ETH Price: $2,535.74 (+0.69%)

Transaction Decoder

Block:
19640488 at Apr-12-2024 03:41:23 PM +UTC
Transaction Fee:
0.00654553340261106 ETH $16.60
Gas Used:
250,580 Gas / 26.121531657 Gwei

Emitted Events:

111 WETH9.Transfer( src=UniswapV3Pool, dst=[Receiver] 0x00000000009e50a7ddb7a7b0e2ee6604fd120e49, wad=706297751100456960 )
112 WETH9.Withdrawal( src=[Receiver] 0x00000000009e50a7ddb7a7b0e2ee6604fd120e49, wad=698899996350611456 )
113 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000006876ea9c360e8452c1ae04a62ed5e58c8afe0b2a, 0x0000000000000000000000000000000000000000000000000000000000000000, 0x000000000000000000000000000000000000000000000000000000000000062f )
114 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000006876ea9c360e8452c1ae04a62ed5e58c8afe0b2a, 0x00000000000000000000000000000000009e50a7ddb7a7b0e2ee6604fd120e49, 0000000000000000000000000000000000000000000000000de0b6b3a7640000 )
115 ExclusiveDutchOrderReactor.Fill( orderHash=F1A7BF3445FA404D4455344F8E1F4219B30F15EE246BDC738092E61C6C681E93, filler=[Receiver] 0x00000000009e50a7ddb7a7b0e2ee6604fd120e49, swapper=0x6876ea9c360e8452c1ae04a62ed5e58c8afe0b2a, nonce=1993353796005498457018484395148306483362469188142959731370132988889964756737 )
116 ERC1967Proxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000000000000009e50a7ddb7a7b0e2ee6604fd120e49, 0x000000000000000000000000253e380caefbb3445aa73e07c02ac40519ff8c99, 0000000000000000000000000000000000000000000000000de0b6b3a7640000 )
117 UniswapV3Pool.Swap( sender=[Receiver] 0x00000000009e50a7ddb7a7b0e2ee6604fd120e49, recipient=[Receiver] 0x00000000009e50a7ddb7a7b0e2ee6604fd120e49, amount0=999999992757661745, amount1=-706297751100456960, sqrtPriceX96=65994879401981470188843895199, liquidity=40351992553985191709, tick=-3656 )

Account State Difference:

  Address   Before After State Difference Code
0x00000000...43aC78BA3
(Uniswap Protocol: Permit2)
0x00000000...4fd120E49
(MEV Bot: 0x000...e49)
0.93930699419065478 Eth0.939566990705713996 Eth0.000259996515059216
0x1c72523E...C5B80be09
0x253e380c...519Ff8C99
(Uniswap V3: SPEED)
0x6876ea9C...C8AFe0b2A 0.065170555438192523 Eth0.763810555438192523 Eth0.69864
(beaverbuild)
8.266851548438896448 Eth8.266852796114804608 Eth0.00000124767590816
0xC02aaA39...83C756Cc2 3,067,831.733206096820637139 Eth3,067,831.034306100470025683 Eth0.698899996350611456
0xfc9928F6...36785e535
1.006062357679765696 Eth
Nonce: 36652
0.999516824112706876 Eth
Nonce: 36653
0.00654553356705882

