listing transaction for a single order item. * * @dev Throws when the maker's nonce has already been used or has been cancelled. * @dev Throws when the order has expired. * @dev Throws when the combined marketplace and royalty fee exceeds 100%. * @dev Throws when the taker fee on top exceeds 100% of the item sale price. * @dev Throws when the maker's master nonce does not match the order details. * @dev Throws when the order does not comply with the collection payment settings. * @dev Throws when the maker's signature is invalid. * @dev Throws when the order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when the maker or taker is a banned account for the collection. * @dev Throws when the taker does not have or did not send sufficient funds to complete the purchase. * @dev Throws when the token transfer fails for any reason such as lack of approvals or token no longer owned by maker. * @dev Throws when the maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * @dev Any unused native token payment will be returned to the taker as wrapped native token. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Maker's nonce is marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Maker's partially fillable order state is updated for ERC1155_PARTIAL_FILL orders. * @dev 5. An `BuyListingERC721` event has been emitted for a ERC721 purchase. * @dev 6. An `BuyListingERC1155` event has been emitted for a ERC1155 purchase. * @dev 7. A `NonceInvalidated` event has been emitted for a ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for a ERC1155_PARTIAL_FILL order, if fully filled. * * @param domainSeparator The domain separator to be used when verifying the order signature. * @param saleDetails The order execution details. * @param sellerSignature The maker's signature authorizing the order execution. * @param cosignature The additional cosignature for a cosigned order, if applicable. * @param feeOnTop The additional fee to add on top of the order, paid by taker. */ function buyListing( bytes32 domainSeparator, Order memory saleDetails, SignatureECDSA memory sellerSignature, Cosignature memory cosignature, FeeOnTop memory feeOnTop ) public payable { uint256 appendedDataLength; unchecked { appendedDataLength = msg.data.length - BASE_MSG_LENGTH_BUY_LISTING; } TradeContext memory context = TradeContext({ domainSeparator: domainSeparator, channel: msg.sender, taker: appendedDataLength == 20 ? _msgSender() : msg.sender, disablePartialFill: true }); uint256 remainingNativeProceeds = _executeOrderBuySide( context, msg.value, saleDetails, sellerSignature, cosignature, feeOnTop ); if (remainingNativeProceeds > 0) { _pushProceeds(wrappedNativeCoinAddress, remainingNativeProceeds, gasleft()); IERC20(wrappedNativeCoinAddress). transferFrom(address(this), context.taker, remainingNativeProceeds); } } /** * @notice Executes an offer accept transaction for a single order item. * * @dev Throws when the maker's nonce has already been used or has been cancelled. * @dev Throws when the order has expired. * @dev Throws when the combined marketplace and royalty fee exceeds 100%. * @dev Throws when the taker fee on top exceeds 100% of the item sale price. * @dev Throws when the maker's master nonce does not match the order details. * @dev Throws when the order does not comply with the collection payment settings. * @dev Throws when the maker's signature is invalid. * @dev Throws when the order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when the maker or taker is a banned account for the collection. * @dev Throws when the maker does not have sufficient funds to complete the purchase. * @dev Throws when the token transfer fails for any reason such as lack of approvals or token not owned by the taker. * @dev Throws when the token the offer is being accepted for does not match the conditions set by the maker. * @dev Throws when the maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when the order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Maker's nonce is marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Maker's partially fillable order state is updated for ERC1155_PARTIAL_FILL orders. * @dev 5. An `AcceptOfferERC721` event has been emitted for a ERC721 sale. * @dev 6. An `AcceptOfferERC1155` event has been emitted for a ERC1155 sale. * @dev 7. A `NonceInvalidated` event has been emitted for a ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for a ERC1155_PARTIAL_FILL order, if fully filled. * * @param domainSeparator The domain separator to be used when verifying the order signature. * @param isCollectionLevelOffer The flag to indicate if an offer is for any token in the collection. * @param saleDetails The order execution details. * @param buyerSignature The maker's signature authorizing the order execution. * @param tokenSetProof The root hash and merkle proofs for an offer that is a subset of tokens in a collection. * @param cosignature The additional cosignature for a cosigned order, if applicable. * @param feeOnTop The additional fee to add on top of the order, paid by taker. */ function acceptOffer( bytes32 domainSeparator, bool isCollectionLevelOffer, Order memory saleDetails, SignatureECDSA memory buyerSignature, TokenSetProof memory tokenSetProof, Cosignature memory cosignature, FeeOnTop memory feeOnTop ) public { uint256 appendedDataLength; unchecked { appendedDataLength = msg.data.length - BASE_MSG_LENGTH_ACCEPT_OFFER - (PROOF_ELEMENT_SIZE * tokenSetProof.proof.length); } _executeOrderSellSide( TradeContext({ domainSeparator: domainSeparator, channel: msg.sender, taker: appendedDataLength == 20 ? _msgSender() : msg.sender, disablePartialFill: true }), isCollectionLevelOffer, saleDetails, buyerSignature, tokenSetProof, cosignature, feeOnTop); } /** * @notice Executes a buy listing transaction for multiple order items. * * @dev Throws when a maker's nonce has already been used or has been cancelled. * @dev Throws when any order has expired. * @dev Throws when any combined marketplace and royalty fee exceeds 100%. * @dev Throws when any taker fee on top exceeds 100% of the item sale price. * @dev Throws when a maker's master nonce does not match the order details. * @dev Throws when an order does not comply with the collection payment settings. * @dev Throws when a maker's signature is invalid. * @dev Throws when an order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when any maker or taker is a banned account for the collection. * @dev Throws when the taker does not have or did not send sufficient funds to complete the purchase. * @dev Throws when a maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * @dev Will NOT throw when a token fails to transfer but also will not disperse payments for failed items. * @dev Any unused native token payment will be returned to the taker as wrapped native token. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Makers nonces are marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Makers partially fillable order states are updated for ERC1155_PARTIAL_FILL orders. * @dev 5. `BuyListingERC721` events have been emitted for each ERC721 purchase. * @dev 6. `BuyListingERC1155` events have been emitted for each ERC1155 purchase. * @dev 7. A `NonceInvalidated` event has been emitted for each ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for each ERC1155_PARTIAL_FILL order, if fully filled. * * @param domainSeparator The domain separator to be used when verifying the order signature. * @param saleDetailsArray An array of order execution details. * @param sellerSignatures An array of maker signatures authorizing the order execution. * @param cosignatures An array of additional cosignatures for cosigned orders, if applicable. * @param feesOnTop An array of additional fees to add on top of the orders, paid by taker. */ function bulkBuyListings( bytes32 domainSeparator, Order[] calldata saleDetailsArray, SignatureECDSA[] calldata sellerSignatures, Cosignature[] calldata cosignatures, FeeOnTop[] calldata feesOnTop ) public payable { if (saleDetailsArray.length != sellerSignatures.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (saleDetailsArray.length != cosignatures.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (saleDetailsArray.length != feesOnTop.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (saleDetailsArray.length == 0) { revert PaymentProcessor__InputArrayLengthCannotBeZero(); } uint256 remainingNativeProceeds = msg.value; uint256 appendedDataLength; unchecked { appendedDataLength = msg.data.length - BASE_MSG_LENGTH_BULK_BUY_LISTINGS - (BASE_MSG_LENGTH_BULK_BUY_LISTINGS_PER_ITEM * saleDetailsArray.length); } TradeContext memory context = TradeContext({ domainSeparator: domainSeparator, channel: msg.sender, taker: appendedDataLength == 20 ? _msgSender() : msg.sender, disablePartialFill: false }); Order memory saleDetails; SignatureECDSA memory sellerSignature; Cosignature memory cosignature; FeeOnTop memory feeOnTop; for (uint256 i = 0; i < saleDetailsArray.length;) { saleDetails = saleDetailsArray[i]; sellerSignature = sellerSignatures[i]; cosignature = cosignatures[i]; feeOnTop = feesOnTop[i]; if(saleDetails.paymentMethod == address(0)) { remainingNativeProceeds = _executeOrderBuySide( context, remainingNativeProceeds, saleDetails, sellerSignature, cosignature, feeOnTop); } else { _executeOrderBuySide(context, 0, saleDetails, sellerSignature, cosignature, feeOnTop); } unchecked { ++i; } } if (remainingNativeProceeds > 0) { _pushProceeds(wrappedNativeCoinAddress, remainingNativeProceeds, gasleft()); IERC20(wrappedNativeCoinAddress). transferFrom(address(this), context.taker, remainingNativeProceeds); } } /** * @notice Executes an accept offer transaction for multiple order items. * * @dev Throws when a maker's nonce has already been used or has been cancelled. * @dev Throws when any order has expired. * @dev Throws when any combined marketplace and royalty fee exceeds 100%. * @dev Throws when any taker fee on top exceeds 100% of the item sale price. * @dev Throws when a maker's master nonce does not match the order details. * @dev Throws when an order does not comply with the collection payment settings. * @dev Throws when a maker's signature is invalid. * @dev Throws when an order is a cosigned order and the cosignature is invalid. * @dev Throws when the transaction originates from an untrusted channel if untrusted channels are blocked. * @dev Throws when any maker or taker is a banned account for the collection. * @dev Throws when a maker does not have sufficient funds to complete the purchase. * @dev Throws when the token an offer is being accepted for does not match the conditions set by the maker. * @dev Throws when a maker has revoked the order digest on a ERC1155_PARTIAL_FILL order. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the item price is not evenly divisible by the amount. * @dev Throws when an order is an ERC1155_PARTIAL_FILL order and the remaining fillable quantity is less than the requested minimum fill amount. * @dev Will NOT throw when a token fails to transfer but also will not disperse payments for failed items. * * @dev <h4>Postconditions:</h4> * @dev 1. Payment amounts and fees are sent to their respective recipients. * @dev 2. Purchased tokens are sent to the beneficiary. * @dev 3. Makers nonces are marked as used for ERC721_FILL_OR_KILL and ERC1155_FILL_OR_KILL orders. * @dev 4. Makers partially fillable order states are updated for ERC1155_PARTIAL_FILL orders. * @dev 5. `AcceptOfferERC721` events have been emitted for each ERC721 sale. * @dev 6. `AcceptOfferERC1155` events have been emitted for each ERC1155 sale. * @dev 7. A `NonceInvalidated` event has been emitted for each ERC721_FILL_OR_KILL or ERC1155_FILL_OR_KILL order. * @dev 8. A `OrderDigestInvalidated` event has been emitted for each ERC1155_PARTIAL_FILL order, if fully filled. * * @param domainSeparator The domain separator to be used when verifying the order signature. * @param params The parameters for the bulk offers being accepted. */ function bulkAcceptOffers( bytes32 domainSeparator, BulkAcceptOffersParams memory params ) public { if (params.saleDetailsArray.length != params.isCollectionLevelOfferArray.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (params.saleDetailsArray.length != params.buyerSignaturesArray.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (params.saleDetailsArray.length != params.tokenSetProofsArray.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (params.saleDetailsArray.length != params.cosignaturesArray.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (params.saleDetailsArray.length != params.feesOnTopArray.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (params.saleDetailsArray.length == 0) { revert PaymentProcessor__InputArrayLengthCannotBeZero(); } uint256 appendedDataLength; unchecked { appendedDataLength = msg.data.length - BASE_MSG_LENGTH_BULK_ACCEPT_OFFERS - (BASE_MSG_LENGTH_BULK_ACCEPT_OFFERS_PER_ITEM * params.saleDetailsArray.length); for (uint256 i = 0; i < params.tokenSetProofsArray.length;) { appendedDataLength -= PROOF_ELEMENT_SIZE * params.tokenSetProofsArray[i].proof.length; ++i; } } TradeContext memory context = TradeContext({ domainSeparator: domainSeparator, channel: msg.sender, taker: appendedDataLength == 20 ? _msgSender() : msg.sender, disablePartialFill: false }); for (uint256 i = 0; i < params.saleDetailsArray.length;) { _executeOrderSellSide( context, params.isCollectionLevelOfferArray[i], params.saleDetailsArray[i], params.buyerSignaturesArray[i], params.tokenSetProofsArray[i], params.cosignaturesArray[i], params.feesOnTopArray[i]); unchecked { ++i; } } } } // SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../IOwnable.sol"; import "../interfaces/IPaymentProcessorConfiguration.sol"; import "../interfaces/IPaymentProcessorEvents.sol"; import "../storage/PaymentProcessorStorageAccess.sol"; import "../Constants.sol"; import "../Errors.sol"; import "@openzeppelin/contracts/access/IAccessControl.sol"; import "@openzeppelin/contracts/interfaces/IERC1271.sol"; import "@openzeppelin/contracts/interfaces/IERC2981.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import "@openzeppelin/contracts/token/ERC1155/IERC1155.