Transaction Hash:
Block:
15062459 at Jul-02-2022 10:06:11 AM +UTC
Transaction Fee:
0.001532295296898828 ETH
$2.88
Gas Used:
147,364 Gas / 10.398030027 Gwei
Emitted Events:
13 |
nProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000fa00d11080656f95e8687688b433aa034f6486e1, 0x00000000000000000000000070795b2e2979e64babea07b57a0c2c3ce2cf7a6b, 0000000000000000000000000000000000000000000000000000001523d31915 )
|
14 |
WETH9.Transfer( src=UniswapV2Pair, dst=[Receiver] 0xd62707f513f4b472d0badd922d74c49e06d9e7c7, wad=199982505427592450 )
|
15 |
UniswapV2Pair.Sync( reserve0=2192197518844289758, reserve1=1072274929831 )
|
16 |
UniswapV2Pair.Swap( sender=[Receiver] 0xd62707f513f4b472d0badd922d74c49e06d9e7c7, amount0In=0, amount1In=90795350293, amount0Out=199982505427592450, amount1Out=0, to=[Receiver] 0xd62707f513f4b472d0badd922d74c49e06d9e7c7 )
|
17 |
0xd62707f513f4b472d0badd922d74c49e06d9e7c7.0x151f133744c2b434eacb821cea0c2240469a536c6730f2d24293f8f18ae3d60d( 0x151f133744c2b434eacb821cea0c2240469a536c6730f2d24293f8f18ae3d60d, 000000000000000000000000d62707f513f4b472d0badd922d74c49e06d9e7c7, 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2, 0000000000000000000000000000000000000000000000000004f7e8742d80f2 )
|
18 |
WETH9.Withdrawal( src=[Receiver] 0xd62707f513f4b472d0badd922d74c49e06d9e7c7, wad=198384045261709704 )
|
19 |
0xd62707f513f4b472d0badd922d74c49e06d9e7c7.0xd6d34547c69c5ee3d2667625c188acf1006abb93e0ee7cf03925c67cf7760413( 0xd6d34547c69c5ee3d2667625c188acf1006abb93e0ee7cf03925c67cf7760413, 000000000000000000000000fa00d11080656f95e8687688b433aa034f6486e1, 000000000000000000000000cfeaead4947f0705a14ec42ac3d44129e1ef3ed5, 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2, 0000000000000000000000000000000000000000000000000000001523d31915, 00000000000000000000000000000000000000000000000002c0cd3cf2ede188, 00000000000000000000000000000000000000000000000002c5c525671b627a )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x3EcEf08D...8bFf2D5bB
Miner
| (MiningPoolHub) | 2,214.846697419679671145 Eth | 2,214.846918465679671145 Eth | 0.000221046 | |
0x70795B2E...ce2Cf7a6B | |||||
0xC02aaA39...83C756Cc2 | 4,784,767.693134608495852592 Eth | 4,784,767.494750563234142888 Eth | 0.198384045261709704 | ||
0xCFEAead4...9E1Ef3eD5 | |||||
0xFa00D110...34f6486e1 |
0.710294947849509186 Eth
Nonce: 739
|
0.907146697814320062 Eth
Nonce: 740
| 0.196851749964810876 |
Execution Trace
0xd62707f513f4b472d0badd922d74c49e06d9e7c7.632fca56( )
-
WETH9.balanceOf( 0xD62707f513F4B472d0BaDd922D74c49e06d9e7c7 ) => ( 178166965828848126 )
nProxy.23b872dd( )
-
NoteERC20.transferFrom( src=0xFa00D11080656F95e8687688B433aa034f6486e1, dst=0x70795B2E2979e64bABeA07b57a0C2C3ce2Cf7a6B, rawAmount=90795350293 ) => ( True )
-
UniswapV2Pair.swap( amount0Out=199982505427592450, amount1Out=0, to=0xD62707f513F4B472d0BaDd922D74c49e06d9e7c7, data=0x )
-
WETH9.transfer( dst=0xD62707f513F4B472d0BaDd922D74c49e06d9e7c7, wad=199982505427592450 ) => ( True )
-
WETH9.balanceOf( 0x70795B2E2979e64bABeA07b57a0C2C3ce2Cf7a6B ) => ( 2192197518844289758 )
nProxy.70a08231( )
-
NoteERC20.balanceOf( account=0x70795B2E2979e64bABeA07b57a0C2C3ce2Cf7a6B ) => ( 1072274929831 )
-
-
-
WETH9.balanceOf( 0xD62707f513F4B472d0BaDd922D74c49e06d9e7c7 ) => ( 378149471256440576 )
WETH9.withdraw( wad=198384045261709704 )
- ETH 0.198384045261709704
0xd62707f513f4b472d0badd922d74c49e06d9e7c7.CALL( )
- ETH 0.198384045261709704
- ETH 0.198384045261709704
0xfa00d11080656f95e8687688b433aa034f6486e1.CALL( )
File 1 of 4: nProxy
File 2 of 4: UniswapV2Pair
File 3 of 4: WETH9
File 4 of 4: NoteERC20
// SPDX-License-Identifier: MIT pragma solidity 0.7.5; // Part: OpenZeppelin/[email protected]/Address /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // Part: Proxy /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // Part: StorageSlot /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // Part: ERC1967Upgrade /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure( address newImplementation, bytes memory data, bool forceCall ) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature("upgradeTo(address)", oldImplementation) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _upgradeTo(newImplementation); } } } // Part: ERC1967Proxy /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // File: nProxy.sol contract nProxy is ERC1967Proxy { constructor( address _logic, bytes memory _data ) ERC1967Proxy(_logic, _data) {} receive() external payable override { // Allow ETH transfers to succeed } function getImplementation() external view returns (address) { return _getImplementation(); } }
File 2 of 4: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }
File 3 of 4: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 4 of 4: NoteERC20
// SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; import "interfaces/notional/NotionalProxy.sol"; import "@openzeppelin/contracts/proxy/Initializable.sol"; import "@openzeppelin/contracts/cryptography/ECDSA.sol"; import "../../proxy/utils/UUPSUpgradeable.sol"; /// @title Note ERC20 Token /// Fork of Compound Comp token at commit hash /// https://github.com/compound-finance/compound-protocol/commit/9bcff34a5c9c76d51e51bcb0ca1139588362ef96 contract NoteERC20 is Initializable, UUPSUpgradeable { /// @notice EIP-20 token name for this token string public constant name = "Notional"; /// @notice EIP-20 token symbol for this token string public constant symbol = "NOTE"; /// @notice EIP-20 token decimals for this token uint8 public constant decimals = 8; /// @notice Total number of tokens in circulation (100 million NOTE) uint256 public constant totalSupply = 100000000e8; /// @notice Notional router address, not currently used but cannot be /// removed or this will mess up storage. NotionalProxy public notionalProxy; // Allowance amounts on behalf of others mapping(address => mapping(address => uint96)) internal allowances; // Official record of token balances for each account mapping(address => uint96) internal balances; /// @notice A record of each accounts delegate mapping(address => address) public delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint96 votes; } /// @notice A record of votes checkpoints for each account, by index mapping(address => mapping(uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping(address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @notice A record of states for signing / validating signatures mapping(address => uint256) public nonces; /// @notice Owner address which can upgrade the tokens implementation address public owner; /// @notice Emitted when