Execution Trace

ETH 0.00000000016444776 MEV Bot: 0x000...e49.a8227120( )
  • UniswapV3Pool.swap( recipient=0x00000000009E50a7dDb7a7B0e2ee6604fd120E49, zeroForOne=True, amountSpecified=-706297751100456960, sqrtPriceLimitX96=4295128740, data=0x001AA8227120253E380CAEFBB3445AA73E07C02AC40519FF8C992CFC00000000000009CD461000000000243FA300440000000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE095EA7B30000000000000000000000006000DA47483062A0D734BA3DC7576CE6A0B645C4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3FA300240000000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC22E1A7D4D00000000000000000000000000000000000000000000000009B2FDD8000000003FA303C400000000000009B2FDD8000000006000DA47483062A0D734BA3DC7576CE6A0B645C43F62192E00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000032000000000000000000000000000000000000000000000000000000000000002C000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000000000000000000006619502E000000000000000000000000000000000000000000000000000000006619502E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C72523EECADE307C9BFFD03953FF91C5B80BE090000000000000000000000000000000000000000000000000DE0B6B3A76400000000000000000000000000000000000000000000000000000DE0B6B3A764000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000006000DA47483062A0D734BA3DC7576CE6A0B645C40000000000000000000000006876EA9C360E8452C1AE04A62ED5E58C8AFE0B2A046832C19B3CD7DB42AB02F58822CD22018F52EB58099702C6FA35CB49D43F010000000000000000000000000000000000000000000000000000000066228AAE000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009B21160E1E1000000000000000000000000000000000000000000000000000009B21160E1E100000000000000000000000000006876EA9C360E8452C1AE04A62ED5E58C8AFE0B2A000000000000000000000000000000000000000000000000000000000000004125A16DF8D8B24D86275469B79F6E4F6A43CFE569356048D121DBF3DAF805D205465E48F6D64E0E79F61A6C4437F087DB33F708487445293B16D05D8488AFFBCD1C000000000000000000000000000000000000000000000000000000000000003FA3004400000000000000000000000000001C72523EECADE307C9BFFD03953FF91C5B80BE09A9059CBB000000000000000000000000253E380CAEFBB3445AA73E07C02AC40519FF8C990000000000000000000000000000000000000000000000000DE0B6B3A7640000006D ) => ( amount0=999999992757661745, amount1=-706297751100456960 )
    • WETH9.transfer( dst=0x00000000009E50a7dDb7a7B0e2ee6604fd120E49, wad=706297751100456960 ) => ( True )
    • ERC1967Proxy.70a08231( )
      • VelocityPass2Token.balanceOf( owner=0x253e380cAEFbb3445aa73E07c02AC40519Ff8C99 ) => ( 44324613679331027153 )
      • MEV Bot: 0x000...e49.fa461e33( )
        • Null: 0xeee...eee.095ea7b3( )
        • WETH9.withdraw( wad=698899996350611456 )
          • ETH 0.698899996350611456 MEV Bot: 0x000...e49.CALL( )
          • ETH 0.698899996350611456 ExclusiveDutchOrderReactor.execute( order=[{name:order, type:bytes, order:1, indexed:false, value:0x00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000000000000000000006619502E000000000000000000000000000000000000000000000000000000006619502E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C72523EECADE307C9BFFD03953FF91C5B80BE090000000000000000000000000000000000000000000000000DE0B6B3A76400000000000000000000000000000000000000000000000000000DE0B6B3A764000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000006000DA47483062A0D734BA3DC7576CE6A0B645C40000000000000000000000006876EA9C360E8452C1AE04A62ED5E58C8AFE0B2A046832C19B3CD7DB42AB02F58822CD22018F52EB58099702C6FA35CB49D43F010000000000000000000000000000000000000000000000000000000066228AAE000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009B21160E1E1000000000000000000000000000000000000000000000000000009B21160E1E100000000000000000000000000006876EA9C360E8452C1AE04A62ED5E58C8AFE0B2A, valueString:0x00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000120000000000000000000000000000000000000000000000000000000006619502E000000000000000000000000000000000000000000000000000000006619502E000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001C72523EECADE307C9BFFD03953FF91C5B80BE090000000000000000000000000000000000000000000000000DE0B6B3A76400000000000000000000000000000000000000000000000000000DE0B6B3A764000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000006000DA47483062A0D734BA3DC7576CE6A0B645C40000000000000000000000006876EA9C360E8452C1AE04A62ED5E58C8AFE0B2A046832C19B3CD7DB42AB02F58822CD22018F52EB58099702C6FA35CB49D43F010000000000000000000000000000000000000000000000000000000066228AAE000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009B21160E1E1000000000000000000000000000000000000000000000000000009B21160E1E100000000000000000000000000006876EA9C360E8452C1AE04A62ED5E58C8AFE0B2A}, {name:sig, type:bytes, order:2, indexed:false, value:0x25A16DF8D8B24D86275469B79F6E4F6A43CFE569356048D121DBF3DAF805D205465E48F6D64E0E79F61A6C4437F087DB33F708487445293B16D05D8488AFFBCD1C, valueString:0x25A16DF8D8B24D86275469B79F6E4F6A43CFE569356048D121DBF3DAF805D205465E48F6D64E0E79F61A6C4437F087DB33F708487445293B16D05D8488AFFBCD1C}] )
            • Permit2.permitWitnessTransferFrom( permit=[{name:permitted, type:tuple, order:1, indexed:false, value:[{name:token, type:address, order:1, indexed:false, value:0x1c72523EEcADe307C9bFfd03953Ff91C5B80be09, valueString:0x1c72523EEcADe307C9bFfd03953Ff91C5B80be09}, {name:amount, type:uint256, order:2, indexed:false, value:1000000000000000000, valueString:1000000000000000000}], valueString:[{name:token, type:address, order:1, indexed:false, value:0x1c72523EEcADe307C9bFfd03953Ff91C5B80be09, valueString:0x1c72523EEcADe307C9bFfd03953Ff91C5B80be09}, {name:amount, type:uint256, order:2, indexed:false, value:1000000000000000000, valueString:1000000000000000000}]}, {name:nonce, type:uint256, order:2, indexed:false, value:1993353796005498457018484395148306483362469188142959731370132988889964756737, valueString:1993353796005498457018484395148306483362469188142959731370132988889964756737}, {name:deadline, type:uint256, order:3, indexed:false, value:1713539758, valueString:1713539758}], transferDetails=[{name:to, type:address, order:1, indexed:false, value:0x00000000009E50a7dDb7a7B0e2ee6604fd120E49, valueString:0x00000000009E50a7dDb7a7B0e2ee6604fd120E49}, {name:requestedAmount, type:uint256, order:2, indexed:false, value:1000000000000000000, valueString:1000000000000000000}], owner=0x6876ea9C360e8452c1aE04A62Ed5E58C8AFe0b2A, witness=F1A7BF3445FA404D4455344F8E1F4219B30F15EE246BDC738092E61C6C681E93, witnessTypeString=ExclusiveDutchOrder witness)DutchOutput(address token,uint256 startAmount,uint256 endAmount,address recipient)ExclusiveDutchOrder(OrderInfo info,uint256 decayStartTime,uint256 decayEndTime,address exclusiveFiller,uint256 exclusivityOverrideBps,address inputToken,uint256 inputStartAmount,uint256 inputEndAmount,DutchOutput[] outputs)OrderInfo(address reactor,address swapper,uint256 nonce,uint256 deadline,address additionalValidationContract,bytes additionalValidationData)TokenPermissions(address token,uint256 amount), signature=0x25A16DF8D8B24D86275469B79F6E4F6A43CFE569356048D121DBF3DAF805D205465E48F6D64E0E79F61A6C4437F087DB33F708487445293B16D05D8488AFFBCD1C )
              • Null: 0x000...001.f163318b( )
              • ERC1967Proxy.23b872dd( )
                • VelocityPass2Token.transferFrom( from=0x6876ea9C360e8452c1aE04A62Ed5E58C8AFe0b2A, to=0x00000000009E50a7dDb7a7B0e2ee6604fd120E49, amount=1000000000000000000 ) => ( True )
                • ETH 0.69864 0x6876ea9c360e8452c1ae04a62ed5e58c8afe0b2a.CALL( )
                • ETH 0.000259996350611456 MEV Bot: 0x000...e49.CALL( )
                • ERC1967Proxy.a9059cbb( )
                  • VelocityPass2Token.transfer( to=0x253e380cAEFbb3445aa73E07c02AC40519Ff8C99, amount=1000000000000000000 ) => ( True )
                  • ERC1967Proxy.70a08231( )
                    • VelocityPass2Token.balanceOf( owner=0x253e380cAEFbb3445aa73E07c02AC40519Ff8C99 ) => ( 45324613679331027153 )
                      File 1 of 7: UniswapV3Pool
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity =0.7.6;
                      import './interfaces/IUniswapV3Pool.sol';
                      import './NoDelegateCall.sol';
                      import './libraries/LowGasSafeMath.sol';
                      import './libraries/SafeCast.sol';
                      import './libraries/Tick.sol';
                      import './libraries/TickBitmap.sol';
                      import './libraries/Position.sol';
                      import './libraries/Oracle.sol';
                      import './libraries/FullMath.sol';
                      import './libraries/FixedPoint128.sol';
                      import './libraries/TransferHelper.sol';
                      import './libraries/TickMath.sol';
                      import './libraries/LiquidityMath.sol';
                      import './libraries/SqrtPriceMath.sol';
                      import './libraries/SwapMath.sol';
                      import './interfaces/IUniswapV3PoolDeployer.sol';
                      import './interfaces/IUniswapV3Factory.sol';
                      import './interfaces/IERC20Minimal.sol';
                      import './interfaces/callback/IUniswapV3MintCallback.sol';
                      import './interfaces/callback/IUniswapV3SwapCallback.sol';
                      import './interfaces/callback/IUniswapV3FlashCallback.sol';
                      contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
                          using LowGasSafeMath for uint256;
                          using LowGasSafeMath for int256;
                          using SafeCast for uint256;
                          using SafeCast for int256;
                          using Tick for mapping(int24 => Tick.Info);
                          using TickBitmap for mapping(int16 => uint256);
                          using Position for mapping(bytes32 => Position.Info);
                          using Position for Position.Info;
                          using Oracle for Oracle.Observation[65535];
                          /// @inheritdoc IUniswapV3PoolImmutables
                          address public immutable override factory;
                          /// @inheritdoc IUniswapV3PoolImmutables
                          address public immutable override token0;
                          /// @inheritdoc IUniswapV3PoolImmutables
                          address public immutable override token1;
                          /// @inheritdoc IUniswapV3PoolImmutables
                          uint24 public immutable override fee;
                          /// @inheritdoc IUniswapV3PoolImmutables
                          int24 public immutable override tickSpacing;
                          /// @inheritdoc IUniswapV3PoolImmutables
                          uint128 public immutable override maxLiquidityPerTick;
                          struct Slot0 {
                              // the current price
                              uint160 sqrtPriceX96;
                              // the current tick
                              int24 tick;
                              // the most-recently updated index of the observations array
                              uint16 observationIndex;
                              // the current maximum number of observations that are being stored
                              uint16 observationCardinality;
                              // the next maximum number of observations to store, triggered in observations.write
                              uint16 observationCardinalityNext;
                              // the current protocol fee as a percentage of the swap fee taken on withdrawal
                              // represented as an integer denominator (1/x)%
                              uint8 feeProtocol;
                              // whether the pool is locked
                              bool unlocked;
                          }
                          /// @inheritdoc IUniswapV3PoolState
                          Slot0 public override slot0;
                          /// @inheritdoc IUniswapV3PoolState
                          uint256 public override feeGrowthGlobal0X128;
                          /// @inheritdoc IUniswapV3PoolState
                          uint256 public override feeGrowthGlobal1X128;
                          // accumulated protocol fees in token0/token1 units
                          struct ProtocolFees {
                              uint128 token0;
                              uint128 token1;
                          }
                          /// @inheritdoc IUniswapV3PoolState
                          ProtocolFees public override protocolFees;
                          /// @inheritdoc IUniswapV3PoolState
                          uint128 public override liquidity;
                          /// @inheritdoc IUniswapV3PoolState
                          mapping(int24 => Tick.Info) public override ticks;
                          /// @inheritdoc IUniswapV3PoolState
                          mapping(int16 => uint256) public override tickBitmap;
                          /// @inheritdoc IUniswapV3PoolState
                          mapping(bytes32 => Position.Info) public override positions;
                          /// @inheritdoc IUniswapV3PoolState
                          Oracle.Observation[65535] public override observations;
                          /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
                          /// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
                          /// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
                          modifier lock() {
                              require(slot0.unlocked, 'LOK');
                              slot0.unlocked = false;
                              _;
                              slot0.unlocked = true;
                          }
                          /// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
                          modifier onlyFactoryOwner() {
                              require(msg.sender == IUniswapV3Factory(factory).owner());
                              _;
                          }
                          constructor() {
                              int24 _tickSpacing;
                              (factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
                              tickSpacing = _tickSpacing;
                              maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
                          }
                          /// @dev Common checks for valid tick inputs.
                          function checkTicks(int24 tickLower, int24 tickUpper) private pure {
                              require(tickLower < tickUpper, 'TLU');
                              require(tickLower >= TickMath.MIN_TICK, 'TLM');
                              require(tickUpper <= TickMath.MAX_TICK, 'TUM');
                          }
                          /// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
                          function _blockTimestamp() internal view virtual returns (uint32) {
                              return uint32(block.timestamp); // truncation is desired
                          }
                          /// @dev Get the pool's balance of token0
                          /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                          /// check
                          function balance0() private view returns (uint256) {
                              (bool success, bytes memory data) =
                                  token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                              require(success && data.length >= 32);
                              return abi.decode(data, (uint256));
                          }
                          /// @dev Get the pool's balance of token1
                          /// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
                          /// check
                          function balance1() private view returns (uint256) {
                              (bool success, bytes memory data) =
                                  token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
                              require(success && data.length >= 32);
                              return abi.decode(data, (uint256));
                          }
                          /// @inheritdoc IUniswapV3PoolDerivedState
                          function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                              external
                              view
                              override
                              noDelegateCall
                              returns (
                                  int56 tickCumulativeInside,
                                  uint160 secondsPerLiquidityInsideX128,
                                  uint32 secondsInside
                              )
                          {
                              checkTicks(tickLower, tickUpper);
                              int56 tickCumulativeLower;
                              int56 tickCumulativeUpper;
                              uint160 secondsPerLiquidityOutsideLowerX128;
                              uint160 secondsPerLiquidityOutsideUpperX128;
                              uint32 secondsOutsideLower;
                              uint32 secondsOutsideUpper;
                              {
                                  Tick.Info storage lower = ticks[tickLower];
                                  Tick.Info storage upper = ticks[tickUpper];
                                  bool initializedLower;
                                  (tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
                                      lower.tickCumulativeOutside,
                                      lower.secondsPerLiquidityOutsideX128,
                                      lower.secondsOutside,
                                      lower.initialized
                                  );
                                  require(initializedLower);
                                  bool initializedUpper;
                                  (tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
                                      upper.tickCumulativeOutside,
                                      upper.secondsPerLiquidityOutsideX128,
                                      upper.secondsOutside,
                                      upper.initialized
                                  );
                                  require(initializedUpper);
                              }
                              Slot0 memory _slot0 = slot0;
                              if (_slot0.tick < tickLower) {
                                  return (
                                      tickCumulativeLower - tickCumulativeUpper,
                                      secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
                                      secondsOutsideLower - secondsOutsideUpper
                                  );
                              } else if (_slot0.tick < tickUpper) {
                                  uint32 time = _blockTimestamp();
                                  (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                      observations.observeSingle(
                                          time,
                                          0,
                                          _slot0.tick,
                                          _slot0.observationIndex,
                                          liquidity,
                                          _slot0.observationCardinality
                                      );
                                  return (
                                      tickCumulative - tickCumulativeLower - tickCumulativeUpper,
                                      secondsPerLiquidityCumulativeX128 -
                                          secondsPerLiquidityOutsideLowerX128 -
                                          secondsPerLiquidityOutsideUpperX128,
                                      time - secondsOutsideLower - secondsOutsideUpper
                                  );
                              } else {
                                  return (
                                      tickCumulativeUpper - tickCumulativeLower,
                                      secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
                                      secondsOutsideUpper - secondsOutsideLower
                                  );
                              }
                          }
                          /// @inheritdoc IUniswapV3PoolDerivedState
                          function observe(uint32[] calldata secondsAgos)
                              external
                              view
                              override
                              noDelegateCall
                              returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
                          {
                              return
                                  observations.observe(
                                      _blockTimestamp(),
                                      secondsAgos,
                                      slot0.tick,
                                      slot0.observationIndex,
                                      liquidity,
                                      slot0.observationCardinality
                                  );
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
                              external
                              override
                              lock
                              noDelegateCall
                          {
                              uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
                              uint16 observationCardinalityNextNew =
                                  observations.grow(observationCardinalityNextOld, observationCardinalityNext);
                              slot0.observationCardinalityNext = observationCardinalityNextNew;
                              if (observationCardinalityNextOld != observationCardinalityNextNew)
                                  emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          /// @dev not locked because it initializes unlocked
                          function initialize(uint160 sqrtPriceX96) external override {
                              require(slot0.sqrtPriceX96 == 0, 'AI');
                              int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
                              (uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
                              slot0 = Slot0({
                                  sqrtPriceX96: sqrtPriceX96,
                                  tick: tick,
                                  observationIndex: 0,
                                  observationCardinality: cardinality,
                                  observationCardinalityNext: cardinalityNext,
                                  feeProtocol: 0,
                                  unlocked: true
                              });
                              emit Initialize(sqrtPriceX96, tick);
                          }
                          struct ModifyPositionParams {
                              // the address that owns the position
                              address owner;
                              // the lower and upper tick of the position
                              int24 tickLower;
                              int24 tickUpper;
                              // any change in liquidity
                              int128 liquidityDelta;
                          }
                          /// @dev Effect some changes to a position
                          /// @param params the position details and the change to the position's liquidity to effect
                          /// @return position a storage pointer referencing the position with the given owner and tick range
                          /// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
                          /// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
                          function _modifyPosition(ModifyPositionParams memory params)
                              private
                              noDelegateCall
                              returns (
                                  Position.Info storage position,
                                  int256 amount0,
                                  int256 amount1
                              )
                          {
                              checkTicks(params.tickLower, params.tickUpper);
                              Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
                              position = _updatePosition(
                                  params.owner,
                                  params.tickLower,
                                  params.tickUpper,
                                  params.liquidityDelta,
                                  _slot0.tick
                              );
                              if (params.liquidityDelta != 0) {
                                  if (_slot0.tick < params.tickLower) {
                                      // current tick is below the passed range; liquidity can only become in range by crossing from left to
                                      // right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
                                      amount0 = SqrtPriceMath.getAmount0Delta(
                                          TickMath.getSqrtRatioAtTick(params.tickLower),
                                          TickMath.getSqrtRatioAtTick(params.tickUpper),
                                          params.liquidityDelta
                                      );
                                  } else if (_slot0.tick < params.tickUpper) {
                                      // current tick is inside the passed range
                                      uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
                                      // write an oracle entry
                                      (slot0.observationIndex, slot0.observationCardinality) = observations.write(
                                          _slot0.observationIndex,
                                          _blockTimestamp(),
                                          _slot0.tick,
                                          liquidityBefore,
                                          _slot0.observationCardinality,
                                          _slot0.observationCardinalityNext
                                      );
                                      amount0 = SqrtPriceMath.getAmount0Delta(
                                          _slot0.sqrtPriceX96,
                                          TickMath.getSqrtRatioAtTick(params.tickUpper),
                                          params.liquidityDelta
                                      );
                                      amount1 = SqrtPriceMath.getAmount1Delta(
                                          TickMath.getSqrtRatioAtTick(params.tickLower),
                                          _slot0.sqrtPriceX96,
                                          params.liquidityDelta
                                      );
                                      liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
                                  } else {
                                      // current tick is above the passed range; liquidity can only become in range by crossing from right to
                                      // left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
                                      amount1 = SqrtPriceMath.getAmount1Delta(
                                          TickMath.getSqrtRatioAtTick(params.tickLower),
                                          TickMath.getSqrtRatioAtTick(params.tickUpper),
                                          params.liquidityDelta
                                      );
                                  }
                              }
                          }
                          /// @dev Gets and updates a position with the given liquidity delta
                          /// @param owner the owner of the position
                          /// @param tickLower the lower tick of the position's tick range
                          /// @param tickUpper the upper tick of the position's tick range
                          /// @param tick the current tick, passed to avoid sloads
                          function _updatePosition(
                              address owner,
                              int24 tickLower,
                              int24 tickUpper,
                              int128 liquidityDelta,
                              int24 tick
                          ) private returns (Position.Info storage position) {
                              position = positions.get(owner, tickLower, tickUpper);
                              uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
                              uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
                              // if we need to update the ticks, do it
                              bool flippedLower;
                              bool flippedUpper;
                              if (liquidityDelta != 0) {
                                  uint32 time = _blockTimestamp();
                                  (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
                                      observations.observeSingle(
                                          time,
                                          0,
                                          slot0.tick,
                                          slot0.observationIndex,
                                          liquidity,
                                          slot0.observationCardinality
                                      );
                                  flippedLower = ticks.update(
                                      tickLower,
                                      tick,
                                      liquidityDelta,
                                      _feeGrowthGlobal0X128,
                                      _feeGrowthGlobal1X128,
                                      secondsPerLiquidityCumulativeX128,
                                      tickCumulative,
                                      time,
                                      false,
                                      maxLiquidityPerTick
                                  );
                                  flippedUpper = ticks.update(
                                      tickUpper,
                                      tick,
                                      liquidityDelta,
                                      _feeGrowthGlobal0X128,
                                      _feeGrowthGlobal1X128,
                                      secondsPerLiquidityCumulativeX128,
                                      tickCumulative,
                                      time,
                                      true,
                                      maxLiquidityPerTick
                                  );
                                  if (flippedLower) {
                                      tickBitmap.flipTick(tickLower, tickSpacing);
                                  }
                                  if (flippedUpper) {
                                      tickBitmap.flipTick(tickUpper, tickSpacing);
                                  }
                              }
                              (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
                                  ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
                              position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
                              // clear any tick data that is no longer needed
                              if (liquidityDelta < 0) {
                                  if (flippedLower) {
                                      ticks.clear(tickLower);
                                  }
                                  if (flippedUpper) {
                                      ticks.clear(tickUpper);
                                  }
                              }
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          /// @dev noDelegateCall is applied indirectly via _modifyPosition
                          function mint(
                              address recipient,
                              int24 tickLower,
                              int24 tickUpper,
                              uint128 amount,
                              bytes calldata data
                          ) external override lock returns (uint256 amount0, uint256 amount1) {
                              require(amount > 0);
                              (, int256 amount0Int, int256 amount1Int) =
                                  _modifyPosition(
                                      ModifyPositionParams({
                                          owner: recipient,
                                          tickLower: tickLower,
                                          tickUpper: tickUpper,
                                          liquidityDelta: int256(amount).toInt128()
                                      })
                                  );
                              amount0 = uint256(amount0Int);
                              amount1 = uint256(amount1Int);
                              uint256 balance0Before;
                              uint256 balance1Before;
                              if (amount0 > 0) balance0Before = balance0();
                              if (amount1 > 0) balance1Before = balance1();
                              IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
                              if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
                              if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
                              emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          function collect(
                              address recipient,
                              int24 tickLower,
                              int24 tickUpper,
                              uint128 amount0Requested,
                              uint128 amount1Requested
                          ) external override lock returns (uint128 amount0, uint128 amount1) {
                              // we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
                              Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
                              amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
                              amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
                              if (amount0 > 0) {
                                  position.tokensOwed0 -= amount0;
                                  TransferHelper.safeTransfer(token0, recipient, amount0);
                              }
                              if (amount1 > 0) {
                                  position.tokensOwed1 -= amount1;
                                  TransferHelper.safeTransfer(token1, recipient, amount1);
                              }
                              emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          /// @dev noDelegateCall is applied indirectly via _modifyPosition
                          function burn(
                              int24 tickLower,
                              int24 tickUpper,
                              uint128 amount
                          ) external override lock returns (uint256 amount0, uint256 amount1) {
                              (Position.Info storage position, int256 amount0Int, int256 amount1Int) =
                                  _modifyPosition(
                                      ModifyPositionParams({
                                          owner: msg.sender,
                                          tickLower: tickLower,
                                          tickUpper: tickUpper,
                                          liquidityDelta: -int256(amount).toInt128()
                                      })
                                  );
                              amount0 = uint256(-amount0Int);
                              amount1 = uint256(-amount1Int);
                              if (amount0 > 0 || amount1 > 0) {
                                  (position.tokensOwed0, position.tokensOwed1) = (
                                      position.tokensOwed0 + uint128(amount0),
                                      position.tokensOwed1 + uint128(amount1)
                                  );
                              }
                              emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
                          }
                          struct SwapCache {
                              // the protocol fee for the input token
                              uint8 feeProtocol;
                              // liquidity at the beginning of the swap
                              uint128 liquidityStart;
                              // the timestamp of the current block
                              uint32 blockTimestamp;
                              // the current value of the tick accumulator, computed only if we cross an initialized tick
                              int56 tickCumulative;
                              // the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
                              uint160 secondsPerLiquidityCumulativeX128;
                              // whether we've computed and cached the above two accumulators
                              bool computedLatestObservation;
                          }
                          // the top level state of the swap, the results of which are recorded in storage at the end
                          struct SwapState {
                              // the amount remaining to be swapped in/out of the input/output asset
                              int256 amountSpecifiedRemaining;
                              // the amount already swapped out/in of the output/input asset
                              int256 amountCalculated;
                              // current sqrt(price)
                              uint160 sqrtPriceX96;
                              // the tick associated with the current price
                              int24 tick;
                              // the global fee growth of the input token
                              uint256 feeGrowthGlobalX128;
                              // amount of input token paid as protocol fee
                              uint128 protocolFee;
                              // the current liquidity in range
                              uint128 liquidity;
                          }
                          struct StepComputations {
                              // the price at the beginning of the step
                              uint160 sqrtPriceStartX96;
                              // the next tick to swap to from the current tick in the swap direction
                              int24 tickNext;
                              // whether tickNext is initialized or not
                              bool initialized;
                              // sqrt(price) for the next tick (1/0)
                              uint160 sqrtPriceNextX96;
                              // how much is being swapped in in this step
                              uint256 amountIn;
                              // how much is being swapped out
                              uint256 amountOut;
                              // how much fee is being paid in
                              uint256 feeAmount;
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          function swap(
                              address recipient,
                              bool zeroForOne,
                              int256 amountSpecified,
                              uint160 sqrtPriceLimitX96,
                              bytes calldata data
                          ) external override noDelegateCall returns (int256 amount0, int256 amount1) {
                              require(amountSpecified != 0, 'AS');
                              Slot0 memory slot0Start = slot0;
                              require(slot0Start.unlocked, 'LOK');
                              require(
                                  zeroForOne
                                      ? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
                                      : sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
                                  'SPL'
                              );
                              slot0.unlocked = false;
                              SwapCache memory cache =
                                  SwapCache({
                                      liquidityStart: liquidity,
                                      blockTimestamp: _blockTimestamp(),
                                      feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
                                      secondsPerLiquidityCumulativeX128: 0,
                                      tickCumulative: 0,
                                      computedLatestObservation: false
                                  });
                              bool exactInput = amountSpecified > 0;
                              SwapState memory state =
                                  SwapState({
                                      amountSpecifiedRemaining: amountSpecified,
                                      amountCalculated: 0,
                                      sqrtPriceX96: slot0Start.sqrtPriceX96,
                                      tick: slot0Start.tick,
                                      feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
                                      protocolFee: 0,
                                      liquidity: cache.liquidityStart
                                  });
                              // continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
                              while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
                                  StepComputations memory step;
                                  step.sqrtPriceStartX96 = state.sqrtPriceX96;
                                  (step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
                                      state.tick,
                                      tickSpacing,
                                      zeroForOne
                                  );
                                  // ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
                                  if (step.tickNext < TickMath.MIN_TICK) {
                                      step.tickNext = TickMath.MIN_TICK;
                                  } else if (step.tickNext > TickMath.MAX_TICK) {
                                      step.tickNext = TickMath.MAX_TICK;
                                  }
                                  // get the price for the next tick
                                  step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
                                  // compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
                                  (state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
                                      state.sqrtPriceX96,
                                      (zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
                                          ? sqrtPriceLimitX96
                                          : step.sqrtPriceNextX96,
                                      state.liquidity,
                                      state.amountSpecifiedRemaining,
                                      fee
                                  );
                                  if (exactInput) {
                                      state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
                                      state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
                                  } else {
                                      state.amountSpecifiedRemaining += step.amountOut.toInt256();
                                      state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
                                  }
                                  // if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
                                  if (cache.feeProtocol > 0) {
                                      uint256 delta = step.feeAmount / cache.feeProtocol;
                                      step.feeAmount -= delta;
                                      state.protocolFee += uint128(delta);
                                  }
                                  // update global fee tracker
                                  if (state.liquidity > 0)
                                      state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
                                  // shift tick if we reached the next price
                                  if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
                                      // if the tick is initialized, run the tick transition
                                      if (step.initialized) {
                                          // check for the placeholder value, which we replace with the actual value the first time the swap
                                          // crosses an initialized tick
                                          if (!cache.computedLatestObservation) {
                                              (cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
                                                  cache.blockTimestamp,
                                                  0,
                                                  slot0Start.tick,
                                                  slot0Start.observationIndex,
                                                  cache.liquidityStart,
                                                  slot0Start.observationCardinality
                                              );
                                              cache.computedLatestObservation = true;
                                          }
                                          int128 liquidityNet =
                                              ticks.cross(
                                                  step.tickNext,
                                                  (zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
                                                  (zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
                                                  cache.secondsPerLiquidityCumulativeX128,
                                                  cache.tickCumulative,
                                                  cache.blockTimestamp
                                              );
                                          // if we're moving leftward, we interpret liquidityNet as the opposite sign
                                          // safe because liquidityNet cannot be type(int128).min
                                          if (zeroForOne) liquidityNet = -liquidityNet;
                                          state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
                                      }
                                      state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
                                  } else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
                                      // recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
                                      state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
                                  }
                              }
                              // update tick and write an oracle entry if the tick change
                              if (state.tick != slot0Start.tick) {
                                  (uint16 observationIndex, uint16 observationCardinality) =
                                      observations.write(
                                          slot0Start.observationIndex,
                                          cache.blockTimestamp,
                                          slot0Start.tick,
                                          cache.liquidityStart,
                                          slot0Start.observationCardinality,
                                          slot0Start.observationCardinalityNext
                                      );
                                  (slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
                                      state.sqrtPriceX96,
                                      state.tick,
                                      observationIndex,
                                      observationCardinality
                                  );
                              } else {
                                  // otherwise just update the price
                                  slot0.sqrtPriceX96 = state.sqrtPriceX96;
                              }
                              // update liquidity if it changed
                              if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
                              // update fee growth global and, if necessary, protocol fees
                              // overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
                              if (zeroForOne) {
                                  feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
                                  if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
                              } else {
                                  feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
                                  if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
                              }
                              (amount0, amount1) = zeroForOne == exactInput
                                  ? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
                                  : (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
                              // do the transfers and collect payment
                              if (zeroForOne) {
                                  if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
                                  uint256 balance0Before = balance0();
                                  IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                  require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
                              } else {
                                  if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
                                  uint256 balance1Before = balance1();
                                  IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
                                  require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
                              }
                              emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
                              slot0.unlocked = true;
                          }
                          /// @inheritdoc IUniswapV3PoolActions
                          function flash(
                              address recipient,
                              uint256 amount0,
                              uint256 amount1,
                              bytes calldata data
                          ) external override lock noDelegateCall {
                              uint128 _liquidity = liquidity;
                              require(_liquidity > 0, 'L');
                              uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
                              uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
                              uint256 balance0Before = balance0();
                              uint256 balance1Before = balance1();
                              if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
                              if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
                              IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
                              uint256 balance0After = balance0();
                              uint256 balance1After = balance1();
                              require(balance0Before.add(fee0) <= balance0After, 'F0');
                              require(balance1Before.add(fee1) <= balance1After, 'F1');
                              // sub is safe because we know balanceAfter is gt balanceBefore by at least fee
                              uint256 paid0 = balance0After - balance0Before;
                              uint256 paid1 = balance1After - balance1Before;
                              if (paid0 > 0) {
                                  uint8 feeProtocol0 = slot0.feeProtocol % 16;
                                  uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
                                  if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
                                  feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
                              }
                              if (paid1 > 0) {
                                  uint8 feeProtocol1 = slot0.feeProtocol >> 4;
                                  uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
                                  if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
                                  feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
                              }
                              emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
                          }
                          /// @inheritdoc IUniswapV3PoolOwnerActions
                          function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
                              require(
                                  (feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
                                      (feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
                              );
                              uint8 feeProtocolOld = slot0.feeProtocol;
                              slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
                              emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
                          }
                          /// @inheritdoc IUniswapV3PoolOwnerActions
                          function collectProtocol(
                              address recipient,
                              uint128 amount0Requested,
                              uint128 amount1Requested
                          ) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
                              amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
                              amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
                              if (amount0 > 0) {
                                  if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
                                  protocolFees.token0 -= amount0;
                                  TransferHelper.safeTransfer(token0, recipient, amount0);
                              }
                              if (amount1 > 0) {
                                  if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
                                  protocolFees.token1 -= amount1;
                                  TransferHelper.safeTransfer(token1, recipient, amount1);
                              }
                              emit CollectProtocol(msg.sender, recipient, amount0, amount1);
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      import './pool/IUniswapV3PoolImmutables.sol';
                      import './pool/IUniswapV3PoolState.sol';
                      import './pool/IUniswapV3PoolDerivedState.sol';
                      import './pool/IUniswapV3PoolActions.sol';
                      import './pool/IUniswapV3PoolOwnerActions.sol';
                      import './pool/IUniswapV3PoolEvents.sol';
                      /// @title The interface for a Uniswap V3 Pool
                      /// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
                      /// to the ERC20 specification
                      /// @dev The pool interface is broken up into many smaller pieces
                      interface IUniswapV3Pool is
                          IUniswapV3PoolImmutables,
                          IUniswapV3PoolState,
                          IUniswapV3PoolDerivedState,
                          IUniswapV3PoolActions,
                          IUniswapV3PoolOwnerActions,
                          IUniswapV3PoolEvents
                      {
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity =0.7.6;
                      /// @title Prevents delegatecall to a contract
                      /// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
                      abstract contract NoDelegateCall {
                          /// @dev The original address of this contract
                          address private immutable original;
                          constructor() {
                              // Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
                              // In other words, this variable won't change when it's checked at runtime.
                              original = address(this);
                          }
                          /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
                          ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
                          function checkNotDelegateCall() private view {
                              require(address(this) == original);
                          }
                          /// @notice Prevents delegatecall into the modified method
                          modifier noDelegateCall() {
                              checkNotDelegateCall();
                              _;
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.7.0;
                      /// @title Optimized overflow and underflow safe math operations
                      /// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
                      library LowGasSafeMath {
                          /// @notice Returns x + y, reverts if sum overflows uint256
                          /// @param x The augend
                          /// @param y The addend
                          /// @return z The sum of x and y
                          function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              require((z = x + y) >= x);
                          }
                          /// @notice Returns x - y, reverts if underflows
                          /// @param x The minuend
                          /// @param y The subtrahend
                          /// @return z The difference of x and y
                          function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              require((z = x - y) <= x);
                          }
                          /// @notice Returns x * y, reverts if overflows
                          /// @param x The multiplicand
                          /// @param y The multiplier
                          /// @return z The product of x and y
                          function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              require(x == 0 || (z = x * y) / x == y);
                          }
                          /// @notice Returns x + y, reverts if overflows or underflows
                          /// @param x The augend
                          /// @param y The addend
                          /// @return z The sum of x and y
                          function add(int256 x, int256 y) internal pure returns (int256 z) {
                              require((z = x + y) >= x == (y >= 0));
                          }
                          /// @notice Returns x - y, reverts if overflows or underflows
                          /// @param x The minuend
                          /// @param y The subtrahend
                          /// @return z The difference of x and y
                          function sub(int256 x, int256 y) internal pure returns (int256 z) {
                              require((z = x - y) <= x == (y >= 0));
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Safe casting methods
                      /// @notice Contains methods for safely casting between types
                      library SafeCast {
                          /// @notice Cast a uint256 to a uint160, revert on overflow
                          /// @param y The uint256 to be downcasted
                          /// @return z The downcasted integer, now type uint160
                          function toUint160(uint256 y) internal pure returns (uint160 z) {
                              require((z = uint160(y)) == y);
                          }
                          /// @notice Cast a int256 to a int128, revert on overflow or underflow
                          /// @param y The int256 to be downcasted
                          /// @return z The downcasted integer, now type int128
                          function toInt128(int256 y) internal pure returns (int128 z) {
                              require((z = int128(y)) == y);
                          }
                          /// @notice Cast a uint256 to a int256, revert on overflow
                          /// @param y The uint256 to be casted
                          /// @return z The casted integer, now type int256
                          function toInt256(uint256 y) internal pure returns (int256 z) {
                              require(y < 2**255);
                              z = int256(y);
                          }
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity >=0.5.0;
                      import './LowGasSafeMath.sol';
                      import './SafeCast.sol';
                      import './TickMath.sol';
                      import './LiquidityMath.sol';
                      /// @title Tick
                      /// @notice Contains functions for managing tick processes and relevant calculations
                      library Tick {
                          using LowGasSafeMath for int256;
                          using SafeCast for int256;
                          // info stored for each initialized individual tick
                          struct Info {
                              // the total position liquidity that references this tick
                              uint128 liquidityGross;
                              // amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
                              int128 liquidityNet;
                              // fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                              // only has relative meaning, not absolute — the value depends on when the tick is initialized
                              uint256 feeGrowthOutside0X128;
                              uint256 feeGrowthOutside1X128;
                              // the cumulative tick value on the other side of the tick
                              int56 tickCumulativeOutside;
                              // the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
                              // only has relative meaning, not absolute — the value depends on when the tick is initialized
                              uint160 secondsPerLiquidityOutsideX128;
                              // the seconds spent on the other side of the tick (relative to the current tick)
                              // only has relative meaning, not absolute — the value depends on when the tick is initialized
                              uint32 secondsOutside;
                              // true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
                              // these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
                              bool initialized;
                          }
                          /// @notice Derives max liquidity per tick from given tick spacing
                          /// @dev Executed within the pool constructor
                          /// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
                          ///     e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
                          /// @return The max liquidity per tick
                          function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
                              int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
                              int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
                              uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
                              return type(uint128).max / numTicks;
                          }
                          /// @notice Retrieves fee growth data
                          /// @param self The mapping containing all tick information for initialized ticks
                          /// @param tickLower The lower tick boundary of the position
                          /// @param tickUpper The upper tick boundary of the position
                          /// @param tickCurrent The current tick
                          /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                          /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                          /// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                          /// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                          function getFeeGrowthInside(
                              mapping(int24 => Tick.Info) storage self,
                              int24 tickLower,
                              int24 tickUpper,
                              int24 tickCurrent,
                              uint256 feeGrowthGlobal0X128,
                              uint256 feeGrowthGlobal1X128
                          ) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
                              Info storage lower = self[tickLower];
                              Info storage upper = self[tickUpper];
                              // calculate fee growth below
                              uint256 feeGrowthBelow0X128;
                              uint256 feeGrowthBelow1X128;
                              if (tickCurrent >= tickLower) {
                                  feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
                                  feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
                              } else {
                                  feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
                                  feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
                              }
                              // calculate fee growth above
                              uint256 feeGrowthAbove0X128;
                              uint256 feeGrowthAbove1X128;
                              if (tickCurrent < tickUpper) {
                                  feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
                                  feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
                              } else {
                                  feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
                                  feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
                              }
                              feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
                              feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
                          }
                          /// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
                          /// @param self The mapping containing all tick information for initialized ticks
                          /// @param tick The tick that will be updated
                          /// @param tickCurrent The current tick
                          /// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
                          /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                          /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                          /// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
                          /// @param time The current block timestamp cast to a uint32
                          /// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
                          /// @param maxLiquidity The maximum liquidity allocation for a single tick
                          /// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
                          function update(
                              mapping(int24 => Tick.Info) storage self,
                              int24 tick,
                              int24 tickCurrent,
                              int128 liquidityDelta,
                              uint256 feeGrowthGlobal0X128,
                              uint256 feeGrowthGlobal1X128,
                              uint160 secondsPerLiquidityCumulativeX128,
                              int56 tickCumulative,
                              uint32 time,
                              bool upper,
                              uint128 maxLiquidity
                          ) internal returns (bool flipped) {
                              Tick.Info storage info = self[tick];
                              uint128 liquidityGrossBefore = info.liquidityGross;
                              uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
                              require(liquidityGrossAfter <= maxLiquidity, 'LO');
                              flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
                              if (liquidityGrossBefore == 0) {
                                  // by convention, we assume that all growth before a tick was initialized happened _below_ the tick
                                  if (tick <= tickCurrent) {
                                      info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
                                      info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
                                      info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
                                      info.tickCumulativeOutside = tickCumulative;
                                      info.secondsOutside = time;
                                  }
                                  info.initialized = true;
                              }
                              info.liquidityGross = liquidityGrossAfter;
                              // when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
                              info.liquidityNet = upper
                                  ? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
                                  : int256(info.liquidityNet).add(liquidityDelta).toInt128();
                          }
                          /// @notice Clears tick data
                          /// @param self The mapping containing all initialized tick information for initialized ticks
                          /// @param tick The tick that will be cleared
                          function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
                              delete self[tick];
                          }
                          /// @notice Transitions to next tick as needed by price movement
                          /// @param self The mapping containing all tick information for initialized ticks
                          /// @param tick The destination tick of the transition
                          /// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
                          /// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
                          /// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
                          /// @param time The current block.timestamp
                          /// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
                          function cross(
                              mapping(int24 => Tick.Info) storage self,
                              int24 tick,
                              uint256 feeGrowthGlobal0X128,
                              uint256 feeGrowthGlobal1X128,
                              uint160 secondsPerLiquidityCumulativeX128,
                              int56 tickCumulative,
                              uint32 time
                          ) internal returns (int128 liquidityNet) {
                              Tick.Info storage info = self[tick];
                              info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
                              info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
                              info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
                              info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
                              info.secondsOutside = time - info.secondsOutside;
                              liquidityNet = info.liquidityNet;
                          }
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity >=0.5.0;
                      import './BitMath.sol';
                      /// @title Packed tick initialized state library
                      /// @notice Stores a packed mapping of tick index to its initialized state
                      /// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
                      library TickBitmap {
                          /// @notice Computes the position in the mapping where the initialized bit for a tick lives
                          /// @param tick The tick for which to compute the position
                          /// @return wordPos The key in the mapping containing the word in which the bit is stored
                          /// @return bitPos The bit position in the word where the flag is stored
                          function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
                              wordPos = int16(tick >> 8);
                              bitPos = uint8(tick % 256);
                          }
                          /// @notice Flips the initialized state for a given tick from false to true, or vice versa
                          /// @param self The mapping in which to flip the tick
                          /// @param tick The tick to flip
                          /// @param tickSpacing The spacing between usable ticks
                          function flipTick(
                              mapping(int16 => uint256) storage self,
                              int24 tick,
                              int24 tickSpacing
                          ) internal {
                              require(tick % tickSpacing == 0); // ensure that the tick is spaced
                              (int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
                              uint256 mask = 1 << bitPos;
                              self[wordPos] ^= mask;
                          }
                          /// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
                          /// to the left (less than or equal to) or right (greater than) of the given tick
                          /// @param self The mapping in which to compute the next initialized tick
                          /// @param tick The starting tick
                          /// @param tickSpacing The spacing between usable ticks
                          /// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
                          /// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
                          /// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
                          function nextInitializedTickWithinOneWord(
                              mapping(int16 => uint256) storage self,
                              int24 tick,
                              int24 tickSpacing,
                              bool lte
                          ) internal view returns (int24 next, bool initialized) {
                              int24 compressed = tick / tickSpacing;
                              if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
                              if (lte) {
                                  (int16 wordPos, uint8 bitPos) = position(compressed);
                                  // all the 1s at or to the right of the current bitPos
                                  uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
                                  uint256 masked = self[wordPos] & mask;
                                  // if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
                                  initialized = masked != 0;
                                  // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                  next = initialized
                                      ? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
                                      : (compressed - int24(bitPos)) * tickSpacing;
                              } else {
                                  // start from the word of the next tick, since the current tick state doesn't matter
                                  (int16 wordPos, uint8 bitPos) = position(compressed + 1);
                                  // all the 1s at or to the left of the bitPos
                                  uint256 mask = ~((1 << bitPos) - 1);
                                  uint256 masked = self[wordPos] & mask;
                                  // if there are no initialized ticks to the left of the current tick, return leftmost in the word
                                  initialized = masked != 0;
                                  // overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
                                  next = initialized
                                      ? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
                                      : (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
                              }
                          }
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity >=0.5.0;
                      import './FullMath.sol';
                      import './FixedPoint128.sol';
                      import './LiquidityMath.sol';
                      /// @title Position
                      /// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
                      /// @dev Positions store additional state for tracking fees owed to the position
                      library Position {
                          // info stored for each user's position
                          struct Info {
                              // the amount of liquidity owned by this position
                              uint128 liquidity;
                              // fee growth per unit of liquidity as of the last update to liquidity or fees owed
                              uint256 feeGrowthInside0LastX128;
                              uint256 feeGrowthInside1LastX128;
                              // the fees owed to the position owner in token0/token1
                              uint128 tokensOwed0;
                              uint128 tokensOwed1;
                          }
                          /// @notice Returns the Info struct of a position, given an owner and position boundaries
                          /// @param self The mapping containing all user positions
                          /// @param owner The address of the position owner
                          /// @param tickLower The lower tick boundary of the position
                          /// @param tickUpper The upper tick boundary of the position
                          /// @return position The position info struct of the given owners' position
                          function get(
                              mapping(bytes32 => Info) storage self,
                              address owner,
                              int24 tickLower,
                              int24 tickUpper
                          ) internal view returns (Position.Info storage position) {
                              position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
                          }
                          /// @notice Credits accumulated fees to a user's position
                          /// @param self The individual position to update
                          /// @param liquidityDelta The change in pool liquidity as a result of the position update
                          /// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
                          /// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
                          function update(
                              Info storage self,
                              int128 liquidityDelta,
                              uint256 feeGrowthInside0X128,
                              uint256 feeGrowthInside1X128
                          ) internal {
                              Info memory _self = self;
                              uint128 liquidityNext;
                              if (liquidityDelta == 0) {
                                  require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
                                  liquidityNext = _self.liquidity;
                              } else {
                                  liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
                              }
                              // calculate accumulated fees
                              uint128 tokensOwed0 =
                                  uint128(
                                      FullMath.mulDiv(
                                          feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
                                          _self.liquidity,
                                          FixedPoint128.Q128
                                      )
                                  );
                              uint128 tokensOwed1 =
                                  uint128(
                                      FullMath.mulDiv(
                                          feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
                                          _self.liquidity,
                                          FixedPoint128.Q128
                                      )
                                  );
                              // update the position
                              if (liquidityDelta != 0) self.liquidity = liquidityNext;
                              self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
                              self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
                              if (tokensOwed0 > 0 || tokensOwed1 > 0) {
                                  // overflow is acceptable, have to withdraw before you hit type(uint128).max fees
                                  self.tokensOwed0 += tokensOwed0;
                                  self.tokensOwed1 += tokensOwed1;
                              }
                          }
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity >=0.5.0;
                      /// @title Oracle
                      /// @notice Provides price and liquidity data useful for a wide variety of system designs
                      /// @dev Instances of stored oracle data, "observations", are collected in the oracle array
                      /// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
                      /// maximum length of the oracle array. New slots will be added when the array is fully populated.
                      /// Observations are overwritten when the full length of the oracle array is populated.
                      /// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
                      library Oracle {
                          struct Observation {
                              // the block timestamp of the observation
                              uint32 blockTimestamp;
                              // the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
                              int56 tickCumulative;
                              // the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
                              uint160 secondsPerLiquidityCumulativeX128;
                              // whether or not the observation is initialized
                              bool initialized;
                          }
                          /// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
                          /// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
                          /// @param last The specified observation to be transformed
                          /// @param blockTimestamp The timestamp of the new observation
                          /// @param tick The active tick at the time of the new observation
                          /// @param liquidity The total in-range liquidity at the time of the new observation
                          /// @return Observation The newly populated observation
                          function transform(
                              Observation memory last,
                              uint32 blockTimestamp,
                              int24 tick,
                              uint128 liquidity
                          ) private pure returns (Observation memory) {
                              uint32 delta = blockTimestamp - last.blockTimestamp;
                              return
                                  Observation({
                                      blockTimestamp: blockTimestamp,
                                      tickCumulative: last.tickCumulative + int56(tick) * delta,
                                      secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
                                          ((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
                                      initialized: true
                                  });
                          }
                          /// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
                          /// @param self The stored oracle array
                          /// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
                          /// @return cardinality The number of populated elements in the oracle array
                          /// @return cardinalityNext The new length of the oracle array, independent of population
                          function initialize(Observation[65535] storage self, uint32 time)
                              internal
                              returns (uint16 cardinality, uint16 cardinalityNext)
                          {
                              self[0] = Observation({
                                  blockTimestamp: time,
                                  tickCumulative: 0,
                                  secondsPerLiquidityCumulativeX128: 0,
                                  initialized: true
                              });
                              return (1, 1);
                          }
                          /// @notice Writes an oracle observation to the array
                          /// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
                          /// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
                          /// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
                          /// @param self The stored oracle array
                          /// @param index The index of the observation that was most recently written to the observations array
                          /// @param blockTimestamp The timestamp of the new observation
                          /// @param tick The active tick at the time of the new observation
                          /// @param liquidity The total in-range liquidity at the time of the new observation
                          /// @param cardinality The number of populated elements in the oracle array
                          /// @param cardinalityNext The new length of the oracle array, independent of population
                          /// @return indexUpdated The new index of the most recently written element in the oracle array
                          /// @return cardinalityUpdated The new cardinality of the oracle array
                          function write(
                              Observation[65535] storage self,
                              uint16 index,
                              uint32 blockTimestamp,
                              int24 tick,
                              uint128 liquidity,
                              uint16 cardinality,
                              uint16 cardinalityNext
                          ) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
                              Observation memory last = self[index];
                              // early return if we've already written an observation this block
                              if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
                              // if the conditions are right, we can bump the cardinality
                              if (cardinalityNext > cardinality && index == (cardinality - 1)) {
                                  cardinalityUpdated = cardinalityNext;
                              } else {
                                  cardinalityUpdated = cardinality;
                              }
                              indexUpdated = (index + 1) % cardinalityUpdated;
                              self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
                          }
                          /// @notice Prepares the oracle array to store up to `next` observations
                          /// @param self The stored oracle array
                          /// @param current The current next cardinality of the oracle array
                          /// @param next The proposed next cardinality which will be populated in the oracle array
                          /// @return next The next cardinality which will be populated in the oracle array
                          function grow(
                              Observation[65535] storage self,
                              uint16 current,
                              uint16 next
                          ) internal returns (uint16) {
                              require(current > 0, 'I');
                              // no-op if the passed next value isn't greater than the current next value
                              if (next <= current) return current;
                              // store in each slot to prevent fresh SSTOREs in swaps
                              // this data will not be used because the initialized boolean is still false
                              for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
                              return next;
                          }
                          /// @notice comparator for 32-bit timestamps
                          /// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
                          /// @param time A timestamp truncated to 32 bits
                          /// @param a A comparison timestamp from which to determine the relative position of `time`
                          /// @param b From which to determine the relative position of `time`
                          /// @return bool Whether `a` is chronologically <= `b`
                          function lte(
                              uint32 time,
                              uint32 a,
                              uint32 b
                          ) private pure returns (bool) {
                              // if there hasn't been overflow, no need to adjust
                              if (a <= time && b <= time) return a <= b;
                              uint256 aAdjusted = a > time ? a : a + 2**32;
                              uint256 bAdjusted = b > time ? b : b + 2**32;
                              return aAdjusted <= bAdjusted;
                          }
                          /// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
                          /// The result may be the same observation, or adjacent observations.
                          /// @dev The answer must be contained in the array, used when the target is located within the stored observation
                          /// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
                          /// @param self The stored oracle array
                          /// @param time The current block.timestamp
                          /// @param target The timestamp at which the reserved observation should be for
                          /// @param index The index of the observation that was most recently written to the observations array
                          /// @param cardinality The number of populated elements in the oracle array
                          /// @return beforeOrAt The observation recorded before, or at, the target
                          /// @return atOrAfter The observation recorded at, or after, the target
                          function binarySearch(
                              Observation[65535] storage self,
                              uint32 time,
                              uint32 target,
                              uint16 index,
                              uint16 cardinality
                          ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                              uint256 l = (index + 1) % cardinality; // oldest observation
                              uint256 r = l + cardinality - 1; // newest observation
                              uint256 i;
                              while (true) {
                                  i = (l + r) / 2;
                                  beforeOrAt = self[i % cardinality];
                                  // we've landed on an uninitialized tick, keep searching higher (more recently)
                                  if (!beforeOrAt.initialized) {
                                      l = i + 1;
                                      continue;
                                  }
                                  atOrAfter = self[(i + 1) % cardinality];
                                  bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
                                  // check if we've found the answer!
                                  if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
                                  if (!targetAtOrAfter) r = i - 1;
                                  else l = i + 1;
                              }
                          }
                          /// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
                          /// @dev Assumes there is at least 1 initialized observation.
                          /// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
                          /// @param self The stored oracle array
                          /// @param time The current block.timestamp
                          /// @param target The timestamp at which the reserved observation should be for
                          /// @param tick The active tick at the time of the returned or simulated observation
                          /// @param index The index of the observation that was most recently written to the observations array
                          /// @param liquidity The total pool liquidity at the time of the call
                          /// @param cardinality The number of populated elements in the oracle array
                          /// @return beforeOrAt The observation which occurred at, or before, the given timestamp
                          /// @return atOrAfter The observation which occurred at, or after, the given timestamp
                          function getSurroundingObservations(
                              Observation[65535] storage self,
                              uint32 time,
                              uint32 target,
                              int24 tick,
                              uint16 index,
                              uint128 liquidity,
                              uint16 cardinality
                          ) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
                              // optimistically set before to the newest observation
                              beforeOrAt = self[index];
                              // if the target is chronologically at or after the newest observation, we can early return
                              if (lte(time, beforeOrAt.blockTimestamp, target)) {
                                  if (beforeOrAt.blockTimestamp == target) {
                                      // if newest observation equals target, we're in the same block, so we can ignore atOrAfter
                                      return (beforeOrAt, atOrAfter);
                                  } else {
                                      // otherwise, we need to transform
                                      return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
                                  }
                              }
                              // now, set before to the oldest observation
                              beforeOrAt = self[(index + 1) % cardinality];
                              if (!beforeOrAt.initialized) beforeOrAt = self[0];
                              // ensure that the target is chronologically at or after the oldest observation
                              require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
                              // if we've reached this point, we have to binary search
                              return binarySearch(self, time, target, index, cardinality);
                          }
                          /// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
                          /// 0 may be passed as `secondsAgo' to return the current cumulative values.
                          /// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
                          /// at exactly the timestamp between the two observations.
                          /// @param self The stored oracle array
                          /// @param time The current block timestamp
                          /// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
                          /// @param tick The current tick
                          /// @param index The index of the observation that was most recently written to the observations array
                          /// @param liquidity The current in-range pool liquidity
                          /// @param cardinality The number of populated elements in the oracle array
                          /// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
                          /// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
                          function observeSingle(
                              Observation[65535] storage self,
                              uint32 time,
                              uint32 secondsAgo,
                              int24 tick,
                              uint16 index,
                              uint128 liquidity,
                              uint16 cardinality
                          ) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
                              if (secondsAgo == 0) {
                                  Observation memory last = self[index];
                                  if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
                                  return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
                              }
                              uint32 target = time - secondsAgo;
                              (Observation memory beforeOrAt, Observation memory atOrAfter) =
                                  getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
                              if (target == beforeOrAt.blockTimestamp) {
                                  // we're at the left boundary
                                  return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
                              } else if (target == atOrAfter.blockTimestamp) {
                                  // we're at the right boundary
                                  return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
                              } else {
                                  // we're in the middle
                                  uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
                                  uint32 targetDelta = target - beforeOrAt.blockTimestamp;
                                  return (
                                      beforeOrAt.tickCumulative +
                                          ((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
                                          targetDelta,
                                      beforeOrAt.secondsPerLiquidityCumulativeX128 +
                                          uint160(
                                              (uint256(
                                                  atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
                                              ) * targetDelta) / observationTimeDelta
                                          )
                                  );
                              }
                          }
                          /// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
                          /// @dev Reverts if `secondsAgos` > oldest observation
                          /// @param self The stored oracle array
                          /// @param time The current block.timestamp
                          /// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
                          /// @param tick The current tick
                          /// @param index The index of the observation that was most recently written to the observations array
                          /// @param liquidity The current in-range pool liquidity
                          /// @param cardinality The number of populated elements in the oracle array
                          /// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
                          /// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
                          function observe(
                              Observation[65535] storage self,
                              uint32 time,
                              uint32[] memory secondsAgos,
                              int24 tick,
                              uint16 index,
                              uint128 liquidity,
                              uint16 cardinality
                          ) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
                              require(cardinality > 0, 'I');
                              tickCumulatives = new int56[](secondsAgos.length);
                              secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
                              for (uint256 i = 0; i < secondsAgos.length; i++) {
                                  (tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
                                      self,
                                      time,
                                      secondsAgos[i],
                                      tick,
                                      index,
                                      liquidity,
                                      cardinality
                                  );
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity >=0.4.0;
                      /// @title Contains 512-bit math functions
                      /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
                      /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
                      library FullMath {
                          /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                          /// @param a The multiplicand
                          /// @param b The multiplier
                          /// @param denominator The divisor
                          /// @return result The 256-bit result
                          /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
                          function mulDiv(
                              uint256 a,
                              uint256 b,
                              uint256 denominator
                          ) internal pure returns (uint256 result) {
                              // 512-bit multiply [prod1 prod0] = a * b
                              // Compute the product mod 2**256 and mod 2**256 - 1
                              // then use the Chinese Remainder Theorem to reconstruct
                              // the 512 bit result. The result is stored in two 256
                              // variables such that product = prod1 * 2**256 + prod0
                              uint256 prod0; // Least significant 256 bits of the product
                              uint256 prod1; // Most significant 256 bits of the product
                              assembly {
                                  let mm := mulmod(a, b, not(0))
                                  prod0 := mul(a, b)
                                  prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                              }
                              // Handle non-overflow cases, 256 by 256 division
                              if (prod1 == 0) {
                                  require(denominator > 0);
                                  assembly {
                                      result := div(prod0, denominator)
                                  }
                                  return result;
                              }
                              // Make sure the result is less than 2**256.
                              // Also prevents denominator == 0
                              require(denominator > prod1);
                              ///////////////////////////////////////////////
                              // 512 by 256 division.
                              ///////////////////////////////////////////////
                              // Make division exact by subtracting the remainder from [prod1 prod0]
                              // Compute remainder using mulmod
                              uint256 remainder;
                              assembly {
                                  remainder := mulmod(a, b, denominator)
                              }
                              // Subtract 256 bit number from 512 bit number
                              assembly {
                                  prod1 := sub(prod1, gt(remainder, prod0))
                                  prod0 := sub(prod0, remainder)
                              }
                              // Factor powers of two out of denominator
                              // Compute largest power of two divisor of denominator.
                              // Always >= 1.
                              uint256 twos = -denominator & denominator;
                              // Divide denominator by power of two
                              assembly {
                                  denominator := div(denominator, twos)
                              }
                              // Divide [prod1 prod0] by the factors of two
                              assembly {
                                  prod0 := div(prod0, twos)
                              }
                              // Shift in bits from prod1 into prod0. For this we need
                              // to flip `twos` such that it is 2**256 / twos.
                              // If twos is zero, then it becomes one
                              assembly {
                                  twos := add(div(sub(0, twos), twos), 1)
                              }
                              prod0 |= prod1 * twos;
                              // Invert denominator mod 2**256
                              // Now that denominator is an odd number, it has an inverse
                              // modulo 2**256 such that denominator * inv = 1 mod 2**256.
                              // Compute the inverse by starting with a seed that is correct
                              // correct for four bits. That is, denominator * inv = 1 mod 2**4
                              uint256 inv = (3 * denominator) ^ 2;
                              // Now use Newton-Raphson iteration to improve the precision.
                              // Thanks to Hensel's lifting lemma, this also works in modular
                              // arithmetic, doubling the correct bits in each step.
                              inv *= 2 - denominator * inv; // inverse mod 2**8
                              inv *= 2 - denominator * inv; // inverse mod 2**16
                              inv *= 2 - denominator * inv; // inverse mod 2**32
                              inv *= 2 - denominator * inv; // inverse mod 2**64
                              inv *= 2 - denominator * inv; // inverse mod 2**128
                              inv *= 2 - denominator * inv; // inverse mod 2**256
                              // Because the division is now exact we can divide by multiplying
                              // with the modular inverse of denominator. This will give us the
                              // correct result modulo 2**256. Since the precoditions guarantee
                              // that the outcome is less than 2**256, this is the final result.
                              // We don't need to compute the high bits of the result and prod1
                              // is no longer required.
                              result = prod0 * inv;
                              return result;
                          }
                          /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                          /// @param a The multiplicand
                          /// @param b The multiplier
                          /// @param denominator The divisor
                          /// @return result The 256-bit result
                          function mulDivRoundingUp(
                              uint256 a,
                              uint256 b,
                              uint256 denominator
                          ) internal pure returns (uint256 result) {
                              result = mulDiv(a, b, denominator);
                              if (mulmod(a, b, denominator) > 0) {
                                  require(result < type(uint256).max);
                                  result++;
                              }
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.4.0;
                      /// @title FixedPoint128
                      /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                      library FixedPoint128 {
                          uint256 internal constant Q128 = 0x100000000000000000000000000000000;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.6.0;
                      import '../interfaces/IERC20Minimal.sol';
                      /// @title TransferHelper
                      /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
                      library TransferHelper {
                          /// @notice Transfers tokens from msg.sender to a recipient
                          /// @dev Calls transfer on token contract, errors with TF if transfer fails
                          /// @param token The contract address of the token which will be transferred
                          /// @param to The recipient of the transfer
                          /// @param value The value of the transfer
                          function safeTransfer(
                              address token,
                              address to,
                              uint256 value
                          ) internal {
                              (bool success, bytes memory data) =
                                  token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
                              require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Math library for computing sqrt prices from ticks and vice versa
                      /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
                      /// prices between 2**-128 and 2**128
                      library TickMath {
                          /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
                          int24 internal constant MIN_TICK = -887272;
                          /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
                          int24 internal constant MAX_TICK = -MIN_TICK;
                          /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
                          uint160 internal constant MIN_SQRT_RATIO = 4295128739;
                          /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
                          uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
                          /// @notice Calculates sqrt(1.0001^tick) * 2^96
                          /// @dev Throws if |tick| > max tick
                          /// @param tick The input tick for the above formula
                          /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
                          /// at the given tick
                          function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
                              uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
                              require(absTick <= uint256(MAX_TICK), 'T');
                              uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
                              if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
                              if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
                              if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
                              if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
                              if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
                              if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
                              if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
                              if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
                              if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
                              if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
                              if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
                              if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
                              if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
                              if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
                              if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
                              if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
                              if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
                              if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
                              if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
                              if (tick > 0) ratio = type(uint256).max / ratio;
                              // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                              // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                              // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                              sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
                          }
                          /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
                          /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
                          /// ever return.
                          /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
                          /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
                          function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
                              // second inequality must be < because the price can never reach the price at the max tick
                              require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
                              uint256 ratio = uint256(sqrtPriceX96) << 32;
                              uint256 r = ratio;
                              uint256 msb = 0;
                              assembly {
                                  let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := shl(5, gt(r, 0xFFFFFFFF))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := shl(4, gt(r, 0xFFFF))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := shl(3, gt(r, 0xFF))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := shl(2, gt(r, 0xF))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := shl(1, gt(r, 0x3))
                                  msb := or(msb, f)
                                  r := shr(f, r)
                              }
                              assembly {
                                  let f := gt(r, 0x1)
                                  msb := or(msb, f)
                              }
                              if (msb >= 128) r = ratio >> (msb - 127);
                              else r = ratio << (127 - msb);
                              int256 log_2 = (int256(msb) - 128) << 64;
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(63, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(62, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(61, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(60, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(59, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(58, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(57, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(56, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(55, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(54, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(53, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(52, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(51, f))
                                  r := shr(f, r)
                              }
                              assembly {
                                  r := shr(127, mul(r, r))
                                  let f := shr(128, r)
                                  log_2 := or(log_2, shl(50, f))
                              }
                              int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
                              int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
                              int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
                              tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Math library for liquidity
                      library LiquidityMath {
                          /// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
                          /// @param x The liquidity before change
                          /// @param y The delta by which liquidity should be changed
                          /// @return z The liquidity delta
                          function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
                              if (y < 0) {
                                  require((z = x - uint128(-y)) < x, 'LS');
                              } else {
                                  require((z = x + uint128(y)) >= x, 'LA');
                              }
                          }
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity >=0.5.0;
                      import './LowGasSafeMath.sol';
                      import './SafeCast.sol';
                      import './FullMath.sol';
                      import './UnsafeMath.sol';
                      import './FixedPoint96.sol';
                      /// @title Functions based on Q64.96 sqrt price and liquidity
                      /// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
                      library SqrtPriceMath {
                          using LowGasSafeMath for uint256;
                          using SafeCast for uint256;
                          /// @notice Gets the next sqrt price given a delta of token0
                          /// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
                          /// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
                          /// price less in order to not send too much output.
                          /// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
                          /// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
                          /// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
                          /// @param liquidity The amount of usable liquidity
                          /// @param amount How much of token0 to add or remove from virtual reserves
                          /// @param add Whether to add or remove the amount of token0
                          /// @return The price after adding or removing amount, depending on add
                          function getNextSqrtPriceFromAmount0RoundingUp(
                              uint160 sqrtPX96,
                              uint128 liquidity,
                              uint256 amount,
                              bool add
                          ) internal pure returns (uint160) {
                              // we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
                              if (amount == 0) return sqrtPX96;
                              uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                              if (add) {
                                  uint256 product;
                                  if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
                                      uint256 denominator = numerator1 + product;
                                      if (denominator >= numerator1)
                                          // always fits in 160 bits
                                          return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
                                  }
                                  return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
                              } else {
                                  uint256 product;
                                  // if the product overflows, we know the denominator underflows
                                  // in addition, we must check that the denominator does not underflow
                                  require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
                                  uint256 denominator = numerator1 - product;
                                  return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
                              }
                          }
                          /// @notice Gets the next sqrt price given a delta of token1
                          /// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
                          /// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
                          /// price less in order to not send too much output.
                          /// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
                          /// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
                          /// @param liquidity The amount of usable liquidity
                          /// @param amount How much of token1 to add, or remove, from virtual reserves
                          /// @param add Whether to add, or remove, the amount of token1
                          /// @return The price after adding or removing `amount`
                          function getNextSqrtPriceFromAmount1RoundingDown(
                              uint160 sqrtPX96,
                              uint128 liquidity,
                              uint256 amount,
                              bool add
                          ) internal pure returns (uint160) {
                              // if we're adding (subtracting), rounding down requires rounding the quotient down (up)
                              // in both cases, avoid a mulDiv for most inputs
                              if (add) {
                                  uint256 quotient =
                                      (
                                          amount <= type(uint160).max
                                              ? (amount << FixedPoint96.RESOLUTION) / liquidity
                                              : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
                                      );
                                  return uint256(sqrtPX96).add(quotient).toUint160();
                              } else {
                                  uint256 quotient =
                                      (
                                          amount <= type(uint160).max
                                              ? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
                                              : FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
                                      );
                                  require(sqrtPX96 > quotient);
                                  // always fits 160 bits
                                  return uint160(sqrtPX96 - quotient);
                              }
                          }
                          /// @notice Gets the next sqrt price given an input amount of token0 or token1
                          /// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
                          /// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
                          /// @param liquidity The amount of usable liquidity
                          /// @param amountIn How much of token0, or token1, is being swapped in
                          /// @param zeroForOne Whether the amount in is token0 or token1
                          /// @return sqrtQX96 The price after adding the input amount to token0 or token1
                          function getNextSqrtPriceFromInput(
                              uint160 sqrtPX96,
                              uint128 liquidity,
                              uint256 amountIn,
                              bool zeroForOne
                          ) internal pure returns (uint160 sqrtQX96) {
                              require(sqrtPX96 > 0);
                              require(liquidity > 0);
                              // round to make sure that we don't pass the target price
                              return
                                  zeroForOne
                                      ? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
                                      : getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
                          }
                          /// @notice Gets the next sqrt price given an output amount of token0 or token1
                          /// @dev Throws if price or liquidity are 0 or the next price is out of bounds
                          /// @param sqrtPX96 The starting price before accounting for the output amount
                          /// @param liquidity The amount of usable liquidity
                          /// @param amountOut How much of token0, or token1, is being swapped out
                          /// @param zeroForOne Whether the amount out is token0 or token1
                          /// @return sqrtQX96 The price after removing the output amount of token0 or token1
                          function getNextSqrtPriceFromOutput(
                              uint160 sqrtPX96,
                              uint128 liquidity,
                              uint256 amountOut,
                              bool zeroForOne
                          ) internal pure returns (uint160 sqrtQX96) {
                              require(sqrtPX96 > 0);
                              require(liquidity > 0);
                              // round to make sure that we pass the target price
                              return
                                  zeroForOne
                                      ? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
                                      : getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
                          }
                          /// @notice Gets the amount0 delta between two prices
                          /// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
                          /// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
                          /// @param sqrtRatioAX96 A sqrt price
                          /// @param sqrtRatioBX96 Another sqrt price
                          /// @param liquidity The amount of usable liquidity
                          /// @param roundUp Whether to round the amount up or down
                          /// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
                          function getAmount0Delta(
                              uint160 sqrtRatioAX96,
                              uint160 sqrtRatioBX96,
                              uint128 liquidity,
                              bool roundUp
                          ) internal pure returns (uint256 amount0) {
                              if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                              uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
                              uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
                              require(sqrtRatioAX96 > 0);
                              return
                                  roundUp
                                      ? UnsafeMath.divRoundingUp(
                                          FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
                                          sqrtRatioAX96
                                      )
                                      : FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
                          }
                          /// @notice Gets the amount1 delta between two prices
                          /// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
                          /// @param sqrtRatioAX96 A sqrt price
                          /// @param sqrtRatioBX96 Another sqrt price
                          /// @param liquidity The amount of usable liquidity
                          /// @param roundUp Whether to round the amount up, or down
                          /// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
                          function getAmount1Delta(
                              uint160 sqrtRatioAX96,
                              uint160 sqrtRatioBX96,
                              uint128 liquidity,
                              bool roundUp
                          ) internal pure returns (uint256 amount1) {
                              if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
                              return
                                  roundUp
                                      ? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
                                      : FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
                          }
                          /// @notice Helper that gets signed token0 delta
                          /// @param sqrtRatioAX96 A sqrt price
                          /// @param sqrtRatioBX96 Another sqrt price
                          /// @param liquidity The change in liquidity for which to compute the amount0 delta
                          /// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
                          function getAmount0Delta(
                              uint160 sqrtRatioAX96,
                              uint160 sqrtRatioBX96,
                              int128 liquidity
                          ) internal pure returns (int256 amount0) {
                              return
                                  liquidity < 0
                                      ? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                      : getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                          }
                          /// @notice Helper that gets signed token1 delta
                          /// @param sqrtRatioAX96 A sqrt price
                          /// @param sqrtRatioBX96 Another sqrt price
                          /// @param liquidity The change in liquidity for which to compute the amount1 delta
                          /// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
                          function getAmount1Delta(
                              uint160 sqrtRatioAX96,
                              uint160 sqrtRatioBX96,
                              int128 liquidity
                          ) internal pure returns (int256 amount1) {
                              return
                                  liquidity < 0
                                      ? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
                                      : getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
                          }
                      }
                      // SPDX-License-Identifier: BUSL-1.1
                      pragma solidity >=0.5.0;
                      import './FullMath.sol';
                      import './SqrtPriceMath.sol';
                      /// @title Computes the result of a swap within ticks
                      /// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
                      library SwapMath {
                          /// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
                          /// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
                          /// @param sqrtRatioCurrentX96 The current sqrt price of the pool
                          /// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
                          /// @param liquidity The usable liquidity
                          /// @param amountRemaining How much input or output amount is remaining to be swapped in/out
                          /// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
                          /// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
                          /// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
                          /// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
                          /// @return feeAmount The amount of input that will be taken as a fee
                          function computeSwapStep(
                              uint160 sqrtRatioCurrentX96,
                              uint160 sqrtRatioTargetX96,
                              uint128 liquidity,
                              int256 amountRemaining,
                              uint24 feePips
                          )
                              internal
                              pure
                              returns (
                                  uint160 sqrtRatioNextX96,
                                  uint256 amountIn,
                                  uint256 amountOut,
                                  uint256 feeAmount
                              )
                          {
                              bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
                              bool exactIn = amountRemaining >= 0;
                              if (exactIn) {
                                  uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
                                  amountIn = zeroForOne
                                      ? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
                                      : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
                                  if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                  else
                                      sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
                                          sqrtRatioCurrentX96,
                                          liquidity,
                                          amountRemainingLessFee,
                                          zeroForOne
                                      );
                              } else {
                                  amountOut = zeroForOne
                                      ? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
                                      : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
                                  if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
                                  else
                                      sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
                                          sqrtRatioCurrentX96,
                                          liquidity,
                                          uint256(-amountRemaining),
                                          zeroForOne
                                      );
                              }
                              bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
                              // get the input/output amounts
                              if (zeroForOne) {
                                  amountIn = max && exactIn
                                      ? amountIn
                                      : SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
                                  amountOut = max && !exactIn
                                      ? amountOut
                                      : SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
                              } else {
                                  amountIn = max && exactIn
                                      ? amountIn
                                      : SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
                                  amountOut = max && !exactIn
                                      ? amountOut
                                      : SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
                              }
                              // cap the output amount to not exceed the remaining output amount
                              if (!exactIn && amountOut > uint256(-amountRemaining)) {
                                  amountOut = uint256(-amountRemaining);
                              }
                              if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
                                  // we didn't reach the target, so take the remainder of the maximum input as fee
                                  feeAmount = uint256(amountRemaining) - amountIn;
                              } else {
                                  feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
                              }
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
                      /// @notice A contract that constructs a pool must implement this to pass arguments to the pool
                      /// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
                      /// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
                      interface IUniswapV3PoolDeployer {
                          /// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
                          /// @dev Called by the pool constructor to fetch the parameters of the pool
                          /// Returns factory The factory address
                          /// Returns token0 The first token of the pool by address sort order
                          /// Returns token1 The second token of the pool by address sort order
                          /// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                          /// Returns tickSpacing The minimum number of ticks between initialized ticks
                          function parameters()
                              external
                              view
                              returns (
                                  address factory,
                                  address token0,
                                  address token1,
                                  uint24 fee,
                                  int24 tickSpacing
                              );
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title The interface for the Uniswap V3 Factory
                      /// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
                      interface IUniswapV3Factory {
                          /// @notice Emitted when the owner of the factory is changed
                          /// @param oldOwner The owner before the owner was changed
                          /// @param newOwner The owner after the owner was changed
                          event OwnerChanged(address indexed oldOwner, address indexed newOwner);
                          /// @notice Emitted when a pool is created
                          /// @param token0 The first token of the pool by address sort order
                          /// @param token1 The second token of the pool by address sort order
                          /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                          /// @param tickSpacing The minimum number of ticks between initialized ticks
                          /// @param pool The address of the created pool
                          event PoolCreated(
                              address indexed token0,
                              address indexed token1,
                              uint24 indexed fee,
                              int24 tickSpacing,
                              address pool
                          );
                          /// @notice Emitted when a new fee amount is enabled for pool creation via the factory
                          /// @param fee The enabled fee, denominated in hundredths of a bip
                          /// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
                          event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
                          /// @notice Returns the current owner of the factory
                          /// @dev Can be changed by the current owner via setOwner
                          /// @return The address of the factory owner
                          function owner() external view returns (address);
                          /// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
                          /// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
                          /// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
                          /// @return The tick spacing
                          function feeAmountTickSpacing(uint24 fee) external view returns (int24);
                          /// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
                          /// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
                          /// @param tokenA The contract address of either token0 or token1
                          /// @param tokenB The contract address of the other token
                          /// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
                          /// @return pool The pool address
                          function getPool(
                              address tokenA,
                              address tokenB,
                              uint24 fee
                          ) external view returns (address pool);
                          /// @notice Creates a pool for the given two tokens and fee
                          /// @param tokenA One of the two tokens in the desired pool
                          /// @param tokenB The other of the two tokens in the desired pool
                          /// @param fee The desired fee for the pool
                          /// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
                          /// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
                          /// are invalid.
                          /// @return pool The address of the newly created pool
                          function createPool(
                              address tokenA,
                              address tokenB,
                              uint24 fee
                          ) external returns (address pool);
                          /// @notice Updates the owner of the factory
                          /// @dev Must be called by the current owner
                          /// @param _owner The new owner of the factory
                          function setOwner(address _owner) external;
                          /// @notice Enables a fee amount with the given tickSpacing
                          /// @dev Fee amounts may never be removed once enabled
                          /// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
                          /// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
                          function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Minimal ERC20 interface for Uniswap
                      /// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
                      interface IERC20Minimal {
                          /// @notice Returns the balance of a token
                          /// @param account The account for which to look up the number of tokens it has, i.e. its balance
                          /// @return The number of tokens held by the account
                          function balanceOf(address account) external view returns (uint256);
                          /// @notice Transfers the amount of token from the `msg.sender` to the recipient
                          /// @param recipient The account that will receive the amount transferred
                          /// @param amount The number of tokens to send from the sender to the recipient
                          /// @return Returns true for a successful transfer, false for an unsuccessful transfer
                          function transfer(address recipient, uint256 amount) external returns (bool);
                          /// @notice Returns the current allowance given to a spender by an owner
                          /// @param owner The account of the token owner
                          /// @param spender The account of the token spender
                          /// @return The current allowance granted by `owner` to `spender`
                          function allowance(address owner, address spender) external view returns (uint256);
                          /// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
                          /// @param spender The account which will be allowed to spend a given amount of the owners tokens
                          /// @param amount The amount of tokens allowed to be used by `spender`
                          /// @return Returns true for a successful approval, false for unsuccessful
                          function approve(address spender, uint256 amount) external returns (bool);
                          /// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
                          /// @param sender The account from which the transfer will be initiated
                          /// @param recipient The recipient of the transfer
                          /// @param amount The amount of the transfer
                          /// @return Returns true for a successful transfer, false for unsuccessful
                          function transferFrom(
                              address sender,
                              address recipient,
                              uint256 amount
                          ) external returns (bool);
                          /// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
                          /// @param from The account from which the tokens were sent, i.e. the balance decreased
                          /// @param to The account to which the tokens were sent, i.e. the balance increased
                          /// @param value The amount of tokens that were transferred
                          event Transfer(address indexed from, address indexed to, uint256 value);
                          /// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
                          /// @param owner The account that approved spending of its tokens
                          /// @param spender The account for which the spending allowance was modified
                          /// @param value The new allowance from the owner to the spender
                          event Approval(address indexed owner, address indexed spender, uint256 value);
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Callback for IUniswapV3PoolActions#mint
                      /// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
                      interface IUniswapV3MintCallback {
                          /// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
                          /// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
                          /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                          /// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
                          /// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
                          /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
                          function uniswapV3MintCallback(
                              uint256 amount0Owed,
                              uint256 amount1Owed,
                              bytes calldata data
                          ) external;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Callback for IUniswapV3PoolActions#swap
                      /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
                      interface IUniswapV3SwapCallback {
                          /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
                          /// @dev In the implementation you must pay the pool tokens owed for the swap.
                          /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                          /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
                          /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
                          /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
                          /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
                          /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
                          /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
                          function uniswapV3SwapCallback(
                              int256 amount0Delta,
                              int256 amount1Delta,
                              bytes calldata data
                          ) external;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Callback for IUniswapV3PoolActions#flash
                      /// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
                      interface IUniswapV3FlashCallback {
                          /// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
                          /// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
                          /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
                          /// @param fee0 The fee amount in token0 due to the pool by the end of the flash
                          /// @param fee1 The fee amount in token1 due to the pool by the end of the flash
                          /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
                          function uniswapV3FlashCallback(
                              uint256 fee0,
                              uint256 fee1,
                              bytes calldata data
                          ) external;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Pool state that never changes
                      /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
                      interface IUniswapV3PoolImmutables {
                          /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
                          /// @return The contract address
                          function factory() external view returns (address);
                          /// @notice The first of the two tokens of the pool, sorted by address
                          /// @return The token contract address
                          function token0() external view returns (address);
                          /// @notice The second of the two tokens of the pool, sorted by address
                          /// @return The token contract address
                          function token1() external view returns (address);
                          /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
                          /// @return The fee
                          function fee() external view returns (uint24);
                          /// @notice The pool tick spacing
                          /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
                          /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
                          /// This value is an int24 to avoid casting even though it is always positive.
                          /// @return The tick spacing
                          function tickSpacing() external view returns (int24);
                          /// @notice The maximum amount of position liquidity that can use any tick in the range
                          /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
                          /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
                          /// @return The max amount of liquidity per tick
                          function maxLiquidityPerTick() external view returns (uint128);
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Pool state that can change
                      /// @notice These methods compose the pool's state, and can change with any frequency including multiple times
                      /// per transaction
                      interface IUniswapV3PoolState {
                          /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
                          /// when accessed externally.
                          /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
                          /// tick The current tick of the pool, i.e. according to the last tick transition that was run.
                          /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
                          /// boundary.
                          /// observationIndex The index of the last oracle observation that was written,
                          /// observationCardinality The current maximum number of observations stored in the pool,
                          /// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
                          /// feeProtocol The protocol fee for both tokens of the pool.
                          /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
                          /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
                          /// unlocked Whether the pool is currently locked to reentrancy
                          function slot0()
                              external
                              view
                              returns (
                                  uint160 sqrtPriceX96,
                                  int24 tick,
                                  uint16 observationIndex,
                                  uint16 observationCardinality,
                                  uint16 observationCardinalityNext,
                                  uint8 feeProtocol,
                                  bool unlocked
                              );
                          /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
                          /// @dev This value can overflow the uint256
                          function feeGrowthGlobal0X128() external view returns (uint256);
                          /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
                          /// @dev This value can overflow the uint256
                          function feeGrowthGlobal1X128() external view returns (uint256);
                          /// @notice The amounts of token0 and token1 that are owed to the protocol
                          /// @dev Protocol fees will never exceed uint128 max in either token
                          function protocolFees() external view returns (uint128 token0, uint128 token1);
                          /// @notice The currently in range liquidity available to the pool
                          /// @dev This value has no relationship to the total liquidity across all ticks
                          function liquidity() external view returns (uint128);
                          /// @notice Look up information about a specific tick in the pool
                          /// @param tick The tick to look up
                          /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
                          /// tick upper,
                          /// liquidityNet how much liquidity changes when the pool price crosses the tick,
                          /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
                          /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
                          /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
                          /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
                          /// secondsOutside the seconds spent on the other side of the tick from the current tick,
                          /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
                          /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
                          /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
                          /// a specific position.
                          function ticks(int24 tick)
                              external
                              view
                              returns (
                                  uint128 liquidityGross,
                                  int128 liquidityNet,
                                  uint256 feeGrowthOutside0X128,
                                  uint256 feeGrowthOutside1X128,
                                  int56 tickCumulativeOutside,
                                  uint160 secondsPerLiquidityOutsideX128,
                                  uint32 secondsOutside,
                                  bool initialized
                              );
                          /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
                          function tickBitmap(int16 wordPosition) external view returns (uint256);
                          /// @notice Returns the information about a position by the position's key
                          /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
                          /// @return _liquidity The amount of liquidity in the position,
                          /// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
                          /// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
                          /// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
                          /// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
                          function positions(bytes32 key)
                              external
                              view
                              returns (
                                  uint128 _liquidity,
                                  uint256 feeGrowthInside0LastX128,
                                  uint256 feeGrowthInside1LastX128,
                                  uint128 tokensOwed0,
                                  uint128 tokensOwed1
                              );
                          /// @notice Returns data about a specific observation index
                          /// @param index The element of the observations array to fetch
                          /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
                          /// ago, rather than at a specific index in the array.
                          /// @return blockTimestamp The timestamp of the observation,
                          /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
                          /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
                          /// Returns initialized whether the observation has been initialized and the values are safe to use
                          function observations(uint256 index)
                              external
                              view
                              returns (
                                  uint32 blockTimestamp,
                                  int56 tickCumulative,
                                  uint160 secondsPerLiquidityCumulativeX128,
                                  bool initialized
                              );
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Pool state that is not stored
                      /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
                      /// blockchain. The functions here may have variable gas costs.
                      interface IUniswapV3PoolDerivedState {
                          /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
                          /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
                          /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
                          /// you must call it with secondsAgos = [3600, 0].
                          /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
                          /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
                          /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
                          /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
                          /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
                          /// timestamp
                          function observe(uint32[] calldata secondsAgos)
                              external
                              view
                              returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
                          /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
                          /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
                          /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
                          /// snapshot is taken and the second snapshot is taken.
                          /// @param tickLower The lower tick of the range
                          /// @param tickUpper The upper tick of the range
                          /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
                          /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
                          /// @return secondsInside The snapshot of seconds per liquidity for the range
                          function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
                              external
                              view
                              returns (
                                  int56 tickCumulativeInside,
                                  uint160 secondsPerLiquidityInsideX128,
                                  uint32 secondsInside
                              );
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Permissionless pool actions
                      /// @notice Contains pool methods that can be called by anyone
                      interface IUniswapV3PoolActions {
                          /// @notice Sets the initial price for the pool
                          /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
                          /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
                          function initialize(uint160 sqrtPriceX96) external;
                          /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
                          /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
                          /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
                          /// on tickLower, tickUpper, the amount of liquidity, and the current price.
                          /// @param recipient The address for which the liquidity will be created
                          /// @param tickLower The lower tick of the position in which to add liquidity
                          /// @param tickUpper The upper tick of the position in which to add liquidity
                          /// @param amount The amount of liquidity to mint
                          /// @param data Any data that should be passed through to the callback
                          /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
                          /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
                          function mint(
                              address recipient,
                              int24 tickLower,
                              int24 tickUpper,
                              uint128 amount,
                              bytes calldata data
                          ) external returns (uint256 amount0, uint256 amount1);
                          /// @notice Collects tokens owed to a position
                          /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
                          /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
                          /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
                          /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
                          /// @param recipient The address which should receive the fees collected
                          /// @param tickLower The lower tick of the position for which to collect fees
                          /// @param tickUpper The upper tick of the position for which to collect fees
                          /// @param amount0Requested How much token0 should be withdrawn from the fees owed
                          /// @param amount1Requested How much token1 should be withdrawn from the fees owed
                          /// @return amount0 The amount of fees collected in token0
                          /// @return amount1 The amount of fees collected in token1
                          function collect(
                              address recipient,
                              int24 tickLower,
                              int24 tickUpper,
                              uint128 amount0Requested,
                              uint128 amount1Requested
                          ) external returns (uint128 amount0, uint128 amount1);
                          /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
                          /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
                          /// @dev Fees must be collected separately via a call to #collect
                          /// @param tickLower The lower tick of the position for which to burn liquidity
                          /// @param tickUpper The upper tick of the position for which to burn liquidity
                          /// @param amount How much liquidity to burn
                          /// @return amount0 The amount of token0 sent to the recipient
                          /// @return amount1 The amount of token1 sent to the recipient
                          function burn(
                              int24 tickLower,
                              int24 tickUpper,
                              uint128 amount
                          ) external returns (uint256 amount0, uint256 amount1);
                          /// @notice Swap token0 for token1, or token1 for token0
                          /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
                          /// @param recipient The address to receive the output of the swap
                          /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
                          /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
                          /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
                          /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
                          /// @param data Any data to be passed through to the callback
                          /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
                          /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
                          function swap(
                              address recipient,
                              bool zeroForOne,
                              int256 amountSpecified,
                              uint160 sqrtPriceLimitX96,
                              bytes calldata data
                          ) external returns (int256 amount0, int256 amount1);
                          /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
                          /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
                          /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
                          /// with 0 amount{0,1} and sending the donation amount(s) from the callback
                          /// @param recipient The address which will receive the token0 and token1 amounts
                          /// @param amount0 The amount of token0 to send
                          /// @param amount1 The amount of token1 to send
                          /// @param data Any data to be passed through to the callback
                          function flash(
                              address recipient,
                              uint256 amount0,
                              uint256 amount1,
                              bytes calldata data
                          ) external;
                          /// @notice Increase the maximum number of price and liquidity observations that this pool will store
                          /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
                          /// the input observationCardinalityNext.
                          /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
                          function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Permissioned pool actions
                      /// @notice Contains pool methods that may only be called by the factory owner
                      interface IUniswapV3PoolOwnerActions {
                          /// @notice Set the denominator of the protocol's % share of the fees
                          /// @param feeProtocol0 new protocol fee for token0 of the pool
                          /// @param feeProtocol1 new protocol fee for token1 of the pool
                          function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
                          /// @notice Collect the protocol fee accrued to the pool
                          /// @param recipient The address to which collected protocol fees should be sent
                          /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
                          /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
                          /// @return amount0 The protocol fee collected in token0
                          /// @return amount1 The protocol fee collected in token1
                          function collectProtocol(
                              address recipient,
                              uint128 amount0Requested,
                              uint128 amount1Requested
                          ) external returns (uint128 amount0, uint128 amount1);
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Events emitted by a pool
                      /// @notice Contains all events emitted by the pool
                      interface IUniswapV3PoolEvents {
                          /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
                          /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
                          /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
                          /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
                          event Initialize(uint160 sqrtPriceX96, int24 tick);
                          /// @notice Emitted when liquidity is minted for a given position
                          /// @param sender The address that minted the liquidity
                          /// @param owner The owner of the position and recipient of any minted liquidity
                          /// @param tickLower The lower tick of the position
                          /// @param tickUpper The upper tick of the position
                          /// @param amount The amount of liquidity minted to the position range
                          /// @param amount0 How much token0 was required for the minted liquidity
                          /// @param amount1 How much token1 was required for the minted liquidity
                          event Mint(
                              address sender,
                              address indexed owner,
                              int24 indexed tickLower,
                              int24 indexed tickUpper,
                              uint128 amount,
                              uint256 amount0,
                              uint256 amount1
                          );
                          /// @notice Emitted when fees are collected by the owner of a position
                          /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
                          /// @param owner The owner of the position for which fees are collected
                          /// @param tickLower The lower tick of the position
                          /// @param tickUpper The upper tick of the position
                          /// @param amount0 The amount of token0 fees collected
                          /// @param amount1 The amount of token1 fees collected
                          event Collect(
                              address indexed owner,
                              address recipient,
                              int24 indexed tickLower,
                              int24 indexed tickUpper,
                              uint128 amount0,
                              uint128 amount1
                          );
                          /// @notice Emitted when a position's liquidity is removed
                          /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
                          /// @param owner The owner of the position for which liquidity is removed
                          /// @param tickLower The lower tick of the position
                          /// @param tickUpper The upper tick of the position
                          /// @param amount The amount of liquidity to remove
                          /// @param amount0 The amount of token0 withdrawn
                          /// @param amount1 The amount of token1 withdrawn
                          event Burn(
                              address indexed owner,
                              int24 indexed tickLower,
                              int24 indexed tickUpper,
                              uint128 amount,
                              uint256 amount0,
                              uint256 amount1
                          );
                          /// @notice Emitted by the pool for any swaps between token0 and token1
                          /// @param sender The address that initiated the swap call, and that received the callback
                          /// @param recipient The address that received the output of the swap
                          /// @param amount0 The delta of the token0 balance of the pool
                          /// @param amount1 The delta of the token1 balance of the pool
                          /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
                          /// @param liquidity The liquidity of the pool after the swap
                          /// @param tick The log base 1.0001 of price of the pool after the swap
                          event Swap(
                              address indexed sender,
                              address indexed recipient,
                              int256 amount0,
                              int256 amount1,
                              uint160 sqrtPriceX96,
                              uint128 liquidity,
                              int24 tick
                          );
                          /// @notice Emitted by the pool for any flashes of token0/token1
                          /// @param sender The address that initiated the swap call, and that received the callback
                          /// @param recipient The address that received the tokens from flash
                          /// @param amount0 The amount of token0 that was flashed
                          /// @param amount1 The amount of token1 that was flashed
                          /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
                          /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
                          event Flash(
                              address indexed sender,
                              address indexed recipient,
                              uint256 amount0,
                              uint256 amount1,
                              uint256 paid0,
                              uint256 paid1
                          );
                          /// @notice Emitted by the pool for increases to the number of observations that can be stored
                          /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
                          /// just before a mint/swap/burn.
                          /// @param observationCardinalityNextOld The previous value of the next observation cardinality
                          /// @param observationCardinalityNextNew The updated value of the next observation cardinality
                          event IncreaseObservationCardinalityNext(
                              uint16 observationCardinalityNextOld,
                              uint16 observationCardinalityNextNew
                          );
                          /// @notice Emitted when the protocol fee is changed by the pool
                          /// @param feeProtocol0Old The previous value of the token0 protocol fee
                          /// @param feeProtocol1Old The previous value of the token1 protocol fee
                          /// @param feeProtocol0New The updated value of the token0 protocol fee
                          /// @param feeProtocol1New The updated value of the token1 protocol fee
                          event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
                          /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
                          /// @param sender The address that collects the protocol fees
                          /// @param recipient The address that receives the collected protocol fees
                          /// @param amount0 The amount of token0 protocol fees that is withdrawn
                          /// @param amount0 The amount of token1 protocol fees that is withdrawn
                          event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title BitMath
                      /// @dev This library provides functionality for computing bit properties of an unsigned integer
                      library BitMath {
                          /// @notice Returns the index of the most significant bit of the number,
                          ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                          /// @dev The function satisfies the property:
                          ///     x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
                          /// @param x the value for which to compute the most significant bit, must be greater than 0
                          /// @return r the index of the most significant bit
                          function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
                              require(x > 0);
                              if (x >= 0x100000000000000000000000000000000) {
                                  x >>= 128;
                                  r += 128;
                              }
                              if (x >= 0x10000000000000000) {
                                  x >>= 64;
                                  r += 64;
                              }
                              if (x >= 0x100000000) {
                                  x >>= 32;
                                  r += 32;
                              }
                              if (x >= 0x10000) {
                                  x >>= 16;
                                  r += 16;
                              }
                              if (x >= 0x100) {
                                  x >>= 8;
                                  r += 8;
                              }
                              if (x >= 0x10) {
                                  x >>= 4;
                                  r += 4;
                              }
                              if (x >= 0x4) {
                                  x >>= 2;
                                  r += 2;
                              }
                              if (x >= 0x2) r += 1;
                          }
                          /// @notice Returns the index of the least significant bit of the number,
                          ///     where the least significant bit is at index 0 and the most significant bit is at index 255
                          /// @dev The function satisfies the property:
                          ///     (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
                          /// @param x the value for which to compute the least significant bit, must be greater than 0
                          /// @return r the index of the least significant bit
                          function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
                              require(x > 0);
                              r = 255;
                              if (x & type(uint128).max > 0) {
                                  r -= 128;
                              } else {
                                  x >>= 128;
                              }
                              if (x & type(uint64).max > 0) {
                                  r -= 64;
                              } else {
                                  x >>= 64;
                              }
                              if (x & type(uint32).max > 0) {
                                  r -= 32;
                              } else {
                                  x >>= 32;
                              }
                              if (x & type(uint16).max > 0) {
                                  r -= 16;
                              } else {
                                  x >>= 16;
                              }
                              if (x & type(uint8).max > 0) {
                                  r -= 8;
                              } else {
                                  x >>= 8;
                              }
                              if (x & 0xf > 0) {
                                  r -= 4;
                              } else {
                                  x >>= 4;
                              }
                              if (x & 0x3 > 0) {
                                  r -= 2;
                              } else {
                                  x >>= 2;
                              }
                              if (x & 0x1 > 0) r -= 1;
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.5.0;
                      /// @title Math functions that do not check inputs or outputs
                      /// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
                      library UnsafeMath {
                          /// @notice Returns ceil(x / y)
                          /// @dev division by 0 has unspecified behavior, and must be checked externally
                          /// @param x The dividend
                          /// @param y The divisor
                          /// @return z The quotient, ceil(x / y)
                          function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              assembly {
                                  z := add(div(x, y), gt(mod(x, y), 0))
                              }
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity >=0.4.0;
                      /// @title FixedPoint96
                      /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
                      /// @dev Used in SqrtPriceMath.sol
                      library FixedPoint96 {
                          uint8 internal constant RESOLUTION = 96;
                          uint256 internal constant Q96 = 0x1000000000000000000000000;
                      }
                      

