Transaction Hash:
Block:
10005610 at May-05-2020 10:10:41 AM +UTC
Transaction Fee:
0.0020058443235 ETH
$5.12
Gas Used:
46,647 Gas / 43.0005 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4D17a537...068229c0a |
0.1507616864 Eth
Nonce: 13019
|
0.1487558420765 Eth
Nonce: 13020
| 0.0020058443235 | ||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 756.765520215765785166 Eth | 756.767526060089285166 Eth | 0.0020058443235 |
Execution Trace
MEV Bot: 0x860...F66.c89e4361( )
0x2149b0f7ebf246076bdbbe98706578a0aa6c0464.689c49c0( )
Vyper_contract.getEthToTokenInputPrice( eth_sold=58651393811504714620 ) => ( out=11803940561323162132955 )
Vyper_contract.getEthToTokenInputPrice( eth_sold=58651393811504714620 ) => ( out=11803940561323162132955 )
-
Dai.balanceOf( 0x2a1530C4C41db0B0b2bB646CB5Eb1A67b7158667 ) => ( 3646297098404378964347453 )
-
-
MatchingMarket.getBuyAmount( buy_gem=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, pay_gem=0x6B175474E89094C44Da98b954EedeAC495271d0F, pay_amt=11803940561323162132955 ) => ( fill_amt=58638552217203984763 )
File 1 of 4: Vyper_contract
File 2 of 4: Vyper_contract
File 3 of 4: Dai
File 4 of 4: MatchingMarket
# @title Uniswap Exchange Interface V1 # @notice Source code found at https://github.com/uniswap # @notice Use at your own risk contract Factory(): def getExchange(token_addr: address) -> address: constant contract Exchange(): def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)}) EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))}) AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256}) Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256}) name: public(bytes32) # Uniswap V1 symbol: public(bytes32) # UNI-V1 decimals: public(uint256) # 18 totalSupply: public(uint256) # total number of UNI in existence balances: uint256[address] # UNI balance of an address allowances: (uint256[address])[address] # UNI allowance of one address on another token: address(ERC20) # address of the ERC20 token traded on this contract factory: Factory # interface for the factory that created this contract # @dev This function acts as a contract constructor which is not currently supported in contracts deployed # using create_with_code_of(). It is called once by the factory during contract creation. @public def setup(token_addr: address): assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS self.factory = msg.sender self.token = token_addr self.name = 0x556e697377617020563100000000000000000000000000000000000000000000 self.symbol = 0x554e492d56310000000000000000000000000000000000000000000000000000 self.decimals = 18 # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens. # @dev min_liquidity does nothing when total UNI supply is 0. # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0. # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of UNI minted. @public @payable def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256: assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0) total_liquidity: uint256 = self.totalSupply if total_liquidity > 0: assert min_liquidity > 0 eth_reserve: uint256(wei) = self.balance - msg.value token_reserve: uint256 = self.token.balanceOf(self) token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1 liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve assert max_tokens >= token_amount and liquidity_minted >= min_liquidity self.balances[msg.sender] += liquidity_minted self.totalSupply = total_liquidity + liquidity_minted assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted) return liquidity_minted else: assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000 assert self.factory.getExchange(self.token) == self token_amount: uint256 = max_tokens initial_liquidity: uint256 = as_unitless_number(self.balance) self.totalSupply = initial_liquidity self.balances[msg.sender] = initial_liquidity assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity) return initial_liquidity # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio. # @param amount Amount of UNI burned. # @param min_eth Minimum ETH withdrawn. # @param min_tokens Minimum Tokens withdrawn. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of ETH and Tokens withdrawn. @public def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256): assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0) total_liquidity: uint256 = self.totalSupply assert total_liquidity > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_amount: uint256(wei) = amount * self.balance / total_liquidity token_amount: uint256 = amount * token_reserve / total_liquidity assert eth_amount >= min_eth and token_amount >= min_tokens self.balances[msg.sender] -= amount self.totalSupply = total_liquidity - amount send(msg.sender, eth_amount) assert self.token.transfer(msg.sender, token_amount) log.RemoveLiquidity(msg.sender, eth_amount, token_amount) log.Transfer(msg.sender, ZERO_ADDRESS, amount) return eth_amount, token_amount # @dev Pricing function for converting between ETH and Tokens. # @param input_amount Amount of ETH or Tokens being sold. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens bought. @private @constant def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 input_amount_with_fee: uint256 = input_amount * 997 numerator: uint256 = input_amount_with_fee * output_reserve denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee return numerator / denominator # @dev Pricing function for converting between ETH and Tokens. # @param output_amount Amount of ETH or Tokens being bought. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens sold. @private @constant def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 numerator: uint256 = input_reserve * output_amount * 1000 denominator: uint256 = (output_reserve - output_amount) * 997 return numerator / denominator + 1 @private def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0) token_reserve: uint256 = self.token.balanceOf(self) tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance - eth_sold), token_reserve) assert tokens_bought >= min_tokens assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, eth_sold, tokens_bought) return tokens_bought # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value). # @dev User cannot specify minimum output or deadline. @public @payable def __default__(): self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender) # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value) and minimum output. # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens bought. @public @payable def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256: return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies exact input (msg.value) and minimum output # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of Tokens bought. @public @payable def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient) @private def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve) # Throws if eth_sold > max_eth eth_refund: uint256(wei) = max_eth - as_wei_value(eth_sold, 'wei') if eth_refund > 0: send(buyer, eth_refund) assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, as_wei_value(eth_sold, 'wei'), tokens_bought) return as_wei_value(eth_sold, 'wei') # @notice Convert ETH to Tokens. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH sold. @public @payable def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei): return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of ETH sold. @public @payable def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient) @private def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth send(recipient, wei_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, wei_bought) return wei_bought # @notice Convert Tokens to ETH. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH bought. @public def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei): return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of ETH bought. @public def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient) @private def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens >= tokens_sold send(recipient, eth_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens to ETH. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens sold. @public def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256: return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of Tokens sold. @public def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient) @private def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought) log.EthPurchase(buyer, tokens_sold, wei_bought) return tokens_bought # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) @private def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought) token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens_sold >= tokens_sold and max_eth_sold >= eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Public price function for ETH to Token trades with an exact input. # @param eth_sold Amount of ETH sold. # @return Amount of Tokens that can be bought with input ETH. @public @constant def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256: assert eth_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve) # @notice Public price function for ETH to Token trades with an exact output. # @param tokens_bought Amount of Tokens bought. # @return Amount of ETH needed to buy output Tokens. @public @constant def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): assert tokens_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve) return as_wei_value(eth_sold, 'wei') # @notice Public price function for Token to ETH trades with an exact input. # @param tokens_sold Amount of Tokens sold. # @return Amount of ETH that can be bought with input Tokens. @public @constant def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei): assert tokens_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) return as_wei_value(eth_bought, 'wei') # @notice Public price function for Token to ETH trades with an exact output. # @param eth_bought Amount of output ETH. # @return Amount of Tokens needed to buy output ETH. @public @constant def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256: assert eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # @return Address of Token that is sold on this exchange. @public @constant def tokenAddress() -> address: return self.token # @return Address of factory that created this exchange. @public @constant def factoryAddress() -> address(Factory): return self.factory # ERC20 compatibility for exchange liquidity modified from # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy @public @constant def balanceOf(_owner : address) -> uint256: return self.balances[_owner] @public def transfer(_to : address, _value : uint256) -> bool: self.balances[msg.sender] -= _value self.balances[_to] += _value log.Transfer(msg.sender, _to, _value) return True @public def transferFrom(_from : address, _to : address, _value : uint256) -> bool: self.balances[_from] -= _value self.balances[_to] += _value self.allowances[_from][msg.sender] -= _value log.Transfer(_from, _to, _value) return True @public def approve(_spender : address, _value : uint256) -> bool: self.allowances[msg.sender][_spender] = _value log.Approval(msg.sender, _spender, _value) return True @public @constant def allowance(_owner : address, _spender : address) -> uint256: return self.allowances[_owner][_spender]
File 2 of 4: Vyper_contract
# @title Uniswap Exchange Interface V1 # @notice Source code found at https://github.com/uniswap # @notice Use at your own risk contract Factory(): def getExchange(token_addr: address) -> address: constant contract Exchange(): def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)}) EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))}) AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256}) Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256}) name: public(bytes32) # Uniswap V1 symbol: public(bytes32) # UNI-V1 decimals: public(uint256) # 18 totalSupply: public(uint256) # total number of UNI in existence balances: uint256[address] # UNI balance of an address allowances: (uint256[address])[address] # UNI allowance of one address on another token: address(ERC20) # address of the ERC20 token traded on this contract factory: Factory # interface for the factory that created this contract # @dev This function acts as a contract constructor which is not currently supported in contracts deployed # using create_with_code_of(). It is called once by the factory during contract creation. @public def setup(token_addr: address): assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS self.factory = msg.sender self.token = token_addr self.name = 0x556e697377617020563100000000000000000000000000000000000000000000 self.symbol = 0x554e492d56310000000000000000000000000000000000000000000000000000 self.decimals = 18 # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens. # @dev min_liquidity does nothing when total UNI supply is 0. # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0. # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of UNI minted. @public @payable def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256: assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0) total_liquidity: uint256 = self.totalSupply if total_liquidity > 0: assert min_liquidity > 0 eth_reserve: uint256(wei) = self.balance - msg.value token_reserve: uint256 = self.token.balanceOf(self) token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1 liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve assert max_tokens >= token_amount and liquidity_minted >= min_liquidity self.balances[msg.sender] += liquidity_minted self.totalSupply = total_liquidity + liquidity_minted assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted) return liquidity_minted else: assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000 assert self.factory.getExchange(self.token) == self token_amount: uint256 = max_tokens initial_liquidity: uint256 = as_unitless_number(self.balance) self.totalSupply = initial_liquidity self.balances[msg.sender] = initial_liquidity assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity) return initial_liquidity # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio. # @param amount Amount of UNI burned. # @param min_eth Minimum ETH withdrawn. # @param min_tokens Minimum Tokens withdrawn. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of ETH and Tokens withdrawn. @public def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256): assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0) total_liquidity: uint256 = self.totalSupply assert total_liquidity > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_amount: uint256(wei) = amount * self.balance / total_liquidity token_amount: uint256 = amount * token_reserve / total_liquidity assert eth_amount >= min_eth and token_amount >= min_tokens self.balances[msg.sender] -= amount self.totalSupply = total_liquidity - amount send(msg.sender, eth_amount) assert self.token.transfer(msg.sender, token_amount) log.RemoveLiquidity(msg.sender, eth_amount, token_amount) log.Transfer(msg.sender, ZERO_ADDRESS, amount) return eth_amount, token_amount # @dev Pricing function for converting between ETH and Tokens. # @param input_amount Amount of ETH or Tokens being sold. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens bought. @private @constant def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 input_amount_with_fee: uint256 = input_amount * 997 numerator: uint256 = input_amount_with_fee * output_reserve denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee return numerator / denominator # @dev Pricing function for converting between ETH and Tokens. # @param output_amount Amount of ETH or Tokens being bought. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens sold. @private @constant def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 numerator: uint256 = input_reserve * output_amount * 1000 denominator: uint256 = (output_reserve - output_amount) * 997 return numerator / denominator + 1 @private def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0) token_reserve: uint256 = self.token.balanceOf(self) tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance - eth_sold), token_reserve) assert tokens_bought >= min_tokens assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, eth_sold, tokens_bought) return tokens_bought # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value). # @dev User cannot specify minimum output or deadline. @public @payable def __default__(): self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender) # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value) and minimum output. # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens bought. @public @payable def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256: return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies exact input (msg.value) and minimum output # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of Tokens bought. @public @payable def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient) @private def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve) # Throws if eth_sold > max_eth eth_refund: uint256(wei) = max_eth - as_wei_value(eth_sold, 'wei') if eth_refund > 0: send(buyer, eth_refund) assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, as_wei_value(eth_sold, 'wei'), tokens_bought) return as_wei_value(eth_sold, 'wei') # @notice Convert ETH to Tokens. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH sold. @public @payable def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei): return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of ETH sold. @public @payable def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient) @private def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth send(recipient, wei_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, wei_bought) return wei_bought # @notice Convert Tokens to ETH. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH bought. @public def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei): return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of ETH bought. @public def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient) @private def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens >= tokens_sold send(recipient, eth_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens to ETH. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens sold. @public def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256: return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of Tokens sold. @public def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient) @private def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought) log.EthPurchase(buyer, tokens_sold, wei_bought) return tokens_bought # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) @private def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought) token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens_sold >= tokens_sold and max_eth_sold >= eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Public price function for ETH to Token trades with an exact input. # @param eth_sold Amount of ETH sold. # @return Amount of Tokens that can be bought with input ETH. @public @constant def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256: assert eth_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve) # @notice Public price function for ETH to Token trades with an exact output. # @param tokens_bought Amount of Tokens bought. # @return Amount of ETH needed to buy output Tokens. @public @constant def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): assert tokens_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve) return as_wei_value(eth_sold, 'wei') # @notice Public price function for Token to ETH trades with an exact input. # @param tokens_sold Amount of Tokens sold. # @return Amount of ETH that can be bought with input Tokens. @public @constant def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei): assert tokens_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) return as_wei_value(eth_bought, 'wei') # @notice Public price function for Token to ETH trades with an exact output. # @param eth_bought Amount of output ETH. # @return Amount of Tokens needed to buy output ETH. @public @constant def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256: assert eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # @return Address of Token that is sold on this exchange. @public @constant def tokenAddress() -> address: return self.token # @return Address of factory that created this exchange. @public @constant def factoryAddress() -> address(Factory): return self.factory # ERC20 compatibility for exchange liquidity modified from # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy @public @constant def balanceOf(_owner : address) -> uint256: return self.balances[_owner] @public def transfer(_to : address, _value : uint256) -> bool: self.balances[msg.sender] -= _value self.balances[_to] += _value log.Transfer(msg.sender, _to, _value) return True @public def transferFrom(_from : address, _to : address, _value : uint256) -> bool: self.balances[_from] -= _value self.balances[_to] += _value self.allowances[_from][msg.sender] -= _value log.Transfer(_from, _to, _value) return True @public def approve(_spender : address, _value : uint256) -> bool: self.allowances[msg.sender][_spender] = _value log.Approval(msg.sender, _spender, _value) return True @public @constant def allowance(_owner : address, _spender : address) -> uint256: return self.allowances[_owner][_spender]
File 3 of 4: Dai