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import {TrustedForwarderERC2771Context} from "@limitbreak/trusted-forwarder/TrustedForwarderERC2771Context.sol"; /* @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@ #@@@@@@@@@@@@@@ @@@@@@@@@@@@ @@@@@@@@@@@@@@* @@@@@@@@@@@@ @@@@@@@@@@@@@@@ @ @@@@@@@@@@@@ @@@@@@@@@@@@@@@ @ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@ @@@@@@@@@@@@ @@@@@@@@@@@@@@@ #@@ @@@@@@@@@@@@/ @@@@@@@@@@@@@@. @@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@&%%%%%%%%&&@@@@@@@@@@@@@@ @@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@ @@@@@@@@@@@& @@@@@@@@@@@@@@ *@@@@@@@ (@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@ @@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ .@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@% @@@@@@@@@@@@@@@@@@@@@@@@( @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@& @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ abstract contract PaymentProcessorModule is TrustedForwarderERC2771Context, PaymentProcessorStorageAccess, IPaymentProcessorEvents { using EnumerableSet for EnumerableSet.AddressSet; // Recommendations For Default Immutable Payment Methods Per Chain // Default Payment Method 1: Wrapped Native Coin // Default Payment Method 2: Wrapped ETH // Default Payment Method 3: USDC (Native) // Default Payment Method 4: USDC (Bridged) /// @dev The amount of gas units to be supplied with native token transfers. uint256 private immutable pushPaymentGasLimit; /// @dev The address of the ERC20 contract used for wrapped native token. address public immutable wrappedNativeCoinAddress; /// @dev The first default payment method defined at contract deployment. Immutable to save SLOAD cost. address private immutable defaultPaymentMethod1; /// @dev The second default payment method defined at contract deployment. Immutable to save SLOAD cost. address private immutable defaultPaymentMethod2; /// @dev The third default payment method defined at contract deployment. Immutable to save SLOAD cost. address private immutable defaultPaymentMethod3; /// @dev The fourth default payment method defined at contract deployment. Immutable to save SLOAD cost. address private immutable defaultPaymentMethod4; constructor(address configurationContract) TrustedForwarderERC2771Context( IPaymentProcessorConfiguration(configurationContract).getPaymentProcessorModuleERC2771ContextParams() ) { ( uint32 pushPaymentGasLimit_, address wrappedNativeCoinAddress_, DefaultPaymentMethods memory defaultPaymentMethods ) = IPaymentProcessorConfiguration(configurationContract).getPaymentProcessorModuleDeploymentParams(); if (pushPaymentGasLimit_ == 0 || wrappedNativeCoinAddress_ == address(0)) { revert PaymentProcessor__InvalidConstructorArguments(); } pushPaymentGasLimit = pushPaymentGasLimit_; wrappedNativeCoinAddress = wrappedNativeCoinAddress_; defaultPaymentMethod1 = defaultPaymentMethods.defaultPaymentMethod1; defaultPaymentMethod2 = defaultPaymentMethods.defaultPaymentMethod2; defaultPaymentMethod3 = defaultPaymentMethods.defaultPaymentMethod3; defaultPaymentMethod4 = defaultPaymentMethods.defaultPaymentMethod4; } /*************************************************************************/ /* Default Payment Methods */ /*************************************************************************/ /** * @notice Returns true if `paymentMethod` is a default payment method. * * @dev This function will return true if the default payment method was added after contract deployment. */ function _isDefaultPaymentMethod(address paymentMethod) internal view returns (bool) { if (paymentMethod == address(0)) { return true; } else if (paymentMethod == defaultPaymentMethod1) { return true; } else if (paymentMethod == defaultPaymentMethod2) { return true; } else if (paymentMethod == defaultPaymentMethod3) { return true; } else if (paymentMethod == defaultPaymentMethod4) { return true; } else { // If it isn't one of the gas efficient immutable default payment methods, // it may have bee added to the fallback default payment method whitelist, // but there are SLOAD costs. return appStorage().collectionPaymentMethodWhitelists[DEFAULT_PAYMENT_METHOD_WHITELIST_ID].contains(paymentMethod); } } /** * @notice Returns an array of the default payment methods defined at contract deployment. * * @dev This array will **NOT** include default payment methods added after contract deployment. */ function _getDefaultPaymentMethods() internal view returns (address[] memory) { address[] memory defaultPaymentMethods = new address[](5); defaultPaymentMethods[0] = address(0); defaultPaymentMethods[1] = defaultPaymentMethod1; defaultPaymentMethods[2] = defaultPaymentMethod2; defaultPaymentMethods[3] = defaultPaymentMethod3; defaultPaymentMethods[4] = defaultPaymentMethod4; return defaultPaymentMethods; } /*************************************************************************/ /* Order Execution */ /*************************************************************************/ /** * @notice Checks order validation and fulfills a buy listing order. * * @dev This function may be called multiple times during a bulk execution. * @dev Throws when a partial fill order is not equally divisible by the number of items in the order. * * @param context The current execution context to determine the taker. * @param startingNativeFunds The amount of native funds available at the beginning of the order execution. * @param saleDetails The order execution details. * @param signedSellOrder The maker's signature authorizing the order execution. * @param cosignature The additional cosignature for a cosigned order, if applicable. * @param feeOnTop The additional fee to add on top of the order, paid by taker. * * @return endingNativeFunds The amount of native funds available at the end of the order execution. */ function _executeOrderBuySide( TradeContext memory context, uint256 startingNativeFunds, Order memory saleDetails, SignatureECDSA memory signedSellOrder, Cosignature memory cosignature, FeeOnTop memory feeOnTop ) internal returns (uint256 endingNativeFunds) { uint248 quantityToFill = _verifySaleApproval( context, saleDetails, signedSellOrder, cosignature); if (quantityToFill != saleDetails.amount) { if (saleDetails.itemPrice % saleDetails.amount != 0) { revert PaymentProcessor__PartialFillsNotSupportedForNonDivisibleItems(); } saleDetails.itemPrice = saleDetails.itemPrice / saleDetails.amount * quantityToFill; saleDetails.amount = quantityToFill; } RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty = _validateBasicOrderDetails(context, saleDetails); endingNativeFunds = _fulfillSingleOrderWithFeeOnTop( startingNativeFunds, context, context.taker, saleDetails.maker, IERC20(saleDetails.paymentMethod), _getOrderFulfillmentFunctionPointers(Sides.Buy, saleDetails.paymentMethod, saleDetails.protocol), saleDetails, royaltyBackfillAndBounty, feeOnTop); } /** * @notice Checks order validation and fulfills an offer acceptance. * * @dev This function may be called multiple times during a bulk execution. * @dev Throws when the payment method is the chain native token. * @dev Throws when the supplied token for a token set offer cannot be validated with the root hash and proof. * @dev Throws when a partial fill order is not equally divisible by the number of items in the order. * * @param context The current execution context to determine the taker. * @param isCollectionLevelOrder The flag to indicate if an offer is for any token in the collection. * @param saleDetails The order execution details. * @param buyerSignature The maker's signature authorizing the order execution. * @param tokenSetProof The root hash and merkle proofs for an offer that is a subset of tokens in a collection. * @param cosignature The additional cosignature for a cosigned order, if applicable. * @param feeOnTop The additional fee to add on top of the order, paid by taker. */ function _executeOrderSellSide( TradeContext memory context, bool isCollectionLevelOrder, Order memory saleDetails, SignatureECDSA memory buyerSignature, TokenSetProof memory tokenSetProof, Cosignature memory cosignature, FeeOnTop memory feeOnTop ) internal { if (saleDetails.paymentMethod == address(0)) { revert PaymentProcessor__BadPaymentMethod(); } uint248 quantityToFill; if (isCollectionLevelOrder) { if (tokenSetProof.rootHash == bytes32(0)) { quantityToFill = _verifyCollectionOffer( context, saleDetails, buyerSignature, cosignature); } else { if(!MerkleProof.verify( tokenSetProof.proof, tokenSetProof.rootHash, keccak256(abi.encode(saleDetails.tokenAddress, saleDetails.tokenId)))) { revert PaymentProcessor__IncorrectTokenSetMerkleProof(); } quantityToFill = _verifyTokenSetOffer( context, saleDetails, buyerSignature, tokenSetProof, cosignature); } } else { quantityToFill = _verifyItemOffer( context, saleDetails, buyerSignature, cosignature); } if (quantityToFill != saleDetails.amount) { if (saleDetails.itemPrice % saleDetails.amount != 0) { revert PaymentProcessor__PartialFillsNotSupportedForNonDivisibleItems(); } saleDetails.itemPrice = saleDetails.itemPrice / saleDetails.amount * quantityToFill; saleDetails.amount = quantityToFill; } RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty = _validateBasicOrderDetails(context, saleDetails); _fulfillSingleOrderWithFeeOnTop( 0, context, saleDetails.maker, context.taker, IERC20(saleDetails.paymentMethod), _getOrderFulfillmentFunctionPointers(Sides.Sell, saleDetails.paymentMethod, saleDetails.protocol), saleDetails, royaltyBackfillAndBounty, feeOnTop); } /** * @notice Checks order validation and fulfills a sweep order. * * @dev Throws when the order protocol is for ERC1155 partial fills. * @dev Throws when the `items`, `signedSellOrders` and `cosignatures` arrays have different lengths. * @dev Throws when the `items` array length is zero. * * @param context The current execution context to determine the taker. * @param startingNativeFunds The amount of native funds available at the beginning of the order execution. * @param feeOnTop The additional fee to add on top of the orders, paid by taker. * @param sweepOrder The order information that is common to all items in the sweep. * @param items An array of items that contains the order information unique to each item. * @param signedSellOrders An array of maker signatures authorizing the order execution. * @param cosignatures An array of additional cosignatures for cosigned orders, if applicable. * * @return endingNativeFunds The amount of native funds available at the end of the order execution. */ function _executeSweepOrder( TradeContext memory context, uint256 startingNativeFunds, FeeOnTop memory feeOnTop, SweepOrder memory sweepOrder, SweepItem[] memory items, SignatureECDSA[] memory signedSellOrders, Cosignature[] memory cosignatures ) internal returns (uint256 endingNativeFunds) { if (sweepOrder.protocol == OrderProtocols.ERC1155_FILL_PARTIAL) { revert PaymentProcessor__OrderProtocolERC1155FillPartialUnsupportedInSweeps(); } if (items.length != signedSellOrders.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (items.length != cosignatures.length) { revert PaymentProcessor__InputArrayLengthMismatch(); } if (items.length == 0) { revert PaymentProcessor__InputArrayLengthCannotBeZero(); } (Order[] memory saleDetailsBatch, RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty) = _validateSweepOrder( context, feeOnTop, sweepOrder, items, signedSellOrders, cosignatures ); endingNativeFunds = _fulfillSweepOrderWithFeeOnTop( context, startingNativeFunds, SweepCollectionComputeAndDistributeProceedsParams({ paymentCoin: IERC20(sweepOrder.paymentMethod), fnPointers: _getOrderFulfillmentFunctionPointers( Sides.Buy, sweepOrder.paymentMethod, sweepOrder.protocol), feeOnTop: feeOnTop, royaltyBackfillAndBounty: royaltyBackfillAndBounty, saleDetailsBatch: saleDetailsBatch }) ); } /*************************************************************************/ /* Order Validation */ /*************************************************************************/ /** * @notice Loads collection payment settings to validate a single item order. * * @dev This function may be called multiple times during a bulk execution. * @dev Throws when a collection is set to block untrusted channels and the transaction originates * @dev from an untrusted channel. * @dev Throws when the maker or taker is a banned account for the collection. * @dev Throws when the payment method is not an allowed payment method. * @dev Throws when the sweep order is for ERC721 tokens and the amount is set to a value other than one. * @dev Throws when the sweep order is for ERC1155 tokens and the amount is set to zero. * @dev Throws when the marketplace fee and maximum royalty fee will exceed the sales price of an item. * @dev Throws when the current block time is greater than the order expiration. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. * * @return royaltyBackfillAndBounty The on-chain royalty backfill and bounty information defined by the creator. */ function _validateBasicOrderDetails( TradeContext memory context, Order memory saleDetails ) private view returns (RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty) { if (saleDetails.protocol == OrderProtocols.ERC721_FILL_OR_KILL) { if (saleDetails.amount != ONE) { revert PaymentProcessor__AmountForERC721SalesMustEqualOne(); } } else { if (saleDetails.amount == 0) { revert PaymentProcessor__AmountForERC1155SalesGreaterThanZero(); } } if (block.timestamp > saleDetails.expiration) { revert PaymentProcessor__OrderHasExpired(); } if (saleDetails.marketplaceFeeNumerator + saleDetails.maxRoyaltyFeeNumerator > FEE_DENOMINATOR) { revert PaymentProcessor__MarketplaceAndRoyaltyFeesWillExceedSalePrice(); } CollectionPaymentSettings storage paymentSettingsForCollection = appStorage().collectionPaymentSettings[saleDetails.tokenAddress]; PaymentSettings paymentSettings = paymentSettingsForCollection.paymentSettings; royaltyBackfillAndBounty.backfillNumerator = paymentSettingsForCollection.royaltyBackfillNumerator; royaltyBackfillAndBounty.bountyNumerator = paymentSettingsForCollection.royaltyBountyNumerator; if (paymentSettingsForCollection.blockBannedAccounts) { EnumerableSet.AddressSet storage bannedAccounts = appStorage().collectionBannedAccounts[saleDetails.tokenAddress]; if (bannedAccounts.contains(saleDetails.maker)) { revert PaymentProcessor__MakerOrTakerIsBannedAccount(); } if (bannedAccounts.contains(context.taker)) { revert PaymentProcessor__MakerOrTakerIsBannedAccount(); } } if (paymentSettingsForCollection.blockTradesFromUntrustedChannels) { EnumerableSet.AddressSet storage trustedChannels = appStorage().collectionTrustedChannels[saleDetails.tokenAddress]; if (trustedChannels.length() > 0) { if (!trustedChannels.contains(context.channel)) { revert PaymentProcessor__TradeOriginatedFromUntrustedChannel(); } } } if (paymentSettingsForCollection.royaltyBackfillNumerator > 0) { royaltyBackfillAndBounty.backfillReceiver = appStorage().collectionRoyaltyBackfillReceivers[saleDetails.tokenAddress]; } if (paymentSettingsForCollection.isRoyaltyBountyExclusive) { royaltyBackfillAndBounty.exclusiveMarketplace = appStorage().collectionExclusiveBountyReceivers[saleDetails.tokenAddress]; } if (paymentSettings == PaymentSettings.DefaultPaymentMethodWhitelist) { if (!