                      File 2 of 7: WETH9
                      // Copyright (C) 2015, 2016, 2017 Dapphub
                      
                      // This program is free software: you can redistribute it and/or modify
                      // it under the terms of the GNU General Public License as published by
                      // the Free Software Foundation, either version 3 of the License, or
                      // (at your option) any later version.
                      
                      // This program is distributed in the hope that it will be useful,
                      // but WITHOUT ANY WARRANTY; without even the implied warranty of
                      // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                      // GNU General Public License for more details.
                      
                      // You should have received a copy of the GNU General Public License
                      // along with this program.  If not, see <http://www.gnu.org/licenses/>.
                      
                      pragma solidity ^0.4.18;
                      
                      contract WETH9 {
                          string public name     = "Wrapped Ether";
                          string public symbol   = "WETH";
                          uint8  public decimals = 18;
                      
                          event  Approval(address indexed src, address indexed guy, uint wad);
                          event  Transfer(address indexed src, address indexed dst, uint wad);
                          event  Deposit(address indexed dst, uint wad);
                          event  Withdrawal(address indexed src, uint wad);
                      
                          mapping (address => uint)                       public  balanceOf;
                          mapping (address => mapping (address => uint))  public  allowance;
                      
                          function() public payable {
                              deposit();
                          }
                          function deposit() public payable {
                              balanceOf[msg.sender] += msg.value;
                              Deposit(msg.sender, msg.value);
                          }
                          function withdraw(uint wad) public {
                              require(balanceOf[msg.sender] >= wad);
                              balanceOf[msg.sender] -= wad;
                              msg.sender.transfer(wad);
                              Withdrawal(msg.sender, wad);
                          }
                      
                          function totalSupply() public view returns (uint) {
                              return this.balance;
                          }
                      
                          function approve(address guy, uint wad) public returns (bool) {
                              allowance[msg.sender][guy] = wad;
                              Approval(msg.sender, guy, wad);
                              return true;
                          }
                      
                          function transfer(address dst, uint wad) public returns (bool) {
                              return transferFrom(msg.sender, dst, wad);
                          }
                      
                          function transferFrom(address src, address dst, uint wad)
                              public
                              returns (bool)
                          {
                              require(balanceOf[src] >= wad);
                      
                              if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                                  require(allowance[src][msg.sender] >= wad);
                                  allowance[src][msg.sender] -= wad;
                              }
                      
                              balanceOf[src] -= wad;
                              balanceOf[dst] += wad;
                      
                              Transfer(src, dst, wad);
                      
                              return true;
                          }
                      }
                      
                      
                      /*
                                          GNU GENERAL PUBLIC LICENSE
                                             Version 3, 29 June 2007
                      
                       Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
                       Everyone is permitted to copy and distribute verbatim copies
                       of this license document, but changing it is not allowed.
                      
                                                  Preamble
                      
                        The GNU General Public License is a free, copyleft license for
                      software and other kinds of works.
                      
                        The licenses for most software and other practical works are designed
                      to take away your freedom to share and change the works.  By contrast,
                      the GNU General Public License is intended to guarantee your freedom to
                      share and change all versions of a program--to make sure it remains free
                      software for all its users.  We, the Free Software Foundation, use the
                      GNU General Public License for most of our software; it applies also to
                      any other work released this way by its authors.  You can apply it to
                      your programs, too.
                      
                        When we speak of free software, we are referring to freedom, not
                      price.  Our General Public Licenses are designed to make sure that you
                      have the freedom to distribute copies of free software (and charge for
                      them if you wish), that you receive source code or can get it if you
                      want it, that you can change the software or use pieces of it in new
                      free programs, and that you know you can do these things.
                      
                        To protect your rights, we need to prevent others from denying you
                      these rights or asking you to surrender the rights.  Therefore, you have
                      certain responsibilities if you distribute copies of the software, or if
                      you modify it: responsibilities to respect the freedom of others.
                      
                        For example, if you distribute copies of such a program, whether
                      gratis or for a fee, you must pass on to the recipients the same
                      freedoms that you received.  You must make sure that they, too, receive
                      or can get the source code.  And you must show them these terms so they
                      know their rights.
                      
                        Developers that use the GNU GPL protect your rights with two steps:
                      (1) assert copyright on the software, and (2) offer you this License
                      giving you legal permission to copy, distribute and/or modify it.
                      
                        For the developers' and authors' protection, the GPL clearly explains
                      that there is no warranty for this free software.  For both users' and
                      authors' sake, the GPL requires that modified versions be marked as
                      changed, so that their problems will not be attributed erroneously to
                      authors of previous versions.
                      
                        Some devices are designed to deny users access to install or run
                      modified versions of the software inside them, although the manufacturer
                      can do so.  This is fundamentally incompatible with the aim of
                      protecting users' freedom to change the software.  The systematic
                      pattern of such abuse occurs in the area of products for individuals to
                      use, which is precisely where it is most unacceptable.  Therefore, we
                      have designed this version of the GPL to prohibit the practice for those
                      products.  If such problems arise substantially in other domains, we
                      stand ready to extend this provision to those domains in future versions
                      of the GPL, as needed to protect the freedom of users.
                      
                        Finally, every program is threatened constantly by software patents.
                      States should not allow patents to restrict development and use of
                      software on general-purpose computers, but in those that do, we wish to
                      avoid the special danger that patents applied to a free program could
                      make it effectively proprietary.  To prevent this, the GPL assures that
                      patents cannot be used to render the program non-free.
                      
                        The precise terms and conditions for copying, distribution and
                      modification follow.
                      
                                             TERMS AND CONDITIONS
                      
                        0. Definitions.
                      
                        "This License" refers to version 3 of the GNU General Public License.
                      
                        "Copyright" also means copyright-like laws that apply to other kinds of
                      works, such as semiconductor masks.
                      
                        "The Program" refers to any copyrightable work licensed under this
                      License.  Each licensee is addressed as "you".  "Licensees" and
                      "recipients" may be individuals or organizations.
                      
                        To "modify" a work means to copy from or adapt all or part of the work
                      in a fashion requiring copyright permission, other than the making of an
                      exact copy.  The resulting work is called a "modified version" of the
                      earlier work or a work "based on" the earlier work.
                      
                        A "covered work" means either the unmodified Program or a work based
                      on the Program.
                      
                        To "propagate" a work means to do anything with it that, without
                      permission, would make you directly or secondarily liable for
                      infringement under applicable copyright law, except executing it on a
                      computer or modifying a private copy.  Propagation includes copying,
                      distribution (with or without modification), making available to the
                      public, and in some countries other activities as well.
                      
                        To "convey" a work means any kind of propagation that enables other
                      parties to make or receive copies.  Mere interaction with a user through
                      a computer network, with no transfer of a copy, is not conveying.
                      
                        An interactive user interface displays "Appropriate Legal Notices"
                      to the extent that it includes a convenient and prominently visible
                      feature that (1) displays an appropriate copyright notice, and (2)
                      tells the user that there is no warranty for the work (except to the
                      extent that warranties are provided), that licensees may convey the
                      work under this License, and how to view a copy of this License.  If
                      the interface presents a list of user commands or options, such as a
                      menu, a prominent item in the list meets this criterion.
                      
                        1. Source Code.
                      
                        The "source code" for a work means the preferred form of the work
                      for making modifications to it.  "Object code" means any non-source
                      form of a work.
                      
                        A "Standard Interface" means an interface that either is an official
                      standard defined by a recognized standards body, or, in the case of
                      interfaces specified for a particular programming language, one that
                      is widely used among developers working in that language.
                      
                        The "System Libraries" of an executable work include anything, other
                      than the work as a whole, that (a) is included in the normal form of
                      packaging a Major Component, but which is not part of that Major
                      Component, and (b) serves only to enable use of the work with that
                      Major Component, or to implement a Standard Interface for which an
                      implementation is available to the public in source code form.  A
                      "Major Component", in this context, means a major essential component
                      (kernel, window system, and so on) of the specific operating system
                      (if any) on which the executable work runs, or a compiler used to
                      produce the work, or an object code interpreter used to run it.
                      
                        The "Corresponding Source" for a work in object code form means all
                      the source code needed to generate, install, and (for an executable
                      work) run the object code and to modify the work, including scripts to
                      control those activities.  However, it does not include the work's
                      System Libraries, or general-purpose tools or generally available free
                      programs which are used unmodified in performing those activities but
                      which are not part of the work.  For example, Corresponding Source
                      includes interface definition files associated with source files for
                      the work, and the source code for shared libraries and dynamically
                      linked subprograms that the work is specifically designed to require,
                      such as by intimate data communication or control flow between those
                      subprograms and other parts of the work.
                      
                        The Corresponding Source need not include anything that users
                      can regenerate automatically from other parts of the Corresponding
                      Source.
                      
                        The Corresponding Source for a work in source code form is that
                      same work.
                      
                        2. Basic Permissions.
                      
                        All rights granted under this License are granted for the term of
                      copyright on the Program, and are irrevocable provided the stated
                      conditions are met.  This License explicitly affirms your unlimited
                      permission to run the unmodified Program.  The output from running a
                      covered work is covered by this License only if the output, given its
                      content, constitutes a covered work.  This License acknowledges your
                      rights of fair use or other equivalent, as provided by copyright law.
                      
                        You may make, run and propagate covered works that you do not
                      convey, without conditions so long as your license otherwise remains
                      in force.  You may convey covered works to others for the sole purpose
                      of having them make modifications exclusively for you, or provide you
                      with facilities for running those works, provided that you comply with
                      the terms of this License in conveying all material for which you do
                      not control copyright.  Those thus making or running the covered works
                      for you must do so exclusively on your behalf, under your direction
                      and control, on terms that prohibit them from making any copies of
                      your copyrighted material outside their relationship with you.
                      
                        Conveying under any other circumstances is permitted solely under
                      the conditions stated below.  Sublicensing is not allowed; section 10
                      makes it unnecessary.
                      
                        3. Protecting Users' Legal Rights From Anti-Circumvention Law.
                      
                        No covered work shall be deemed part of an effective technological
                      measure under any applicable law fulfilling obligations under article
                      11 of the WIPO copyright treaty adopted on 20 December 1996, or
                      similar laws prohibiting or restricting circumvention of such
                      measures.
                      
                        When you convey a covered work, you waive any legal power to forbid
                      circumvention of technological measures to the extent such circumvention
                      is effected by exercising rights under this License with respect to
                      the covered work, and you disclaim any intention to limit operation or
                      modification of the work as a means of enforcing, against the work's
                      users, your or third parties' legal rights to forbid circumvention of
                      technological measures.
                      
                        4. Conveying Verbatim Copies.
                      
                        You may convey verbatim copies of the Program's source code as you
                      receive it, in any medium, provided that you conspicuously and
                      appropriately publish on each copy an appropriate copyright notice;
                      keep intact all notices stating that this License and any
                      non-permissive terms added in accord with section 7 apply to the code;
                      keep intact all notices of the absence of any warranty; and give all
                      recipients a copy of this License along with the Program.
                      
                        You may charge any price or no price for each copy that you convey,
                      and you may offer support or warranty protection for a fee.
                      
                        5. Conveying Modified Source Versions.
                      
                        You may convey a work based on the Program, or the modifications to
                      produce it from the Program, in the form of source code under the
                      terms of section 4, provided that you also meet all of these conditions:
                      
                          a) The work must carry prominent notices stating that you modified
                          it, and giving a relevant date.
                      
                          b) The work must carry prominent notices stating that it is
                          released under this License and any conditions added under section
                          7.  This requirement modifies the requirement in section 4 to
                          "keep intact all notices".
                      
                          c) You must license the entire work, as a whole, under this
                          License to anyone who comes into possession of a copy.  This
                          License will therefore apply, along with any applicable section 7
                          additional terms, to the whole of the work, and all its parts,
                          regardless of how they are packaged.  This License gives no
                          permission to license the work in any other way, but it does not
                          invalidate such permission if you have separately received it.
                      
                          d) If the work has interactive user interfaces, each must display
                          Appropriate Legal Notices; however, if the Program has interactive
                          interfaces that do not display Appropriate Legal Notices, your
                          work need not make them do so.
                      
                        A compilation of a covered work with other separate and independent
                      works, which are not by their nature extensions of the covered work,
                      and which are not combined with it such as to form a larger program,
                      in or on a volume of a storage or distribution medium, is called an
                      "aggregate" if the compilation and its resulting copyright are not
                      used to limit the access or legal rights of the compilation's users
                      beyond what the individual works permit.  Inclusion of a covered work
                      in an aggregate does not cause this License to apply to the other
                      parts of the aggregate.
                      
                        6. Conveying Non-Source Forms.
                      
                        You may convey a covered work in object code form under the terms
                      of sections 4 and 5, provided that you also convey the
                      machine-readable Corresponding Source under the terms of this License,
                      in one of these ways:
                      
                          a) Convey the object code in, or embodied in, a physical product
                          (including a physical distribution medium), accompanied by the
                          Corresponding Source fixed on a durable physical medium
                          customarily used for software interchange.
                      
                          b) Convey the object code in, or embodied in, a physical product
                          (including a physical distribution medium), accompanied by a
                          written offer, valid for at least three years and valid for as
                          long as you offer spare parts or customer support for that product
                          model, to give anyone who possesses the object code either (1) a
                          copy of the Corresponding Source for all the software in the
                          product that is covered by this License, on a durable physical
                          medium customarily used for software interchange, for a price no
                          more than your reasonable cost of physically performing this
                          conveying of source, or (2) access to copy the
                          Corresponding Source from a network server at no charge.
                      
                          c) Convey individual copies of the object code with a copy of the
                          written offer to provide the Corresponding Source.  This
                          alternative is allowed only occasionally and noncommercially, and
                          only if you received the object code with such an offer, in accord
                          with subsection 6b.
                      
                          d) Convey the object code by offering access from a designated
                          place (gratis or for a charge), and offer equivalent access to the
                          Corresponding Source in the same way through the same place at no
                          further charge.  You need not require recipients to copy the
                          Corresponding Source along with the object code.  If the place to
                          copy the object code is a network server, the Corresponding Source
                          may be on a different server (operated by you or a third party)
                          that supports equivalent copying facilities, provided you maintain
                          clear directions next to the object code saying where to find the
                          Corresponding Source.  Regardless of what server hosts the
                          Corresponding Source, you remain obligated to ensure that it is
                          available for as long as needed to satisfy these requirements.
                      
                          e) Convey the object code using peer-to-peer transmission, provided
                          you inform other peers where the object code and Corresponding
                          Source of the work are being offered to the general public at no
                          charge under subsection 6d.
                      
                        A separable portion of the object code, whose source code is excluded
                      from the Corresponding Source as a System Library, need not be
                      included in conveying the object code work.
                      
                        A "User Product" is either (1) a "consumer product", which means any
                      tangible personal property which is normally used for personal, family,
                      or household purposes, or (2) anything designed or sold for incorporation
                      into a dwelling.  In determining whether a product is a consumer product,
                      doubtful cases shall be resolved in favor of coverage.  For a particular
                      product received by a particular user, "normally used" refers to a
                      typical or common use of that class of product, regardless of the status
                      of the particular user or of the way in which the particular user
                      actually uses, or expects or is expected to use, the product.  A product
                      is a consumer product regardless of whether the product has substantial
                      commercial, industrial or non-consumer uses, unless such uses represent
                      the only significant mode of use of the product.
                      
                        "Installation Information" for a User Product means any methods,
                      procedures, authorization keys, or other information required to install
                      and execute modified versions of a covered work in that User Product from
                      a modified version of its Corresponding Source.  The information must
                      suffice to ensure that the continued functioning of the modified object
                      code is in no case prevented or interfered with solely because
                      modification has been made.
                      
                        If you convey an object code work under this section in, or with, or
                      specifically for use in, a User Product, and the conveying occurs as
                      part of a transaction in which the right of possession and use of the
                      User Product is transferred to the recipient in perpetuity or for a
                      fixed term (regardless of how the transaction is characterized), the
                      Corresponding Source conveyed under this section must be accompanied
                      by the Installation Information.  But this requirement does not apply
                      if neither you nor any third party retains the ability to install
                      modified object code on the User Product (for example, the work has
                      been installed in ROM).
                      
                        The requirement to provide Installation Information does not include a
                      requirement to continue to provide support service, warranty, or updates
                      for a work that has been modified or installed by the recipient, or for
                      the User Product in which it has been modified or installed.  Access to a
                      network may be denied when the modification itself materially and
                      adversely affects the operation of the network or violates the rules and
                      protocols for communication across the network.
                      
                        Corresponding Source conveyed, and Installation Information provided,
                      in accord with this section must be in a format that is publicly
                      documented (and with an implementation available to the public in
                      source code form), and must require no special password or key for
                      unpacking, reading or copying.
                      
                        7. Additional Terms.
                      
                        "Additional permissions" are terms that supplement the terms of this
                      License by making exceptions from one or more of its conditions.
                      Additional permissions that are applicable to the entire Program shall
                      be treated as though they were included in this License, to the extent
                      that they are valid under applicable law.  If additional permissions
                      apply only to part of the Program, that part may be used separately
                      under those permissions, but the entire Program remains governed by
                      this License without regard to the additional permissions.
                      
                        When you convey a copy of a covered work, you may at your option
                      remove any additional permissions from that copy, or from any part of
                      it.  (Additional permissions may be written to require their own
                      removal in certain cases when you modify the work.)  You may place
                      additional permissions on material, added by you to a covered work,
                      for which you have or can give appropriate copyright permission.
                      
                        Notwithstanding any other provision of this License, for material you
                      add to a covered work, you may (if authorized by the copyright holders of
                      that material) supplement the terms of this License with terms:
                      
                          a) Disclaiming warranty or limiting liability differently from the
                          terms of sections 15 and 16 of this License; or
                      
                          b) Requiring preservation of specified reasonable legal notices or
                          author attributions in that material or in the Appropriate Legal
                          Notices displayed by works containing it; or
                      
                          c) Prohibiting misrepresentation of the origin of that material, or
                          requiring that modified versions of such material be marked in
                          reasonable ways as different from the original version; or
                      
                          d) Limiting the use for publicity purposes of names of licensors or
                          authors of the material; or
                      
                          e) Declining to grant rights under trademark law for use of some
                          trade names, trademarks, or service marks; or
                      
                          f) Requiring indemnification of licensors and authors of that
                          material by anyone who conveys the material (or modified versions of
                          it) with contractual assumptions of liability to the recipient, for
                          any liability that these contractual assumptions directly impose on
                          those licensors and authors.
                      
                        All other non-permissive additional terms are considered "further
                      restrictions" within the meaning of section 10.  If the Program as you
                      received it, or any part of it, contains a notice stating that it is
                      governed by this License along with a term that is a further
                      restriction, you may remove that term.  If a license document contains
                      a further restriction but permits relicensing or conveying under this
                      License, you may add to a covered work material governed by the terms
                      of that license document, provided that the further restriction does
                      not survive such relicensing or conveying.
                      
                        If you add terms to a covered work in accord with this section, you
                      must place, in the relevant source files, a statement of the
                      additional terms that apply to those files, or a notice indicating
                      where to find the applicable terms.
                      
                        Additional terms, permissive or non-permissive, may be stated in the
                      form of a separately written license, or stated as exceptions;
                      the above requirements apply either way.
                      
                        8. Termination.
                      
                        You may not propagate or modify a covered work except as expressly
                      provided under this License.  Any attempt otherwise to propagate or
                      modify it is void, and will automatically terminate your rights under
                      this License (including any patent licenses granted under the third
                      paragraph of section 11).
                      
                        However, if you cease all violation of this License, then your
                      license from a particular copyright holder is reinstated (a)
                      provisionally, unless and until the copyright holder explicitly and
                      finally terminates your license, and (b) permanently, if the copyright
                      holder fails to notify you of the violation by some reasonable means
                      prior to 60 days after the cessation.
                      
                        Moreover, your license from a particular copyright holder is
                      reinstated permanently if the copyright holder notifies you of the
                      violation by some reasonable means, this is the first time you have
                      received notice of violation of this License (for any work) from that
                      copyright holder, and you cure the violation prior to 30 days after
                      your receipt of the notice.
                      
                        Termination of your rights under this section does not terminate the
                      licenses of parties who have received copies or rights from you under
                      this License.  If your rights have been terminated and not permanently
                      reinstated, you do not qualify to receive new licenses for the same
                      material under section 10.
                      
                        9. Acceptance Not Required for Having Copies.
                      
                        You are not required to accept this License in order to receive or
                      run a copy of the Program.  Ancillary propagation of a covered work
                      occurring solely as a consequence of using peer-to-peer transmission
                      to receive a copy likewise does not require acceptance.  However,
                      nothing other than this License grants you permission to propagate or
                      modify any covered work.  These actions infringe copyright if you do
                      not accept this License.  Therefore, by modifying or propagating a
                      covered work, you indicate your acceptance of this License to do so.
                      
                        10. Automatic Licensing of Downstream Recipients.
                      
                        Each time you convey a covered work, the recipient automatically
                      receives a license from the original licensors, to run, modify and
                      propagate that work, subject to this License.  You are not responsible
                      for enforcing compliance by third parties with this License.
                      
                        An "entity transaction" is a transaction transferring control of an
                      organization, or substantially all assets of one, or subdividing an
                      organization, or merging organizations.  If propagation of a covered
                      work results from an entity transaction, each party to that
                      transaction who receives a copy of the work also receives whatever
                      licenses to the work the party's predecessor in interest had or could
                      give under the previous paragraph, plus a right to possession of the
                      Corresponding Source of the work from the predecessor in interest, if
                      the predecessor has it or can get it with reasonable efforts.
                      
                        You may not impose any further restrictions on the exercise of the
                      rights granted or affirmed under this License.  For example, you may
                      not impose a license fee, royalty, or other charge for exercise of
                      rights granted under this License, and you may not initiate litigation
                      (including a cross-claim or counterclaim in a lawsuit) alleging that
                      any patent claim is infringed by making, using, selling, offering for
                      sale, or importing the Program or any portion of it.
                      
                        11. Patents.
                      
                        A "contributor" is a copyright holder who authorizes use under this
                      License of the Program or a work on which the Program is based.  The
                      work thus licensed is called the contributor's "contributor version".
                      
                        A contributor's "essential patent claims" are all patent claims
                      owned or controlled by the contributor, whether already acquired or
                      hereafter acquired, that would be infringed by some manner, permitted
                      by this License, of making, using, or selling its contributor version,
                      but do not include claims that would be infringed only as a
                      consequence of further modification of the contributor version.  For
                      purposes of this definition, "control" includes the right to grant
                      patent sublicenses in a manner consistent with the requirements of
                      this License.
                      
                        Each contributor grants you a non-exclusive, worldwide, royalty-free
                      patent license under the contributor's essential patent claims, to
                      make, use, sell, offer for sale, import and otherwise run, modify and
                      propagate the contents of its contributor version.
                      
                        In the following three paragraphs, a "patent license" is any express
                      agreement or commitment, however denominated, not to enforce a patent
                      (such as an express permission to practice a patent or covenant not to
                      sue for patent infringement).  To "grant" such a patent license to a
                      party means to make such an agreement or commitment not to enforce a
                      patent against the party.
                      
                        If you convey a covered work, knowingly relying on a patent license,
                      and the Corresponding Source of the work is not available for anyone
                      to copy, free of charge and under the terms of this License, through a
                      publicly available network server or other readily accessible means,
                      then you must either (1) cause the Corresponding Source to be so
                      available, or (2) arrange to deprive yourself of the benefit of the
                      patent license for this particular work, or (3) arrange, in a manner
                      consistent with the requirements of this License, to extend the patent
                      license to downstream recipients.  "Knowingly relying" means you have
                      actual knowledge that, but for the patent license, your conveying the
                      covered work in a country, or your recipient's use of the covered work
                      in a country, would infringe one or more identifiable patents in that
                      country that you have reason to believe are valid.
                      
                        If, pursuant to or in connection with a single transaction or
                      arrangement, you convey, or propagate by procuring conveyance of, a
                      covered work, and grant a patent license to some of the parties
                      receiving the covered work authorizing them to use, propagate, modify
                      or convey a specific copy of the covered work, then the patent license
                      you grant is automatically extended to all recipients of the covered
                      work and works based on it.
                      
                        A patent license is "discriminatory" if it does not include within
                      the scope of its coverage, prohibits the exercise of, or is
                      conditioned on the non-exercise of one or more of the rights that are
                      specifically granted under this License.  You may not convey a covered
                      work if you are a party to an arrangement with a third party that is
                      in the business of distributing software, under which you make payment
                      to the third party based on the extent of your activity of conveying
                      the work, and under which the third party grants, to any of the
                      parties who would receive the covered work from you, a discriminatory
                      patent license (a) in connection with copies of the covered work
                      conveyed by you (or copies made from those copies), or (b) primarily
                      for and in connection with specific products or compilations that
                      contain the covered work, unless you entered into that arrangement,
                      or that patent license was granted, prior to 28 March 2007.
                      
                        Nothing in this License shall be construed as excluding or limiting
                      any implied license or other defenses to infringement that may
                      otherwise be available to you under applicable patent law.
                      
                        12. No Surrender of Others' Freedom.
                      
                        If conditions are imposed on you (whether by court order, agreement or
                      otherwise) that contradict the conditions of this License, they do not
                      excuse you from the conditions of this License.  If you cannot convey a
                      covered work so as to satisfy simultaneously your obligations under this
                      License and any other pertinent obligations, then as a consequence you may
                      not convey it at all.  For example, if you agree to terms that obligate you
                      to collect a royalty for further conveying from those to whom you convey
                      the Program, the only way you could satisfy both those terms and this
                      License would be to refrain entirely from conveying the Program.
                      
                        13. Use with the GNU Affero General Public License.
                      
                        Notwithstanding any other provision of this License, you have
                      permission to link or combine any covered work with a work licensed
                      under version 3 of the GNU Affero General Public License into a single
                      combined work, and to convey the resulting work.  The terms of this
                      License will continue to apply to the part which is the covered work,
                      but the special requirements of the GNU Affero General Public License,
                      section 13, concerning interaction through a network will apply to the
                      combination as such.
                      
                        14. Revised Versions of this License.
                      
                        The Free Software Foundation may publish revised and/or new versions of
                      the GNU General Public License from time to time.  Such new versions will
                      be similar in spirit to the present version, but may differ in detail to
                      address new problems or concerns.
                      
                        Each version is given a distinguishing version number.  If the
                      Program specifies that a certain numbered version of the GNU General
                      Public License "or any later version" applies to it, you have the
                      option of following the terms and conditions either of that numbered
                      version or of any later version published by the Free Software
                      Foundation.  If the Program does not specify a version number of the
                      GNU General Public License, you may choose any version ever published
                      by the Free Software Foundation.
                      
                        If the Program specifies that a proxy can decide which future
                      versions of the GNU General Public License can be used, that proxy's
                      public statement of acceptance of a version permanently authorizes you
                      to choose that version for the Program.
                      
                        Later license versions may give you additional or different
                      permissions.  However, no additional obligations are imposed on any
                      author or copyright holder as a result of your choosing to follow a
                      later version.
                      
                        15. Disclaimer of Warranty.
                      
                        THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
                      APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
                      HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
                      OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
                      THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
                      PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
                      IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
                      ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
                      
                        16. Limitation of Liability.
                      
                        IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                      WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
                      THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
                      GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
                      USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
                      DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
                      PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
                      EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
                      SUCH DAMAGES.
                      
                        17. Interpretation of Sections 15 and 16.
                      
                        If the disclaimer of warranty and limitation of liability provided
                      above cannot be given local legal effect according to their terms,
                      reviewing courts shall apply local law that most closely approximates
                      an absolute waiver of all civil liability in connection with the
                      Program, unless a warranty or assumption of liability accompanies a
                      copy of the Program in return for a fee.
                      
                                           END OF TERMS AND CONDITIONS
                      
                                  How to Apply These Terms to Your New Programs
                      
                        If you develop a new program, and you want it to be of the greatest
                      possible use to the public, the best way to achieve this is to make it
                      free software which everyone can redistribute and change under these terms.
                      
                        To do so, attach the following notices to the program.  It is safest
                      to attach them to the start of each source file to most effectively
                      state the exclusion of warranty; and each file should have at least
                      the "copyright" line and a pointer to where the full notice is found.
                      
                          <one line to give the program's name and a brief idea of what it does.>
                          Copyright (C) <year>  <name of author>
                      
                          This program is free software: you can redistribute it and/or modify
                          it under the terms of the GNU General Public License as published by
                          the Free Software Foundation, either version 3 of the License, or
                          (at your option) any later version.
                      
                          This program is distributed in the hope that it will be useful,
                          but WITHOUT ANY WARRANTY; without even the implied warranty of
                          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                          GNU General Public License for more details.
                      
                          You should have received a copy of the GNU General Public License
                          along with this program.  If not, see <http://www.gnu.org/licenses/>.
                      
                      Also add information on how to contact you by electronic and paper mail.
                      
                        If the program does terminal interaction, make it output a short
                      notice like this when it starts in an interactive mode:
                      
                          <program>  Copyright (C) <year>  <name of author>
                          This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
                          This is free software, and you are welcome to redistribute it
                          under certain conditions; type `show c' for details.
                      
                      The hypothetical commands `show w' and `show c' should show the appropriate
                      parts of the General Public License.  Of course, your program's commands
                      might be different; for a GUI interface, you would use an "about box".
                      
                        You should also get your employer (if you work as a programmer) or school,
                      if any, to sign a "copyright disclaimer" for the program, if necessary.
                      For more information on this, and how to apply and follow the GNU GPL, see
                      <http://www.gnu.org/licenses/>.
                      
                        The GNU General Public License does not permit incorporating your program
                      into proprietary programs.  If your program is a subroutine library, you
                      may consider it more useful to permit linking proprietary applications with
                      the library.  If this is what you want to do, use the GNU Lesser General
                      Public License instead of this License.  But first, please read
                      <http://www.gnu.org/philosophy/why-not-lgpl.html>.
                      
                      */

                      File 3 of 7: ERC1967Proxy
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
                      pragma solidity ^0.8.1;
                      /**
                       * @dev Collection of functions related to the address type
                       */
                      library Address {
                          /**
                           * @dev Returns true if `account` is a contract.
                           *
                           * [IMPORTANT]
                           * ====
                           * It is unsafe to assume that an address for which this function returns
                           * false is an externally-owned account (EOA) and not a contract.
                           *
                           * Among others, `isContract` will return false for the following
                           * types of addresses:
                           *
                           *  - an externally-owned account
                           *  - a contract in construction
                           *  - an address where a contract will be created
                           *  - an address where a contract lived, but was destroyed
                           *
                           * Furthermore, `isContract` will also return true if the target contract within
                           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                           * which only has an effect at the end of a transaction.
                           * ====
                           *
                           * [IMPORTANT]
                           * ====
                           * You shouldn't rely on `isContract` to protect against flash loan attacks!
                           *
                           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                           * constructor.
                           * ====
                           */
                          function isContract(address account) internal view returns (bool) {
                              // This method relies on extcodesize/address.code.length, which returns 0
                              // for contracts in construction, since the code is only stored at the end
                              // of the constructor execution.
                              return account.code.length > 0;
                          }
                          /**
                           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                           * `recipient`, forwarding all available gas and reverting on errors.
                           *
                           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                           * of certain opcodes, possibly making contracts go over the 2300 gas limit
                           * imposed by `transfer`, making them unable to receive funds via
                           * `transfer`. {sendValue} removes this limitation.
                           *
                           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                           *
                           * IMPORTANT: because control is transferred to `recipient`, care must be
                           * taken to not create reentrancy vulnerabilities. Consider using
                           * {ReentrancyGuard} or the
                           * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                           */
                          function sendValue(address payable recipient, uint256 amount) internal {
                              require(address(this).balance >= amount, "Address: insufficient balance");
                              (bool success, ) = recipient.call{value: amount}("");
                              require(success, "Address: unable to send value, recipient may have reverted");
                          }
                          /**
                           * @dev Performs a Solidity function call using a low level `call`. A
                           * plain `call` is an unsafe replacement for a function call: use this
                           * function instead.
                           *
                           * If `target` reverts with a revert reason, it is bubbled up by this
                           * function (like regular Solidity function calls).
                           *
                           * Returns the raw returned data. To convert to the expected return value,
                           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                           *
                           * Requirements:
                           *
                           * - `target` must be a contract.
                           * - calling `target` with `data` must not revert.
                           *
                           * _Available since v3.1._
                           */
                          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                           * `errorMessage` as a fallback revert reason when `target` reverts.
                           *
                           * _Available since v3.1._
                           */
                          function functionCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, 0, errorMessage);
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but also transferring `value` wei to `target`.
                           *
                           * Requirements:
                           *
                           * - the calling contract must have an ETH balance of at least `value`.
                           * - the called Solidity function must be `payable`.
                           *
                           * _Available since v3.1._
                           */
                          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                           * with `errorMessage` as a fallback revert reason when `target` reverts.
                           *
                           * _Available since v3.1._
                           */
                          function functionCallWithValue(
                              address target,
                              bytes memory data,
                              uint256 value,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              require(address(this).balance >= value, "Address: insufficient balance for call");
                              (bool success, bytes memory returndata) = target.call{value: value}(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but performing a static call.
                           *
                           * _Available since v3.3._
                           */
                          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                              return functionStaticCall(target, data, "Address: low-level static call failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                           * but performing a static call.
                           *
                           * _Available since v3.3._
                           */
                          function functionStaticCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal view returns (bytes memory) {
                              (bool success, bytes memory returndata) = target.staticcall(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but performing a delegate call.
                           *
                           * _Available since v3.4._
                           */
                          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                           * but performing a delegate call.
                           *
                           * _Available since v3.4._
                           */
                          function functionDelegateCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              (bool success, bytes memory returndata) = target.delegatecall(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                          /**
                           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                           *
                           * _Available since v4.8._
                           */
                          function verifyCallResultFromTarget(
                              address target,
                              bool success,
                              bytes memory returndata,
                              string memory errorMessage
                          ) internal view returns (bytes memory) {
                              if (success) {
                                  if (returndata.length == 0) {
                                      // only check isContract if the call was successful and the return data is empty
                                      // otherwise we already know that it was a contract
                                      require(isContract(target), "Address: call to non-contract");
                                  }
                                  return returndata;
                              } else {
                                  _revert(returndata, errorMessage);
                              }
                          }
                          /**
                           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                           * revert reason or using the provided one.
                           *
                           * _Available since v4.3._
                           */
                          function verifyCallResult(
                              bool success,
                              bytes memory returndata,
                              string memory errorMessage
                          ) internal pure returns (bytes memory) {
                              if (success) {
                                  return returndata;
                              } else {
                                  _revert(returndata, errorMessage);
                              }
                          }
                          function _revert(bytes memory returndata, string memory errorMessage) private pure {
                              // Look for revert reason and bubble it up if present
                              if (returndata.length > 0) {
                                  // The easiest way to bubble the revert reason is using memory via assembly
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      let returndata_size := mload(returndata)
                                      revert(add(32, returndata), returndata_size)
                                  }
                              } else {
                                  revert(errorMessage);
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
                      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
                      pragma solidity ^0.8.0;
                      /**
                       * @dev Library for reading and writing primitive types to specific storage slots.
                       *
                       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                       * This library helps with reading and writing to such slots without the need for inline assembly.
                       *
                       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                       *
                       * Example usage to set ERC1967 implementation slot:
                       * ```solidity
                       * contract ERC1967 {
                       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                       *
                       *     function _getImplementation() internal view returns (address) {
                       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                       *     }
                       *
                       *     function _setImplementation(address newImplementation) internal {
                       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                       *     }
                       * }
                       * ```
                       *
                       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
                       * _Available since v4.9 for `string`, `bytes`._
                       */
                      library StorageSlot {
                          struct AddressSlot {
                              address value;
                          }
                          struct BooleanSlot {
                              bool value;
                          }
                          struct Bytes32Slot {
                              bytes32 value;
                          }
                          struct Uint256Slot {
                              uint256 value;
                          }
                          struct StringSlot {
                              string value;
                          }
                          struct BytesSlot {
                              bytes value;
                          }
                          /**
                           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                           */
                          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                           */
                          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                           */
                          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                           */
                          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `StringSlot` with member `value` located at `slot`.
                           */
                          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
                           */
                          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := store.slot
                              }
                          }
                          /**
                           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
                           */
                          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
                           */
                          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := store.slot
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
                      pragma solidity ^0.8.17;
                      import "../Proxy.sol";
                      import "./ERC1967Upgrade.sol";
                      /**
                       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
                       * implementation address that can be changed. This address is stored in storage in the location specified by
                       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
                       * implementation behind the proxy.
                       */
                      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
                          constructor(address _owner) {
                              _setOwner(_owner);
                          }
                          //just call one time
                          function initProxy(address _logic, bytes memory _data) external {
                              require(_getOwner() == msg.sender);
                              require(ERC1967Upgrade._getImplementation() == address(0));
                              _upgradeToAndCall(_logic, _data, false);
                          }
                          /**
                           * @dev Returns the current implementation address.
                           */
                          function _implementation() internal view virtual override returns (address impl) {
                              return ERC1967Upgrade._getImplementation();
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
                      pragma solidity ^0.8.17;
                      import "../interfaces/IERC1967.sol";
                      import "@openzeppelin/contracts/utils/Address.sol";
                      import "@openzeppelin/contracts/utils/StorageSlot.sol";
                      /**
                       * @dev This abstract contract provides getters and event emitting update functions for
                       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
                       *
                       * _Available since v4.1._
                       */
                      abstract contract ERC1967Upgrade is IERC1967 {
                          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                          /**
                           * @dev Storage slot with the address of the current implementation.
                           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                           * validated in the constructor.
                           */
                          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                          //bytes32(uint256(keccak256('eip1967.proxy.owner')) - 1)
                          bytes32 internal constant _OWNER_SLOT = 0xa7b53796fd2d99cb1f5ae019b54f9e024446c3d12b483f733ccc62ed04eb126a;
                          function _setOwner(address _owner) internal {
                              StorageSlot.getAddressSlot(_OWNER_SLOT).value = _owner;
                          }
                          function _getOwner() internal view returns (address) {
                              return StorageSlot.getAddressSlot(_OWNER_SLOT).value;
                          }
                          /**
                           * @dev Returns the current implementation address.
                           */
                          function _getImplementation() internal view returns (address) {
                              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                          }
                          /**
                           * @dev Stores a new address in the EIP1967 implementation slot.
                           */
                          function _setImplementation(address newImplementation) private {
                              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                          }
                          /**
                           * @dev Perform implementation upgrade
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeTo(address newImplementation) internal {
                              _setImplementation(newImplementation);
                              emit Upgraded(newImplementation);
                          }
                          /**
                           * @dev Perform implementation upgrade with additional setup call.
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                              _upgradeTo(newImplementation);
                              if (data.length > 0 || forceCall) {
                                  Address.functionDelegateCall(newImplementation, data);
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
                      pragma solidity ^0.8.17;
                      /**
                       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
                       *
                       * _Available since v4.8.3._
                       */
                      interface IERC1967 {
                          /**
                           * @dev Emitted when the implementation is upgraded.
                           */
                          event Upgraded(address indexed implementation);
                      }// SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
                      pragma solidity ^0.8.17;
                      /**
                       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
                       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
                       * be specified by overriding the virtual {_implementation} function.
                       *
                       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
                       * different contract through the {_delegate} function.
                       *
                       * The success and return data of the delegated call will be returned back to the caller of the proxy.
                       */
                      abstract contract Proxy {
                          /**
                           * @dev Delegates the current call to `implementation`.
                           *
                           * This function does not return to its internal call site, it will return directly to the external caller.
                           */
                          function _delegate(address implementation) internal virtual {
                              assembly {
                                  // Copy msg.data. We take full control of memory in this inline assembly
                                  // block because it will not return to Solidity code. We overwrite the
                                  // Solidity scratch pad at memory position 0.
                                  calldatacopy(0, 0, calldatasize())
                                  // Call the implementation.
                                  // out and outsize are 0 because we don't know the size yet.
                                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                                  // Copy the returned data.
                                  returndatacopy(0, 0, returndatasize())
                                  switch result
                                  // delegatecall returns 0 on error.
                                  case 0 {
                                      revert(0, returndatasize())
                                  }
                                  default {
                                      return(0, returndatasize())
                                  }
                              }
                          }
                          /**
                           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
                           * and {_fallback} should delegate.
                           */
                          function _implementation() internal view virtual returns (address);
                          /**
                           * @dev Delegates the current call to the address returned by `_implementation()`.
                           *
                           * This function does not return to its internal call site, it will return directly to the external caller.
                           */
                          function _fallback() internal virtual {
                              _beforeFallback();
                              _delegate(_implementation());
                          }
                          /**
                           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                           * function in the contract matches the call data.
                           */
                          fallback() external payable virtual {
                              _fallback();
                          }
                          /**
                           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                           * is empty.
                           */
                          receive() external payable virtual {
                              _fallback();
                          }
                          /**
                           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                           * call, or as part of the Solidity `fallback` or `receive` functions.
                           *
                           * If overridden should call `super._beforeFallback()`.
                           */
                          function _beforeFallback() internal virtual {}
                      }
                      