// hevm: flattened sources of /nix/store/8xb41r4qd0cjb63wcrxf1qmfg88p0961-dss-6fd7de0/src/dai.sol pragma solidity =0.5.12; ////// /nix/store/8xb41r4qd0cjb63wcrxf1qmfg88p0961-dss-6fd7de0/src/lib.sol // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. /* pragma solidity 0.5.12; */ contract LibNote { event LogNote( bytes4 indexed sig, address indexed usr, bytes32 indexed arg1, bytes32 indexed arg2, bytes data ) anonymous; modifier note { _; assembly { // log an 'anonymous' event with a constant 6 words of calldata // and four indexed topics: selector, caller, arg1 and arg2 let mark := msize // end of memory ensures zero mstore(0x40, add(mark, 288)) // update free memory pointer mstore(mark, 0x20) // bytes type data offset mstore(add(mark, 0x20), 224) // bytes size (padded) calldatacopy(add(mark, 0x40), 0, 224) // bytes payload log4(mark, 288, // calldata shl(224, shr(224, calldataload(0))), // msg.sig caller, // msg.sender calldataload(4), // arg1 calldataload(36) // arg2 ) } } } ////// /nix/store/8xb41r4qd0cjb63wcrxf1qmfg88p0961-dss-6fd7de0/src/dai.sol // Copyright (C) 2017, 2018, 2019 dbrock, rain, mrchico // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. /* pragma solidity 0.5.12; */ /* import "./lib.sol"; */ contract Dai is LibNote { // --- Auth --- mapping (address => uint) public wards; function rely(address guy) external note auth { wards[guy] = 1; } function deny(address guy) external note auth { wards[guy] = 0; } modifier auth { require(wards[msg.sender] == 1, "Dai/not-authorized"); _; } // --- ERC20 Data --- string public constant name = "Dai Stablecoin"; string public constant symbol = "DAI"; string public constant version = "1"; uint8 public constant decimals = 18; uint256 public totalSupply; mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; mapping (address => uint) public nonces; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); // --- Math --- function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x); } // --- EIP712 niceties --- bytes32 public DOMAIN_SEPARATOR; // bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address holder,address spender,uint256 nonce,uint256 expiry,bool allowed)"); bytes32 public constant PERMIT_TYPEHASH = 0xea2aa0a1be11a07ed86d755c93467f4f82362b452371d1ba94d1715123511acb; constructor(uint256 chainId_) public { wards[msg.sender] = 1; DOMAIN_SEPARATOR = keccak256(abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256(bytes(version)), chainId_, address(this) )); } // --- Token --- function transfer(address dst, uint wad) external returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad, "Dai/insufficient-balance"); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad, "Dai/insufficient-allowance"); allowance[src][msg.sender] = sub(allowance[src][msg.sender], wad); } balanceOf[src] = sub(balanceOf[src], wad); balanceOf[dst] = add(balanceOf[dst], wad); emit Transfer(src, dst, wad); return true; } function mint(address usr, uint wad) external auth { balanceOf[usr] = add(balanceOf[usr], wad); totalSupply = add(totalSupply, wad); emit Transfer(address(0), usr, wad); } function burn(address usr, uint wad) external { require(balanceOf[usr] >= wad, "Dai/insufficient-balance"); if (usr != msg.sender && allowance[usr][msg.sender] != uint(-1)) { require(allowance[usr][msg.sender] >= wad, "Dai/insufficient-allowance"); allowance[usr][msg.sender] = sub(allowance[usr][msg.sender], wad); } balanceOf[usr] = sub(balanceOf[usr], wad); totalSupply = sub(totalSupply, wad); emit Transfer(usr, address(0), wad); } function approve(address usr, uint wad) external returns (bool) { allowance[msg.sender][usr] = wad; emit Approval(msg.sender, usr, wad); return true; } // --- Alias --- function push(address usr, uint wad) external { transferFrom(msg.sender, usr, wad); } function pull(address usr, uint wad) external { transferFrom(usr, msg.sender, wad); } function move(address src, address dst, uint wad) external { transferFrom(src, dst, wad); } // --- Approve by signature --- function permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s) external { bytes32 digest = keccak256(abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, holder, spender, nonce, expiry, allowed)) )); require(holder != address(0), "Dai/invalid-address-0"); require(holder == ecrecover(digest, v, r, s), "Dai/invalid-permit"); require(expiry == 0 || now <= expiry, "Dai/permit-expired"); require(nonce == nonces[holder]++, "Dai/invalid-nonce"); uint wad = allowed ? uint(-1) : 0; allowance[holder][spender] = wad; emit Approval(holder, spender, wad); } }
File 4 of 4: MatchingMarket
/// matching_market.sol // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. pragma solidity ^0.5.12; contract DSAuthority { function canCall( address src, address dst, bytes4 sig ) public view returns (bool); } contract DSAuthEvents { event LogSetAuthority (address indexed authority); event LogSetOwner (address indexed owner); } contract DSAuth is DSAuthEvents { DSAuthority public authority; address public owner; constructor() public { owner = msg.sender; emit LogSetOwner(msg.sender); } function setOwner(address owner_) public auth { owner = owner_; emit LogSetOwner(owner); } function setAuthority(DSAuthority authority_) public auth { authority = authority_; emit LogSetAuthority(address(authority)); } modifier auth { require(isAuthorized(msg.sender, msg.sig), "ds-auth-unauthorized"); _; } function isAuthorized(address src, bytes4 sig) internal view returns (bool) { if (src == address(this)) { return true; } else if (src == owner) { return true; } else if (authority == DSAuthority(0)) { return false; } else { return authority.canCall(src, address(this), sig); } } } contract DSMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, "ds-math-add-overflow"); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, "ds-math-sub-underflow"); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow"); } function min(uint x, uint y) internal pure returns (uint z) { return x <= y ? x : y; } function max(uint x, uint y) internal pure returns (uint z) { return x >= y ? x : y; } function imin(int x, int y) internal pure returns (int z) { return x <= y ? x : y; } function imax(int x, int y) internal pure returns (int z) { return x >= y ? x : y; } uint