ETH Price: $1,903.77 (-0.40%)

Transaction Decoder

Block:
21454228 at Dec-21-2024 11:42:47 PM +UTC
Transaction Fee:
0.00039961613772234 ETH $0.76
Gas Used:
64,526 Gas / 6.19310259 Gwei

Emitted Events:

410 TransparentUpgradeableProxy.0x987d620f307ff6b94d58743cb7a7509f24071586a77759b77c2d4e29f75a2f9a( 0x987d620f307ff6b94d58743cb7a7509f24071586a77759b77c2d4e29f75a2f9a, 0x0000000000000000000000002ecfcf58adb7bd5f9d8af51698b8c4840cbb82f3, 0x00000000000000000000000000000000000000000000000000000000000007ad, 00000000000000000000000000000000000000000000000f104a04a3ca03a24d )
411 Azuro.Transfer( from=[Receiver] TransparentUpgradeableProxy, to=[Sender] 0x2ecfcf58adb7bd5f9d8af51698b8c4840cbb82f3, value=277874916860042125901 )

Account State Difference:

  Address   Before After State Difference Code
0x2EcFcF58...40cBb82F3
0.006290025825692481 Eth
Nonce: 46
0.005890409687970141 Eth
Nonce: 47
0.00039961613772234
(Titan Builder)
7.161680189515915607 Eth7.161680353856733325 Eth0.000000164340817718
0x9E6be44c...63BedCd5A
0xDd180c63...0ae8Cc35f

Execution Trace

TransparentUpgradeableProxy.1e83409a( )
  • Vesting.claim( account=0x2EcFcF58aDb7Bd5f9D8af51698b8c4840cBb82F3 )
    • Azuro.transfer( to=0x2EcFcF58aDb7Bd5f9D8af51698b8c4840cBb82F3, value=277874916860042125901 ) => ( True )
      File 1 of 3: TransparentUpgradeableProxy
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {Context} from "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          constructor(address initialOwner) {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       */
      interface IERC1967 {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol)
      pragma solidity ^0.8.20;
      import {IBeacon} from "./IBeacon.sol";
      import {Proxy} from "../Proxy.sol";
      import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
      /**
       * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
       *
       * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
       * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally.
       *
       * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
       * the beacon to not upgrade the implementation maliciously.
       *
       * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
       * an inconsistent state where the beacon storage slot does not match the beacon address.
       */
      contract BeaconProxy is Proxy {
          // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
          address private immutable _beacon;
          /**
           * @dev Initializes the proxy with `beacon`.
           *
           * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
           * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
           * constructor.
           *
           * Requirements:
           *
           * - `beacon` must be a contract with the interface {IBeacon}.
           * - If `data` is empty, `msg.value` must be zero.
           */
          constructor(address beacon, bytes memory data) payable {
              ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
              _beacon = beacon;
          }
          /**
           * @dev Returns the current implementation address of the associated beacon.
           */
          function _implementation() internal view virtual override returns (address) {
              return IBeacon(_getBeacon()).implementation();
          }
          /**
           * @dev Returns the beacon.
           */
          function _getBeacon() internal view virtual returns (address) {
              return _beacon;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {UpgradeableBeacon} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/UpgradeableBeacon.sol)
      pragma solidity ^0.8.20;
      import {IBeacon} from "./IBeacon.sol";
      import {Ownable} from "../../access/Ownable.sol";
      /**
       * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
       * implementation contract, which is where they will delegate all function calls.
       *
       * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
       */
      contract UpgradeableBeacon is IBeacon, Ownable {
          address private _implementation;
          /**
           * @dev The `implementation` of the beacon is invalid.
           */
          error BeaconInvalidImplementation(address implementation);
          /**
           * @dev Emitted when the implementation returned by the beacon is changed.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Sets the address of the initial implementation, and the initial owner who can upgrade the beacon.
           */
          constructor(address implementation_, address initialOwner) Ownable(initialOwner) {
              _setImplementation(implementation_);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function implementation() public view virtual returns (address) {
              return _implementation;
          }
          /**
           * @dev Upgrades the beacon to a new implementation.
           *
           * Emits an {Upgraded} event.
           *
           * Requirements:
           *
           * - msg.sender must be the owner of the contract.
           * - `newImplementation` must be a contract.
           */
          function upgradeTo(address newImplementation) public virtual onlyOwner {
              _setImplementation(newImplementation);
          }
          /**
           * @dev Sets the implementation contract address for this beacon
           *
           * Requirements:
           *
           * - `newImplementation` must be a contract.
           */
          function _setImplementation(address newImplementation) private {
              if (newImplementation.code.length == 0) {
                  revert BeaconInvalidImplementation(newImplementation);
              }
              _implementation = newImplementation;
              emit Upgraded(newImplementation);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.20;
      import {Proxy} from "../Proxy.sol";
      import {ERC1967Utils} from "./ERC1967Utils.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
           * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
           *
           * Requirements:
           *
           * - If `data` is empty, `msg.value` must be zero.
           */
          constructor(address implementation, bytes memory _data) payable {
              ERC1967Utils.upgradeToAndCall(implementation, _data);
          }
          /**
           * @dev Returns the current implementation address.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function _implementation() internal view virtual override returns (address) {
              return ERC1967Utils.getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
      pragma solidity ^0.8.20;
      import {IBeacon} from "../beacon/IBeacon.sol";
      import {Address} from "../../utils/Address.sol";
      import {StorageSlot} from "../../utils/StorageSlot.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       */
      library ERC1967Utils {
          // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
          // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev The `implementation` of the proxy is invalid.
           */
          error ERC1967InvalidImplementation(address implementation);
          /**
           * @dev The `admin` of the proxy is invalid.
           */
          error ERC1967InvalidAdmin(address admin);
          /**
           * @dev The `beacon` of the proxy is invalid.
           */
          error ERC1967InvalidBeacon(address beacon);
          /**
           * @dev An upgrade function sees `msg.value > 0` that may be lost.
           */
          error ERC1967NonPayable();
          /**
           * @dev Returns the current implementation address.
           */
          function getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              if (newImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(newImplementation);
              }
              StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Performs implementation upgrade with additional setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-Upgraded} event.
           */
          function upgradeToAndCall(address newImplementation, bytes memory data) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
              if (data.length > 0) {
                  Address.functionDelegateCall(newImplementation, data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
           * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              if (newAdmin == address(0)) {
                  revert ERC1967InvalidAdmin(address(0));
              }
              StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {IERC1967-AdminChanged} event.
           */
          function changeAdmin(address newAdmin) internal {
              emit AdminChanged(getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
           */
          // solhint-disable-next-line private-vars-leading-underscore
          bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              if (newBeacon.code.length == 0) {
                  revert ERC1967InvalidBeacon(newBeacon);
              }
              StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
              address beaconImplementation = IBeacon(newBeacon).implementation();
              if (beaconImplementation.code.length == 0) {
                  revert ERC1967InvalidImplementation(beaconImplementation);
              }
          }
          /**
           * @dev Change the beacon and trigger a setup call if data is nonempty.
           * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
           * to avoid stuck value in the contract.
           *
           * Emits an {IERC1967-BeaconUpgraded} event.
           *
           * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
           * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
           * efficiency.
           */
          function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              } else {
                  _checkNonPayable();
              }
          }
          /**
           * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
           * if an upgrade doesn't perform an initialization call.
           */
          function _checkNonPayable() private {
              if (msg.value > 0) {
                  revert ERC1967NonPayable();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
           * function and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/ProxyAdmin.sol)
      pragma solidity ^0.8.20;
      import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
      import {Ownable} from "../../access/Ownable.sol";
      /**
       * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
       * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
       */
      contract ProxyAdmin is Ownable {
          /**
           * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address)`
           * and `upgradeAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
           * while `upgradeAndCall` will invoke the `receive` function if the second argument is the empty byte string.
           * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,bytes)` is present, and the second argument must
           * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
           * during an upgrade.
           */
          string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
          /**
           * @dev Sets the initial owner who can perform upgrades.
           */
          constructor(address initialOwner) Ownable(initialOwner) {}
          /**
           * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
           * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           * - If `data` is empty, `msg.value` must be zero.
           */
          function upgradeAndCall(
              ITransparentUpgradeableProxy proxy,
              address implementation,
              bytes memory data
          ) public payable virtual onlyOwner {
              proxy.upgradeToAndCall{value: msg.value}(implementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/TransparentUpgradeableProxy.sol)
      pragma solidity ^0.8.20;
      import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
      import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
      import {IERC1967} from "../../interfaces/IERC1967.sol";
      import {ProxyAdmin} from "./ProxyAdmin.sol";
      /**
       * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
       * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
       * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
       * include them in the ABI so this interface must be used to interact with it.
       */
      interface ITransparentUpgradeableProxy is IERC1967 {
          function upgradeToAndCall(address, bytes calldata) external payable;
      }
      /**
       * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
       * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
       * the proxy admin cannot fallback to the target implementation.
       *
       * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
       * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
       * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
       * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
       * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
       *
       * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
       * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
       * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
       * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
       * implementation.
       *
       * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
       * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
       *
       * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
       * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
       * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
       * undesirable state where the admin slot is different from the actual admin.
       *
       * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
       * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
       * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
       * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          // An immutable address for the admin to avoid unnecessary SLOADs before each call
          // at the expense of removing the ability to change the admin once it's set.
          // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
          // with its own ability to transfer the permissions to another account.
          address private immutable _admin;
          /**
           * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
           */
          error ProxyDeniedAdminAccess();
          /**
           * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
           * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
           * {ERC1967Proxy-constructor}.
           */
          constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
              _admin = address(new ProxyAdmin(initialOwner));
              // Set the storage value and emit an event for ERC-1967 compatibility
              ERC1967Utils.changeAdmin(_proxyAdmin());
          }
          /**
           * @dev Returns the admin of this proxy.
           */
          function _proxyAdmin() internal virtual returns (address) {
              return _admin;
          }
          /**
           * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
           */
          function _fallback() internal virtual override {
              if (msg.sender == _proxyAdmin()) {
                  if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                      revert ProxyDeniedAdminAccess();
                  } else {
                      _dispatchUpgradeToAndCall();
                  }
              } else {
                  super._fallback();
              }
          }
          /**
           * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
           *
           * Requirements:
           *
           * - If `data` is empty, `msg.value` must be zero.