the ownership of the contract is transferred event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /// @notice An event thats emitted when an account changes its delegate event DelegateChanged( address indexed delegator, address indexed fromDelegate, address indexed toDelegate ); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged( address indexed delegate, uint256 previousBalance, uint256 newBalance ); /// @notice The standard EIP-20 transfer event event Transfer(address indexed from, address indexed to, uint256 amount); /// @notice The standard EIP-20 approval event event Approval(address indexed owner, address indexed spender, uint256 amount); constructor() initializer { // Making the constructor also an initializer will lock everyone // from calling initialize on the implementation contract. } /// @notice Initialize note token with initial grants /// @param initialAccounts initial address to grant tokens to /// @param initialGrantAmount amount to grant address initially function initialize( address[] calldata initialAccounts, uint96[] calldata initialGrantAmount, address owner_ ) public initializer { require(initialGrantAmount.length == initialAccounts.length); uint96 totalGrants = 0; for (uint256 i = 0; i < initialGrantAmount.length; i++) { totalGrants = _add96(totalGrants, initialGrantAmount[i], ""); require(balances[initialAccounts[i]] == 0, "Duplicate account"); balances[initialAccounts[i]] = initialGrantAmount[i]; emit Transfer(address(0), initialAccounts[i], initialGrantAmount[i]); } require(totalGrants == totalSupply); owner = owner_; } modifier onlyOwner() { require(owner == msg.sender, "Ownable: caller is not the owner"); _; } /// @dev Transfers ownership of the contract to a new account (`newOwner`). /// Can only be called by the current owner. function transferOwnership(address newOwner) external onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } /// @dev Only the owner may upgrade the contract function _authorizeUpgrade(address newImplementation) internal override onlyOwner { } /// @notice Get the number of tokens `spender` is approved to spend on behalf of `account` /// @param account The address of the account holding the funds /// @param spender The address of the account spending the funds /// @return The number of tokens approved function allowance(address account, address spender) external view returns (uint256) { return allowances[account][spender]; } /// @notice Approve `spender` to transfer up to `amount` from `src` /// @dev This will overwrite the approval amount for `spender` /// and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) /// emit:Approval /// @param spender The address of the account which may transfer tokens /// @param rawAmount The number of tokens that are approved (2^256-1 means infinite) /// @return Whether or not the approval succeeded function approve(address spender, uint256 rawAmount) external returns (bool) { uint96 amount; if (rawAmount >= type(uint96).max) { amount = type(uint96).max; } else { amount = _safe96(rawAmount, "Note::approve: amount exceeds 96 bits"); } allowances[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } /// @notice Get the number of tokens held by the `account` /// @param account The address of the account to get the balance of /// @return The number of tokens held function balanceOf(address account) external view returns (uint256) { return balances[account]; } /// @notice Transfer `amount` tokens from `msg.sender` to `dst` /// @dev emit:Transfer /// @param dst The address of the destination account /// @param rawAmount The number of tokens to transfer /// @return Whether or not the transfer succeeded function transfer(address dst, uint256 rawAmount) external returns (bool) { uint96 amount = _safe96(rawAmount, "Note::transfer: amount exceeds 96 bits"); _transferTokens(msg.sender, dst, amount); return true; } /// @notice Transfer `amount` tokens from `src` to `dst` /// @dev emit:Transfer emit:Approval /// @param src The address of the source account /// @param dst The address of the destination account /// @param rawAmount The number of tokens to transfer /// @return Whether or not the transfer succeeded function transferFrom( address src, address dst, uint256 rawAmount ) external returns (bool) { // Short circuit transfer execution and return true. It may be the case that external // logic tries to execute a zero transfer but don't emit events here. if (rawAmount == 0) { // Emit a zero transfer event for ERC20 token compatibility emit Transfer(src, dst, 0); return true; } address spender = msg.sender; uint96 spenderAllowance = allowances[src][spender]; uint96 amount = _safe96(rawAmount, "Note::approve: amount exceeds 96 bits"); if (spender != src) { uint96 newAllowance = _sub96( spenderAllowance, amount, "Note::transferFrom: transfer amount exceeds spender allowance" ); allowances[src][spender] = newAllowance; } _transferTokens(src, dst, amount); return true; } /// @notice Delegate votes from `msg.sender` to `delegatee` /// @param delegatee The address to delegate votes to /// @dev emit:DelegatesChanged function delegate(address delegatee) public { _delegate(msg.sender, delegatee); } /// @notice Delegates votes from signatory to `delegatee` /// @dev emit:DelegatesChanged /// @param delegatee The address to delegate votes to /// @param nonce The contract state required to match the signature /// @param expiry The time at which to expire the signature /// @param v The recovery byte of the signature /// @param r Half of the ECDSA signature pair /// @param s Half of the ECDSA signature pair function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public { require(block.timestamp <= expiry, "Note::delegateBySig: signature expired"); bytes32 domainSeparator = keccak256( abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name)), _getChainId(), address(this)) ); bytes32 structHash = keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry)); bytes32 digest = keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash)); // ECDSA will check if address is zero inside address signatory = ECDSA.recover(digest, v, r, s); require(nonce == nonces[signatory]++, "Note::delegateBySig: invalid nonce"); _delegate(signatory, delegatee); } /// @notice Gets the current votes balance for `account` /// @param account The address to get votes balance /// @return The number of current votes for `account` function getCurrentVotes(address account) external view returns (uint96) { uint32 nCheckpoints = numCheckpoints[account]; uint96 currentVotes = nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0; return currentVotes; } /// @notice Determine the prior number of votes for an account as of a block number /// @dev Block number must be a finalized block or else this function will revert to prevent misinformation. /// @param account The address of the account to check /// @param blockNumber The block number to get the vote balance at /// @return The number of votes the account had as of the given block function getPriorVotes(address account, uint256 blockNumber) public view returns (uint96) { require(blockNumber < block.number, "Note::getPriorVotes: not yet determined"); uint32 nCheckpoints = numCheckpoints[account]; if (nCheckpoints == 0) { return 0; } // First check most recent balance if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) { return checkpoints[account][nCheckpoints - 1].votes; } // Next check implicit zero balance if (checkpoints[account][0].fromBlock > blockNumber) { return 0; } uint32 lower = 0; uint32 upper = nCheckpoints - 1; while (upper > lower) { uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow Checkpoint memory cp = checkpoints[account][center]; if (cp.fromBlock == blockNumber) { return cp.votes; } else if (cp.fromBlock < blockNumber) { lower = center; } else { upper = center - 1; } } return checkpoints[account][lower].votes; } /// @dev Changes delegates from one address to another function _delegate(address delegator, address delegatee) internal { address currentDelegate = delegates[delegator]; uint96 delegatorBalance = balances[delegator]; delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveDelegates(currentDelegate, delegatee, delegatorBalance); } /// @dev Transfers tokens and inherits the delegate from the destination address function _transferTokens( address src, address dst, uint96 amount ) internal { require(src != address(0), "Note::_transferTokens: cannot transfer from the zero address"); require(dst != address(0), "Note::_transferTokens: cannot transfer to the zero address"); balances[src] = _sub96( balances[src], amount, "Note::_transferTokens: transfer amount exceeds balance" ); balances[dst] = _add96( balances[dst], amount, "Note::_transferTokens: transfer amount overflows" ); emit Transfer(src, dst, amount); _moveDelegates(delegates[src], delegates[dst], amount); } /// @dev Transfers delegates and writes a checkpoint for `getPriorVotes` to use function _moveDelegates( address srcRep, address dstRep, uint96 amount ) internal { if (srcRep != dstRep && amount > 0) { if (srcRep != address(0)) { uint32 srcRepNum = numCheckpoints[srcRep]; uint96 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0; uint96 srcRepNew = _sub96(srcRepOld, amount, "Note::_moveVotes: vote amount underflow"); _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew); } if (dstRep != address(0)) { uint32 dstRepNum = numCheckpoints[dstRep]; uint96 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0; uint96 dstRepNew = _add96(dstRepOld, amount, "Note::_moveVotes: vote amount overflows"); _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew); } } } /// @dev Writes checkpoints for `getPriorVotes`, this is somewhat inefficient as it uses /// 20000 gas per transfer of delegated tokens. The goal is prevent voters from borrowing /// a large number of votes for a short period to vote for or against a proposal. It's unclear /// if there is a better model than this one here. Using only a single checkpoint means that /// a delegate could be the victim of a denial of service attack where an attacker continually /// transfers tokens to them to prevent them from voting. function _writeCheckpoint( address delegatee, uint32 nCheckpoints, uint96 oldVotes, uint96 newVotes ) internal { uint32 blockNumber = _safe32(block.number, "Note::_writeCheckpoint: block number exceeds 32 bits"); if (nCheckpoints > 0 && checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber) { checkpoints[delegatee][nCheckpoints - 1].votes = newVotes; } else { checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes); numCheckpoints[delegatee] = nCheckpoints + 1; } emit DelegateVotesChanged(delegatee, oldVotes, newVotes); } function _safe32(uint256 n, string memory errorMessage) private pure returns (uint32) { require(n <= type(uint32).max, errorMessage); return uint32(n); } function _safe96(uint256 n, string memory errorMessage) private pure returns (uint96) { require(n <= type(uint96).max, errorMessage); return uint96(n); } function _add96( uint96 a, uint96 b, string memory errorMessage ) private pure returns (uint96) { uint96 c = a + b; require(c >= a, errorMessage); return c; } function _sub96( uint96 a, uint96 b, string memory errorMessage ) private pure returns (uint96) { require(b <= a, errorMessage); return a - b; } function _getChainId() private pure returns (uint256) { uint256 chainId; assembly { chainId := chainid() } return chainId; } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; import "../../contracts/global/Types.sol"; import "./nTokenERC20.sol"; import "./nERC1155Interface.sol"; import "./NotionalGovernance.sol"; import "./NotionalViews.sol"; interface NotionalProxy is nTokenERC20, nERC1155Interface, NotionalGovernance, NotionalViews { /** User trading events */ event CashBalanceChange(address indexed account, uint16 indexed currencyId, int256 netCashChange); event nTokenSupplyChange(address indexed account, uint16 indexed currencyId, int256 tokenSupplyChange); event MarketsInitialized(uint16 currencyId); event SweepCashIntoMarkets(uint16 currencyId, int256 cashIntoMarkets); event SettledCashDebt( address indexed settledAccount, uint16 indexed currencyId, int256 amountToSettleAsset, int256 fCashAmount ); event nTokenResidualPurchase( uint16 indexed currencyId, uint40 indexed maturity, int256 fCashAmountToPurchase, int256 netAssetCashNToken ); event LendBorrowTrade( address indexed account, uint16 indexed currencyId, uint40 maturity, int256 netAssetCash, int256 netfCash ); event AddRemoveLiquidity( address indexed account, uint16 indexed currencyId, uint40 maturity, int256 netAssetCash, int256 netfCash, int256 netLiquidityTokens ); /// @notice Emitted when reserve fees are accrued event ReserveFeeAccrued(uint16 indexed currencyId, int256 fee); /// @notice Emitted whenever an account context has updated event AccountContextUpdate(address indexed account); /// @notice Emitted when an account has assets that are settled event AccountSettled(address indexed account); /// @notice Emitted when an asset rate is settled event SetSettlementRate(uint256 indexed currencyId, uint256 indexed maturity, uint128 