constant WAD = 10 ** 18; uint constant RAY = 10 ** 27; function wmul(uint x, uint y) internal pure returns (uint z) { z = add(mul(x, y), WAD / 2) / WAD; } function rmul(uint x, uint y) internal pure returns (uint z) { z = add(mul(x, y), RAY / 2) / RAY; } function wdiv(uint x, uint y) internal pure returns (uint z) { z = add(mul(x, WAD), y / 2) / y; } function rdiv(uint x, uint y) internal pure returns (uint z) { z = add(mul(x, RAY), y / 2) / y; } // This famous algorithm is called "exponentiation by squaring" // and calculates x^n with x as fixed-point and n as regular unsigned. // // It's O(log n), instead of O(n) for naive repeated multiplication. // // These facts are why it works: // // If n is even, then x^n = (x^2)^(n/2). // If n is odd, then x^n = x * x^(n-1), // and applying the equation for even x gives // x^n = x * (x^2)^((n-1) / 2). // // Also, EVM division is flooring and // floor[(n-1) / 2] = floor[n / 2]. // function rpow(uint x, uint n) internal pure returns (uint z) { z = n % 2 != 0 ? x : RAY; for (n /= 2; n != 0; n /= 2) { x = rmul(x, x); if (n % 2 != 0) { z = rmul(z, x); } } } } contract ERC20Events { event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); } contract ERC20 is ERC20Events { function totalSupply() public view returns (uint); function balanceOf(address guy) public view returns (uint); function allowance(address src, address guy) public view returns (uint); function approve(address guy, uint wad) public returns (bool); function transfer(address dst, uint wad) public returns (bool); function transferFrom( address src, address dst, uint wad ) public returns (bool); } contract EventfulMarket { event LogItemUpdate(uint id); event LogTrade(uint pay_amt, address indexed pay_gem, uint buy_amt, address indexed buy_gem); event LogMake( bytes32 indexed id, bytes32 indexed pair, address indexed maker, ERC20 pay_gem, ERC20 buy_gem, uint128 pay_amt, uint128 buy_amt, uint64 timestamp ); event LogBump( bytes32 indexed id, bytes32 indexed pair, address indexed maker, ERC20 pay_gem, ERC20 buy_gem, uint128 pay_amt, uint128 buy_amt, uint64 timestamp ); event LogTake( bytes32 id, bytes32 indexed pair, address indexed maker, ERC20 pay_gem, ERC20 buy_gem, address indexed taker, uint128 take_amt, uint128 give_amt, uint64 timestamp ); event LogKill( bytes32 indexed id, bytes32 indexed pair, address indexed maker, ERC20 pay_gem, ERC20 buy_gem, uint128 pay_amt, uint128 buy_amt, uint64 timestamp ); } contract SimpleMarket is EventfulMarket, DSMath { uint public last_offer_id; mapping (uint => OfferInfo) public offers; bool locked; struct OfferInfo { uint pay_amt; ERC20 pay_gem; uint buy_amt; ERC20 buy_gem; address owner; uint64 timestamp; } modifier can_buy(uint id) { require(isActive(id)); _; } modifier can_cancel(uint id) { require(isActive(id)); require(getOwner(id) == msg.sender); _; } modifier can_offer { _; } modifier synchronized { require(!locked); locked = true; _; locked = false; } function isActive(uint id) public view returns (bool active) { return offers[id].timestamp > 0; } function getOwner(uint id) public view returns (address owner) { return offers[id].owner; } function getOffer(uint id) public view returns (uint, ERC20, uint, ERC20) { OfferInfo memory offer = offers[id]; return (offer.pay_amt, offer.pay_gem, offer.buy_amt, offer.buy_gem); } // ---- Public entrypoints ---- // function bump(bytes32 id_) public can_buy(uint256(id_)) { uint256 id = uint256(id_); emit LogBump( id_, keccak256(abi.encodePacked(offers[id].pay_gem, offers[id].buy_gem)), offers[id].owner, offers[id].pay_gem, offers[id].buy_gem, uint128(offers[id].pay_amt), uint128(offers[id].buy_amt), offers[id].timestamp ); } // Accept given `quantity` of an offer. Transfers funds from caller to // offer maker, and from market to caller. function buy(uint id, uint quantity) public can_buy(id) synchronized returns (bool) { OfferInfo memory offer = offers[id]; uint spend = mul(quantity, offer.buy_amt) / offer.pay_amt; require(uint128(spend) == spend); require(uint128(quantity) == quantity); // For backwards semantic compatibility. if (quantity == 0 || spend == 0 || quantity > offer.pay_amt || spend > offer.buy_amt) { return false; } offers[id].pay_amt = sub(offer.pay_amt, quantity); offers[id].buy_amt = sub(offer.buy_amt, spend); require( offer.buy_gem.transferFrom(msg.sender, offer.owner, spend) ); require( offer.pay_gem.transfer(msg.sender, quantity) ); emit LogItemUpdate(id); emit LogTake( bytes32(id), keccak256(abi.encodePacked(offer.pay_gem, offer.buy_gem)), offer.owner, offer.pay_gem, offer.buy_gem, msg.sender, uint128(quantity), uint128(spend), uint64(now) ); emit LogTrade(quantity, address(offer.pay_gem), spend, address(offer.buy_gem)); if (offers[id].pay_amt == 0) { delete offers[id]; } return true; } // Cancel an offer. Refunds offer maker. function cancel(uint id) public can_cancel(id) synchronized returns (bool success) { // read-only offer. Modify an offer by directly accessing offers[id] OfferInfo memory offer = offers[id]; delete offers[id]; require( offer.pay_gem.transfer(offer.owner, offer.pay_amt) ); emit LogItemUpdate(id); emit LogKill( bytes32(id), keccak256(abi.encodePacked(offer.pay_gem, offer.buy_gem)), offer.owner, offer.pay_gem, offer.buy_gem, uint128(offer.pay_amt), uint128(offer.buy_amt), uint64(now) ); success = true; } function kill(bytes32 id) public { require(cancel(uint256(id))); } function make( ERC20 pay_gem, ERC20 buy_gem, uint128 pay_amt, uint128 buy_amt ) public returns (bytes32 id) { return bytes32(offer(pay_amt, pay_gem, buy_amt, buy_gem)); } // Make a new offer. Takes funds from the caller into market escrow. function offer(uint pay_amt, ERC20 pay_gem, uint buy_amt, ERC20 buy_gem) public can_offer synchronized returns (uint id) { require(uint128(pay_amt) == pay_amt); require(uint128(buy_amt) == buy_amt); require(pay_amt > 0); require(pay_gem != ERC20(0x0)); require(buy_amt > 0); require(buy_gem != ERC20(0x0)); require(pay_gem != buy_gem); OfferInfo memory info; info.pay_amt = pay_amt; info.pay_gem = pay_gem; info.buy_amt = buy_amt; info.buy_gem = buy_gem; info.owner = msg.sender; info.timestamp = uint64(now); id = _next_id(); offers[id] = info; require( pay_gem.transferFrom(msg.sender, address(this), pay_amt) ); emit LogItemUpdate(id); emit LogMake( bytes32(id), keccak256(abi.encodePacked(pay_gem, buy_gem)), msg.sender, pay_gem, buy_gem, uint128(pay_amt), uint128(buy_amt), uint64(now) ); } function take(bytes32 id, uint128 maxTakeAmount) public { require(buy(uint256(id), maxTakeAmount)); } function _next_id() internal returns (uint) { last_offer_id++; return last_offer_id; } } // Simple Market with a market lifetime. When the close_time has been reached, // offers can only be cancelled (offer and buy will throw). contract ExpiringMarket is DSAuth, SimpleMarket { uint64 public close_time; bool public stopped; // after close_time has been reached, no new offers are allowed modifier can_offer { require(!isClosed()); _; } // after close, no new buys are allowed modifier can_buy(uint id) { require(isActive(id)); require(!isClosed()); _; } // after close, anyone can cancel an offer modifier can_cancel(uint id) { require(isActive(id)); require((msg.sender == getOwner(id)) || isClosed()); _; } constructor(uint64 _close_time) public { close_time = _close_time; } function isClosed() public view returns (bool closed) { return stopped || getTime() > close_time; } function getTime() public view returns (uint64) { return uint64(now); } function stop() public auth { stopped = true; } } contract DSNote { event LogNote( bytes4 indexed sig, address indexed guy, bytes32 indexed foo, bytes32 indexed bar, uint256 wad, bytes fax ) anonymous; modifier note { bytes32 foo; bytes32 bar; uint256 wad; assembly { foo := calldataload(4) bar := calldataload(36) wad := callvalue } emit LogNote(msg.sig, msg.sender, foo, bar, wad, msg.data); _; } } contract MatchingEvents { event LogBuyEnabled(bool isEnabled); event LogMinSell(address pay_gem, uint min_amount); event LogMatchingEnabled(bool isEnabled); event LogUnsortedOffer(uint id); event LogSortedOffer(uint id); event LogInsert(address keeper, uint id); event LogDelete(address keeper, uint id); } contract MatchingMarket is MatchingEvents, ExpiringMarket, DSNote { bool public buyEnabled = true; //buy enabled bool public matchingEnabled = true; //true: enable matching, //false: revert to expiring market struct sortInfo { uint next; //points to id of next higher offer uint prev; //points to id of previous lower offer uint delb; //the blocknumber where this entry was marked for delete } mapping(uint => sortInfo) public _rank; //doubly linked lists of sorted offer ids mapping(address => mapping(address => uint)) public _best; //id of the highest offer for a token pair mapping(address => mapping(address => uint)) public _span; //number of offers stored for token pair in sorted orderbook mapping(address => uint) public _dust; //minimum sell amount for a token to avoid dust offers mapping(uint => uint) public _near; //next unsorted offer id uint _head; //first unsorted offer id uint public dustId; // id of the latest offer marked as dust constructor(uint64 close_time) ExpiringMarket(close_time) public { } // After close, anyone can cancel an offer modifier can_cancel(uint id) { require(isActive(id), "Offer was deleted or taken, or never existed."); require( isClosed() || msg.sender == getOwner(id) || id == dustId, "Offer can not be cancelled because user is not owner, and market is open, and offer sells required amount of tokens." ); _; } // ---- Public entrypoints ---- // function make( ERC20 pay_gem, ERC20 buy_gem, uint128 pay_amt, uint128 buy_amt ) public returns (bytes32) { return bytes32(offer(pay_amt, pay_gem, buy_amt, buy_gem)); } function take(bytes32 id, uint128 maxTakeAmount) public { require(buy(uint256(id), maxTakeAmount)); } function kill(bytes32 id) public { require(cancel(uint256(id))); } // Make a new offer. Takes funds from the caller into market escrow. // // If matching is enabled: // * creates new offer without putting it in // the sorted list. // * available to authorized contracts only! // * keepers should call insert(id,pos) // to put offer in the sorted list. // // If matching is disabled: // * calls expiring market's offer(). // * available to everyone without authorization. // * no sorting is done. // function offer( uint pay_amt, //maker (ask) sell how much ERC20 pay_gem, //maker (ask) sell which token uint buy_amt, //taker (ask) buy how much ERC20 buy_gem //taker (ask) buy which token ) public returns (uint) { require(!locked, "Reentrancy attempt"); function (uint256,ERC20,uint256,ERC20) returns (uint256) fn = matchingEnabled ? _offeru : super.offer; return fn(pay_amt, pay_gem, buy_amt, buy_gem); } // Make a new offer. Takes funds from the caller into market escrow. function offer( uint pay_amt, //maker (ask) sell how much ERC20 pay_gem, //maker (ask) sell which token uint buy_amt, //maker (ask) buy how much ERC20 buy_gem, //maker (ask) buy which token uint pos //position to insert offer, 0 should be used if unknown ) public can_offer returns (uint) { return offer(pay_amt, pay_gem, buy_amt, buy_gem, pos, true); } function offer( uint pay_amt, //maker (ask) sell how much ERC20 pay_gem, //maker (ask) sell which token uint buy_amt, //maker (ask) buy how much ERC20 buy_gem, //maker (ask) buy which token uint pos, //position to insert offer, 0 should be used if unknown bool rounding //match "close enough" orders? ) public can_offer returns (uint) { require(!locked, "Reentrancy attempt"); require(_dust[address(pay_gem)] <= pay_amt); if (matchingEnabled) { return _matcho(pay_amt, pay_gem, buy_amt, buy_gem, pos, rounding); } return super.offer(pay_amt, pay_gem, buy_amt, buy_gem); } //Transfers funds from caller to offer maker, and from market to caller. function buy(uint id, uint amount) public can_buy(id) returns (bool) { require(!locked, "Reentrancy attempt"); function (uint256,uint256) returns (bool) fn = matchingEnabled ? _buys : super.buy; return fn(id, amount); } // Cancel an offer. Refunds offer maker. function cancel(uint id) public can_cancel(id) returns (bool success) { require(!locked, "Reentrancy attempt"); if (matchingEnabled) { if (isOfferSorted(id)) { require(_unsort(id)); } else { require(_hide(id)); } } return super.cancel(id); //delete the offer. } //insert offer into the sorted list //keepers need to use this function function insert( uint id, //maker (ask) id uint pos //position to insert into ) public returns (bool) { require(!locked, "Reentrancy attempt"); require(!isOfferSorted(id)); //make sure offers[id] is not yet sorted require(isActive(id)); //make sure offers[id] is active _hide(id); //remove offer from unsorted offers list _sort(id, pos); //put offer into the sorted offers list emit LogInsert(msg.sender, id); return true; } //deletes _rank [id] // Function should be called by keepers. function del_rank(uint id) public returns (bool) { require(!locked, "Reentrancy attempt"); require(!isActive(id) && _rank[id].delb != 0 && _rank[id].delb < block.number - 10); delete _rank[id]; emit LogDelete(msg.sender, id); return true; } //set the minimum sell amount for a token // Function is used to avoid "dust offers" that have // very small amount of tokens to sell, and it would // cost more gas to accept the offer, than the value // of tokens received. function setMinSell( ERC20 pay_gem, //token to assign minimum sell amount to uint dust //maker (ask) minimum sell amount ) public auth note returns (bool) { _dust[address(pay_gem)] = dust; emit LogMinSell(address(pay_gem), dust); return true; } //returns the minimum sell amount for an offer function getMinSell( ERC20 pay_gem //token for which minimum sell amount is queried ) public view returns (uint) { return _dust[address(pay_gem)]; } //set buy functionality enabled/disabled function setBuyEnabled(bool buyEnabled_) public auth returns (bool) { buyEnabled = buyEnabled_; emit LogBuyEnabled(buyEnabled); return true; } //set matching enabled/disabled // If matchingEnabled true(default), then inserted offers are matched. // Except the ones inserted by contracts, because those end up // in the unsorted list of offers, that must be later sorted by // keepers using insert(). // If matchingEnabled is false then MatchingMarket is reverted to ExpiringMarket, // and matching is not done, and sorted lists are disabled. function setMatchingEnabled(bool matchingEnabled_) public auth returns (bool) { matchingEnabled = matchingEnabled_; emit LogMatchingEnabled(matchingEnabled); return true; } //return the best offer for a token pair // the best offer is the lowest one if it's an ask, // and highest one if it's a bid offer function getBestOffer(ERC20 sell_gem, ERC20 buy_gem) public view returns(uint) { return _best[address(sell_gem)][address(buy_gem)]; } //return the next worse offer in the sorted list // the worse offer is the higher one if its an ask, // a lower one if its a bid offer, // and in both cases the newer one if they're equal. function getWorseOffer(uint id) public view returns(uint) { return _rank[id].prev; } //return the next better offer in the sorted list // the better offer is in the lower priced one if its an ask, // the next higher priced one if its a bid offer // and in both cases the older one if they're equal. function getBetterOffer(uint id) public view returns(uint) { return _rank[id].next; } //return the amount of better offers for a token pair function getOfferCount(ERC20 sell_gem, ERC20 buy_gem) public view returns(uint) { return _span[address(sell_gem)][address(buy_gem)]; } //get the first unsorted offer that was inserted by a contract // Contracts can't calculate the insertion position of their offer because it is not an O(1) operation. // Their offers get put in the unsorted list of offers. // Keepers can calculate the insertion position offchain and pass it to the insert() function to insert // the unsorted offer into the sorted list. Unsorted offers will not be matched, but can be bought with buy(). function getFirstUnsortedOffer() public view returns(uint) { return _head; } //get the next unsorted offer // Can be used to cycle through all the unsorted offers. function getNextUnsortedOffer(uint id) public view returns(uint) { return _near[id]; } function isOfferSorted(uint id) public view returns(bool) { return _rank[id].next != 0 || _rank[id].prev != 0 || _best[address(offers[id].pay_gem)][address(offers[id].buy_gem)] == id; } function sellAllAmount(ERC20 pay_gem, uint pay_amt, ERC20 buy_gem, uint min_fill_amount) public returns (uint fill_amt) { require(!locked, "Reentrancy attempt"); uint offerId; while (pay_amt > 0) { //while there is amount to sell offerId = getBestOffer(buy_gem, pay_gem); //Get the best offer for the token pair require(offerId != 0); //Fails if there are not more offers // There is a chance that pay_amt is smaller than 1 wei of the other token if (pay_amt * 1 ether < wdiv(offers[offerId].buy_amt, offers[offerId].pay_amt)) { break; //We consider that all amount is sold } if (pay_amt >= offers[offerId].buy_amt) { //If amount to sell is higher or equal than current offer amount to buy fill_amt = add(fill_amt, offers[offerId].pay_amt); //Add amount bought to acumulator pay_amt = sub(pay_amt, offers[offerId].buy_amt); //Decrease amount to sell take(bytes32(offerId), uint128(offers[offerId].pay_amt)); //We take the whole offer } else { // if lower uint256 baux = rmul(pay_amt * 10 ** 9, rdiv(offers[offerId].pay_amt, offers[offerId].buy_amt)) / 10 ** 9; fill_amt = add(fill_amt, baux); //Add amount bought to acumulator take(bytes32(offerId), uint128(baux)); //We take the portion of the offer that we need pay_amt = 0; //All amount is sold } } require(fill_amt >= min_fill_amount); } function buyAllAmount(ERC20 buy_gem, uint buy_amt, ERC20 pay_gem, uint max_fill_amount) public returns (uint fill_amt) { require(!locked, "Reentrancy attempt"); uint offerId; while (buy_amt > 0) { //Meanwhile there is amount to buy offerId = getBestOffer(buy_gem, pay_gem); //Get the best offer for the token pair require(offerId != 0); // There is a chance that buy_amt is smaller than 1 wei of the other token if (buy_amt * 1 ether < wdiv(offers[offerId].pay_amt, offers[offerId].buy_amt)) { break; //We consider that all amount is sold } if (buy_amt >= offers[offerId].pay_amt) { //If amount to buy is higher or equal than current offer amount to sell fill_amt = add(fill_amt, offers[offerId].buy_amt); //Add amount sold to acumulator buy_amt = sub(buy_amt, offers[offerId].pay_amt); //Decrease amount to buy take(bytes32(offerId), uint128(offers[offerId].pay_amt)); //We take the whole offer } else { //if lower fill_amt = add(fill_amt, rmul(buy_amt * 10 ** 9, rdiv(offers[offerId].buy_amt, offers[offerId].pay_amt)) / 10 ** 9); //Add amount sold to acumulator take(bytes32(offerId), uint128(buy_amt)); //We take the portion of the offer that we need buy_amt = 0; //All amount is bought } } require(fill_amt <= max_fill_amount); } function getBuyAmount(ERC20 buy_gem, ERC20 pay_gem, uint pay_amt) public view returns (uint fill_amt) { uint256 offerId = getBestOffer(buy_gem, pay_gem); //Get best offer for the token pair while (pay_amt > offers[offerId].buy_amt) { fill_amt = add(fill_amt, offers[offerId].pay_amt); //Add amount to buy accumulator pay_amt = sub(pay_amt, offers[offerId].buy_amt); //Decrease amount to pay if (pay_amt > 0) { //If we still need more offers offerId = getWorseOffer(offerId); //We look for the next best offer require(offerId != 0); //Fails if there are not enough offers to complete } } fill_amt = add(fill_amt, rmul(pay_amt * 10 ** 9, rdiv(offers[offerId].pay_amt, offers[offerId].buy_amt)) / 10 ** 9); //Add proportional amount of last offer to buy accumulator } function getPayAmount(ERC20 pay_gem, ERC20 buy_gem, uint buy_amt) public view returns (uint fill_amt) { uint256 offerId = getBestOffer(buy_gem, pay_gem); //Get best offer for the token pair while (buy_amt > offers[offerId].pay_amt) { fill_amt = add(fill_amt, offers[offerId].buy_amt); //Add amount to pay accumulator buy_amt = sub(buy_amt, offers[offerId].pay_amt); //Decrease amount to buy if (buy_amt > 0) { //If we still need more offers offerId = getWorseOffer(offerId); //We look for the next best offer require(offerId != 0); //Fails if there are not enough offers to complete } } fill_amt = add(fill_amt, rmul(buy_amt * 10 ** 9, rdiv(offers[offerId].buy_amt, offers[offerId].pay_amt)) / 10 ** 9); //Add proportional amount of last offer to pay accumulator } // ---- Internal Functions ---- // function _buys(uint id, uint amount) internal returns (bool) { require(buyEnabled); if (amount == offers[id].pay_amt) { if (isOfferSorted(id)) { //offers[id] must be removed from sorted list because all of it is bought _unsort(id); }else{ _hide(id); } } require(super.buy(id, amount)); // If offer has become dust during buy, we cancel it if (isActive(id) && offers[id].pay_amt < _dust[address(offers[id].pay_gem)]) { dustId = id; //enable current msg.sender to call cancel(id) cancel(id); } return true; } //find the id of the next higher offer after offers[id] function _find(uint id) internal view returns (uint) { require( id > 0 ); address buy_gem = address(offers[id].buy_gem); address pay_gem = address(offers[id].pay_gem); uint top = _best[pay_gem][buy_gem]; uint old_top = 0; // Find the larger-than-id order whose successor is less-than-id. while (top != 0 && _isPricedLtOrEq(id, top)) { old_top = top; top = _rank[top].prev; } return old_top; } //find the id of the next higher offer after offers[id] function _findpos(uint id, uint pos) internal view returns (uint) { require(id > 0); // Look for an active order. while (pos != 0 && !isActive(pos)) { pos = _rank[pos].prev; } if (pos == 0) { //if we got to the end of list without a single active offer return _find(id); } else { // if we did find a nearby active offer // Walk the order book down from there... if(_isPricedLtOrEq(id, pos)) { uint old_pos; // Guaranteed to run at least once because of // the prior if statements. while (pos != 0 && _isPricedLtOrEq(id, pos)) { old_pos = pos; pos = _rank[pos].prev; } return old_pos; // ...or walk it up. } else { while (pos != 0 && !_isPricedLtOrEq(id, pos)) { pos = _rank[pos].next; } return pos; } } } //return true if offers[low] priced less than or equal to offers[high] function _isPricedLtOrEq( uint low, //lower priced offer's id uint high //higher priced offer's id ) internal view returns (bool) { return mul(offers[low].buy_amt, offers[high].pay_amt) >= mul(offers[high].buy_amt, offers[low].pay_amt); } //these variables are global only because of solidity local variable limit //match offers with taker offer, and execute token transactions function _matcho( uint t_pay_amt, //taker sell how much ERC20 t_pay_gem, //taker sell which token uint t_buy_amt, //taker buy how much ERC20 t_buy_gem, //taker buy which token uint pos, //position id bool rounding //match "close enough" orders? ) internal returns (uint id) { uint best_maker_id; //highest maker id uint t_buy_amt_old; //taker buy how much saved uint m_buy_amt; //maker offer wants to buy this much token uint m_pay_amt; //maker offer wants to sell this much token // there is at least one offer stored for token pair while (_best[address(t_buy_gem)][address(t_pay_gem)] > 0) { best_maker_id = _best[address(t_buy_gem)][address(t_pay_gem)]; m_buy_amt = offers[best_maker_id].buy_amt; m_pay_amt = offers[best_maker_id].pay_amt; // Ugly hack to work around rounding errors. Based on the idea that // the furthest the amounts can stray from their "true" values is 1. // Ergo the worst case has t_pay_amt and m_pay_amt at +1 away from // their "correct" values and m_buy_amt and t_buy_amt at -1. // Since (c - 1) * (d - 1) > (a + 1) * (b + 1) is equivalent to // c * d > a * b + a + b + c + d, we write... if (mul(m_buy_amt, t_buy_amt) > mul(t_pay_amt, m_pay_amt) + (rounding ? m_buy_amt + t_buy_amt + t_pay_amt + m_pay_amt : 0)) { break; } // ^ The `rounding` parameter is a compromise borne of a couple days // of discussion. buy(best_maker_id, min(m_pay_amt, t_buy_amt)); t_buy_amt_old = t_buy_amt; t_buy_amt = sub(t_buy_amt, min(m_pay_amt, t_buy_amt)); t_pay_amt = mul(t_buy_amt, t_pay_amt) / t_buy_amt_old; if (t_pay_amt == 0 || t_buy_amt == 0) { break; } } if (t_buy_amt > 0 && t_pay_amt > 0 && t_pay_amt >= _dust[address(t_pay_gem)]) { //new offer should be created id = super.offer(t_pay_amt, t_pay_gem, t_buy_amt, t_buy_gem); //insert offer into the sorted list _sort(id, pos); } } // Make a new offer without putting it in the sorted list. // Takes funds from the caller into market escrow. // ****Available to authorized contracts only!********** // Keepers should call insert(id,pos) to put offer in the sorted list. function _offeru( uint pay_amt, //maker (ask) sell how much ERC20 pay_gem, //maker (ask) sell which token uint buy_amt, //maker (ask) buy how much ERC20 buy_gem //maker (ask) buy which token ) internal returns (uint id) { require(_dust[address(pay_gem)] <= pay_amt); id = super.offer(pay_amt, pay_gem, buy_amt, buy_gem); _near[id] = _head; _head = id; emit LogUnsortedOffer(id); } //put offer into the sorted list function _sort( uint id, //maker (ask) id uint pos //position to insert into ) internal { require(isActive(id)); ERC20 buy_gem = offers[id].buy_gem; ERC20 pay_gem = offers[id].pay_gem; uint prev_id; //maker (ask) id pos = pos == 0 || offers[pos].pay_gem != pay_gem || offers[pos].buy_gem != buy_gem || !isOfferSorted(pos) ? _find(id) : _findpos(id, pos); if (pos != 0) { //offers[id] is not the highest offer //requirement below is satisfied by statements above //require(_isPricedLtOrEq(id, pos)); prev_id = _rank[pos].prev; _rank[pos].prev = id; _rank[id].next = pos; } else { //offers[id] is the highest offer prev_id = _best[address(pay_gem)][address(buy_gem)]; _best[address(pay_gem)][address(buy_gem)] = id; } if (prev_id != 0) { //if lower offer does exist //requirement below is satisfied by statements above //require(!_isPricedLtOrEq(id, prev_id)); _rank[prev_id].next = id; _rank[id].prev = prev_id; } _span[address(pay_gem)][address(buy_gem)]++; emit LogSortedOffer(id); } // Remove offer from the sorted list (does not cancel offer) function _unsort( uint id //id of maker (ask) offer to remove from sorted list ) internal returns (bool) { address buy_gem = address(offers[id].buy_gem); address pay_gem = address(offers[id].pay_gem); require(_span[pay_gem][buy_gem] > 0); require(_rank[id].delb == 0 && //assert id is in the sorted list isOfferSorted(id)); if (id != _best[pay_gem][buy_gem]) { // offers[id] is not the highest offer require(_rank[_rank[id].next].prev == id); _rank[_rank[id].next].prev = _rank[id].prev; } else { //offers[id] is the highest offer _best[pay_gem][buy_gem] = _rank[id].prev; } if (_rank[id].prev != 0) { //offers[id] is not the lowest offer require(_rank[_rank[id].prev].next == id); _rank[_rank[id].prev].next = _rank[id].next; } _span[pay_gem][buy_gem]--; _rank[id].delb = block.number; //mark _rank[id] for deletion return true; } //Hide offer from the unsorted order book (does not cancel offer) function _hide( uint id //id of maker offer to remove from unsorted list ) internal returns (bool) { uint uid = _head; //id of an offer in unsorted offers list uint pre = uid; //id of previous offer in unsorted offers list require(!isOfferSorted(id)); //make sure offer id is not in sorted offers list if (_head == id) { //check if offer is first offer in unsorted offers list _head = _near[id]; //set head to new first unsorted offer _near[id] = 0; //delete order from unsorted order list return true; } while (uid > 0 && uid != id) { //find offer in unsorted order list pre = uid; uid = _near[uid]; } if (uid != id) { //did not find offer id in unsorted offers list return false; } _near[pre] = _near[id]; //set previous unsorted offer to point to offer after offer id _near[id] = 0; //delete order from unsorted order list return true; } }