           */
          function _dispatchUpgradeToAndCall() private {
              (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
              ERC1967Utils.upgradeToAndCall(newImplementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev The ETH balance of the account is not enough to perform the operation.
           */
          error AddressInsufficientBalance(address account);
          /**
           * @dev There's no code at `target` (it is not a contract).
           */
          error AddressEmptyCode(address target);
          /**
           * @dev A call to an address target failed. The target may have reverted.
           */
          error FailedInnerCall();
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              if (address(this).balance < amount) {
                  revert AddressInsufficientBalance(address(this));
              }
              (bool success, ) = recipient.call{value: amount}("");
              if (!success) {
                  revert FailedInnerCall();
              }
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason or custom error, it is bubbled
           * up by this function (like regular Solidity function calls). However, if
           * the call reverted with no returned reason, this function reverts with a
           * {FailedInnerCall} error.
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              if (address(this).balance < value) {
                  revert AddressInsufficientBalance(address(this));
              }
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
           * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
           * unsuccessful call.
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata
          ) internal view returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  // only check if target is a contract if the call was successful and the return data is empty
                  // otherwise we already know that it was a contract
                  if (returndata.length == 0 && target.code.length == 0) {
                      revert AddressEmptyCode(target);
                  }
                  return returndata;
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
           * revert reason or with a default {FailedInnerCall} error.
           */
          function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  return returndata;
              }
          }
          /**
           * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
           */
          function _revert(bytes memory returndata) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert FailedInnerCall();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      

      File 2 of 3: Azuro
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
       */
      interface IVotes {
          /**
           * @dev The signature used has expired.
           */
          error VotesExpiredSignature(uint256 expiry);
          /**
           * @dev Emitted when an account changes their delegate.
           */
          event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
          /**
           * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
           */
          event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);
          /**
           * @dev Returns the current amount of votes that `account` has.
           */
          function getVotes(address account) external view returns (uint256);
          /**
           * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           */
          function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
          /**
           * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           *
           * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
           * Votes that have not been delegated are still part of total supply, even though they would not participate in a
           * vote.
           */
          function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
          /**
           * @dev Returns the delegate that `account` has chosen.
           */
          function delegates(address account) external view returns (address);
          /**
           * @dev Delegates votes from the sender to `delegatee`.
           */
          function delegate(address delegatee) external;
          /**
           * @dev Delegates votes from signer to `delegatee`.
           */
          function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol)
      pragma solidity ^0.8.20;
      import {IERC5805} from "../../interfaces/IERC5805.sol";
      import {Context} from "../../utils/Context.sol";
      import {Nonces} from "../../utils/Nonces.sol";
      import {EIP712} from "../../utils/cryptography/EIP712.sol";
      import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
      import {SafeCast} from "../../utils/math/SafeCast.sol";
      import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
      import {Time} from "../../utils/types/Time.sol";
      /**
       * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
       * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
       * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
       * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
       * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
       *
       * This contract is often combined with a token contract such that voting units correspond to token units. For an
       * example, see {ERC721Votes}.
       *
       * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
       * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
       * cost of this history tracking optional.
       *
       * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
       * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
       * previous example, it would be included in {ERC721-_update}).
       */
      abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
          using Checkpoints for Checkpoints.Trace208;
          bytes32 private constant DELEGATION_TYPEHASH =
              keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
          mapping(address account => address) private _delegatee;
          mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;
          Checkpoints.Trace208 private _totalCheckpoints;
          /**
           * @dev The clock was incorrectly modified.
           */
          error ERC6372InconsistentClock();
          /**
           * @dev Lookup to future votes is not available.
           */
          error ERC5805FutureLookup(uint256 timepoint, uint48 clock);
          /**
           * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
           * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
           */
          function clock() public view virtual returns (uint48) {
              return Time.blockNumber();
          }
          /**
           * @dev Machine-readable description of the clock as specified in EIP-6372.
           */
          // solhint-disable-next-line func-name-mixedcase
          function CLOCK_MODE() public view virtual returns (string memory) {
              // Check that the clock was not modified
              if (clock() != Time.blockNumber()) {
                  revert ERC6372InconsistentClock();
              }
              return "mode=blocknumber&from=default";
          }
          /**
           * @dev Returns the current amount of votes that `account` has.
           */
          function getVotes(address account) public view virtual returns (uint256) {
              return _delegateCheckpoints[account].latest();
          }
          /**
           * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           *
           * Requirements:
           *
           * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
           */
          function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
              uint48 currentTimepoint = clock();
              if (timepoint >= currentTimepoint) {
                  revert ERC5805FutureLookup(timepoint, currentTimepoint);
              }
              return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
          }
          /**
           * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
           * configured to use block numbers, this will return the value at the end of the corresponding block.
           *
           * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
           * Votes that have not been delegated are still part of total supply, even though they would not participate in a
           * vote.
           *
           * Requirements:
           *
           * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
           */
          function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
              uint48 currentTimepoint = clock();
              if (timepoint >= currentTimepoint) {
                  revert ERC5805FutureLookup(timepoint, currentTimepoint);
              }
              return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
          }
          /**
           * @dev Returns the current total supply of votes.
           */
          function _getTotalSupply() internal view virtual returns (uint256) {
              return _totalCheckpoints.latest();
          }
          /**
           * @dev Returns the delegate that `account` has chosen.
           */
          function delegates(address account) public view virtual returns (address) {
              return _delegatee[account];
          }
          /**
           * @dev Delegates votes from the sender to `delegatee`.
           */
          function delegate(address delegatee) public virtual {
              address account = _msgSender();
              _delegate(account, delegatee);
          }
          /**
           * @dev Delegates votes from signer to `delegatee`.
           */
          function delegateBySig(
              address delegatee,
              uint256 nonce,
              uint256 expiry,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              if (block.timestamp > expiry) {
                  revert VotesExpiredSignature(expiry);
              }
              address signer = ECDSA.recover(
                  _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
                  v,
                  r,
                  s
              );
              _useCheckedNonce(signer, nonce);
              _delegate(signer, delegatee);
          }
          /**
           * @dev Delegate all of `account`'s voting units to `delegatee`.
           *
           * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
           */
          function _delegate(address account, address delegatee) internal virtual {
              address oldDelegate = delegates(account);
              _delegatee[account] = delegatee;
              emit DelegateChanged(account, oldDelegate, delegatee);
              _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
          }
          /**
           * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
           * should be zero. Total supply of voting units will be adjusted with mints and burns.
           */
          function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
              if (from == address(0)) {
                  _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
              }
              if (to == address(0)) {
                  _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
              }
              _moveDelegateVotes(delegates(from), delegates(to), amount);
          }
          /**
           * @dev Moves delegated votes from one delegate to another.
           */
          function _moveDelegateVotes(address from, address to, uint256 amount) private {
              if (from != to && amount > 0) {
                  if (from != address(0)) {
                      (uint256 oldValue, uint256 newValue) = _push(
                          _delegateCheckpoints[from],
                          _subtract,
                          SafeCast.toUint208(amount)
                      );
                      emit DelegateVotesChanged(from, oldValue, newValue);
                  }
                  if (to != address(0)) {
                      (uint256 oldValue, uint256 newValue) = _push(
                          _delegateCheckpoints[to],
                          _add,
                          SafeCast.toUint208(amount)
                      );
                      emit DelegateVotesChanged(to, oldValue, newValue);
                  }
              }
          }
          /**
           * @dev Get number of checkpoints for `account`.
           */
          function _numCheckpoints(address account) internal view virtual returns (uint32) {
              return SafeCast.toUint32(_delegateCheckpoints[account].length());
          }
          /**
           * @dev Get the `pos`-th checkpoint for `account`.
           */
          function _checkpoints(
              address account,
              uint32 pos
          ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
              return _delegateCheckpoints[account].at(pos);
          }
          function _push(
              Checkpoints.Trace208 storage store,
              function(uint208, uint208) view returns (uint208) op,
              uint208 delta
          ) private returns (uint208, uint208) {
              return store.push(clock(), op(store.latest(), delta));
          }
          function _add(uint208 a, uint208 b) private pure returns (uint208) {
              return a + b;
          }
          function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
              return a - b;
          }
          /**
           * @dev Must return the voting units held by an account.
           */
          function _getVotingUnits(address) internal view virtual returns (uint256);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard ERC20 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
       */
      interface IERC20Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC20InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC20InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           * @param allowance Amount of tokens a `spender` is allowed to operate with.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC20InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC20InvalidSpender(address spender);
      }
      /**
       * @dev Standard ERC721 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
       */
      interface IERC721Errors {
          /**
           * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
           * Used in balance queries.
           * @param owner Address of the current owner of a token.
           */
          error ERC721InvalidOwner(address owner);
          /**
           * @dev Indicates a `tokenId` whose `owner` is the zero address.
           * @param tokenId Identifier number of a token.
           */
          error ERC721NonexistentToken(uint256 tokenId);
          /**
           * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param tokenId Identifier number of a token.
           * @param owner Address of the current owner of a token.
           */
          error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC721InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC721InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param tokenId Identifier number of a token.
           */
          error ERC721InsufficientApproval(address operator, uint256 tokenId);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC721InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC721InvalidOperator(address operator);
      }
      /**
       * @dev Standard ERC1155 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
       */
      interface IERC1155Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           * @param tokenId Identifier number of a token.
           */
          error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC1155InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC1155InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param owner Address of the current owner of a token.
           */
          error ERC1155MissingApprovalForAll(address operator, address owner);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC1155InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC1155InvalidOperator(address operator);
          /**
           * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
           * Used in batch transfers.
           * @param idsLength Length of the array of token identifiers
           * @param valuesLength Length of the array of token amounts
           */
          error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
      pragma solidity ^0.8.20;
      interface IERC5267 {
          /**
           * @dev MAY be emitted to signal that the domain could have changed.
           */
          event EIP712DomainChanged();
          /**
           * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
           * signature.