                      File 4 of 7: ERC1967Proxy
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
                      pragma solidity ^0.8.1;
                      /**
                       * @dev Collection of functions related to the address type
                       */
                      library Address {
                          /**
                           * @dev Returns true if `account` is a contract.
                           *
                           * [IMPORTANT]
                           * ====
                           * It is unsafe to assume that an address for which this function returns
                           * false is an externally-owned account (EOA) and not a contract.
                           *
                           * Among others, `isContract` will return false for the following
                           * types of addresses:
                           *
                           *  - an externally-owned account
                           *  - a contract in construction
                           *  - an address where a contract will be created
                           *  - an address where a contract lived, but was destroyed
                           *
                           * Furthermore, `isContract` will also return true if the target contract within
                           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                           * which only has an effect at the end of a transaction.
                           * ====
                           *
                           * [IMPORTANT]
                           * ====
                           * You shouldn't rely on `isContract` to protect against flash loan attacks!
                           *
                           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                           * constructor.
                           * ====
                           */
                          function isContract(address account) internal view returns (bool) {
                              // This method relies on extcodesize/address.code.length, which returns 0
                              // for contracts in construction, since the code is only stored at the end
                              // of the constructor execution.
                              return account.code.length > 0;
                          }
                          /**
                           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                           * `recipient`, forwarding all available gas and reverting on errors.
                           *
                           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                           * of certain opcodes, possibly making contracts go over the 2300 gas limit
                           * imposed by `transfer`, making them unable to receive funds via
                           * `transfer`. {sendValue} removes this limitation.
                           *
                           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                           *
                           * IMPORTANT: because control is transferred to `recipient`, care must be
                           * taken to not create reentrancy vulnerabilities. Consider using
                           * {ReentrancyGuard} or the
                           * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                           */
                          function sendValue(address payable recipient, uint256 amount) internal {
                              require(address(this).balance >= amount, "Address: insufficient balance");
                              (bool success, ) = recipient.call{value: amount}("");
                              require(success, "Address: unable to send value, recipient may have reverted");
                          }
                          /**
                           * @dev Performs a Solidity function call using a low level `call`. A
                           * plain `call` is an unsafe replacement for a function call: use this
                           * function instead.
                           *
                           * If `target` reverts with a revert reason, it is bubbled up by this
                           * function (like regular Solidity function calls).
                           *
                           * Returns the raw returned data. To convert to the expected return value,
                           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                           *
                           * Requirements:
                           *
                           * - `target` must be a contract.
                           * - calling `target` with `data` must not revert.
                           *
                           * _Available since v3.1._
                           */
                          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                           * `errorMessage` as a fallback revert reason when `target` reverts.
                           *
                           * _Available since v3.1._
                           */
                          function functionCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, 0, errorMessage);
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but also transferring `value` wei to `target`.
                           *
                           * Requirements:
                           *
                           * - the calling contract must have an ETH balance of at least `value`.
                           * - the called Solidity function must be `payable`.
                           *
                           * _Available since v3.1._
                           */
                          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                           * with `errorMessage` as a fallback revert reason when `target` reverts.
                           *
                           * _Available since v3.1._
                           */
                          function functionCallWithValue(
                              address target,
                              bytes memory data,
                              uint256 value,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              require(address(this).balance >= value, "Address: insufficient balance for call");
                              (bool success, bytes memory returndata) = target.call{value: value}(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but performing a static call.
                           *
                           * _Available since v3.3._
                           */
                          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                              return functionStaticCall(target, data, "Address: low-level static call failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                           * but performing a static call.
                           *
                           * _Available since v3.3._
                           */
                          function functionStaticCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal view returns (bytes memory) {
                              (bool success, bytes memory returndata) = target.staticcall(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but performing a delegate call.
                           *
                           * _Available since v3.4._
                           */
                          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                          }
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                           * but performing a delegate call.
                           *
                           * _Available since v3.4._
                           */
                          function functionDelegateCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              (bool success, bytes memory returndata) = target.delegatecall(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                          /**
                           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                           *
                           * _Available since v4.8._
                           */
                          function verifyCallResultFromTarget(
                              address target,
                              bool success,
                              bytes memory returndata,
                              string memory errorMessage
                          ) internal view returns (bytes memory) {
                              if (success) {
                                  if (returndata.length == 0) {
                                      // only check isContract if the call was successful and the return data is empty
                                      // otherwise we already know that it was a contract
                                      require(isContract(target), "Address: call to non-contract");
                                  }
                                  return returndata;
                              } else {
                                  _revert(returndata, errorMessage);
                              }
                          }
                          /**
                           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                           * revert reason or using the provided one.
                           *
                           * _Available since v4.3._
                           */
                          function verifyCallResult(
                              bool success,
                              bytes memory returndata,
                              string memory errorMessage
                          ) internal pure returns (bytes memory) {
                              if (success) {
                                  return returndata;
                              } else {
                                  _revert(returndata, errorMessage);
                              }
                          }
                          function _revert(bytes memory returndata, string memory errorMessage) private pure {
                              // Look for revert reason and bubble it up if present
                              if (returndata.length > 0) {
                                  // The easiest way to bubble the revert reason is using memory via assembly
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      let returndata_size := mload(returndata)
                                      revert(add(32, returndata), returndata_size)
                                  }
                              } else {
                                  revert(errorMessage);
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
                      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
                      pragma solidity ^0.8.0;
                      /**
                       * @dev Library for reading and writing primitive types to specific storage slots.
                       *
                       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                       * This library helps with reading and writing to such slots without the need for inline assembly.
                       *
                       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                       *
                       * Example usage to set ERC1967 implementation slot:
                       * ```solidity
                       * contract ERC1967 {
                       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                       *
                       *     function _getImplementation() internal view returns (address) {
                       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                       *     }
                       *
                       *     function _setImplementation(address newImplementation) internal {
                       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                       *     }
                       * }
                       * ```
                       *
                       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
                       * _Available since v4.9 for `string`, `bytes`._
                       */
                      library StorageSlot {
                          struct AddressSlot {
                              address value;
                          }
                          struct BooleanSlot {
                              bool value;
                          }
                          struct Bytes32Slot {
                              bytes32 value;
                          }
                          struct Uint256Slot {
                              uint256 value;
                          }
                          struct StringSlot {
                              string value;
                          }
                          struct BytesSlot {
                              bytes value;
                          }
                          /**
                           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                           */
                          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                           */
                          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                           */
                          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                           */
                          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `StringSlot` with member `value` located at `slot`.
                           */
                          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
                           */
                          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := store.slot
                              }
                          }
                          /**
                           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
                           */
                          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                          /**
                           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
                           */
                          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := store.slot
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
                      pragma solidity ^0.8.17;
                      import "../Proxy.sol";
                      import "./ERC1967Upgrade.sol";
                      /**
                       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
                       * implementation address that can be changed. This address is stored in storage in the location specified by
                       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
                       * implementation behind the proxy.
                       */
                      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
                          constructor(address _owner) {
                              _setOwner(_owner);
                          }
                          //just call one time
                          function initProxy(address _logic, bytes memory _data) external {
                              require(_getOwner() == msg.sender);
                              require(ERC1967Upgrade._getImplementation() == address(0));
                              _upgradeToAndCall(_logic, _data, false);
                          }
                          /**
                           * @dev Returns the current implementation address.
                           */
                          function _implementation() internal view virtual override returns (address impl) {
                              return ERC1967Upgrade._getImplementation();
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
                      pragma solidity ^0.8.17;
                      import "../interfaces/IERC1967.sol";
                      import "@openzeppelin/contracts/utils/Address.sol";
                      import "@openzeppelin/contracts/utils/StorageSlot.sol";
                      /**
                       * @dev This abstract contract provides getters and event emitting update functions for
                       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
                       *
                       * _Available since v4.1._
                       */
                      abstract contract ERC1967Upgrade is IERC1967 {
                          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                          /**
                           * @dev Storage slot with the address of the current implementation.
                           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                           * validated in the constructor.
                           */
                          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                          //bytes32(uint256(keccak256('eip1967.proxy.owner')) - 1)
                          bytes32 internal constant _OWNER_SLOT = 0xa7b53796fd2d99cb1f5ae019b54f9e024446c3d12b483f733ccc62ed04eb126a;
                          function _setOwner(address _owner) internal {
                              StorageSlot.getAddressSlot(_OWNER_SLOT).value = _owner;
                          }
                          function _getOwner() internal view returns (address) {
                              return StorageSlot.getAddressSlot(_OWNER_SLOT).value;
                          }
                          /**
                           * @dev Returns the current implementation address.
                           */
                          function _getImplementation() internal view returns (address) {
                              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                          }
                          /**
                           * @dev Stores a new address in the EIP1967 implementation slot.
                           */
                          function _setImplementation(address newImplementation) private {
                              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                          }
                          /**
                           * @dev Perform implementation upgrade
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeTo(address newImplementation) internal {
                              _setImplementation(newImplementation);
                              emit Upgraded(newImplementation);
                          }
                          /**
                           * @dev Perform implementation upgrade with additional setup call.
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                              _upgradeTo(newImplementation);
                              if (data.length > 0 || forceCall) {
                                  Address.functionDelegateCall(newImplementation, data);
                              }
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
                      pragma solidity ^0.8.17;
                      /**
                       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
                       *
                       * _Available since v4.8.3._
                       */
                      interface IERC1967 {
                          /**
                           * @dev Emitted when the implementation is upgraded.
                           */
                          event Upgraded(address indexed implementation);
                      }// SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
                      pragma solidity ^0.8.17;
                      /**
                       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
                       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
                       * be specified by overriding the virtual {_implementation} function.
                       *
                       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
                       * different contract through the {_delegate} function.
                       *
                       * The success and return data of the delegated call will be returned back to the caller of the proxy.
                       */
                      abstract contract Proxy {
                          /**
                           * @dev Delegates the current call to `implementation`.
                           *
                           * This function does not return to its internal call site, it will return directly to the external caller.
                           */
                          function _delegate(address implementation) internal virtual {
                              assembly {
                                  // Copy msg.data. We take full control of memory in this inline assembly
                                  // block because it will not return to Solidity code. We overwrite the
                                  // Solidity scratch pad at memory position 0.
                                  calldatacopy(0, 0, calldatasize())
                                  // Call the implementation.
                                  // out and outsize are 0 because we don't know the size yet.
                                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                                  // Copy the returned data.
                                  returndatacopy(0, 0, returndatasize())
                                  switch result
                                  // delegatecall returns 0 on error.
                                  case 0 {
                                      revert(0, returndatasize())
                                  }
                                  default {
                                      return(0, returndatasize())
                                  }
                              }
                          }
                          /**
                           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
                           * and {_fallback} should delegate.
                           */
                          function _implementation() internal view virtual returns (address);
                          /**
                           * @dev Delegates the current call to the address returned by `_implementation()`.
                           *
                           * This function does not return to its internal call site, it will return directly to the external caller.
                           */
                          function _fallback() internal virtual {
                              _beforeFallback();
                              _delegate(_implementation());
                          }
                          /**
                           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
                           * function in the contract matches the call data.
                           */
                          fallback() external payable virtual {
                              _fallback();
                          }
                          /**
                           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
                           * is empty.
                           */
                          receive() external payable virtual {
                              _fallback();
                          }
                          /**
                           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
                           * call, or as part of the Solidity `fallback` or `receive` functions.
                           *
                           * If overridden should call `super._beforeFallback()`.
                           */
                          function _beforeFallback() internal virtual {}
                      }
                      