rate); /* Liquidation Events */ event LiquidateLocalCurrency( address indexed liquidated, address indexed liquidator, uint16 localCurrencyId, int256 netLocalFromLiquidator ); event LiquidateCollateralCurrency( address indexed liquidated, address indexed liquidator, uint16 localCurrencyId, uint16 collateralCurrencyId, int256 netLocalFromLiquidator, int256 netCollateralTransfer, int256 netNTokenTransfer ); event LiquidatefCashEvent( address indexed liquidated, uint16 localCurrencyId, uint16 fCashCurrency, int256 netLocalFromLiquidator, uint256[] fCashMaturities, int256[] fCashNotionalTransfer ); /** UUPS Upgradeable contract calls */ function upgradeTo(address newImplementation) external; function upgradeToAndCall(address newImplementation, bytes memory data) external payable; function getImplementation() external view returns (address); function owner() external view returns (address); function pauseRouter() external view returns (address); function pauseGuardian() external view returns (address); /** Initialize Markets Action */ function initializeMarkets(uint16 currencyId, bool isFirstInit) external; function sweepCashIntoMarkets(uint16 currencyId) external; /** Redeem nToken Action */ function nTokenRedeem( address redeemer, uint16 currencyId, uint96 tokensToRedeem_, bool sellTokenAssets ) external returns (int256); /** Account Action */ function enableBitmapCurrency(uint16 currencyId) external; function settleAccount(address account) external; function depositUnderlyingToken( address account, uint16 currencyId, uint256 amountExternalPrecision ) external payable returns (uint256); function depositAssetToken( address account, uint16 currencyId, uint256 amountExternalPrecision ) external returns (uint256); function withdraw( uint16 currencyId, uint88 amountInternalPrecision, bool redeemToUnderlying ) external returns (uint256); /** Batch Action */ function batchBalanceAction(address account, BalanceAction[] calldata actions) external payable; function batchBalanceAndTradeAction(address account, BalanceActionWithTrades[] calldata actions) external payable; function batchBalanceAndTradeActionWithCallback( address account, BalanceActionWithTrades[] calldata actions, bytes calldata callbackData ) external payable; /** Liquidation Action */ function calculateLocalCurrencyLiquidation( address liquidateAccount, uint16 localCurrency, uint96 maxNTokenLiquidation ) external returns (int256, int256); function liquidateLocalCurrency( address liquidateAccount, uint16 localCurrency, uint96 maxNTokenLiquidation ) external returns (int256, int256); function calculateCollateralCurrencyLiquidation( address liquidateAccount, uint16 localCurrency, uint16 collateralCurrency, uint128 maxCollateralLiquidation, uint96 maxNTokenLiquidation ) external returns ( int256, int256, int256 ); function liquidateCollateralCurrency( address liquidateAccount, uint16 localCurrency, uint16 collateralCurrency, uint128 maxCollateralLiquidation, uint96 maxNTokenLiquidation, bool withdrawCollateral, bool redeemToUnderlying ) external returns ( int256, int256, int256 ); function calculatefCashLocalLiquidation( address liquidateAccount, uint16 localCurrency, uint256[] calldata fCashMaturities, uint256[] calldata maxfCashLiquidateAmounts ) external returns (int256[] memory, int256); function liquidatefCashLocal( address liquidateAccount, uint16 localCurrency, uint256[] calldata fCashMaturities, uint256[] calldata maxfCashLiquidateAmounts ) external returns (int256[] memory, int256); function calculatefCashCrossCurrencyLiquidation( address liquidateAccount, uint16 localCurrency, uint16 fCashCurrency, uint256[] calldata fCashMaturities, uint256[] calldata maxfCashLiquidateAmounts ) external returns (int256[] memory, int256); function liquidatefCashCrossCurrency( address liquidateAccount, uint16 localCurrency, uint16 fCashCurrency, uint256[] calldata fCashMaturities, uint256[] calldata maxfCashLiquidateAmounts ) external returns (int256[] memory, int256); } // SPDX-License-Identifier: MIT // solhint-disable-next-line compiler-version pragma solidity >=0.4.24 <0.8.0; import "../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { return !Address.isContract(address(this)); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { // Check the signature length if (signature.length != 65) { revert("ECDSA: invalid signature length"); } // Divide the signature in r, s and v variables bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. // solhint-disable-next-line no-inline-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return recover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover-bytes32-bytes-} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value"); require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value"); // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); require(signer != address(0), "ECDSA: invalid signature"); return signer; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * replicates the behavior of the * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`] * JSON-RPC method. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ 32", hash)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is ERC1967Upgrade { /** * @dev Upgrade the implementation of the proxy to `newImplementation`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeTo(address newImplementation) external virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, data, true); } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal override onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; import "interfaces/chainlink/AggregatorV2V3Interface.sol"; import "interfaces/notional/AssetRateAdapter.sol"; /// @notice Different types of internal tokens /// - UnderlyingToken: underlying asset for a cToken (except for Ether) /// - cToken: Compound interest bearing token /// - cETH: Special handling for cETH tokens /// - Ether: the one and only /// - NonMintable: tokens that do not have an underlying (therefore not cTokens) enum TokenType {UnderlyingToken, cToken, cETH, Ether, NonMintable} /// @notice Specifies the different trade action types in the system. Each trade action type is /// encoded in a tightly packed bytes32 object. Trade action type is the first big endian byte of the /// 32 byte trade action object. The schemas for each trade action type are defined below. enum TradeActionType { // (uint8 TradeActionType, uint8 MarketIndex, uint88 fCashAmount, uint32 minImpliedRate, uint120 unused) Lend, // (uint8 TradeActionType, uint8 MarketIndex, uint88 fCashAmount, uint32 