           */
          function eip712Domain()
              external
              view
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              );
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)
      pragma solidity ^0.8.20;
      import {IVotes} from "../governance/utils/IVotes.sol";
      import {IERC6372} from "./IERC6372.sol";
      interface IERC5805 is IERC6372, IVotes {}
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)
      pragma solidity ^0.8.20;
      interface IERC6372 {
          /**
           * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
           */
          function clock() external view returns (uint48);
          /**
           * @dev Description of the clock
           */
          // solhint-disable-next-line func-name-mixedcase
          function CLOCK_MODE() external view returns (string memory);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "./IERC20.sol";
      import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
      import {Context} from "../../utils/Context.sol";
      import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * The default value of {decimals} is 18. To change this, you should override
       * this function so it returns a different value.
       *
       * We have followed general OpenZeppelin Contracts guidelines: functions revert
       * instead returning `false` on failure. This behavior is nonetheless
       * conventional and does not conflict with the expectations of ERC20
       * applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       */
      abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
          mapping(address account => uint256) private _balances;
          mapping(address account => mapping(address spender => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the default value returned by this function, unless
           * it's overridden.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual returns (uint8) {
              return 18;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - the caller must have a balance of at least `value`.
           */
          function transfer(address to, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _transfer(owner, to, value);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
           * `transferFrom`. This is semantically equivalent to an infinite approval.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 value) public virtual returns (bool) {
              address owner = _msgSender();
              _approve(owner, spender, value);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * NOTE: Does not update the allowance if the current allowance
           * is the maximum `uint256`.
           *
           * Requirements:
           *
           * - `from` and `to` cannot be the zero address.
           * - `from` must have a balance of at least `value`.
           * - the caller must have allowance for ``from``'s tokens of at least
           * `value`.
           */
          function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
              address spender = _msgSender();
              _spendAllowance(from, spender, value);
              _transfer(from, to, value);
              return true;
          }
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _transfer(address from, address to, uint256 value) internal {
              if (from == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              if (to == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(from, to, value);
          }
          /**
           * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
           * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
           * this function.
           *
           * Emits a {Transfer} event.
           */
          function _update(address from, address to, uint256 value) internal virtual {
              if (from == address(0)) {
                  // Overflow check required: The rest of the code assumes that totalSupply never overflows
                  _totalSupply += value;
              } else {
                  uint256 fromBalance = _balances[from];
                  if (fromBalance < value) {
                      revert ERC20InsufficientBalance(from, fromBalance, value);
                  }
                  unchecked {
                      // Overflow not possible: value <= fromBalance <= totalSupply.
                      _balances[from] = fromBalance - value;
                  }
              }
              if (to == address(0)) {
                  unchecked {
                      // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                      _totalSupply -= value;
                  }
              } else {
                  unchecked {
                      // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                      _balances[to] += value;
                  }
              }
              emit Transfer(from, to, value);
          }
          /**
           * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
           * Relies on the `_update` mechanism
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead.
           */
          function _mint(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidReceiver(address(0));
              }
              _update(address(0), account, value);
          }
          /**
           * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
           * Relies on the `_update` mechanism.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * NOTE: This function is not virtual, {_update} should be overridden instead
           */
          function _burn(address account, uint256 value) internal {
              if (account == address(0)) {
                  revert ERC20InvalidSender(address(0));
              }
              _update(account, address(0), value);
          }
          /**
           * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           *
           * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
           */
          function _approve(address owner, address spender, uint256 value) internal {
              _approve(owner, spender, value, true);
          }
          /**
           * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
           *
           * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
           * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
           * `Approval` event during `transferFrom` operations.
           *
           * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
           * true using the following override:
           * ```
           * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
           *     super._approve(owner, spender, value, true);
           * }
           * ```
           *
           * Requirements are the same as {_approve}.
           */
          function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
              if (owner == address(0)) {
                  revert ERC20InvalidApprover(address(0));
              }
              if (spender == address(0)) {
                  revert ERC20InvalidSpender(address(0));
              }
              _allowances[owner][spender] = value;
              if (emitEvent) {
                  emit Approval(owner, spender, value);
              }
          }
          /**
           * @dev Updates `owner` s allowance for `spender` based on spent `value`.
           *
           * Does not update the allowance value in case of infinite allowance.
           * Revert if not enough allowance is available.
           *
           * Does not emit an {Approval} event.
           */
          function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
              uint256 currentAllowance = allowance(owner, spender);
              if (currentAllowance != type(uint256).max) {
                  if (currentAllowance < value) {
                      revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                  }
                  unchecked {
                      _approve(owner, spender, currentAllowance - value, false);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)
      pragma solidity ^0.8.20;
      import {IERC20Permit} from "./IERC20Permit.sol";
      import {ERC20} from "../ERC20.sol";
      import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
      import {EIP712} from "../../../utils/cryptography/EIP712.sol";
      import {Nonces} from "../../../utils/Nonces.sol";
      /**
       * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
          bytes32 private constant PERMIT_TYPEHASH =
              keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          /**
           * @dev Permit deadline has expired.
           */
          error ERC2612ExpiredSignature(uint256 deadline);
          /**
           * @dev Mismatched signature.
           */
          error ERC2612InvalidSigner(address signer, address owner);
          /**
           * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
           *
           * It's a good idea to use the same `name` that is defined as the ERC20 token name.
           */
          constructor(string memory name) EIP712(name, "1") {}
          /**
           * @inheritdoc IERC20Permit
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) public virtual {
              if (block.timestamp > deadline) {
                  revert ERC2612ExpiredSignature(deadline);
              }
              bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
              bytes32 hash = _hashTypedDataV4(structHash);
              address signer = ECDSA.recover(hash, v, r, s);
              if (signer != owner) {
                  revert ERC2612InvalidSigner(signer, owner);
              }
              _approve(owner, spender, value);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
              return super.nonces(owner);
          }
          /**
           * @inheritdoc IERC20Permit
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
              return _domainSeparatorV4();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol)
      pragma solidity ^0.8.20;
      import {ERC20} from "../ERC20.sol";
      import {Votes} from "../../../governance/utils/Votes.sol";
      import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";
      /**
       * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
       * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
       *
       * NOTE: This contract does not provide interface compatibility with Compound's COMP token.
       *
       * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
       * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
       * power can be queried through the public accessors {getVotes} and {getPastVotes}.
       *
       * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
       * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
       */
      abstract contract ERC20Votes is ERC20, Votes {
          /**
           * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
           */
          error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);
          /**
           * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
           *
           * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
           * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not
           * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
           * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
           * additional logic requires it. When resolving override conflicts on this function, the minimum should be
           * returned.
           */
          function _maxSupply() internal view virtual returns (uint256) {
              return type(uint208).max;
          }
          /**
           * @dev Move voting power when tokens are transferred.
           *
           * Emits a {IVotes-DelegateVotesChanged} event.
           */
          function _update(address from, address to, uint256 value) internal virtual override {
              super._update(from, to, value);
              if (from == address(0)) {
                  uint256 supply = totalSupply();
                  uint256 cap = _maxSupply();
                  if (supply > cap) {
                      revert ERC20ExceededSafeSupply(supply, cap);
                  }
              }
              _transferVotingUnits(from, to, value);
          }
          /**
           * @dev Returns the voting units of an `account`.
           *
           * WARNING: Overriding this function may compromise the internal vote accounting.
           * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
           */
          function _getVotingUnits(address account) internal view virtual override returns (uint256) {
              return balanceOf(account);
          }
          /**
           * @dev Get number of checkpoints for `account`.
           */
          function numCheckpoints(address account) public view virtual returns (uint32) {
              return _numCheckpoints(account);
          }
          /**
           * @dev Get the `pos`-th checkpoint for `account`.
           */
          function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
              return _checkpoints(account, pos);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../IERC20.sol";
      /**
       * @dev Interface for the optional metadata functions from the ERC20 standard.
       */
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
       *
       * These functions can be used to verify that a message was signed by the holder
       * of the private keys of a given address.
       */
      library ECDSA {
          enum RecoverError {
              NoError,
              InvalidSignature,
              InvalidSignatureLength,
              InvalidSignatureS
          }
          /**
           * @dev The signature derives the `address(0)`.
           */
          error ECDSAInvalidSignature();
          /**
           * @dev The signature has an invalid length.
           */
          error ECDSAInvalidSignatureLength(uint256 length);
          /**
           * @dev The signature has an S value that is in the upper half order.
           */
          error ECDSAInvalidSignatureS(bytes32 s);
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
           * return address(0) without also returning an error description. Errors are documented using an enum (error type)
           * and a bytes32 providing additional information about the error.
           *
           * If no error is returned, then the address can be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           *
           * Documentation for signature generation:
           * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
           * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
           */
          function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
              if (signature.length == 65) {
                  bytes32 r;
                  bytes32 s;
                  uint8 v;
                  // ecrecover takes the signature parameters, and the only way to get them
                  // currently is to use assembly.
                  /// @solidity memory-safe-assembly
                  assembly {
                      r := mload(add(signature, 0x20))
                      s := mload(add(signature, 0x40))
                      v := byte(0, mload(add(signature, 0x60)))
                  }
                  return tryRecover(hash, v, r, s);
              } else {
                  return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
              }
          }
          /**
           * @dev Returns the address that signed a hashed message (`hash`) with
           * `signature`. This address can then be used for verification purposes.
           *
           * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
           * this function rejects them by requiring the `s` value to be in the lower
           * half order, and the `v` value to be either 27 or 28.
           *
           * IMPORTANT: `hash` _must_ be the result of a hash operation for the
           * verification to be secure: it is possible to craft signatures that
           * recover to arbitrary addresses for non-hashed data. A safe way to ensure
           * this is by receiving a hash of the original message (which may otherwise
           * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
           */
          function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
           *
           * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
           */
          function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
              unchecked {
                  bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                  // We do not check for an overflow here since the shift operation results in 0 or 1.
                  uint8 v = uint8((uint256(vs) >> 255) + 27);
                  return tryRecover(hash, v, r, s);
              }
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
           */
          function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function tryRecover(
              bytes32 hash,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) internal pure returns (address, RecoverError, bytes32) {
              // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
              // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
              // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
              // signatures from current libraries generate a unique signature with an s-value in the lower half order.
