ETH Price: $2,573.31 (+0.27%)

Transaction Decoder

Block:
16498549 at Jan-27-2023 01:48:35 PM +UTC
Transaction Fee:
0.00077668453423593 ETH $2.00
Gas Used:
46,665 Gas / 16.643834442 Gwei

Emitted Events:

286 SingDao.Approval( owner=[Sender] 0x3e38d907bb48cb13567a2f13fb5d4a6a02e0537a, spender=0xfB85B9Ec...5132120D0, amount=79228162514264337593543950335 )

Account State Difference:

  Address   Before After State Difference Code
0x3E38d907...a02E0537a
0.025596777399503795 Eth
Nonce: 2
0.024820092865267865 Eth
Nonce: 3
0.00077668453423593
(beaverbuild)
225.627480170070784243 Eth225.627550167570784243 Eth0.0000699975
0x993864E4...a635B875F

Execution Trace

SingDao.approve( spender=0xfB85B9Ec50560e302Ab106F1E2857d95132120D0, rawAmount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }
    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;
    address public nominatedOwner;
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    event OwnerNominated(address indexed newOwner);
    event OwnerChanged(address indexed oldOwner, address indexed newOwner);
    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }
    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }
    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }
    function nominateNewOwner(address _owner) external onlyOwner {
        nominatedOwner = _owner;
        emit OwnerNominated(_owner);
    }
    function acceptOwnership() external {
        require(msg.sender == nominatedOwner, 'You must be nominated before you can accept ownership');
        emit OwnerChanged(_owner, nominatedOwner);
        _owner = nominatedOwner;
        nominatedOwner = address(0);
    }
}// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/math/SafeMath.sol";
import "./Ownable.sol";
contract SingDao is Ownable {
  /// @notice EIP-20 token name for this token
  string public constant name = "Singularity Dao";
  /// @notice EIP-20 token symbol for this token
  string public constant symbol = "SDAO";
  /// @notice EIP-20 token decimals for this token
  uint8 public constant decimals = 18;
  /// @notice Total number of tokens in circulation
  uint256 public totalSupply = 100_000_000e18;
  ILocker public locker;
  mapping(address => mapping(address => uint96)) internal allowances;
  mapping(address => uint96) internal balances;
  mapping(address => address) public delegates;
  struct Checkpoint {
    uint32 fromBlock;
    uint96 votes;
  }
  mapping(address => mapping(uint32 => Checkpoint)) public checkpoints;
  mapping(address => uint32) public numCheckpoints;
  bytes32 public constant DOMAIN_TYPEHASH = keccak256(
    "EIP712Domain(string name,uint256 chainId,address verifyingContract)"
  );
  bytes32 public constant DELEGATION_TYPEHASH = keccak256(
    "Delegation(address delegatee,uint256 nonce,uint256 expiry)"
  );
 mapping(address => uint256) public nonces;
 event DelegateChanged(
    address indexed delegator,
    address indexed fromDelegate,
    address indexed toDelegate
  );
  event DelegateVotesChanged(
    address indexed delegate,
    uint256 previousBalance,
    uint256 newBalance
  );
  event Transfer(address indexed from, address indexed to, uint256 amount);
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 amount
  );
  constructor(address account) public {
    balances[account] = uint96(totalSupply);
    emit Transfer(address(0), account, totalSupply);
  }
  function mint(address dst, uint rawAmount) external onlyOwner {
    // mint the amount
    require(
      dst != address(0),
      "Sdao::_transferTokens: cannot mint to the zero address"
    );
    uint96 amount = safe96(rawAmount, "Sdao::mint: amount exceeds 96 bits");
    totalSupply = safe96(SafeMath.add(totalSupply, amount), "Sdao::mint: totalSupply exceeds 96 bits");
    // transfer the amount to the recipient
    balances[dst] = add96(balances[dst], amount, "Sdao::mint: transfer amount overflows");
    emit Transfer(address(0), dst, amount);
    // move delegates
    _moveDelegates(address(0), delegates[dst], amount);
  }
  function allowance(address account, address spender)
    external
    view
    returns (uint256)
  {
    return allowances[account][spender];
  }
  function approve(address spender, uint256 rawAmount) external returns (bool) {
    uint96 amount;
    if (rawAmount == uint256(-1)) {
      amount = uint96(-1);
    } else {
      amount = safe96(rawAmount, "SDAO::approve: amount exceeds 96 bits");
    }
    allowances[msg.sender][spender] = amount;
    emit Approval(msg.sender, spender, amount);
    return true;
  }
  function balanceOf(address account) external view returns (uint256) {
    return balances[account];
  }
  function nonceOf(address account) external view returns (uint256) {
    return nonces[account];
  }
  function transfer(address dst, uint256 rawAmount) external returns (bool) {
    uint96 amount = safe96(rawAmount, "SDAO::transfer: amount exceeds 96 bits");
    _transferTokens(msg.sender, dst, amount);
    return true;
  }
  function transferFrom(
    address src,
    address dst,
    uint256 rawAmount
  ) external returns (bool) {
    address spender = msg.sender;
    uint96 spenderAllowance = allowances[src][spender];
    uint96 amount = safe96(rawAmount, "SDAO::approve: amount exceeds 96 bits");
    if (spender != src && spenderAllowance != uint96(-1)) {
      uint96 newAllowance = sub96(
        spenderAllowance,
        amount,
        "SDAO::transferFrom: transfer amount exceeds spender allowance"
      );
      allowances[src][spender] = newAllowance;
      emit Approval(src, spender, newAllowance);
    }
  
    _transferTokens(src, dst, amount);
    return true;
  }
  function delegate(address delegatee) public {
    return _delegate(msg.sender, delegatee);
  }
  function delegateBySig(
    address delegatee,
    uint256 nonce,
    uint256 expiry,
    uint8 v,
    bytes32 r,
    bytes32 s
  ) public {
    bytes32 domainSeparator = keccak256(
      abi.encode(
        DOMAIN_TYPEHASH,
        keccak256(bytes(name)),
        getChainId(),
        address(this)
      )
    );
    bytes32 structHash = keccak256(
      abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry)
    );
    bytes32 digest = keccak256(
      abi.encodePacked("\\x19\\x01", domainSeparator, structHash)
    );
    address signatory = ecrecover(digest, v, r, s);
    require(signatory != address(0), "sdao::delegateBySig: invalid signature");
    require(nonce == nonces[signatory]++, "sdao::delegateBySig: invalid nonce");
    require(now <= expiry, "sdao::delegateBySig: signature expired");
    return _delegate(signatory, delegatee);
  }
  function getCurrentVotes(address account) external view returns (uint96) {
    uint32 nCheckpoints = numCheckpoints[account];
    return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
  }
  function getPriorVotes(address account, uint256 blockNumber)
    public
    view
    returns (uint96)
  {
    require(
      blockNumber < block.number,
      "sdao::getPriorVotes: not yet determined"
    );
    uint32 nCheckpoints = numCheckpoints[account];
    if (nCheckpoints == 0) {
      return 0;
    }
    if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
      return checkpoints[account][nCheckpoints - 1].votes;
    }
    if (checkpoints[account][0].fromBlock > blockNumber) {
      return 0;
    }
    uint32 lower = 0;
    uint32 upper = nCheckpoints - 1;
    while (upper > lower) {
      uint32 center = upper - (upper - lower) / 2;
      Checkpoint memory cp = checkpoints[account][center];
      if (cp.fromBlock == blockNumber) {
        return cp.votes;
      } else if (cp.fromBlock < blockNumber) {
        lower = center;
      } else {
        upper = center - 1;
      }
    }
    return checkpoints[account][lower].votes;
  }
  function _delegate(address delegator, address delegatee) internal {
    address currentDelegate = delegates[delegator];
    uint96 delegatorBalance = balances[delegator];
    delegates[delegator] = delegatee;
    emit DelegateChanged(delegator, currentDelegate, delegatee);
    _moveDelegates(currentDelegate, delegatee, delegatorBalance);
  }
  function _transferTokens(
    address src,
    address dst,
    uint96 amount
  ) internal {
    require(
      src != address(0),
      "sdao::_transferTokens: cannot transfer from the zero address"
    );
    require(
      dst != address(0),
      "sdao::_transferTokens: cannot transfer to the zero address"
    );
    
    if(address(locker) != address(0)){
      locker.lockOrGetPenalty(src,dst);
     }
    balances[src] = sub96(
      balances[src],
      amount,
      "sdao::_transferTokens: transfer amount exceeds balance"
    );
    balances[dst] = add96(
      balances[dst],
      amount,
      "sdao::_transferTokens: transfer amount overflows"
    );
    emit Transfer(src, dst, amount);
    _moveDelegates(delegates[src], delegates[dst], amount);
  }
  function _moveDelegates(
    address srcRep,
    address dstRep,
    uint96 amount
  ) internal {
    if (srcRep != dstRep && amount > 0) {
      if (srcRep != address(0)) {
        uint32 srcRepNum = numCheckpoints[srcRep];
        uint96 srcRepOld = srcRepNum > 0
          ? checkpoints[srcRep][srcRepNum - 1].votes
          : 0;
        uint96 srcRepNew = sub96(
          srcRepOld,
          amount,
          "sdao::_moveVotes: vote amount underflows"
        );
        _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
      }
      if (dstRep != address(0)) {
        uint32 dstRepNum = numCheckpoints[dstRep];
        uint96 dstRepOld = dstRepNum > 0
          ? checkpoints[dstRep][dstRepNum - 1].votes
          : 0;
        uint96 dstRepNew = add96(
          dstRepOld,
          amount,
          "sdao::_moveVotes: vote amount overflows"
        );
        _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
      }
    }
  }
  function _writeCheckpoint(
    address delegatee,
    uint32 nCheckpoints,
    uint96 oldVotes,
    uint96 newVotes
  ) internal {
    uint32 blockNumber = safe32(
      block.number,
      "sdao::_writeCheckpoint: block number exceeds 32 bits"
    );
    if (
      nCheckpoints > 0 &&
      checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber
    ) {
      checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
    } else {
      checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
      numCheckpoints[delegatee] = nCheckpoints + 1;
    }
    emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
  }
  function safe32(uint256 n, string memory errorMessage)
    internal
    pure
    returns (uint32)
  {
    require(n < 2**32, errorMessage);
    return uint32(n);
  }
  function safe96(uint256 n, string memory errorMessage)
    internal
    pure
    returns (uint96)
  {
    require(n < 2**96, errorMessage);
    return uint96(n);
  }
  function add96(
    uint96 a,
    uint96 b,
    string memory errorMessage
  ) internal pure returns (uint96) {
    uint96 c = a + b;
    require(c >= a, errorMessage);
    return c;
  }
  function sub96(
    uint96 a,
    uint96 b,
    string memory errorMessage
  ) internal pure returns (uint96) {
    require(b <= a, errorMessage);
    return a - b;
  }
  function getChainId() internal pure returns (uint256) {
    uint256 chainId;
    assembly {
      chainId := chainid()
    }
    return chainId;
  }
  function setLocker(address _locker) external onlyOwner {
    locker = ILocker(_locker);
  }
}
interface ILocker {
    function lockOrGetPenalty(address source, address dest)external returns(bool,uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }
    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }
    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;
        return c;
    }
    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }
    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }
    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold
        return c;
    }
    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }
    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}