maxImpliedRate, uint128 unused) Borrow, // (uint8 TradeActionType, uint8 MarketIndex, uint88 assetCashAmount, uint32 minImpliedRate, uint32 maxImpliedRate, uint88 unused) AddLiquidity, // (uint8 TradeActionType, uint8 MarketIndex, uint88 tokenAmount, uint32 minImpliedRate, uint32 maxImpliedRate, uint88 unused) RemoveLiquidity, // (uint8 TradeActionType, uint32 Maturity, int88 fCashResidualAmount, uint128 unused) PurchaseNTokenResidual, // (uint8 TradeActionType, address CounterpartyAddress, int88 fCashAmountToSettle) SettleCashDebt } /// @notice Specifies different deposit actions that can occur during BalanceAction or BalanceActionWithTrades enum DepositActionType { // No deposit action None, // Deposit asset cash, depositActionAmount is specified in asset cash external precision DepositAsset, // Deposit underlying tokens that are mintable to asset cash, depositActionAmount is specified in underlying token // external precision DepositUnderlying, // Deposits specified asset cash external precision amount into an nToken and mints the corresponding amount of // nTokens into the account DepositAssetAndMintNToken, // Deposits specified underlying in external precision, mints asset cash, and uses that asset cash to mint nTokens DepositUnderlyingAndMintNToken, // Redeems an nToken balance to asset cash. depositActionAmount is specified in nToken precision. Considered a deposit action // because it deposits asset cash into an account. If there are fCash residuals that cannot be sold off, will revert. RedeemNToken, // Converts specified amount of asset cash balance already in Notional to nTokens. depositActionAmount is specified in // Notional internal 8 decimal precision. ConvertCashToNToken } /// @notice Used internally for PortfolioHandler state enum AssetStorageState {NoChange, Update, Delete, RevertIfStored} /****** Calldata objects ******/ /// @notice Defines a balance action for batchAction struct BalanceAction { // Deposit action to take (if any) DepositActionType actionType; uint16 currencyId; // Deposit action amount must correspond to the depositActionType, see documentation above. uint256 depositActionAmount; // Withdraw an amount of asset cash specified in Notional internal 8 decimal precision uint256 withdrawAmountInternalPrecision; // If set to true, will withdraw entire cash balance. Useful if there may be an unknown amount of asset cash // residual left from trading. bool withdrawEntireCashBalance; // If set to true, will redeem asset cash to the underlying token on withdraw. bool redeemToUnderlying; } /// @notice Defines a balance action with a set of trades to do as well struct BalanceActionWithTrades { DepositActionType actionType; uint16 currencyId; uint256 depositActionAmount; uint256 withdrawAmountInternalPrecision; bool withdrawEntireCashBalance; bool redeemToUnderlying; // Array of tightly packed 32 byte objects that represent trades. See TradeActionType documentation bytes32[] trades; } /****** In memory objects ******/ /// @notice Internal object that represents settled cash balances struct SettleAmount { uint256 currencyId; int256 netCashChange; } /// @notice Internal object that represents a token struct Token { address tokenAddress; bool hasTransferFee; int256 decimals; TokenType tokenType; uint256 maxCollateralBalance; } /// @notice Internal object that represents an nToken portfolio struct nTokenPortfolio { CashGroupParameters cashGroup; PortfolioState portfolioState; int256 totalSupply; int256 cashBalance; uint256 lastInitializedTime; bytes6 parameters; address tokenAddress; } /// @notice Internal object used during liquidation struct LiquidationFactors { address account; // Aggregate free collateral of the account denominated in ETH underlying, 8 decimal precision int256 netETHValue; // Amount of net local currency asset cash before haircuts and buffers available int256 localAssetAvailable; // Amount of net collateral currency asset cash before haircuts and buffers available int256 collateralAssetAvailable; // Haircut value of nToken holdings denominated in asset cash, will be local or collateral nTokens based // on liquidation type int256 nTokenHaircutAssetValue; // nToken parameters for calculating liquidation amount bytes6 nTokenParameters; // ETH exchange rate from local currency to ETH ETHRate localETHRate; // ETH exchange rate from collateral currency to ETH ETHRate collateralETHRate; // Asset rate for the local currency, used in cross currency calculations to calculate local asset cash required AssetRateParameters localAssetRate; // Used during currency liquidations if the account has liquidity tokens CashGroupParameters cashGroup; // Used during currency liquidations if it is only a calculation, defaults to false bool isCalculation; } /// @notice Internal asset array portfolio state struct PortfolioState { // Array of currently stored assets PortfolioAsset[] storedAssets; // Array of new assets to add PortfolioAsset[] newAssets; uint256 lastNewAssetIndex; // Holds the length of stored assets after accounting for deleted assets uint256 storedAssetLength; } /// @notice In memory ETH exchange rate used during free collateral calculation. struct ETHRate { // The decimals (i.e. 10^rateDecimalPlaces) of the exchange rate, defined by the rate oracle int256 rateDecimals; // The exchange rate from base to ETH (if rate invert is required it is already done) int256 rate; // Amount of buffer as a multiple with a basis of 100 applied to negative balances. int256 buffer; // Amount of haircut as a multiple with a basis of 100 applied to positive balances int256 haircut; // Liquidation discount as a multiple with a basis of 100 applied to the exchange rate // as an incentive given to liquidators. int256 liquidationDiscount; } /// @notice Internal object used to handle balance state during a transaction struct BalanceState { uint16 currencyId; // Cash balance stored in balance state at the beginning of the transaction int256 storedCashBalance; // nToken balance stored at the beginning of the transaction int256 storedNTokenBalance; // The net cash change as a result of asset settlement or trading int256 netCashChange; // Net asset transfers into or out of the account int256 netAssetTransferInternalPrecision; // Net token transfers into or out of the account int256 netNTokenTransfer; // Net token supply change from minting or redeeming int256 netNTokenSupplyChange; // The last time incentives were claimed for this currency uint256 lastClaimTime; // The last integral supply amount when tokens were claimed uint256 lastClaimIntegralSupply; } /// @dev