              //
              // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
              // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
              // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
              // these malleable signatures as well.
              if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                  return (address(0), RecoverError.InvalidSignatureS, s);
              }
              // If the signature is valid (and not malleable), return the signer address
              address signer = ecrecover(hash, v, r, s);
              if (signer == address(0)) {
                  return (address(0), RecoverError.InvalidSignature, bytes32(0));
              }
              return (signer, RecoverError.NoError, bytes32(0));
          }
          /**
           * @dev Overload of {ECDSA-recover} that receives the `v`,
           * `r` and `s` signature fields separately.
           */
          function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
              (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
              _throwError(error, errorArg);
              return recovered;
          }
          /**
           * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
           */
          function _throwError(RecoverError error, bytes32 errorArg) private pure {
              if (error == RecoverError.NoError) {
                  return; // no error: do nothing
              } else if (error == RecoverError.InvalidSignature) {
                  revert ECDSAInvalidSignature();
              } else if (error == RecoverError.InvalidSignatureLength) {
                  revert ECDSAInvalidSignatureLength(uint256(errorArg));
              } else if (error == RecoverError.InvalidSignatureS) {
                  revert ECDSAInvalidSignatureS(errorArg);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
      pragma solidity ^0.8.20;
      import {MessageHashUtils} from "./MessageHashUtils.sol";
      import {ShortStrings, ShortString} from "../ShortStrings.sol";
      import {IERC5267} from "../../interfaces/IERC5267.sol";
      /**
       * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
       *
       * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
       * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
       * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
       * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
       *
       * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
       * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
       * ({_hashTypedDataV4}).
       *
       * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
       * the chain id to protect against replay attacks on an eventual fork of the chain.
       *
       * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
       * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
       *
       * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
       * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
       * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
       *
       * @custom:oz-upgrades-unsafe-allow state-variable-immutable
       */
      abstract contract EIP712 is IERC5267 {
          using ShortStrings for *;
          bytes32 private constant TYPE_HASH =
              keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
          // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
          // invalidate the cached domain separator if the chain id changes.
          bytes32 private immutable _cachedDomainSeparator;
          uint256 private immutable _cachedChainId;
          address private immutable _cachedThis;
          bytes32 private immutable _hashedName;
          bytes32 private immutable _hashedVersion;
          ShortString private immutable _name;
          ShortString private immutable _version;
          string private _nameFallback;
          string private _versionFallback;
          /**
           * @dev Initializes the domain separator and parameter caches.
           *
           * The meaning of `name` and `version` is specified in
           * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
           *
           * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
           * - `version`: the current major version of the signing domain.
           *
           * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
           * contract upgrade].
           */
          constructor(string memory name, string memory version) {
              _name = name.toShortStringWithFallback(_nameFallback);
              _version = version.toShortStringWithFallback(_versionFallback);
              _hashedName = keccak256(bytes(name));
              _hashedVersion = keccak256(bytes(version));
              _cachedChainId = block.chainid;
              _cachedDomainSeparator = _buildDomainSeparator();
              _cachedThis = address(this);
          }
          /**
           * @dev Returns the domain separator for the current chain.
           */
          function _domainSeparatorV4() internal view returns (bytes32) {
              if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                  return _cachedDomainSeparator;
              } else {
                  return _buildDomainSeparator();
              }
          }
          function _buildDomainSeparator() private view returns (bytes32) {
              return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
          }
          /**
           * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
           * function returns the hash of the fully encoded EIP712 message for this domain.
           *
           * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
           *
           * ```solidity
           * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
           *     keccak256("Mail(address to,string contents)"),
           *     mailTo,
           *     keccak256(bytes(mailContents))
           * )));
           * address signer = ECDSA.recover(digest, signature);
           * ```
           */
          function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
              return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
          }
          /**
           * @dev See {IERC-5267}.
           */
          function eip712Domain()
              public
              view
              virtual
              returns (
                  bytes1 fields,
                  string memory name,
                  string memory version,
                  uint256 chainId,
                  address verifyingContract,
                  bytes32 salt,
                  uint256[] memory extensions
              )
          {
              return (
                  hex"0f", // 01111
                  _EIP712Name(),
                  _EIP712Version(),
                  block.chainid,
                  address(this),
                  bytes32(0),
                  new uint256[](0)
              );
          }
          /**
           * @dev The name parameter for the EIP712 domain.
           *
           * NOTE: By default this function reads _name which is an immutable value.
           * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
           */
          // solhint-disable-next-line func-name-mixedcase
          function _EIP712Name() internal view returns (string memory) {
              return _name.toStringWithFallback(_nameFallback);
          }
          /**
           * @dev The version parameter for the EIP712 domain.
           *
           * NOTE: By default this function reads _version which is an immutable value.
           * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
           */
          // solhint-disable-next-line func-name-mixedcase
          function _EIP712Version() internal view returns (string memory) {
              return _version.toStringWithFallback(_versionFallback);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
      pragma solidity ^0.8.20;
      import {Strings} from "../Strings.sol";
      /**
       * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
       *
       * The library provides methods for generating a hash of a message that conforms to the
       * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
       * specifications.
       */
      library MessageHashUtils {
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing a bytes32 `messageHash` with
           * `"\\x19Ethereum Signed Message:\
      32"` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
           * keccak256, although any bytes32 value can be safely used because the final digest will
           * be re-hashed.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(0x00, "\\x19Ethereum Signed Message:\
      32") // 32 is the bytes-length of messageHash
                  mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                  digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
              }
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x45` (`personal_sign` messages).
           *
           * The digest is calculated by prefixing an arbitrary `message` with
           * `"\\x19Ethereum Signed Message:\
      " + len(message)` and hashing the result. It corresponds with the
           * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
           *
           * See {ECDSA-recover}.
           */
          function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
              return
                  keccak256(bytes.concat("\\x19Ethereum Signed Message:\
      ", bytes(Strings.toString(message.length)), message));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-191 signed data with version
           * `0x00` (data with intended validator).
           *
           * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
           * `validator` address. Then hashing the result.
           *
           * See {ECDSA-recover}.
           */
          function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
              return keccak256(abi.encodePacked(hex"19_00", validator, data));
          }
          /**
           * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
           *
           * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
           * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
           * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
           *
           * See {ECDSA-recover}.
           */
          function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
              /// @solidity memory-safe-assembly
              assembly {
                  let ptr := mload(0x40)
                  mstore(ptr, hex"19_01")
                  mstore(add(ptr, 0x02), domainSeparator)
                  mstore(add(ptr, 0x22), structHash)
                  digest := keccak256(ptr, 0x42)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          /**
           * @dev Muldiv operation overflow.
           */
          error MathOverflowedMulDiv();
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an overflow flag.
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a division by zero flag.
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  return a / b;
              }
              // (a + b - 1) / b can overflow on addition, so we distribute.
              return a == 0 ? 0 : (a - 1) / b + 1;
          }
          /**
           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2^256 + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      revert MathOverflowedMulDiv();
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv = 1 mod 2^4.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              uint256 result = mulDiv(x, y, denominator);
              if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                  result += 1;
              }
              return result;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
              //
              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
              //
              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
              //
              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
              uint256 result = 1 << (log2(a) >> 1);
              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
              // into the expected uint128 result.
              unchecked {
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  result = (result + a / result) >> 1;
                  return min(result, a / result);
              }
          }
          /**
           * @notice Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 128;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 64;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 32;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 16;
                  }
                  if (value >> 8 > 0) {
                      value >>= 8;
                      result += 8;
                  }
                  if (value >> 4 > 0) {
                      value >>= 4;
                      result += 4;
                  }
                  if (value >> 2 > 0) {
                      value >>= 2;
                      result += 2;
                  }
                  if (value >> 1 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >> 128 > 0) {
                      value >>= 128;
                      result += 16;
                  }
                  if (value >> 64 > 0) {
                      value >>= 64;
                      result += 8;
                  }
                  if (value >> 32 > 0) {
                      value >>= 32;
                      result += 4;
                  }
                  if (value >> 16 > 0) {
                      value >>= 16;
                      result += 2;
                  }
                  if (value >> 8 > 0) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
      // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeCast {
          /**
           * @dev Value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
          /**
           * @dev An int value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedIntToUint(int256 value);
          /**
           * @dev Value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
          /**
           * @dev An uint value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedUintToInt(uint256 value);
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              if (value > type(uint248).max) {
                  revert SafeCastOverflowedUintDowncast(248, value);
              }
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              if (value > type(uint240).max) {
                  revert SafeCastOverflowedUintDowncast(240, value);
              }
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              if (value > type(uint232).max) {
                  revert SafeCastOverflowedUintDowncast(232, value);
              }
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              if (value > type(uint224).max) {
                  revert SafeCastOverflowedUintDowncast(224, value);
              }
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              if (value > type(uint216).max) {
                  revert SafeCastOverflowedUintDowncast(216, value);
              }
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              if (value > type(uint208).max) {
                  revert SafeCastOverflowedUintDowncast(208, value);
              }
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              if (value > type(uint200).max) {
                  revert SafeCastOverflowedUintDowncast(200, value);
              }
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              if (value > type(uint192).max) {
                  revert SafeCastOverflowedUintDowncast(192, value);
              }
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              if (value > type(uint184).max) {
                  revert SafeCastOverflowedUintDowncast(184, value);
              }
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              if (value > type(uint176).max) {
                  revert SafeCastOverflowedUintDowncast(176, value);
              }
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              if (value > type(uint168).max) {
                  revert SafeCastOverflowedUintDowncast(168, value);
              }
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              if (value > type(uint160).max) {
                  revert SafeCastOverflowedUintDowncast(160, value);
              }
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              if (value > type(uint152).max) {
                  revert SafeCastOverflowedUintDowncast(152, value);
              }
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              if (value > type(uint144).max) {
                  revert SafeCastOverflowedUintDowncast(144, value);
              }
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              if (value > type(uint136).max) {
                  revert SafeCastOverflowedUintDowncast(136, value);
              }
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              if (value > type(uint128).max) {
                  revert SafeCastOverflowedUintDowncast(128, value);
              }
              return uint128(value);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              if (value > type(uint120).max) {
                  revert SafeCastOverflowedUintDowncast(120, value);
              }
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              if (value > type(uint112).max) {
                  revert SafeCastOverflowedUintDowncast(112, value);
              }
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              if (value > type(uint104).max) {
                  revert SafeCastOverflowedUintDowncast(104, value);
              }
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              if (value > type(uint96).max) {
                  revert SafeCastOverflowedUintDowncast(96, value);
              }
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              if (value > type(uint88).max) {
                  revert SafeCastOverflowedUintDowncast(88, value);
              }
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              if (value > type(uint80).max) {
                  revert SafeCastOverflowedUintDowncast(80, value);
              }
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              if (value > type(uint72).max) {
                  revert SafeCastOverflowedUintDowncast(72, value);
              }
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              if (value > type(uint64).max) {
                  revert SafeCastOverflowedUintDowncast(64, value);
              }
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              if (value > type(uint56).max) {
                  revert SafeCastOverflowedUintDowncast(56, value);
              }
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              if (value > type(uint48).max) {
                  revert SafeCastOverflowedUintDowncast(48, value);
              }
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              if (value > type(uint40).max) {
                  revert SafeCastOverflowedUintDowncast(40, value);
              }
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              if (value > type(uint32).max) {
                  revert SafeCastOverflowedUintDowncast(32, value);
              }
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              if (value > type(uint24).max) {
                  revert SafeCastOverflowedUintDowncast(24, value);
              }
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              if (value > type(uint16).max) {
                  revert SafeCastOverflowedUintDowncast(16, value);
              }
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              if (value > type(uint8).max) {
                  revert SafeCastOverflowedUintDowncast(8, value);
              }
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              if (value < 0) {
                  revert SafeCastOverflowedIntToUint(value);
              }
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toInt248(int256 value) internal pure returns (int248 downcasted) {
              downcasted = int248(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(248, value);
              }
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toInt240(int256 value) internal pure returns (int240 downcasted) {
              downcasted = int240(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(240, value);
              }
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toInt232(int256 value) internal pure returns (int232 downcasted) {
              downcasted = int232(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(232, value);
              }
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toInt224(int256 value) internal pure returns (int224 downcasted) {
              downcasted = int224(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(224, value);
              }
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toInt216(int256 value) internal pure returns (int216 downcasted) {
              downcasted = int216(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(216, value);
              }
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toInt208(int256 value) internal pure returns (int208 downcasted) {
              downcasted = int208(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(208, value);
              }
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toInt200(int256 value) internal pure returns (int200 downcasted) {
              downcasted = int200(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(200, value);
              }
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toInt192(int256 value) internal pure returns (int192 downcasted) {
              downcasted = int192(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(192, value);
              }
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toInt184(int256 value) internal pure returns (int184 downcasted) {
              downcasted = int184(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(184, value);
              }
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toInt176(int256 value) internal pure returns (int176 downcasted) {
              downcasted = int176(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(176, value);
              }
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toInt168(int256 value) internal pure returns (int168 downcasted) {
              downcasted = int168(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(168, value);
              }
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toInt160(int256 value) internal pure returns (int160 downcasted) {
              downcasted = int160(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(160, value);
              }
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toInt152(int256 value) internal pure returns (int152 downcasted) {
              downcasted = int152(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(152, value);
              }
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toInt144(int256 value) internal pure returns (int144 downcasted) {
              downcasted = int144(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(144, value);
              }
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toInt136(int256 value) internal pure returns (int136 downcasted) {
              downcasted = int136(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(136, value);
              }
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toInt128(int256 value) internal pure returns (int128 downcasted) {
              downcasted = int128(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(128, value);
              }
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toInt120(int256 value) internal pure returns (int120 downcasted) {
              downcasted = int120(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(120, value);
              }
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toInt112(int256 value) internal pure returns (int112 downcasted) {
              downcasted = int112(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(112, value);
              }
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toInt104(int256 value) internal pure returns (int104 downcasted) {
              downcasted = int104(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(104, value);
              }
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toInt96(int256 value) internal pure returns (int96 downcasted) {
              downcasted = int96(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(96, value);
              }
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toInt88(int256 value) internal pure returns (int88 downcasted) {
              downcasted = int88(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(88, value);
              }
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toInt80(int256 value) internal pure returns (int80 downcasted) {
              downcasted = int80(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(80, value);
              }
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toInt72(int256 value) internal pure returns (int72 downcasted) {
              downcasted = int72(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(72, value);
              }
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toInt64(int256 value) internal pure returns (int64 downcasted) {
              downcasted = int64(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(64, value);
              }
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toInt56(int256 value) internal pure returns (int56 downcasted) {
              downcasted = int56(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(56, value);
              }
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toInt48(int256 value) internal pure returns (int48 downcasted) {
              downcasted = int48(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(48, value);
              }
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toInt40(int256 value) internal pure returns (int40 downcasted) {
              downcasted = int40(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(40, value);
              }
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toInt32(int256 value) internal pure returns (int32 downcasted) {
              downcasted = int32(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(32, value);
              }
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toInt24(int256 value) internal pure returns (int24 downcasted) {
              downcasted = int24(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(24, value);
              }
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toInt16(int256 value) internal pure returns (int16 downcasted) {
              downcasted = int16(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(16, value);
              }
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toInt8(int256 value) internal pure returns (int8 downcasted) {
              downcasted = int8(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(8, value);
              }
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              if (value > uint256(type(int256).max)) {
                  revert SafeCastOverflowedUintToInt(value);
              }
              return int256(value);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return a > b ? a : b;
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return a < b ? a : b;
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // must be unchecked in order to support `n = type(int256).min`
                  return uint256(n >= 0 ? n : -n);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides tracking nonces for addresses. Nonces will only increment.
       */
      abstract contract Nonces {
          /**
           * @dev The nonce used for an `account` is not the expected current nonce.
           */
          error InvalidAccountNonce(address account, uint256 currentNonce);
          mapping(address account => uint256) private _nonces;
          /**
           * @dev Returns the next unused nonce for an address.
           */
          function nonces(address owner) public view virtual returns (uint256) {
              return _nonces[owner];
          }
          /**
           * @dev Consumes a nonce.
           *
           * Returns the current value and increments nonce.
           */
          function _useNonce(address owner) internal virtual returns (uint256) {
              // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
              // decremented or reset. This guarantees that the nonce never overflows.
              unchecked {
                  // It is important to do x++ and not ++x here.
                  return _nonces[owner]++;
              }
          }
          /**
           * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
           */
          function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
              uint256 current = _useNonce(owner);
              if (nonce != current) {
                  revert InvalidAccountNonce(owner, current);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
      pragma solidity ^0.8.20;
      import {StorageSlot} from "./StorageSlot.sol";
      // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
      // | length  | 0x                                                              BB |
      type ShortString is bytes32;
      /**
       * @dev This library provides functions to convert short memory strings
       * into a `ShortString` type that can be used as an immutable variable.
       *
       * Strings of arbitrary length can be optimized using this library if
       * they are short enough (up to 31 bytes) by packing them with their
       * length (1 byte) in a single EVM word (32 bytes). Additionally, a
       * fallback mechanism can be used for every other case.
       *
       * Usage example:
       *
       * ```solidity
       * contract Named {
       *     using ShortStrings for *;
       *
       *     ShortString private immutable _name;
       *     string private _nameFallback;
       *
       *     constructor(string memory contractName) {
       *         _name = contractName.toShortStringWithFallback(_nameFallback);
       *     }
       *
       *     function name() external view returns (string memory) {
       *         return _name.toStringWithFallback(_nameFallback);
       *     }
       * }
       * ```
       */
      library ShortStrings {
          // Used as an identifier for strings longer than 31 bytes.
          bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
          error StringTooLong(string str);
          error InvalidShortString();
          /**
           * @dev Encode a string of at most 31 chars into a `ShortString`.
           *
           * This will trigger a `StringTooLong` error is the input string is too long.
           */
          function toShortString(string memory str) internal pure returns (ShortString) {
              bytes memory bstr = bytes(str);
              if (bstr.length > 31) {
                  revert StringTooLong(str);
              }
              return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
          }
          /**
           * @dev Decode a `ShortString` back to a "normal" string.
           */
          function toString(ShortString sstr) internal pure returns (string memory) {
              uint256 len = byteLength(sstr);
              // using `new string(len)` would work locally but is not memory safe.
              string memory str = new string(32);
              /// @solidity memory-safe-assembly
              assembly {
                  mstore(str, len)
                  mstore(add(str, 0x20), sstr)
              }
              return str;
          }
          /**
           * @dev Return the length of a `ShortString`.
           */
          function byteLength(ShortString sstr) internal pure returns (uint256) {
              uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
              if (result > 31) {
                  revert InvalidShortString();
              }
              return result;
          }
          /**
           * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
           */
          function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
              if (bytes(value).length < 32) {
                  return toShortString(value);
              } else {
                  StorageSlot.getStringSlot(store).value = value;
                  return ShortString.wrap(FALLBACK_SENTINEL);
              }
          }
          /**
           * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
           */
          function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
              if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                  return toString(value);
              } else {
                  return store;
              }
          }
          /**
           * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
           * {setWithFallback}.
           *
           * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
           * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
           */
          function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
              if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                  return byteLength(value);
              } else {
                  return bytes(store).length;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```solidity
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(newImplementation.code.length > 0);
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          struct StringSlot {
              string value;
          }
          struct BytesSlot {
              bytes value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` with member `value` located at `slot`.
           */
          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
           */
          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
           */
          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
           */
          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := store.slot
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
      pragma solidity ^0.8.20;
      import {Math} from "./math/Math.sol";
      import {SignedMath} from "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  /// @solidity memory-safe-assembly
                  assembly {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      /// @solidity memory-safe-assembly
                      assembly {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
      // This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
      pragma solidity ^0.8.20;
      import {Math} from "../math/Math.sol";
      /**
       * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
       * time, and later looking up past values by block number. See {Votes} as an example.
       *
       * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
       * checkpoint for the current transaction block using the {push} function.
       */
      library Checkpoints {
          /**
           * @dev A value was attempted to be inserted on a past checkpoint.
           */
          error CheckpointUnorderedInsertion();
          struct Trace224 {
              Checkpoint224[] _checkpoints;
          }
          struct Checkpoint224 {
              uint32 _key;
              uint224 _value;
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
           *
           * Returns previous value and new value.
           *
           * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
           * library.
           */
          function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
              return _insert(self._checkpoints, key, value);
          }
          /**
           * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
           * there is none.
           */
          function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
              return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           */
          function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           *
           * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
           * keys).
           */
          function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
              uint256 len = self._checkpoints.length;
              uint256 low = 0;
              uint256 high = len;
              if (len > 5) {
                  uint256 mid = len - Math.sqrt(len);
                  if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
           */
          function latest(Trace224 storage self) internal view returns (uint224) {
              uint256 pos = self._checkpoints.length;
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
           * in the most recent checkpoint.
           */
          function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
              uint256 pos = self._checkpoints.length;
              if (pos == 0) {
                  return (false, 0, 0);
              } else {
                  Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                  return (true, ckpt._key, ckpt._value);
              }
          }
          /**
           * @dev Returns the number of checkpoint.
           */
          function length(Trace224 storage self) internal view returns (uint256) {
              return self._checkpoints.length;
          }
          /**
           * @dev Returns checkpoint at given position.
           */
          function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
              return self._checkpoints[pos];
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
           * or by updating the last one.
           */
          function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
              uint256 pos = self.length;
              if (pos > 0) {
                  // Copying to memory is important here.
                  Checkpoint224 memory last = _unsafeAccess(self, pos - 1);
                  // Checkpoint keys must be non-decreasing.
                  if (last._key > key) {
                      revert CheckpointUnorderedInsertion();
                  }
                  // Update or push new checkpoint
                  if (last._key == key) {
                      _unsafeAccess(self, pos - 1)._value = value;
                  } else {
                      self.push(Checkpoint224({_key: key, _value: value}));
                  }
                  return (last._value, value);
              } else {
                  self.push(Checkpoint224({_key: key, _value: value}));
                  return (0, value);
              }
          }
          /**
           * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
           * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
           * `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _upperBinaryLookup(
              Checkpoint224[] storage self,
              uint32 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key > key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              return high;
          }
          /**
           * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
           * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
           * exclusive `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _lowerBinaryLookup(
              Checkpoint224[] storage self,
              uint32 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key < key) {
                      low = mid + 1;
                  } else {
                      high = mid;
                  }
              }
              return high;
          }
          /**
           * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
           */
          function _unsafeAccess(
              Checkpoint224[] storage self,
              uint256 pos
          ) private pure returns (Checkpoint224 storage result) {
              assembly {
                  mstore(0, self.slot)
                  result.slot := add(keccak256(0, 0x20), pos)
              }
          }
          struct Trace208 {
              Checkpoint208[] _checkpoints;
          }
          struct Checkpoint208 {
              uint48 _key;
              uint208 _value;
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
           *
           * Returns previous value and new value.
           *
           * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
           * library.
           */
          function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
              return _insert(self._checkpoints, key, value);
          }
          /**
           * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
           * there is none.
           */
          function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
              return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           */
          function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           *
           * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
           * keys).
           */
          function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
              uint256 len = self._checkpoints.length;
              uint256 low = 0;
              uint256 high = len;
              if (len > 5) {
                  uint256 mid = len - Math.sqrt(len);
                  if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
           */
          function latest(Trace208 storage self) internal view returns (uint208) {
              uint256 pos = self._checkpoints.length;
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
           * in the most recent checkpoint.
           */
          function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
              uint256 pos = self._checkpoints.length;
              if (pos == 0) {
                  return (false, 0, 0);
              } else {
                  Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                  return (true, ckpt._key, ckpt._value);
              }
          }
          /**
           * @dev Returns the number of checkpoint.
           */
          function length(Trace208 storage self) internal view returns (uint256) {
              return self._checkpoints.length;
          }
          /**
           * @dev Returns checkpoint at given position.
           */
          function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
              return self._checkpoints[pos];
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
           * or by updating the last one.
           */
          function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
              uint256 pos = self.length;
              if (pos > 0) {
                  // Copying to memory is important here.
                  Checkpoint208 memory last = _unsafeAccess(self, pos - 1);
                  // Checkpoint keys must be non-decreasing.
                  if (last._key > key) {
                      revert CheckpointUnorderedInsertion();
                  }
                  // Update or push new checkpoint
                  if (last._key == key) {
                      _unsafeAccess(self, pos - 1)._value = value;
                  } else {
                      self.push(Checkpoint208({_key: key, _value: value}));
                  }
                  return (last._value, value);
              } else {
                  self.push(Checkpoint208({_key: key, _value: value}));
                  return (0, value);
              }
          }
          /**
           * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
           * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
           * `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _upperBinaryLookup(
              Checkpoint208[] storage self,
              uint48 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key > key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              return high;
          }
          /**
           * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
           * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
           * exclusive `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _lowerBinaryLookup(
              Checkpoint208[] storage self,
              uint48 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key < key) {
                      low = mid + 1;
                  } else {
                      high = mid;
                  }
              }
              return high;
          }
          /**
           * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
           */
          function _unsafeAccess(
              Checkpoint208[] storage self,
              uint256 pos
          ) private pure returns (Checkpoint208 storage result) {
              assembly {
                  mstore(0, self.slot)
                  result.slot := add(keccak256(0, 0x20), pos)
              }
          }
          struct Trace160 {
              Checkpoint160[] _checkpoints;
          }
          struct Checkpoint160 {
              uint96 _key;
              uint160 _value;
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
           *
           * Returns previous value and new value.
           *
           * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
           * library.
           */
          function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
              return _insert(self._checkpoints, key, value);
          }
          /**
           * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
           * there is none.
           */
          function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
              return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           */
          function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
              uint256 len = self._checkpoints.length;
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
           * if there is none.
           *
           * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
           * keys).
           */
          function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
              uint256 len = self._checkpoints.length;
              uint256 low = 0;
              uint256 high = len;
              if (len > 5) {
                  uint256 mid = len - Math.sqrt(len);
                  if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
           */
          function latest(Trace160 storage self) internal view returns (uint160) {
              uint256 pos = self._checkpoints.length;
              return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
          }
          /**
           * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
           * in the most recent checkpoint.
           */
          function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
              uint256 pos = self._checkpoints.length;
              if (pos == 0) {
                  return (false, 0, 0);
              } else {
                  Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
                  return (true, ckpt._key, ckpt._value);
              }
          }
          /**
           * @dev Returns the number of checkpoint.
           */
          function length(Trace160 storage self) internal view returns (uint256) {
              return self._checkpoints.length;
          }
          /**
           * @dev Returns checkpoint at given position.
           */
          function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
              return self._checkpoints[pos];
          }
          /**
           * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
           * or by updating the last one.
           */
          function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
              uint256 pos = self.length;
              if (pos > 0) {
                  // Copying to memory is important here.
                  Checkpoint160 memory last = _unsafeAccess(self, pos - 1);
                  // Checkpoint keys must be non-decreasing.
                  if (last._key > key) {
                      revert CheckpointUnorderedInsertion();
                  }
                  // Update or push new checkpoint
                  if (last._key == key) {
                      _unsafeAccess(self, pos - 1)._value = value;
                  } else {
                      self.push(Checkpoint160({_key: key, _value: value}));
                  }
                  return (last._value, value);
              } else {
                  self.push(Checkpoint160({_key: key, _value: value}));
                  return (0, value);
              }
          }
          /**
           * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
           * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
           * `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _upperBinaryLookup(
              Checkpoint160[] storage self,
              uint96 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key > key) {
                      high = mid;
                  } else {
                      low = mid + 1;
                  }
              }
              return high;
          }
          /**
           * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
           * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
           * exclusive `high`.
           *
           * WARNING: `high` should not be greater than the array's length.
           */
          function _lowerBinaryLookup(
              Checkpoint160[] storage self,
              uint96 key,
              uint256 low,
              uint256 high
          ) private view returns (uint256) {
              while (low < high) {
                  uint256 mid = Math.average(low, high);
                  if (_unsafeAccess(self, mid)._key < key) {
                      low = mid + 1;
                  } else {
                      high = mid;
                  }
              }
              return high;
          }
          /**
           * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
           */
          function _unsafeAccess(
              Checkpoint160[] storage self,
              uint256 pos
          ) private pure returns (Checkpoint160 storage result) {
              assembly {
                  mstore(0, self.slot)
                  result.slot := add(keccak256(0, 0x20), pos)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
      pragma solidity ^0.8.20;
      import {Math} from "../math/Math.sol";
      import {SafeCast} from "../math/SafeCast.sol";
      /**
       * @dev This library provides helpers for manipulating time-related objects.
       *
       * It uses the following types:
       * - `uint48` for timepoints
       * - `uint32` for durations
       *
       * While the library doesn't provide specific types for timepoints and duration, it does provide:
       * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
       * - additional helper functions
       */
      library Time {
          using Time for *;
          /**
           * @dev Get the block timestamp as a Timepoint.
           */
          function timestamp() internal view returns (uint48) {
              return SafeCast.toUint48(block.timestamp);
          }
          /**
           * @dev Get the block number as a Timepoint.
           */
          function blockNumber() internal view returns (uint48) {
              return SafeCast.toUint48(block.number);
          }
          // ==================================================== Delay =====================================================
          /**
           * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
           * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
           * This allows updating the delay applied to some operation while keeping some guarantees.
           *
           * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
           * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
           * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
           * still apply for some time.
           *
           *
           * The `Delay` type is 112 bits long, and packs the following:
           *
           * ```
           *   | [uint48]: effect date (timepoint)
           *   |           | [uint32]: value before (duration)
           *   ↓           ↓       ↓ [uint32]: value after (duration)
           * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
           * ```
           *
           * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
           * supported.
           */
          type Delay is uint112;
          /**
           * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
           */
          function toDelay(uint32 duration) internal pure returns (Delay) {
              return Delay.wrap(duration);
          }
          /**
           * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
           * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
           */
          function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
              (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
              return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
          }
          /**
           * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
           * effect timepoint is 0, then the pending value should not be considered.
           */
          function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
              return _getFullAt(self, timestamp());
          }
          /**
           * @dev Get the current value.
           */
          function get(Delay self) internal view returns (uint32) {
              (uint32 delay, , ) = self.getFull();
              return delay;
          }
          /**
           * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
           * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
           * new delay becomes effective.
           */
          function withUpdate(
              Delay self,
              uint32 newValue,
              uint32 minSetback
          ) internal view returns (Delay updatedDelay, uint48 effect) {
              uint32 value = self.get();
              uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
              effect = timestamp() + setback;
              return (pack(value, newValue, effect), effect);
          }
          /**
           * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
           */
          function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
              uint112 raw = Delay.unwrap(self);
              valueAfter = uint32(raw);
              valueBefore = uint32(raw >> 32);
              effect = uint48(raw >> 64);
              return (valueBefore, valueAfter, effect);
          }
          /**
           * @dev pack the components into a Delay object.
           */
          function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
              return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.24;
      import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
      import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
      import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";
      contract Azuro is ERC20, ERC20Permit, ERC20Votes {
          constructor(
              string memory _name,
              string memory _symbol
          ) ERC20(_name, _symbol) ERC20Permit(_name) {
              _mint(msg.sender, 1_000_000_000e18);
          }
          // The following functions are overrides required by Solidity.
          function nonces(
              address owner
          ) public view override(ERC20Permit, Nonces) returns (uint256) {
              return super.nonces(owner);
          }
          function _update(
              address from,
              address to,
              uint256 value
          ) internal override(ERC20, ERC20Votes) {
              super._update(from, to, value);
          }
      }
      

      File 3 of 3: Vesting
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
          struct OwnableStorage {
              address _owner;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
          function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
              assembly {
                  $.slot := OwnableStorageLocation
              }
          }
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          function __Ownable_init(address initialOwner) internal onlyInitializing {
              __Ownable_init_unchained(initialOwner);
          }
          function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              OwnableStorage storage $ = _getOwnableStorage();
              return $._owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              OwnableStorage storage $ = _getOwnableStorage();
              address oldOwner = $._owner;
              $._owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
       * case an upgrade adds a module that needs to be initialized.
       *
       * For example:
       *
       * [.hljs-theme-light.nopadding]
       * ```solidity
       * contract MyToken is ERC20Upgradeable {
       *     function initialize() initializer public {
       *         __ERC20_init("MyToken", "MTK");
       *     }
       * }
       *
       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
       *     function initializeV2() reinitializer(2) public {
       *         __ERC20Permit_init("MyToken");
       *     }
       * }
       * ```
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() {
       *     _disableInitializers();
       * }
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Storage of the initializable contract.
           *
           * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
           * when using with upgradeable contracts.
           *
           * @custom:storage-location erc7201:openzeppelin.storage.Initializable
           */
          struct InitializableStorage {
              /**
               * @dev Indicates that the contract has been initialized.
               */
              uint64 _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool _initializing;
          }
          // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
          bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
          /**
           * @dev The contract is already initialized.
           */
          error InvalidInitialization();
          /**
           * @dev The contract is not initializing.
           */
          error NotInitializing();
          /**
           * @dev Triggered when the contract has been initialized or reinitialized.
           */
          event Initialized(uint64 version);
          /**
           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
           * `onlyInitializing` functions can be used to initialize parent contracts.
           *
           * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
           * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
           * production.
           *
           * Emits an {Initialized} event.
           */
          modifier initializer() {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              // Cache values to avoid duplicated sloads
              bool isTopLevelCall = !$._initializing;
              uint64 initialized = $._initialized;
              // Allowed calls:
              // - initialSetup: the contract is not in the initializing state and no previous version was
              //                 initialized
              // - construction: the contract is initialized at version 1 (no reininitialization) and the
              //                 current contract is just being deployed
              bool initialSetup = initialized == 0 && isTopLevelCall;
              bool construction = initialized == 1 && address(this).code.length == 0;
              if (!initialSetup && !construction) {
                  revert InvalidInitialization();
              }
              $._initialized = 1;
              if (isTopLevelCall) {
                  $._initializing = true;
              }
              _;
              if (isTopLevelCall) {
                  $._initializing = false;
                  emit Initialized(1);
              }
          }
          /**
           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
           * used to initialize parent contracts.
           *
           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
           * are added through upgrades and that require initialization.
           *
           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
           * cannot be nested. If one is invoked in the context of another, execution will revert.
           *
           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
           * a contract, executing them in the right order is up to the developer or operator.
           *
           * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
           *
           * Emits an {Initialized} event.
           */
          modifier reinitializer(uint64 version) {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              if ($._initializing || $._initialized >= version) {
                  revert InvalidInitialization();
              }
              $._initialized = version;
              $._initializing = true;
              _;
              $._initializing = false;
              emit Initialized(version);
          }
          /**
           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
           * {initializer} and {reinitializer} modifiers, directly or indirectly.
           */
          modifier onlyInitializing() {
              _checkInitializing();
              _;
          }
          /**
           * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
           */
          function _checkInitializing() internal view virtual {
              if (!_isInitializing()) {
                  revert NotInitializing();
              }
          }
          /**
           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
           * through proxies.
           *
           * Emits an {Initialized} event the first time it is successfully executed.
           */
          function _disableInitializers() internal virtual {
              // solhint-disable-next-line var-name-mixedcase
              InitializableStorage storage $ = _getInitializableStorage();
              if ($._initializing) {
                  revert InvalidInitialization();
              }
              if ($._initialized != type(uint64).max) {
                  $._initialized = type(uint64).max;
                  emit Initialized(type(uint64).max);
              }
          }
          /**
           * @dev Returns the highest version that has been initialized. See {reinitializer}.
           */
          function _getInitializedVersion() internal view returns (uint64) {
              return _getInitializableStorage()._initialized;
          }
          /**
           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
           */
          function _isInitializing() internal view returns (bool) {
              return _getInitializableStorage()._initializing;
          }
          /**
           * @dev Returns a pointer to the storage namespace.
           */
          // solhint-disable-next-line var-name-mixedcase
          function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
              assembly {
                  $.slot := INITIALIZABLE_STORAGE
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      import {Initializable} from "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal onlyInitializing {
          }
          function __Context_init_unchained() internal onlyInitializing {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       *
       * ==== Security Considerations
       *
       * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
       * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
       * considered as an intention to spend the allowance in any specific way. The second is that because permits have
       * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
       * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
       * generally recommended is:
       *
       * ```solidity
       * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
       *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
       *     doThing(..., value);
       * }
       *
       * function doThing(..., uint256 value) public {
       *     token.safeTransferFrom(msg.sender, address(this), value);
       *     ...
       * }
       * ```
       *
       * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
       * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
       * {SafeERC20-safeTransferFrom}).
       *
       * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
       * contracts should have entry points that don't rely on permit.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
           * given ``owner``'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           *
           * CAUTION: See Security Considerations above.
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
          /**
           * @dev Returns the value of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the value of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves a `value` amount of tokens from the caller's account to `to`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address to, uint256 value) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
           * caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 value) external returns (bool);
          /**
           * @dev Moves a `value` amount of tokens from `from` to `to` using the
           * allowance mechanism. `value` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
      pragma solidity ^0.8.20;
      import {IERC20} from "../IERC20.sol";
      import {IERC20Permit} from "../extensions/IERC20Permit.sol";
      import {Address} from "../../../utils/Address.sol";
      /**
       * @title SafeERC20
       * @dev Wrappers around ERC20 operations that throw on failure (when the token
       * contract returns false). Tokens that return no value (and instead revert or
       * throw on failure) are also supported, non-reverting calls are assumed to be
       * successful.
       * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
       * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
       */
      library SafeERC20 {
          using Address for address;
          /**
           * @dev An operation with an ERC20 token failed.
           */
          error SafeERC20FailedOperation(address token);
          /**
           * @dev Indicates a failed `decreaseAllowance` request.
           */
          error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
          /**
           * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           */
          function safeTransfer(IERC20 token, address to, uint256 value) internal {
              _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
          }
          /**
           * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
           * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
           */
          function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
              _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
          }
          /**
           * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful.
           */
          function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
              uint256 oldAllowance = token.allowance(address(this), spender);
              forceApprove(token, spender, oldAllowance + value);
          }
          /**
           * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
           * value, non-reverting calls are assumed to be successful.
           */
          function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
              unchecked {
                  uint256 currentAllowance = token.allowance(address(this), spender);
                  if (currentAllowance < requestedDecrease) {
                      revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                  }
                  forceApprove(token, spender, currentAllowance - requestedDecrease);
              }
          }
          /**
           * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
           * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
           * to be set to zero before setting it to a non-zero value, such as USDT.
           */
          function forceApprove(IERC20 token, address spender, uint256 value) internal {
              bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
              if (!_callOptionalReturnBool(token, approvalCall)) {
                  _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                  _callOptionalReturn(token, approvalCall);
              }
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           */
          function _callOptionalReturn(IERC20 token, bytes memory data) private {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
              // the target address contains contract code and also asserts for success in the low-level call.
              bytes memory returndata = address(token).functionCall(data);
              if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
                  revert SafeERC20FailedOperation(address(token));
              }
          }
          /**
           * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
           * on the return value: the return value is optional (but if data is returned, it must not be false).
           * @param token The token targeted by the call.
           * @param data The call data (encoded using abi.encode or one of its variants).
           *
           * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
           */
          function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
              // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
              // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
              // and not revert is the subcall reverts.
              (bool success, bytes memory returndata) = address(token).call(data);
              return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev The ETH balance of the account is not enough to perform the operation.
           */
          error AddressInsufficientBalance(address account);
          /**
           * @dev There's no code at `target` (it is not a contract).
           */
          error AddressEmptyCode(address target);
          /**
           * @dev A call to an address target failed. The target may have reverted.
           */
          error FailedInnerCall();
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              if (address(this).balance < amount) {
                  revert AddressInsufficientBalance(address(this));
              }
              (bool success, ) = recipient.call{value: amount}("");
              if (!success) {
                  revert FailedInnerCall();
              }
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason or custom error, it is bubbled
           * up by this function (like regular Solidity function calls). However, if
           * the call reverted with no returned reason, this function reverts with a
           * {FailedInnerCall} error.
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              if (address(this).balance < value) {
                  revert AddressInsufficientBalance(address(this));
              }
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
           * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
           * unsuccessful call.
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata
          ) internal view returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  // only check if target is a contract if the call was successful and the return data is empty
                  // otherwise we already know that it was a contract
                  if (returndata.length == 0 && target.code.length == 0) {
                      revert AddressEmptyCode(target);
                  }
                  return returndata;
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
           * revert reason or with a default {FailedInnerCall} error.
           */
          function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
              if (!success) {
                  _revert(returndata);
              } else {
                  return returndata;
              }
          }
          /**
           * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
           */
          function _revert(bytes memory returndata) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert FailedInnerCall();
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.24;
      import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
      import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
      contract Vesting is OwnableUpgradeable {
          struct AllocParams {
              address investor;
              uint128 vestAmount;
              uint64 lockupPeriod;
              uint64 vestingPeriod;
              uint64 instantShare; // 0-100% share of vestAmount tokens to be instantly vested
          }
          struct VestingParams {
              uint128 vestAmount; // amount of "vestedToken" that is already on vesting
              uint128 instantVestAmount; // amount of token to be instant vested
              uint64 lockupPeriod; // period of time in seconds during which tokens cannot be claimed
              uint64 vestingPeriod; // time period of linear tokens unlock
              uint128 claimedAmount; // counter of already claimed vested tokens
          }
          /// @notice Vested token contract
          IERC20 public vestedToken;
          /// @notice True if vesting begin time cannot be changed
          bool public vestingBeginIsLocked;
          /// @notice Timestamp of the overall vesting begin time
          uint64 public vestingBegin;
          /// @notice Mapping of IDs to vesting params
          mapping(uint256 => VestingParams) public vestings;
          /// @notice Mapping of addresses to lists of their vesting IDs
          mapping(address => uint256[]) public vestingIds;
          /// @notice Mapping of addresses to boolean values indicates that it can maintain allocations
          mapping(address => bool) public maintainers;
          /// @notice Last vesting object ID (1-based)
          uint256 public lastVestingId;
          event Claimed(address indexed account, uint256 indexed id, uint256 amount);
          event MaintainerUpdated(address indexed account, bool isMaintainer);
          event VestingBeginSet(uint256 vestingBeginTime);
          event Allocated(
              address indexed allocator,
              address[] investors,
              uint256[] ids
          );
          error IncorrectVestingBegin();
          error IncorrectVestingPeriod();
          error ZeroAmount();
          error TimeChangeIsLocked();
          error VestingAlreadyStarted();
          error BeginIsNotSet();
          error NotApplicableForVestedToken();
          error IncorrectInstantShare();
          error NothingChanged();
          error OnlyMaintainer();
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor() {
              _disableInitializers();
          }
          /**
           * @notice Contract constructor
           * @param vestedToken_ Address of the vested token contract
           * @param owner_ Address of initial owner
           */
          function initialize(
              address vestedToken_,
              address owner_
          ) external initializer {
              __Ownable_init(owner_);
              vestedToken = IERC20(vestedToken_);
          }
          // USER FUNCTIONS
          /**
           * @notice Claim all available vested tokens for account
           * @param account Address to claim tokens for
           */
          function claim(address account) external {
              uint256 totalAmount;
              uint256[] storage ids = vestingIds[account];
              uint256 length = ids.length;
              uint256 id;
              uint128 amount;
              for (uint256 i = 0; i < length; ++i) {
                  id = ids[i];
                  amount = getAvailableBalance(id);
                  if (amount > 0) {
                      totalAmount += amount;
                      vestings[id].claimedAmount += amount;
                      emit Claimed(account, id, amount);
                  }
              }
              if (totalAmount == 0) revert ZeroAmount();
              vestedToken.transfer(account, totalAmount);
          }
          // RESTRICTED FUNCTIONS
          /**
           * @notice Lock changing of vesting begin time
           */
          function lockVestingBegin() external onlyOwner {
              if (vestingBegin == 0) revert BeginIsNotSet();
              vestingBeginIsLocked = true;
          }
          /**
           * @notice Change vesting begin time
           * @param vestingBegin_ Timestamp of new time
           */
          function setVestingBegin(uint64 vestingBegin_) external onlyOwner {
              if (vestingBeginIsLocked) revert TimeChangeIsLocked();
              _checkVestingBegin();
              if (vestingBegin_ <= block.timestamp) revert IncorrectVestingBegin();
              vestingBegin = vestingBegin_;
              emit VestingBeginSet(vestingBegin_);
          }
          /**
           * @notice Updates the maintainer status of an account.
           */
          function updateMaintainer(
              address account,
              bool isMaintainer
          ) external onlyOwner {
              if (maintainers[account] == isMaintainer) revert NothingChanged();
              maintainers[account] = isMaintainer;
              emit MaintainerUpdated(account, isMaintainer);
          }
          /**
           * @notice Give vested token allocations to investors
           * @param allocParams Allocations parameters
           */
          function allocate(AllocParams[] calldata allocParams) external {
              if (msg.sender != owner() && !maintainers[msg.sender])
                  revert OnlyMaintainer();
              uint256 totalAmount;
              uint256 lastId = lastVestingId;
              uint256 length = allocParams.length;
              AllocParams calldata params;
              VestingParams storage vesting;
              address[] memory investors = new address[](length);
              uint256[] memory ids = new uint256[](length);
              uint128 instantVestAmount_;
              uint128 vestAmount_;
              for (uint256 i = 0; i < length; ++i) {
                  params = allocParams[i];
                  if (params.vestAmount == 0) revert ZeroAmount();
                  if (params.vestingPeriod == 0) revert IncorrectVestingPeriod();
                  if (params.instantShare > 100) revert IncorrectInstantShare();
                  totalAmount += params.vestAmount;
                  vesting = vestings[++lastId];
                  instantVestAmount_ = (params.instantShare == 0)
                      ? 0
                      : ((params.vestAmount * params.instantShare) / 100);
                  vestAmount_ = params.vestAmount - instantVestAmount_;
                  vesting.vestAmount = vestAmount_;
                  vesting.instantVestAmount = instantVestAmount_;
                  vesting.lockupPeriod = params.lockupPeriod;
                  vesting.vestingPeriod = params.vestingPeriod;
                  vestingIds[params.investor].push(lastId);
                  investors[i] = params.investor;
                  ids[i] = lastId;
              }
              lastVestingId = lastId;
              emit Allocated(msg.sender, investors, ids);
              vestedToken.transferFrom(msg.sender, address(this), totalAmount);
          }
          /**
           * @notice Withdraw accidentally received tokens of the contract to given address
           * @param to Destination address
           */
          function withdraw(address token, address to) external onlyOwner {
              if (token == address(vestedToken)) revert NotApplicableForVestedToken();
              uint256 amount = IERC20(token).balanceOf(address(this));
              if (amount == 0) revert ZeroAmount();
              SafeERC20.safeTransfer(IERC20(token), to, amount);
          }
          // VIEW
          /**
           * @notice Get total amount of available for claim tokens for account
           * @param account Account to calculate amount for
           * @return amount Total amount of available tokens
           */
          function getAvailableBalanceOf(
              address account
          ) external view returns (uint256 amount) {
              uint256[] memory ids = vestingIds[account];
              uint256 length = ids.length;
              for (uint256 i = 0; i < length; ++i) {
                  amount += getAvailableBalance(ids[i]);
              }
          }
          /**
           * @notice Get amount of vesting objects for account
           * @param account Address of account
           * @return Amount of vesting objects
           */
          function vestingCountOf(address account) external view returns (uint256) {
              return vestingIds[account].length;
          }
          /**
           * @notice Get array of vesting objects IDs for account
           * @param account Address of account
           * @return Array of vesting objects IDs
           */
          function vestingIdsOf(
              address account
          ) external view returns (uint256[] memory) {
              return vestingIds[account];
          }
          /**
           * @notice Get total amount tokens for claim in future
           * @param account Account to calculate amount for
           * @return amount Total amount of tokens
           */
          function getBalanceOf(
              address account
          ) external view returns (uint256 amount) {
              uint256[] memory ids = vestingIds[account];
              VestingParams storage vestParams;
              for (uint256 i = 0; i < ids.length; ++i) {
                  vestParams = vestings[ids[i]];
                  amount +=
                      vestParams.vestAmount +
                      vestParams.instantVestAmount -
                      vestParams.claimedAmount;
              }
          }
          /**
           * @notice Get amount of available for claim tokens in exact vesting object
           *         Instant vested tokens available after user lockup (vestingBegin + lockupPeriod) passed
           * @param vestingId ID of the vesting object
           * @return amount Amount of available tokens
           */
          function getAvailableBalance(
              uint256 vestingId
          ) public view returns (uint128 amount) {
              if (vestingBegin == 0) return 0;
              VestingParams storage vestParams = vestings[vestingId];
              uint256 userVestingBegin_ = vestingBegin + vestParams.lockupPeriod;
              if (block.timestamp < userVestingBegin_) return 0;
              uint256 userVestingEnd_ = userVestingBegin_ + vestParams.vestingPeriod;
              uint128 instantVestAmount_ = vestParams.instantVestAmount;
              uint128 vestAmount_ = vestParams.vestAmount;
              uint128 claimedAmount_ = vestParams.claimedAmount;
              amount =
                  (
                      (block.timestamp < userVestingEnd_)
                          ? uint128(
                              (vestAmount_ * (block.timestamp - userVestingBegin_)) /
                                  (userVestingEnd_ - userVestingBegin_)
                          )
                          : vestAmount_
                  ) +
                  instantVestAmount_ -
                  claimedAmount_;
          }
          function _checkVestingBegin() internal view {
              if (vestingBegin > 0 && vestingBegin <= block.timestamp)
                  revert VestingAlreadyStarted();
          }
      }