_isDefaultPaymentMethod(saleDetails.paymentMethod)) { revert PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); } } else if (paymentSettings == PaymentSettings.CustomPaymentMethodWhitelist) { if (!appStorage().collectionPaymentMethodWhitelists[paymentSettingsForCollection.paymentMethodWhitelistId].contains(saleDetails.paymentMethod)) { revert PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); } } else if (paymentSettings == PaymentSettings.PricingConstraints) { if (paymentSettingsForCollection.constrainedPricingPaymentMethod != saleDetails.paymentMethod) { revert PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); } _validateSalePriceInRange( saleDetails.tokenAddress, saleDetails.tokenId, saleDetails.amount, saleDetails.itemPrice); } else if (paymentSettings == PaymentSettings.Paused) { revert PaymentProcessor__TradingIsPausedForCollection(); } } /** * @notice Loads collection payment settings to validate a sweep order. * * @dev Throws when a collection is set to block untrusted channels and the transaction originates * @dev from an untrusted channel. * @dev Throws when the payment method is not an allowed payment method. * @dev Throws when the sweep order is for ERC721 tokens and the amount is set to a value other than one. * @dev Throws when the sweep order is for ERC1155 tokens and the amount is set to zero. * @dev Throws when the marketplace fee and maximum royalty fee will exceed the sales price of an item. * @dev Throws when the current block time is greater than the order expiration. * @dev Throws when the fee on top amount exceeds the sum of all items. * * @param context The current execution context to determine the taker. * @param feeOnTop The additional fee to add on top of the orders, paid by taker. * @param sweepOrder The order information that is common to all items in the sweep. * @param items An array of items that contains the order information unique to each item. * @param signedSellOrders An array of maker signatures authorizing the order execution. * @param cosignatures An array of additional cosignatures for cosigned orders, if applicable. * * @return saleDetailsBatch An array of order execution details. * @return royaltyBackfillAndBounty The on-chain royalty backfill and bounty information defined by the creator. */ function _validateSweepOrder( TradeContext memory context, FeeOnTop memory feeOnTop, SweepOrder memory sweepOrder, SweepItem[] memory items, SignatureECDSA[] memory signedSellOrders, Cosignature[] memory cosignatures ) private returns (Order[] memory saleDetailsBatch, RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty) { CollectionPaymentSettings storage paymentSettingsForCollection = appStorage().collectionPaymentSettings[sweepOrder.tokenAddress]; PaymentSettings paymentSettings = paymentSettingsForCollection.paymentSettings; royaltyBackfillAndBounty.backfillNumerator = paymentSettingsForCollection.royaltyBackfillNumerator; royaltyBackfillAndBounty.bountyNumerator = paymentSettingsForCollection.royaltyBountyNumerator; if (paymentSettingsForCollection.blockTradesFromUntrustedChannels) { EnumerableSet.AddressSet storage trustedChannels = appStorage().collectionTrustedChannels[sweepOrder.tokenAddress]; if (trustedChannels.length() > 0) { if (!trustedChannels.contains(context.channel)) { revert PaymentProcessor__TradeOriginatedFromUntrustedChannel(); } } } if (paymentSettingsForCollection.royaltyBackfillNumerator > 0) { royaltyBackfillAndBounty.backfillReceiver = appStorage().collectionRoyaltyBackfillReceivers[sweepOrder.tokenAddress]; } if (paymentSettingsForCollection.isRoyaltyBountyExclusive) { royaltyBackfillAndBounty.exclusiveMarketplace = appStorage().collectionExclusiveBountyReceivers[sweepOrder.tokenAddress]; } if (paymentSettings == PaymentSettings.DefaultPaymentMethodWhitelist) { if (!_isDefaultPaymentMethod(sweepOrder.paymentMethod)) { revert PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); } } else if (paymentSettings == PaymentSettings.CustomPaymentMethodWhitelist) { if (!appStorage().collectionPaymentMethodWhitelists[paymentSettingsForCollection.paymentMethodWhitelistId].contains(sweepOrder.paymentMethod)) { revert PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); } } else if (paymentSettings == PaymentSettings.PricingConstraints) { if (paymentSettingsForCollection.constrainedPricingPaymentMethod != sweepOrder.paymentMethod) { revert PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); } } else if (paymentSettings == PaymentSettings.Paused) { revert PaymentProcessor__TradingIsPausedForCollection(); } EnumerableSet.AddressSet storage bannedAccounts = appStorage().collectionBannedAccounts[sweepOrder.tokenAddress]; if (paymentSettingsForCollection.blockBannedAccounts) { if (bannedAccounts.contains(context.taker)) { revert PaymentProcessor__MakerOrTakerIsBannedAccount(); } } uint256 itemsLength = items.length; saleDetailsBatch = new Order[](itemsLength); uint256 sumListingPrices; for (uint256 i = 0; i < itemsLength;) { Order memory saleDetails = Order({ protocol: sweepOrder.protocol, maker: items[i].maker, beneficiary: sweepOrder.beneficiary, marketplace: items[i].marketplace, fallbackRoyaltyRecipient: items[i].fallbackRoyaltyRecipient, paymentMethod: sweepOrder.paymentMethod, tokenAddress: sweepOrder.tokenAddress, tokenId: items[i].tokenId, amount: items[i].amount, itemPrice: items[i].itemPrice, nonce: items[i].nonce, expiration: items[i].expiration, marketplaceFeeNumerator: items[i].marketplaceFeeNumerator, maxRoyaltyFeeNumerator: items[i].maxRoyaltyFeeNumerator, requestedFillAmount: items[i].amount, minimumFillAmount: items[i].amount }); saleDetailsBatch[i] = saleDetails; sumListingPrices += saleDetails.itemPrice; if (paymentSettingsForCollection.blockBannedAccounts) { if (bannedAccounts.contains(saleDetails.maker)) { revert PaymentProcessor__MakerOrTakerIsBannedAccount(); } } if (saleDetails.protocol == OrderProtocols.ERC721_FILL_OR_KILL) { if (saleDetails.amount != ONE) { revert PaymentProcessor__AmountForERC721SalesMustEqualOne(); } } else { if (saleDetails.amount == 0) { revert PaymentProcessor__AmountForERC1155SalesGreaterThanZero(); } } if (saleDetails.marketplaceFeeNumerator + saleDetails.maxRoyaltyFeeNumerator > FEE_DENOMINATOR) { revert PaymentProcessor__MarketplaceAndRoyaltyFeesWillExceedSalePrice(); } if (paymentSettings == PaymentSettings.PricingConstraints) { _validateSalePriceInRange( saleDetails.tokenAddress, saleDetails.tokenId, saleDetails.amount, saleDetails.itemPrice); } if (block.timestamp > saleDetails.expiration) { revert PaymentProcessor__OrderHasExpired(); } _verifySaleApproval(context, saleDetails, signedSellOrders[i], cosignatures[i]); unchecked { ++i; } } if (feeOnTop.amount > sumListingPrices) { revert PaymentProcessor__FeeOnTopCannotBeGreaterThanItemPrice(); } } /** * @notice Validates the sales price for a token is within the bounds set. * * @dev Throws when the unit price is above the ceiling bound. * @dev Throws when the unit price is below the floor bound. * * @param tokenAddress The contract address for the token. * @param tokenId The token id. * @param amount The quantity of the token being transacted. * @param salePrice The total price for the token quantity. */ function _validateSalePriceInRange( address tokenAddress, uint256 tokenId, uint256 amount, uint256 salePrice ) private view { (uint256 floorPrice, uint256 ceilingPrice) = _getFloorAndCeilingPrices(tokenAddress, tokenId); unchecked { uint256 unitPrice = salePrice / amount; if (unitPrice > ceilingPrice) { revert PaymentProcessor__SalePriceAboveMaximumCeiling(); } if (unitPrice < floorPrice) { revert PaymentProcessor__SalePriceBelowMinimumFloor(); } } } /** * @notice Returns the floor and ceiling price for a token for collections set to use pricing constraints. * * @dev Returns token pricing bounds if token bounds are set. * @dev If token bounds are not set then returns collection pricing bounds if they are set. * @dev If collection bounds are not set, returns zero floor bound and uint256 max ceiling bound. * * @param tokenAddress The contract address for the token. * @param tokenId The token id. */ function _getFloorAndCeilingPrices( address tokenAddress, uint256 tokenId ) internal view returns (uint256, uint256) { PricingBounds memory tokenLevelPricingBounds = appStorage().tokenPricingBounds[tokenAddress][tokenId]; if (tokenLevelPricingBounds.isSet) { return (tokenLevelPricingBounds.floorPrice, tokenLevelPricingBounds.ceilingPrice); } else { PricingBounds memory collectionLevelPricingBounds = appStorage().collectionPricingBounds[tokenAddress]; if (collectionLevelPricingBounds.isSet) { return (collectionLevelPricingBounds.floorPrice, collectionLevelPricingBounds.ceilingPrice); } } return (0, type(uint256).max); } /*************************************************************************/ /* Order Fulfillment */ /*************************************************************************/ /** * @notice Dispenses tokens and proceeds for a single order. * * @dev This function may be called multiple times during a bulk execution. * @dev Throws when a token false to dispense AND partial fills are disabled. * @dev Throws when the taker did not supply enough native funds. * @dev Throws when the fee on top amount is greater than the item price. * * @param startingNativeFunds The amount of native funds remaining at the beginning of the function call. * @param context The current execution context to determine the taker. * @param purchaser The user that is buying the token. * @param seller The user that is selling the token. * @param paymentCoin The ERC20 token used for payment, will be zero values for chain native token. * @param fnPointers Struct containing the function pointers for dispensing tokens, sending payments * and emitting events. * @param saleDetails The order execution details. * @param royaltyBackfillAndBounty Struct containing the royalty backfill and bounty information. * @param feeOnTop The additional fee on top of the item sales price to be paid by the taker. * * @return endingNativeFunds The amount of native funds remaining at the end of the function call. */ function _fulfillSingleOrderWithFeeOnTop( uint256 startingNativeFunds, TradeContext memory context, address purchaser, address seller, IERC20 paymentCoin, FulfillOrderFunctionPointers memory fnPointers, Order memory saleDetails, RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty, FeeOnTop memory feeOnTop ) private returns (uint256 endingNativeFunds) { endingNativeFunds = startingNativeFunds; if (!fnPointers.funcDispenseToken( seller, saleDetails.beneficiary, saleDetails.tokenAddress, saleDetails.tokenId, saleDetails.amount)) { if (context.disablePartialFill) { revert PaymentProcessor__DispensingTokenWasUnsuccessful(); } } else { SplitProceeds memory proceeds = _computePaymentSplits( saleDetails.itemPrice, saleDetails.tokenAddress, saleDetails.tokenId, saleDetails.marketplace, saleDetails.marketplaceFeeNumerator, saleDetails.maxRoyaltyFeeNumerator, saleDetails.fallbackRoyaltyRecipient, royaltyBackfillAndBounty ); uint256 feeOnTopAmount; if (feeOnTop.recipient != address(0)) { feeOnTopAmount = feeOnTop.amount; } if (saleDetails.paymentMethod == address(0)) { uint256 nativeProceedsToSpend = saleDetails.itemPrice + feeOnTopAmount; if (endingNativeFunds < nativeProceedsToSpend) { revert PaymentProcessor__RanOutOfNativeFunds(); } unchecked { endingNativeFunds -= nativeProceedsToSpend; } } if (proceeds.royaltyProceeds > 0) { fnPointers.funcPayout(proceeds.royaltyRecipient, purchaser, paymentCoin, proceeds.royaltyProceeds, pushPaymentGasLimit); } if (proceeds.marketplaceProceeds > 0) { fnPointers.funcPayout(saleDetails.marketplace, purchaser, paymentCoin, proceeds.marketplaceProceeds, pushPaymentGasLimit); } if (proceeds.sellerProceeds > 0) { fnPointers.funcPayout(seller, purchaser, paymentCoin, proceeds.sellerProceeds, pushPaymentGasLimit); } if (feeOnTopAmount > 0) { if (feeOnTopAmount > saleDetails.itemPrice) { revert PaymentProcessor__FeeOnTopCannotBeGreaterThanItemPrice(); } fnPointers.funcPayout(feeOnTop.recipient, context.taker, paymentCoin, feeOnTop.amount, pushPaymentGasLimit); } fnPointers.funcEmitOrderExecutionEvent(context, saleDetails); } } /** * @notice Dispenses tokens and proceeds for a sweep order. * * @dev This function will **NOT** throw if a token fails to dispense. * @dev Throws when the taker did not supply enough native funds. * * @param context The current execution context to determine the taker. * @param startingNativeFunds The amount of native funds remaining at the beginning of the function call. * @param params Struct containing the order execution details, backfilled royalty information * and fulfillment function pointers. * * @return endingNativeFunds The amount of native funds remaining at the end of the function call. */ function _fulfillSweepOrderWithFeeOnTop( TradeContext memory context, uint256 startingNativeFunds, SweepCollectionComputeAndDistributeProceedsParams memory params ) private returns (uint256 endingNativeFunds) { endingNativeFunds = startingNativeFunds; PayoutsAccumulator memory accumulator = PayoutsAccumulator({ lastSeller: address(0), lastMarketplace: address(0), lastRoyaltyRecipient: address(0), accumulatedSellerProceeds: 0, accumulatedMarketplaceProceeds: 0, accumulatedRoyaltyProceeds: 0 }); for (uint256 i = 0; i < params.saleDetailsBatch.length;) { Order memory saleDetails = params.saleDetailsBatch[i]; if (!params.fnPointers.funcDispenseToken( saleDetails.maker, saleDetails.beneficiary, saleDetails.tokenAddress, saleDetails.tokenId, saleDetails.amount)) { } else { SplitProceeds memory proceeds = _computePaymentSplits( saleDetails.itemPrice, saleDetails.tokenAddress, saleDetails.tokenId, saleDetails.marketplace, saleDetails.marketplaceFeeNumerator, saleDetails.maxRoyaltyFeeNumerator, saleDetails.fallbackRoyaltyRecipient, params.royaltyBackfillAndBounty ); if (saleDetails.paymentMethod == address(0)) { if (endingNativeFunds < saleDetails.itemPrice) { revert PaymentProcessor__RanOutOfNativeFunds(); } unchecked { endingNativeFunds -= saleDetails.itemPrice; } } if (proceeds.royaltyRecipient != accumulator.lastRoyaltyRecipient) { if(accumulator.accumulatedRoyaltyProceeds > 0) { params.fnPointers.funcPayout(accumulator.lastRoyaltyRecipient, context.taker, params.paymentCoin, accumulator.accumulatedRoyaltyProceeds, pushPaymentGasLimit); } accumulator.lastRoyaltyRecipient = proceeds.royaltyRecipient; accumulator.accumulatedRoyaltyProceeds = 0; } if (saleDetails.marketplace != accumulator.lastMarketplace) { if(accumulator.accumulatedMarketplaceProceeds > 0) { params.fnPointers.funcPayout(accumulator.lastMarketplace, context.taker, params.paymentCoin, accumulator.accumulatedMarketplaceProceeds, pushPaymentGasLimit); } accumulator.lastMarketplace = saleDetails.marketplace; accumulator.accumulatedMarketplaceProceeds = 0; } if (saleDetails.maker != accumulator.lastSeller) { if(accumulator.accumulatedSellerProceeds > 0) { params.fnPointers.funcPayout(accumulator.lastSeller, context.taker, params.paymentCoin, accumulator.accumulatedSellerProceeds, pushPaymentGasLimit); } accumulator.lastSeller = saleDetails.maker; accumulator.accumulatedSellerProceeds = 0; } unchecked { accumulator.accumulatedRoyaltyProceeds += proceeds.royaltyProceeds; accumulator.accumulatedMarketplaceProceeds += proceeds.marketplaceProceeds; accumulator.accumulatedSellerProceeds += proceeds.sellerProceeds; } params.fnPointers.funcEmitOrderExecutionEvent(context, saleDetails); } unchecked { ++i; } } if(accumulator.accumulatedRoyaltyProceeds > 0) { params.fnPointers.funcPayout(accumulator.lastRoyaltyRecipient, context.taker, params.paymentCoin, accumulator.accumulatedRoyaltyProceeds, pushPaymentGasLimit); } if(accumulator.accumulatedMarketplaceProceeds > 0) { params.fnPointers.funcPayout(accumulator.lastMarketplace, context.taker, params.paymentCoin, accumulator.accumulatedMarketplaceProceeds, pushPaymentGasLimit); } if(accumulator.accumulatedSellerProceeds > 0) { params.fnPointers.funcPayout(accumulator.lastSeller, context.taker, params.paymentCoin, accumulator.accumulatedSellerProceeds, pushPaymentGasLimit); } if (params.feeOnTop.recipient != address(0)) { if (params.feeOnTop.amount > 0) { if (address(params.paymentCoin) == address(0)) { if (endingNativeFunds < params.feeOnTop.amount) { revert PaymentProcessor__RanOutOfNativeFunds(); } unchecked { endingNativeFunds -= params.feeOnTop.amount; } } params.fnPointers.funcPayout(params.feeOnTop.recipient, context.taker, params.paymentCoin, params.feeOnTop.amount, pushPaymentGasLimit); } } } /** * @notice Calculates the payment splits between seller, creator and marketplace based * @notice on on-chain royalty information or backfilled royalty information if on-chain * @notice data is unavailable. * * @dev Throws when ERC2981 on-chain royalties are set to an amount greater than the * @dev maker signed maximum. * * @param salePrice The sale price for the token being sold. * @param tokenAddress The contract address for the token being sold. * @param tokenId The token id for the token being sold. * @param marketplaceFeeRecipient The address that will receive the marketplace fee. * If zero, no marketplace fee will be applied. * @param marketplaceFeeNumerator The fee numerator for calculating marketplace fees. * @param maxRoyaltyFeeNumerator The maximum royalty fee authorized by the order maker. * @param fallbackRoyaltyRecipient The address that will receive royalties if not defined onchain. * @param royaltyBackfillAndBounty The royalty backfill and bounty information set onchain by the creator. * * @return proceeds A struct containing the split of payment and receiving addresses for the * seller, creator and marketplace. */ function _computePaymentSplits( uint256 salePrice, address tokenAddress, uint256 tokenId, address marketplaceFeeRecipient, uint256 marketplaceFeeNumerator, uint256 maxRoyaltyFeeNumerator, address fallbackRoyaltyRecipient, RoyaltyBackfillAndBounty memory royaltyBackfillAndBounty ) private view returns (SplitProceeds memory proceeds) { proceeds.sellerProceeds = salePrice; try IERC2981(tokenAddress).royaltyInfo( tokenId, salePrice) returns (address royaltyReceiver, uint256 royaltyAmount) { if (royaltyReceiver == address(0)) { royaltyAmount = 0; } if (royaltyAmount > 0) { if (royaltyAmount > (salePrice * maxRoyaltyFeeNumerator) / FEE_DENOMINATOR) { revert PaymentProcessor__OnchainRoyaltiesExceedMaximumApprovedRoyaltyFee(); } proceeds.royaltyRecipient = royaltyReceiver; proceeds.royaltyProceeds = royaltyAmount; unchecked { proceeds.sellerProceeds -= royaltyAmount; } } } catch (bytes memory) { // If the token doesn't implement the royaltyInfo function, then check if there are backfilled royalties. if (royaltyBackfillAndBounty.backfillReceiver != address(0)) { if (royaltyBackfillAndBounty.backfillNumerator > maxRoyaltyFeeNumerator) { revert PaymentProcessor__OnchainRoyaltiesExceedMaximumApprovedRoyaltyFee(); } proceeds.royaltyRecipient = royaltyBackfillAndBounty.backfillReceiver; proceeds.royaltyProceeds = (salePrice * royaltyBackfillAndBounty.backfillNumerator) / FEE_DENOMINATOR; unchecked { proceeds.sellerProceeds -= proceeds.royaltyProceeds; } } else if (fallbackRoyaltyRecipient != address(0)) { proceeds.royaltyRecipient = fallbackRoyaltyRecipient; proceeds.royaltyProceeds = (salePrice * maxRoyaltyFeeNumerator) / FEE_DENOMINATOR; unchecked { proceeds.sellerProceeds -= proceeds.royaltyProceeds; } } } if (marketplaceFeeRecipient != address(0)) { proceeds.marketplaceProceeds = (salePrice * marketplaceFeeNumerator) / FEE_DENOMINATOR; unchecked { proceeds.sellerProceeds -= proceeds.marketplaceProceeds; } if (royaltyBackfillAndBounty.exclusiveMarketplace == address(0) || royaltyBackfillAndBounty.exclusiveMarketplace == marketplaceFeeRecipient) { uint256 royaltyBountyProceeds = proceeds.royaltyProceeds * royaltyBackfillAndBounty.bountyNumerator / FEE_DENOMINATOR; if (royaltyBountyProceeds > 0) { unchecked { proceeds.royaltyProceeds -= royaltyBountyProceeds; proceeds.marketplaceProceeds += royaltyBountyProceeds; } } } } } /** * @notice Transfers chain native token to `to`. * * @dev Throws when the native token transfer call reverts. * @dev Throws when the payee uses more gas than `gasLimit_`. * * @param to The address that will receive chain native tokens. * @param proceeds The amount of chain native token value to transfer. * @param pushPaymentGasLimit_ The amount of gas units to allow the payee to use. */ function _pushProceeds(address to, uint256 proceeds, uint256 pushPaymentGasLimit_) internal { bool success; assembly { // Transfer the ETH and store if it succeeded or not. success := call(pushPaymentGasLimit_, to, proceeds, 0, 0, 0, 0) } if (!success) { revert PaymentProcessor__FailedToTransferProceeds(); } } /** * @notice Transfers chain native token to `payee`. * * @dev Throws when the native token transfer call reverts. * @dev Throws when the payee uses more gas than `gasLimit_`. * * @param payee The address that will receive chain native tokens. * @param proceeds The amount of chain native token value to transfer. * @param gasLimit_ The amount of gas units to allow the payee to use. */ function _payoutNativeCurrency( address payee, address /*payer*/, IERC20 /*paymentCoin*/, uint256 proceeds, uint256 gasLimit_) internal { _pushProceeds(payee, proceeds, gasLimit_); } /** * @notice Transfers ERC20 tokens to from `payer` to `payee`. * * @dev Throws when the ERC20 transfer call reverts. * * @param payee The address that will receive ERC20 tokens. * @param payer The address the ERC20 tokens will be sent from. * @param paymentCoin The ERC20 token being transferred. * @param proceeds The amount of token value to transfer. */ function _payoutCoinCurrency( address payee, address payer, IERC20 paymentCoin, uint256 proceeds, uint256 /*gasLimit_*/) internal { SafeERC20.safeTransferFrom(paymentCoin, payer, payee, proceeds); } /** * @notice Calls the token contract to transfer an ERC721 token from the seller to the buyer. * * @dev This will **NOT** throw if the transfer fails. It will instead return false * @dev so that the calling function can handle the failed transfer. * @dev Returns true if the transfer does not revert. * * @param from The seller of the token. * @param to The beneficiary of the order execution. * @param tokenAddress The contract address for the token being transferred. * @param tokenId The token id for the order. */ function _dispenseERC721Token( address from, address to, address tokenAddress, uint256 tokenId, uint256 /*amount*/) internal returns (bool) { try IERC721(tokenAddress).transferFrom(from, to, tokenId) { return true; } catch { return false; } } /** * @notice Calls the token contract to transfer an ERC1155 token from the seller to the buyer. * * @dev This will **NOT** throw if the transfer fails. It will instead return false * @dev so that the calling function can handle the failed transfer. * @dev Returns true if the transfer does not revert. * * @param from The seller of the token. * @param to The beneficiary of the order execution. * @param tokenAddress The contract address for the token being transferred. * @param tokenId The token id for the order. * @param amount The quantity of the token to transfer. */ function _dispenseERC1155Token( address from, address to, address tokenAddress, uint256 tokenId, uint256 amount) internal returns (bool) { try IERC1155(tokenAddress).safeTransferFrom(from, to, tokenId, amount, "") { return true; } catch { return false; } } /** * @notice Emits a a BuyListingERC721 event. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. */ function _emitBuyListingERC721Event(TradeContext memory context, Order memory saleDetails) internal { emit BuyListingERC721( context.taker, saleDetails.maker, saleDetails.tokenAddress, saleDetails.beneficiary, saleDetails.paymentMethod, saleDetails.tokenId, saleDetails.itemPrice); } /** * @notice Emits a BuyListingERC1155 event. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. */ function _emitBuyListingERC1155Event(TradeContext memory context, Order memory saleDetails) internal { emit BuyListingERC1155( context.taker, saleDetails.maker, saleDetails.tokenAddress, saleDetails.beneficiary, saleDetails.paymentMethod, saleDetails.tokenId, saleDetails.amount, saleDetails.itemPrice); } /** * @notice Emits an AcceptOfferERC721 event. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. */ function _emitAcceptOfferERC721Event(TradeContext memory context, Order memory saleDetails) internal { emit AcceptOfferERC721( context.taker, saleDetails.maker, saleDetails.tokenAddress, saleDetails.beneficiary, saleDetails.paymentMethod, saleDetails.tokenId, saleDetails.itemPrice); } /** * @notice Emits an AcceptOfferERC1155 event. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. */ function _emitAcceptOfferERC1155Event(TradeContext memory context, Order memory saleDetails) internal { emit AcceptOfferERC1155( context.taker, saleDetails.maker, saleDetails.tokenAddress, saleDetails.beneficiary, saleDetails.paymentMethod, saleDetails.tokenId, saleDetails.amount, saleDetails.itemPrice); } /** * @notice Returns the appropriate function pointers for payouts, dispensing tokens and event emissions. * * @param side The taker's side of the order. * @param paymentMethod The payment method for the order. If address zero, the chain native token. * @param orderProtocol The type of token and fill method for the order. */ function _getOrderFulfillmentFunctionPointers( Sides side, address paymentMethod, OrderProtocols orderProtocol ) private view returns (FulfillOrderFunctionPointers memory orderFulfillmentFunctionPointers) { orderFulfillmentFunctionPointers = FulfillOrderFunctionPointers({ funcPayout: paymentMethod == address(0) ? _payoutNativeCurrency : _payoutCoinCurrency, funcDispenseToken: orderProtocol == OrderProtocols.ERC721_FILL_OR_KILL ? _dispenseERC721Token : _dispenseERC1155Token, funcEmitOrderExecutionEvent: orderProtocol == OrderProtocols.ERC721_FILL_OR_KILL ? (side == Sides.Buy ? _emitBuyListingERC721Event : _emitAcceptOfferERC721Event) : (side == Sides.Buy ?_emitBuyListingERC1155Event : _emitAcceptOfferERC1155Event) }); } /*************************************************************************/ /* Signature Verification */ /*************************************************************************/ /** * @notice Updates the remaining fillable amount and order status for partially fillable orders. * @notice Performs checks for minimum fillable amount and order status. * * @dev Throws when the remaining fillable amount is less than the minimum fillable amount requested. * @dev Throws when the order status is not open. * * @param account The maker account for the order. * @param orderDigest The hash digest of the order execution details. * @param orderStartAmount The original amount for the partially fillable order. * @param requestedFillAmount The amount the taker is requesting to fill. * @param minimumFillAmount The minimum amount the taker is willing to fill. * * @return quantityToFill Lesser of remainingFillableAmount and requestedFillAmount. */ function _checkAndUpdateRemainingFillableItems( address account, bytes32 orderDigest, uint248 orderStartAmount, uint248 requestedFillAmount, uint248 minimumFillAmount ) private returns (uint248 quantityToFill) { quantityToFill = requestedFillAmount; PartiallyFillableOrderStatus storage partialFillStatus = appStorage().partiallyFillableOrderStatuses[account][orderDigest]; if (partialFillStatus.state == PartiallyFillableOrderState.Open) { if (partialFillStatus.remainingFillableQuantity == 0) { partialFillStatus.remainingFillableQuantity = uint248(orderStartAmount); } if (quantityToFill > partialFillStatus.remainingFillableQuantity) { quantityToFill = partialFillStatus.remainingFillableQuantity; } if (quantityToFill < minimumFillAmount) { revert PaymentProcessor__UnableToFillMinimumRequestedQuantity(); } unchecked { partialFillStatus.remainingFillableQuantity -= quantityToFill; } if (partialFillStatus.remainingFillableQuantity == 0) { partialFillStatus.state = PartiallyFillableOrderState.Filled; emit OrderDigestInvalidated(orderDigest, account, false); } } else { revert PaymentProcessor__OrderIsEitherCancelledOrFilled(); } } /** * @notice Invalidates a maker's nonce and emits a NonceInvalidated event. * * @dev Throws when the nonce has already been invalidated. * * @param account The maker account to invalidate `nonce` of. * @param nonce The nonce to invalidate. * @param wasCancellation If true, the invalidation is the maker cancelling the nonce. * If false, from the nonce