                      File 5 of 7: ExclusiveDutchOrderReactor
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {BaseReactor} from "./BaseReactor.sol";
                      import {IPermit2} from "permit2/src/interfaces/IPermit2.sol";
                      import {ExclusivityOverrideLib} from "../lib/ExclusivityOverrideLib.sol";
                      import {Permit2Lib} from "../lib/Permit2Lib.sol";
                      import {DutchDecayLib} from "../lib/DutchDecayLib.sol";
                      import {ExclusiveDutchOrderLib, ExclusiveDutchOrder, DutchOutput, DutchInput} from "../lib/ExclusiveDutchOrderLib.sol";
                      import {SignedOrder, ResolvedOrder, OrderInfo} from "../base/ReactorStructs.sol";
                      /// @notice Reactor for exclusive dutch orders
                      contract ExclusiveDutchOrderReactor is BaseReactor {
                          using Permit2Lib for ResolvedOrder;
                          using ExclusiveDutchOrderLib for ExclusiveDutchOrder;
                          using DutchDecayLib for DutchOutput[];
                          using DutchDecayLib for DutchInput;
                          using ExclusivityOverrideLib for ResolvedOrder;
                          /// @notice thrown when an order's deadline is before its end time
                          error DeadlineBeforeEndTime();
                          /// @notice thrown when an order's end time is before its start time
                          error OrderEndTimeBeforeStartTime();
                          /// @notice thrown when an order's inputs and outputs both decay
                          error InputAndOutputDecay();
                          constructor(IPermit2 _permit2, address _protocolFeeOwner) BaseReactor(_permit2, _protocolFeeOwner) {}
                          /// @inheritdoc BaseReactor
                          function resolve(SignedOrder calldata signedOrder)
                              internal
                              view
                              virtual
                              override
                              returns (ResolvedOrder memory resolvedOrder)
                          {
                              ExclusiveDutchOrder memory order = abi.decode(signedOrder.order, (ExclusiveDutchOrder));
                              _validateOrder(order);
                              resolvedOrder = ResolvedOrder({
                                  info: order.info,
                                  input: order.input.decay(order.decayStartTime, order.decayEndTime),
                                  outputs: order.outputs.decay(order.decayStartTime, order.decayEndTime),
                                  sig: signedOrder.sig,
                                  hash: order.hash()
                              });
                              resolvedOrder.handleOverride(order.exclusiveFiller, order.decayStartTime, order.exclusivityOverrideBps);
                          }
                          /// @inheritdoc BaseReactor
                          function transferInputTokens(ResolvedOrder memory order, address to) internal override {
                              permit2.permitWitnessTransferFrom(
                                  order.toPermit(),
                                  order.transferDetails(to),
                                  order.info.swapper,
                                  order.hash,
                                  ExclusiveDutchOrderLib.PERMIT2_ORDER_TYPE,
                                  order.sig
                              );
                          }
                          /// @notice validate the dutch order fields
                          /// - deadline must be greater than or equal than decayEndTime
                          /// - decayEndTime must be greater than or equal to decayStartTime
                          /// - if there's input decay, outputs must not decay
                          /// - for input decay, startAmount must < endAmount
                          /// @dev Throws if the order is invalid
                          function _validateOrder(ExclusiveDutchOrder memory order) internal pure {
                              if (order.info.deadline < order.decayEndTime) {
                                  revert DeadlineBeforeEndTime();
                              }
                              if (order.decayEndTime < order.decayStartTime) {
                                  revert OrderEndTimeBeforeStartTime();
                              }
                              if (order.input.startAmount != order.input.endAmount) {
                                  unchecked {
                                      for (uint256 i = 0; i < order.outputs.length; i++) {
                                          if (order.outputs[i].startAmount != order.outputs[i].endAmount) {
                                              revert InputAndOutputDecay();
                                          }
                                      }
                                  }
                              }
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";
                      import {ReentrancyGuard} from "openzeppelin-contracts/security/ReentrancyGuard.sol";
                      import {IPermit2} from "permit2/src/interfaces/IPermit2.sol";
                      import {ERC20} from "solmate/src/tokens/ERC20.sol";
                      import {ReactorEvents} from "../base/ReactorEvents.sol";
                      import {ResolvedOrderLib} from "../lib/ResolvedOrderLib.sol";
                      import {CurrencyLibrary, NATIVE} from "../lib/CurrencyLibrary.sol";
                      import {IReactorCallback} from "../interfaces/IReactorCallback.sol";
                      import {IReactor} from "../interfaces/IReactor.sol";
                      import {ProtocolFees} from "../base/ProtocolFees.sol";
                      import {SignedOrder, ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol";
                      /// @notice Generic reactor logic for settling off-chain signed orders
                      ///     using arbitrary fill methods specified by a filler
                      abstract contract BaseReactor is IReactor, ReactorEvents, ProtocolFees, ReentrancyGuard {
                          using SafeTransferLib for ERC20;
                          using ResolvedOrderLib for ResolvedOrder;
                          using CurrencyLibrary for address;
                          // Occurs when an output = ETH and the reactor does contain enough ETH but
                          // the direct filler did not include enough ETH in their call to execute/executeBatch
                          error InsufficientEth();
                          /// @notice permit2 address used for token transfers and signature verification
                          IPermit2 public immutable permit2;
                          constructor(IPermit2 _permit2, address _protocolFeeOwner) ProtocolFees(_protocolFeeOwner) {
                              permit2 = _permit2;
                          }
                          /// @inheritdoc IReactor
                          function execute(SignedOrder calldata order) external payable override nonReentrant {
                              ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](1);
                              resolvedOrders[0] = resolve(order);
                              _prepare(resolvedOrders);
                              _fill(resolvedOrders);
                          }
                          /// @inheritdoc IReactor
                          function executeWithCallback(SignedOrder calldata order, bytes calldata callbackData)
                              external
                              payable
                              override
                              nonReentrant
                          {
                              ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](1);
                              resolvedOrders[0] = resolve(order);
                              _prepare(resolvedOrders);
                              IReactorCallback(msg.sender).reactorCallback(resolvedOrders, callbackData);
                              _fill(resolvedOrders);
                          }
                          /// @inheritdoc IReactor
                          function executeBatch(SignedOrder[] calldata orders) external payable override nonReentrant {
                              uint256 ordersLength = orders.length;
                              ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](ordersLength);
                              unchecked {
                                  for (uint256 i = 0; i < ordersLength; i++) {
                                      resolvedOrders[i] = resolve(orders[i]);
                                  }
                              }
                              _prepare(resolvedOrders);
                              _fill(resolvedOrders);
                          }
                          /// @inheritdoc IReactor
                          function executeBatchWithCallback(SignedOrder[] calldata orders, bytes calldata callbackData)
                              external
                              payable
                              override
                              nonReentrant
                          {
                              uint256 ordersLength = orders.length;
                              ResolvedOrder[] memory resolvedOrders = new ResolvedOrder[](ordersLength);
                              unchecked {
                                  for (uint256 i = 0; i < ordersLength; i++) {
                                      resolvedOrders[i] = resolve(orders[i]);
                                  }
                              }
                              _prepare(resolvedOrders);
                              IReactorCallback(msg.sender).reactorCallback(resolvedOrders, callbackData);
                              _fill(resolvedOrders);
                          }
                          /// @notice validates, injects fees, and transfers input tokens in preparation for order fill
                          /// @param orders The orders to prepare
                          function _prepare(ResolvedOrder[] memory orders) internal {
                              uint256 ordersLength = orders.length;
                              unchecked {
                                  for (uint256 i = 0; i < ordersLength; i++) {
                                      ResolvedOrder memory order = orders[i];
                                      _injectFees(order);
                                      order.validate(msg.sender);
                                      transferInputTokens(order, msg.sender);
                                  }
                              }
                          }
                          /// @notice fills a list of orders, ensuring all outputs are satisfied
                          /// @param orders The orders to fill
                          function _fill(ResolvedOrder[] memory orders) internal {
                              uint256 ordersLength = orders.length;
                              // attempt to transfer all currencies to all recipients
                              unchecked {
                                  // transfer output tokens to their respective recipients
                                  for (uint256 i = 0; i < ordersLength; i++) {
                                      ResolvedOrder memory resolvedOrder = orders[i];
                                      uint256 outputsLength = resolvedOrder.outputs.length;
                                      for (uint256 j = 0; j < outputsLength; j++) {
                                          OutputToken memory output = resolvedOrder.outputs[j];
                                          output.token.transferFill(output.recipient, output.amount);
                                      }
                                      emit Fill(orders[i].hash, msg.sender, resolvedOrder.info.swapper, resolvedOrder.info.nonce);
                                  }
                              }
                              // refund any remaining ETH to the filler. Only occurs when filler sends more ETH than required to
                              // `execute()` or `executeBatch()`, or when there is excess contract balance remaining from others
                              // incorrectly calling execute/executeBatch without direct filler method but with a msg.value
                              if (address(this).balance > 0) {
                                  CurrencyLibrary.transferNative(msg.sender, address(this).balance);
                              }
                          }
                          receive() external payable {
                              // receive native asset to support native output
                          }
                          /// @notice Resolve order-type specific requirements into a generic order with the final inputs and outputs.
                          /// @param order The encoded order to resolve
                          /// @return resolvedOrder generic resolved order of inputs and outputs
                          /// @dev should revert on any order-type-specific validation errors
                          function resolve(SignedOrder calldata order) internal view virtual returns (ResolvedOrder memory resolvedOrder);
                          /// @notice Transfers tokens to the fillContract
                          /// @param order The encoded order to transfer tokens for
                          /// @param to The address to transfer tokens to
                          function transferInputTokens(ResolvedOrder memory order, address to) internal virtual;
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.0;
                      import {ISignatureTransfer} from "./ISignatureTransfer.sol";
                      import {IAllowanceTransfer} from "./IAllowanceTransfer.sol";
                      /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer.
                      /// @dev Users must approve Permit2 before calling any of the transfer functions.
                      interface IPermit2 is ISignatureTransfer, IAllowanceTransfer {
                      // IPermit2 unifies the two interfaces so users have maximal flexibility with their approval.
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol";
                      import {ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol";
                      /// @title ExclusiveOverride
                      /// @dev This library handles order exclusivity
                      ///  giving the configured filler exclusive rights to fill the order before exclusivityEndTime
                      ///  or enforcing an override price improvement by non-exclusive fillers
                      library ExclusivityOverrideLib {
                          using FixedPointMathLib for uint256;
                          /// @notice thrown when an order has strict exclusivity and the filler does not have it
                          error NoExclusiveOverride();
                          uint256 private constant STRICT_EXCLUSIVITY = 0;
                          uint256 private constant BPS = 10_000;
                          /// @notice Applies exclusivity override to the resolved order if necessary
                          /// @param order The order to apply exclusivity override to
                          /// @param exclusive The exclusive address
                          /// @param exclusivityEndTime The exclusivity end time
                          /// @param exclusivityOverrideBps The exclusivity override BPS
                          function handleOverride(
                              ResolvedOrder memory order,
                              address exclusive,
                              uint256 exclusivityEndTime,
                              uint256 exclusivityOverrideBps
                          ) internal view {
                              // if the filler has fill right, we proceed with the order as-is
                              if (checkExclusivity(exclusive, exclusivityEndTime)) {
                                  return;
                              }
                              // if override is 0, then assume strict exclusivity so the order cannot be filled
                              if (exclusivityOverrideBps == STRICT_EXCLUSIVITY) {
                                  revert NoExclusiveOverride();
                              }
                              // scale outputs by override amount
                              OutputToken[] memory outputs = order.outputs;
                              for (uint256 i = 0; i < outputs.length;) {
                                  OutputToken memory output = outputs[i];
                                  output.amount = output.amount.mulDivDown(BPS + exclusivityOverrideBps, BPS);
                                  unchecked {
                                      i++;
                                  }
                              }
                          }
                          /// @notice checks if the order currently passes the exclusivity check
                          /// @dev if the order has no exclusivity, always returns true
                          /// @dev if the order has exclusivity and the current filler is the exclusive address, returns true
                          /// @dev if the order has exclusivity and the current filler is not the exclusive address, returns false
                          function checkExclusivity(address exclusive, uint256 exclusivityEndTime) internal view returns (bool pass) {
                              return exclusive == address(0) || block.timestamp > exclusivityEndTime || exclusive == msg.sender;
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {ERC20} from "solmate/src/tokens/ERC20.sol";
                      import {ISignatureTransfer} from "permit2/src/interfaces/ISignatureTransfer.sol";
                      import {ResolvedOrder} from "../base/ReactorStructs.sol";
                      /// @notice handling some permit2-specific encoding
                      library Permit2Lib {
                          /// @notice returns a ResolvedOrder into a permit object
                          function toPermit(ResolvedOrder memory order)
                              internal
                              pure
                              returns (ISignatureTransfer.PermitTransferFrom memory)
                          {
                              return ISignatureTransfer.PermitTransferFrom({
                                  permitted: ISignatureTransfer.TokenPermissions({
                                      token: address(order.input.token),
                                      amount: order.input.maxAmount
                                  }),
                                  nonce: order.info.nonce,
                                  deadline: order.info.deadline
                              });
                          }
                          /// @notice returns a ResolvedOrder into a permit object
                          function transferDetails(ResolvedOrder memory order, address to)
                              internal
                              pure
                              returns (ISignatureTransfer.SignatureTransferDetails memory)
                          {
                              return ISignatureTransfer.SignatureTransferDetails({to: to, requestedAmount: order.input.amount});
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {OutputToken, InputToken} from "../base/ReactorStructs.sol";
                      import {DutchOutput, DutchInput} from "../lib/DutchOrderLib.sol";
                      import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol";
                      /// @notice helpers for handling dutch order objects
                      library DutchDecayLib {
                          using FixedPointMathLib for uint256;
                          /// @notice thrown if the decay direction is incorrect
                          /// - for DutchInput, startAmount must be less than or equal toendAmount
                          /// - for DutchOutput, startAmount must be greater than or equal to endAmount
                          error IncorrectAmounts();
                          /// @notice thrown if the endTime of an order is before startTime
                          error EndTimeBeforeStartTime();
                          /// @notice calculates an amount using linear decay over time from decayStartTime to decayEndTime
                          /// @dev handles both positive and negative decay depending on startAmount and endAmount
                          /// @param startAmount The amount of tokens at decayStartTime
                          /// @param endAmount The amount of tokens at decayEndTime
                          /// @param decayStartTime The time to start decaying linearly
                          /// @param decayEndTime The time to stop decaying linearly
                          function decay(uint256 startAmount, uint256 endAmount, uint256 decayStartTime, uint256 decayEndTime)
                              internal
                              view
                              returns (uint256 decayedAmount)
                          {
                              if (decayEndTime < decayStartTime) {
                                  revert EndTimeBeforeStartTime();
                              } else if (decayEndTime <= block.timestamp) {
                                  decayedAmount = endAmount;
                              } else if (decayStartTime >= block.timestamp) {
                                  decayedAmount = startAmount;
                              } else {
                                  unchecked {
                                      uint256 elapsed = block.timestamp - decayStartTime;
                                      uint256 duration = decayEndTime - decayStartTime;
                                      if (endAmount < startAmount) {
                                          decayedAmount = startAmount - (startAmount - endAmount).mulDivDown(elapsed, duration);
                                      } else {
                                          decayedAmount = startAmount + (endAmount - startAmount).mulDivDown(elapsed, duration);
                                      }
                                  }
                              }
                          }
                          /// @notice returns a decayed output using the given dutch spec and times
                          /// @param output The output to decay
                          /// @param decayStartTime The time to start decaying
                          /// @param decayEndTime The time to end decaying
                          /// @return result a decayed output
                          function decay(DutchOutput memory output, uint256 decayStartTime, uint256 decayEndTime)
                              internal
                              view
                              returns (OutputToken memory result)
                          {
                              if (output.startAmount < output.endAmount) {
                                  revert IncorrectAmounts();
                              }
                              uint256 decayedOutput = DutchDecayLib.decay(output.startAmount, output.endAmount, decayStartTime, decayEndTime);
                              result = OutputToken(output.token, decayedOutput, output.recipient);
                          }
                          /// @notice returns a decayed output array using the given dutch spec and times
                          /// @param outputs The output array to decay
                          /// @param decayStartTime The time to start decaying
                          /// @param decayEndTime The time to end decaying
                          /// @return result a decayed output array
                          function decay(DutchOutput[] memory outputs, uint256 decayStartTime, uint256 decayEndTime)
                              internal
                              view
                              returns (OutputToken[] memory result)
                          {
                              uint256 outputLength = outputs.length;
                              result = new OutputToken[](outputLength);
                              unchecked {
                                  for (uint256 i = 0; i < outputLength; i++) {
                                      result[i] = decay(outputs[i], decayStartTime, decayEndTime);
                                  }
                              }
                          }
                          /// @notice returns a decayed input using the given dutch spec and times
                          /// @param input The input to decay
                          /// @param decayStartTime The time to start decaying
                          /// @param decayEndTime The time to end decaying
                          /// @return result a decayed input
                          function decay(DutchInput memory input, uint256 decayStartTime, uint256 decayEndTime)
                              internal
                              view
                              returns (InputToken memory result)
                          {
                              if (input.startAmount > input.endAmount) {
                                  revert IncorrectAmounts();
                              }
                              uint256 decayedInput = DutchDecayLib.decay(input.startAmount, input.endAmount, decayStartTime, decayEndTime);
                              result = InputToken(input.token, decayedInput, input.endAmount);
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {OrderInfo} from "../base/ReactorStructs.sol";
                      import {DutchOutput, DutchInput, DutchOrderLib} from "./DutchOrderLib.sol";
                      import {OrderInfoLib} from "./OrderInfoLib.sol";
                      struct ExclusiveDutchOrder {
                          // generic order information
                          OrderInfo info;
                          // The time at which the DutchOutputs start decaying
                          uint256 decayStartTime;
                          // The time at which price becomes static
                          uint256 decayEndTime;
                          // The address who has exclusive rights to the order until decayStartTime
                          address exclusiveFiller;
                          // The amount in bps that a non-exclusive filler needs to improve the outputs by to be able to fill the order
                          uint256 exclusivityOverrideBps;
                          // The tokens that the swapper will provide when settling the order
                          DutchInput input;
                          // The tokens that must be received to satisfy the order
                          DutchOutput[] outputs;
                      }
                      /// @notice helpers for handling dutch order objects
                      library ExclusiveDutchOrderLib {
                          using DutchOrderLib for DutchOutput[];
                          using OrderInfoLib for OrderInfo;
                          bytes internal constant EXCLUSIVE_DUTCH_LIMIT_ORDER_TYPE = abi.encodePacked(
                              "ExclusiveDutchOrder(",
                              "OrderInfo info,",
                              "uint256 decayStartTime,",
                              "uint256 decayEndTime,",
                              "address exclusiveFiller,",
                              "uint256 exclusivityOverrideBps,",
                              "address inputToken,",
                              "uint256 inputStartAmount,",
                              "uint256 inputEndAmount,",
                              "DutchOutput[] outputs)"
                          );
                          bytes internal constant ORDER_TYPE = abi.encodePacked(
                              EXCLUSIVE_DUTCH_LIMIT_ORDER_TYPE, DutchOrderLib.DUTCH_OUTPUT_TYPE, OrderInfoLib.ORDER_INFO_TYPE
                          );
                          bytes32 internal constant ORDER_TYPE_HASH = keccak256(ORDER_TYPE);
                          /// @dev Note that sub-structs have to be defined in alphabetical order in the EIP-712 spec
                          string internal constant PERMIT2_ORDER_TYPE = string(
                              abi.encodePacked(
                                  "ExclusiveDutchOrder witness)",
                                  DutchOrderLib.DUTCH_OUTPUT_TYPE,
                                  EXCLUSIVE_DUTCH_LIMIT_ORDER_TYPE,
                                  OrderInfoLib.ORDER_INFO_TYPE,
                                  DutchOrderLib.TOKEN_PERMISSIONS_TYPE
                              )
                          );
                          /// @notice hash the given order
                          /// @param order the order to hash
                          /// @return the eip-712 order hash
                          function hash(ExclusiveDutchOrder memory order) internal pure returns (bytes32) {
                              return keccak256(
                                  abi.encode(
                                      ORDER_TYPE_HASH,
                                      order.info.hash(),
                                      order.decayStartTime,
                                      order.decayEndTime,
                                      order.exclusiveFiller,
                                      order.exclusivityOverrideBps,
                                      order.input.token,
                                      order.input.startAmount,
                                      order.input.endAmount,
                                      order.outputs.hash()
                                  )
                              );
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {IReactor} from "../interfaces/IReactor.sol";
                      import {IValidationCallback} from "../interfaces/IValidationCallback.sol";
                      import {ERC20} from "solmate/src/tokens/ERC20.sol";
                      /// @dev generic order information
                      ///  should be included as the first field in any concrete order types
                      struct OrderInfo {
                          // The address of the reactor that this order is targeting
                          // Note that this must be included in every order so the swapper
                          // signature commits to the specific reactor that they trust to fill their order properly
                          IReactor reactor;
                          // The address of the user which created the order
                          // Note that this must be included so that order hashes are unique by swapper
                          address swapper;
                          // The nonce of the order, allowing for signature replay protection and cancellation
                          uint256 nonce;
                          // The timestamp after which this order is no longer valid
                          uint256 deadline;
                          // Custom validation contract
                          IValidationCallback additionalValidationContract;
                          // Encoded validation params for additionalValidationContract
                          bytes additionalValidationData;
                      }
                      /// @dev tokens that need to be sent from the swapper in order to satisfy an order
                      struct InputToken {
                          ERC20 token;
                          uint256 amount;
                          // Needed for dutch decaying inputs
                          uint256 maxAmount;
                      }
                      /// @dev tokens that need to be received by the recipient in order to satisfy an order
                      struct OutputToken {
                          address token;
                          uint256 amount;
                          address recipient;
                      }
                      /// @dev generic concrete order that specifies exact tokens which need to be sent and received
                      struct ResolvedOrder {
                          OrderInfo info;
                          InputToken input;
                          OutputToken[] outputs;
                          bytes sig;
                          bytes32 hash;
                      }
                      /// @dev external struct including a generic encoded order and swapper signature
                      ///  The order bytes will be parsed and mapped to a ResolvedOrder in the concrete reactor contract
                      struct SignedOrder {
                          bytes order;
                          bytes sig;
                      }
                      // SPDX-License-Identifier: AGPL-3.0-only
                      pragma solidity >=0.8.0;
                      import {ERC20} from "../tokens/ERC20.sol";
                      /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
                      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
                      /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
                      /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
                      library SafeTransferLib {
                          /*//////////////////////////////////////////////////////////////
                                                   ETH OPERATIONS
                          //////////////////////////////////////////////////////////////*/
                          function safeTransferETH(address to, uint256 amount) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Transfer the ETH and store if it succeeded or not.
                                  success := call(gas(), to, amount, 0, 0, 0, 0)
                              }
                              require(success, "ETH_TRANSFER_FAILED");
                          }
                          /*//////////////////////////////////////////////////////////////
                                                  ERC20 OPERATIONS
                          //////////////////////////////////////////////////////////////*/
                          function safeTransferFrom(
                              ERC20 token,
                              address from,
                              address to,
                              uint256 amount
                          ) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Get a pointer to some free memory.
                                  let freeMemoryPointer := mload(0x40)
                                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                                  mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                                  mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
                                  mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                                  mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                                  success := and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                                  )
                              }
                              require(success, "TRANSFER_FROM_FAILED");
                          }
                          function safeTransfer(
                              ERC20 token,
                              address to,
                              uint256 amount
                          ) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Get a pointer to some free memory.
                                  let freeMemoryPointer := mload(0x40)
                                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                                  mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                                  mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                                  mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                                  success := and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                                  )
                              }
                              require(success, "TRANSFER_FAILED");
                          }
                          function safeApprove(
                              ERC20 token,
                              address to,
                              uint256 amount
                          ) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Get a pointer to some free memory.
                                  let freeMemoryPointer := mload(0x40)
                                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                                  mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                                  mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                                  mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                                  success := and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                                  )
                              }
                              require(success, "APPROVE_FAILED");
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
                      pragma solidity ^0.8.0;
                      /**
                       * @dev Contract module that helps prevent reentrant calls to a function.
                       *
                       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
                       * available, which can be applied to functions to make sure there are no nested
                       * (reentrant) calls to them.
                       *
                       * Note that because there is a single `nonReentrant` guard, functions marked as
                       * `nonReentrant` may not call one another. This can be worked around by making
                       * those functions `private`, and then adding `external` `nonReentrant` entry
                       * points to them.
                       *
                       * TIP: If you would like to learn more about reentrancy and alternative ways
                       * to protect against it, check out our blog post
                       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
                       */
                      abstract contract ReentrancyGuard {
                          // Booleans are more expensive than uint256 or any type that takes up a full
                          // word because each write operation emits an extra SLOAD to first read the
                          // slot's contents, replace the bits taken up by the boolean, and then write
                          // back. This is the compiler's defense against contract upgrades and
                          // pointer aliasing, and it cannot be disabled.
                          // The values being non-zero value makes deployment a bit more expensive,
                          // but in exchange the refund on every call to nonReentrant will be lower in
                          // amount. Since refunds are capped to a percentage of the total
                          // transaction's gas, it is best to keep them low in cases like this one, to
                          // increase the likelihood of the full refund coming into effect.
                          uint256 private constant _NOT_ENTERED = 1;
                          uint256 private constant _ENTERED = 2;
                          uint256 private _status;
                          constructor() {
                              _status = _NOT_ENTERED;
                          }
                          /**
                           * @dev Prevents a contract from calling itself, directly or indirectly.
                           * Calling a `nonReentrant` function from another `nonReentrant`
                           * function is not supported. It is possible to prevent this from happening
                           * by making the `nonReentrant` function external, and making it call a
                           * `private` function that does the actual work.
                           */
                          modifier nonReentrant() {
                              _nonReentrantBefore();
                              _;
                              _nonReentrantAfter();
                          }
                          function _nonReentrantBefore() private {
                              // On the first call to nonReentrant, _status will be _NOT_ENTERED
                              require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                              // Any calls to nonReentrant after this point will fail
                              _status = _ENTERED;
                          }
                          function _nonReentrantAfter() private {
                              // By storing the original value once again, a refund is triggered (see
                              // https://eips.ethereum.org/EIPS/eip-2200)
                              _status = _NOT_ENTERED;
                          }
                          /**
                           * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
                           * `nonReentrant` function in the call stack.
                           */
                          function _reentrancyGuardEntered() internal view returns (bool) {
                              return _status == _ENTERED;
                          }
                      }
                      // SPDX-License-Identifier: AGPL-3.0-only
                      pragma solidity >=0.8.0;
                      /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
                      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
                      /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
                      /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
                      abstract contract ERC20 {
                          /*//////////////////////////////////////////////////////////////
                                                       EVENTS
                          //////////////////////////////////////////////////////////////*/
                          event Transfer(address indexed from, address indexed to, uint256 amount);
                          event Approval(address indexed owner, address indexed spender, uint256 amount);
                          /*//////////////////////////////////////////////////////////////
                                                  METADATA STORAGE
                          //////////////////////////////////////////////////////////////*/
                          string public name;
                          string public symbol;
                          uint8 public immutable decimals;
                          /*//////////////////////////////////////////////////////////////
                                                    ERC20 STORAGE
                          //////////////////////////////////////////////////////////////*/
                          uint256 public totalSupply;
                          mapping(address => uint256) public balanceOf;
                          mapping(address => mapping(address => uint256)) public allowance;
                          /*//////////////////////////////////////////////////////////////
                                                  EIP-2612 STORAGE
                          //////////////////////////////////////////////////////////////*/
                          uint256 internal immutable INITIAL_CHAIN_ID;
                          bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
                          mapping(address => uint256) public nonces;
                          /*//////////////////////////////////////////////////////////////
                                                     CONSTRUCTOR
                          //////////////////////////////////////////////////////////////*/
                          constructor(
                              string memory _name,
                              string memory _symbol,
                              uint8 _decimals
                          ) {
                              name = _name;
                              symbol = _symbol;
                              decimals = _decimals;
                              INITIAL_CHAIN_ID = block.chainid;
                              INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
                          }
                          /*//////////////////////////////////////////////////////////////
                                                     ERC20 LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function approve(address spender, uint256 amount) public virtual returns (bool) {
                              allowance[msg.sender][spender] = amount;
                              emit Approval(msg.sender, spender, amount);
                              return true;
                          }
                          function transfer(address to, uint256 amount) public virtual returns (bool) {
                              balanceOf[msg.sender] -= amount;
                              // Cannot overflow because the sum of all user
                              // balances can't exceed the max uint256 value.
                              unchecked {
                                  balanceOf[to] += amount;
                              }
                              emit Transfer(msg.sender, to, amount);
                              return true;
                          }
                          function transferFrom(
                              address from,
                              address to,
                              uint256 amount
                          ) public virtual returns (bool) {
                              uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                              if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                              balanceOf[from] -= amount;
                              // Cannot overflow because the sum of all user
                              // balances can't exceed the max uint256 value.
                              unchecked {
                                  balanceOf[to] += amount;
                              }
                              emit Transfer(from, to, amount);
                              return true;
                          }
                          /*//////////////////////////////////////////////////////////////
                                                   EIP-2612 LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function permit(
                              address owner,
                              address spender,
                              uint256 value,
                              uint256 deadline,
                              uint8 v,
                              bytes32 r,
                              bytes32 s
                          ) public virtual {
                              require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                              // Unchecked because the only math done is incrementing
                              // the owner's nonce which cannot realistically overflow.
                              unchecked {
                                  address recoveredAddress = ecrecover(
                                      keccak256(
                                          abi.encodePacked(
                                              "\\x19\\x01",
                                              DOMAIN_SEPARATOR(),
                                              keccak256(
                                                  abi.encode(
                                                      keccak256(
                                                          "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                                      ),
                                                      owner,
                                                      spender,
                                                      value,
                                                      nonces[owner]++,
                                                      deadline
                                                  )
                                              )
                                          )
                                      ),
                                      v,
                                      r,
                                      s
                                  );
                                  require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                                  allowance[recoveredAddress][spender] = value;
                              }
                              emit Approval(owner, spender, value);
                          }
                          function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                              return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
                          }
                          function computeDomainSeparator() internal view virtual returns (bytes32) {
                              return
                                  keccak256(
                                      abi.encode(
                                          keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                                          keccak256(bytes(name)),
                                          keccak256("1"),
                                          block.chainid,
                                          address(this)
                                      )
                                  );
                          }
                          /*//////////////////////////////////////////////////////////////
                                              INTERNAL MINT/BURN LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function _mint(address to, uint256 amount) internal virtual {
                              totalSupply += amount;
                              // Cannot overflow because the sum of all user
                              // balances can't exceed the max uint256 value.
                              unchecked {
                                  balanceOf[to] += amount;
                              }
                              emit Transfer(address(0), to, amount);
                          }
                          function _burn(address from, uint256 amount) internal virtual {
                              balanceOf[from] -= amount;
                              // Cannot underflow because a user's balance
                              // will never be larger than the total supply.
                              unchecked {
                                  totalSupply -= amount;
                              }
                              emit Transfer(from, address(0), amount);
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      /// @notice standardized events that should be emitted by all reactors
                      /// @dev collated into one library to help with forge expectEmit integration
                      /// @dev and for reactors which dont use base
                      interface ReactorEvents {
                          /// @notice emitted when an order is filled
                          /// @param orderHash The hash of the order that was filled
                          /// @param filler The address which executed the fill
                          /// @param nonce The nonce of the filled order
                          /// @param swapper The swapper of the filled order
                          event Fill(bytes32 indexed orderHash, address indexed filler, address indexed swapper, uint256 nonce);
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {ResolvedOrder} from "../base/ReactorStructs.sol";
                      import {IValidationCallback} from "../interfaces/IValidationCallback.sol";
                      library ResolvedOrderLib {
                          /// @notice thrown when the order targets a different reactor
                          error InvalidReactor();
                          /// @notice thrown if the order has expired
                          error DeadlinePassed();
                          /// @notice Validates a resolved order, reverting if invalid
                          /// @param filler The filler of the order
                          function validate(ResolvedOrder memory resolvedOrder, address filler) internal view {
                              if (address(this) != address(resolvedOrder.info.reactor)) {
                                  revert InvalidReactor();
                              }
                              if (block.timestamp > resolvedOrder.info.deadline) {
                                  revert DeadlinePassed();
                              }
                              if (address(resolvedOrder.info.additionalValidationContract) != address(0)) {
                                  resolvedOrder.info.additionalValidationContract.validate(filler, resolvedOrder);
                              }
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {ERC20} from "solmate/src/tokens/ERC20.sol";
                      import {IPermit2} from "permit2/src/interfaces/IPermit2.sol";
                      import {SafeCast} from "openzeppelin-contracts/utils/math/SafeCast.sol";
                      import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";
                      address constant NATIVE = 0x0000000000000000000000000000000000000000;
                      uint256 constant TRANSFER_NATIVE_GAS_LIMIT = 6900;
                      /// @title CurrencyLibrary
                      /// @dev This library allows for transferring native ETH and ERC20s via direct filler OR fill contract.
                      library CurrencyLibrary {
                          using SafeTransferLib for ERC20;
                          /// @notice Thrown when a native transfer fails
                          error NativeTransferFailed();
                          /// @notice Get the balance of a currency for addr
                          /// @param currency The currency to get the balance of
                          /// @param addr The address to get the balance of
                          /// @return balance The balance of the currency for addr
                          function balanceOf(address currency, address addr) internal view returns (uint256 balance) {
                              if (isNative(currency)) {
                                  balance = addr.balance;
                              } else {
                                  balance = ERC20(currency).balanceOf(addr);
                              }
                          }
                          /// @notice Transfer currency from the caller to recipient
                          /// @dev for native outputs we will already have the currency in local balance
                          /// @param currency The currency to transfer
                          /// @param recipient The recipient of the currency
                          /// @param amount The amount of currency to transfer
                          function transferFill(address currency, address recipient, uint256 amount) internal {
                              if (isNative(currency)) {
                                  // we will have received native assets directly so can directly transfer
                                  transferNative(recipient, amount);
                              } else {
                                  // else the caller must have approved the token for the fill
                                  ERC20(currency).safeTransferFrom(msg.sender, recipient, amount);
                              }
                          }
                          /// @notice Transfer native currency to recipient
                          /// @param recipient The recipient of the currency
                          /// @param amount The amount of currency to transfer
                          function transferNative(address recipient, uint256 amount) internal {
                              (bool success,) = recipient.call{value: amount, gas: TRANSFER_NATIVE_GAS_LIMIT}("");
                              if (!success) revert NativeTransferFailed();
                          }
                          /// @notice returns true if currency is native
                          /// @param currency The currency to check
                          /// @return true if currency is native
                          function isNative(address currency) internal pure returns (bool) {
                              return currency == NATIVE;
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {ResolvedOrder} from "../base/ReactorStructs.sol";
                      /// @notice Callback for executing orders through a reactor.
                      interface IReactorCallback {
                          /// @notice Called by the reactor during the execution of an order
                          /// @param resolvedOrders Has inputs and outputs
                          /// @param callbackData The callbackData specified for an order execution
                          /// @dev Must have approved each token and amount in outputs to the msg.sender
                          function reactorCallback(ResolvedOrder[] memory resolvedOrders, bytes memory callbackData) external;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {ResolvedOrder, SignedOrder} from "../base/ReactorStructs.sol";
                      import {IReactorCallback} from "./IReactorCallback.sol";
                      /// @notice Interface for order execution reactors
                      interface IReactor {
                          /// @notice Execute a single order
                          /// @param order The order definition and valid signature to execute
                          function execute(SignedOrder calldata order) external payable;
                          /// @notice Execute a single order using the given callback data
                          /// @param order The order definition and valid signature to execute
                          function executeWithCallback(SignedOrder calldata order, bytes calldata callbackData) external payable;
                          /// @notice Execute the given orders at once
                          /// @param orders The order definitions and valid signatures to execute
                          function executeBatch(SignedOrder[] calldata orders) external payable;
                          /// @notice Execute the given orders at once using a callback with the given callback data
                          /// @param orders The order definitions and valid signatures to execute
                          /// @param callbackData The callbackData to pass to the callback
                          function executeBatchWithCallback(SignedOrder[] calldata orders, bytes calldata callbackData) external payable;
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {Owned} from "solmate/src/auth/Owned.sol";
                      import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";
                      import {FixedPointMathLib} from "solmate/src/utils/FixedPointMathLib.sol";
                      import {ERC20} from "solmate/src/tokens/ERC20.sol";
                      import {IProtocolFeeController} from "../interfaces/IProtocolFeeController.sol";
                      import {CurrencyLibrary} from "../lib/CurrencyLibrary.sol";
                      import {ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol";
                      /// @notice Handling for protocol fees
                      abstract contract ProtocolFees is Owned {
                          using SafeTransferLib for ERC20;
                          using FixedPointMathLib for uint256;
                          using CurrencyLibrary for address;
                          /// @notice thrown if two fee outputs have the same token
                          error DuplicateFeeOutput(address duplicateToken);
                          /// @notice thrown if a given fee output is greater than MAX_FEE_BPS of the order outputs
                          error FeeTooLarge(address token, uint256 amount, address recipient);
                          /// @notice thrown if a fee output token does not have a corresponding non-fee output
                          error InvalidFeeToken(address feeToken);
                          event ProtocolFeeControllerSet(address oldFeeController, address newFeeController);
                          uint256 private constant BPS = 10_000;
                          uint256 private constant MAX_FEE_BPS = 5;
                          /// @dev The address of the fee controller
                          IProtocolFeeController public feeController;
                          // @notice Required to customize owner from constructor of BaseReactor.sol
                          constructor(address _owner) Owned(_owner) {}
                          /// @notice Injects fees into an order
                          /// @dev modifies the orders to include protocol fee outputs
                          /// @param order The encoded order to inject fees into
                          function _injectFees(ResolvedOrder memory order) internal view {
                              if (address(feeController) == address(0)) {
                                  return;
                              }
                              OutputToken[] memory feeOutputs = feeController.getFeeOutputs(order);
                              uint256 outputsLength = order.outputs.length;
                              uint256 feeOutputsLength = feeOutputs.length;
                              // apply fee outputs
                              // fill new outputs with old outputs
                              OutputToken[] memory newOutputs = new OutputToken[](
                                  outputsLength + feeOutputsLength
                              );
                              unchecked {
                                  for (uint256 i = 0; i < outputsLength; i++) {
                                      newOutputs[i] = order.outputs[i];
                                  }
                              }
                              for (uint256 i = 0; i < feeOutputsLength;) {
                                  OutputToken memory feeOutput = feeOutputs[i];
                                  // assert no duplicates
                                  unchecked {
                                      for (uint256 j = 0; j < i; j++) {
                                          if (feeOutput.token == feeOutputs[j].token) {
                                              revert DuplicateFeeOutput(feeOutput.token);
                                          }
                                      }
                                  }
                                  // assert not greater than MAX_FEE_BPS
                                  uint256 tokenValue;
                                  for (uint256 j = 0; j < outputsLength;) {
                                      OutputToken memory output = order.outputs[j];
                                      if (output.token == feeOutput.token) {
                                          tokenValue += output.amount;
                                      }
                                      unchecked {
                                          j++;
                                      }
                                  }
                                  // allow fee on input token as well
                                  if (address(order.input.token) == feeOutput.token) {
                                      tokenValue += order.input.amount;
                                  }
                                  if (tokenValue == 0) revert InvalidFeeToken(feeOutput.token);
                                  if (feeOutput.amount > tokenValue.mulDivDown(MAX_FEE_BPS, BPS)) {
                                      revert FeeTooLarge(feeOutput.token, feeOutput.amount, feeOutput.recipient);
                                  }
                                  newOutputs[outputsLength + i] = feeOutput;
                                  unchecked {
                                      i++;
                                  }
                              }
                              order.outputs = newOutputs;
                          }
                          /// @notice sets the protocol fee controller
                          /// @dev only callable by the owner
                          /// @param _newFeeController the new fee controller
                          function setProtocolFeeController(address _newFeeController) external onlyOwner {
                              address oldFeeController = address(feeController);
                              feeController = IProtocolFeeController(_newFeeController);
                              emit ProtocolFeeControllerSet(oldFeeController, _newFeeController);
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      import {IEIP712} from "./IEIP712.sol";
                      /// @title SignatureTransfer
                      /// @notice Handles ERC20 token transfers through signature based actions
                      /// @dev Requires user's token approval on the Permit2 contract
                      interface ISignatureTransfer is IEIP712 {
                          /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount
                          /// @param maxAmount The maximum amount a spender can request to transfer
                          error InvalidAmount(uint256 maxAmount);
                          /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred
                          /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred
                          error LengthMismatch();
                          /// @notice Emits an event when the owner successfully invalidates an unordered nonce.
                          event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask);
                          /// @notice The token and amount details for a transfer signed in the permit transfer signature
                          struct TokenPermissions {
                              // ERC20 token address
                              address token;
                              // the maximum amount that can be spent
                              uint256 amount;
                          }
                          /// @notice The signed permit message for a single token transfer
                          struct PermitTransferFrom {
                              TokenPermissions permitted;
                              // a unique value for every token owner's signature to prevent signature replays
                              uint256 nonce;
                              // deadline on the permit signature
                              uint256 deadline;
                          }
                          /// @notice Specifies the recipient address and amount for batched transfers.
                          /// @dev Recipients and amounts correspond to the index of the signed token permissions array.
                          /// @dev Reverts if the requested amount is greater than the permitted signed amount.
                          struct SignatureTransferDetails {
                              // recipient address
                              address to;
                              // spender requested amount
                              uint256 requestedAmount;
                          }
                          /// @notice Used to reconstruct the signed permit message for multiple token transfers
                          /// @dev Do not need to pass in spender address as it is required that it is msg.sender
                          /// @dev Note that a user still signs over a spender address
                          struct PermitBatchTransferFrom {
                              // the tokens and corresponding amounts permitted for a transfer
                              TokenPermissions[] permitted;
                              // a unique value for every token owner's signature to prevent signature replays
                              uint256 nonce;
                              // deadline on the permit signature
                              uint256 deadline;
                          }
                          /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
                          /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
                          /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
                          /// @dev It returns a uint256 bitmap
                          /// @dev The index, or wordPosition is capped at type(uint248).max
                          function nonceBitmap(address, uint256) external view returns (uint256);
                          /// @notice Transfers a token using a signed permit message
                          /// @dev Reverts if the requested amount is greater than the permitted signed amount
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails The spender's requested transfer details for the permitted token
                          /// @param signature The signature to verify
                          function permitTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes calldata signature
                          ) external;
                          /// @notice Transfers a token using a signed permit message
                          /// @notice Includes extra data provided by the caller to verify signature over
                          /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
                          /// @dev Reverts if the requested amount is greater than the permitted signed amount
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails The spender's requested transfer details for the permitted token
                          /// @param witness Extra data to include when checking the user signature
                          /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
                          /// @param signature The signature to verify
                          function permitWitnessTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes32 witness,
                              string calldata witnessTypeString,
                              bytes calldata signature
                          ) external;
                          /// @notice Transfers multiple tokens using a signed permit message
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails Specifies the recipient and requested amount for the token transfer
                          /// @param signature The signature to verify
                          function permitTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes calldata signature
                          ) external;
                          /// @notice Transfers multiple tokens using a signed permit message
                          /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
                          /// @notice Includes extra data provided by the caller to verify signature over
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails Specifies the recipient and requested amount for the token transfer
                          /// @param witness Extra data to include when checking the user signature
                          /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
                          /// @param signature The signature to verify
                          function permitWitnessTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes32 witness,
                              string calldata witnessTypeString,
                              bytes calldata signature
                          ) external;
                          /// @notice Invalidates the bits specified in mask for the bitmap at the word position
                          /// @dev The wordPos is maxed at type(uint248).max
                          /// @param wordPos A number to index the nonceBitmap at
                          /// @param mask A bitmap masked against msg.sender's current bitmap at the word position
                          function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external;
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      import {IEIP712} from "./IEIP712.sol";
                      /// @title AllowanceTransfer
                      /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
                      /// @dev Requires user's token approval on the Permit2 contract
                      interface IAllowanceTransfer is IEIP712 {
                          /// @notice Thrown when an allowance on a token has expired.
                          /// @param deadline The timestamp at which the allowed amount is no longer valid
                          error AllowanceExpired(uint256 deadline);
                          /// @notice Thrown when an allowance on a token has been depleted.
                          /// @param amount The maximum amount allowed
                          error InsufficientAllowance(uint256 amount);
                          /// @notice Thrown when too many nonces are invalidated.
                          error ExcessiveInvalidation();
                          /// @notice Emits an event when the owner successfully invalidates an ordered nonce.
                          event NonceInvalidation(
                              address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce
                          );
                          /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.
                          event Approval(
                              address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration
                          );
                          /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.
                          event Permit(
                              address indexed owner,
                              address indexed token,
                              address indexed spender,
                              uint160 amount,
                              uint48 expiration,
                              uint48 nonce
                          );
                          /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.
                          event Lockdown(address indexed owner, address token, address spender);
                          /// @notice The permit data for a token
                          struct PermitDetails {
                              // ERC20 token address
                              address token;
                              // the maximum amount allowed to spend
                              uint160 amount;
                              // timestamp at which a spender's token allowances become invalid
                              uint48 expiration;
                              // an incrementing value indexed per owner,token,and spender for each signature
                              uint48 nonce;
                          }
                          /// @notice The permit message signed for a single token allownce
                          struct PermitSingle {
                              // the permit data for a single token alownce
                              PermitDetails details;
                              // address permissioned on the allowed tokens
                              address spender;
                              // deadline on the permit signature
                              uint256 sigDeadline;
                          }
                          /// @notice The permit message signed for multiple token allowances
                          struct PermitBatch {
                              // the permit data for multiple token allowances
                              PermitDetails[] details;
                              // address permissioned on the allowed tokens
                              address spender;
                              // deadline on the permit signature
                              uint256 sigDeadline;
                          }
                          /// @notice The saved permissions
                          /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message
                          /// @dev Setting amount to type(uint160).max sets an unlimited approval
                          struct PackedAllowance {
                              // amount allowed
                              uint160 amount;
                              // permission expiry
                              uint48 expiration;
                              // an incrementing value indexed per owner,token,and spender for each signature
                              uint48 nonce;
                          }
                          /// @notice A token spender pair.
                          struct TokenSpenderPair {
                              // the token the spender is approved
                              address token;
                              // the spender address
                              address spender;
                          }
                          /// @notice Details for a token transfer.
                          struct AllowanceTransferDetails {
                              // the owner of the token
                              address from;
                              // the recipient of the token
                              address to;
                              // the amount of the token
                              uint160 amount;
                              // the token to be transferred
                              address token;
                          }
                          /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.
                          /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]
                          /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.
                          function allowance(address user, address token, address spender)
                              external
                              view
                              returns (uint160 amount, uint48 expiration, uint48 nonce);
                          /// @notice Approves the spender to use up to amount of the specified token up until the expiration
                          /// @param token The token to approve
                          /// @param spender The spender address to approve
                          /// @param amount The approved amount of the token
                          /// @param expiration The timestamp at which the approval is no longer valid
                          /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve
                          /// @dev Setting amount to type(uint160).max sets an unlimited approval
                          function approve(address token, address spender, uint160 amount, uint48 expiration) external;
                          /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature
                          /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
                          /// @param owner The owner of the tokens being approved
                          /// @param permitSingle Data signed over by the owner specifying the terms of approval
                          /// @param signature The owner's signature over the permit data
                          function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
                          /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature
                          /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
                          /// @param owner The owner of the tokens being approved
                          /// @param permitBatch Data signed over by the owner specifying the terms of approval
                          /// @param signature The owner's signature over the permit data
                          function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external;
                          /// @notice Transfer approved tokens from one address to another
                          /// @param from The address to transfer from
                          /// @param to The address of the recipient
                          /// @param amount The amount of the token to transfer
                          /// @param token The token address to transfer
                          /// @dev Requires the from address to have approved at least the desired amount
                          /// of tokens to msg.sender.
                          function transferFrom(address from, address to, uint160 amount, address token) external;
                          /// @notice Transfer approved tokens in a batch
                          /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers
                          /// @dev Requires the from addresses to have approved at least the desired amount
                          /// of tokens to msg.sender.
                          function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external;
                          /// @notice Enables performing a "lockdown" of the sender's Permit2 identity
                          /// by batch revoking approvals
                          /// @param approvals Array of approvals to revoke.
                          function lockdown(TokenSpenderPair[] calldata approvals) external;
                          /// @notice Invalidate nonces for a given (token, spender) pair
                          /// @param token The token to invalidate nonces for
                          /// @param spender The spender to invalidate nonces for
                          /// @param newNonce The new nonce to set. Invalidates all nonces less than it.
                          /// @dev Can't invalidate more than 2**16 nonces per transaction.
                          function invalidateNonces(address token, address spender, uint48 newNonce) external;
                      }
                      // SPDX-License-Identifier: AGPL-3.0-only
                      pragma solidity >=0.8.0;
                      /// @notice Arithmetic library with operations for fixed-point numbers.
                      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
                      /// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
                      library FixedPointMathLib {
                          /*//////////////////////////////////////////////////////////////
                                          SIMPLIFIED FIXED POINT OPERATIONS
                          //////////////////////////////////////////////////////////////*/
                          uint256 internal constant MAX_UINT256 = 2**256 - 1;
                          uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                          function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                              return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                          }
                          function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                              return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                          }
                          function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                              return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                          }
                          function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                              return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                          }
                          /*//////////////////////////////////////////////////////////////
                                          LOW LEVEL FIXED POINT OPERATIONS
                          //////////////////////////////////////////////////////////////*/
                          function mulDivDown(
                              uint256 x,
                              uint256 y,
                              uint256 denominator
                          ) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
                                  if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                                      revert(0, 0)
                                  }
                                  // Divide x * y by the denominator.
                                  z := div(mul(x, y), denominator)
                              }
                          }
                          function mulDivUp(
                              uint256 x,
                              uint256 y,
                              uint256 denominator
                          ) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
                                  if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                                      revert(0, 0)
                                  }
                                  // If x * y modulo the denominator is strictly greater than 0,
                                  // 1 is added to round up the division of x * y by the denominator.
                                  z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
                              }
                          }
                          function rpow(
                              uint256 x,
                              uint256 n,
                              uint256 scalar
                          ) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  switch x
                                  case 0 {
                                      switch n
                                      case 0 {
                                          // 0 ** 0 = 1
                                          z := scalar
                                      }
                                      default {
                                          // 0 ** n = 0
                                          z := 0
                                      }
                                  }
                                  default {
                                      switch mod(n, 2)
                                      case 0 {
                                          // If n is even, store scalar in z for now.
                                          z := scalar
                                      }
                                      default {
                                          // If n is odd, store x in z for now.
                                          z := x
                                      }
                                      // Shifting right by 1 is like dividing by 2.
                                      let half := shr(1, scalar)
                                      for {
                                          // Shift n right by 1 before looping to halve it.
                                          n := shr(1, n)
                                      } n {
                                          // Shift n right by 1 each iteration to halve it.
                                          n := shr(1, n)
                                      } {
                                          // Revert immediately if x ** 2 would overflow.
                                          // Equivalent to iszero(eq(div(xx, x), x)) here.
                                          if shr(128, x) {
                                              revert(0, 0)
                                          }
                                          // Store x squared.
                                          let xx := mul(x, x)
                                          // Round to the nearest number.
                                          let xxRound := add(xx, half)
                                          // Revert if xx + half overflowed.
                                          if lt(xxRound, xx) {
                                              revert(0, 0)
                                          }
                                          // Set x to scaled xxRound.
                                          x := div(xxRound, scalar)
                                          // If n is even:
                                          if mod(n, 2) {
                                              // Compute z * x.
                                              let zx := mul(z, x)
                                              // If z * x overflowed:
                                              if iszero(eq(div(zx, x), z)) {
                                                  // Revert if x is non-zero.
                                                  if iszero(iszero(x)) {
                                                      revert(0, 0)
                                                  }
                                              }
                                              // Round to the nearest number.
                                              let zxRound := add(zx, half)
                                              // Revert if zx + half overflowed.
                                              if lt(zxRound, zx) {
                                                  revert(0, 0)
                                              }
                                              // Return properly scaled zxRound.
                                              z := div(zxRound, scalar)
                                          }
                                      }
                                  }
                              }
                          }
                          /*//////////////////////////////////////////////////////////////
                                              GENERAL NUMBER UTILITIES
                          //////////////////////////////////////////////////////////////*/
                          function sqrt(uint256 x) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let y := x // We start y at x, which will help us make our initial estimate.
                                  z := 181 // The "correct" value is 1, but this saves a multiplication later.
                                  // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                                  // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                                  // We check y >= 2^(k + 8) but shift right by k bits
                                  // each branch to ensure that if x >= 256, then y >= 256.
                                  if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                                      y := shr(128, y)
                                      z := shl(64, z)
                                  }
                                  if iszero(lt(y, 0x1000000000000000000)) {
                                      y := shr(64, y)
                                      z := shl(32, z)
                                  }
                                  if iszero(lt(y, 0x10000000000)) {
                                      y := shr(32, y)
                                      z := shl(16, z)
                                  }
                                  if iszero(lt(y, 0x1000000)) {
                                      y := shr(16, y)
                                      z := shl(8, z)
                                  }
                                  // Goal was to get z*z*y within a small factor of x. More iterations could
                                  // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                                  // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                                  // That's not possible if x < 256 but we can just verify those cases exhaustively.
                                  // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                                  // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                                  // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                                  // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                                  // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                                  // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                                  // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                                  // There is no overflow risk here since y < 2^136 after the first branch above.
                                  z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                                  // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                                  z := shr(1, add(z, div(x, z)))
                                  z := shr(1, add(z, div(x, z)))
                                  z := shr(1, add(z, div(x, z)))
                                  z := shr(1, add(z, div(x, z)))
                                  z := shr(1, add(z, div(x, z)))
                                  z := shr(1, add(z, div(x, z)))
                                  z := shr(1, add(z, div(x, z)))
                                  // If x+1 is a perfect square, the Babylonian method cycles between
                                  // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                                  // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                                  // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                                  // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                                  z := sub(z, lt(div(x, z), z))
                              }
                          }
                          function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Mod x by y. Note this will return
                                  // 0 instead of reverting if y is zero.
                                  z := mod(x, y)
                              }
                          }
                          function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Divide x by y. Note this will return
                                  // 0 instead of reverting if y is zero.
                                  r := div(x, y)
                              }
                          }
                          function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Add 1 to x * y if x % y > 0. Note this will
                                  // return 0 instead of reverting if y is zero.
                                  z := add(gt(mod(x, y), 0), div(x, y))
                              }
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {OrderInfo} from "../base/ReactorStructs.sol";
                      import {OrderInfoLib} from "./OrderInfoLib.sol";
                      import {ERC20} from "solmate/src/tokens/ERC20.sol";
                      /// @dev An amount of output tokens that decreases linearly over time
                      struct DutchOutput {
                          // The ERC20 token address (or native ETH address)
                          address token;
                          // The amount of tokens at the start of the time period
                          uint256 startAmount;
                          // The amount of tokens at the end of the time period
                          uint256 endAmount;
                          // The address who must receive the tokens to satisfy the order
                          address recipient;
                      }
                      /// @dev An amount of input tokens that increases linearly over time
                      struct DutchInput {
                          // The ERC20 token address
                          ERC20 token;
                          // The amount of tokens at the start of the time period
                          uint256 startAmount;
                          // The amount of tokens at the end of the time period
                          uint256 endAmount;
                      }
                      struct DutchOrder {
                          // generic order information
                          OrderInfo info;
                          // The time at which the DutchOutputs start decaying
                          uint256 decayStartTime;
                          // The time at which price becomes static
                          uint256 decayEndTime;
                          // The tokens that the swapper will provide when settling the order
                          DutchInput input;
                          // The tokens that must be received to satisfy the order
                          DutchOutput[] outputs;
                      }
                      /// @notice helpers for handling dutch order objects
                      library DutchOrderLib {
                          using OrderInfoLib for OrderInfo;
                          bytes internal constant DUTCH_OUTPUT_TYPE =
                              "DutchOutput(address token,uint256 startAmount,uint256 endAmount,address recipient)";
                          bytes32 internal constant DUTCH_OUTPUT_TYPE_HASH = keccak256(DUTCH_OUTPUT_TYPE);
                          bytes internal constant DUTCH_LIMIT_ORDER_TYPE = abi.encodePacked(
                              "DutchOrder(",
                              "OrderInfo info,",
                              "uint256 decayStartTime,",
                              "uint256 decayEndTime,",
                              "address inputToken,",
                              "uint256 inputStartAmount,",
                              "uint256 inputEndAmount,",
                              "DutchOutput[] outputs)"
                          );
                          /// @dev Note that sub-structs have to be defined in alphabetical order in the EIP-712 spec
                          bytes internal constant ORDER_TYPE =
                              abi.encodePacked(DUTCH_LIMIT_ORDER_TYPE, DUTCH_OUTPUT_TYPE, OrderInfoLib.ORDER_INFO_TYPE);
                          bytes32 internal constant ORDER_TYPE_HASH = keccak256(ORDER_TYPE);
                          string internal constant TOKEN_PERMISSIONS_TYPE = "TokenPermissions(address token,uint256 amount)";
                          string internal constant PERMIT2_ORDER_TYPE =
                              string(abi.encodePacked("DutchOrder witness)", ORDER_TYPE, TOKEN_PERMISSIONS_TYPE));
                          /// @notice hash the given output
                          /// @param output the output to hash
                          /// @return the eip-712 output hash
                          function hash(DutchOutput memory output) internal pure returns (bytes32) {
                              return keccak256(
                                  abi.encode(DUTCH_OUTPUT_TYPE_HASH, output.token, output.startAmount, output.endAmount, output.recipient)
                              );
                          }
                          /// @notice hash the given outputs
                          /// @param outputs the outputs to hash
                          /// @return the eip-712 outputs hash
                          function hash(DutchOutput[] memory outputs) internal pure returns (bytes32) {
                              unchecked {
                                  bytes memory packedHashes = new bytes(32 * outputs.length);
                                  for (uint256 i = 0; i < outputs.length; i++) {
                                      bytes32 outputHash = hash(outputs[i]);
                                      assembly {
                                          mstore(add(add(packedHashes, 0x20), mul(i, 0x20)), outputHash)
                                      }
                                  }
                                  return keccak256(packedHashes);
                              }
                          }
                          /// @notice hash the given order
                          /// @param order the order to hash
                          /// @return the eip-712 order hash
                          function hash(DutchOrder memory order) internal pure returns (bytes32) {
                              return keccak256(
                                  abi.encode(
                                      ORDER_TYPE_HASH,
                                      order.info.hash(),
                                      order.decayStartTime,
                                      order.decayEndTime,
                                      order.input.token,
                                      order.input.startAmount,
                                      order.input.endAmount,
                                      hash(order.outputs)
                                  )
                              );
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {OrderInfo} from "../base/ReactorStructs.sol";
                      /// @notice helpers for handling OrderInfo objects
                      library OrderInfoLib {
                          bytes internal constant ORDER_INFO_TYPE =
                              "OrderInfo(address reactor,address swapper,uint256 nonce,uint256 deadline,address additionalValidationContract,bytes additionalValidationData)";
                          bytes32 internal constant ORDER_INFO_TYPE_HASH = keccak256(ORDER_INFO_TYPE);
                          /// @notice hash an OrderInfo object
                          /// @param info The OrderInfo object to hash
                          function hash(OrderInfo memory info) internal pure returns (bytes32) {
                              return keccak256(
                                  abi.encode(
                                      ORDER_INFO_TYPE_HASH,
                                      info.reactor,
                                      info.swapper,
                                      info.nonce,
                                      info.deadline,
                                      info.additionalValidationContract,
                                      keccak256(info.additionalValidationData)
                                  )
                              );
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {OrderInfo, ResolvedOrder} from "../base/ReactorStructs.sol";
                      /// @notice Callback to validate an order
                      interface IValidationCallback {
                          /// @notice Called by the reactor for custom validation of an order. Will revert if validation fails
                          /// @param filler The filler of the order
                          /// @param resolvedOrder The resolved order to fill
                          function validate(address filler, ResolvedOrder calldata resolvedOrder) external view;
                      }
                      // SPDX-License-Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
                      // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
                      pragma solidity ^0.8.0;
                      /**
                       * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
                       * checks.
                       *
                       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
                       * easily result in undesired exploitation or bugs, since developers usually
                       * assume that overflows raise errors. `SafeCast` restores this intuition by
                       * reverting the transaction when such an operation overflows.
                       *
                       * Using this library instead of the unchecked operations eliminates an entire
                       * class of bugs, so it's recommended to use it always.
                       *
                       * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
                       * all math on `uint256` and `int256` and then downcasting.
                       */
                      library SafeCast {
                          /**
                           * @dev Returns the downcasted uint248 from uint256, reverting on
                           * overflow (when the input is greater than largest uint248).
                           *
                           * Counterpart to Solidity's `uint248` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 248 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint248(uint256 value) internal pure returns (uint248) {
                              require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
                              return uint248(value);
                          }
                          /**
                           * @dev Returns the downcasted uint240 from uint256, reverting on
                           * overflow (when the input is greater than largest uint240).
                           *
                           * Counterpart to Solidity's `uint240` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 240 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint240(uint256 value) internal pure returns (uint240) {
                              require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
                              return uint240(value);
                          }
                          /**
                           * @dev Returns the downcasted uint232 from uint256, reverting on
                           * overflow (when the input is greater than largest uint232).
                           *
                           * Counterpart to Solidity's `uint232` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 232 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint232(uint256 value) internal pure returns (uint232) {
                              require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
                              return uint232(value);
                          }
                          /**
                           * @dev Returns the downcasted uint224 from uint256, reverting on
                           * overflow (when the input is greater than largest uint224).
                           *
                           * Counterpart to Solidity's `uint224` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 224 bits
                           *
                           * _Available since v4.2._
                           */
                          function toUint224(uint256 value) internal pure returns (uint224) {
                              require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
                              return uint224(value);
                          }
                          /**
                           * @dev Returns the downcasted uint216 from uint256, reverting on
                           * overflow (when the input is greater than largest uint216).
                           *
                           * Counterpart to Solidity's `uint216` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 216 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint216(uint256 value) internal pure returns (uint216) {
                              require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
                              return uint216(value);
                          }
                          /**
                           * @dev Returns the downcasted uint208 from uint256, reverting on
                           * overflow (when the input is greater than largest uint208).
                           *
                           * Counterpart to Solidity's `uint208` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 208 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint208(uint256 value) internal pure returns (uint208) {
                              require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
                              return uint208(value);
                          }
                          /**
                           * @dev Returns the downcasted uint200 from uint256, reverting on
                           * overflow (when the input is greater than largest uint200).
                           *
                           * Counterpart to Solidity's `uint200` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 200 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint200(uint256 value) internal pure returns (uint200) {
                              require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
                              return uint200(value);
                          }
                          /**
                           * @dev Returns the downcasted uint192 from uint256, reverting on
                           * overflow (when the input is greater than largest uint192).
                           *
                           * Counterpart to Solidity's `uint192` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 192 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint192(uint256 value) internal pure returns (uint192) {
                              require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
                              return uint192(value);
                          }
                          /**
                           * @dev Returns the downcasted uint184 from uint256, reverting on
                           * overflow (when the input is greater than largest uint184).
                           *
                           * Counterpart to Solidity's `uint184` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 184 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint184(uint256 value) internal pure returns (uint184) {
                              require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
                              return uint184(value);
                          }
                          /**
                           * @dev Returns the downcasted uint176 from uint256, reverting on
                           * overflow (when the input is greater than largest uint176).
                           *
                           * Counterpart to Solidity's `uint176` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 176 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint176(uint256 value) internal pure returns (uint176) {
                              require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
                              return uint176(value);
                          }
                          /**
                           * @dev Returns the downcasted uint168 from uint256, reverting on
                           * overflow (when the input is greater than largest uint168).
                           *
                           * Counterpart to Solidity's `uint168` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 168 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint168(uint256 value) internal pure returns (uint168) {
                              require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
                              return uint168(value);
                          }
                          /**
                           * @dev Returns the downcasted uint160 from uint256, reverting on
                           * overflow (when the input is greater than largest uint160).
                           *
                           * Counterpart to Solidity's `uint160` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 160 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint160(uint256 value) internal pure returns (uint160) {
                              require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
                              return uint160(value);
                          }
                          /**
                           * @dev Returns the downcasted uint152 from uint256, reverting on
                           * overflow (when the input is greater than largest uint152).
                           *
                           * Counterpart to Solidity's `uint152` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 152 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint152(uint256 value) internal pure returns (uint152) {
                              require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
                              return uint152(value);
                          }
                          /**
                           * @dev Returns the downcasted uint144 from uint256, reverting on
                           * overflow (when the input is greater than largest uint144).
                           *
                           * Counterpart to Solidity's `uint144` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 144 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint144(uint256 value) internal pure returns (uint144) {
                              require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
                              return uint144(value);
                          }
                          /**
                           * @dev Returns the downcasted uint136 from uint256, reverting on
                           * overflow (when the input is greater than largest uint136).
                           *
                           * Counterpart to Solidity's `uint136` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 136 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint136(uint256 value) internal pure returns (uint136) {
                              require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
                              return uint136(value);
                          }
                          /**
                           * @dev Returns the downcasted uint128 from uint256, reverting on
                           * overflow (when the input is greater than largest uint128).
                           *
                           * Counterpart to Solidity's `uint128` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 128 bits
                           *
                           * _Available since v2.5._
                           */
                          function toUint128(uint256 value) internal pure returns (uint128) {
                              require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
                              return uint128(value);
                          }
                          /**
                           * @dev Returns the downcasted uint120 from uint256, reverting on
                           * overflow (when the input is greater than largest uint120).
                           *
                           * Counterpart to Solidity's `uint120` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 120 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint120(uint256 value) internal pure returns (uint120) {
                              require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
                              return uint120(value);
                          }
                          /**
                           * @dev Returns the downcasted uint112 from uint256, reverting on
                           * overflow (when the input is greater than largest uint112).
                           *
                           * Counterpart to Solidity's `uint112` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 112 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint112(uint256 value) internal pure returns (uint112) {
                              require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
                              return uint112(value);
                          }
                          /**
                           * @dev Returns the downcasted uint104 from uint256, reverting on
                           * overflow (when the input is greater than largest uint104).
                           *
                           * Counterpart to Solidity's `uint104` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 104 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint104(uint256 value) internal pure returns (uint104) {
                              require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
                              return uint104(value);
                          }
                          /**
                           * @dev Returns the downcasted uint96 from uint256, reverting on
                           * overflow (when the input is greater than largest uint96).
                           *
                           * Counterpart to Solidity's `uint96` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 96 bits
                           *
                           * _Available since v4.2._
                           */
                          function toUint96(uint256 value) internal pure returns (uint96) {
                              require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
                              return uint96(value);
                          }
                          /**
                           * @dev Returns the downcasted uint88 from uint256, reverting on
                           * overflow (when the input is greater than largest uint88).
                           *
                           * Counterpart to Solidity's `uint88` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 88 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint88(uint256 value) internal pure returns (uint88) {
                              require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
                              return uint88(value);
                          }
                          /**
                           * @dev Returns the downcasted uint80 from uint256, reverting on
                           * overflow (when the input is greater than largest uint80).
                           *
                           * Counterpart to Solidity's `uint80` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 80 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint80(uint256 value) internal pure returns (uint80) {
                              require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
                              return uint80(value);
                          }
                          /**
                           * @dev Returns the downcasted uint72 from uint256, reverting on
                           * overflow (when the input is greater than largest uint72).
                           *
                           * Counterpart to Solidity's `uint72` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 72 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint72(uint256 value) internal pure returns (uint72) {
                              require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
                              return uint72(value);
                          }
                          /**
                           * @dev Returns the downcasted uint64 from uint256, reverting on
                           * overflow (when the input is greater than largest uint64).
                           *
                           * Counterpart to Solidity's `uint64` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 64 bits
                           *
                           * _Available since v2.5._
                           */
                          function toUint64(uint256 value) internal pure returns (uint64) {
                              require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
                              return uint64(value);
                          }
                          /**
                           * @dev Returns the downcasted uint56 from uint256, reverting on
                           * overflow (when the input is greater than largest uint56).
                           *
                           * Counterpart to Solidity's `uint56` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 56 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint56(uint256 value) internal pure returns (uint56) {
                              require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
                              return uint56(value);
                          }
                          /**
                           * @dev Returns the downcasted uint48 from uint256, reverting on
                           * overflow (when the input is greater than largest uint48).
                           *
                           * Counterpart to Solidity's `uint48` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 48 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint48(uint256 value) internal pure returns (uint48) {
                              require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
                              return uint48(value);
                          }
                          /**
                           * @dev Returns the downcasted uint40 from uint256, reverting on
                           * overflow (when the input is greater than largest uint40).
                           *
                           * Counterpart to Solidity's `uint40` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 40 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint40(uint256 value) internal pure returns (uint40) {
                              require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
                              return uint40(value);
                          }
                          /**
                           * @dev Returns the downcasted uint32 from uint256, reverting on
                           * overflow (when the input is greater than largest uint32).
                           *
                           * Counterpart to Solidity's `uint32` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 32 bits
                           *
                           * _Available since v2.5._
                           */
                          function toUint32(uint256 value) internal pure returns (uint32) {
                              require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
                              return uint32(value);
                          }
                          /**
                           * @dev Returns the downcasted uint24 from uint256, reverting on
                           * overflow (when the input is greater than largest uint24).
                           *
                           * Counterpart to Solidity's `uint24` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 24 bits
                           *
                           * _Available since v4.7._
                           */
                          function toUint24(uint256 value) internal pure returns (uint24) {
                              require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
                              return uint24(value);
                          }
                          /**
                           * @dev Returns the downcasted uint16 from uint256, reverting on
                           * overflow (when the input is greater than largest uint16).
                           *
                           * Counterpart to Solidity's `uint16` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 16 bits
                           *
                           * _Available since v2.5._
                           */
                          function toUint16(uint256 value) internal pure returns (uint16) {
                              require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
                              return uint16(value);
                          }
                          /**
                           * @dev Returns the downcasted uint8 from uint256, reverting on
                           * overflow (when the input is greater than largest uint8).
                           *
                           * Counterpart to Solidity's `uint8` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 8 bits
                           *
                           * _Available since v2.5._
                           */
                          function toUint8(uint256 value) internal pure returns (uint8) {
                              require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
                              return uint8(value);
                          }
                          /**
                           * @dev Converts a signed int256 into an unsigned uint256.
                           *
                           * Requirements:
                           *
                           * - input must be greater than or equal to 0.
                           *
                           * _Available since v3.0._
                           */
                          function toUint256(int256 value) internal pure returns (uint256) {
                              require(value >= 0, "SafeCast: value must be positive");
                              return uint256(value);
                          }
                          /**
                           * @dev Returns the downcasted int248 from int256, reverting on
                           * overflow (when the input is less than smallest int248 or
                           * greater than largest int248).
                           *
                           * Counterpart to Solidity's `int248` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 248 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt248(int256 value) internal pure returns (int248 downcasted) {
                              downcasted = int248(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
                          }
                          /**
                           * @dev Returns the downcasted int240 from int256, reverting on
                           * overflow (when the input is less than smallest int240 or
                           * greater than largest int240).
                           *
                           * Counterpart to Solidity's `int240` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 240 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt240(int256 value) internal pure returns (int240 downcasted) {
                              downcasted = int240(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
                          }
                          /**
                           * @dev Returns the downcasted int232 from int256, reverting on
                           * overflow (when the input is less than smallest int232 or
                           * greater than largest int232).
                           *
                           * Counterpart to Solidity's `int232` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 232 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt232(int256 value) internal pure returns (int232 downcasted) {
                              downcasted = int232(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
                          }
                          /**
                           * @dev Returns the downcasted int224 from int256, reverting on
                           * overflow (when the input is less than smallest int224 or
                           * greater than largest int224).
                           *
                           * Counterpart to Solidity's `int224` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 224 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt224(int256 value) internal pure returns (int224 downcasted) {
                              downcasted = int224(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
                          }
                          /**
                           * @dev Returns the downcasted int216 from int256, reverting on
                           * overflow (when the input is less than smallest int216 or
                           * greater than largest int216).
                           *
                           * Counterpart to Solidity's `int216` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 216 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt216(int256 value) internal pure returns (int216 downcasted) {
                              downcasted = int216(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
                          }
                          /**
                           * @dev Returns the downcasted int208 from int256, reverting on
                           * overflow (when the input is less than smallest int208 or
                           * greater than largest int208).
                           *
                           * Counterpart to Solidity's `int208` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 208 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt208(int256 value) internal pure returns (int208 downcasted) {
                              downcasted = int208(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
                          }
                          /**
                           * @dev Returns the downcasted int200 from int256, reverting on
                           * overflow (when the input is less than smallest int200 or
                           * greater than largest int200).
                           *
                           * Counterpart to Solidity's `int200` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 200 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt200(int256 value) internal pure returns (int200 downcasted) {
                              downcasted = int200(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
                          }
                          /**
                           * @dev Returns the downcasted int192 from int256, reverting on
                           * overflow (when the input is less than smallest int192 or
                           * greater than largest int192).
                           *
                           * Counterpart to Solidity's `int192` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 192 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt192(int256 value) internal pure returns (int192 downcasted) {
                              downcasted = int192(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
                          }
                          /**
                           * @dev Returns the downcasted int184 from int256, reverting on
                           * overflow (when the input is less than smallest int184 or
                           * greater than largest int184).
                           *
                           * Counterpart to Solidity's `int184` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 184 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt184(int256 value) internal pure returns (int184 downcasted) {
                              downcasted = int184(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
                          }
                          /**
                           * @dev Returns the downcasted int176 from int256, reverting on
                           * overflow (when the input is less than smallest int176 or
                           * greater than largest int176).
                           *
                           * Counterpart to Solidity's `int176` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 176 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt176(int256 value) internal pure returns (int176 downcasted) {
                              downcasted = int176(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
                          }
                          /**
                           * @dev Returns the downcasted int168 from int256, reverting on
                           * overflow (when the input is less than smallest int168 or
                           * greater than largest int168).
                           *
                           * Counterpart to Solidity's `int168` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 168 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt168(int256 value) internal pure returns (int168 downcasted) {
                              downcasted = int168(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
                          }
                          /**
                           * @dev Returns the downcasted int160 from int256, reverting on
                           * overflow (when the input is less than smallest int160 or
                           * greater than largest int160).
                           *
                           * Counterpart to Solidity's `int160` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 160 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt160(int256 value) internal pure returns (int160 downcasted) {
                              downcasted = int160(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
                          }
                          /**
                           * @dev Returns the downcasted int152 from int256, reverting on
                           * overflow (when the input is less than smallest int152 or
                           * greater than largest int152).
                           *
                           * Counterpart to Solidity's `int152` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 152 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt152(int256 value) internal pure returns (int152 downcasted) {
                              downcasted = int152(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
                          }
                          /**
                           * @dev Returns the downcasted int144 from int256, reverting on
                           * overflow (when the input is less than smallest int144 or
                           * greater than largest int144).
                           *
                           * Counterpart to Solidity's `int144` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 144 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt144(int256 value) internal pure returns (int144 downcasted) {
                              downcasted = int144(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
                          }
                          /**
                           * @dev Returns the downcasted int136 from int256, reverting on
                           * overflow (when the input is less than smallest int136 or
                           * greater than largest int136).
                           *
                           * Counterpart to Solidity's `int136` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 136 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt136(int256 value) internal pure returns (int136 downcasted) {
                              downcasted = int136(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
                          }
                          /**
                           * @dev Returns the downcasted int128 from int256, reverting on
                           * overflow (when the input is less than smallest int128 or
                           * greater than largest int128).
                           *
                           * Counterpart to Solidity's `int128` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 128 bits
                           *
                           * _Available since v3.1._
                           */
                          function toInt128(int256 value) internal pure returns (int128 downcasted) {
                              downcasted = int128(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
                          }
                          /**
                           * @dev Returns the downcasted int120 from int256, reverting on
                           * overflow (when the input is less than smallest int120 or
                           * greater than largest int120).
                           *
                           * Counterpart to Solidity's `int120` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 120 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt120(int256 value) internal pure returns (int120 downcasted) {
                              downcasted = int120(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
                          }
                          /**
                           * @dev Returns the downcasted int112 from int256, reverting on
                           * overflow (when the input is less than smallest int112 or
                           * greater than largest int112).
                           *
                           * Counterpart to Solidity's `int112` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 112 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt112(int256 value) internal pure returns (int112 downcasted) {
                              downcasted = int112(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
                          }
                          /**
                           * @dev Returns the downcasted int104 from int256, reverting on
                           * overflow (when the input is less than smallest int104 or
                           * greater than largest int104).
                           *
                           * Counterpart to Solidity's `int104` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 104 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt104(int256 value) internal pure returns (int104 downcasted) {
                              downcasted = int104(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
                          }
                          /**
                           * @dev Returns the downcasted int96 from int256, reverting on
                           * overflow (when the input is less than smallest int96 or
                           * greater than largest int96).
                           *
                           * Counterpart to Solidity's `int96` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 96 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt96(int256 value) internal pure returns (int96 downcasted) {
                              downcasted = int96(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
                          }
                          /**
                           * @dev Returns the downcasted int88 from int256, reverting on
                           * overflow (when the input is less than smallest int88 or
                           * greater than largest int88).
                           *
                           * Counterpart to Solidity's `int88` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 88 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt88(int256 value) internal pure returns (int88 downcasted) {
                              downcasted = int88(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
                          }
                          /**
                           * @dev Returns the downcasted int80 from int256, reverting on
                           * overflow (when the input is less than smallest int80 or
                           * greater than largest int80).
                           *
                           * Counterpart to Solidity's `int80` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 80 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt80(int256 value) internal pure returns (int80 downcasted) {
                              downcasted = int80(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
                          }
                          /**
                           * @dev Returns the downcasted int72 from int256, reverting on
                           * overflow (when the input is less than smallest int72 or
                           * greater than largest int72).
                           *
                           * Counterpart to Solidity's `int72` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 72 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt72(int256 value) internal pure returns (int72 downcasted) {
                              downcasted = int72(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
                          }
                          /**
                           * @dev Returns the downcasted int64 from int256, reverting on
                           * overflow (when the input is less than smallest int64 or
                           * greater than largest int64).
                           *
                           * Counterpart to Solidity's `int64` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 64 bits
                           *
                           * _Available since v3.1._
                           */
                          function toInt64(int256 value) internal pure returns (int64 downcasted) {
                              downcasted = int64(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
                          }
                          /**
                           * @dev Returns the downcasted int56 from int256, reverting on
                           * overflow (when the input is less than smallest int56 or
                           * greater than largest int56).
                           *
                           * Counterpart to Solidity's `int56` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 56 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt56(int256 value) internal pure returns (int56 downcasted) {
                              downcasted = int56(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
                          }
                          /**
                           * @dev Returns the downcasted int48 from int256, reverting on
                           * overflow (when the input is less than smallest int48 or
                           * greater than largest int48).
                           *
                           * Counterpart to Solidity's `int48` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 48 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt48(int256 value) internal pure returns (int48 downcasted) {
                              downcasted = int48(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
                          }
                          /**
                           * @dev Returns the downcasted int40 from int256, reverting on
                           * overflow (when the input is less than smallest int40 or
                           * greater than largest int40).
                           *
                           * Counterpart to Solidity's `int40` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 40 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt40(int256 value) internal pure returns (int40 downcasted) {
                              downcasted = int40(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
                          }
                          /**
                           * @dev Returns the downcasted int32 from int256, reverting on
                           * overflow (when the input is less than smallest int32 or
                           * greater than largest int32).
                           *
                           * Counterpart to Solidity's `int32` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 32 bits
                           *
                           * _Available since v3.1._
                           */
                          function toInt32(int256 value) internal pure returns (int32 downcasted) {
                              downcasted = int32(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
                          }
                          /**
                           * @dev Returns the downcasted int24 from int256, reverting on
                           * overflow (when the input is less than smallest int24 or
                           * greater than largest int24).
                           *
                           * Counterpart to Solidity's `int24` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 24 bits
                           *
                           * _Available since v4.7._
                           */
                          function toInt24(int256 value) internal pure returns (int24 downcasted) {
                              downcasted = int24(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
                          }
                          /**
                           * @dev Returns the downcasted int16 from int256, reverting on
                           * overflow (when the input is less than smallest int16 or
                           * greater than largest int16).
                           *
                           * Counterpart to Solidity's `int16` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 16 bits
                           *
                           * _Available since v3.1._
                           */
                          function toInt16(int256 value) internal pure returns (int16 downcasted) {
                              downcasted = int16(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
                          }
                          /**
                           * @dev Returns the downcasted int8 from int256, reverting on
                           * overflow (when the input is less than smallest int8 or
                           * greater than largest int8).
                           *
                           * Counterpart to Solidity's `int8` operator.
                           *
                           * Requirements:
                           *
                           * - input must fit into 8 bits
                           *
                           * _Available since v3.1._
                           */
                          function toInt8(int256 value) internal pure returns (int8 downcasted) {
                              downcasted = int8(value);
                              require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
                          }
                          /**
                           * @dev Converts an unsigned uint256 into a signed int256.
                           *
                           * Requirements:
                           *
                           * - input must be less than or equal to maxInt256.
                           *
                           * _Available since v3.0._
                           */
                          function toInt256(uint256 value) internal pure returns (int256) {
                              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                              require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
                              return int256(value);
                          }
                      }
                      // SPDX-License-Identifier: AGPL-3.0-only
                      pragma solidity >=0.8.0;
                      /// @notice Simple single owner authorization mixin.
                      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
                      abstract contract Owned {
                          /*//////////////////////////////////////////////////////////////
                                                       EVENTS
                          //////////////////////////////////////////////////////////////*/
                          event OwnershipTransferred(address indexed user, address indexed newOwner);
                          /*//////////////////////////////////////////////////////////////
                                                  OWNERSHIP STORAGE
                          //////////////////////////////////////////////////////////////*/
                          address public owner;
                          modifier onlyOwner() virtual {
                              require(msg.sender == owner, "UNAUTHORIZED");
                              _;
                          }
                          /*//////////////////////////////////////////////////////////////
                                                     CONSTRUCTOR
                          //////////////////////////////////////////////////////////////*/
                          constructor(address _owner) {
                              owner = _owner;
                              emit OwnershipTransferred(address(0), _owner);
                          }
                          /*//////////////////////////////////////////////////////////////
                                                   OWNERSHIP LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function transferOwnership(address newOwner) public virtual onlyOwner {
                              owner = newOwner;
                              emit OwnershipTransferred(msg.sender, newOwner);
                          }
                      }
                      // SPDX-License-Identifier: GPL-2.0-or-later
                      pragma solidity ^0.8.0;
                      import {ResolvedOrder, OutputToken} from "../base/ReactorStructs.sol";
                      /// @notice Interface for getting fee outputs
                      interface IProtocolFeeController {
                          /// @notice Get fee outputs for the given orders
                          /// @param order The orders to get fee outputs for
                          /// @return List of fee outputs to append for each provided order
                          function getFeeOutputs(ResolvedOrder memory order) external view returns (OutputToken[] memory);
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      interface IEIP712 {
                          function DOMAIN_SEPARATOR() external view returns (bytes32);
                      }
                      

                      File 6 of 7: VelocityPass2Token
                      // Sources flattened with hardhat v2.22.2 https://hardhat.org
                      
                      // SPDX-License-Identifier: MIT
                      
                      // File @openzeppelin/contracts-upgradeable/interfaces/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      /**
                       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
                       * proxy whose upgrades are fully controlled by the current implementation.
                       */
                      interface IERC1822ProxiableUpgradeable {
                          /**
                           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
                           * address.
                           *
                           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
                           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
                           * function revert if invoked through a proxy.
                           */
                          function proxiableUUID() external view returns (bytes32);
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/interfaces/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      /**
                       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
                       *
                       * _Available since v4.8.3._
                       */
                      interface IERC1967Upgradeable {
                          /**
                           * @dev Emitted when the implementation is upgraded.
                           */
                          event Upgraded(address indexed implementation);
                      
                          /**
                           * @dev Emitted when the admin account has changed.
                           */
                          event AdminChanged(address previousAdmin, address newAdmin);
                      
                          /**
                           * @dev Emitted when the beacon is changed.
                           */
                          event BeaconUpgraded(address indexed beacon);
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/proxy/beacon/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      /**
                       * @dev This is the interface that {BeaconProxy} expects of its beacon.
                       */
                      interface IBeaconUpgradeable {
                          /**
                           * @dev Must return an address that can be used as a delegate call target.
                           *
                           * {BeaconProxy} will check that this address is a contract.
                           */
                          function implementation() external view returns (address);
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/utils/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
                      
                      pragma solidity ^0.8.1;
                      
                      /**
                       * @dev Collection of functions related to the address type
                       */
                      library AddressUpgradeable {
                          /**
                           * @dev Returns true if `account` is a contract.
                           *
                           * [IMPORTANT]
                           * ====
                           * It is unsafe to assume that an address for which this function returns
                           * false is an externally-owned account (EOA) and not a contract.
                           *
                           * Among others, `isContract` will return false for the following
                           * types of addresses:
                           *
                           *  - an externally-owned account
                           *  - a contract in construction
                           *  - an address where a contract will be created
                           *  - an address where a contract lived, but was destroyed
                           *
                           * Furthermore, `isContract` will also return true if the target contract within
                           * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
                           * which only has an effect at the end of a transaction.
                           * ====
                           *
                           * [IMPORTANT]
                           * ====
                           * You shouldn't rely on `isContract` to protect against flash loan attacks!
                           *
                           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                           * constructor.
                           * ====
                           */
                          function isContract(address account) internal view returns (bool) {
                              // This method relies on extcodesize/address.code.length, which returns 0
                              // for contracts in construction, since the code is only stored at the end
                              // of the constructor execution.
                      
                              return account.code.length > 0;
                          }
                      
                          /**
                           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                           * `recipient`, forwarding all available gas and reverting on errors.
                           *
                           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                           * of certain opcodes, possibly making contracts go over the 2300 gas limit
                           * imposed by `transfer`, making them unable to receive funds via
                           * `transfer`. {sendValue} removes this limitation.
                           *
                           * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                           *
                           * IMPORTANT: because control is transferred to `recipient`, care must be
                           * taken to not create reentrancy vulnerabilities. Consider using
                           * {ReentrancyGuard} or the
                           * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                           */
                          function sendValue(address payable recipient, uint256 amount) internal {
                              require(address(this).balance >= amount, "Address: insufficient balance");
                      
                              (bool success, ) = recipient.call{value: amount}("");
                              require(success, "Address: unable to send value, recipient may have reverted");
                          }
                      
                          /**
                           * @dev Performs a Solidity function call using a low level `call`. A
                           * plain `call` is an unsafe replacement for a function call: use this
                           * function instead.
                           *
                           * If `target` reverts with a revert reason, it is bubbled up by this
                           * function (like regular Solidity function calls).
                           *
                           * Returns the raw returned data. To convert to the expected return value,
                           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                           *
                           * Requirements:
                           *
                           * - `target` must be a contract.
                           * - calling `target` with `data` must not revert.
                           *
                           * _Available since v3.1._
                           */
                          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                           * `errorMessage` as a fallback revert reason when `target` reverts.
                           *
                           * _Available since v3.1._
                           */
                          function functionCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, 0, errorMessage);
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but also transferring `value` wei to `target`.
                           *
                           * Requirements:
                           *
                           * - the calling contract must have an ETH balance of at least `value`.
                           * - the called Solidity function must be `payable`.
                           *
                           * _Available since v3.1._
                           */
                          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                           * with `errorMessage` as a fallback revert reason when `target` reverts.
                           *
                           * _Available since v3.1._
                           */
                          function functionCallWithValue(
                              address target,
                              bytes memory data,
                              uint256 value,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              require(address(this).balance >= value, "Address: insufficient balance for call");
                              (bool success, bytes memory returndata) = target.call{value: value}(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but performing a static call.
                           *
                           * _Available since v3.3._
                           */
                          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                              return functionStaticCall(target, data, "Address: low-level static call failed");
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                           * but performing a static call.
                           *
                           * _Available since v3.3._
                           */
                          function functionStaticCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal view returns (bytes memory) {
                              (bool success, bytes memory returndata) = target.staticcall(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                           * but performing a delegate call.
                           *
                           * _Available since v3.4._
                           */
                          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                          }
                      
                          /**
                           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                           * but performing a delegate call.
                           *
                           * _Available since v3.4._
                           */
                          function functionDelegateCall(
                              address target,
                              bytes memory data,
                              string memory errorMessage
                          ) internal returns (bytes memory) {
                              (bool success, bytes memory returndata) = target.delegatecall(data);
                              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
                          }
                      
                          /**
                           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
                           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
                           *
                           * _Available since v4.8._
                           */
                          function verifyCallResultFromTarget(
                              address target,
                              bool success,
                              bytes memory returndata,
                              string memory errorMessage
                          ) internal view returns (bytes memory) {
                              if (success) {
                                  if (returndata.length == 0) {
                                      // only check isContract if the call was successful and the return data is empty
                                      // otherwise we already know that it was a contract
                                      require(isContract(target), "Address: call to non-contract");
                                  }
                                  return returndata;
                              } else {
                                  _revert(returndata, errorMessage);
                              }
                          }
                      
                          /**
                           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
                           * revert reason or using the provided one.
                           *
                           * _Available since v4.3._
                           */
                          function verifyCallResult(
                              bool success,
                              bytes memory returndata,
                              string memory errorMessage
                          ) internal pure returns (bytes memory) {
                              if (success) {
                                  return returndata;
                              } else {
                                  _revert(returndata, errorMessage);
                              }
                          }
                      
                          function _revert(bytes memory returndata, string memory errorMessage) private pure {
                              // Look for revert reason and bubble it up if present
                              if (returndata.length > 0) {
                                  // The easiest way to bubble the revert reason is using memory via assembly
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      let returndata_size := mload(returndata)
                                      revert(add(32, returndata), returndata_size)
                                  }
                              } else {
                                  revert(errorMessage);
                              }
                          }
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/proxy/utils/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
                      
                      pragma solidity ^0.8.2;
                      
                      /**
                       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
                       * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
                       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
                       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
                       *
                       * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
                       * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
                       * case an upgrade adds a module that needs to be initialized.
                       *
                       * For example:
                       *
                       * [.hljs-theme-light.nopadding]
                       * ```solidity
                       * contract MyToken is ERC20Upgradeable {
                       *     function initialize() initializer public {
                       *         __ERC20_init("MyToken", "MTK");
                       *     }
                       * }
                       *
                       * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
                       *     function initializeV2() reinitializer(2) public {
                       *         __ERC20Permit_init("MyToken");
                       *     }
                       * }
                       * ```
                       *
                       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
                       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
                       *
                       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
                       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
                       *
                       * [CAUTION]
                       * ====
                       * Avoid leaving a contract uninitialized.
                       *
                       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
                       * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
                       * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
                       *
                       * [.hljs-theme-light.nopadding]
                       * ```
                       * /// @custom:oz-upgrades-unsafe-allow constructor
                       * constructor() {
                       *     _disableInitializers();
                       * }
                       * ```
                       * ====
                       */
                      abstract contract Initializable {
                          /**
                           * @dev Indicates that the contract has been initialized.
                           * @custom:oz-retyped-from bool
                           */
                          uint8 private _initialized;
                      
                          /**
                           * @dev Indicates that the contract is in the process of being initialized.
                           */
                          bool private _initializing;
                      
                          /**
                           * @dev Triggered when the contract has been initialized or reinitialized.
                           */
                          event Initialized(uint8 version);
                      
                          /**
                           * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                           * `onlyInitializing` functions can be used to initialize parent contracts.
                           *
                           * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
                           * constructor.
                           *
                           * Emits an {Initialized} event.
                           */
                          modifier initializer() {
                              bool isTopLevelCall = !_initializing;
                              require(
                                  (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                                  "Initializable: contract is already initialized"
                              );
                              _initialized = 1;
                              if (isTopLevelCall) {
                                  _initializing = true;
                              }
                              _;
                              if (isTopLevelCall) {
                                  _initializing = false;
                                  emit Initialized(1);
                              }
                          }
                      
                          /**
                           * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                           * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                           * used to initialize parent contracts.
                           *
                           * A reinitializer may be used after the original initialization step. This is essential to configure modules that
                           * are added through upgrades and that require initialization.
                           *
                           * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
                           * cannot be nested. If one is invoked in the context of another, execution will revert.
                           *
                           * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                           * a contract, executing them in the right order is up to the developer or operator.
                           *
                           * WARNING: setting the version to 255 will prevent any future reinitialization.
                           *
                           * Emits an {Initialized} event.
                           */
                          modifier reinitializer(uint8 version) {
                              require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                              _initialized = version;
                              _initializing = true;
                              _;
                              _initializing = false;
                              emit Initialized(version);
                          }
                      
                          /**
                           * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                           * {initializer} and {reinitializer} modifiers, directly or indirectly.
                           */
                          modifier onlyInitializing() {
                              require(_initializing, "Initializable: contract is not initializing");
                              _;
                          }
                      
                          /**
                           * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                           * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                           * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                           * through proxies.
                           *
                           * Emits an {Initialized} event the first time it is successfully executed.
                           */
                          function _disableInitializers() internal virtual {
                              require(!_initializing, "Initializable: contract is initializing");
                              if (_initialized != type(uint8).max) {
                                  _initialized = type(uint8).max;
                                  emit Initialized(type(uint8).max);
                              }
                          }
                      
                          /**
                           * @dev Returns the highest version that has been initialized. See {reinitializer}.
                           */
                          function _getInitializedVersion() internal view returns (uint8) {
                              return _initialized;
                          }
                      
                          /**
                           * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
                           */
                          function _isInitializing() internal view returns (bool) {
                              return _initializing;
                          }
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/utils/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
                      // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
                      
                      pragma solidity ^0.8.0;
                      
                      /**
                       * @dev Library for reading and writing primitive types to specific storage slots.
                       *
                       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
                       * This library helps with reading and writing to such slots without the need for inline assembly.
                       *
                       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
                       *
                       * Example usage to set ERC1967 implementation slot:
                       * ```solidity
                       * contract ERC1967 {
                       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                       *
                       *     function _getImplementation() internal view returns (address) {
                       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                       *     }
                       *
                       *     function _setImplementation(address newImplementation) internal {
                       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                       *     }
                       * }
                       * ```
                       *
                       * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
                       * _Available since v4.9 for `string`, `bytes`._
                       */
                      library StorageSlotUpgradeable {
                          struct AddressSlot {
                              address value;
                          }
                      
                          struct BooleanSlot {
                              bool value;
                          }
                      
                          struct Bytes32Slot {
                              bytes32 value;
                          }
                      
                          struct Uint256Slot {
                              uint256 value;
                          }
                      
                          struct StringSlot {
                              string value;
                          }
                      
                          struct BytesSlot {
                              bytes value;
                          }
                      
                          /**
                           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
                           */
                          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
                           */
                          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
                           */
                          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
                           */
                          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `StringSlot` with member `value` located at `slot`.
                           */
                          function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
                           */
                          function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := store.slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `BytesSlot` with member `value` located at `slot`.
                           */
                          function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := slot
                              }
                          }
                      
                          /**
                           * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
                           */
                          function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  r.slot := store.slot
                              }
                          }
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/proxy/ERC1967/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
                      
                      pragma solidity ^0.8.2;
                      
                      
                      
                      
                      
                      
                      /**
                       * @dev This abstract contract provides getters and event emitting update functions for
                       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
                       *
                       * _Available since v4.1._
                       */
                      abstract contract ERC1967UpgradeUpgradeable is Initializable, IERC1967Upgradeable {
                          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
                          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
                      
                          /**
                           * @dev Storage slot with the address of the current implementation.
                           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
                           * validated in the constructor.
                           */
                          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                      
                          function __ERC1967Upgrade_init() internal onlyInitializing {
                          }
                      
                          function __ERC1967Upgrade_init_unchained() internal onlyInitializing {
                          }
                          /**
                           * @dev Returns the current implementation address.
                           */
                          function _getImplementation() internal view returns (address) {
                              return StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value;
                          }
                      
                          /**
                           * @dev Stores a new address in the EIP1967 implementation slot.
                           */
                          function _setImplementation(address newImplementation) private {
                              require(AddressUpgradeable.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                              StorageSlotUpgradeable.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
                          }
                      
                          /**
                           * @dev Perform implementation upgrade
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeTo(address newImplementation) internal {
                              _setImplementation(newImplementation);
                              emit Upgraded(newImplementation);
                          }
                      
                          /**
                           * @dev Perform implementation upgrade with additional setup call.
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                              _upgradeTo(newImplementation);
                              if (data.length > 0 || forceCall) {
                                  AddressUpgradeable.functionDelegateCall(newImplementation, data);
                              }
                          }
                      
                          /**
                           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
                           *
                           * Emits an {Upgraded} event.
                           */
                          function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                              // Upgrades from old implementations will perform a rollback test. This test requires the new
                              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                              // this special case will break upgrade paths from old UUPS implementation to new ones.
                              if (StorageSlotUpgradeable.getBooleanSlot(_ROLLBACK_SLOT).value) {
                                  _setImplementation(newImplementation);
                              } else {
                                  try IERC1822ProxiableUpgradeable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                                  } catch {
                                      revert("ERC1967Upgrade: new implementation is not UUPS");
                                  }
                                  _upgradeToAndCall(newImplementation, data, forceCall);
                              }
                          }
                      
                          /**
                           * @dev Storage slot with the admin of the contract.
                           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
                           * validated in the constructor.
                           */
                          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                      
                          /**
                           * @dev Returns the current admin.
                           */
                          function _getAdmin() internal view returns (address) {
                              return StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value;
                          }
                      
                          /**
                           * @dev Stores a new address in the EIP1967 admin slot.
                           */
                          function _setAdmin(address newAdmin) private {
                              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                              StorageSlotUpgradeable.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
                          }
                      
                          /**
                           * @dev Changes the admin of the proxy.
                           *
                           * Emits an {AdminChanged} event.
                           */
                          function _changeAdmin(address newAdmin) internal {
                              emit AdminChanged(_getAdmin(), newAdmin);
                              _setAdmin(newAdmin);
                          }
                      
                          /**
                           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
                           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
                           */
                          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
                      
                          /**
                           * @dev Returns the current beacon.
                           */
                          function _getBeacon() internal view returns (address) {
                              return StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value;
                          }
                      
                          /**
                           * @dev Stores a new beacon in the EIP1967 beacon slot.
                           */
                          function _setBeacon(address newBeacon) private {
                              require(AddressUpgradeable.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                              require(
                                  AddressUpgradeable.isContract(IBeaconUpgradeable(newBeacon).implementation()),
                                  "ERC1967: beacon implementation is not a contract"
                              );
                              StorageSlotUpgradeable.getAddressSlot(_BEACON_SLOT).value = newBeacon;
                          }
                      
                          /**
                           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
                           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
                           *
                           * Emits a {BeaconUpgraded} event.
                           */
                          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                              _setBeacon(newBeacon);
                              emit BeaconUpgraded(newBeacon);
                              if (data.length > 0 || forceCall) {
                                  AddressUpgradeable.functionDelegateCall(IBeaconUpgradeable(newBeacon).implementation(), data);
                              }
                          }
                      
                          /**
                           * @dev This empty reserved space is put in place to allow future versions to add new
                           * variables without shifting down storage in the inheritance chain.
                           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                           */
                          uint256[50] private __gap;
                      }
                      
                      
                      // File @openzeppelin/contracts-upgradeable/proxy/utils/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      
                      
                      /**
                       * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
                       * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
                       *
                       * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
                       * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
                       * `UUPSUpgradeable` with a custom implementation of upgrades.
                       *
                       * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
                       *
                       * _Available since v4.1._
                       */
                      abstract contract UUPSUpgradeable is Initializable, IERC1822ProxiableUpgradeable, ERC1967UpgradeUpgradeable {
                          /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
                          address private immutable __self = address(this);
                      
                          /**
                           * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
                           * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
                           * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
                           * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
                           * fail.
                           */
                          modifier onlyProxy() {
                              require(address(this) != __self, "Function must be called through delegatecall");
                              require(_getImplementation() == __self, "Function must be called through active proxy");
                              _;
                          }
                      
                          /**
                           * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
                           * callable on the implementing contract but not through proxies.
                           */
                          modifier notDelegated() {
                              require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
                              _;
                          }
                      
                          function __UUPSUpgradeable_init() internal onlyInitializing {
                          }
                      
                          function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
                          }
                          /**
                           * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
                           * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
                           *
                           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
                           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
                           * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
                           */
                          function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
                              return _IMPLEMENTATION_SLOT;
                          }
                      
                          /**
                           * @dev Upgrade the implementation of the proxy to `newImplementation`.
                           *
                           * Calls {_authorizeUpgrade}.
                           *
                           * Emits an {Upgraded} event.
                           *
                           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
                           */
                          function upgradeTo(address newImplementation) public virtual onlyProxy {
                              _authorizeUpgrade(newImplementation);
                              _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
                          }
                      
                          /**
                           * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
                           * encoded in `data`.
                           *
                           * Calls {_authorizeUpgrade}.
                           *
                           * Emits an {Upgraded} event.
                           *
                           * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
                           */
                          function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
                              _authorizeUpgrade(newImplementation);
                              _upgradeToAndCallUUPS(newImplementation, data, true);
                          }
                      
                          /**
                           * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
                           * {upgradeTo} and {upgradeToAndCall}.
                           *
                           * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
                           *
                           * ```solidity
                           * function _authorizeUpgrade(address) internal override onlyOwner {}
                           * ```
                           */
                          function _authorizeUpgrade(address newImplementation) internal virtual;
                      
                          /**
                           * @dev This empty reserved space is put in place to allow future versions to add new
                           * variables without shifting down storage in the inheritance chain.
                           * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                           */
                          uint256[50] private __gap;
                      }
                      
                      
                      // File @openzeppelin/contracts/utils/math/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      /**
                       * @dev Standard math utilities missing in the Solidity language.
                       */
                      library Math {
                          enum Rounding {
                              Down, // Toward negative infinity
                              Up, // Toward infinity
                              Zero // Toward zero
                          }
                      
                          /**
                           * @dev Returns the largest of two numbers.
                           */
                          function max(uint256 a, uint256 b) internal pure returns (uint256) {
                              return a > b ? a : b;
                          }
                      
                          /**
                           * @dev Returns the smallest of two numbers.
                           */
                          function min(uint256 a, uint256 b) internal pure returns (uint256) {
                              return a < b ? a : b;
                          }
                      
                          /**
                           * @dev Returns the average of two numbers. The result is rounded towards
                           * zero.
                           */
                          function average(uint256 a, uint256 b) internal pure returns (uint256) {
                              // (a + b) / 2 can overflow.
                              return (a & b) + (a ^ b) / 2;
                          }
                      
                          /**
                           * @dev Returns the ceiling of the division of two numbers.
                           *
                           * This differs from standard division with `/` in that it rounds up instead
                           * of rounding down.
                           */
                          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                              // (a + b - 1) / b can overflow on addition, so we distribute.
                              return a == 0 ? 0 : (a - 1) / b + 1;
                          }
                      
                          /**
                           * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                           * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                           * with further edits by Uniswap Labs also under MIT license.
                           */
                          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                              unchecked {
                                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                                  // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                                  // variables such that product = prod1 * 2^256 + prod0.
                                  uint256 prod0; // Least significant 256 bits of the product
                                  uint256 prod1; // Most significant 256 bits of the product
                                  assembly {
                                      let mm := mulmod(x, y, not(0))
                                      prod0 := mul(x, y)
                                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                                  }
                      
                                  // Handle non-overflow cases, 256 by 256 division.
                                  if (prod1 == 0) {
                                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                                      // The surrounding unchecked block does not change this fact.
                                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                                      return prod0 / denominator;
                                  }
                      
                                  // Make sure the result is less than 2^256. Also prevents denominator == 0.
                                  require(denominator > prod1, "Math: mulDiv overflow");
                      
                                  ///////////////////////////////////////////////
                                  // 512 by 256 division.
                                  ///////////////////////////////////////////////
                      
                                  // Make division exact by subtracting the remainder from [prod1 prod0].
                                  uint256 remainder;
                                  assembly {
                                      // Compute remainder using mulmod.
                                      remainder := mulmod(x, y, denominator)
                      
                                      // Subtract 256 bit number from 512 bit number.
                                      prod1 := sub(prod1, gt(remainder, prod0))
                                      prod0 := sub(prod0, remainder)
                                  }
                      
                                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                                  // See https://cs.stackexchange.com/q/138556/92363.
                      
                                  // Does not overflow because the denominator cannot be zero at this stage in the function.
                                  uint256 twos = denominator & (~denominator + 1);
                                  assembly {
                                      // Divide denominator by twos.
                                      denominator := div(denominator, twos)
                      
                                      // Divide [prod1 prod0] by twos.
                                      prod0 := div(prod0, twos)
                      
                                      // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                                      twos := add(div(sub(0, twos), twos), 1)
                                  }
                      
                                  // Shift in bits from prod1 into prod0.
                                  prod0 |= prod1 * twos;
                      
                                  // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                                  // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                                  // four bits. That is, denominator * inv = 1 mod 2^4.
                                  uint256 inverse = (3 * denominator) ^ 2;
                      
                                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                                  // in modular arithmetic, doubling the correct bits in each step.
                                  inverse *= 2 - denominator * inverse; // inverse mod 2^8
                                  inverse *= 2 - denominator * inverse; // inverse mod 2^16
                                  inverse *= 2 - denominator * inverse; // inverse mod 2^32
                                  inverse *= 2 - denominator * inverse; // inverse mod 2^64
                                  inverse *= 2 - denominator * inverse; // inverse mod 2^128
                                  inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      
                                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                                  // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                                  // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                                  // is no longer required.
                                  result = prod0 * inverse;
                                  return result;
                              }
                          }
                      
                          /**
                           * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                           */
                          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                              uint256 result = mulDiv(x, y, denominator);
                              if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                                  result += 1;
                              }
                              return result;
                          }
                      
                          /**
                           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
                           *
                           * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                           */
                          function sqrt(uint256 a) internal pure returns (uint256) {
                              if (a == 0) {
                                  return 0;
                              }
                      
                              // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                              //
                              // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                              // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                              //
                              // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                              // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                              // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                              //
                              // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                              uint256 result = 1 << (log2(a) >> 1);
                      
                              // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                              // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                              // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                              // into the expected uint128 result.
                              unchecked {
                                  result = (result + a / result) >> 1;
                                  result = (result + a / result) >> 1;
                                  result = (result + a / result) >> 1;
                                  result = (result + a / result) >> 1;
                                  result = (result + a / result) >> 1;
                                  result = (result + a / result) >> 1;
                                  result = (result + a / result) >> 1;
                                  return min(result, a / result);
                              }
                          }
                      
                          /**
                           * @notice Calculates sqrt(a), following the selected rounding direction.
                           */
                          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                              unchecked {
                                  uint256 result = sqrt(a);
                                  return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                              }
                          }
                      
                          /**
                           * @dev Return the log in base 2, rounded down, of a positive value.
                           * Returns 0 if given 0.
                           */
                          function log2(uint256 value) internal pure returns (uint256) {
                              uint256 result = 0;
                              unchecked {
                                  if (value >> 128 > 0) {
                                      value >>= 128;
                                      result += 128;
                                  }
                                  if (value >> 64 > 0) {
                                      value >>= 64;
                                      result += 64;
                                  }
                                  if (value >> 32 > 0) {
                                      value >>= 32;
                                      result += 32;
                                  }
                                  if (value >> 16 > 0) {
                                      value >>= 16;
                                      result += 16;
                                  }
                                  if (value >> 8 > 0) {
                                      value >>= 8;
                                      result += 8;
                                  }
                                  if (value >> 4 > 0) {
                                      value >>= 4;
                                      result += 4;
                                  }
                                  if (value >> 2 > 0) {
                                      value >>= 2;
                                      result += 2;
                                  }
                                  if (value >> 1 > 0) {
                                      result += 1;
                                  }
                              }
                              return result;
                          }
                      
                          /**
                           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
                           * Returns 0 if given 0.
                           */
                          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                              unchecked {
                                  uint256 result = log2(value);
                                  return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                              }
                          }
                      
                          /**
                           * @dev Return the log in base 10, rounded down, of a positive value.
                           * Returns 0 if given 0.
                           */
                          function log10(uint256 value) internal pure returns (uint256) {
                              uint256 result = 0;
                              unchecked {
                                  if (value >= 10 ** 64) {
                                      value /= 10 ** 64;
                                      result += 64;
                                  }
                                  if (value >= 10 ** 32) {
                                      value /= 10 ** 32;
                                      result += 32;
                                  }
                                  if (value >= 10 ** 16) {
                                      value /= 10 ** 16;
                                      result += 16;
                                  }
                                  if (value >= 10 ** 8) {
                                      value /= 10 ** 8;
                                      result += 8;
                                  }
                                  if (value >= 10 ** 4) {
                                      value /= 10 ** 4;
                                      result += 4;
                                  }
                                  if (value >= 10 ** 2) {
                                      value /= 10 ** 2;
                                      result += 2;
                                  }
                                  if (value >= 10 ** 1) {
                                      result += 1;
                                  }
                              }
                              return result;
                          }
                      
                          /**
                           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
                           * Returns 0 if given 0.
                           */
                          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                              unchecked {
                                  uint256 result = log10(value);
                                  return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                              }
                          }
                      
                          /**
                           * @dev Return the log in base 256, rounded down, of a positive value.
                           * Returns 0 if given 0.
                           *
                           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
                           */
                          function log256(uint256 value) internal pure returns (uint256) {
                              uint256 result = 0;
                              unchecked {
                                  if (value >> 128 > 0) {
                                      value >>= 128;
                                      result += 16;
                                  }
                                  if (value >> 64 > 0) {
                                      value >>= 64;
                                      result += 8;
                                  }
                                  if (value >> 32 > 0) {
                                      value >>= 32;
                                      result += 4;
                                  }
                                  if (value >> 16 > 0) {
                                      value >>= 16;
                                      result += 2;
                                  }
                                  if (value >> 8 > 0) {
                                      result += 1;
                                  }
                              }
                              return result;
                          }
                      
                          /**
                           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
                           * Returns 0 if given 0.
                           */
                          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                              unchecked {
                                  uint256 result = log256(value);
                                  return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                              }
                          }
                      }
                      
                      
                      // File @openzeppelin/contracts/utils/math/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      /**
                       * @dev Standard signed math utilities missing in the Solidity language.
                       */
                      library SignedMath {
                          /**
                           * @dev Returns the largest of two signed numbers.
                           */
                          function max(int256 a, int256 b) internal pure returns (int256) {
                              return a > b ? a : b;
                          }
                      
                          /**
                           * @dev Returns the smallest of two signed numbers.
                           */
                          function min(int256 a, int256 b) internal pure returns (int256) {
                              return a < b ? a : b;
                          }
                      
                          /**
                           * @dev Returns the average of two signed numbers without overflow.
                           * The result is rounded towards zero.
                           */
                          function average(int256 a, int256 b) internal pure returns (int256) {
                              // Formula from the book "Hacker's Delight"
                              int256 x = (a & b) + ((a ^ b) >> 1);
                              return x + (int256(uint256(x) >> 255) & (a ^ b));
                          }
                      
                          /**
                           * @dev Returns the absolute unsigned value of a signed value.
                           */
                          function abs(int256 n) internal pure returns (uint256) {
                              unchecked {
                                  // must be unchecked in order to support `n = type(int256).min`
                                  return uint256(n >= 0 ? n : -n);
                              }
                          }
                      }
                      
                      
                      // File @openzeppelin/contracts/utils/[email protected]
                      
                      // Original license: SPDX_License_Identifier: MIT
                      // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
                      
                      pragma solidity ^0.8.0;
                      
                      
                      /**
                       * @dev String operations.
                       */
                      library Strings {
                          bytes16 private constant _SYMBOLS = "0123456789abcdef";
                          uint8 private constant _ADDRESS_LENGTH = 20;
                      
                          /**
                           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
                           */
                          function toString(uint256 value) internal pure returns (string memory) {
                              unchecked {
                                  uint256 length = Math.log10(value) + 1;
                                  string memory buffer = new string(length);
                                  uint256 ptr;
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      ptr := add(buffer, add(32, length))
                                  }
                                  while (true) {
                                      ptr--;
                                      /// @solidity memory-safe-assembly
                                      assembly {
                                          mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                                      }
                                      value /= 10;
                                      if (value == 0) break;
                                  }
                                  return buffer;
                              }
                          }
                      
                          /**
                           * @dev Converts a `int256` to its ASCII `string` decimal representation.
                           */
                          function toString(int256 value) internal pure returns (string memory) {
                              return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
                          }
                      
                          /**
                           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
                           */
                          function toHexString(uint256 value) internal pure returns (string memory) {
                              unchecked {
                                  return toHexString(value, Math.log256(value) + 1);
                              }
                          }
                      
                          /**
                           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
                           */
                          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                              bytes memory buffer = new bytes(2 * length + 2);
                              buffer[0] = "0";
                              buffer[1] = "x";
                              for (uint256 i = 2 * length + 1; i > 1; --i) {
                                  buffer[i] = _SYMBOLS[value & 0xf];
                                  value >>= 4;
                              }
                              require(value == 0, "Strings: hex length insufficient");
                              return string(buffer);
                          }
                      
                          /**
                           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
                           */
                          function toHexString(address addr) internal pure returns (string memory) {
                              return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
                          }
                      
                          /**
                           * @dev Returns true if the two strings are equal.
                           */
                          function equal(string memory a, string memory b) internal pure returns (bool) {
                              return keccak256(bytes(a)) == keccak256(bytes(b));
                          }
                      }
                      
                      
                      // File contracts/pass/dn404/DN404.sol
                      
                      // Original license: SPDX_License_Identifier: MIT
                      pragma solidity ^0.8.17;
                      
                      /// @title DN404
                      /// @notice DN404 is a hybrid ERC20 and ERC721 implementation that mints
                      /// and burns NFTs based on an account's ERC20 token balance.
                      ///
                      /// @author vectorized.eth (@optimizoor)
                      /// @author Quit (@0xQuit)
                      /// @author Michael Amadi (@AmadiMichaels)
                      /// @author cygaar (@0xCygaar)
                      /// @author Thomas (@0xjustadev)
                      /// @author Harrison (@PopPunkOnChain)
                      ///
                      /// @dev Note:
                      /// - The ERC721 data is stored in this base DN404 contract, however a
                      ///   DN404Mirror contract ***MUST*** be deployed and linked during
                      ///   initialization.
                      abstract contract DN404 is Initializable {
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                           EVENTS                           */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
                          event Transfer(address indexed from, address indexed to, uint256 amount);
                      
                          /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
                          event Approval(address indexed owner, address indexed spender, uint256 amount);
                      
                          /// @dev Emitted when `owner` sets their skipNFT flag to `status`.
                          event SkipNFTSet(address indexed owner, bool status);
                      
                          /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
                          uint256 private constant _TRANSFER_EVENT_SIGNATURE =
                              0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
                      
                          /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
                          uint256 private constant _APPROVAL_EVENT_SIGNATURE =
                              0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
                      
                          /// @dev `keccak256(bytes("SkipNFTSet(address,bool)"))`.
                          uint256 private constant _SKIP_NFT_SET_EVENT_SIGNATURE =
                              0xb5a1de456fff688115a4f75380060c23c8532d14ff85f687cc871456d6420393;
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                        CUSTOM ERRORS                       */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Thrown when attempting to double-initialize the contract.
                          error DNAlreadyInitialized();
                      
                          /// @dev The function can only be called after the contract has been initialized.
                          error DNNotInitialized();
                      
                          /// @dev Thrown when attempting to transfer or burn more tokens than sender's balance.
                          error InsufficientBalance();
                      
                          /// @dev Thrown when a spender attempts to transfer tokens with an insufficient allowance.
                          error InsufficientAllowance();
                      
                          /// @dev Thrown when minting an amount of tokens that would overflow the max tokens.
                          error TotalSupplyOverflow();
                      
                          /// @dev The unit must be greater than zero and less than `2**96`.
                          error InvalidUnit();
                      
                          /// @dev Thrown when the caller for a fallback NFT function is not the mirror contract.
                          error SenderNotMirror();
                      
                          /// @dev Thrown when attempting to transfer tokens to the zero address.
                          error TransferToZeroAddress();
                      
                          /// @dev Thrown when the mirror address provided for initialization is the zero address.
                          error MirrorAddressIsZero();
                      
                          /// @dev Thrown when the link call to the mirror contract reverts.
                          error LinkMirrorContractFailed();
                      
                          /// @dev Thrown when setting an NFT token approval
                          /// and the caller is not the owner or an approved operator.
                          error ApprovalCallerNotOwnerNorApproved();
                      
                          /// @dev Thrown when transferring an NFT
                          /// and the caller is not the owner or an approved operator.
                          error TransferCallerNotOwnerNorApproved();
                      
                          /// @dev Thrown when transferring an NFT and the from address is not the current owner.
                          error TransferFromIncorrectOwner();
                      
                          /// @dev Thrown when checking the owner or approved address for a non-existent NFT.
                          error TokenDoesNotExist();
                      
                          /// @dev The function selector is not recognized.
                          error FnSelectorNotRecognized();
                      
                          /// @dev Thrown when the program is paused
                          error Paused();
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                         CONSTANTS                          */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev The flag to denote that the address data is initialized.
                          uint8 internal constant _ADDRESS_DATA_INITIALIZED_FLAG = 1 << 0;
                      
                          /// @dev The flag to denote that the address should skip NFTs.
                          uint8 internal constant _ADDRESS_DATA_SKIP_NFT_FLAG = 1 << 1;
                      
                          /// @dev The flag to denote that the address has overridden the default Permit2 allowance.
                          uint8 internal constant _ADDRESS_DATA_OVERRIDE_PERMIT2_FLAG = 1 << 2;
                      
                          /// @dev The canonical Permit2 address.
                          /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
                          /// To enable, override `_givePermit2DefaultInfiniteAllowance()`.
                          /// [Github](https://github.com/Uniswap/permit2)
                          /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
                          address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                          STORAGE                           */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Struct containing an address's token data and settings.
                          struct AddressData {
                              // Auxiliary data.
                              uint88 aux;
                              // Flags for `initialized` and `skipNFT`.
                              uint8 flags;
                              // The alias for the address. Zero means absence of an alias.
                              uint32 addressAlias;
                              // The number of NFT tokens.
                              uint32 ownedLength;
                              // The token balance in wei.
                              uint96 balance;
                          }
                      
                          /// @dev A uint32 map in storage.
                          struct Uint32Map {
                              uint256 spacer;
                          }
                      
                          /// @dev A bitmap in storage.
                          struct Bitmap {
                              uint256 spacer;
                          }
                      
                          /// @dev A struct to wrap a uint256 in storage.
                          struct Uint256Ref {
                              uint256 value;
                          }
                      
                          /// @dev A mapping of an address pair to a Uint256Ref.
                          struct AddressPairToUint256RefMap {
                              uint256 spacer;
                          }
                      
                          /// @dev Struct containing the base token contract storage.
                          struct DN404Storage {
                              // Current number of address aliases assigned.
                              uint32 numAliases;
                              // Next NFT ID to assign for a mint.
                              uint32 nextTokenId;
                              // The head of the burned pool.
                              uint32 burnedPoolHead;
                              // The tail of the burned pool.
                              uint32 burnedPoolTail;
                              // Total number of NFTs in existence.
                              uint32 totalNFTSupply;
                              // Total supply of tokens.
                              uint96 totalSupply;
                              // Address of the NFT mirror contract.
                              address mirrorERC721;
                              // Mapping of a user alias number to their address.
                              mapping(uint32 => address) aliasToAddress;
                              // Mapping of user operator approvals for NFTs.
                              AddressPairToUint256RefMap operatorApprovals;
                              // Mapping of NFT approvals to approved operators.
                              mapping(uint256 => address) nftApprovals;
                              // Bitmap of whether an non-zero NFT approval may exist.
                              Bitmap mayHaveNFTApproval;
                              // Bitmap of whether a NFT ID exists. Ignored if `_useExistsLookup()` returns false.
                              Bitmap exists;
                              // Mapping of user allowances for ERC20 spenders.
                              AddressPairToUint256RefMap allowance;
                              // Mapping of NFT IDs owned by an address.
                              mapping(address => Uint32Map) owned;
                              // The pool of burned NFT IDs.
                              Uint32Map burnedPool;
                              // Even indices: owner aliases. Odd indices: owned indices.
                              Uint32Map oo;
                              // Mapping of user account AddressData.
                              mapping(address => AddressData) addressData;
                          }
                      
                          /// @dev Returns a storage pointer for DN404Storage.
                          function _getDN404Storage() internal pure virtual returns (DN404Storage storage $) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // `uint72(bytes9(keccak256("DN404_STORAGE")))`.
                                  $.slot := 0xa20d6e21d0e5255308 // Truncate to 9 bytes to reduce bytecode size.
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                         INITIALIZER                        */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Initializes the DN404 contract with an
                          /// `initialTokenSupply`, `initialTokenOwner` and `mirror` NFT contract address.
                          function _initializeDN404(
                              uint256 initialTokenSupply,
                              address initialSupplyOwner,
                              address mirror,
                              address deployer
                          ) internal onlyInitializing {
                              DN404Storage storage $ = _getDN404Storage();
                      
                              unchecked {
                                  if (_unit() - 1 >= 2 ** 96 - 1) revert InvalidUnit();
                              }
                              if ($.mirrorERC721 != address(0)) revert DNAlreadyInitialized();
                              if (mirror == address(0)) revert MirrorAddressIsZero();
                      
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Make the call to link the mirror contract.
                                  mstore(0x00, 0x0f4599e5) // `linkMirrorContract(address)`.
                                  mstore(0x20, deployer)
                                  if iszero(and(eq(mload(0x00), 1), call(gas(), mirror, 0, 0x1c, 0x24, 0x00, 0x20))) {
                                      mstore(0x00, 0xd125259c) // `LinkMirrorContractFailed()`.
                                      revert(0x1c, 0x04)
                                  }
                              }
                      
                              $.nextTokenId = 1;
                              $.mirrorERC721 = mirror;
                      
                              if (initialTokenSupply != 0) {
                                  if (initialSupplyOwner == address(0)) revert TransferToZeroAddress();
                                  if (_totalSupplyOverflows(initialTokenSupply)) revert TotalSupplyOverflow();
                      
                                  $.totalSupply = uint96(initialTokenSupply);
                                  AddressData storage initialOwnerAddressData = _addressData(initialSupplyOwner);
                                  initialOwnerAddressData.balance = uint96(initialTokenSupply);
                      
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      // Emit the {Transfer} event.
                                      mstore(0x00, initialTokenSupply)
                                      log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, shl(96, initialSupplyOwner)))
                                  }
                      
                                  _setSkipNFT(initialSupplyOwner, true);
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*               BASE UNIT FUNCTION TO OVERRIDE               */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Amount of token balance that is equal to one NFT.
                          function _unit() internal view virtual returns (uint256) {
                              return 10 ** 18;
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*               METADATA FUNCTIONS TO OVERRIDE               */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns the name of the token.
                          function name() public view virtual returns (string memory);
                      
                          /// @dev Returns the symbol of the token.
                          function symbol() public view virtual returns (string memory);
                      
                          /// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
                          function _tokenURI(uint256 id) internal view virtual returns (string memory);
                      
                          /// @dev Returns the name of the token.
                          function _isPaused() internal view virtual returns (bool);
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                       CONFIGURABLES                        */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns if direct NFT transfers should be used during ERC20 transfers
                          /// whenever possible, instead of burning and re-minting.
                          function _useDirectTransfersIfPossible() internal view virtual returns (bool) {
                              return true;
                          }
                      
                          /// @dev Returns if burns should be added to the burn pool.
                          /// This returns false by default, which means the NFT IDs are re-minted in a cycle.
                          function _addToBurnedPool(uint256 totalNFTSupplyAfterBurn, uint256 totalSupplyAfterBurn)
                              internal
                              view
                              virtual
                              returns (bool)
                          {
                              // Silence unused variable compiler warning.
                              totalSupplyAfterBurn = totalNFTSupplyAfterBurn;
                              return true;
                          }
                      
                          /// @dev Returns whether to use the exists bitmap for more efficient
                          /// scanning of an empty token ID slot.
                          /// Recommended for collections that do not use the burn pool,
                          /// and are expected to have nearly all possible NFTs materialized.
                          ///
                          /// Note: The returned value must be constant after initialization.
                          function _useExistsLookup() internal view virtual returns (bool) {
                              return true;
                          }
                      
                          /// @dev Hook that is called after any NFT token transfers, including minting and burning.
                          function _afterNFTTransfer(address from, address to, uint256 id) internal virtual {}
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                      ERC20 OPERATIONS                      */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns the decimals places of the token. Always 18.
                          function decimals() public pure returns (uint8) {
                              return 18;
                          }
                      
                          /// @dev Returns the amount of tokens in existence.
                          function totalSupply() public view virtual returns (uint256) {
                              return uint256(_getDN404Storage().totalSupply);
                          }
                      
                          /// @dev Returns the amount of tokens owned by `owner`.
                          function balanceOf(address owner) public view virtual returns (uint256) {
                              return _getDN404Storage().addressData[owner].balance;
                          }
                      
                          /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
                          function allowance(address owner, address spender) public view returns (uint256) {
                              if (_givePermit2DefaultInfiniteAllowance() && spender == _PERMIT2) {
                                  uint8 flags = _getDN404Storage().addressData[owner].flags;
                                  if (_isZero(flags & _ADDRESS_DATA_OVERRIDE_PERMIT2_FLAG)) return type(uint256).max;
                              }
                              return _ref(_getDN404Storage().allowance, owner, spender).value;
                          }
                      
                          /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                          ///
                          /// Emits a {Approval} event.
                          function approve(address spender, uint256 amount) public virtual returns (bool) {
                              _approve(msg.sender, spender, amount);
                              return true;
                          }
                      
                          /// @dev Transfer `amount` tokens from the caller to `to`.
                          ///
                          /// Will burn sender NFTs if balance after transfer is less than
                          /// the amount required to support the current NFT balance.
                          ///
                          /// Will mint NFTs to `to` if the recipient's new balance supports
                          /// additional NFTs ***AND*** the `to` address's skipNFT flag is
                          /// set to false.
                          ///
                          /// Requirements:
                          /// - `from` must at least have `amount`.
                          ///
                          /// Emits a {Transfer} event.
                          function transfer(address to, uint256 amount) public virtual returns (bool) {
                              if (_isPaused()) revert Paused();
                              _transfer(msg.sender, to, amount);
                              return true;
                          }
                      
                          /// @dev Transfers `amount` tokens from `from` to `to`.
                          ///
                          /// Note: Does not update the allowance if it is the maximum uint256 value.
                          ///
                          /// Will burn sender NFTs if balance after transfer is less than
                          /// the amount required to support the current NFT balance.
                          ///
                          /// Will mint NFTs to `to` if the recipient's new balance supports
                          /// additional NFTs ***AND*** the `to` address's skipNFT flag is
                          /// set to false.
                          ///
                          /// Requirements:
                          /// - `from` must at least have `amount`.
                          /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
                          ///
                          /// Emits a {Transfer} event.
                          function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
                              if (_isPaused()) revert Paused();
                              Uint256Ref storage a = _ref(_getDN404Storage().allowance, from, msg.sender);
                      
                              uint256 allowed = _givePermit2DefaultInfiniteAllowance() && msg.sender == _PERMIT2
                                  && _isZero(_getDN404Storage().addressData[from].flags & _ADDRESS_DATA_OVERRIDE_PERMIT2_FLAG)
                                  ? type(uint256).max
                                  : a.value;
                      
                              if (allowed != type(uint256).max) {
                                  if (amount > allowed) revert InsufficientAllowance();
                                  unchecked {
                                      a.value = allowed - amount;
                                  }
                              }
                              _transfer(from, to, amount);
                              return true;
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                          PERMIT2                           */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Whether Permit2 has infinite allowances by default for all owners.
                          /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
                          /// To enable, override this function to return true.
                          function _givePermit2DefaultInfiniteAllowance() internal view virtual returns (bool) {
                              return false;
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                  INTERNAL MINT FUNCTIONS                   */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Mints `amount` tokens to `to`, increasing the total supply.
                          /// just support 1 unit token mint here
                          /// Will mint NFTs to `to` if the recipient's new balance supports
                          /// additional NFTs ***AND*** the `to` address's skipNFT flag is set to false.
                          ///
                          /// Emits a {Transfer} event.
                          function _mint(address to, uint256 amount) internal virtual returns (uint256 id){
                              if (_isPaused()) revert Paused();
                              if (to == address(0)) revert TransferToZeroAddress();
                      
                              AddressData storage toAddressData = _addressData(to);
                              DN404Storage storage $ = _getDN404Storage();
                              if ($.mirrorERC721 == address(0)) revert DNNotInitialized();
                      
                              _DNMintTemps memory t;
                              unchecked {
                                  uint256 toBalance = uint256(toAddressData.balance) + amount;
                                  toAddressData.balance = uint96(toBalance);
                                  t.toEnd = toBalance / _unit();
                              }
                              uint256 maxId;
                              unchecked {
                                  uint256 totalSupply_ = uint256($.totalSupply) + amount;
                                  $.totalSupply = uint96(totalSupply_);
                                  uint256 overflows = _toUint(_totalSupplyOverflows(totalSupply_));
                                  if (overflows | _toUint(totalSupply_ < amount) != 0) revert TotalSupplyOverflow();
                                  maxId = totalSupply_ / _unit();
                              }
                              unchecked {
                                  if (_isZero(toAddressData.flags & _ADDRESS_DATA_SKIP_NFT_FLAG)) {
                                      Uint32Map storage toOwned = $.owned[to];
                                      Uint32Map storage oo = $.oo;
                                      uint256 toIndex = toAddressData.ownedLength;
                                      _DNPackedLogs memory packedLogs = _packedLogsMalloc(_zeroFloorSub(t.toEnd, toIndex));
                      
                                      if (packedLogs.logs.length != 0) {
                                          _packedLogsSet(packedLogs, to, 0);
                                          $.totalNFTSupply += uint32(packedLogs.logs.length);
                                          toAddressData.ownedLength = uint32(t.toEnd);
                                          t.toAlias = _registerAndResolveAlias(toAddressData, to);
                                          uint32 burnedPoolHead = $.burnedPoolHead;
                                          t.burnedPoolTail = $.burnedPoolTail;
                                          t.nextTokenId = _wrapNFTId($.nextTokenId, maxId);
                                          // Mint loop.
                                          do {
                                              if (burnedPoolHead != t.burnedPoolTail) {
                                                  id = _get($.burnedPool, burnedPoolHead++);
                                              } else {
                                                  id = t.nextTokenId;
                                                  while (_get(oo, _ownershipIndex(id)) != 0) {
                                                      id = _useExistsLookup()
                                                          ? _wrapNFTId(_findFirstUnset($.exists, id + 1, maxId), maxId)
                                                          : _wrapNFTId(id + 1, maxId);
                                                  }
                                                  t.nextTokenId = _wrapNFTId(id + 1, maxId);
                                              }
                                              if (_useExistsLookup()) _set($.exists, id, true);
                                              _set(toOwned, toIndex, uint32(id));
                                              _setOwnerAliasAndOwnedIndex(oo, id, t.toAlias, uint32(toIndex++));
                                              _packedLogsAppend(packedLogs, id);
                                              _afterNFTTransfer(address(0), to, id);
                                          } while (toIndex != t.toEnd);
                      
                                          $.nextTokenId = uint32(t.nextTokenId);
                                          $.burnedPoolHead = burnedPoolHead;
                                          _packedLogsSend(packedLogs, $.mirrorERC721);
                                      }
                                  }
                              }
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Emit the {Transfer} event.
                                  mstore(0x00, amount)
                                  log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, shl(96, to)))
                              }
                          }
                      
                          /// @dev Mints `amount` tokens to `to`, increasing the total supply.
                          /// This variant mints NFT tokens starting from ID `preTotalSupply / _unit() + 1`.
                          /// This variant will not touch the `burnedPool` and `nextTokenId`.
                          ///
                          /// Will mint NFTs to `to` if the recipient's new balance supports
                          /// additional NFTs ***AND*** the `to` address's skipNFT flag is set to false.
                          ///
                          /// Emits a {Transfer} event.
                          function _mintNext(address to, uint256 amount) internal virtual {
                              if (to == address(0)) revert TransferToZeroAddress();
                      
                              AddressData storage toAddressData = _addressData(to);
                              DN404Storage storage $ = _getDN404Storage();
                              if ($.mirrorERC721 == address(0)) revert DNNotInitialized();
                      
                              _DNMintTemps memory t;
                              unchecked {
                                  uint256 toBalance = uint256(toAddressData.balance) + amount;
                                  toAddressData.balance = uint96(toBalance);
                                  t.toEnd = toBalance / _unit();
                              }
                              uint256 startId;
                              uint256 maxId;
                              unchecked {
                                  uint256 preTotalSupply = uint256($.totalSupply);
                                  startId = preTotalSupply / _unit() + 1;
                                  uint256 totalSupply_ = uint256(preTotalSupply) + amount;
                                  $.totalSupply = uint96(totalSupply_);
                                  uint256 overflows = _toUint(_totalSupplyOverflows(totalSupply_));
                                  if (overflows | _toUint(totalSupply_ < amount) != 0) revert TotalSupplyOverflow();
                                  maxId = totalSupply_ / _unit();
                              }
                              unchecked {
                                  if (_isZero(toAddressData.flags & _ADDRESS_DATA_SKIP_NFT_FLAG)) {
                                      Uint32Map storage toOwned = $.owned[to];
                                      Uint32Map storage oo = $.oo;
                                      uint256 toIndex = toAddressData.ownedLength;
                                      _DNPackedLogs memory packedLogs = _packedLogsMalloc(_zeroFloorSub(t.toEnd, toIndex));
                      
                                      if (packedLogs.logs.length != 0) {
                                          _packedLogsSet(packedLogs, to, 0);
                                          $.totalNFTSupply += uint32(packedLogs.logs.length);
                                          toAddressData.ownedLength = uint32(t.toEnd);
                                          t.toAlias = _registerAndResolveAlias(toAddressData, to);
                                          // Mint loop.
                                          do {
                                              uint256 id = startId;
                                              while (_get(oo, _ownershipIndex(id)) != 0) {
                                                  id = _useExistsLookup()
                                                      ? _wrapNFTId(_findFirstUnset($.exists, id + 1, maxId), maxId)
                                                      : _wrapNFTId(id + 1, maxId);
                                              }
                                              startId = _wrapNFTId(id + 1, maxId);
                                              if (_useExistsLookup()) _set($.exists, id, true);
                                              _set(toOwned, toIndex, uint32(id));
                                              _setOwnerAliasAndOwnedIndex(oo, id, t.toAlias, uint32(toIndex++));
                                              _packedLogsAppend(packedLogs, id);
                                              _afterNFTTransfer(address(0), to, id);
                                          } while (toIndex != t.toEnd);
                      
                                          _packedLogsSend(packedLogs, $.mirrorERC721);
                                      }
                                  }
                              }
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Emit the {Transfer} event.
                                  mstore(0x00, amount)
                                  log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, shl(96, to)))
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                  INTERNAL BURN FUNCTIONS                   */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Burns `amount` tokens from `from`, reducing the total supply.
                          ///
                          /// Will burn sender NFTs if balance after transfer is less than
                          /// the amount required to support the current NFT balance.
                          ///
                          /// Emits a {Transfer} event.
                          function _burn(address from, uint256 amount) internal virtual {
                              DN404Storage storage $ = _getDN404Storage();
                              if ($.mirrorERC721 == address(0)) revert DNNotInitialized();
                      
                              AddressData storage fromAddressData = $.addressData[from];
                              uint256 fromBalance = fromAddressData.balance;
                              if (amount > fromBalance) revert InsufficientBalance();
                      
                              unchecked {
                                  fromAddressData.balance = uint96(fromBalance -= amount);
                                  uint256 totalSupply_ = uint256($.totalSupply) - amount;
                                  $.totalSupply = uint96(totalSupply_);
                      
                                  Uint32Map storage fromOwned = $.owned[from];
                                  uint256 fromIndex = fromAddressData.ownedLength;
                                  uint256 numNFTBurns = _zeroFloorSub(fromIndex, fromBalance / _unit());
                      
                                  if (numNFTBurns != 0) {
                                      _DNPackedLogs memory packedLogs = _packedLogsMalloc(numNFTBurns);
                                      _packedLogsSet(packedLogs, from, 1);
                                      bool addToBurnedPool;
                                      {
                                          uint256 totalNFTSupply = uint256($.totalNFTSupply) - numNFTBurns;
                                          $.totalNFTSupply = uint32(totalNFTSupply);
                                          addToBurnedPool = _addToBurnedPool(totalNFTSupply, totalSupply_);
                                      }
                      
                                      Uint32Map storage oo = $.oo;
                                      uint256 fromEnd = fromIndex - numNFTBurns;
                                      fromAddressData.ownedLength = uint32(fromEnd);
                                      uint32 burnedPoolTail = $.burnedPoolTail;
                                      // Burn loop.
                                      do {
                                          uint256 id = _get(fromOwned, --fromIndex);
                                          _setOwnerAliasAndOwnedIndex(oo, id, 0, 0);
                                          _packedLogsAppend(packedLogs, id);
                                          if (_useExistsLookup()) _set($.exists, id, false);
                                          if (addToBurnedPool) _set($.burnedPool, burnedPoolTail++, uint32(id));
                                          if (_get($.mayHaveNFTApproval, id)) {
                                              _set($.mayHaveNFTApproval, id, false);
                                              delete $.nftApprovals[id];
                                          }
                                          _afterNFTTransfer(from, address(0), id);
                                      } while (fromIndex != fromEnd);
                      
                                      if (addToBurnedPool) $.burnedPoolTail = burnedPoolTail;
                                      _packedLogsSend(packedLogs, $.mirrorERC721);
                                  }
                              }
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Emit the {Transfer} event.
                                  mstore(0x00, amount)
                                  log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                INTERNAL TRANSFER FUNCTIONS                 */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Moves `amount` of tokens from `from` to `to`.
                          ///
                          /// Will burn sender NFTs if balance after transfer is less than
                          /// the amount required to support the current NFT balance.
                          ///
                          /// Will mint NFTs to `to` if the recipient's new balance supports
                          /// additional NFTs ***AND*** the `to` address's skipNFT flag is
                          /// set to false.
                          ///
                          /// Emits a {Transfer} event.
                          function _transfer(address from, address to, uint256 amount) internal virtual {
                              if (to == address(0)) revert TransferToZeroAddress();
                      
                              DN404Storage storage $ = _getDN404Storage();
                              AddressData storage fromAddressData = $.addressData[from];
                              AddressData storage toAddressData = _addressData(to);
                              if ($.mirrorERC721 == address(0)) revert DNNotInitialized();
                      
                              _DNTransferTemps memory t;
                              t.fromOwnedLength = fromAddressData.ownedLength;
                              t.toOwnedLength = toAddressData.ownedLength;
                      
                              unchecked {
                                  {
                                      uint256 fromBalance = fromAddressData.balance;
                                      if (amount > fromBalance) revert InsufficientBalance();
                                      fromAddressData.balance = uint96(fromBalance -= amount);
                      
                                      uint256 toBalance = uint256(toAddressData.balance) + amount;
                                      toAddressData.balance = uint96(toBalance);
                                      t.numNFTBurns = _zeroFloorSub(t.fromOwnedLength, fromBalance / _unit());
                      
                                      if (_isZero(toAddressData.flags & _ADDRESS_DATA_SKIP_NFT_FLAG)) {
                                          if (from == to) t.toOwnedLength = t.fromOwnedLength - t.numNFTBurns;
                                          t.numNFTMints = _zeroFloorSub(toBalance / _unit(), t.toOwnedLength);
                                      }
                                  }
                      
                                  while (_useDirectTransfersIfPossible()) {
                                      uint256 n = _min(t.fromOwnedLength, _min(t.numNFTBurns, t.numNFTMints));
                                      if (_isZero(n)) break;
                                      t.numNFTBurns -= n;
                                      t.numNFTMints -= n;
                                      if (from == to) {
                                          t.toOwnedLength += n;
                                          break;
                                      }
                                      _DNDirectLogs memory directLogs = _directLogsMalloc(n, from, to);
                                      Uint32Map storage fromOwned = $.owned[from];
                                      Uint32Map storage toOwned = $.owned[to];
                                      t.toAlias = _registerAndResolveAlias(toAddressData, to);
                                      uint256 toIndex = t.toOwnedLength;
                                      n = toIndex + n;
                                      // Direct transfer loop.
                                      do {
                                          uint256 id = _get(fromOwned, --t.fromOwnedLength);
                                          _set(toOwned, toIndex, uint32(id));
                                          _setOwnerAliasAndOwnedIndex($.oo, id, t.toAlias, uint32(toIndex));
                                          _directLogsAppend(directLogs, id);
                                          if (_get($.mayHaveNFTApproval, id)) {
                                              _set($.mayHaveNFTApproval, id, false);
                                              delete $.nftApprovals[id];
                                          }
                                          _afterNFTTransfer(from, to, id);
                                      } while (++toIndex != n);
                      
                                      toAddressData.ownedLength = uint32(t.toOwnedLength = toIndex);
                                      fromAddressData.ownedLength = uint32(t.fromOwnedLength);
                                      _directLogsSend(directLogs, $.mirrorERC721);
                                      break;
                                  }
                      
                                  t.totalNFTSupply = uint256($.totalNFTSupply) + t.numNFTMints - t.numNFTBurns;
                                  $.totalNFTSupply = uint32(t.totalNFTSupply);
                      
                                  Uint32Map storage oo = $.oo;
                                  _DNPackedLogs memory packedLogs = _packedLogsMalloc(t.numNFTBurns + t.numNFTMints);
                      
                                  t.burnedPoolTail = $.burnedPoolTail;
                                  if (t.numNFTBurns != 0) {
                                      _packedLogsSet(packedLogs, from, 1);
                                      bool addToBurnedPool = _addToBurnedPool(t.totalNFTSupply, $.totalSupply);
                                      Uint32Map storage fromOwned = $.owned[from];
                                      uint256 fromIndex = t.fromOwnedLength;
                                      fromAddressData.ownedLength = uint32(t.fromEnd = fromIndex - t.numNFTBurns);
                                      uint32 burnedPoolTail = t.burnedPoolTail;
                                      // Burn loop.
                                      do {
                                          uint256 id = _get(fromOwned, --fromIndex);
                                          _setOwnerAliasAndOwnedIndex(oo, id, 0, 0);
                                          _packedLogsAppend(packedLogs, id);
                                          if (_useExistsLookup()) _set($.exists, id, false);
                                          if (addToBurnedPool) _set($.burnedPool, burnedPoolTail++, uint32(id));
                                          if (_get($.mayHaveNFTApproval, id)) {
                                              _set($.mayHaveNFTApproval, id, false);
                                              delete $.nftApprovals[id];
                                          }
                                          _afterNFTTransfer(from, address(0), id);
                                      } while (fromIndex != t.fromEnd);
                      
                                      if (addToBurnedPool) $.burnedPoolTail = (t.burnedPoolTail = burnedPoolTail);
                                  }
                      
                                  if (t.numNFTMints != 0) {
                                      _packedLogsSet(packedLogs, to, 0);
                                      Uint32Map storage toOwned = $.owned[to];
                                      t.toAlias = _registerAndResolveAlias(toAddressData, to);
                                      uint256 maxId = $.totalSupply / _unit();
                                      t.nextTokenId = _wrapNFTId($.nextTokenId, maxId);
                                      uint256 toIndex = t.toOwnedLength;
                                      toAddressData.ownedLength = uint32(t.toEnd = toIndex + t.numNFTMints);
                                      uint32 burnedPoolHead = $.burnedPoolHead;
                                      // Mint loop.
                                      do {
                                          uint256 id;
                                          if (burnedPoolHead != t.burnedPoolTail) {
                                              id = _get($.burnedPool, burnedPoolHead++);
                                          } else {
                                              id = t.nextTokenId;
                                              while (_get(oo, _ownershipIndex(id)) != 0) {
                                                  id = _useExistsLookup()
                                                      ? _wrapNFTId(_findFirstUnset($.exists, id + 1, maxId), maxId)
                                                      : _wrapNFTId(id + 1, maxId);
                                              }
                                              t.nextTokenId = _wrapNFTId(id + 1, maxId);
                                          }
                                          if (_useExistsLookup()) _set($.exists, id, true);
                                          _set(toOwned, toIndex, uint32(id));
                                          _setOwnerAliasAndOwnedIndex(oo, id, t.toAlias, uint32(toIndex++));
                                          _packedLogsAppend(packedLogs, id);
                                          _afterNFTTransfer(address(0), to, id);
                                      } while (toIndex != t.toEnd);
                      
                                      $.burnedPoolHead = burnedPoolHead;
                                      $.nextTokenId = uint32(t.nextTokenId);
                                  }
                      
                                  if (packedLogs.logs.length != 0) _packedLogsSend(packedLogs, $.mirrorERC721);
                              }
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Emit the {Transfer} event.
                                  mstore(0x00, amount)
                                  // forgefmt: disable-next-item
                                  log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), shr(96, shl(96, to)))
                              }
                          }
                      
                          /// @dev Transfers token `id` from `from` to `to`.
                          ///
                          /// Requirements:
                          ///
                          /// - Call must originate from the mirror contract.
                          /// - Token `id` must exist.
                          /// - `from` must be the owner of the token.
                          /// - `to` cannot be the zero address.
                          ///   `msgSender` must be the owner of the token, or be approved to manage the token.
                          ///
                          /// Emits a {Transfer} event.
                          function _transferFromNFT(address from, address to, uint256 id, address msgSender)
                              internal
                              virtual
                          {
                              if (to == address(0)) revert TransferToZeroAddress();
                      
                              DN404Storage storage $ = _getDN404Storage();
                              if ($.mirrorERC721 == address(0)) revert DNNotInitialized();
                      
                              Uint32Map storage oo = $.oo;
                      
                              if (from != $.aliasToAddress[_get(oo, _ownershipIndex(_restrictNFTId(id)))]) {
                                  revert TransferFromIncorrectOwner();
                              }
                      
                              if (msgSender != from) {
                                  if (!_isApprovedForAll(from, msgSender)) {
                                      if (_getApproved(id) != msgSender) {
                                          revert TransferCallerNotOwnerNorApproved();
                                      }
                                  }
                              }
                      
                              AddressData storage fromAddressData = $.addressData[from];
                              AddressData storage toAddressData = $.addressData[to];
                      
                              uint256 unit = _unit();
                              mapping(address => Uint32Map) storage owned = $.owned;
                      
                              unchecked {
                                  uint256 fromBalance = fromAddressData.balance;
                                  if (unit > fromBalance) revert InsufficientBalance();
                                  fromAddressData.balance = uint96(fromBalance - unit);
                                  toAddressData.balance += uint96(unit);
                              }
                              if (_get($.mayHaveNFTApproval, id)) {
                                  _set($.mayHaveNFTApproval, id, false);
                                  delete $.nftApprovals[id];
                              }
                              unchecked {
                                  Uint32Map storage fromOwned = owned[from];
                                  uint32 updatedId = _get(fromOwned, --fromAddressData.ownedLength);
                                  uint32 i = _get(oo, _ownedIndex(id));
                                  _set(fromOwned, i, updatedId);
                                  _set(oo, _ownedIndex(updatedId), i);
                              }
                              unchecked {
                                  uint32 n = toAddressData.ownedLength++;
                                  _set(owned[to], n, uint32(id));
                                  _setOwnerAliasAndOwnedIndex(oo, id, _registerAndResolveAlias(toAddressData, to), n);
                              }
                              _afterNFTTransfer(from, to, id);
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Emit the {Transfer} event.
                                  mstore(0x00, unit)
                                  // forgefmt: disable-next-item
                                  log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), shr(96, shl(96, to)))
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                 INTERNAL APPROVE FUNCTIONS                 */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
                          ///
                          /// Emits a {Approval} event.
                          function _approve(address owner, address spender, uint256 amount) internal virtual {
                              if (_givePermit2DefaultInfiniteAllowance() && spender == _PERMIT2) {
                                  _getDN404Storage().addressData[owner].flags |= _ADDRESS_DATA_OVERRIDE_PERMIT2_FLAG;
                              }
                              _ref(_getDN404Storage().allowance, owner, spender).value = amount;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Emit the {Approval} event.
                                  mstore(0x00, amount)
                                  // forgefmt: disable-next-item
                                  log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, shl(96, owner)), shr(96, shl(96, spender)))
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                 DATA HITCHHIKING FUNCTIONS                 */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns the auxiliary data for `owner`.
                          /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
                          /// Auxiliary data can be set for any address, even if it does not have any tokens.
                          function _getAux(address owner) internal view virtual returns (uint88) {
                              return _getDN404Storage().addressData[owner].aux;
                          }
                      
                          /// @dev Set the auxiliary data for `owner` to `value`.
                          /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
                          /// Auxiliary data can be set for any address, even if it does not have any tokens.
                          function _setAux(address owner, uint88 value) internal virtual {
                              _getDN404Storage().addressData[owner].aux = value;
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                     SKIP NFT FUNCTIONS                     */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns true if minting and transferring ERC20s to `owner` will skip minting NFTs.
                          /// Returns false otherwise.
                          function getSkipNFT(address owner) public view virtual returns (bool) {
                              AddressData storage d = _getDN404Storage().addressData[owner];
                              if (_isZero(d.flags & _ADDRESS_DATA_INITIALIZED_FLAG)) return _hasCode(owner);
                              return d.flags & _ADDRESS_DATA_SKIP_NFT_FLAG != 0;
                          }
                      
                          /// @dev Sets the caller's skipNFT flag to `skipNFT`. Returns true.
                          ///
                          /// Emits a {SkipNFTSet} event.
                          function setSkipNFT(bool skipNFT) public virtual returns (bool) {
                              _setSkipNFT(msg.sender, skipNFT);
                              return true;
                          }
                      
                          /// @dev Internal function to set account `owner` skipNFT flag to `state`
                          ///
                          /// Initializes account `owner` AddressData if it is not currently initialized.
                          ///
                          /// Emits a {SkipNFTSet} event.
                          function _setSkipNFT(address owner, bool state) internal virtual {
                              AddressData storage d = _addressData(owner);
                              if ((d.flags & _ADDRESS_DATA_SKIP_NFT_FLAG != 0) != state) {
                                  d.flags ^= _ADDRESS_DATA_SKIP_NFT_FLAG;
                              }
                              /// @solidity memory-safe-assembly
                              assembly {
                                  mstore(0x00, iszero(iszero(state)))
                                  log2(0x00, 0x20, _SKIP_NFT_SET_EVENT_SIGNATURE, shr(96, shl(96, owner)))
                              }
                          }
                      
                          /// @dev Returns a storage data pointer for account `owner` AddressData
                          ///
                          /// Initializes account `owner` AddressData if it is not currently initialized.
                          function _addressData(address owner) internal virtual returns (AddressData storage d) {
                              d = _getDN404Storage().addressData[owner];
                              unchecked {
                                  if (_isZero(d.flags & _ADDRESS_DATA_INITIALIZED_FLAG)) {
                                      uint256 skipNFT = _toUint(_hasCode(owner)) * _ADDRESS_DATA_SKIP_NFT_FLAG;
                                      d.flags = uint8(skipNFT | _ADDRESS_DATA_INITIALIZED_FLAG);
                                  }
                              }
                          }
                      
                          /// @dev Returns the `addressAlias` of account `to`.
                          ///
                          /// Assigns and registers the next alias if `to` alias was not previously registered.
                          function _registerAndResolveAlias(AddressData storage toAddressData, address to)
                              internal
                              virtual
                              returns (uint32 addressAlias)
                          {
                              DN404Storage storage $ = _getDN404Storage();
                              addressAlias = toAddressData.addressAlias;
                              if (_isZero(addressAlias)) {
                                  unchecked {
                                      addressAlias = ++$.numAliases;
                                  }
                                  toAddressData.addressAlias = addressAlias;
                                  $.aliasToAddress[addressAlias] = to;
                                  if (_isZero(addressAlias)) revert(); // Overflow.
                              }
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                     MIRROR OPERATIONS                      */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns the address of the mirror NFT contract.
                          function mirrorERC721() public view virtual returns (address) {
                              return _getDN404Storage().mirrorERC721;
                          }
                      
                          /// @dev Returns the total NFT supply.
                          function _totalNFTSupply() internal view virtual returns (uint256) {
                              return _getDN404Storage().totalNFTSupply;
                          }
                      
                          /// @dev Returns `owner` NFT balance.
                          function _balanceOfNFT(address owner) internal view virtual returns (uint256) {
                              return _getDN404Storage().addressData[owner].ownedLength;
                          }
                      
                          /// @dev Returns the owner of token `id`.
                          /// Returns the zero address instead of reverting if the token does not exist.
                          function _ownerAt(uint256 id) internal view virtual returns (address) {
                              DN404Storage storage $ = _getDN404Storage();
                              return $.aliasToAddress[_get($.oo, _ownershipIndex(_restrictNFTId(id)))];
                          }
                      
                          /// @dev Returns the owner of token `id`.
                          ///
                          /// Requirements:
                          /// - Token `id` must exist.
                          function _ownerOf(uint256 id) internal view virtual returns (address) {
                              if (!_exists(id)) revert TokenDoesNotExist();
                              return _ownerAt(id);
                          }
                      
                          /// @dev Returns whether `operator` is approved to manage the NFT tokens of `owner`.
                          function _isApprovedForAll(address owner, address operator)
                              internal
                              view
                              virtual
                              returns (bool)
                          {
                              return !_isZero(_ref(_getDN404Storage().operatorApprovals, owner, operator).value);
                          }
                      
                          /// @dev Returns if token `id` exists.
                          function _exists(uint256 id) internal view virtual returns (bool) {
                              return _ownerAt(id) != address(0);
                          }
                      
                          /// @dev Returns the account approved to manage token `id`.
                          ///
                          /// Requirements:
                          /// - Token `id` must exist.
                          function _getApproved(uint256 id) internal view virtual returns (address) {
                              if (!_exists(id)) revert TokenDoesNotExist();
                              return _getDN404Storage().nftApprovals[id];
                          }
                      
                          /// @dev Sets `spender` as the approved account to manage token `id`, using `msgSender`.
                          ///
                          /// Requirements:
                          /// - `msgSender` must be the owner or an approved operator for the token owner.
                          function _approveNFT(address spender, uint256 id, address msgSender)
                              internal
                              virtual
                              returns (address owner)
                          {
                              DN404Storage storage $ = _getDN404Storage();
                      
                              owner = $.aliasToAddress[_get($.oo, _ownershipIndex(_restrictNFTId(id)))];
                      
                              if (msgSender != owner) {
                                  if (!_isApprovedForAll(owner, msgSender)) {
                                      revert ApprovalCallerNotOwnerNorApproved();
                                  }
                              }
                      
                              $.nftApprovals[id] = spender;
                              _set($.mayHaveNFTApproval, id, spender != address(0));
                          }
                      
                          /// @dev Approve or remove the `operator` as an operator for `msgSender`,
                          /// without authorization checks.
                          function _setApprovalForAll(address operator, bool approved, address msgSender)
                              internal
                              virtual
                          {
                              _ref(_getDN404Storage().operatorApprovals, msgSender, operator).value = _toUint(approved);
                          }
                      
                          /// @dev Returns the NFT IDs of `owner` in the range `[begin..end)` (exclusive of `end`).
                          /// `begin` and `end` are indices in the owner's token ID array, not the entire token range.
                          /// Optimized for smaller bytecode size, as this function is intended for off-chain calling.
                          function _ownedIds(address owner, uint256 begin, uint256 end)
                              internal
                              view
                              virtual
                              returns (uint256[] memory ids)
                          {
                              DN404Storage storage $ = _getDN404Storage();
                              Uint32Map storage owned = $.owned[owner];
                              end = _min($.addressData[owner].ownedLength, end);
                              /// @solidity memory-safe-assembly
                              assembly {
                                  ids := mload(0x40)
                                  let i := begin
                                  for {} lt(i, end) { i := add(i, 1) } {
                                      let s := add(shl(96, owned.slot), shr(3, i)) // Storage slot.
                                      let id := and(0xffffffff, shr(shl(5, and(i, 7)), sload(s)))
                                      mstore(add(add(ids, 0x20), shl(5, sub(i, begin))), id) // Append to.
                                  }
                                  mstore(ids, sub(i, begin)) // Store the length.
                                  mstore(0x40, add(add(ids, 0x20), shl(5, sub(i, begin)))) // Allocate memory.
                              }
                          }
                      
                          /// @dev Fallback modifier to dispatch calls from the mirror NFT contract
                          /// to internal functions in this contract.
                          modifier dn404Fallback() virtual {
                              DN404Storage storage $ = _getDN404Storage();
                      
                              uint256 fnSelector = _calldataload(0x00) >> 224;
                      
                              // `transferFromNFT(address,address,uint256,address)`.
                              if (fnSelector == 0xe5eb36c8) {
                                  if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
                                  if (_isPaused()) revert Paused();
                                  _transferFromNFT(
                                      address(uint160(_calldataload(0x04))), // `from`.
                                      address(uint160(_calldataload(0x24))), // `to`.
                                      _calldataload(0x44), // `id`.
                                      address(uint160(_calldataload(0x64))) // `msgSender`.
                                  );
                                  _return(1);
                              }
                              // `setApprovalForAll(address,bool,address)`.
                              if (fnSelector == 0x813500fc) {
                                  if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
                                  _setApprovalForAll(
                                      address(uint160(_calldataload(0x04))), // `spender`.
                                      _calldataload(0x24) != 0, // `status`.
                                      address(uint160(_calldataload(0x44))) // `msgSender`.
                                  );
                                  _return(1);
                              }
                              // `isApprovedForAll(address,address)`.
                              if (fnSelector == 0xe985e9c5) {
                                  bool result = _isApprovedForAll(
                                      address(uint160(_calldataload(0x04))), // `owner`.
                                      address(uint160(_calldataload(0x24))) // `operator`.
                                  );
                                  _return(_toUint(result));
                              }
                              // `ownerOf(uint256)`.
                              if (fnSelector == 0x6352211e) {
                                  _return(uint160(_ownerOf(_calldataload(0x04))));
                              }
                              // `ownerAt(uint256)`.
                              if (fnSelector == 0x24359879) {
                                  _return(uint160(_ownerAt(_calldataload(0x04))));
                              }
                              // `approveNFT(address,uint256,address)`.
                              if (fnSelector == 0xd10b6e0c) {
                                  if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
                                  address owner = _approveNFT(
                                      address(uint160(_calldataload(0x04))), // `spender`.
                                      _calldataload(0x24), // `id`.
                                      address(uint160(_calldataload(0x44))) // `msgSender`.
                                  );
                                  _return(uint160(owner));
                              }
                              // `getApproved(uint256)`.
                              if (fnSelector == 0x081812fc) {
                                  _return(uint160(_getApproved(_calldataload(0x04))));
                              }
                              // `balanceOfNFT(address)`.
                              if (fnSelector == 0xf5b100ea) {
                                  _return(_balanceOfNFT(address(uint160(_calldataload(0x04)))));
                              }
                              // `totalNFTSupply()`.
                              if (fnSelector == 0xe2c79281) {
                                  _return(_totalNFTSupply());
                              }
                              // `tokenURI(uint256)`.
                              if (fnSelector == 0xc87b56dd) {
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      mstore(0x40, add(mload(0x40), 0x20))
                                  }
                                  string memory uri = _tokenURI(_calldataload(0x04));
                                  /// @solidity memory-safe-assembly
                                  assembly {
                                      // Memory safe, as we've advanced the free memory pointer by a word.
                                      let o := sub(uri, 0x20)
                                      mstore(o, 0x20) // Store the offset of `uri`.
                                      return(o, add(0x60, mload(uri)))
                                  }
                              }
                              // `implementsDN404()`.
                              if (fnSelector == 0xb7a94eb8) {
                                  _return(1);
                              }
                              _;
                          }
                      
                          /// @dev Fallback function for calls from mirror NFT contract.
                          /// Override this if you need to implement your custom
                          /// fallback with utilities like Solady's `LibZip.cdFallback()`.
                          /// And always remember to always wrap the fallback with `dn404Fallback`.
                          fallback() external payable virtual dn404Fallback {
                              revert FnSelectorNotRecognized(); // Not mandatory. Just for quality of life.
                          }
                      
                          /// @dev This is to silence the compiler warning.
                          /// Override and remove the revert if you want your contract to receive ETH via receive.
                          receive() external payable virtual {
                              if (msg.value != 0) revert();
                          }
                      
                          /*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
                          /*                 INTERNAL / PRIVATE HELPERS                 */
                          /*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
                      
                          /// @dev Returns `(i - 1) << 1`.
                          function _ownershipIndex(uint256 i) internal pure returns (uint256) {
                              unchecked {
                                  return (i - 1) << 1; // Minus 1 as token IDs start from 1.
                              }
                          }
                      
                          /// @dev Returns `((i - 1) << 1) + 1`.
                          function _ownedIndex(uint256 i) internal pure returns (uint256) {
                              unchecked {
                                  return ((i - 1) << 1) + 1; // Minus 1 as token IDs start from 1.
                              }
                          }
                      
                          /// @dev Returns the uint32 value at `index` in `map`.
                          function _get(Uint32Map storage map, uint256 index) internal view returns (uint32 result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let s := add(shl(96, map.slot), shr(3, index)) // Storage slot.
                                  result := and(0xffffffff, shr(shl(5, and(index, 7)), sload(s)))
                              }
                          }
                      
                          /// @dev Updates the uint32 value at `index` in `map`.
                          function _set(Uint32Map storage map, uint256 index, uint32 value) internal {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let s := add(shl(96, map.slot), shr(3, index)) // Storage slot.
                                  let o := shl(5, and(index, 7)) // Storage slot offset (bits).
                                  let v := sload(s) // Storage slot value.
                                  sstore(s, xor(v, shl(o, and(0xffffffff, xor(value, shr(o, v))))))
                              }
                          }
                      
                          /// @dev Sets the owner alias and the owned index together.
                          function _setOwnerAliasAndOwnedIndex(
                              Uint32Map storage map,
                              uint256 id,
                              uint32 ownership,
                              uint32 ownedIndex
                          ) internal {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let i := sub(id, 1) // Index of the uint64 combined value.
                                  let s := add(shl(96, map.slot), shr(2, i)) // Storage slot.
                                  let v := sload(s) // Storage slot value.
                                  let o := shl(6, and(i, 3)) // Storage slot offset (bits).
                                  let combined := or(shl(32, ownedIndex), and(0xffffffff, ownership))
                                  sstore(s, xor(v, shl(o, and(0xffffffffffffffff, xor(shr(o, v), combined)))))
                              }
                          }
                      
                          /// @dev Returns the boolean value of the bit at `index` in `bitmap`.
                          function _get(Bitmap storage bitmap, uint256 index) internal view returns (bool result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let s := add(shl(96, bitmap.slot), shr(8, index)) // Storage slot.
                                  result := and(1, shr(and(0xff, index), sload(s)))
                              }
                          }
                      
                          /// @dev Updates the bit at `index` in `bitmap` to `value`.
                          function _set(Bitmap storage bitmap, uint256 index, bool value) internal {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let s := add(shl(96, bitmap.slot), shr(8, index)) // Storage slot.
                                  let o := and(0xff, index) // Storage slot offset (bits).
                                  sstore(s, or(and(sload(s), not(shl(o, 1))), shl(o, iszero(iszero(value)))))
                              }
                          }
                      
                          /// @dev Returns the index of the least significant unset bit in `[begin..upTo]`.
                          /// If no set bit is found, returns `type(uint256).max`.
                          function _findFirstUnset(Bitmap storage bitmap, uint256 begin, uint256 upTo)
                              internal
                              view
                              returns (uint256 unsetBitIndex)
                          {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  unsetBitIndex := not(0) // Initialize to `type(uint256).max`.
                                  let s := shl(96, bitmap.slot) // Storage offset of the bitmap.
                                  let bucket := add(s, shr(8, begin))
                                  let negBits := shl(and(0xff, begin), shr(and(0xff, begin), not(sload(bucket))))
                                  if iszero(negBits) {
                                      let lastBucket := add(s, shr(8, upTo))
                                      for {} 1 {} {
                                          bucket := add(bucket, 1)
                                          negBits := not(sload(bucket))
                                          if or(negBits, gt(bucket, lastBucket)) { break }
                                      }
                                      if gt(bucket, lastBucket) {
                                          negBits := shr(and(0xff, not(upTo)), shl(and(0xff, not(upTo)), negBits))
                                      }
                                  }
                                  if negBits {
                                      // Find-first-set routine.
                                      let b := and(negBits, add(not(negBits), 1)) // Isolate the least significant bit.
                                      let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, b))
                                      r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, b))))
                                      r := or(r, shl(5, lt(0xffffffff, shr(r, b))))
                                      // For the remaining 32 bits, use a De Bruijn lookup.
                                      // forgefmt: disable-next-item
                                      r := or(r, byte(and(div(0xd76453e0, shr(r, b)), 0x1f),
                                          0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
                                      r := or(shl(8, sub(bucket, s)), r)
                                      unsetBitIndex := or(r, sub(0, or(gt(r, upTo), lt(r, begin))))
                                  }
                              }
                          }
                      
                          /// @dev Returns a storage reference to the value at (`a0`, `a1`) in `map`.
                          function _ref(AddressPairToUint256RefMap storage map, address a0, address a1)
                              internal
                              pure
                              returns (Uint256Ref storage ref)
                          {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  mstore(0x28, a1)
                                  mstore(0x14, a0)
                                  mstore(0x00, map.slot)
                                  ref.slot := keccak256(0x00, 0x48)
                                  // Clear the part of the free memory pointer that was overwritten.
                                  mstore(0x28, 0x00)
                              }
                          }
                      
                          /// @dev Wraps the NFT ID.
                          function _wrapNFTId(uint256 id, uint256 maxId) internal pure returns (uint256 result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  result := or(mul(iszero(gt(id, maxId)), id), gt(id, maxId))
                              }
                          }
                      
                          /// @dev Returns `id > type(uint32).max ? 0 : id`.
                          function _restrictNFTId(uint256 id) internal pure returns (uint256 result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  result := mul(id, lt(id, 0x100000000))
                              }
                          }
                      
                          /// @dev Returns whether `amount` is a valid `totalSupply`.
                          function _totalSupplyOverflows(uint256 amount) internal view returns (bool result) {
                              uint256 unit = _unit();
                              /// @solidity memory-safe-assembly
                              assembly {
                                  result := iszero(iszero(or(shr(96, amount), lt(0xfffffffe, div(amount, unit)))))
                              }
                          }
                      
                          /// @dev Returns `max(0, x - y)`.
                          function _zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  z := mul(gt(x, y), sub(x, y))
                              }
                          }
                      
                          /// @dev Returns `x < y ? x : y`.
                          function _min(uint256 x, uint256 y) internal pure returns (uint256 z) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  z := xor(x, mul(xor(x, y), lt(y, x)))
                              }
                          }
                      
                          /// @dev Returns `b ? 1 : 0`.
                          function _toUint(bool b) internal pure returns (uint256 result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  result := iszero(iszero(b))
                              }
                          }
                      
                          /// @dev Returns `b == 0`. This is because solc is sometimes dumb.
                          function _isZero(uint256 x) internal pure returns (bool result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  result := iszero(x)
                              }
                          }
                      
                          /// @dev Struct containing direct transfer log data for {Transfer} events to be
                          /// emitted by the mirror NFT contract.
                          struct _DNDirectLogs {
                              uint256 offset;
                              uint256[] logs;
                          }
                      
                          /// @dev Initiates memory allocation for direct logs with `n` log items.
                          function _directLogsMalloc(uint256 n, address from, address to)
                              private
                              pure
                              returns (_DNDirectLogs memory p)
                          {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let m := mload(0x40)
                                  mstore(m, 0x144027d3) // `logDirectTransfer(address,address,uint256[])`.
                                  mstore(add(m, 0x20), shr(96, shl(96, from)))
                                  mstore(add(m, 0x40), shr(96, shl(96, to)))
                                  mstore(add(m, 0x60), 0x60) // Offset of `logs` in the calldata to send.
                                  // Skip 4 words: `fnSelector`, `from`, `to`, `calldataLogsOffset`.
                                  let logs := add(0x80, m)
                                  mstore(logs, n) // Store the length.
                                  let offset := add(0x20, logs) // Skip the word for `p.logs.length`.
                                  mstore(0x40, add(offset, shl(5, n))) // Allocate memory.
                                  mstore(add(0x20, p), logs) // Set `p.logs`.
                                  mstore(p, offset) // Set `p.offset`.
                              }
                          }
                      
                          /// @dev Adds a direct log item to `p` with token `id`.
                          function _directLogsAppend(_DNDirectLogs memory p, uint256 id) private pure {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let offset := mload(p)
                                  mstore(offset, id)
                                  mstore(p, add(offset, 0x20))
                              }
                          }
                      
                          /// @dev Calls the `mirror` NFT contract to emit {Transfer} events for packed logs `p`.
                          function _directLogsSend(_DNDirectLogs memory p, address mirror) private {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let logs := mload(add(p, 0x20))
                                  let n := add(0x84, shl(5, mload(logs))) // Length of calldata to send.
                                  let o := sub(logs, 0x80) // Start of calldata to send.
                                  if iszero(and(eq(mload(o), 1), call(gas(), mirror, 0, add(o, 0x1c), n, o, 0x20))) {
                                      revert(o, 0x00)
                                  }
                              }
                          }
                      
                          /// @dev Struct containing packed log data for {Transfer} events to be
                          /// emitted by the mirror NFT contract.
                          struct _DNPackedLogs {
                              uint256 offset;
                              uint256 addressAndBit;
                              uint256[] logs;
                          }
                      
                          /// @dev Initiates memory allocation for packed logs with `n` log items.
                          function _packedLogsMalloc(uint256 n) private pure returns (_DNPackedLogs memory p) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Note that `p` implicitly allocates and advances the free memory pointer by
                                  // 3 words, which we can safely mutate in `_packedLogsSend`.
                                  let logs := mload(0x40)
                                  mstore(logs, n) // Store the length.
                                  let offset := add(0x20, logs) // Skip the word for `p.logs.length`.
                                  mstore(0x40, add(offset, shl(5, n))) // Allocate memory.
                                  mstore(add(0x40, p), logs) // Set `p.logs`.
                                  mstore(p, offset) // Set `p.offset`.
                              }
                          }
                      
                          /// @dev Set the current address and the burn bit.
                          function _packedLogsSet(_DNPackedLogs memory p, address a, uint256 burnBit) private pure {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  mstore(add(p, 0x20), or(shl(96, a), burnBit)) // Set `p.addressAndBit`.
                              }
                          }
                      
                          /// @dev Adds a packed log item to `p` with token `id`.
                          function _packedLogsAppend(_DNPackedLogs memory p, uint256 id) private pure {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let offset := mload(p)
                                  mstore(offset, or(mload(add(p, 0x20)), shl(8, id))) // `p.addressAndBit | (id << 8)`.
                                  mstore(p, add(offset, 0x20))
                              }
                          }
                      
                          /// @dev Calls the `mirror` NFT contract to emit {Transfer} events for packed logs `p`.
                          function _packedLogsSend(_DNPackedLogs memory p, address mirror) private {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  let logs := mload(add(p, 0x40))
                                  let o := sub(logs, 0x40) // Start of calldata to send.
                                  mstore(o, 0x263c69d6) // `logTransfer(uint256[])`.
                                  mstore(add(o, 0x20), 0x20) // Offset of `logs` in the calldata to send.
                                  let n := add(0x44, shl(5, mload(logs))) // Length of calldata to send.
                                  if iszero(and(eq(mload(o), 1), call(gas(), mirror, 0, add(o, 0x1c), n, o, 0x20))) {
                                      revert(o, 0x00)
                                  }
                              }
                          }
                      
                          /// @dev Struct of temporary variables for transfers.
                          struct _DNTransferTemps {
                              uint256 numNFTBurns;
                              uint256 numNFTMints;
                              uint256 fromOwnedLength;
                              uint256 toOwnedLength;
                              uint256 totalNFTSupply;
                              uint256 fromEnd;
                              uint256 toEnd;
                              uint32 toAlias;
                              uint256 nextTokenId;
                              uint32 burnedPoolTail;
                          }
                      
                          /// @dev Struct of temporary variables for mints.
                          struct _DNMintTemps {
                              uint256 nextTokenId;
                              uint32 burnedPoolTail;
                              uint256 toEnd;
                              uint32 toAlias;
                          }
                      
                          /// @dev Returns if `a` has bytecode of non-zero length.
                          function _hasCode(address a) private view returns (bool result) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  result := extcodesize(a) // Can handle dirty upper bits.
                              }
                          }
                      
                          /// @dev Returns the calldata value at `offset`.
                          function _calldataload(uint256 offset) private pure returns (uint256 value) {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  value := calldataload(offset)
                              }
                          }
                      
                          /// @dev Executes a return opcode to return `x` and end the current call frame.
                          function _return(uint256 x) private pure {
                              /// @solidity memory-safe-assembly
                              assembly {
                                  mstore(0x00, x)
                                  return(0x00, 0x20)
                              }
                          }
                      }
                      
                      
                      // File contracts/pass/VelocityPass2Token.sol
                      
                      // Original license: SPDX_License_Identifier: MIT
                      pragma solidity ^0.8.17;
                      
                      
                      
                      /**
                       * @title VelocityPass2Token
                       * @notice Sample DN404 contract that demonstrates the owner selling fungible tokens.
                       * When a user has at least one base unit (10^18) amount of tokens, they will automatically receive an NFT.
                       * NFTs are minted as an address accumulates each base unit amount of tokens.
                       */
                      contract VelocityPass2Token is DN404, UUPSUpgradeable {
                          using Strings for uint256;
                      
                          address public owner;
                          address public minter;
                          uint256 public maxSupply;
                          uint256 public totalMinted;
                          string private _name;
                          string private _symbol;
                          string private _baseURI;
                      
                          bool private _paused;
                          uint32 private _unitMultiple;
                          uint32 private _splitIndex;
                      
                          modifier onlyOwner() {
                              require(owner == msg.sender, "Ownable: not owner");
                              _;
                          }
                      
                          modifier onlyMinter() {
                              require(minter == msg.sender, "Minter: not minter");
                              _;
                          }
                      
                          constructor() {
                              _disableInitializers();
                          }
                      
                          // required by the OZ UUPS module
                          function _authorizeUpgrade(address) internal override onlyOwner {}
                      
                          function initialize(
                              string memory name_,
                              string memory symbol_,
                              string memory baseURI_,
                              uint32 unitMultiple_,
                              uint32 splitIndex_,
                              uint256 maxSupply_,
                              address mirror_,
                              address owner_,
                              address minter_
                              ) external initializer {
                              require(mirror_ != address(0), "Pls set the mirror");
                              _unitMultiple = unitMultiple_;
                      
                              _initializeDN404(0, address(0), mirror_, owner_);
                              __UUPSUpgradeable_init();
                      
                              _name = name_;
                              _symbol = symbol_;
                              _baseURI = baseURI_;
                              owner = owner_;
                              minter = minter_;
                              maxSupply = maxSupply_;
                              _splitIndex = splitIndex_;
                          }
                      
                          function transferOwnership(address newOwner) external onlyOwner {
                              require(newOwner != address(0), "Ownable: new owner is zero");
                              owner = newOwner;
                          }
                      
                          function setMinter(address minter_) external onlyOwner {
                              minter = minter_;
                          }
                      
                          function pause() external onlyOwner {
                              _paused = true;
                          }
                      
                          function unPause() external onlyOwner {
                              _paused = false;
                          }
                      
                          function name() public view override returns (string memory) {
                              return _name;
                          }
                      
                          function symbol() public view override returns (string memory) {
                              return _symbol;
                          }
                      
                          function maxTokenSupply() public view returns (uint256) {
                              return maxSupply * _unit();
                          }
                      
                          function _tokenURI(uint256 tokenId) internal view override returns (string memory result) {
                              require(_exists(tokenId), "ERC721: invalid token ID");
                      
                              uint256 index = 1;
                      
                              if (tokenId <= _splitIndex) {
                                  index = 0;
                              }
                              
                              if (bytes(_baseURI).length != 0) {
                                  result = string(abi.encodePacked(_baseURI, index.toString()));
                              }
                          }
                      
                          function _unit() internal override view returns (uint256) {
                              return uint256(_unitMultiple) * (10 ** 18);
                          }
                      
                          function _isPaused() internal override view virtual returns (bool) {
                              return _paused;
                          }
                      
                          /*
                          here the projectId and sender make no sense for the interface
                          */
                          function mint(address to, uint256 projectId, address sender) public onlyMinter returns (uint256 tokenId){
                              require(totalMinted < maxSupply, "exceed max limit");
                      
                              //mint 1 unit token every time, so return one nft token id
                              tokenId = _mint(to, _unit());
                              unchecked {
                                  ++totalMinted;
                              }
                          }
                      
                          function setBaseURI(string calldata baseURI_) public onlyOwner {
                              _baseURI = baseURI_;
                          }
                      
                          function setSkipNFTSpecial(address user, bool skipNFT) public onlyOwner returns (bool) {
                              _setSkipNFT(user, skipNFT);
                              return true;
                          }
                      
                          function airdrop(address[] calldata recipients, uint256[] calldata quantities) public onlyOwner {
                              require(recipients.length == quantities.length);
                              require(totalMinted < maxSupply, "exceed max limit");
                      
                              for (uint256 i = 0; i < recipients.length;) {
                                  _mint(recipients[i], _unit() * quantities[i]);
                                  unchecked {
                                      ++i;
                                      ++totalMinted;
                                  }
                              }
                          }
                      
                          function batchTransfer(address[] calldata recipients, uint256[] calldata quantities) public {
                              require(recipients.length == quantities.length);
                              if (_isPaused()) revert Paused();
                      
                              for (uint256 i = 0; i < recipients.length;) {
                                  _transfer(msg.sender, recipients[i], quantities[i]);
                                  unchecked {
                                      ++i;
                                  }
                              }
                          }
                      }

                      File 7 of 7: Permit2
                      // SPDX-License-Identifier: AGPL-3.0-only
                      pragma solidity >=0.8.0;
                      /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
                      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
                      /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
                      /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
                      abstract contract ERC20 {
                          /*//////////////////////////////////////////////////////////////
                                                       EVENTS
                          //////////////////////////////////////////////////////////////*/
                          event Transfer(address indexed from, address indexed to, uint256 amount);
                          event Approval(address indexed owner, address indexed spender, uint256 amount);
                          /*//////////////////////////////////////////////////////////////
                                                  METADATA STORAGE
                          //////////////////////////////////////////////////////////////*/
                          string public name;
                          string public symbol;
                          uint8 public immutable decimals;
                          /*//////////////////////////////////////////////////////////////
                                                    ERC20 STORAGE
                          //////////////////////////////////////////////////////////////*/
                          uint256 public totalSupply;
                          mapping(address => uint256) public balanceOf;
                          mapping(address => mapping(address => uint256)) public allowance;
                          /*//////////////////////////////////////////////////////////////
                                                  EIP-2612 STORAGE
                          //////////////////////////////////////////////////////////////*/
                          uint256 internal immutable INITIAL_CHAIN_ID;
                          bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
                          mapping(address => uint256) public nonces;
                          /*//////////////////////////////////////////////////////////////
                                                     CONSTRUCTOR
                          //////////////////////////////////////////////////////////////*/
                          constructor(
                              string memory _name,
                              string memory _symbol,
                              uint8 _decimals
                          ) {
                              name = _name;
                              symbol = _symbol;
                              decimals = _decimals;
                              INITIAL_CHAIN_ID = block.chainid;
                              INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
                          }
                          /*//////////////////////////////////////////////////////////////
                                                     ERC20 LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function approve(address spender, uint256 amount) public virtual returns (bool) {
                              allowance[msg.sender][spender] = amount;
                              emit Approval(msg.sender, spender, amount);
                              return true;
                          }
                          function transfer(address to, uint256 amount) public virtual returns (bool) {
                              balanceOf[msg.sender] -= amount;
                              // Cannot overflow because the sum of all user
                              // balances can't exceed the max uint256 value.
                              unchecked {
                                  balanceOf[to] += amount;
                              }
                              emit Transfer(msg.sender, to, amount);
                              return true;
                          }
                          function transferFrom(
                              address from,
                              address to,
                              uint256 amount
                          ) public virtual returns (bool) {
                              uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                              if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                              balanceOf[from] -= amount;
                              // Cannot overflow because the sum of all user
                              // balances can't exceed the max uint256 value.
                              unchecked {
                                  balanceOf[to] += amount;
                              }
                              emit Transfer(from, to, amount);
                              return true;
                          }
                          /*//////////////////////////////////////////////////////////////
                                                   EIP-2612 LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function permit(
                              address owner,
                              address spender,
                              uint256 value,
                              uint256 deadline,
                              uint8 v,
                              bytes32 r,
                              bytes32 s
                          ) public virtual {
                              require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                              // Unchecked because the only math done is incrementing
                              // the owner's nonce which cannot realistically overflow.
                              unchecked {
                                  address recoveredAddress = ecrecover(
                                      keccak256(
                                          abi.encodePacked(
                                              "\\x19\\x01",
                                              DOMAIN_SEPARATOR(),
                                              keccak256(
                                                  abi.encode(
                                                      keccak256(
                                                          "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                                      ),
                                                      owner,
                                                      spender,
                                                      value,
                                                      nonces[owner]++,
                                                      deadline
                                                  )
                                              )
                                          )
                                      ),
                                      v,
                                      r,
                                      s
                                  );
                                  require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                                  allowance[recoveredAddress][spender] = value;
                              }
                              emit Approval(owner, spender, value);
                          }
                          function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                              return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
                          }
                          function computeDomainSeparator() internal view virtual returns (bytes32) {
                              return
                                  keccak256(
                                      abi.encode(
                                          keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                                          keccak256(bytes(name)),
                                          keccak256("1"),
                                          block.chainid,
                                          address(this)
                                      )
                                  );
                          }
                          /*//////////////////////////////////////////////////////////////
                                              INTERNAL MINT/BURN LOGIC
                          //////////////////////////////////////////////////////////////*/
                          function _mint(address to, uint256 amount) internal virtual {
                              totalSupply += amount;
                              // Cannot overflow because the sum of all user
                              // balances can't exceed the max uint256 value.
                              unchecked {
                                  balanceOf[to] += amount;
                              }
                              emit Transfer(address(0), to, amount);
                          }
                          function _burn(address from, uint256 amount) internal virtual {
                              balanceOf[from] -= amount;
                              // Cannot underflow because a user's balance
                              // will never be larger than the total supply.
                              unchecked {
                                  totalSupply -= amount;
                              }
                              emit Transfer(from, address(0), amount);
                          }
                      }
                      // SPDX-License-Identifier: AGPL-3.0-only
                      pragma solidity >=0.8.0;
                      import {ERC20} from "../tokens/ERC20.sol";
                      /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
                      /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
                      /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
                      /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
                      library SafeTransferLib {
                          /*//////////////////////////////////////////////////////////////
                                                   ETH OPERATIONS
                          //////////////////////////////////////////////////////////////*/
                          function safeTransferETH(address to, uint256 amount) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Transfer the ETH and store if it succeeded or not.
                                  success := call(gas(), to, amount, 0, 0, 0, 0)
                              }
                              require(success, "ETH_TRANSFER_FAILED");
                          }
                          /*//////////////////////////////////////////////////////////////
                                                  ERC20 OPERATIONS
                          //////////////////////////////////////////////////////////////*/
                          function safeTransferFrom(
                              ERC20 token,
                              address from,
                              address to,
                              uint256 amount
                          ) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Get a pointer to some free memory.
                                  let freeMemoryPointer := mload(0x40)
                                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                                  mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                                  mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
                                  mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
                                  mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
                                  success := and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                                  )
                              }
                              require(success, "TRANSFER_FROM_FAILED");
                          }
                          function safeTransfer(
                              ERC20 token,
                              address to,
                              uint256 amount
                          ) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Get a pointer to some free memory.
                                  let freeMemoryPointer := mload(0x40)
                                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                                  mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                                  mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                                  mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
                                  success := and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                                  )
                              }
                              require(success, "TRANSFER_FAILED");
                          }
                          function safeApprove(
                              ERC20 token,
                              address to,
                              uint256 amount
                          ) internal {
                              bool success;
                              /// @solidity memory-safe-assembly
                              assembly {
                                  // Get a pointer to some free memory.
                                  let freeMemoryPointer := mload(0x40)
                                  // Write the abi-encoded calldata into memory, beginning with the function selector.
                                  mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                                  mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
                                  mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
                                  success := and(
                                      // Set success to whether the call reverted, if not we check it either
                                      // returned exactly 1 (can't just be non-zero data), or had no return data.
                                      or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                                      // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                                      // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                                      // Counterintuitively, this call must be positioned second to the or() call in the
                                      // surrounding and() call or else returndatasize() will be zero during the computation.
                                      call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                                  )
                              }
                              require(success, "APPROVE_FAILED");
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity 0.8.17;
                      import {ERC20} from "solmate/tokens/ERC20.sol";
                      import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol";
                      import {PermitHash} from "./libraries/PermitHash.sol";
                      import {SignatureVerification} from "./libraries/SignatureVerification.sol";
                      import {EIP712} from "./EIP712.sol";
                      import {IAllowanceTransfer} from "../src/interfaces/IAllowanceTransfer.sol";
                      import {SignatureExpired, InvalidNonce} from "./PermitErrors.sol";
                      import {Allowance} from "./libraries/Allowance.sol";
                      contract AllowanceTransfer is IAllowanceTransfer, EIP712 {
                          using SignatureVerification for bytes;
                          using SafeTransferLib for ERC20;
                          using PermitHash for PermitSingle;
                          using PermitHash for PermitBatch;
                          using Allowance for PackedAllowance;
                          /// @notice Maps users to tokens to spender addresses and information about the approval on the token
                          /// @dev Indexed in the order of token owner address, token address, spender address
                          /// @dev The stored word saves the allowed amount, expiration on the allowance, and nonce
                          mapping(address => mapping(address => mapping(address => PackedAllowance))) public allowance;
                          /// @inheritdoc IAllowanceTransfer
                          function approve(address token, address spender, uint160 amount, uint48 expiration) external {
                              PackedAllowance storage allowed = allowance[msg.sender][token][spender];
                              allowed.updateAmountAndExpiration(amount, expiration);
                              emit Approval(msg.sender, token, spender, amount, expiration);
                          }
                          /// @inheritdoc IAllowanceTransfer
                          function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external {
                              if (block.timestamp > permitSingle.sigDeadline) revert SignatureExpired(permitSingle.sigDeadline);
                              // Verify the signer address from the signature.
                              signature.verify(_hashTypedData(permitSingle.hash()), owner);
                              _updateApproval(permitSingle.details, owner, permitSingle.spender);
                          }
                          /// @inheritdoc IAllowanceTransfer
                          function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external {
                              if (block.timestamp > permitBatch.sigDeadline) revert SignatureExpired(permitBatch.sigDeadline);
                              // Verify the signer address from the signature.
                              signature.verify(_hashTypedData(permitBatch.hash()), owner);
                              address spender = permitBatch.spender;
                              unchecked {
                                  uint256 length = permitBatch.details.length;
                                  for (uint256 i = 0; i < length; ++i) {
                                      _updateApproval(permitBatch.details[i], owner, spender);
                                  }
                              }
                          }
                          /// @inheritdoc IAllowanceTransfer
                          function transferFrom(address from, address to, uint160 amount, address token) external {
                              _transfer(from, to, amount, token);
                          }
                          /// @inheritdoc IAllowanceTransfer
                          function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external {
                              unchecked {
                                  uint256 length = transferDetails.length;
                                  for (uint256 i = 0; i < length; ++i) {
                                      AllowanceTransferDetails memory transferDetail = transferDetails[i];
                                      _transfer(transferDetail.from, transferDetail.to, transferDetail.amount, transferDetail.token);
                                  }
                              }
                          }
                          /// @notice Internal function for transferring tokens using stored allowances
                          /// @dev Will fail if the allowed timeframe has passed
                          function _transfer(address from, address to, uint160 amount, address token) private {
                              PackedAllowance storage allowed = allowance[from][token][msg.sender];
                              if (block.timestamp > allowed.expiration) revert AllowanceExpired(allowed.expiration);
                              uint256 maxAmount = allowed.amount;
                              if (maxAmount != type(uint160).max) {
                                  if (amount > maxAmount) {
                                      revert InsufficientAllowance(maxAmount);
                                  } else {
                                      unchecked {
                                          allowed.amount = uint160(maxAmount) - amount;
                                      }
                                  }
                              }
                              // Transfer the tokens from the from address to the recipient.
                              ERC20(token).safeTransferFrom(from, to, amount);
                          }
                          /// @inheritdoc IAllowanceTransfer
                          function lockdown(TokenSpenderPair[] calldata approvals) external {
                              address owner = msg.sender;
                              // Revoke allowances for each pair of spenders and tokens.
                              unchecked {
                                  uint256 length = approvals.length;
                                  for (uint256 i = 0; i < length; ++i) {
                                      address token = approvals[i].token;
                                      address spender = approvals[i].spender;
                                      allowance[owner][token][spender].amount = 0;
                                      emit Lockdown(owner, token, spender);
                                  }
                              }
                          }
                          /// @inheritdoc IAllowanceTransfer
                          function invalidateNonces(address token, address spender, uint48 newNonce) external {
                              uint48 oldNonce = allowance[msg.sender][token][spender].nonce;
                              if (newNonce <= oldNonce) revert InvalidNonce();
                              // Limit the amount of nonces that can be invalidated in one transaction.
                              unchecked {
                                  uint48 delta = newNonce - oldNonce;
                                  if (delta > type(uint16).max) revert ExcessiveInvalidation();
                              }
                              allowance[msg.sender][token][spender].nonce = newNonce;
                              emit NonceInvalidation(msg.sender, token, spender, newNonce, oldNonce);
                          }
                          /// @notice Sets the new values for amount, expiration, and nonce.
                          /// @dev Will check that the signed nonce is equal to the current nonce and then incrememnt the nonce value by 1.
                          /// @dev Emits a Permit event.
                          function _updateApproval(PermitDetails memory details, address owner, address spender) private {
                              uint48 nonce = details.nonce;
                              address token = details.token;
                              uint160 amount = details.amount;
                              uint48 expiration = details.expiration;
                              PackedAllowance storage allowed = allowance[owner][token][spender];
                              if (allowed.nonce != nonce) revert InvalidNonce();
                              allowed.updateAll(amount, expiration, nonce);
                              emit Permit(owner, token, spender, amount, expiration, nonce);
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity 0.8.17;
                      /// @notice EIP712 helpers for permit2
                      /// @dev Maintains cross-chain replay protection in the event of a fork
                      /// @dev Reference: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol
                      contract EIP712 {
                          // Cache the domain separator as an immutable value, but also store the chain id that it
                          // corresponds to, in order to invalidate the cached domain separator if the chain id changes.
                          bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
                          uint256 private immutable _CACHED_CHAIN_ID;
                          bytes32 private constant _HASHED_NAME = keccak256("Permit2");
                          bytes32 private constant _TYPE_HASH =
                              keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
                          constructor() {
                              _CACHED_CHAIN_ID = block.chainid;
                              _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME);
                          }
                          /// @notice Returns the domain separator for the current chain.
                          /// @dev Uses cached version if chainid and address are unchanged from construction.
                          function DOMAIN_SEPARATOR() public view returns (bytes32) {
                              return block.chainid == _CACHED_CHAIN_ID
                                  ? _CACHED_DOMAIN_SEPARATOR
                                  : _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME);
                          }
                          /// @notice Builds a domain separator using the current chainId and contract address.
                          function _buildDomainSeparator(bytes32 typeHash, bytes32 nameHash) private view returns (bytes32) {
                              return keccak256(abi.encode(typeHash, nameHash, block.chainid, address(this)));
                          }
                          /// @notice Creates an EIP-712 typed data hash
                          function _hashTypedData(bytes32 dataHash) internal view returns (bytes32) {
                              return keccak256(abi.encodePacked("\\x19\\x01", DOMAIN_SEPARATOR(), dataHash));
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity 0.8.17;
                      import {SignatureTransfer} from "./SignatureTransfer.sol";
                      import {AllowanceTransfer} from "./AllowanceTransfer.sol";
                      /// @notice Permit2 handles signature-based transfers in SignatureTransfer and allowance-based transfers in AllowanceTransfer.
                      /// @dev Users must approve Permit2 before calling any of the transfer functions.
                      contract Permit2 is SignatureTransfer, AllowanceTransfer {
                      // Permit2 unifies the two contracts so users have maximal flexibility with their approval.
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity 0.8.17;
                      /// @notice Shared errors between signature based transfers and allowance based transfers.
                      /// @notice Thrown when validating an inputted signature that is stale
                      /// @param signatureDeadline The timestamp at which a signature is no longer valid
                      error SignatureExpired(uint256 signatureDeadline);
                      /// @notice Thrown when validating that the inputted nonce has not been used
                      error InvalidNonce();
                      // SPDX-License-Identifier: MIT
                      pragma solidity 0.8.17;
                      import {ISignatureTransfer} from "./interfaces/ISignatureTransfer.sol";
                      import {SignatureExpired, InvalidNonce} from "./PermitErrors.sol";
                      import {ERC20} from "solmate/tokens/ERC20.sol";
                      import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol";
                      import {SignatureVerification} from "./libraries/SignatureVerification.sol";
                      import {PermitHash} from "./libraries/PermitHash.sol";
                      import {EIP712} from "./EIP712.sol";
                      contract SignatureTransfer is ISignatureTransfer, EIP712 {
                          using SignatureVerification for bytes;
                          using SafeTransferLib for ERC20;
                          using PermitHash for PermitTransferFrom;
                          using PermitHash for PermitBatchTransferFrom;
                          /// @inheritdoc ISignatureTransfer
                          mapping(address => mapping(uint256 => uint256)) public nonceBitmap;
                          /// @inheritdoc ISignatureTransfer
                          function permitTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes calldata signature
                          ) external {
                              _permitTransferFrom(permit, transferDetails, owner, permit.hash(), signature);
                          }
                          /// @inheritdoc ISignatureTransfer
                          function permitWitnessTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes32 witness,
                              string calldata witnessTypeString,
                              bytes calldata signature
                          ) external {
                              _permitTransferFrom(
                                  permit, transferDetails, owner, permit.hashWithWitness(witness, witnessTypeString), signature
                              );
                          }
                          /// @notice Transfers a token using a signed permit message.
                          /// @dev If to is the zero address, the tokens are sent to the spender.
                          /// @param permit The permit data signed over by the owner
                          /// @param dataHash The EIP-712 hash of permit data to include when checking signature
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails The spender's requested transfer details for the permitted token
                          /// @param signature The signature to verify
                          function _permitTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes32 dataHash,
                              bytes calldata signature
                          ) private {
                              uint256 requestedAmount = transferDetails.requestedAmount;
                              if (block.timestamp > permit.deadline) revert SignatureExpired(permit.deadline);
                              if (requestedAmount > permit.permitted.amount) revert InvalidAmount(permit.permitted.amount);
                              _useUnorderedNonce(owner, permit.nonce);
                              signature.verify(_hashTypedData(dataHash), owner);
                              ERC20(permit.permitted.token).safeTransferFrom(owner, transferDetails.to, requestedAmount);
                          }
                          /// @inheritdoc ISignatureTransfer
                          function permitTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes calldata signature
                          ) external {
                              _permitTransferFrom(permit, transferDetails, owner, permit.hash(), signature);
                          }
                          /// @inheritdoc ISignatureTransfer
                          function permitWitnessTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes32 witness,
                              string calldata witnessTypeString,
                              bytes calldata signature
                          ) external {
                              _permitTransferFrom(
                                  permit, transferDetails, owner, permit.hashWithWitness(witness, witnessTypeString), signature
                              );
                          }
                          /// @notice Transfers tokens using a signed permit messages
                          /// @dev If to is the zero address, the tokens are sent to the spender
                          /// @param permit The permit data signed over by the owner
                          /// @param dataHash The EIP-712 hash of permit data to include when checking signature
                          /// @param owner The owner of the tokens to transfer
                          /// @param signature The signature to verify
                          function _permitTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes32 dataHash,
                              bytes calldata signature
                          ) private {
                              uint256 numPermitted = permit.permitted.length;
                              if (block.timestamp > permit.deadline) revert SignatureExpired(permit.deadline);
                              if (numPermitted != transferDetails.length) revert LengthMismatch();
                              _useUnorderedNonce(owner, permit.nonce);
                              signature.verify(_hashTypedData(dataHash), owner);
                              unchecked {
                                  for (uint256 i = 0; i < numPermitted; ++i) {
                                      TokenPermissions memory permitted = permit.permitted[i];
                                      uint256 requestedAmount = transferDetails[i].requestedAmount;
                                      if (requestedAmount > permitted.amount) revert InvalidAmount(permitted.amount);
                                      if (requestedAmount != 0) {
                                          // allow spender to specify which of the permitted tokens should be transferred
                                          ERC20(permitted.token).safeTransferFrom(owner, transferDetails[i].to, requestedAmount);
                                      }
                                  }
                              }
                          }
                          /// @inheritdoc ISignatureTransfer
                          function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external {
                              nonceBitmap[msg.sender][wordPos] |= mask;
                              emit UnorderedNonceInvalidation(msg.sender, wordPos, mask);
                          }
                          /// @notice Returns the index of the bitmap and the bit position within the bitmap. Used for unordered nonces
                          /// @param nonce The nonce to get the associated word and bit positions
                          /// @return wordPos The word position or index into the nonceBitmap
                          /// @return bitPos The bit position
                          /// @dev The first 248 bits of the nonce value is the index of the desired bitmap
                          /// @dev The last 8 bits of the nonce value is the position of the bit in the bitmap
                          function bitmapPositions(uint256 nonce) private pure returns (uint256 wordPos, uint256 bitPos) {
                              wordPos = uint248(nonce >> 8);
                              bitPos = uint8(nonce);
                          }
                          /// @notice Checks whether a nonce is taken and sets the bit at the bit position in the bitmap at the word position
                          /// @param from The address to use the nonce at
                          /// @param nonce The nonce to spend
                          function _useUnorderedNonce(address from, uint256 nonce) internal {
                              (uint256 wordPos, uint256 bitPos) = bitmapPositions(nonce);
                              uint256 bit = 1 << bitPos;
                              uint256 flipped = nonceBitmap[from][wordPos] ^= bit;
                              if (flipped & bit == 0) revert InvalidNonce();
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      /// @title AllowanceTransfer
                      /// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
                      /// @dev Requires user's token approval on the Permit2 contract
                      interface IAllowanceTransfer {
                          /// @notice Thrown when an allowance on a token has expired.
                          /// @param deadline The timestamp at which the allowed amount is no longer valid
                          error AllowanceExpired(uint256 deadline);
                          /// @notice Thrown when an allowance on a token has been depleted.
                          /// @param amount The maximum amount allowed
                          error InsufficientAllowance(uint256 amount);
                          /// @notice Thrown when too many nonces are invalidated.
                          error ExcessiveInvalidation();
                          /// @notice Emits an event when the owner successfully invalidates an ordered nonce.
                          event NonceInvalidation(
                              address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce
                          );
                          /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.
                          event Approval(
                              address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration
                          );
                          /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.
                          event Permit(
                              address indexed owner,
                              address indexed token,
                              address indexed spender,
                              uint160 amount,
                              uint48 expiration,
                              uint48 nonce
                          );
                          /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.
                          event Lockdown(address indexed owner, address token, address spender);
                          /// @notice The permit data for a token
                          struct PermitDetails {
                              // ERC20 token address
                              address token;
                              // the maximum amount allowed to spend
                              uint160 amount;
                              // timestamp at which a spender's token allowances become invalid
                              uint48 expiration;
                              // an incrementing value indexed per owner,token,and spender for each signature
                              uint48 nonce;
                          }
                          /// @notice The permit message signed for a single token allownce
                          struct PermitSingle {
                              // the permit data for a single token alownce
                              PermitDetails details;
                              // address permissioned on the allowed tokens
                              address spender;
                              // deadline on the permit signature
                              uint256 sigDeadline;
                          }
                          /// @notice The permit message signed for multiple token allowances
                          struct PermitBatch {
                              // the permit data for multiple token allowances
                              PermitDetails[] details;
                              // address permissioned on the allowed tokens
                              address spender;
                              // deadline on the permit signature
                              uint256 sigDeadline;
                          }
                          /// @notice The saved permissions
                          /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message
                          /// @dev Setting amount to type(uint160).max sets an unlimited approval
                          struct PackedAllowance {
                              // amount allowed
                              uint160 amount;
                              // permission expiry
                              uint48 expiration;
                              // an incrementing value indexed per owner,token,and spender for each signature
                              uint48 nonce;
                          }
                          /// @notice A token spender pair.
                          struct TokenSpenderPair {
                              // the token the spender is approved
                              address token;
                              // the spender address
                              address spender;
                          }
                          /// @notice Details for a token transfer.
                          struct AllowanceTransferDetails {
                              // the owner of the token
                              address from;
                              // the recipient of the token
                              address to;
                              // the amount of the token
                              uint160 amount;
                              // the token to be transferred
                              address token;
                          }
                          /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.
                          /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]
                          /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.
                          function allowance(address, address, address) external view returns (uint160, uint48, uint48);
                          /// @notice Approves the spender to use up to amount of the specified token up until the expiration
                          /// @param token The token to approve
                          /// @param spender The spender address to approve
                          /// @param amount The approved amount of the token
                          /// @param expiration The timestamp at which the approval is no longer valid
                          /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve
                          /// @dev Setting amount to type(uint160).max sets an unlimited approval
                          function approve(address token, address spender, uint160 amount, uint48 expiration) external;
                          /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature
                          /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
                          /// @param owner The owner of the tokens being approved
                          /// @param permitSingle Data signed over by the owner specifying the terms of approval
                          /// @param signature The owner's signature over the permit data
                          function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;
                          /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature
                          /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
                          /// @param owner The owner of the tokens being approved
                          /// @param permitBatch Data signed over by the owner specifying the terms of approval
                          /// @param signature The owner's signature over the permit data
                          function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external;
                          /// @notice Transfer approved tokens from one address to another
                          /// @param from The address to transfer from
                          /// @param to The address of the recipient
                          /// @param amount The amount of the token to transfer
                          /// @param token The token address to transfer
                          /// @dev Requires the from address to have approved at least the desired amount
                          /// of tokens to msg.sender.
                          function transferFrom(address from, address to, uint160 amount, address token) external;
                          /// @notice Transfer approved tokens in a batch
                          /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers
                          /// @dev Requires the from addresses to have approved at least the desired amount
                          /// of tokens to msg.sender.
                          function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external;
                          /// @notice Enables performing a "lockdown" of the sender's Permit2 identity
                          /// by batch revoking approvals
                          /// @param approvals Array of approvals to revoke.
                          function lockdown(TokenSpenderPair[] calldata approvals) external;
                          /// @notice Invalidate nonces for a given (token, spender) pair
                          /// @param token The token to invalidate nonces for
                          /// @param spender The spender to invalidate nonces for
                          /// @param newNonce The new nonce to set. Invalidates all nonces less than it.
                          /// @dev Can't invalidate more than 2**16 nonces per transaction.
                          function invalidateNonces(address token, address spender, uint48 newNonce) external;
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      interface IERC1271 {
                          /// @dev Should return whether the signature provided is valid for the provided data
                          /// @param hash      Hash of the data to be signed
                          /// @param signature Signature byte array associated with _data
                          /// @return magicValue The bytes4 magic value 0x1626ba7e
                          function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      /// @title SignatureTransfer
                      /// @notice Handles ERC20 token transfers through signature based actions
                      /// @dev Requires user's token approval on the Permit2 contract
                      interface ISignatureTransfer {
                          /// @notice Thrown when the requested amount for a transfer is larger than the permissioned amount
                          /// @param maxAmount The maximum amount a spender can request to transfer
                          error InvalidAmount(uint256 maxAmount);
                          /// @notice Thrown when the number of tokens permissioned to a spender does not match the number of tokens being transferred
                          /// @dev If the spender does not need to transfer the number of tokens permitted, the spender can request amount 0 to be transferred
                          error LengthMismatch();
                          /// @notice Emits an event when the owner successfully invalidates an unordered nonce.
                          event UnorderedNonceInvalidation(address indexed owner, uint256 word, uint256 mask);
                          /// @notice The token and amount details for a transfer signed in the permit transfer signature
                          struct TokenPermissions {
                              // ERC20 token address
                              address token;
                              // the maximum amount that can be spent
                              uint256 amount;
                          }
                          /// @notice The signed permit message for a single token transfer
                          struct PermitTransferFrom {
                              TokenPermissions permitted;
                              // a unique value for every token owner's signature to prevent signature replays
                              uint256 nonce;
                              // deadline on the permit signature
                              uint256 deadline;
                          }
                          /// @notice Specifies the recipient address and amount for batched transfers.
                          /// @dev Recipients and amounts correspond to the index of the signed token permissions array.
                          /// @dev Reverts if the requested amount is greater than the permitted signed amount.
                          struct SignatureTransferDetails {
                              // recipient address
                              address to;
                              // spender requested amount
                              uint256 requestedAmount;
                          }
                          /// @notice Used to reconstruct the signed permit message for multiple token transfers
                          /// @dev Do not need to pass in spender address as it is required that it is msg.sender
                          /// @dev Note that a user still signs over a spender address
                          struct PermitBatchTransferFrom {
                              // the tokens and corresponding amounts permitted for a transfer
                              TokenPermissions[] permitted;
                              // a unique value for every token owner's signature to prevent signature replays
                              uint256 nonce;
                              // deadline on the permit signature
                              uint256 deadline;
                          }
                          /// @notice A map from token owner address and a caller specified word index to a bitmap. Used to set bits in the bitmap to prevent against signature replay protection
                          /// @dev Uses unordered nonces so that permit messages do not need to be spent in a certain order
                          /// @dev The mapping is indexed first by the token owner, then by an index specified in the nonce
                          /// @dev It returns a uint256 bitmap
                          /// @dev The index, or wordPosition is capped at type(uint248).max
                          function nonceBitmap(address, uint256) external view returns (uint256);
                          /// @notice Transfers a token using a signed permit message
                          /// @dev Reverts if the requested amount is greater than the permitted signed amount
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails The spender's requested transfer details for the permitted token
                          /// @param signature The signature to verify
                          function permitTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes calldata signature
                          ) external;
                          /// @notice Transfers a token using a signed permit message
                          /// @notice Includes extra data provided by the caller to verify signature over
                          /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
                          /// @dev Reverts if the requested amount is greater than the permitted signed amount
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails The spender's requested transfer details for the permitted token
                          /// @param witness Extra data to include when checking the user signature
                          /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
                          /// @param signature The signature to verify
                          function permitWitnessTransferFrom(
                              PermitTransferFrom memory permit,
                              SignatureTransferDetails calldata transferDetails,
                              address owner,
                              bytes32 witness,
                              string calldata witnessTypeString,
                              bytes calldata signature
                          ) external;
                          /// @notice Transfers multiple tokens using a signed permit message
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails Specifies the recipient and requested amount for the token transfer
                          /// @param signature The signature to verify
                          function permitTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes calldata signature
                          ) external;
                          /// @notice Transfers multiple tokens using a signed permit message
                          /// @dev The witness type string must follow EIP712 ordering of nested structs and must include the TokenPermissions type definition
                          /// @notice Includes extra data provided by the caller to verify signature over
                          /// @param permit The permit data signed over by the owner
                          /// @param owner The owner of the tokens to transfer
                          /// @param transferDetails Specifies the recipient and requested amount for the token transfer
                          /// @param witness Extra data to include when checking the user signature
                          /// @param witnessTypeString The EIP-712 type definition for remaining string stub of the typehash
                          /// @param signature The signature to verify
                          function permitWitnessTransferFrom(
                              PermitBatchTransferFrom memory permit,
                              SignatureTransferDetails[] calldata transferDetails,
                              address owner,
                              bytes32 witness,
                              string calldata witnessTypeString,
                              bytes calldata signature
                          ) external;
                          /// @notice Invalidates the bits specified in mask for the bitmap at the word position
                          /// @dev The wordPos is maxed at type(uint248).max
                          /// @param wordPos A number to index the nonceBitmap at
                          /// @param mask A bitmap masked against msg.sender's current bitmap at the word position
                          function invalidateUnorderedNonces(uint256 wordPos, uint256 mask) external;
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      import {IAllowanceTransfer} from "../interfaces/IAllowanceTransfer.sol";
                      library Allowance {
                          // note if the expiration passed is 0, then it the approval set to the block.timestamp
                          uint256 private constant BLOCK_TIMESTAMP_EXPIRATION = 0;
                          /// @notice Sets the allowed amount, expiry, and nonce of the spender's permissions on owner's token.
                          /// @dev Nonce is incremented.
                          /// @dev If the inputted expiration is 0, the stored expiration is set to block.timestamp
                          function updateAll(
                              IAllowanceTransfer.PackedAllowance storage allowed,
                              uint160 amount,
                              uint48 expiration,
                              uint48 nonce
                          ) internal {
                              uint48 storedNonce;
                              unchecked {
                                  storedNonce = nonce + 1;
                              }
                              uint48 storedExpiration = expiration == BLOCK_TIMESTAMP_EXPIRATION ? uint48(block.timestamp) : expiration;
                              uint256 word = pack(amount, storedExpiration, storedNonce);
                              assembly {
                                  sstore(allowed.slot, word)
                              }
                          }
                          /// @notice Sets the allowed amount and expiry of the spender's permissions on owner's token.
                          /// @dev Nonce does not need to be incremented.
                          function updateAmountAndExpiration(
                              IAllowanceTransfer.PackedAllowance storage allowed,
                              uint160 amount,
                              uint48 expiration
                          ) internal {
                              // If the inputted expiration is 0, the allowance only lasts the duration of the block.
                              allowed.expiration = expiration == 0 ? uint48(block.timestamp) : expiration;
                              allowed.amount = amount;
                          }
                          /// @notice Computes the packed slot of the amount, expiration, and nonce that make up PackedAllowance
                          function pack(uint160 amount, uint48 expiration, uint48 nonce) internal pure returns (uint256 word) {
                              word = (uint256(nonce) << 208) | uint256(expiration) << 160 | amount;
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      import {IAllowanceTransfer} from "../interfaces/IAllowanceTransfer.sol";
                      import {ISignatureTransfer} from "../interfaces/ISignatureTransfer.sol";
                      library PermitHash {
                          bytes32 public constant _PERMIT_DETAILS_TYPEHASH =
                              keccak256("PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)");
                          bytes32 public constant _PERMIT_SINGLE_TYPEHASH = keccak256(
                              "PermitSingle(PermitDetails details,address spender,uint256 sigDeadline)PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)"
                          );
                          bytes32 public constant _PERMIT_BATCH_TYPEHASH = keccak256(
                              "PermitBatch(PermitDetails[] details,address spender,uint256 sigDeadline)PermitDetails(address token,uint160 amount,uint48 expiration,uint48 nonce)"
                          );
                          bytes32 public constant _TOKEN_PERMISSIONS_TYPEHASH = keccak256("TokenPermissions(address token,uint256 amount)");
                          bytes32 public constant _PERMIT_TRANSFER_FROM_TYPEHASH = keccak256(
                              "PermitTransferFrom(TokenPermissions permitted,address spender,uint256 nonce,uint256 deadline)TokenPermissions(address token,uint256 amount)"
                          );
                          bytes32 public constant _PERMIT_BATCH_TRANSFER_FROM_TYPEHASH = keccak256(
                              "PermitBatchTransferFrom(TokenPermissions[] permitted,address spender,uint256 nonce,uint256 deadline)TokenPermissions(address token,uint256 amount)"
                          );
                          string public constant _TOKEN_PERMISSIONS_TYPESTRING = "TokenPermissions(address token,uint256 amount)";
                          string public constant _PERMIT_TRANSFER_FROM_WITNESS_TYPEHASH_STUB =
                              "PermitWitnessTransferFrom(TokenPermissions permitted,address spender,uint256 nonce,uint256 deadline,";
                          string public constant _PERMIT_BATCH_WITNESS_TRANSFER_FROM_TYPEHASH_STUB =
                              "PermitBatchWitnessTransferFrom(TokenPermissions[] permitted,address spender,uint256 nonce,uint256 deadline,";
                          function hash(IAllowanceTransfer.PermitSingle memory permitSingle) internal pure returns (bytes32) {
                              bytes32 permitHash = _hashPermitDetails(permitSingle.details);
                              return
                                  keccak256(abi.encode(_PERMIT_SINGLE_TYPEHASH, permitHash, permitSingle.spender, permitSingle.sigDeadline));
                          }
                          function hash(IAllowanceTransfer.PermitBatch memory permitBatch) internal pure returns (bytes32) {
                              uint256 numPermits = permitBatch.details.length;
                              bytes32[] memory permitHashes = new bytes32[](numPermits);
                              for (uint256 i = 0; i < numPermits; ++i) {
                                  permitHashes[i] = _hashPermitDetails(permitBatch.details[i]);
                              }
                              return keccak256(
                                  abi.encode(
                                      _PERMIT_BATCH_TYPEHASH,
                                      keccak256(abi.encodePacked(permitHashes)),
                                      permitBatch.spender,
                                      permitBatch.sigDeadline
                                  )
                              );
                          }
                          function hash(ISignatureTransfer.PermitTransferFrom memory permit) internal view returns (bytes32) {
                              bytes32 tokenPermissionsHash = _hashTokenPermissions(permit.permitted);
                              return keccak256(
                                  abi.encode(_PERMIT_TRANSFER_FROM_TYPEHASH, tokenPermissionsHash, msg.sender, permit.nonce, permit.deadline)
                              );
                          }
                          function hash(ISignatureTransfer.PermitBatchTransferFrom memory permit) internal view returns (bytes32) {
                              uint256 numPermitted = permit.permitted.length;
                              bytes32[] memory tokenPermissionHashes = new bytes32[](numPermitted);
                              for (uint256 i = 0; i < numPermitted; ++i) {
                                  tokenPermissionHashes[i] = _hashTokenPermissions(permit.permitted[i]);
                              }
                              return keccak256(
                                  abi.encode(
                                      _PERMIT_BATCH_TRANSFER_FROM_TYPEHASH,
                                      keccak256(abi.encodePacked(tokenPermissionHashes)),
                                      msg.sender,
                                      permit.nonce,
                                      permit.deadline
                                  )
                              );
                          }
                          function hashWithWitness(
                              ISignatureTransfer.PermitTransferFrom memory permit,
                              bytes32 witness,
                              string calldata witnessTypeString
                          ) internal view returns (bytes32) {
                              bytes32 typeHash = keccak256(abi.encodePacked(_PERMIT_TRANSFER_FROM_WITNESS_TYPEHASH_STUB, witnessTypeString));
                              bytes32 tokenPermissionsHash = _hashTokenPermissions(permit.permitted);
                              return keccak256(abi.encode(typeHash, tokenPermissionsHash, msg.sender, permit.nonce, permit.deadline, witness));
                          }
                          function hashWithWitness(
                              ISignatureTransfer.PermitBatchTransferFrom memory permit,
                              bytes32 witness,
                              string calldata witnessTypeString
                          ) internal view returns (bytes32) {
                              bytes32 typeHash =
                                  keccak256(abi.encodePacked(_PERMIT_BATCH_WITNESS_TRANSFER_FROM_TYPEHASH_STUB, witnessTypeString));
                              uint256 numPermitted = permit.permitted.length;
                              bytes32[] memory tokenPermissionHashes = new bytes32[](numPermitted);
                              for (uint256 i = 0; i < numPermitted; ++i) {
                                  tokenPermissionHashes[i] = _hashTokenPermissions(permit.permitted[i]);
                              }
                              return keccak256(
                                  abi.encode(
                                      typeHash,
                                      keccak256(abi.encodePacked(tokenPermissionHashes)),
                                      msg.sender,
                                      permit.nonce,
                                      permit.deadline,
                                      witness
                                  )
                              );
                          }
                          function _hashPermitDetails(IAllowanceTransfer.PermitDetails memory details) private pure returns (bytes32) {
                              return keccak256(abi.encode(_PERMIT_DETAILS_TYPEHASH, details));
                          }
                          function _hashTokenPermissions(ISignatureTransfer.TokenPermissions memory permitted)
                              private
                              pure
                              returns (bytes32)
                          {
                              return keccak256(abi.encode(_TOKEN_PERMISSIONS_TYPEHASH, permitted));
                          }
                      }
                      // SPDX-License-Identifier: MIT
                      pragma solidity ^0.8.17;
                      import {IERC1271} from "../interfaces/IERC1271.sol";
                      library SignatureVerification {
                          /// @notice Thrown when the passed in signature is not a valid length
                          error InvalidSignatureLength();
                          /// @notice Thrown when the recovered signer is equal to the zero address
                          error InvalidSignature();
                          /// @notice Thrown when the recovered signer does not equal the claimedSigner
                          error InvalidSigner();
                          /// @notice Thrown when the recovered contract signature is incorrect
                          error InvalidContractSignature();
                          bytes32 constant UPPER_BIT_MASK = (0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                          function verify(bytes calldata signature, bytes32 hash, address claimedSigner) internal view {
                              bytes32 r;
                              bytes32 s;
                              uint8 v;
                              if (claimedSigner.code.length == 0) {
                                  if (signature.length == 65) {
                                      (r, s) = abi.decode(signature, (bytes32, bytes32));
                                      v = uint8(signature[64]);
                                  } else if (signature.length == 64) {
                                      // EIP-2098
                                      bytes32 vs;
                                      (r, vs) = abi.decode(signature, (bytes32, bytes32));
                                      s = vs & UPPER_BIT_MASK;
                                      v = uint8(uint256(vs >> 255)) + 27;
                                  } else {
                                      revert InvalidSignatureLength();
                                  }
                                  address signer = ecrecover(hash, v, r, s);
                                  if (signer == address(0)) revert InvalidSignature();
                                  if (signer != claimedSigner) revert InvalidSigner();
                              } else {
                                  bytes4 magicValue = IERC1271(claimedSigner).isValidSignature(hash, signature);
                                  if (magicValue != IERC1271.isValidSignature.selector) revert InvalidContractSignature();
                              }
                          }
                      }