Asset rate used to convert between underlying cash and asset cash struct AssetRateParameters { // Address of the asset rate oracle AssetRateAdapter rateOracle; // The exchange rate from base to quote (if invert is required it is already done) int256 rate; // The decimals of the underlying, the rate converts to the underlying decimals int256 underlyingDecimals; } /// @dev Cash group when loaded into memory struct CashGroupParameters { uint16 currencyId; uint256 maxMarketIndex; AssetRateParameters assetRate; bytes32 data; } /// @dev A portfolio asset when loaded in memory struct PortfolioAsset { // Asset currency id uint256 currencyId; uint256 maturity; // Asset type, fCash or liquidity token. uint256 assetType; // fCash amount or liquidity token amount int256 notional; // Used for managing portfolio asset state uint256 storageSlot; // The state of the asset for when it is written to storage AssetStorageState storageState; } /// @dev Market object as represented in memory struct MarketParameters { bytes32 storageSlot; uint256 maturity; // Total amount of fCash available for purchase in the market. int256 totalfCash; // Total amount of cash available for purchase in the market. int256 totalAssetCash; // Total amount of liquidity tokens (representing a claim on liquidity) in the market. int256 totalLiquidity; // This is the previous annualized interest rate in RATE_PRECISION that the market traded // at. This is used to calculate the rate anchor to smooth interest rates over time. uint256 lastImpliedRate; // Time lagged version of lastImpliedRate, used to value fCash assets at market rates while // remaining resistent to flash loan attacks. uint256 oracleRate; // This is the timestamp of the previous trade uint256 previousTradeTime; } /****** Storage objects ******/ /// @dev Token object in storage: /// 20 bytes for token address /// 1 byte for hasTransferFee /// 1 byte for tokenType /// 1 byte for tokenDecimals /// 9 bytes for maxCollateralBalance (may not always be set) struct TokenStorage { // Address of the token address tokenAddress; // Transfer fees will change token deposit behavior bool hasTransferFee; TokenType tokenType; uint8 decimalPlaces; // Upper limit on how much of this token the contract can hold at any time uint72 maxCollateralBalance; } /// @dev Exchange rate object as it is represented in storage, total storage is 25 bytes. struct ETHRateStorage { // Address of the rate oracle AggregatorV2V3Interface rateOracle; // The decimal places of precision that the rate oracle uses uint8 rateDecimalPlaces; // True of the exchange rate must be inverted bool mustInvert; // NOTE: both of these governance values are set with BUFFER_DECIMALS precision // Amount of buffer to apply to the exchange rate for negative balances. uint8 buffer; // Amount of haircut to apply to the exchange rate for positive balances uint8 haircut; // Liquidation discount in percentage point terms, 106 means a 6% discount uint8 liquidationDiscount; } /// @dev Asset rate oracle object as it is represented in storage, total storage is 21 bytes. struct AssetRateStorage { // Address of the rate oracle AssetRateAdapter rateOracle; // The decimal places of the underlying asset uint8 underlyingDecimalPlaces; } /// @dev Governance parameters for a cash group, total storage is 9 bytes + 7 bytes for liquidity token haircuts /// and 7 bytes for rate scalars, total of 23 bytes. Note that this is stored packed in the storage slot so there /// are no indexes stored for liquidityTokenHaircuts or rateScalars, maxMarketIndex is used instead to determine the /// length. struct CashGroupSettings { // Index of the AMMs on chain that will be made available. Idiosyncratic fCash // that is dated less than the longest AMM will be tradable. uint8 maxMarketIndex; // Time window in minutes that the rate oracle will be averaged over uint8 rateOracleTimeWindowMin; // Total fees per trade, specified in BPS uint8 totalFeeBPS; // Share of the fees given to the protocol, denominated in percentage uint8 reserveFeeShare; // Debt buffer specified in 5 BPS increments uint8 debtBuffer5BPS; // fCash haircut specified in 5 BPS increments uint8 fCashHaircut5BPS; // If an account has a negative cash balance, it can be settled by incurring debt at the 3 month market. This // is the basis points for the penalty rate that will be added the current 3 month oracle rate. uint8 settlementPenaltyRate5BPS; // If an account has fCash that is being liquidated, this is the discount that the liquidator can purchase it for uint8 liquidationfCashHaircut5BPS; // If an account has fCash that is being liquidated, this is the discount that the liquidator can purchase it for uint8 liquidationDebtBuffer5BPS; // Liquidity token haircut applied to cash claims, specified as a percentage between 0 and 100 uint8[] liquidityTokenHaircuts; // Rate scalar used to determine the slippage of the market uint8[] rateScalars; } /// @dev Holds account level context information used to determine settlement and /// free collateral actions. Total storage is 28 bytes struct AccountContext { // Used to check when settlement must be triggered on an account uint40 nextSettleTime; // For lenders that never incur debt, we use this flag to skip the free collateral check. bytes1 hasDebt; // Length of the account's asset array uint8 assetArrayLength; // If this account has bitmaps set, this is the corresponding currency id uint16 bitmapCurrencyId; // 9 total active currencies possible (2 bytes each) bytes18 activeCurrencies; } /// @dev Holds nToken context information mapped via the nToken address, total storage is /// 16 bytes struct nTokenContext { // Currency id that the nToken represents uint16 currencyId; // Annual incentive emission rate denominated in WHOLE TOKENS (multiply by // INTERNAL_TOKEN_PRECISION to get the actual rate) uint32 incentiveAnnualEmissionRate; // The last block time at utc0 that the nToken was initialized at, zero if it // has never been initialized uint32 lastInitializedTime; // Length of the asset array, refers to the number of liquidity tokens an nToken // currently holds uint8 assetArrayLength; // Each byte is a specific nToken parameter bytes5 nTokenParameters; } /// @dev Holds account balance information, total storage 32 bytes struct BalanceStorage { // Number of nTokens held by the account uint80 nTokenBalance; // Last time the account claimed their nTokens uint32 lastClaimTime; // The total integral supply of the nToken at the last claim time packed into // 56 bits. There is some loss of precision here but it is