being used to execute an order. */ function _checkAndInvalidateNonce( address account, uint256 nonce, bool wasCancellation) internal returns (uint256) { // The following code is equivalent to, but saves 115 gas units: // // mapping(uint256 => uint256) storage ptrInvalidatedSignatureBitmap = // appStorage().invalidatedSignatures[account]; // unchecked { // uint256 slot = nonce / 256; // uint256 offset = nonce % 256; // uint256 slotValue = ptrInvalidatedSignatureBitmap[slot]; // // if (((slotValue >> offset) & ONE) == ONE) { // revert PaymentProcessor__SignatureAlreadyUsedOrRevoked(); // } // // ptrInvalidatedSignatureBitmap[slot] = (slotValue | ONE << offset); // } unchecked { if (uint256(appStorage().invalidatedSignatures[account][uint248(nonce >> 8)] ^= (ONE << uint8(nonce))) & (ONE << uint8(nonce)) == ZERO) { revert PaymentProcessor__SignatureAlreadyUsedOrRevoked(); } } emit NonceInvalidated(nonce, account, wasCancellation); return appStorage().masterNonces[account]; } /** * @notice Updates the state of a maker's order to cancelled and remaining fillable quantity to zero. * * @dev Throws when the current order state is not open. * * @param account The maker account to invalid the order for. * @param orderDigest The hash digest of the order to invalidate. */ function _revokeOrderDigest(address account, bytes32 orderDigest) internal { PartiallyFillableOrderStatus storage partialFillStatus = appStorage().partiallyFillableOrderStatuses[account][orderDigest]; if (partialFillStatus.state == PartiallyFillableOrderState.Open) { partialFillStatus.state = PartiallyFillableOrderState.Cancelled; partialFillStatus.remainingFillableQuantity = 0; emit OrderDigestInvalidated(orderDigest, account, true); } else { revert PaymentProcessor__OrderIsEitherCancelledOrFilled(); } } /** * @notice Verifies a token offer is approved by the maker. * * @dev Throws when a cosignature is required and the cosignature is invalid. * @dev Throws when the maker signature is invalid. * @dev Throws when the maker's order nonce has already been used or was cancelled. * @dev Throws when a partially fillable order has already been filled, cancelled or * @dev cannot be filled with the minimum fillable amount. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. * @param signature The order maker's signature. * @param cosignature The cosignature from the order cosigner, if applicable. * * @return quantityToFill The amount of the token that will be filled for this order. */ function _verifyItemOffer( TradeContext memory context, Order memory saleDetails, SignatureECDSA memory signature, Cosignature memory cosignature ) private returns (uint248 quantityToFill) { if (cosignature.signer != address(0)) { _verifyCosignature(context, signature, cosignature); } bytes32 orderDigest = _hashTypedDataV4(context.domainSeparator, keccak256( bytes.concat( abi.encode( ITEM_OFFER_APPROVAL_HASH, uint8(saleDetails.protocol), cosignature.signer, saleDetails.maker, saleDetails.beneficiary, saleDetails.marketplace, saleDetails.fallbackRoyaltyRecipient, saleDetails.paymentMethod, saleDetails.tokenAddress ), abi.encode( saleDetails.tokenId, saleDetails.amount, saleDetails.itemPrice, saleDetails.expiration, saleDetails.marketplaceFeeNumerator, saleDetails.nonce, saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? appStorage().masterNonces[saleDetails.maker] : _checkAndInvalidateNonce(saleDetails.maker, saleDetails.nonce, false) ) ) )); _verifyMakerSignature(saleDetails.maker, signature, orderDigest); quantityToFill = saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? _checkAndUpdateRemainingFillableItems( saleDetails.maker, orderDigest, saleDetails.amount, saleDetails.requestedFillAmount, saleDetails.minimumFillAmount) : saleDetails.amount; } /** * @notice Verifies a collection offer is approved by the maker. * * @dev Throws when a cosignature is required and the cosignature is invalid. * @dev Throws when the maker signature is invalid. * @dev Throws when the maker's order nonce has already been used or was cancelled. * @dev Throws when a partially fillable order has already been filled, cancelled or * @dev cannot be filled with the minimum fillable amount. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. * @param signature The order maker's signature. * @param cosignature The cosignature from the order cosigner, if applicable. * * @return quantityToFill The amount of the token that will be filled for this order. */ function _verifyCollectionOffer( TradeContext memory context, Order memory saleDetails, SignatureECDSA memory signature, Cosignature memory cosignature ) private returns (uint248 quantityToFill) { if (cosignature.signer != address(0)) { _verifyCosignature(context, signature, cosignature); } bytes32 orderDigest = _hashTypedDataV4(context.domainSeparator, keccak256( bytes.concat( abi.encode( COLLECTION_OFFER_APPROVAL_HASH, uint8(saleDetails.protocol), cosignature.signer, saleDetails.maker, saleDetails.beneficiary, saleDetails.marketplace, saleDetails.fallbackRoyaltyRecipient, saleDetails.paymentMethod, saleDetails.tokenAddress ), abi.encode( saleDetails.amount, saleDetails.itemPrice, saleDetails.expiration, saleDetails.marketplaceFeeNumerator, saleDetails.nonce, saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? appStorage().masterNonces[saleDetails.maker] : _checkAndInvalidateNonce(saleDetails.maker, saleDetails.nonce, false) ) ) )); _verifyMakerSignature(saleDetails.maker, signature, orderDigest); quantityToFill = saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? _checkAndUpdateRemainingFillableItems( saleDetails.maker, orderDigest, saleDetails.amount, saleDetails.requestedFillAmount, saleDetails.minimumFillAmount) : saleDetails.amount; } /** * @notice Verifies a token set offer is approved by the maker. * * @dev Throws when a cosignature is required and the cosignature is invalid. * @dev Throws when the maker signature is invalid. * @dev Throws when the maker's order nonce has already been used or was cancelled. * @dev Throws when a partially fillable order has already been filled, cancelled or * @dev cannot be filled with the minimum fillable amount. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. * @param signature The order maker's signature. * @param tokenSetProof The token set proof that contains the root hash for the merkle * tree of allowed tokens for accepting the maker's offer. * @param cosignature The cosignature from the order cosigner, if applicable. * * @return quantityToFill The amount of the token that will be filled for this order. */ function _verifyTokenSetOffer( TradeContext memory context, Order memory saleDetails, SignatureECDSA memory signature, TokenSetProof memory tokenSetProof, Cosignature memory cosignature ) private returns (uint248 quantityToFill) { if (cosignature.signer != address(0)) { _verifyCosignature(context, signature, cosignature); } bytes32 orderDigest = _hashTypedDataV4(context.domainSeparator, keccak256( bytes.concat( abi.encode( TOKEN_SET_OFFER_APPROVAL_HASH, uint8(saleDetails.protocol), cosignature.signer, saleDetails.maker, saleDetails.beneficiary, saleDetails.marketplace, saleDetails.fallbackRoyaltyRecipient, saleDetails.paymentMethod, saleDetails.tokenAddress ), abi.encode( saleDetails.amount, saleDetails.itemPrice, saleDetails.expiration, saleDetails.marketplaceFeeNumerator, saleDetails.nonce, saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? appStorage().masterNonces[saleDetails.maker] : _checkAndInvalidateNonce(saleDetails.maker, saleDetails.nonce, false), tokenSetProof.rootHash ) ) )); _verifyMakerSignature(saleDetails.maker, signature, orderDigest); quantityToFill = saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? _checkAndUpdateRemainingFillableItems( saleDetails.maker, orderDigest, saleDetails.amount, saleDetails.requestedFillAmount, saleDetails.minimumFillAmount) : saleDetails.amount; } /** * @notice Verifies a listing is approved by the maker. * * @dev Throws when a cosignature is required and the cosignature is invalid. * @dev Throws when the maker signature is invalid. * @dev Throws when the maker's order nonce has already been used or was cancelled. * @dev Throws when a partially fillable order has already been filled, cancelled or * @dev cannot be filled with the minimum fillable amount. * * @param context The current execution context to determine the taker. * @param saleDetails The order execution details. * @param signature The order maker's signature. * @param cosignature The cosignature from the order cosigner, if applicable. * * @return quantityToFill The amount of the token that will be filled for this order. */ function _verifySaleApproval( TradeContext memory context, Order memory saleDetails, SignatureECDSA memory signature, Cosignature memory cosignature ) private returns (uint248 quantityToFill) { if (cosignature.signer != address(0)) { _verifyCosignature(context, signature, cosignature); } bytes32 orderDigest = _hashTypedDataV4(context.domainSeparator, keccak256( bytes.concat( abi.encode( SALE_APPROVAL_HASH, uint8(saleDetails.protocol), cosignature.signer, saleDetails.maker, saleDetails.marketplace, saleDetails.fallbackRoyaltyRecipient, saleDetails.paymentMethod, saleDetails.tokenAddress, saleDetails.tokenId ), abi.encode( saleDetails.amount, saleDetails.itemPrice, saleDetails.expiration, saleDetails.marketplaceFeeNumerator, saleDetails.maxRoyaltyFeeNumerator, saleDetails.nonce, saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? appStorage().masterNonces[saleDetails.maker] : _checkAndInvalidateNonce(saleDetails.maker, saleDetails.nonce, false) ) ) )); _verifyMakerSignature(saleDetails.maker, signature, orderDigest); quantityToFill = saleDetails.protocol == OrderProtocols.ERC1155_FILL_PARTIAL ? _checkAndUpdateRemainingFillableItems( saleDetails.maker, orderDigest, saleDetails.amount, saleDetails.requestedFillAmount, saleDetails.minimumFillAmount) : saleDetails.amount; } /** * @notice Reverts a transaction when the recovered signer is not the order maker. * * @dev Throws when the recovered signer for the `signature` and `digest` does not match the order maker AND * @dev - The maker address does not have deployed code, OR * @dev - The maker contract does not return the correct ERC1271 value to validate the signature. * * @param maker The adress for the order maker. * @param signature The order maker's signature. * @param digest The hash digest of the order. */ function _verifyMakerSignature(address maker, SignatureECDSA memory signature, bytes32 digest ) private view { if (maker != _ecdsaRecover(digest, signature.v, signature.r, signature.s)) { if (maker.code.length > 0) { _verifyEIP1271Signature(maker, digest, signature); } else { revert PaymentProcessor__UnauthorizedOrder(); } } } /** * @notice Reverts the transaction when a supplied cosignature is not valid. * * @dev Throws when the current block timestamp is greater than the cosignature expiration. * @dev Throws when the order taker does not match the cosignature taker. * @dev Throws when the cosigner has self-destructed their account. * @dev Throws when the recovered address for the cosignature does not match the cosigner address. * * @param context The current execution context to determine the order taker. * @param signature The order maker's signature. * @param cosignature The cosignature from the order cosigner. */ function _verifyCosignature( TradeContext memory context, SignatureECDSA memory signature, Cosignature memory cosignature ) private view { if (block.timestamp > cosignature.expiration) { revert PaymentProcessor__CosignatureHasExpired(); } if (context.taker != cosignature.taker) { revert PaymentProcessor__UnauthorizedTaker(); } if (appStorage().destroyedCosigners[cosignature.signer]) { revert PaymentProcessor__CosignerHasSelfDestructed(); } if (cosignature.signer != _ecdsaRecover( _hashTypedDataV4(context.domainSeparator, keccak256( abi.encode( COSIGNATURE_HASH, signature.v, signature.r, signature.s, cosignature.expiration, cosignature.taker ) )), cosignature.v, cosignature.r, cosignature.s)) { revert PaymentProcessor__NotAuthorizedByCosigner(); } } /** * @notice Reverts the transaction if the contract at `signer` does not return the ERC1271 * @notice isValidSignature selector when called with `hash`. * * @dev Throws when attempting to verify a signature from an address that has deployed * @dev contract code using ERC1271 and the contract does not return the isValidSignature * @dev function selector as its return value. * * @param signer The signer address for a maker order that has deployed contract code. * @param hash The ERC712 hash value of the order. * @param signature The signature for the order hash. */ function _verifyEIP1271Signature( address signer, bytes32 hash, SignatureECDSA memory signature) private view { bool isValidSignatureNow; try IERC1271(signer).isValidSignature( hash, abi.encodePacked(signature.r, signature.s, signature.v)) returns (bytes4 magicValue) { isValidSignatureNow = magicValue == IERC1271.isValidSignature.selector; } catch {} if (!isValidSignatureNow) { revert PaymentProcessor__EIP1271SignatureInvalid(); } } /** * @notice Recovers the signer address from a hash and signature. * * @dev Throws when `s` is greater than 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 to * @dev prevent malleable signatures from being utilized. * @dev Throws when the recovered address is zero. * * @param digest The hash digest that was signed. * @param v The v-value of the signature. * @param r The r-value of the signature. * @param s The s-value of the signature. * * @return signer The recovered signer address from the signature. */ function _ecdsaRecover( bytes32 digest, uint8 v, bytes32 r, bytes32 s ) private pure returns (address signer) { if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { revert PaymentProcessor__UnauthorizedOrder(); } signer = ecrecover(digest, v, r, s); if (signer == address(0)) { revert PaymentProcessor__UnauthorizedOrder(); } } /** * @notice Returns the EIP-712 hash digest for `domainSeparator` and `structHash`. * * @param domainSeparator The domain separator for the EIP-712 hash. * @param structHash The hash of the EIP-712 struct. */ function _hashTypedDataV4(bytes32 domainSeparator, bytes32 structHash) private pure returns (bytes32) { return ECDSA.toTypedDataHash(domainSeparator, structHash); } /*************************************************************************/ /* Miscellaneous */ /*************************************************************************/ /** * @notice