ETH Price: $2,405.33 (+7.28%)

Transaction Decoder

Block:
19487826 at Mar-22-2024 04:36:23 AM +UTC
Transaction Fee:
0.001567249833500605 ETH $3.77
Gas Used:
72,385 Gas / 21.651582973 Gwei

Emitted Events:

370 Shima.Transfer( from=[Receiver] TokenDistribution, to=[Sender] 0xc728b4c9aa09cbc1d898520c577c6301b2d99f40, value=250000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
(beaverbuild)
13.955864069403212024 Eth13.955865474515786814 Eth0.00000140511257479
0x99568521...cB707f45d
0xc728b4C9...1b2D99f40
0.004331084939074785 Eth
Nonce: 185
0.00276383510557418 Eth
Nonce: 186
0.001567249833500605
0xE917F192...98262a911

Execution Trace

TokenDistribution.claim( )
  • Shima.transfer( to=0xc728b4C9Aa09CBc1D898520C577c6301b2D99f40, value=250000000000000000000000 ) => ( True )
    File 1 of 2: TokenDistribution
    // SPDX-License-Identifier: MIT
    // File: @openzeppelin/contracts/utils/cryptography/MerkleProof.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the Merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates Merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         *@dev The multiproof provided is not valid.
         */
        error MerkleProofInvalidMultiproof();
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
    
        /**
         * @dev Calldata version of {verify}
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Calldata version of {processProof}
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
    
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
    
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Sorts the pair (a, b) and hashes the result.
         */
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
    
        /**
         * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
         */
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    
    // File: @openzeppelin/contracts/utils/math/SafeMath.sol
    
    
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
    
    pragma solidity ^0.8.0;
    
    // CAUTION
    // This version of SafeMath should only be used with Solidity 0.8 or later,
    // because it relies on the compiler's built in overflow checks.
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations.
     *
     * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
     * now has built in overflow checking.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            return a + b;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return a - b;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            return a * b;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator.
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return a / b;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return a % b;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {trySub}.
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            unchecked {
                require(b <= a, errorMessage);
                return a - b;
            }
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            unchecked {
                require(b > 0, errorMessage);
                return a / b;
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting with custom message when dividing by zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryMod}.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            unchecked {
                require(b > 0, errorMessage);
                return a % b;
            }
        }
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }
    
    // File: @openzeppelin/contracts/interfaces/IERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    
    // File: contracts/TokenDistribution.sol
    
    
    pragma solidity ^0.8.24;
    
    
    
    
    
    contract TokenDistribution is Ownable{
        using SafeMath for uint256;
        mapping(address => mapping(uint256 => uint256)) private _claimedAmountsByUser;
        bool private _pause = true;
        bool private _whitelistStatus = false;
        address private _tokenAddress;
        uint8 decimals = 18;
        uint256 private _maxAllowancePerWallet;
        uint256 private _currentPhase = 0;
        uint256 private _price = 0 ether;
    
        bytes32 private root;
        IERC20 token;
    
        //constructor(address initialOwner)
    
        constructor() Ownable(msg.sender){}
    
        // -------------     GETTERS     -------------
    
        function getTokenAddress() public view returns (address){
            return _tokenAddress;
        }
    
        function getClaimedAmountByUser(address user) public view returns (uint256){
            return _claimedAmountsByUser[user][_currentPhase];
        }
    
        function getDecimals() public view returns (uint8){
            return decimals;
        }
    
        function getMaxAllowancePerWallet() public view returns (uint256){
            return _maxAllowancePerWallet;
        }
    
        function getCurrentPhase() public view returns (uint256) {
            return _currentPhase;
        }
    
        function getPrice() public view returns (uint256){
            return _price;
        }
    
        function getWhitelistStatus() public view returns (bool){
            return _whitelistStatus;
        }
    
        function getPause() public view returns (bool){
            return _pause;
        }
    
        function getPhaseInfo() public view returns (uint256 maxPerWallet, uint256 price, uint256 phaseNumber, bool whitelistStatus) {
            return (maxPerWallet = _maxAllowancePerWallet, price = _price, phaseNumber = _currentPhase, whitelistStatus = _whitelistStatus);
        }
    
        // -------------     SETTERS     -------------
    
        function setPhaseInfo(uint256 newPhase, uint256 newMaxPerWallet, uint256 newPrice, bool newWhitelistStatus) public onlyOwner {
            require(newPhase > _currentPhase , "The new phase need to be greater then current phase");
            _currentPhase = newPhase;
            _maxAllowancePerWallet = newMaxPerWallet;
            _price = newPrice;
            _whitelistStatus = newWhitelistStatus;
        }
    
        function setPhase(uint256 newPhase) public onlyOwner{
            require(newPhase > _currentPhase , "The new phase need to be greater then current phase");
            _currentPhase = newPhase;
        }
    
        function setPause(bool newStatus) public onlyOwner{
            _pause = newStatus;
        }
    
        function setWhitelistStatus(bool newStatus) public onlyOwner{
            _whitelistStatus = newStatus;
        }
    
        function setToken(address newTokenAddress) public onlyOwner{
            _tokenAddress = newTokenAddress;
            token = IERC20(_tokenAddress);
        }
    
        function setDecimals(uint8 newDecimals) public onlyOwner{
            decimals = newDecimals;
        }
    
        function setMaxAllowancePerWallet(uint256 newMaxAllowancePerWallet) public onlyOwner{
            _maxAllowancePerWallet = newMaxAllowancePerWallet;
        }
    
        function setPrice(uint256 newPrice) public onlyOwner{
            _price = newPrice;
        }
    
        function setRoot(bytes32 _newRoot) external onlyOwner {
            root = _newRoot;
        }
    
        function isValid(bytes32[] calldata _merkleProof) internal view returns (bool){
            bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
            require(MerkleProof.verify(_merkleProof, root, leaf), "Address is not whitelisted!");
            return true;
        }
    
        function depositTokens(uint256 amount) external onlyOwner {
            require(amount > 0, "Deposit amount must be greater than 0");
            require(token.transferFrom( msg.sender,address(this), amount.mul(10**decimals)), "Transfer failed");
        }
    
        function claim(uint256 amount, bytes32[] calldata proofs) public payable {
            require(_pause == false , "Claiming not allowed at the moment");
            if(_whitelistStatus)
                {
                    require(isValid(proofs), "You're not whitelisted");
                }
            require(_claimedAmountsByUser[msg.sender][_currentPhase].add(amount) <= _maxAllowancePerWallet,"Claim amount exceeds maximum allowance per wallet");
            require(msg.value == (amount * _price), "Incorrect value");
            require(token.transfer(msg.sender, amount.mul(10**decimals)),"Claiming tokens failed");
            _claimedAmountsByUser[msg.sender][_currentPhase] = _claimedAmountsByUser[msg.sender][_currentPhase].add(amount);
        }
    
       function withdrawTokens() external onlyOwner {
            uint256 remainingBalance = token.balanceOf(address(this));
            require(remainingBalance > 0, "No remaining tokens to withdraw");
            token.transfer(owner(), remainingBalance);
        }
    
        function withdrawAmountTokens(uint256 amount) external onlyOwner {
            require(amount > 0, "No remaining tokens to withdraw");
            token.transfer(owner(), amount.mul(10**decimals));
        }
    
        function withdrawETH(address _address) external onlyOwner {
            uint256 balance = address(this).balance;
            payable(_address).transfer(balance);
        }
    
        function airDropBatch(address[] memory recipients, uint256[] memory amounts)
            external
            onlyOwner
        {
            require(recipients.length == amounts.length,"Mismatched array lengths");
    
            for (uint256 i = 0; i < recipients.length; i++) {
                token.transfer(recipients[i], amounts[i].mul(10**decimals));
            }
        }
    }

    File 2 of 2: Shima
    // SPDX-License-Identifier: MIT
    // File: @openzeppelin/contracts/utils/cryptography/MerkleProof.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
    
    pragma solidity ^0.8.24;
    
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the Merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates Merkle trees that are safe
     * against this attack out of the box.
     */
    library MerkleProof {
        /**
         *@dev The multiproof provided is not valid.
         */
        error MerkleProofInvalidMultiproof();
    
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
    
        /**
         * @dev Calldata version of {verify}
         */
        function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
            return processProofCalldata(proof, leaf) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Calldata version of {processProof}
         */
        function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                computedHash = _hashPair(computedHash, proof[i]);
            }
            return computedHash;
        }
    
        /**
         * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
         * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerify(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProof(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Calldata version of {multiProofVerify}
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function multiProofVerifyCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32 root,
            bytes32[] memory leaves
        ) internal pure returns (bool) {
            return processMultiProofCalldata(proof, proofFlags, leaves) == root;
        }
    
        /**
         * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
         * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
         * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
         * respectively.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
         * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
         * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
         */
        function processMultiProof(
            bytes32[] memory proof,
            bool[] memory proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
    
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Calldata version of {processMultiProof}.
         *
         * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
         */
        function processMultiProofCalldata(
            bytes32[] calldata proof,
            bool[] calldata proofFlags,
            bytes32[] memory leaves
        ) internal pure returns (bytes32 merkleRoot) {
            // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
            // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
            // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
            // the Merkle tree.
            uint256 leavesLen = leaves.length;
            uint256 proofLen = proof.length;
            uint256 totalHashes = proofFlags.length;
    
            // Check proof validity.
            if (leavesLen + proofLen != totalHashes + 1) {
                revert MerkleProofInvalidMultiproof();
            }
    
            // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
            // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
            bytes32[] memory hashes = new bytes32[](totalHashes);
            uint256 leafPos = 0;
            uint256 hashPos = 0;
            uint256 proofPos = 0;
            // At each step, we compute the next hash using two values:
            // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
            //   get the next hash.
            // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
            //   `proof` array.
            for (uint256 i = 0; i < totalHashes; i++) {
                bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                bytes32 b = proofFlags[i]
                    ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                    : proof[proofPos++];
                hashes[i] = _hashPair(a, b);
            }
    
            if (totalHashes > 0) {
                if (proofPos != proofLen) {
                    revert MerkleProofInvalidMultiproof();
                }
                unchecked {
                    return hashes[totalHashes - 1];
                }
            } else if (leavesLen > 0) {
                return leaves[0];
            } else {
                return proof[0];
            }
        }
    
        /**
         * @dev Sorts the pair (a, b) and hashes the result.
         */
        function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
            return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
        }
    
        /**
         * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
         */
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    
    // File: @openzeppelin/contracts/utils/math/SafeMath.sol
    
    
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
    
    pragma solidity ^0.8.0;
    
    // CAUTION
    // This version of SafeMath should only be used with Solidity 0.8 or later,
    // because it relies on the compiler's built in overflow checks.
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations.
     *
     * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
     * now has built in overflow checking.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            return a + b;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            return a - b;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            return a * b;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator.
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            return a / b;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            return a % b;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {trySub}.
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            unchecked {
                require(b <= a, errorMessage);
                return a - b;
            }
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            unchecked {
                require(b > 0, errorMessage);
                return a / b;
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting with custom message when dividing by zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryMod}.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            unchecked {
                require(b > 0, errorMessage);
                return a % b;
            }
        }
    }
    
    // File: @openzeppelin/contracts/interfaces/draft-IERC6093.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard ERC20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    
    /**
     * @dev Standard ERC721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
    
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
    
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    
    /**
     * @dev Standard ERC1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
    
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.20;
    
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.20;
    
    
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     */
    abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
        mapping(address account => uint256) private _balances;
    
        mapping(address account => mapping(address spender => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `value`.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `value`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `value`.
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, value);
            _transfer(from, to, value);
            return true;
        }
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _transfer(address from, address to, uint256 value) internal {
            if (from == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            if (to == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(from, to, value);
        }
    
        /**
         * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
         * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
         * this function.
         *
         * Emits a {Transfer} event.
         */
        function _update(address from, address to, uint256 value) internal virtual {
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                _totalSupply += value;
            } else {
                uint256 fromBalance = _balances[from];
                if (fromBalance < value) {
                    revert ERC20InsufficientBalance(from, fromBalance, value);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply.
                    _balances[from] = fromBalance - value;
                }
            }
    
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                    _totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                    _balances[to] += value;
                }
            }
    
            emit Transfer(from, to, value);
        }
    
        /**
         * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
         * Relies on the `_update` mechanism
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _mint(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(address(0), account, value);
        }
    
        /**
         * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
         * Relies on the `_update` mechanism.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead
         */
        function _burn(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            _update(account, address(0), value);
        }
    
        /**
         * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         *
         * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            _approve(owner, spender, value, true);
        }
    
        /**
         * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
         *
         * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
         * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
         * `Approval` event during `transferFrom` operations.
         *
         * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
         * true using the following override:
         * ```
         * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
         *     super._approve(owner, spender, value, true);
         * }
         * ```
         *
         * Requirements are the same as {_approve}.
         */
        function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
            if (owner == address(0)) {
                revert ERC20InvalidApprover(address(0));
            }
            if (spender == address(0)) {
                revert ERC20InvalidSpender(address(0));
            }
            _allowances[owner][spender] = value;
            if (emitEvent) {
                emit Approval(owner, spender, value);
            }
        }
    
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `value`.
         *
         * Does not update the allowance value in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Does not emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (currentAllowance < value) {
                    revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                }
                unchecked {
                    _approve(owner, spender, currentAllowance - value, false);
                }
            }
        }
    }
    
    
    
    pragma solidity ^0.8.24;
    
    
    
    contract Shima is ERC20, Ownable {
        using SafeMath for uint256;
        uint256 constant private MAX_SUPPLY = 5000000000; 
        uint256 private _remainingSupply = MAX_SUPPLY;
        uint256 private _currentPhase = 0;
        uint256 private _presalePrice = 0.000000055 ether;
        uint256 private _publicSalePrice = 0.000000075 ether;
        uint256 private _saleTotalSupply = 1000000000;
        uint256 private _maxPerWallet = 4000000;
        uint256 private _totalTokensSold;
        bytes32 public root;
    
        constructor()
            ERC20("SHIMA", "SHIMA")
            Ownable(msg.sender)
        {
            _mint(address(this), MAX_SUPPLY.mul(10**decimals()));
            _remainingSupply = _remainingSupply.mul(10**decimals());
            _saleTotalSupply = _saleTotalSupply.mul(10**decimals());
            _maxPerWallet = _maxPerWallet.mul(10**decimals());
        }
    
        // -------------     GETTERS     -------------
    
        function remainingSupply() public view returns (uint256) {
            return _remainingSupply;
        }
    
        function currentPhase() public view returns (uint256) {
            return _currentPhase;
        }
    
        function presalePrice() public view returns (uint256) {
            return _presalePrice;
        }
    
        function publicSalePrice() public view returns (uint256) {
            return _publicSalePrice;
        }
    
        function saleTotalSupply() public view returns (uint256) {
            return _saleTotalSupply;
        }
    
        function maxPerWallet() public view returns (uint256){
            return _maxPerWallet;
        }
     
        // -------------     SETTERS     -------------
        /**
         * @notice Set phase for sale tokens.
         * @param newPhase Presale = 1 ; PublicSale = 2 ; Paused = 0 ;
         */
        function setCurrentPhase(uint256 newPhase) public onlyOwner {
            require(newPhase >= 0 && newPhase <= 2, "Phase must be greater or equal than 0 and less or equal than 2");
            _currentPhase = newPhase;
        }
    
        function setPresalePrice(uint256 newPrice) public onlyOwner {
            _presalePrice = newPrice;
        }
    
        function setPublicSalePrice(uint256 newPrice) public onlyOwner {
            _publicSalePrice = newPrice;
        }
    
        function setSaleTotalSupply(uint256 newSaleTotalSupply) public onlyOwner {
            _saleTotalSupply = newSaleTotalSupply.mul(10**decimals());
        }
    
        function setMaxPerWallet(uint256 newMaxPerWallet) public onlyOwner {
            _maxPerWallet = newMaxPerWallet.mul(10**decimals());
        }
    
        function withdrawETH(address _address) external onlyOwner {
            uint256 balance = address(this).balance;
            payable(_address).transfer(balance);
        }
    
        function withdrawTokens(address to) external onlyOwner {
            _transfer(address(this), to, _remainingSupply);
            _remainingSupply = 0;
        }
    
        function setRoot(bytes32 _newRoot) external onlyOwner {
            root = _newRoot;
        }
    
        function isValid(bytes32[] calldata _merkleProof) internal view returns (bool){
            bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
            require(MerkleProof.verify(_merkleProof, root, leaf), "Address is not whitelisted!");
            return true;
        }
    
        function buy(uint256 _amount, bytes32[] calldata proofs) public payable {
            uint256 balance = balanceOf(msg.sender);
            uint256 requiredEth;
            uint256 amount = _amount.mul(10**decimals());
    
            require(_currentPhase != 0, "Buying not allowed at the moment");
            require(_totalTokensSold.add(amount) <= _saleTotalSupply, "Buy amount exceeds maximum allowed");
            require(balance.add(amount) <= _maxPerWallet,"Buy amount exceeds maximum per wallet");
    
            if (_currentPhase == 1) {
                require(isValid(proofs), "You're not whitelisted");
                requiredEth = _amount.mul (_presalePrice);
                require(msg.value == requiredEth, "Incorrect value");
            } else if (_currentPhase == 2) {
                requiredEth = _amount.mul(_publicSalePrice);
                require(msg.value == requiredEth, "Incorrect value");
            }
            _transfer(address(this), msg.sender, amount);
            _totalTokensSold+=amount;
            _remainingSupply-=amount;
        }
    
        function airDropBatch(address[] memory recipients, uint256[] memory amounts)
            external
            onlyOwner
        {
            require(
                recipients.length == amounts.length,
                "Mismatched array lengths"
            );
    
            for (uint256 i = 0; i < recipients.length; i++) {
                address to = recipients[i];
                uint256 amount = amounts[i].mul(10**decimals());
    
                _transfer(owner(), to, amount);
            }
        }
    
        function _update(
            address from,
            address to,
            uint256 value
        ) internal override(ERC20){
            super._update(from, to, value);
        }
    
        receive() external payable {}
    }