acceptable uint56 packedLastClaimIntegralSupply; // Cash balance of the account int88 cashBalance; } /// @dev Holds information about a settlement rate, total storage 25 bytes struct SettlementRateStorage { uint40 blockTime; uint128 settlementRate; uint8 underlyingDecimalPlaces; } /// @dev Holds information about a market, total storage is 42 bytes so this spans /// two storage words struct MarketStorage { // Total fCash in the market uint80 totalfCash; // Total asset cash in the market uint80 totalAssetCash; // Last annualized interest rate the market traded at uint32 lastImpliedRate; // Last recorded oracle rate for the market uint32 oracleRate; // Last time a trade was made uint32 previousTradeTime; // This is stored in slot + 1 uint80 totalLiquidity; } struct ifCashStorage { // Notional amount of fCash at the slot, limited to int128 to allow for // future expansion int128 notional; } /// @dev A single portfolio asset in storage, total storage of 19 bytes struct PortfolioAssetStorage { // Currency Id for the asset uint16 currencyId; // Maturity of the asset uint40 maturity; // Asset type (fCash or Liquidity Token marker) uint8 assetType; // Notional int88 notional; } /// @dev nToken total supply factors for the nToken, includes factors related /// to claiming incentives, total storage 32 bytes struct nTokenTotalSupplyStorage { // Total supply of the nToken uint96 totalSupply; // Integral of the total supply used for calculating the average total supply uint128 integralTotalSupply; // Last timestamp the supply value changed, used for calculating the integralTotalSupply uint32 lastSupplyChangeTime; } /// @dev Used in view methods to return account balances in a developer friendly manner struct AccountBalance { uint16 currencyId; int256 cashBalance; int256 nTokenBalance; uint256 lastClaimTime; uint256 lastClaimIntegralSupply; } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; interface nTokenERC20 { event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); function nTokenTotalSupply(address nTokenAddress) external view returns (uint256); function nTokenTransferAllowance( uint16 currencyId, address owner, address spender ) external view returns (uint256); function nTokenBalanceOf(uint16 currencyId, address account) external view returns (uint256); function nTokenTransferApprove( uint16 currencyId, address owner, address spender, uint256 amount ) external returns (bool); function nTokenTransfer( uint16 currencyId, address from, address to, uint256 amount ) external returns (bool); function nTokenTransferFrom( uint16 currencyId, address spender, address from, address to, uint256 amount ) external returns (bool); function nTokenTransferApproveAll(address spender, uint256 amount) external returns (bool); function nTokenClaimIncentives() external returns (uint256); function nTokenPresentValueAssetDenominated(uint16 currencyId) external view returns (int256); function nTokenPresentValueUnderlyingDenominated(uint16 currencyId) external view returns (int256); } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; import "../../contracts/global/Types.sol"; interface nERC1155Interface { event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value ); event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); event ApprovalForAll(address indexed account, address indexed operator, bool approved); event URI(string value, uint256 indexed id); function supportsInterface(bytes4 interfaceId) external pure returns (bool); function balanceOf(address account, uint256 id) external view returns (uint256); function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); function signedBalanceOf(address account, uint256 id) external view returns (int256); function signedBalanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (int256[] memory); function setApprovalForAll(address operator, bool approved) external; function isApprovedForAll(address account, address operator) external view returns (bool); function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) external payable; function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external payable; function decodeToAssets(uint256[] calldata ids, uint256[] calldata amounts) external view returns (PortfolioAsset[] memory); function encodeToId( uint16 currencyId, uint40 maturity, uint8 assetType ) external pure returns (uint256 id); } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; import "../../contracts/global/Types.sol"; import "interfaces/chainlink/AggregatorV2V3Interface.sol"; import "interfaces/notional/NotionalGovernance.sol"; interface NotionalGovernance { event ListCurrency(uint16 newCurrencyId); event UpdateETHRate(uint16 currencyId); event UpdateAssetRate(uint16 currencyId); event UpdateCashGroup(uint16 currencyId); event DeployNToken(uint16 currencyId, address nTokenAddress); event UpdateDepositParameters(uint16 currencyId); event UpdateInitializationParameters(uint16 currencyId); event UpdateIncentiveEmissionRate(uint16 currencyId, uint32 newEmissionRate); event UpdateTokenCollateralParameters(uint16 currencyId); event UpdateGlobalTransferOperator(address operator, bool approved); event UpdateAuthorizedCallbackContract(address operator, bool approved); event UpdateMaxCollateralBalance(uint16 currencyId, uint72 maxCollateralBalance); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); event PauseRouterAndGuardianUpdated(address indexed pauseRouter, address indexed pauseGuardian); function transferOwnership(address newOwner) external; function setPauseRouterAndGuardian(address pauseRouter_, address pauseGuardian_) external; function listCurrency( TokenStorage calldata assetToken, TokenStorage calldata underlyingToken, AggregatorV2V3Interface rateOracle, bool mustInvert, uint8 buffer, uint8 haircut, uint8 liquidationDiscount ) external returns (uint16 currencyId); function updateMaxCollateralBalance( uint16 currencyId, uint72 maxCollateralBalanceInternalPrecision ) external; function enableCashGroup( uint16 currencyId, AssetRateAdapter assetRateOracle, CashGroupSettings calldata cashGroup, string calldata underlyingName, string calldata underlyingSymbol ) external; function updateDepositParameters( uint16 currencyId, uint32[] calldata depositShares, uint32[] calldata leverageThresholds ) external; function updateInitializationParameters( uint16 currencyId, uint32[] calldata annualizedAnchorRates, uint32[] calldata proportions ) external; function updateIncentiveEmissionRate(uint16 currencyId, uint32 newEmissionRate) external; function updateTokenCollateralParameters( uint16 currencyId, uint8 residualPurchaseIncentive10BPS, uint8 pvHaircutPercentage, uint8 residualPurchaseTimeBufferHours, uint8 cashWithholdingBuffer10BPS, uint8 liquidationHaircutPercentage ) external; function updateCashGroup(uint16 currencyId, CashGroupSettings calldata cashGroup) external; function updateAssetRate(uint16 currencyId, AssetRateAdapter rateOracle) external; function updateETHRate( uint16 currencyId, AggregatorV2V3Interface rateOracle, bool mustInvert, uint8 buffer, uint8 haircut, uint8 liquidationDiscount ) external; function updateGlobalTransferOperator(address operator, bool approved) external; function updateAuthorizedCallbackContract(address operator, bool approved) external; } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.7.0; pragma abicoder v2; import "../../contracts/global/Types.sol"; interface NotionalViews { function getMaxCurrencyId() external view returns (uint16); function getCurrencyId(address tokenAddress) external view returns (uint16 currencyId); function getCurrency(uint16 currencyId) external view returns (Token memory assetToken, Token memory underlyingToken); function getRateStorage(uint16 currencyId) external view returns (ETHRateStorage memory ethRate, AssetRateStorage memory assetRate); function getCurrencyAndRates(uint16 currencyId) external view returns ( Token memory assetToken, Token memory underlyingToken, ETHRate memory ethRate, AssetRateParameters memory assetRate ); function getCashGroup(uint16 currencyId) external view returns (CashGroupSettings memory); function getCashGroupAndAssetRate(uint16 currencyId) external view returns (CashGroupSettings memory cashGroup, AssetRateParameters memory assetRate); function getInitializationParameters(uint16 currencyId) external view returns (int256[] memory annualizedAnchorRates, int256[] memory proportions); function getDepositParameters(uint16 currencyId) external view returns (int256[] memory depositShares, int256[] memory leverageThresholds); function nTokenAddress(uint16 currencyId) external view returns (address); function getNoteToken() external view returns (address); function getSettlementRate(uint16 currencyId, uint40 maturity) external view returns (AssetRateParameters memory); function getMarket(uint16 currencyId, uint256 maturity, uint256 settlementDate) external view returns (MarketParameters memory); function getActiveMarkets(uint16 currencyId) external view returns (MarketParameters[] memory); function getActiveMarketsAtBlockTime(uint16 currencyId, uint32 blockTime) external view returns (MarketParameters[] memory); function getReserveBalance(uint16 currencyId) external view returns (int256 reserveBalance); function getNTokenPortfolio(address tokenAddress) external view returns (PortfolioAsset[] memory liquidityTokens, PortfolioAsset[] memory netfCashAssets); function getNTokenAccount(address tokenAddress) external view returns ( uint16 currencyId, uint256 totalSupply, uint256 incentiveAnnualEmissionRate, uint256 lastInitializedTime, bytes5 nTokenParameters, int256 cashBalance, uint256 integralTotalSupply, uint256 lastSupplyChangeTime ); function getAccount(address account) external view returns ( AccountContext memory accountContext, AccountBalance[] memory accountBalances, PortfolioAsset[] memory portfolio ); function getAccountContext(address account) external view returns (AccountContext memory); function getAccountBalance(uint16 currencyId, address account) external view returns ( int256 cashBalance, int256 nTokenBalance, uint256 lastClaimTime ); function getAccountPortfolio(address account) external view returns (PortfolioAsset[] memory); function getfCashNotional( address account, uint16 currencyId, uint256 maturity ) external view returns (int256); function getAssetsBitmap(address account, uint16 currencyId) external view returns (bytes32); function getFreeCollateral(address account) external view returns (int256, int256[] memory); function calculateNTokensToMint(uint16 currencyId, uint88 amountToDepositExternalPrecision) external view returns (uint256); function getfCashAmountGivenCashAmount( uint16 currencyId, int88 netCashToAccount, uint256 marketIndex, uint256 blockTime ) external view returns (int256); function getCashAmountGivenfCashAmount( uint16 currencyId, int88 fCashAmount, uint256 marketIndex, uint256 blockTime ) external view returns (int256, int256); function nTokenGetClaimableIncentives(address account, uint256 blockTime) external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; import "./AggregatorInterface.sol"; import "./AggregatorV3Interface.sol"; interface AggregatorV2V3Interface is AggregatorInterface, AggregatorV3Interface { }// SPDX-License-Identifier: GPL-v3 pragma solidity >=0.7.0; /// @notice Used as a wrapper for tokens that are interest bearing for an /// underlying token. Follows the cToken interface, however, can be adapted /// for other interest bearing tokens. interface AssetRateAdapter { function token() external view returns (address); function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function underlying() external view returns (address); function getExchangeRateStateful() external returns (int256); function getExchangeRateView() external view returns (int256); function getAnnualizedSupplyRate() external view returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface AggregatorInterface { function latestAnswer() external view returns (int256); function latestTimestamp() external view returns (uint256); function latestRound() external view returns (uint256); function getAnswer(uint256 roundId) external view returns (int256); function getTimestamp(uint256 roundId) external view returns (uint256); event AnswerUpdated(int256 indexed current, uint256 indexed roundId, uint256 updatedAt); event NewRound(uint256 indexed roundId, address indexed startedBy, uint256 startedAt); }// SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); // getRoundData and latestRoundData should both raise "No data present" // if they do not have data to report, instead of returning unset values // which could be misinterpreted as actual reported values. function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "@openzeppelin/contracts/utils/Address.sol"; import "../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure( address newImplementation, bytes memory data, bool forceCall ) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature("upgradeTo(address)", oldImplementation) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _upgradeTo(newImplementation); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } }