ETH Price: $3,110.46 (+0.56%)
Gas: 3 Gwei

Transaction Decoder

Block:
12965000 at Aug-05-2021 12:33:42 PM +UTC
Transaction Fee:
0.004690459 ETH $14.59
Gas Used:
203,933 Gas / 23 Gwei

Emitted Events:

592 RariToken.Transfer( from=0x2Baf03e3030f0c8685534a3b603C13a4828036c7, to=[Sender] 0x5854068de9e86fcc265df3d0b09eecba3fc2439d, value=3638094013454608700 )
593 RariToken.Approval( owner=0x2Baf03e3030f0c8685534a3b603C13a4828036c7, spender=[Receiver] RariMineV2, value=23697651304401212539596203 )
594 RariMineV2.Claim( owner=[Sender] 0x5854068de9e86fcc265df3d0b09eecba3fc2439d, value=3638094013454608700 )
595 RariMineV2.Value( owner=[Sender] 0x5854068de9e86fcc265df3d0b09eecba3fc2439d, value=8122847949289483700 )

Account State Difference:

  Address   Before After State Difference Code
0x3b5d2B25...5eB4B27bd
(Rarible: RariMine V2)
0x5854068D...a3fc2439d
0.004883481151021904 Eth
Nonce: 10
0.000193022151021904 Eth
Nonce: 11
0.004690459
(Krptex Mining 1)
493.439809131598070467 Eth493.444295657598070467 Eth0.004486526
0xFca59Cd8...15cE441CF

Execution Trace

RariMineV2.claim( _balances=, v=27, r=30AE3D8161C84C74BF5F75D67EC7EA41AE9E0993EB1602F515A8310FB29212DB, s=6F3A88930427B576A703C7856F28B6DE3AFA09E69052A89BB2DC8D142046765C )
  • Null: 0x000...001.6e104bd2( )
  • RariToken.transferFrom( from=0x2Baf03e3030f0c8685534a3b603C13a4828036c7, to=0x5854068De9e86FCC265dF3d0B09eECba3fc2439d, value=3638094013454608700 ) => ( True )
    File 1 of 2: RariMineV2
    pragma solidity ^0.5.0;
    pragma experimental ABIEncoderV2;
    
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    contract Context {
        // Empty internal constructor, to prevent people from mistakenly deploying
        // an instance of this contract, which should be used via inheritance.
        constructor () internal { }
        // solhint-disable-previous-line no-empty-blocks
    
        function _msgSender() internal view returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () internal {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(isOwner(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Returns true if the caller is the current owner.
         */
        function isOwner() public view returns (bool) {
            return _msgSender() == _owner;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public onlyOwner {
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         */
        function _transferOwnership(address newOwner) internal {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see {ERC20Detailed}.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20Mintable}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See {_burn} and {_approve}.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
        }
    }
    
    library UintLibrary {
        function toString(uint256 _i) internal pure returns (string memory) {
            if (_i == 0) {
                return "0";
            }
            uint j = _i;
            uint len;
            while (j != 0) {
                len++;
                j /= 10;
            }
            bytes memory bstr = new bytes(len);
            uint k = len - 1;
            while (_i != 0) {
                bstr[k--] = byte(uint8(48 + _i % 10));
                _i /= 10;
            }
            return string(bstr);
        }
    }
    
    library StringLibrary {
        using UintLibrary for uint256;
    
        function append(string memory _a, string memory _b) internal pure returns (string memory) {
            bytes memory _ba = bytes(_a);
            bytes memory _bb = bytes(_b);
            bytes memory bab = new bytes(_ba.length + _bb.length);
            uint k = 0;
            for (uint i = 0; i < _ba.length; i++) bab[k++] = _ba[i];
            for (uint i = 0; i < _bb.length; i++) bab[k++] = _bb[i];
            return string(bab);
        }
    
        function append(string memory _a, string memory _b, string memory _c) internal pure returns (string memory) {
            bytes memory _ba = bytes(_a);
            bytes memory _bb = bytes(_b);
            bytes memory _bc = bytes(_c);
            bytes memory bbb = new bytes(_ba.length + _bb.length + _bc.length);
            uint k = 0;
            for (uint i = 0; i < _ba.length; i++) bbb[k++] = _ba[i];
            for (uint i = 0; i < _bb.length; i++) bbb[k++] = _bb[i];
            for (uint i = 0; i < _bc.length; i++) bbb[k++] = _bc[i];
            return string(bbb);
        }
    
        function recover(string memory message, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            bytes memory msgBytes = bytes(message);
            bytes memory fullMessage = concat(
                bytes("\x19Ethereum Signed Message:\n"),
                bytes(msgBytes.length.toString()),
                msgBytes,
                new bytes(0), new bytes(0), new bytes(0), new bytes(0)
            );
            return ecrecover(keccak256(fullMessage), v, r, s);
        }
    
        function concat(bytes memory _ba, bytes memory _bb, bytes memory _bc, bytes memory _bd, bytes memory _be, bytes memory _bf, bytes memory _bg) internal pure returns (bytes memory) {
            bytes memory resultBytes = new bytes(_ba.length + _bb.length + _bc.length + _bd.length + _be.length + _bf.length + _bg.length);
            uint k = 0;
            for (uint i = 0; i < _ba.length; i++) resultBytes[k++] = _ba[i];
            for (uint i = 0; i < _bb.length; i++) resultBytes[k++] = _bb[i];
            for (uint i = 0; i < _bc.length; i++) resultBytes[k++] = _bc[i];
            for (uint i = 0; i < _bd.length; i++) resultBytes[k++] = _bd[i];
            for (uint i = 0; i < _be.length; i++) resultBytes[k++] = _be[i];
            for (uint i = 0; i < _bf.length; i++) resultBytes[k++] = _bf[i];
            for (uint i = 0; i < _bg.length; i++) resultBytes[k++] = _bg[i];
            return resultBytes;
        }
    }
    
    library AddressLibrary {
        function toString(address _addr) internal pure returns (string memory) {
            bytes32 value = bytes32(uint256(_addr));
            bytes memory alphabet = "0123456789abcdef";
            bytes memory str = new bytes(42);
            str[0] = '0';
            str[1] = 'x';
            for (uint256 i = 0; i < 20; i++) {
                str[2+i*2] = alphabet[uint8(value[i + 12] >> 4)];
                str[3+i*2] = alphabet[uint8(value[i + 12] & 0x0f)];
            }
            return string(str);
        }
    }
    
    
    
    
    
    
    contract RariMineV2 is Ownable {
        using SafeMath for uint;
        using StringLibrary for string;
        using UintLibrary for uint;
        using AddressLibrary for address;
    
        event Claim(address indexed owner, uint value);
        event Value(address indexed owner, uint value);
    
        struct Balance {
            address recipient;
            uint256 value;
        }
    
        ERC20 public token;
        address public tokenOwner;
        mapping(address => uint) public claimed;
    
        constructor(ERC20 _token, address _tokenOwner) public {
            token = _token;
            tokenOwner = _tokenOwner;
        }
    
        function claim(Balance[] memory _balances, uint8 v, bytes32 r, bytes32 s) public {
            require(prepareMessage(_balances).recover(v, r, s) == owner(), "owner should sign balances");
    
            for (uint i = 0; i < _balances.length; i++) {
                address recipient = _balances[i].recipient;
                if (msg.sender == recipient) {
                    uint toClaim = _balances[i].value.sub(claimed[recipient]);
                    require(toClaim > 0, "nothing to claim");
                    claimed[recipient] = _balances[i].value;
                    require(token.transferFrom(tokenOwner, msg.sender, toClaim), "transfer is not successful");
                    emit Claim(recipient, toClaim);
                    emit Value(recipient, _balances[i].value);
                    return;
                }
            }
            revert("msg.sender not found in receipients");
        }
    
        function doOverride(Balance[] memory _balances) public onlyOwner {
            for (uint i = 0; i < _balances.length; i++) {
                claimed[_balances[i].recipient] = _balances[i].value;
                emit Value(_balances[i].recipient, _balances[i].value);
            }
        }
    
        function prepareMessage(Balance[] memory _balances) internal returns (string memory) {
            return toString(keccak256(abi.encode(_balances)));
        }
    
        function toString(bytes32 value) internal pure returns (string memory) {
            bytes memory alphabet = "0123456789abcdef";
            bytes memory str = new bytes(64);
            for (uint256 i = 0; i < 32; i++) {
                str[i*2] = alphabet[uint8(value[i] >> 4)];
                str[1+i*2] = alphabet[uint8(value[i] & 0x0f)];
            }
            return string(str);
        }
    }

    File 2 of 2: RariToken
    pragma solidity ^0.5.0;
    
    /*
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with GSN meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    contract Context {
        // Empty internal constructor, to prevent people from mistakenly deploying
        // an instance of this contract, which should be used via inheritance.
        constructor () internal { }
        // solhint-disable-previous-line no-empty-blocks
    
        function _msgSender() internal view returns (address payable) {
            return msg.sender;
        }
    
        function _msgData() internal view returns (bytes memory) {
            this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
            return msg.data;
        }
    }
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor () internal {
            address msgSender = _msgSender();
            _owner = msgSender;
            emit OwnershipTransferred(address(0), msgSender);
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(isOwner(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Returns true if the caller is the current owner.
         */
        function isOwner() public view returns (bool) {
            return _msgSender() == _owner;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public onlyOwner {
            emit OwnershipTransferred(_owner, address(0));
            _owner = address(0);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public onlyOwner {
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         */
        function _transferOwnership(address newOwner) internal {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            emit OwnershipTransferred(_owner, newOwner);
            _owner = newOwner;
        }
    }
    
    contract Pausable is Ownable {
        /**
         * @dev Emitted when the pause is triggered by owner (`account`).
         */
        event Paused(address account);
    
        /**
         * @dev Emitted when the pause is lifted by owner (`account`).
         */
        event Unpaused(address account);
    
        bool private _paused;
    
        /**
         * @dev Initializes the contract in unpaused state
         */
        constructor () internal {
            _paused = false;
        }
    
        /**
         * @dev Returns true if the contract is paused, and false otherwise.
         */
        function paused() public view returns (bool) {
            return _paused;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         */
        modifier whenNotPaused() {
            require(!_paused, "Pausable: paused");
            _;
        }
    
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         */
        modifier whenPaused() {
            require(_paused, "Pausable: not paused");
            _;
        }
    
        /**
         * @dev Called by a pauser to pause, triggers stopped state.
         */
        function pause() public onlyOwner whenNotPaused {
            _paused = true;
            emit Paused(_msgSender());
        }
    
        /**
         * @dev Called by a pauser to unpause, returns to normal state.
         */
        function unpause() public onlyOwner whenPaused {
            _paused = false;
            emit Unpaused(_msgSender());
        }
    }
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
     * the optional functions; to access them see {ERC20Detailed}.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return sub(a, b, "SafeMath: subtraction overflow");
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         * - Subtraction cannot overflow.
         *
         * _Available since v2.4.0._
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            uint256 c = a - b;
    
            return c;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) {
                return 0;
            }
    
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
    
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return div(a, b, "SafeMath: division by zero");
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            // Solidity only automatically asserts when dividing by 0
            require(b > 0, errorMessage);
            uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    
            return c;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return mod(a, b, "SafeMath: modulo by zero");
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * Reverts with custom message when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         * - The divisor cannot be zero.
         *
         * _Available since v2.4.0._
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b != 0, errorMessage);
            return a % b;
        }
    }
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20Mintable}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin guidelines: functions revert instead
     * of returning `false` on failure. This behavior is nonetheless conventional
     * and does not conflict with the expectations of ERC20 applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20 {
        using SafeMath for uint256;
    
        mapping (address => uint256) private _balances;
    
        mapping (address => mapping (address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20};
         *
         * Requirements:
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for `sender`'s tokens of at least
         * `amount`.
         */
        function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
            _transfer(sender, recipient, amount);
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
            return true;
        }
    
        /**
         * @dev Moves tokens `amount` from `sender` to `recipient`.
         *
         * This is internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(address sender, address recipient, uint256 amount) internal {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
    
            _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
            _balances[recipient] = _balances[recipient].add(amount);
            emit Transfer(sender, recipient, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements
         *
         * - `to` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _totalSupply = _totalSupply.add(amount);
            _balances[account] = _balances[account].add(amount);
            emit Transfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
            _totalSupply = _totalSupply.sub(amount);
            emit Transfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
         *
         * This is internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(address owner, address spender, uint256 amount) internal {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
         * from the caller's allowance.
         *
         * See {_burn} and {_approve}.
         */
        function _burnFrom(address account, uint256 amount) internal {
            _burn(account, amount);
            _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
        }
    }
    
    /**
     * @title Pausable token
     * @dev ERC20 with pausable transfers and allowances.
     *
     * Useful if you want to stop trades until the end of a crowdsale, or have
     * an emergency switch for freezing all token transfers in the event of a large
     * bug.
     */
    contract ERC20Pausable is Ownable, Pausable, ERC20 {
        function transfer(address to, uint256 value) public whenNotPaused returns (bool) {
            return super.transfer(to, value);
        }
    
        function transferFrom(address from, address to, uint256 value) public whenNotPaused returns (bool) {
            return super.transferFrom(from, to, value);
        }
    
        function approve(address spender, uint256 value) public whenNotPaused returns (bool) {
            return super.approve(spender, value);
        }
    
        function increaseAllowance(address spender, uint256 addedValue) public whenNotPaused returns (bool) {
            return super.increaseAllowance(spender, addedValue);
        }
    
        function decreaseAllowance(address spender, uint256 subtractedValue) public whenNotPaused returns (bool) {
            return super.decreaseAllowance(spender, subtractedValue);
        }
    }
    
    contract RariToken is ERC20Pausable {
        string constant public name = "Rarible";
        string constant public symbol = "RARI";
        uint8 constant public decimals = 18;
    
        bool public mintStopped = false;
    
        constructor() public {
        }
    
        function mint(address account, uint256 amount) public onlyOwner returns (bool) {
            require(!mintStopped, "mint is stopped");
            _mint(account, amount);
            return true;
        }
    
        function stopMint() public onlyOwner {
            mintStopped = true;
        }
    }