Transfers ownership of a payment method whitelist. * * @dev Throws when the caller is not the owner of the payment method whitelist. * * @param id The payment method whitelist id to transfer ownership of. * @param newOwner The address to transfer ownership to. */ function _reassignOwnershipOfPaymentMethodWhitelist(uint32 id, address newOwner) internal { _requireCallerOwnsPaymentMethodWhitelist(id); appStorage().paymentMethodWhitelistOwners[id] = newOwner; emit ReassignedPaymentMethodWhitelistOwnership(id, newOwner); } /** * @notice Reverts the transaction if the caller is not the owner of the payment method whitelist. * * @dev Throws when the caller is not the owner of the payment method whitelist. * * @param paymentMethodWhitelistId The payment method whitelist id to check ownership for. */ function _requireCallerOwnsPaymentMethodWhitelist(uint32 paymentMethodWhitelistId) internal view { if(_msgSender() != appStorage().paymentMethodWhitelistOwners[paymentMethodWhitelistId]) { revert PaymentProcessor__CallerDoesNotOwnPaymentMethodWhitelist(); } } /** * @notice Reverts the transaction if the caller is not the owner or assigned the default * @notice admin role of the contract at `tokenAddress`. * * @dev Throws when the caller is neither owner nor assigned the default admin role. * * @param tokenAddress The contract address of the token to check permissions for. */ function _requireCallerIsNFTOrContractOwnerOrAdmin(address tokenAddress) internal view { bool callerHasPermissions = false; address caller = _msgSender(); callerHasPermissions = caller == tokenAddress; if(!callerHasPermissions) { try IOwnable(tokenAddress).owner() returns (address contractOwner) { callerHasPermissions = caller == contractOwner; } catch {} if(!callerHasPermissions) { try IAccessControl(tokenAddress).hasRole(DEFAULT_ACCESS_CONTROL_ADMIN_ROLE, caller) returns (bool callerIsContractAdmin) { callerHasPermissions = callerIsContractAdmin; } catch {} } } if(!callerHasPermissions) { revert PaymentProcessor__CallerMustHaveElevatedPermissionsForSpecifiedNFT(); } } }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; /** * @dev ERC-173 Ownable Interface */ interface IOwnable { function owner() external view returns (address); }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../DataTypes.sol"; /** * @title PaymentProcessor * @custom:version 2.0.0 * @author Limit Break, Inc. */ interface IPaymentProcessorConfiguration { /** * @notice Returns the ERC2771 context setup params for payment processor modules. */ function getPaymentProcessorModuleERC2771ContextParams() external view returns ( address /*trustedForwarderFactory*/ ); /** * @notice Returns the setup params for payment processor modules. */ function getPaymentProcessorModuleDeploymentParams() external view returns ( uint32, /*defaultPushPaymentGasLimit*/ address, /*wrappedNativeCoin*/ DefaultPaymentMethods memory /*defaultPaymentMethods*/ ); /** * @notice Returns the setup params for payment processor. */ function getPaymentProcessorDeploymentParams() external view returns ( address, /*defaultContractOwner*/ PaymentProcessorModules memory /*paymentProcessorModules*/ ); }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../DataTypes.sol"; /** * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ interface IPaymentProcessorEvents { /// @notice Emitted when an account is banned from trading a collection event BannedAccountAddedForCollection( address indexed tokenAddress, address indexed account); /// @notice Emitted when an account ban has been lifted on a collection event BannedAccountRemovedForCollection( address indexed tokenAddress, address indexed account); /// @notice Emitted when an ERC721 listing is purchased. event BuyListingERC721( address indexed buyer, address indexed seller, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 salePrice); /// @notice Emitted when an ERC1155 listing is purchased. event BuyListingERC1155( address indexed buyer, address indexed seller, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 amount, uint256 salePrice); /// @notice Emitted when an ERC721 offer is accepted. event AcceptOfferERC721( address indexed seller, address indexed buyer, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 salePrice); /// @notice Emitted when an ERC1155 offer is accepted. event AcceptOfferERC1155( address indexed seller, address indexed buyer, address indexed tokenAddress, address beneficiary, address paymentCoin, uint256 tokenId, uint256 amount, uint256 salePrice); /// @notice Emitted when a new payment method whitelist is created. event CreatedPaymentMethodWhitelist( uint32 indexed paymentMethodWhitelistId, address indexed whitelistOwner, string whitelistName); /// @notice Emitted when a cosigner destroys itself. event DestroyedCosigner(address indexed cosigner); /// @notice Emitted when a user revokes all of their existing listings or offers that share the master nonce. event MasterNonceInvalidated(address indexed account, uint256 nonce); /// @notice Emitted when a user revokes a single listing or offer nonce for a specific marketplace. event NonceInvalidated( uint256 indexed nonce, address indexed account, bool wasCancellation); /// @notice Emitted when a user revokes a single listing or offer nonce for a specific marketplace. event OrderDigestInvalidated( bytes32 indexed orderDigest, address indexed account, bool wasCancellation); /// @notice Emitted when a coin is added to the approved coins mapping for a security policy event PaymentMethodAddedToWhitelist( uint32 indexed paymentMethodWhitelistId, address indexed paymentMethod); /// @notice Emitted when a coin is removed from the approved coins mapping for a security policy event PaymentMethodRemovedFromWhitelist( uint32 indexed paymentMethodWhitelistId, address indexed paymentMethod); /// @notice Emitted when a payment method whitelist is reassigned to a new owner event ReassignedPaymentMethodWhitelistOwnership(uint32 indexed id, address indexed newOwner); /// @notice Emitted when a trusted channel is added for a collection event TrustedChannelAddedForCollection( address indexed tokenAddress, address indexed channel); /// @notice Emitted when a trusted channel is removed for a collection event TrustedChannelRemovedForCollection( address indexed tokenAddress, address indexed channel); /// @notice Emitted whenever pricing bounds change at a collection level for price-constrained collections. event UpdatedCollectionLevelPricingBoundaries( address indexed tokenAddress, uint256 floorPrice, uint256 ceilingPrice); /// @notice Emitted whenever the supported ERC-20 payment is set for price-constrained collections. event UpdatedCollectionPaymentSettings( address indexed tokenAddress, PaymentSettings paymentSettings, uint32 indexed paymentMethodWhitelistId, address indexed constrainedPricingPaymentMethod, uint16 royaltyBackfillNumerator, address royaltyBackfillReceiver, uint16 royaltyBountyNumerator, address exclusiveBountyReceiver, bool blockTradesFromUntrustedChannels, bool blockBannedAccounts); /// @notice Emitted whenever pricing bounds change at a token level for price-constrained collections. event UpdatedTokenLevelPricingBoundaries( address indexed tokenAddress, uint256 indexed tokenId, uint256 floorPrice, uint256 ceilingPrice); }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "../DataTypes.sol"; /** * @title Payment Processor * @custom:version 2.0.0 * @author Limit Break, Inc. */ contract PaymentProcessorStorageAccess { /// @dev The base storage slot for Payment Processor contract storage items. bytes32 constant DIAMOND_STORAGE_PAYMENT_PROCESSOR = keccak256("diamond.storage.payment.processor"); /** * @dev Returns a storage object that follows the Diamond standard storage pattern for * @dev contract storage across multiple module contracts. */ function appStorage() internal pure returns (PaymentProcessorStorage storage diamondStorage) { bytes32 slot = DIAMOND_STORAGE_PAYMENT_PROCESSOR; assembly { diamondStorage.slot := slot } } }// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; // keccack256("Cosignature(uint8 v,bytes32 r,bytes32 s,uint256 expiration,address taker)") bytes32 constant COSIGNATURE_HASH = 0x347b7818601b168f6faadc037723496e9130b057c1ffef2ec4128311e19142f2; // keccack256("CollectionOfferApproval(uint8 protocol,address cosigner,address buyer,address beneficiary,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 nonce,uint256 masterNonce)") bytes32 constant COLLECTION_OFFER_APPROVAL_HASH = 0x8fe9498e93fe26b30ebf76fac07bd4705201c8609227362697082288e3b4af9c; // keccack256("ItemOfferApproval(uint8 protocol,address cosigner,address buyer,address beneficiary,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 tokenId,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 nonce,uint256 masterNonce)") bytes32 constant ITEM_OFFER_APPROVAL_HASH = 0xce2e9706d63e89ddf7ee16ce0508a1c3c9bd1904c582db2e647e6f4690a0bf6b; // keccack256("TokenSetOfferApproval(uint8 protocol,address cosigner,address buyer,address beneficiary,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 nonce,uint256 masterNonce,bytes32 tokenSetMerkleRoot)") bytes32 constant TOKEN_SET_OFFER_APPROVAL_HASH = 0x244905ade6b0e455d12fb539a4b17d7f675db14797d514168d09814a09c70e70; // keccack256("SaleApproval(uint8 protocol,address cosigner,address seller,address marketplace,address fallbackRoyaltyRecipient,address paymentMethod,address tokenAddress,uint256 tokenId,uint256 amount,uint256 itemPrice,uint256 expiration,uint256 marketplaceFeeNumerator,uint256 maxRoyaltyFeeNumerator,uint256 nonce,uint256 masterNonce)") bytes32 constant SALE_APPROVAL_HASH = 0x938786a8256d04dc45d6d5b997005aa07c0c9e3e4925d0d6c33128d240096ebc; // The denominator used when calculating the marketplace fee. // 0.5% fee numerator is 50, 1% fee numerator is 100, 10% fee numerator is 1,000 and so on. uint256 constant FEE_DENOMINATOR = 100_00; // Default Payment Method Whitelist Id uint32 constant DEFAULT_PAYMENT_METHOD_WHITELIST_ID = 0; // Convenience to avoid magic number in bitmask get/set logic. uint256 constant ZERO = uint256(0); uint256 constant ONE = uint256(1); // The default admin role for NFT collections using Access Control. bytes32 constant DEFAULT_ACCESS_CONTROL_ADMIN_ROLE = 0x00; /// @dev The plain text message to sign for cosigner self-destruct signature verification string constant COSIGNER_SELF_DESTRUCT_MESSAGE_TO_SIGN = "COSIGNER_SELF_DESTRUCT"; /**************************************************************/ /* PRECOMPUTED SELECTORS */ /**************************************************************/ bytes4 constant SELECTOR_REASSIGN_OWNERSHIP_OF_PAYMENT_METHOD_WHITELIST= hex"a1e6917e"; bytes4 constant SELECTOR_RENOUNCE_OWNERSHIP_OF_PAYMENT_METHOD_WHITELIST= hex"0886702e"; bytes4 constant SELECTOR_WHITELIST_PAYMENT_METHOD = hex"bb39ce91"; bytes4 constant SELECTOR_UNWHITELIST_PAYMENT_METHOD = hex"e9d4c14e"; bytes4 constant SELECTOR_SET_COLLECTION_PAYMENT_SETTINGS = hex"fc5d8393"; bytes4 constant SELECTOR_SET_COLLECTION_PRICING_BOUNDS = hex"7141ae10"; bytes4 constant SELECTOR_SET_TOKEN_PRICING_BOUNDS = hex"22146d70"; bytes4 constant SELECTOR_ADD_TRUSTED_CHANNEL_FOR_COLLECTION = hex"ab559c14"; bytes4 constant SELECTOR_REMOVE_TRUSTED_CHANNEL_FOR_COLLECTION = hex"282e89f8"; bytes4 constant SELECTOR_ADD_BANNED_ACCOUNT_FOR_COLLECTION = hex"e21dde50"; bytes4 constant SELECTOR_REMOVE_BANNED_ACCOUNT_FOR_COLLECTION = hex"adf14a76"; bytes4 constant SELECTOR_DESTROY_COSIGNER = hex"2aebdefe"; bytes4 constant SELECTOR_REVOKE_MASTER_NONCE = hex"226d4adb"; bytes4 constant SELECTOR_REVOKE_SINGLE_NONCE = hex"b6d7dc33"; bytes4 constant SELECTOR_REVOKE_ORDER_DIGEST = hex"96ae0380"; bytes4 constant SELECTOR_BUY_LISTING = hex"a9272951"; bytes4 constant SELECTOR_ACCEPT_OFFER = hex"e35bb9b7"; bytes4 constant SELECTOR_BULK_BUY_LISTINGS = hex"27add047"; bytes4 constant SELECTOR_BULK_ACCEPT_OFFERS = hex"b3cdebdb"; bytes4 constant SELECTOR_SWEEP_COLLECTION = hex"206576f6"; /**************************************************************/ /* EXPECTED BASE msg.data LENGTHS */ /**************************************************************/ uint256 constant PROOF_ELEMENT_SIZE = 32; // | 4 | 32 | 512 | 96 | 192 | 64 | = 900 bytes // | selector | domainSeparator | saleDetails | sellerSignature | cosignature | feeOnTop | uint256 constant BASE_MSG_LENGTH_BUY_LISTING = 900; // | 4 | 32 | 32 | 512 | 96 | 32 + (96 + (32 * proof.length)) | 192 | 64 | = 1060 bytes + (32 * proof.length) // | selector | domainSeparator | isCollectionLevelOffer | saleDetails | buyerSignature | tokenSetProof | cosignature | feeOnTop | uint256 constant BASE_MSG_LENGTH_ACCEPT_OFFER = 1060; // | 4 | 32 | 64 | 512 * length | 64 | 96 * length | 64 | 192 * length | 64 | 64 * length | = 292 bytes + (864 * saleDetailsArray.length) // | selector | domainSeparator | length + offset | saleDetailsArray | length + offset | sellerSignatures | length + offset | cosignatures | length + offset | feesOnTop | uint256 constant BASE_MSG_LENGTH_BULK_BUY_LISTINGS = 292; uint256 constant BASE_MSG_LENGTH_BULK_BUY_LISTINGS_PER_ITEM = 864; // | 4 | 32 | 32 | 64 | 32 * length | 64 | 512 * length | 64 | 96 * length | 64 | 32 + (96 + (32 * proof.length)) | 64 | 192 * length | 64 | 64 * length | = 452 bytes + (1024 * saleDetailsArray.length) + (32 * proof.length [for each element]) // | selector | domainSeparator | struct info? | length + offset | isCollectionLevelOfferArray | length + offset | saleDetailsArray | length + offset | buyerSignaturesArray | length + offset | tokenSetProof | length + offset | cosignatures | length + offset | feesOnTop | uint256 constant BASE_MSG_LENGTH_BULK_ACCEPT_OFFERS = 452; uint256 constant BASE_MSG_LENGTH_BULK_ACCEPT_OFFERS_PER_ITEM = 1024; // | 4 | 32 | 64 | 128 | 64 | 320 * length | 64 | 96 * length | 64 | 192 * length | = 420 bytes + (608 * items.length) // | selector | domainSeparator | feeOnTop | sweepOrder | length + offset | items | length + offset | signedSellOrders | length + offset | cosignatures | uint256 constant BASE_MSG_LENGTH_SWEEP_COLLECTION = 420; uint256 constant BASE_MSG_LENGTH_SWEEP_COLLECTION_PER_ITEM = 608;// SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; /// @dev Thrown when an order is an ERC721 order and the amount is not one. error PaymentProcessor__AmountForERC721SalesMustEqualOne(); /// @dev Thrown when an order is an ERC1155 order and the amount is zero. error PaymentProcessor__AmountForERC1155SalesGreaterThanZero(); /// @dev Thrown when an offer is being accepted and the payment method is the chain native token. error PaymentProcessor__BadPaymentMethod(); /// @dev Thrown when adding or removing a payment method from a whitelist that the caller does not own. error PaymentProcessor__CallerDoesNotOwnPaymentMethodWhitelist(); /** * @dev Thrown when modifying collection payment settings, pricing bounds, or trusted channels on a collection * @dev that the caller is not the owner of or a member of the default admin role for. */ error PaymentProcessor__CallerMustHaveElevatedPermissionsForSpecifiedNFT(); /// @dev Thrown when setting a collection or token pricing constraint with a floor price greater than ceiling price. error PaymentProcessor__CeilingPriceMustBeGreaterThanFloorPrice(); /// @dev Thrown when adding a trusted channel that is not a trusted forwarder deployed by the trusted forwarder factory. error PaymentProcessor__ChannelIsNotTrustedForwarder(); /// @dev Thrown when removing a payment method from a whitelist when that payment method is not on the whitelist. error PaymentProcessor__CoinIsNotApproved(); /// @dev Thrown when the current block time is greater than the expiration time for the cosignature. error PaymentProcessor__CosignatureHasExpired(); /// @dev Thrown when the cosigner has self destructed. error PaymentProcessor__CosignerHasSelfDestructed(); /// @dev Thrown when a token failed to transfer to the beneficiary and partial fills are disabled. error PaymentProcessor__DispensingTokenWasUnsuccessful(); /// @dev Thrown when a maker is a contract and the contract does not return the correct EIP1271 response to validate the signature. error PaymentProcessor__EIP1271SignatureInvalid(); /// @dev Thrown when a native token transfer call fails to transfer the tokens. error PaymentProcessor__FailedToTransferProceeds(); /// @dev Thrown when the additional fee on top exceeds the item price. error PaymentProcessor__FeeOnTopCannotBeGreaterThanItemPrice(); /// @dev Thrown when the supplied root hash, token and proof do not match. error PaymentProcessor__IncorrectTokenSetMerkleProof(); /// @dev Thrown when an input array has zero items in a location where it must have items. error PaymentProcessor__InputArrayLengthCannotBeZero(); /// @dev Thrown when multiple input arrays have different lengths but are required to be the same length. error PaymentProcessor__InputArrayLengthMismatch(); /// @dev Thrown when Payment Processor or a module is being deployed with invalid constructor arguments. error PaymentProcessor__InvalidConstructorArguments(); /// @dev Thrown when the maker or taker is a banned account on the collection being traded. error PaymentProcessor__MakerOrTakerIsBannedAccount(); /// @dev Thrown when the combined marketplace and royalty fees will exceed the item price. error PaymentProcessor__MarketplaceAndRoyaltyFeesWillExceedSalePrice(); /// @dev Thrown when the recovered address from a cosignature does not match the order cosigner. error PaymentProcessor__NotAuthorizedByCosigner(); /// @dev Thrown when the ERC2981 or backfilled royalties exceed the maximum fee specified by the order maker. error PaymentProcessor__OnchainRoyaltiesExceedMaximumApprovedRoyaltyFee(); /// @dev Thrown when the current block timestamp is greater than the order expiration time. error PaymentProcessor__OrderHasExpired(); /// @dev Thrown when attempting to fill a partially fillable order that has already been filled or cancelled. error PaymentProcessor__OrderIsEitherCancelledOrFilled(); /// @dev Thrown when attempting to execute a sweep order for partially fillable orders. error PaymentProcessor__OrderProtocolERC1155FillPartialUnsupportedInSweeps(); /// @dev Thrown when attempting to partially fill an order where the item price is not equally divisible by the amount of tokens. error PaymentProcessor__PartialFillsNotSupportedForNonDivisibleItems(); /// @dev Thrown when attempting to execute an order with a payment method that is not allowed by the collection payment settings. error PaymentProcessor__PaymentCoinIsNotAnApprovedPaymentMethod(); /// @dev Thrown when adding a payment method to a whitelist when that payment method is already on the list. error PaymentProcessor__PaymentMethodIsAlreadyApproved(); /// @dev Thrown when setting collection payment settings with a whitelist id that does not exist. error PaymentProcessor__PaymentMethodWhitelistDoesNotExist(); /// @dev Thrown when attempting to transfer ownership of a payment method whitelist to the zero address. error PaymentProcessor__PaymentMethodWhitelistOwnershipCannotBeTransferredToZeroAddress(); /// @dev Thrown when distributing payments and fees in native token and the amount remaining is less than the amount to distribute. error PaymentProcessor__RanOutOfNativeFunds(); /// @dev Thrown when attempting to set a royalty backfill numerator that would result in royalties greater than 100%. error PaymentProcessor__RoyaltyBackfillNumeratorCannotExceedFeeDenominator(); /// @dev Thrown when attempting to set a royalty bounty numerator that would result in royalty bounties greater than 100%. error PaymentProcessor__RoyaltyBountyNumeratorCannotExceedFeeDenominator(); /// @dev Thrown when a collection is set to pricing constraints and the item price exceeds the defined maximum price. error PaymentProcessor__SalePriceAboveMaximumCeiling(); /// @dev Thrown when a collection is set to pricing constraints and the item price is below the defined minimum price. error PaymentProcessor__SalePriceBelowMinimumFloor(); /// @dev Thrown when a maker's nonce has already been used for an executed order or cancelled by the maker. error PaymentProcessor__SignatureAlreadyUsedOrRevoked(); /** * @dev Thrown when a collection is set to block untrusted channels and the order execution originates from a channel * @dev that is not in the collection's trusted channel list. */ error PaymentProcessor__TradeOriginatedFromUntrustedChannel(); /// @dev Thrown when a trading of a specific collection has been paused by the collection owner or admin. error PaymentProcessor__TradingIsPausedForCollection(); /** * @dev Thrown when attempting to fill a partially fillable order and the amount available to fill * @dev is less than the specified minimum to fill. */ error PaymentProcessor__UnableToFillMinimumRequestedQuantity(); /// @dev Thrown when the recovered signer for an order does not match the order maker. error PaymentProcessor__UnauthorizedOrder(); /// @dev Thrown when the taker on a cosigned order does not match the taker on the cosignature. error PaymentProcessor__UnauthorizedTaker(); /// @dev Thrown when the Payment Processor or a module is being deployed with uninitialized configuration values. error PaymentProcessor__UninitializedConfiguration();// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControl { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) external view returns (address receiver, uint256 royaltyAmount); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch( address[] calldata accounts, uint256[] calldata ids ) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\\x19Ethereum Signed Message:\ 32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\\x19\\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x00", validator, data)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { require(proofPos == proofLen, "MerkleProof: invalid multiproof"); unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 proofLen = proof.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { require(proofPos == proofLen, "MerkleProof: invalid multiproof"); unchecked { return hashes[totalHashes - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (metatx/ERC2771Context.sol) pragma solidity ^0.8.4; import "@openzeppelin/contracts/utils/Context.sol"; import "./interfaces/ITrustedForwarderFactory.sol"; /** * @title TrustedForwarderERC2771Context * @author Limit Break, Inc. * @notice Context variant that utilizes the TrustedForwarderFactory contract to determine if the sender is a trusted forwarder. */ abstract contract TrustedForwarderERC2771Context is Context { ITrustedForwarderFactory private immutable _factory; constructor(address factory) { _factory = ITrustedForwarderFactory(factory); } /** * @notice Returns true if the sender is a trusted forwarder, false otherwise. * * @dev This function is required by ERC2771Context. * * @param forwarder The address to check. * @return True if the provided address is a trusted forwarder, false otherwise. */ function isTrustedForwarder(address forwarder) public view virtual returns (bool) { return _factory.isTrustedForwarder(forwarder); } function _msgSender() internal view virtual override returns (address sender) { if (_factory.isTrustedForwarder(msg.sender)) { if (msg.data.length >= 20) { // The assembly code is more direct than the Solidity version using `abi.decode`. /// @solidity memory-safe-assembly assembly { sender := shr(96, calldataload(sub(calldatasize(), 20))) } } else { return super._msgSender(); } } else { return super._msgSender(); } } function _msgData() internal view virtual override returns (bytes calldata data) { if (_factory.isTrustedForwarder(msg.sender)) { assembly { let len := calldatasize() // Create a slice that defaults to the entire calldata data.offset := 0 data.length := len // If the calldata is > 20 bytes, it contains the sender address at the end // and needs to be truncated if gt(len, 0x14) { data.length := sub(len, 0x14) } } } else { return super._msgData(); } } } // SPDX-License-Identifier: BSL-1.1 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; /** * @dev Used internally to indicate which side of the order the taker is on. */ enum Sides { // 0: Taker is on buy side of order. Buy, // 1: Taker is on sell side of order. Sell } /** * @dev Defines condition to apply to order execution. */ enum OrderProtocols { // 0: ERC721 order that must execute in full or not at all. ERC721_FILL_OR_KILL, // 1: ERC1155 order that must execute in full or not at all. ERC1155_FILL_OR_KILL, // 2: ERC1155 order that may be partially executed. ERC1155_FILL_PARTIAL } /** * @dev Defines the rules applied to a collection for payments. */ enum PaymentSettings { // 0: Utilize Payment Processor default whitelist. DefaultPaymentMethodWhitelist, // 1: Allow any payment method. AllowAnyPaymentMethod, // 2: Use a custom payment method whitelist. CustomPaymentMethodWhitelist, // 3: Single payment method with floor and ceiling limits. PricingConstraints, // 4: Pauses trading for the collection. Paused } /** * @dev This struct is used internally for the deployment of the Payment Processor contract and * @dev module deployments to define the default payment method whitelist. */ struct DefaultPaymentMethods { address defaultPaymentMethod1; address defaultPaymentMethod2; address defaultPaymentMethod3; address defaultPaymentMethod4; } /** * @dev This struct is used internally for the deployment of the Payment Processor contract to define the * @dev module addresses to be used for the contract. */ struct PaymentProcessorModules { address modulePaymentSettings; address moduleOnChainCancellation; address moduleTrades; address moduleTradesAdvanced; } /** * @dev This struct defines the payment settings parameters for a collection. * * @dev **paymentSettings**: The general rule definition for payment methods allowed. * @dev **paymentMethodWhitelistId**: The list id to be used when paymentSettings is set to CustomPaymentMethodWhitelist. * @dev **constraintedPricingPaymentMethod**: The payment method to be used when paymentSettings is set to PricingConstraints. * @dev **royaltyBackfillNumerator**: The royalty fee to apply to the collection when ERC2981 is not supported. * @dev **royaltyBountyNumerator**: The percentage of royalties the creator will grant to a marketplace for order fulfillment. * @dev **isRoyaltyBountyExclusive**: If true, royalty bounties will only be paid if the order marketplace is the set exclusive marketplace. * @dev **blockTradesFromUntrustedChannels**: If true, trades that originate from untrusted channels will not be executed. * @dev **blockBannedAccounts**: If true, banned accounts can be neither maker or taker for trades on a per-collection basis. */ struct CollectionPaymentSettings { PaymentSettings paymentSettings; uint32 paymentMethodWhitelistId; address constrainedPricingPaymentMethod; uint16 royaltyBackfillNumerator; uint16 royaltyBountyNumerator; bool isRoyaltyBountyExclusive; bool blockTradesFromUntrustedChannels; bool blockBannedAccounts; } /** * @dev The `v`, `r`, and `s` components of an ECDSA signature. For more information * [refer to this article](https://medium.com/mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7). */ struct SignatureECDSA { uint8 v; bytes32 r; bytes32 s; } /** * @dev This struct defines order execution parameters. * * @dev **protocol**: The order protocol to apply to the order. * @dev **maker**: The user that created and signed the order to be executed by a taker. * @dev **beneficiary**: The account that will receive the tokens. * @dev **marketplace**: The fee receiver of the marketplace that the order was created on. * @dev **fallbackRoyaltyRecipient**: The address that will receive royalties if ERC2981 * @dev is not supported by the collection and the creator has not defined backfilled royalties with Payment Processor. * @dev **paymentMethod**: The payment method for the order. * @dev **tokenAddress**: The address of the token collection the order is for. * @dev **tokenId**: The token id that the order is for. * @dev **amount**: The quantity of token the order is for. * @dev **itemPrice**: The price for the order in base units for the payment method. * @dev **nonce**: The maker's nonce for the order. * @dev **expiration**: The time, in seconds since the Unix epoch, that the order will expire. * @dev **marketplaceFeeNumerator**: The percentage fee that will be sent to the marketplace. * @dev **maxRoyaltyFeeNumerator**: The maximum royalty the maker is willing to accept. This will be used * @dev as the royalty amount when ERC2981 is not supported by the collection. * @dev **requestedFillAmount**: The amount of tokens for an ERC1155 partial fill order that the taker wants to fill. * @dev **minimumFillAmount**: The minimum amount of tokens for an ERC1155 partial fill order that the taker will accept. */ struct Order { OrderProtocols protocol; address maker; address beneficiary; address marketplace; address fallbackRoyaltyRecipient; address paymentMethod; address tokenAddress; uint256 tokenId; uint248 amount; uint256 itemPrice; uint256 nonce; uint256 expiration; uint256 marketplaceFeeNumerator; uint256 maxRoyaltyFeeNumerator; uint248 requestedFillAmount; uint248 minimumFillAmount; } /** * @dev This struct defines the cosignature for verifying an order that is a cosigned order. * * @dev **signer**: The address that signed the cosigned order. This must match the cosigner that is part of the order signature. * @dev **taker**: The address of the order taker. * @dev **expiration**: The time, in seconds since the Unix epoch, that the cosignature will expire. * @dev The `v`, `r`, and `s` components of an ECDSA signature. For more information * [refer to this article](https://medium.com/mycrypto/the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7). */ struct Cosignature { address signer; address taker; uint256 expiration; uint8 v; bytes32 r; bytes32 s; } /** * @dev This struct defines an additional fee on top of an order, paid by taker. * * @dev **recipient**: The recipient of the additional fee. * @dev **amount**: The amount of the additional fee, in base units of the payment token. */ struct FeeOnTop { address recipient; uint256 amount; } /** * @dev This struct defines the root hash and proof data for accepting an offer that is for a subset * @dev of items in a collection. The root hash must match the root hash specified as part of the * @dev maker's order signature. * * @dev **rootHash**: The merkletree root hash for the items that may be used to fulfill the offer order. * @dev **proof**: The merkle proofs for the item being supplied to fulfill the offer order. */ struct TokenSetProof { bytes32 rootHash; bytes32[] proof; } /** * @dev Current state of a partially fillable order. */ enum PartiallyFillableOrderState { // 0: Order is open and may continue to be filled. Open, // 1: Order has been completely filled. Filled, // 2: Order has been cancelled. Cancelled } /** * @dev This struct defines the current status of a partially fillable order. * * @dev **state**: The current state of the order as defined by the PartiallyFillableOrderState enum. * @dev **remainingFillableQuantity**: The remaining quantity that may be filled for the order. */ struct PartiallyFillableOrderStatus { PartiallyFillableOrderState state; uint248 remainingFillableQuantity; } /** * @dev This struct defines the royalty backfill and bounty information. Its data for an * @dev order execution is constructed internally based on the collection settings and * @dev order execution details. * * @dev **backfillNumerator**: The percentage of the order amount to pay as royalties * @dev for a collection that does not support ERC2981. * @dev **backfillReceiver**: The recipient of backfill royalties. * @dev **bountyNumerator**: The percentage of royalties to share with the marketplace for order fulfillment. * @dev **exclusiveMarketplace**: If non-zero, the address of the exclusive marketplace for royalty bounties. */ struct RoyaltyBackfillAndBounty { uint16 backfillNumerator; address backfillReceiver; uint16 bountyNumerator; address exclusiveMarketplace; } /** * @dev This struct defines order information that is common to all items in a sweep order. * * @dev **protocol**: The order protocol to apply to the order. * @dev **tokenAddress**: The address of the token collection the order is for. * @dev **paymentMethod**: The payment method for the order. * @dev **beneficiary**: The account that will receive the tokens. */ struct SweepOrder { OrderProtocols protocol; address tokenAddress; address paymentMethod; address beneficiary; } /** * @dev This struct defines order information that is unique to each item of a sweep order. * @dev Combined with the SweepOrder header information to make an Order to execute. * * @dev **maker**: The user that created and signed the order to be executed by a taker. * @dev **marketplace**: The marketplace that the order was created on. * @dev **fallbackRoyaltyRecipient**: The address that will receive royalties if ERC2981 * @dev is not supported by the collection and the creator has not defined royalties with Payment Processor. * @dev **tokenId**: The token id that the order is for. * @dev **amount**: The quantity of token the order is for. * @dev **itemPrice**: The price for the order in base units for the payment method. * @dev **nonce**: The maker's nonce for the order. * @dev **expiration**: The time, in seconds since the Unix epoch, that the order will expire. * @dev **marketplaceFeeNumerator**: The percentage fee that will be sent to the marketplace. * @dev **maxRoyaltyFeeNumerator**: The maximum royalty the maker is willing to accept. This will be used * @dev as the royalty amount when ERC2981 is not supported by the collection. */ struct SweepItem { address maker; address marketplace; address fallbackRoyaltyRecipient; uint256 tokenId; uint248 amount; uint256 itemPrice; uint256 nonce; uint256 expiration; uint256 marketplaceFeeNumerator; uint256 maxRoyaltyFeeNumerator; } /** * @dev This struct is used to define pricing constraints for a collection or individual token. * * @dev **isSet**: When true, this indicates that pricing constraints are set for the collection or token. * @dev **floorPrice**: The minimum price for a token or collection. This is only enforced when * @dev `enforcePricingConstraints` is `true`. * @dev **ceilingPrice**: The maximum price for a token or collection. This is only enforced when * @dev `enforcePricingConstraints` is `true`. */ struct PricingBounds { bool isSet; uint120 floorPrice; uint120 ceilingPrice; } /** * @dev This struct defines the parameters for a bulk offer acceptance transaction. * * * @dev **isCollectionLevelOfferArray**: An array of flags to indicate if an offer is for any token in the collection. * @dev **saleDetailsArray**: An array of order execution details. * @dev **buyerSignaturesArray**: An array of maker signatures authorizing the order executions. * @dev **tokenSetProofsArray**: An array of root hashes and merkle proofs for offers that are a subset of tokens in a collection. * @dev **cosignaturesArray**: An array of additional cosignatures for cosigned orders, as applicable. * @dev **feesOnTopArray**: An array of additional fees to add on top of the orders, paid by taker. */ struct BulkAcceptOffersParams { bool[] isCollectionLevelOfferArray; Order[] saleDetailsArray; SignatureECDSA[] buyerSignaturesArray; TokenSetProof[] tokenSetProofsArray; Cosignature[] cosignaturesArray; FeeOnTop[] feesOnTopArray; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct SplitProceeds { address royaltyRecipient; uint256 royaltyProceeds; uint256 marketplaceProceeds; uint256 sellerProceeds; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct PayoutsAccumulator { address lastSeller; address lastMarketplace; address lastRoyaltyRecipient; uint256 accumulatedSellerProceeds; uint256 accumulatedMarketplaceProceeds; uint256 accumulatedRoyaltyProceeds; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct SweepCollectionComputeAndDistributeProceedsParams { IERC20 paymentCoin; FulfillOrderFunctionPointers fnPointers; FeeOnTop feeOnTop; RoyaltyBackfillAndBounty royaltyBackfillAndBounty; Order[] saleDetailsBatch; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct FulfillOrderFunctionPointers { function(address,address,IERC20,uint256,uint256) funcPayout; function(address,address,address,uint256,uint256) returns (bool) funcDispenseToken; function(TradeContext memory, Order memory) funcEmitOrderExecutionEvent; } /** * @dev Internal contract use only - this is not a public-facing struct */ struct TradeContext { bytes32 domainSeparator; address channel; address taker; bool disablePartialFill; } /** * @dev This struct defines contract-level storage to be used across all Payment Processor modules. * @dev Follows the Diamond storage pattern. */ struct PaymentProcessorStorage { /// @dev Tracks the most recently created payment method whitelist id uint32 lastPaymentMethodWhitelistId; /** * @notice User-specific master nonce that allows buyers and sellers to efficiently cancel all listings or offers * they made previously. The master nonce for a user only changes when they explicitly request to revoke all * existing listings and offers. * * @dev When prompting sellers to sign a listing or offer, marketplaces must query the current master nonce of * the user and include it in the listing/offer signature data. */ mapping(address => uint256) masterNonces; /** * @dev The mapping key is the keccak256 hash of marketplace address and user address. * * @dev ```keccak256(abi.encodePacked(marketplace, user))``` * * @dev The mapping value is another nested mapping of "slot" (key) to a bitmap (value) containing boolean flags * indicating whether or not a nonce has been used or invalidated. * * @dev Marketplaces MUST track their own nonce by user, incrementing it for every signed listing or offer the user * creates. Listings and purchases may be executed out of order, and they may never be executed if orders * are not matched prior to expriation. * * @dev The slot and the bit offset within the mapped value are computed as: * * @dev ```slot = nonce / 256;``` * @dev ```offset = nonce % 256;``` */ mapping(address => mapping(uint256 => uint256)) invalidatedSignatures; /// @dev Mapping of token contract addresses to the collection payment settings. mapping (address => CollectionPaymentSettings) collectionPaymentSettings; /// @dev Mapping of payment method whitelist id to the owner address for the list. mapping (uint32 => address) paymentMethodWhitelistOwners; /// @dev Mapping of payment method whitelist id to a defined list of allowed payment methods. mapping (uint32 => EnumerableSet.AddressSet) collectionPaymentMethodWhitelists; /// @dev Mapping of token contract addresses to the collection-level pricing boundaries (floor and ceiling price). mapping (address => PricingBounds) collectionPricingBounds; /// @dev Mapping of token contract addresses to the token-level pricing boundaries (floor and ceiling price). mapping (address => mapping (uint256 => PricingBounds)) tokenPricingBounds; /// @dev Mapping of token contract addresses to the defined royalty backfill receiver addresses. mapping (address => address) collectionRoyaltyBackfillReceivers; /// @dev Mapping of token contract addresses to the defined exclusive bounty receivers. mapping (address => address) collectionExclusiveBountyReceivers; /// @dev Mapping of maker addresses to a mapping of order digests to the status of the partially fillable order for that digest. mapping (address => mapping(bytes32 => PartiallyFillableOrderStatus)) partiallyFillableOrderStatuses; /// @dev Mapping of token contract addresses to the defined list of trusted channels for the token contract. mapping (address => EnumerableSet.AddressSet) collectionTrustedChannels; /// @dev Mapping of token contract addresses to the defined list of banned accounts for the token contract. mapping (address => EnumerableSet.AddressSet) collectionBannedAccounts; /// @dev A mapping of all co-signers that have self-destructed and can never be used as cosigners again. mapping (address => bool) destroyedCosigners; }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ITrustedForwarderFactory { error TrustedForwarderFactory__TrustedForwarderInitFailed(address admin, address appSigner); event TrustedForwarderCreated(address indexed trustedForwarder); function cloneTrustedForwarder(address admin, address appSigner, bytes32 salt) external returns (address trustedForwarder); function forwarders(address) external view returns (bool); function isTrustedForwarder(address sender) external view returns (bool); function trustedForwarderImplementation() external view returns (address); }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
File 6 of 6: TrustedForwarderFactory
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/proxy/Clones.sol"; contract TrustedForwarderFactory { error TrustedForwarderFactory__TrustedForwarderInitFailed(address admin, address appSigner); event TrustedForwarderCreated(address indexed creator, address indexed trustedForwarder); // keccak256("__TrustedForwarder_init(address,address)") bytes4 constant private INIT_SELECTOR = 0x81ab13d7; address immutable public trustedForwarderImplementation; mapping(address => bool) public forwarders; constructor(address trustedForwarderImplementation_) { trustedForwarderImplementation = trustedForwarderImplementation_; } /** * @notice Returns true if the sender is a trusted forwarder, false otherwise. * @notice Addresses are added to the `forwarders` mapping when they are cloned via the `cloneTrustedForwarder` function. * * @dev This function allows for the TrustedForwarder contracts to be used as trusted forwarders within the TrustedForwarderERC2771Context mixin. * * @param sender The address to check. * @return True if the sender is a trusted forwarder, false otherwise. */ function isTrustedForwarder(address sender) external view returns (bool) { return forwarders[sender]; } /** * @notice Clones the TrustedForwarder implementation and initializes it. * * @dev To prevent hostile deployments, we hash the sender's address with the salt to create the final salt. * @dev This prevents the mining of specific contract addresses for deterministic deployments, but still allows for * @dev a canonical address to be created for each sender. * * @param admin The address to assign the admin role to. * @param appSigner The address to assign the app signer role to. This will be ignored if `enableAppSigner` is false. * @param salt The salt to use for the deterministic deployment. This is hashed with the sender's address to create the final salt. * * @return trustedForwarder The address of the newly created TrustedForwarder contract. */ function cloneTrustedForwarder(address admin, address appSigner, bytes32 salt) external returns (address trustedForwarder) { trustedForwarder = Clones.cloneDeterministic(trustedForwarderImplementation, keccak256(abi.encode(msg.sender, salt))); (bool success, ) = trustedForwarder.call(abi.encodeWithSelector(INIT_SELECTOR, admin, appSigner)); if (!success) { revert TrustedForwarderFactory__TrustedForwarderInitFailed(admin, appSigner); } forwarders[trustedForwarder] = true; emit TrustedForwarderCreated(msg.sender, trustedForwarder); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol) pragma solidity ^0.8.0; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(0, 0x09, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { /// @solidity memory-safe-assembly assembly { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(0, 0x09, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }