ETH Price: $1,820.42 (+0.56%)

Transaction Decoder

Block:
21717570 at Jan-27-2025 06:12:11 PM +UTC
Transaction Fee:
0.00135345623819645 ETH $2.46
Gas Used:
96,725 Gas / 13.992827482 Gwei

Emitted Events:

93 RelayReceiver.FundsForwardedWithData( data=0x1074CE12B5D58CFC439BBA35D22AEFA73A23AC3B29EC32AADE235DCE495A13CE )
94 LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, c05fbf626b9b169f9d07246a54665eb1288636b19fe6b6acb710a2436150d688, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000004a9d48470f1cb0905e21992bd57ae95e9d5ffae8, 000000000000000000000000000000000000000000000000016345785d8a0000, 0000000000000000000000000000000000000000000000000000000000000ab5, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000005, 72656c6179000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000f, 6a756d7065722e65786368616e67650000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x1231DEB6...7486F4EaE
(LI.FI: LiFi Diamond)
(Titan Builder)
14.973194367569372613 Eth14.973309093544352163 Eth0.00011472597497955
0x4E1D2E7a...cE0eC2263
1.649804096145008569 Eth
Nonce: 155
1.548450639906812119 Eth
Nonce: 156
0.10135345623819645
0xf70da978...8dfA3dbEF 403.079790961632378839 Eth403.179790961632378839 Eth0.1

Execution Trace

ETH 0.1 LiFiDiamond.ae328590( )
  • ETH 0.1 RelayFacet.startBridgeTokensViaRelay( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:C05FBF626B9B169F9D07246A54665EB1288636B19FE6B6ACB710A2436150D688, valueString:C05FBF626B9B169F9D07246A54665EB1288636B19FE6B6ACB710A2436150D688}, {name:bridge, type:string, order:2, indexed:false, value:relay, valueString:relay}, {name:integrator, type:string, order:3, indexed:false, value:jumper.exchange, valueString:jumper.exchange}, {name:referrer, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:receiver, type:address, order:6, indexed:false, value:0x4A9d48470f1Cb0905e21992Bd57ae95e9d5fFae8, valueString:0x4A9d48470f1Cb0905e21992Bd57ae95e9d5fFae8}, {name:minAmount, type:uint256, order:7, indexed:false, value:100000000000000000, valueString:100000000000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:2741, valueString:2741}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:false, valueString:False}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _relayData=[{name:requestId, type:bytes32, order:1, indexed:false, value:1074CE12B5D58CFC439BBA35D22AEFA73A23AC3B29EC32AADE235DCE495A13CE, valueString:1074CE12B5D58CFC439BBA35D22AEFA73A23AC3B29EC32AADE235DCE495A13CE}, {name:nonEVMReceiver, type:bytes32, order:2, indexed:false, value:0000000000000000000000004A9D48470F1CB0905E21992BD57AE95E9D5FFAE8, valueString:0000000000000000000000004A9D48470F1CB0905E21992BD57AE95E9D5FFAE8}, {name:receivingAssetId, type:bytes32, order:3, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:signature, type:bytes, order:4, indexed:false, value:0x1BA4861937DCBC1127C5CEB82BA4C2B7FC887FB9D55BACE9EF4885D6095776A761AB88DD698A620E7C4C9FBF5E10F66032E5E6D83D8FC34F3349D71B545BA5501B, valueString:0x1BA4861937DCBC1127C5CEB82BA4C2B7FC887FB9D55BACE9EF4885D6095776A761AB88DD698A620E7C4C9FBF5E10F66032E5E6D83D8FC34F3349D71B545BA5501B}] )
    • Null: 0x000...001.097a2d1d( )
    • ETH 0.1 RelayReceiver.1074ce12( )
      • ETH 0.1 0xf70da97812cb96acdf810712aa562db8dfa3dbef.CALL( )
        File 1 of 3: LiFiDiamond
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        error TokenAddressIsZero();
        error TokenNotSupported();
        error CannotBridgeToSameNetwork();
        error ZeroPostSwapBalance();
        error NoSwapDataProvided();
        error NativeValueWithERC();
        error ContractCallNotAllowed();
        error NullAddrIsNotAValidSpender();
        error NullAddrIsNotAnERC20Token();
        error NoTransferToNullAddress();
        error NativeAssetTransferFailed();
        error InvalidBridgeConfigLength();
        error InvalidAmount();
        error InvalidContract();
        error InvalidConfig();
        error UnsupportedChainId(uint256 chainId);
        error InvalidReceiver();
        error InvalidDestinationChain();
        error InvalidSendingToken();
        error InvalidCaller();
        error AlreadyInitialized();
        error NotInitialized();
        error OnlyContractOwner();
        error CannotAuthoriseSelf();
        error RecoveryAddressCannotBeZero();
        error CannotDepositNativeToken();
        error InvalidCallData();
        error NativeAssetNotSupported();
        error UnAuthorized();
        error NoSwapFromZeroBalance();
        error InvalidFallbackAddress();
        error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
        error InsufficientBalance(uint256 required, uint256 balance);
        error ZeroAmount();
        error InvalidFee();
        error InformationMismatch();
        error NotAContract();
        error NotEnoughBalance(uint256 requested, uint256 available);
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        interface IDiamondCut {
            enum FacetCutAction {
                Add,
                Replace,
                Remove
            }
            // Add=0, Replace=1, Remove=2
            struct FacetCut {
                address facetAddress;
                FacetCutAction action;
                bytes4[] functionSelectors;
            }
            /// @notice Add/replace/remove any number of functions and optionally execute
            ///         a function with delegatecall
            /// @param _diamondCut Contains the facet addresses and function selectors
            /// @param _init The address of the contract or facet to execute _calldata
            /// @param _calldata A function call, including function selector and arguments
            ///                  _calldata is executed with delegatecall on _init
            function diamondCut(
                FacetCut[] calldata _diamondCut,
                address _init,
                bytes calldata _calldata
            ) external;
            event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { LibDiamond } from "./Libraries/LibDiamond.sol";
        import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
        import { LibUtil } from "./Libraries/LibUtil.sol";
        contract LiFiDiamond {
            constructor(address _contractOwner, address _diamondCutFacet) payable {
                LibDiamond.setContractOwner(_contractOwner);
                // Add the diamondCut external function from the diamondCutFacet
                IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
                bytes4[] memory functionSelectors = new bytes4[](1);
                functionSelectors[0] = IDiamondCut.diamondCut.selector;
                cut[0] = IDiamondCut.FacetCut({
                    facetAddress: _diamondCutFacet,
                    action: IDiamondCut.FacetCutAction.Add,
                    functionSelectors: functionSelectors
                });
                LibDiamond.diamondCut(cut, address(0), "");
            }
            // Find facet for function that is called and execute the
            // function if a facet is found and return any value.
            // solhint-disable-next-line no-complex-fallback
            fallback() external payable {
                LibDiamond.DiamondStorage storage ds;
                bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
                // get diamond storage
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    ds.slot := position
                }
                // get facet from function selector
                address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
                if (facet == address(0)) {
                    revert LibDiamond.FunctionDoesNotExist();
                }
                // Execute external function from facet using delegatecall and return any value.
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    // copy function selector and any arguments
                    calldatacopy(0, 0, calldatasize())
                    // execute function call using the facet
                    let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
                    // get any return value
                    returndatacopy(0, 0, returndatasize())
                    // return any return value or error back to the caller
                    switch result
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            // Able to receive ether
            // solhint-disable-next-line no-empty-blocks
            receive() external payable {}
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        library LibBytes {
            // solhint-disable no-inline-assembly
            // LibBytes specific errors
            error SliceOverflow();
            error SliceOutOfBounds();
            error AddressOutOfBounds();
            error UintOutOfBounds();
            // -------------------------
            function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
                bytes memory tempBytes;
                assembly {
                    // Get a location of some free memory and store it in tempBytes as
                    // Solidity does for memory variables.
                    tempBytes := mload(0x40)
                    // Store the length of the first bytes array at the beginning of
                    // the memory for tempBytes.
                    let length := mload(_preBytes)
                    mstore(tempBytes, length)
                    // Maintain a memory counter for the current write location in the
                    // temp bytes array by adding the 32 bytes for the array length to
                    // the starting location.
                    let mc := add(tempBytes, 0x20)
                    // Stop copying when the memory counter reaches the length of the
                    // first bytes array.
                    let end := add(mc, length)
                    for {
                        // Initialize a copy counter to the start of the _preBytes data,
                        // 32 bytes into its memory.
                        let cc := add(_preBytes, 0x20)
                    } lt(mc, end) {
                        // Increase both counters by 32 bytes each iteration.
                        mc := add(mc, 0x20)
                        cc := add(cc, 0x20)
                    } {
                        // Write the _preBytes data into the tempBytes memory 32 bytes
                        // at a time.
                        mstore(mc, mload(cc))
                    }
                    // Add the length of _postBytes to the current length of tempBytes
                    // and store it as the new length in the first 32 bytes of the
                    // tempBytes memory.
                    length := mload(_postBytes)
                    mstore(tempBytes, add(length, mload(tempBytes)))
                    // Move the memory counter back from a multiple of 0x20 to the
                    // actual end of the _preBytes data.
                    mc := end
                    // Stop copying when the memory counter reaches the new combined
                    // length of the arrays.
                    end := add(mc, length)
                    for {
                        let cc := add(_postBytes, 0x20)
                    } lt(mc, end) {
                        mc := add(mc, 0x20)
                        cc := add(cc, 0x20)
                    } {
                        mstore(mc, mload(cc))
                    }
                    // Update the free-memory pointer by padding our last write location
                    // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
                    // next 32 byte block, then round down to the nearest multiple of
                    // 32. If the sum of the length of the two arrays is zero then add
                    // one before rounding down to leave a blank 32 bytes (the length block with 0).
                    mstore(
                        0x40,
                        and(
                            add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                            not(31) // Round down to the nearest 32 bytes.
                        )
                    )
                }
                return tempBytes;
            }
            function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
                assembly {
                    // Read the first 32 bytes of _preBytes storage, which is the length
                    // of the array. (We don't need to use the offset into the slot
                    // because arrays use the entire slot.)
                    let fslot := sload(_preBytes.slot)
                    // Arrays of 31 bytes or less have an even value in their slot,
                    // while longer arrays have an odd value. The actual length is
                    // the slot divided by two for odd values, and the lowest order
                    // byte divided by two for even values.
                    // If the slot is even, bitwise and the slot with 255 and divide by
                    // two to get the length. If the slot is odd, bitwise and the slot
                    // with -1 and divide by two.
                    let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                    let mlength := mload(_postBytes)
                    let newlength := add(slength, mlength)
                    // slength can contain both the length and contents of the array
                    // if length < 32 bytes so let's prepare for that
                    // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                    switch add(lt(slength, 32), lt(newlength, 32))
                    case 2 {
                        // Since the new array still fits in the slot, we just need to
                        // update the contents of the slot.
                        // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                        sstore(
                            _preBytes.slot,
                            // all the modifications to the slot are inside this
                            // next block
                            add(
                                // we can just add to the slot contents because the
                                // bytes we want to change are the LSBs
                                fslot,
                                add(
                                    mul(
                                        div(
                                            // load the bytes from memory
                                            mload(add(_postBytes, 0x20)),
                                            // zero all bytes to the right
                                            exp(0x100, sub(32, mlength))
                                        ),
                                        // and now shift left the number of bytes to
                                        // leave space for the length in the slot
                                        exp(0x100, sub(32, newlength))
                                    ),
                                    // increase length by the double of the memory
                                    // bytes length
                                    mul(mlength, 2)
                                )
                            )
                        )
                    }
                    case 1 {
                        // The stored value fits in the slot, but the combined value
                        // will exceed it.
                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                        // save new length
                        sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                        // The contents of the _postBytes array start 32 bytes into
                        // the structure. Our first read should obtain the `submod`
                        // bytes that can fit into the unused space in the last word
                        // of the stored array. To get this, we read 32 bytes starting
                        // from `submod`, so the data we read overlaps with the array
                        // contents by `submod` bytes. Masking the lowest-order
                        // `submod` bytes allows us to add that value directly to the
                        // stored value.
                        let submod := sub(32, slength)
                        let mc := add(_postBytes, submod)
                        let end := add(_postBytes, mlength)
                        let mask := sub(exp(0x100, submod), 1)
                        sstore(
                            sc,
                            add(
                                and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                                and(mload(mc), mask)
                            )
                        )
                        for {
                            mc := add(mc, 0x20)
                            sc := add(sc, 1)
                        } lt(mc, end) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            sstore(sc, mload(mc))
                        }
                        mask := exp(0x100, sub(mc, end))
                        sstore(sc, mul(div(mload(mc), mask), mask))
                    }
                    default {
                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        // Start copying to the last used word of the stored array.
                        let sc := add(keccak256(0x0, 0x20), div(slength, 32))
                        // save new length
                        sstore(_preBytes.slot, add(mul(newlength, 2), 1))
                        // Copy over the first `submod` bytes of the new data as in
                        // case 1 above.
                        let slengthmod := mod(slength, 32)
                        let submod := sub(32, slengthmod)
                        let mc := add(_postBytes, submod)
                        let end := add(_postBytes, mlength)
                        let mask := sub(exp(0x100, submod), 1)
                        sstore(sc, add(sload(sc), and(mload(mc), mask)))
                        for {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } lt(mc, end) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            sstore(sc, mload(mc))
                        }
                        mask := exp(0x100, sub(mc, end))
                        sstore(sc, mul(div(mload(mc), mask), mask))
                    }
                }
            }
            function slice(
                bytes memory _bytes,
                uint256 _start,
                uint256 _length
            ) internal pure returns (bytes memory) {
                if (_length + 31 < _length) revert SliceOverflow();
                if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                bytes memory tempBytes;
                assembly {
                    switch iszero(_length)
                    case 0 {
                        // Get a location of some free memory and store it in tempBytes as
                        // Solidity does for memory variables.
                        tempBytes := mload(0x40)
                        // The first word of the slice result is potentially a partial
                        // word read from the original array. To read it, we calculate
                        // the length of that partial word and start copying that many
                        // bytes into the array. The first word we copy will start with
                        // data we don't care about, but the last `lengthmod` bytes will
                        // land at the beginning of the contents of the new array. When
                        // we're done copying, we overwrite the full first word with
                        // the actual length of the slice.
                        let lengthmod := and(_length, 31)
                        // The multiplication in the next line is necessary
                        // because when slicing multiples of 32 bytes (lengthmod == 0)
                        // the following copy loop was copying the origin's length
                        // and then ending prematurely not copying everything it should.
                        let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                        let end := add(mc, _length)
                        for {
                            // The multiplication in the next line has the same exact purpose
                            // as the one above.
                            let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                        } lt(mc, end) {
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } {
                            mstore(mc, mload(cc))
                        }
                        mstore(tempBytes, _length)
                        //update free-memory pointer
                        //allocating the array padded to 32 bytes like the compiler does now
                        mstore(0x40, and(add(mc, 31), not(31)))
                    }
                    //if we want a zero-length slice let's just return a zero-length array
                    default {
                        tempBytes := mload(0x40)
                        //zero out the 32 bytes slice we are about to return
                        //we need to do it because Solidity does not garbage collect
                        mstore(tempBytes, 0)
                        mstore(0x40, add(tempBytes, 0x20))
                    }
                }
                return tempBytes;
            }
            function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
                if (_bytes.length < _start + 20) {
                    revert AddressOutOfBounds();
                }
                address tempAddress;
                assembly {
                    tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
                }
                return tempAddress;
            }
            function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
                if (_bytes.length < _start + 1) {
                    revert UintOutOfBounds();
                }
                uint8 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x1), _start))
                }
                return tempUint;
            }
            function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
                if (_bytes.length < _start + 2) {
                    revert UintOutOfBounds();
                }
                uint16 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x2), _start))
                }
                return tempUint;
            }
            function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
                if (_bytes.length < _start + 4) {
                    revert UintOutOfBounds();
                }
                uint32 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x4), _start))
                }
                return tempUint;
            }
            function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
                if (_bytes.length < _start + 8) {
                    revert UintOutOfBounds();
                }
                uint64 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x8), _start))
                }
                return tempUint;
            }
            function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
                if (_bytes.length < _start + 12) {
                    revert UintOutOfBounds();
                }
                uint96 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0xc), _start))
                }
                return tempUint;
            }
            function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
                if (_bytes.length < _start + 16) {
                    revert UintOutOfBounds();
                }
                uint128 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x10), _start))
                }
                return tempUint;
            }
            function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
                if (_bytes.length < _start + 32) {
                    revert UintOutOfBounds();
                }
                uint256 tempUint;
                assembly {
                    tempUint := mload(add(add(_bytes, 0x20), _start))
                }
                return tempUint;
            }
            function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
                if (_bytes.length < _start + 32) {
                    revert UintOutOfBounds();
                }
                bytes32 tempBytes32;
                assembly {
                    tempBytes32 := mload(add(add(_bytes, 0x20), _start))
                }
                return tempBytes32;
            }
            function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
                bool success = true;
                assembly {
                    let length := mload(_preBytes)
                    // if lengths don't match the arrays are not equal
                    switch eq(length, mload(_postBytes))
                    case 1 {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1
                        let mc := add(_preBytes, 0x20)
                        let end := add(mc, length)
                        for {
                            let cc := add(_postBytes, 0x20)
                            // the next line is the loop condition:
                            // while(uint256(mc < end) + cb == 2)
                        } eq(add(lt(mc, end), cb), 2) {
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } {
                            // if any of these checks fails then arrays are not equal
                            if iszero(eq(mload(mc), mload(cc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                    default {
                        // unsuccess:
                        success := 0
                    }
                }
                return success;
            }
            function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
                bool success = true;
                assembly {
                    // we know _preBytes_offset is 0
                    let fslot := sload(_preBytes.slot)
                    // Decode the length of the stored array like in concatStorage().
                    let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
                    let mlength := mload(_postBytes)
                    // if lengths don't match the arrays are not equal
                    switch eq(slength, mlength)
                    case 1 {
                        // slength can contain both the length and contents of the array
                        // if length < 32 bytes so let's prepare for that
                        // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                        if iszero(iszero(slength)) {
                            switch lt(slength, 32)
                            case 1 {
                                // blank the last byte which is the length
                                fslot := mul(div(fslot, 0x100), 0x100)
                                if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                                    // unsuccess:
                                    success := 0
                                }
                            }
                            default {
                                // cb is a circuit breaker in the for loop since there's
                                //  no said feature for inline assembly loops
                                // cb = 1 - don't breaker
                                // cb = 0 - break
                                let cb := 1
                                // get the keccak hash to get the contents of the array
                                mstore(0x0, _preBytes.slot)
                                let sc := keccak256(0x0, 0x20)
                                let mc := add(_postBytes, 0x20)
                                let end := add(mc, mlength)
                                // the next line is the loop condition:
                                // while(uint256(mc < end) + cb == 2)
                                // solhint-disable-next-line no-empty-blocks
                                for {
                                } eq(add(lt(mc, end), cb), 2) {
                                    sc := add(sc, 1)
                                    mc := add(mc, 0x20)
                                } {
                                    if iszero(eq(sload(sc), mload(mc))) {
                                        // unsuccess:
                                        success := 0
                                        cb := 0
                                    }
                                }
                            }
                        }
                    }
                    default {
                        // unsuccess:
                        success := 0
                    }
                }
                return success;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
        import { LibUtil } from "../Libraries/LibUtil.sol";
        import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
        /// Implementation of EIP-2535 Diamond Standard
        /// https://eips.ethereum.org/EIPS/eip-2535
        library LibDiamond {
            bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
            // Diamond specific errors
            error IncorrectFacetCutAction();
            error NoSelectorsInFace();
            error FunctionAlreadyExists();
            error FacetAddressIsZero();
            error FacetAddressIsNotZero();
            error FacetContainsNoCode();
            error FunctionDoesNotExist();
            error FunctionIsImmutable();
            error InitZeroButCalldataNotEmpty();
            error CalldataEmptyButInitNotZero();
            error InitReverted();
            // ----------------
            struct FacetAddressAndPosition {
                address facetAddress;
                uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
            }
            struct FacetFunctionSelectors {
                bytes4[] functionSelectors;
                uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
            }
            struct DiamondStorage {
                // maps function selector to the facet address and
                // the position of the selector in the facetFunctionSelectors.selectors array
                mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
                // maps facet addresses to function selectors
                mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
                // facet addresses
                address[] facetAddresses;
                // Used to query if a contract implements an interface.
                // Used to implement ERC-165.
                mapping(bytes4 => bool) supportedInterfaces;
                // owner of the contract
                address contractOwner;
            }
            function diamondStorage() internal pure returns (DiamondStorage storage ds) {
                bytes32 position = DIAMOND_STORAGE_POSITION;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    ds.slot := position
                }
            }
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            function setContractOwner(address _newOwner) internal {
                DiamondStorage storage ds = diamondStorage();
                address previousOwner = ds.contractOwner;
                ds.contractOwner = _newOwner;
                emit OwnershipTransferred(previousOwner, _newOwner);
            }
            function contractOwner() internal view returns (address contractOwner_) {
                contractOwner_ = diamondStorage().contractOwner;
            }
            function enforceIsContractOwner() internal view {
                if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
            }
            event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
            // Internal function version of diamondCut
            function diamondCut(
                IDiamondCut.FacetCut[] memory _diamondCut,
                address _init,
                bytes memory _calldata
            ) internal {
                for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
                    IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
                    if (action == IDiamondCut.FacetCutAction.Add) {
                        addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                    } else if (action == IDiamondCut.FacetCutAction.Replace) {
                        replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                    } else if (action == IDiamondCut.FacetCutAction.Remove) {
                        removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
                    } else {
                        revert IncorrectFacetCutAction();
                    }
                    unchecked {
                        ++facetIndex;
                    }
                }
                emit DiamondCut(_diamondCut, _init, _calldata);
                initializeDiamondCut(_init, _calldata);
            }
            function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                if (_functionSelectors.length == 0) {
                    revert NoSelectorsInFace();
                }
                DiamondStorage storage ds = diamondStorage();
                if (LibUtil.isZeroAddress(_facetAddress)) {
                    revert FacetAddressIsZero();
                }
                uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                // add new facet address if it does not exist
                if (selectorPosition == 0) {
                    addFacet(ds, _facetAddress);
                }
                for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                    bytes4 selector = _functionSelectors[selectorIndex];
                    address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                    if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                        revert FunctionAlreadyExists();
                    }
                    addFunction(ds, selector, selectorPosition, _facetAddress);
                    unchecked {
                        ++selectorPosition;
                        ++selectorIndex;
                    }
                }
            }
            function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                if (_functionSelectors.length == 0) {
                    revert NoSelectorsInFace();
                }
                DiamondStorage storage ds = diamondStorage();
                if (LibUtil.isZeroAddress(_facetAddress)) {
                    revert FacetAddressIsZero();
                }
                uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
                // add new facet address if it does not exist
                if (selectorPosition == 0) {
                    addFacet(ds, _facetAddress);
                }
                for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                    bytes4 selector = _functionSelectors[selectorIndex];
                    address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                    if (oldFacetAddress == _facetAddress) {
                        revert FunctionAlreadyExists();
                    }
                    removeFunction(ds, oldFacetAddress, selector);
                    addFunction(ds, selector, selectorPosition, _facetAddress);
                    unchecked {
                        ++selectorPosition;
                        ++selectorIndex;
                    }
                }
            }
            function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
                if (_functionSelectors.length == 0) {
                    revert NoSelectorsInFace();
                }
                DiamondStorage storage ds = diamondStorage();
                // if function does not exist then do nothing and return
                if (!LibUtil.isZeroAddress(_facetAddress)) {
                    revert FacetAddressIsNotZero();
                }
                for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
                    bytes4 selector = _functionSelectors[selectorIndex];
                    address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
                    removeFunction(ds, oldFacetAddress, selector);
                    unchecked {
                        ++selectorIndex;
                    }
                }
            }
            function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
                enforceHasContractCode(_facetAddress);
                ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
                ds.facetAddresses.push(_facetAddress);
            }
            function addFunction(
                DiamondStorage storage ds,
                bytes4 _selector,
                uint96 _selectorPosition,
                address _facetAddress
            ) internal {
                ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
                ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
                ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
            }
            function removeFunction(
                DiamondStorage storage ds,
                address _facetAddress,
                bytes4 _selector
            ) internal {
                if (LibUtil.isZeroAddress(_facetAddress)) {
                    revert FunctionDoesNotExist();
                }
                // an immutable function is a function defined directly in a diamond
                if (_facetAddress == address(this)) {
                    revert FunctionIsImmutable();
                }
                // replace selector with last selector, then delete last selector
                uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
                uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
                // if not the same then replace _selector with lastSelector
                if (selectorPosition != lastSelectorPosition) {
                    bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
                    ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
                    ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
                }
                // delete the last selector
                ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
                delete ds.selectorToFacetAndPosition[_selector];
                // if no more selectors for facet address then delete the facet address
                if (lastSelectorPosition == 0) {
                    // replace facet address with last facet address and delete last facet address
                    uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
                    uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                    if (facetAddressPosition != lastFacetAddressPosition) {
                        address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                        ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                        ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
                    }
                    ds.facetAddresses.pop();
                    delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
                }
            }
            function initializeDiamondCut(address _init, bytes memory _calldata) internal {
                if (LibUtil.isZeroAddress(_init)) {
                    if (_calldata.length != 0) {
                        revert InitZeroButCalldataNotEmpty();
                    }
                } else {
                    if (_calldata.length == 0) {
                        revert CalldataEmptyButInitNotZero();
                    }
                    if (_init != address(this)) {
                        enforceHasContractCode(_init);
                    }
                    // solhint-disable-next-line avoid-low-level-calls
                    (bool success, bytes memory error) = _init.delegatecall(_calldata);
                    if (!success) {
                        if (error.length > 0) {
                            // bubble up the error
                            revert(string(error));
                        } else {
                            revert InitReverted();
                        }
                    }
                }
            }
            function enforceHasContractCode(address _contract) internal view {
                uint256 contractSize;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    contractSize := extcodesize(_contract)
                }
                if (contractSize == 0) {
                    revert FacetContainsNoCode();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.8.17;
        import "./LibBytes.sol";
        library LibUtil {
            using LibBytes for bytes;
            function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
                // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                if (_res.length < 68) return "Transaction reverted silently";
                bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                return abi.decode(revertData, (string)); // All that remains is the revert string
            }
            /// @notice Determines whether the given address is the zero address
            /// @param addr The address to verify
            /// @return Boolean indicating if the address is the zero address
            function isZeroAddress(address addr) internal pure returns (bool) {
                return addr == address(0);
            }
        }
        

        File 2 of 3: RelayReceiver
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.23;
        contract RelayReceiver {
            // --- Structs ---
            struct Call {
                address to;
                bytes data;
                uint256 value;
            }
            // --- Errors ---
            error CallFailed();
            error NativeTransferFailed();
            error Unauthorized();
            // --- Events ---
            event FundsForwardedWithData(bytes data);
            // --- Fields ---
            address private immutable SOLVER;
            // --- Constructor ---
            constructor(address solver) {
                SOLVER = solver;
            }
            // --- Public methods ---
            fallback() external payable {
                send(SOLVER, msg.value);
                emit FundsForwardedWithData(msg.data);
            }
            function forward(bytes calldata data) external payable {
                send(SOLVER, msg.value);
                emit FundsForwardedWithData(data);
            }
            // --- Restricted methods ---
            function makeCalls(Call[] calldata calls) external payable {
                if (msg.sender != SOLVER) {
                    revert Unauthorized();
                }
                unchecked {
                    uint256 length = calls.length;
                    for (uint256 i; i < length; i++) {
                        Call memory c = calls[i];
                        (bool success, ) = c.to.call{value: c.value}(c.data);
                        if (!success) {
                            revert CallFailed();
                        }
                    }
                }
            }
            // --- Internal methods ---
            function send(address to, uint256 value) internal {
                bool success;
                assembly {
                    // Save gas by avoiding copying the return data to memory.
                    // Provide at most 100k gas to the internal call, which is
                    // more than enough to cover common use-cases of logic for
                    // receiving native tokens (eg. SCW payable fallbacks).
                    success := call(100000, to, value, 0, 0, 0, 0)
                }
                if (!success) {
                    revert NativeTransferFailed();
                }
            }
        }
        

        File 3 of 3: RelayFacet
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.17;
        import { ILiFi } from "../Interfaces/ILiFi.sol";
        import { LibAsset } from "../Libraries/LibAsset.sol";
        import { LibSwap } from "../Libraries/LibSwap.sol";
        import { LibUtil } from "../Libraries/LibUtil.sol";
        import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
        import { SwapperV2 } from "../Helpers/SwapperV2.sol";
        import { Validatable } from "../Helpers/Validatable.sol";
        import { ECDSA } from "solady/utils/ECDSA.sol";
        /// @title Relay Facet
        /// @author LI.FI (https://li.fi)
        /// @notice Provides functionality for bridging through Relay Protocol
        /// @custom:version 1.0.0
        contract RelayFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
            // Receiver for native transfers
            address public immutable relayReceiver;
            // Relayer wallet for ERC20 transfers
            address public immutable relaySolver;
            /// Storage ///
            mapping(bytes32 => bool) public consumedIds;
            /// Types ///
            /// @dev Relay specific parameters
            /// @param requestId Relay API request ID
            /// @param nonEVMReceiver set only if bridging to non-EVM chain
            /// @params receivingAssetId address of receiving asset
            /// @params signature attestation signature provided by the Relay solver
            struct RelayData {
                bytes32 requestId;
                bytes32 nonEVMReceiver;
                bytes32 receivingAssetId;
                bytes signature;
            }
            /// Events ///
            event BridgeToNonEVMChain(
                bytes32 indexed transactionId,
                uint256 indexed destinationChainId,
                bytes32 receiver
            );
            /// Errors ///
            error InvalidQuote();
            /// Modifiers ///
            /// @param _bridgeData The core information needed for bridging
            /// @param _relayData Data specific to Relay
            modifier onlyValidQuote(
                ILiFi.BridgeData memory _bridgeData,
                RelayData calldata _relayData
            ) {
                // Ensure that the id isn't already consumed
                if (consumedIds[_relayData.requestId]) {
                    revert InvalidQuote();
                }
                // Ensure nonEVMAddress is not empty
                if (
                    _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS &&
                    _relayData.nonEVMReceiver == bytes32(0)
                ) {
                    revert InvalidQuote();
                }
                // Verify that the bridging quote has been signed by the Relay solver
                // as attested using the attestation API
                // API URL: https://api.relay.link/requests/{requestId}/signature/v2
                bytes32 message = ECDSA.toEthSignedMessageHash(
                    keccak256(
                        abi.encodePacked(
                            _relayData.requestId,
                            block.chainid,
                            bytes32(uint256(uint160(address(this)))),
                            bytes32(uint256(uint160(_bridgeData.sendingAssetId))),
                            _getMappedChainId(_bridgeData.destinationChainId),
                            _bridgeData.receiver == LibAsset.NON_EVM_ADDRESS
                                ? _relayData.nonEVMReceiver
                                : bytes32(uint256(uint160(_bridgeData.receiver))),
                            _relayData.receivingAssetId
                        )
                    )
                );
                address signer = ECDSA.recover(message, _relayData.signature);
                if (signer != relaySolver) {
                    revert InvalidQuote();
                }
                _;
            }
            /// Constructor ///
            /// @param _relayReceiver The receiver for native transfers
            /// @param _relaySolver The relayer wallet for ERC20 transfers
            constructor(address _relayReceiver, address _relaySolver) {
                relayReceiver = _relayReceiver;
                relaySolver = _relaySolver;
            }
            /// External Methods ///
            /// @notice Bridges tokens via Relay
            /// @param _bridgeData The core information needed for bridging
            /// @param _relayData Data specific to Relay
            function startBridgeTokensViaRelay(
                ILiFi.BridgeData calldata _bridgeData,
                RelayData calldata _relayData
            )
                external
                payable
                nonReentrant
                onlyValidQuote(_bridgeData, _relayData)
                refundExcessNative(payable(msg.sender))
                validateBridgeData(_bridgeData)
                doesNotContainSourceSwaps(_bridgeData)
                doesNotContainDestinationCalls(_bridgeData)
            {
                LibAsset.depositAsset(
                    _bridgeData.sendingAssetId,
                    _bridgeData.minAmount
                );
                _startBridge(_bridgeData, _relayData);
            }
            /// @notice Performs a swap before bridging via Relay
            /// @param _bridgeData The core information needed for bridging
            /// @param _swapData An array of swap related data for performing swaps before bridging
            /// @param _relayData Data specific to Relay
            function swapAndStartBridgeTokensViaRelay(
                ILiFi.BridgeData memory _bridgeData,
                LibSwap.SwapData[] calldata _swapData,
                RelayData calldata _relayData
            )
                external
                payable
                nonReentrant
                onlyValidQuote(_bridgeData, _relayData)
                refundExcessNative(payable(msg.sender))
                containsSourceSwaps(_bridgeData)
                doesNotContainDestinationCalls(_bridgeData)
                validateBridgeData(_bridgeData)
            {
                _bridgeData.minAmount = _depositAndSwap(
                    _bridgeData.transactionId,
                    _bridgeData.minAmount,
                    _swapData,
                    payable(msg.sender)
                );
                _startBridge(_bridgeData, _relayData);
            }
            /// Internal Methods ///
            /// @dev Contains the business logic for the bridge via Relay
            /// @param _bridgeData The core information needed for bridging
            /// @param _relayData Data specific to Relay
            function _startBridge(
                ILiFi.BridgeData memory _bridgeData,
                RelayData calldata _relayData
            ) internal {
                // check if sendingAsset is native or ERC20
                if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                    // Native
                    // Send Native to relayReceiver along with requestId as extra data
                    (bool success, bytes memory reason) = relayReceiver.call{
                        value: _bridgeData.minAmount
                    }(abi.encode(_relayData.requestId));
                    if (!success) {
                        revert(LibUtil.getRevertMsg(reason));
                    }
                } else {
                    // ERC20
                    // We build the calldata from scratch to ensure that we can only
                    // send to the solver address
                    bytes memory transferCallData = bytes.concat(
                        abi.encodeWithSignature(
                            "transfer(address,uint256)",
                            relaySolver,
                            _bridgeData.minAmount
                        ),
                        abi.encode(_relayData.requestId)
                    );
                    (bool success, bytes memory reason) = address(
                        _bridgeData.sendingAssetId
                    ).call(transferCallData);
                    if (!success) {
                        revert(LibUtil.getRevertMsg(reason));
                    }
                }
                consumedIds[_relayData.requestId] = true;
                // Emit special event if bridging to non-EVM chain
                if (_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS) {
                    emit BridgeToNonEVMChain(
                        _bridgeData.transactionId,
                        _getMappedChainId(_bridgeData.destinationChainId),
                        _relayData.nonEVMReceiver
                    );
                }
                emit LiFiTransferStarted(_bridgeData);
            }
            /// @notice get Relay specific chain id for non-EVM chains
            ///         IDs found here  https://li.quest/v1/chains?chainTypes=UTXO,SVM
            /// @param chainId LIFI specific chain id
            function _getMappedChainId(
                uint256 chainId
            ) internal pure returns (uint256) {
                // Bitcoin
                if (chainId == 20000000000001) {
                    return 8253038;
                }
                // Solana
                if (chainId == 1151111081099710) {
                    return 792703809;
                }
                return chainId;
            }
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        interface ILiFi {
            /// Structs ///
            struct BridgeData {
                bytes32 transactionId;
                string bridge;
                string integrator;
                address referrer;
                address sendingAssetId;
                address receiver;
                uint256 minAmount;
                uint256 destinationChainId;
                bool hasSourceSwaps;
                bool hasDestinationCall;
            }
            /// Events ///
            event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
            event LiFiTransferCompleted(
                bytes32 indexed transactionId,
                address receivingAssetId,
                address receiver,
                uint256 amount,
                uint256 timestamp
            );
            event LiFiTransferRecovered(
                bytes32 indexed transactionId,
                address receivingAssetId,
                address receiver,
                uint256 amount,
                uint256 timestamp
            );
            event LiFiGenericSwapCompleted(
                bytes32 indexed transactionId,
                string integrator,
                string referrer,
                address receiver,
                address fromAssetId,
                address toAssetId,
                uint256 fromAmount,
                uint256 toAmount
            );
            // Deprecated but kept here to include in ABI to parse historic events
            event LiFiSwappedGeneric(
                bytes32 indexed transactionId,
                string integrator,
                string referrer,
                address fromAssetId,
                address toAssetId,
                uint256 fromAmount,
                uint256 toAmount
            );
        }
        // SPDX-License-Identifier: UNLICENSED
        pragma solidity ^0.8.17;
        import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
        import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        import { LibSwap } from "./LibSwap.sol";
        /// @title LibAsset
        /// @custom:version 1.0.1
        /// @notice This library contains helpers for dealing with onchain transfers
        ///         of assets, including accounting for the native asset `assetId`
        ///         conventions and any noncompliant ERC20 transfers
        library LibAsset {
            uint256 private constant MAX_UINT = type(uint256).max;
            address internal constant NULL_ADDRESS = address(0);
            address internal constant NON_EVM_ADDRESS =
                0x11f111f111f111F111f111f111F111f111f111F1;
            /// @dev All native assets use the empty address for their asset id
            ///      by convention
            address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
            /// @notice Gets the balance of the inheriting contract for the given asset
            /// @param assetId The asset identifier to get the balance of
            /// @return Balance held by contracts using this library
            function getOwnBalance(address assetId) internal view returns (uint256) {
                return
                    isNativeAsset(assetId)
                        ? address(this).balance
                        : IERC20(assetId).balanceOf(address(this));
            }
            /// @notice Transfers ether from the inheriting contract to a given
            ///         recipient
            /// @param recipient Address to send ether to
            /// @param amount Amount to send to given recipient
            function transferNativeAsset(
                address payable recipient,
                uint256 amount
            ) private {
                if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
                if (amount > address(this).balance)
                    revert InsufficientBalance(amount, address(this).balance);
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, ) = recipient.call{ value: amount }("");
                if (!success) revert NativeAssetTransferFailed();
            }
            /// @notice If the current allowance is insufficient, the allowance for a given spender
            /// is set to MAX_UINT.
            /// @param assetId Token address to transfer
            /// @param spender Address to give spend approval to
            /// @param amount Amount to approve for spending
            function maxApproveERC20(
                IERC20 assetId,
                address spender,
                uint256 amount
            ) internal {
                if (isNativeAsset(address(assetId))) {
                    return;
                }
                if (spender == NULL_ADDRESS) {
                    revert NullAddrIsNotAValidSpender();
                }
                if (assetId.allowance(address(this), spender) < amount) {
                    SafeERC20.safeApprove(IERC20(assetId), spender, 0);
                    SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT);
                }
            }
            /// @notice Transfers tokens from the inheriting contract to a given
            ///         recipient
            /// @param assetId Token address to transfer
            /// @param recipient Address to send token to
            /// @param amount Amount to send to given recipient
            function transferERC20(
                address assetId,
                address recipient,
                uint256 amount
            ) private {
                if (isNativeAsset(assetId)) {
                    revert NullAddrIsNotAnERC20Token();
                }
                if (recipient == NULL_ADDRESS) {
                    revert NoTransferToNullAddress();
                }
                uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
                if (amount > assetBalance) {
                    revert InsufficientBalance(amount, assetBalance);
                }
                SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
            }
            /// @notice Transfers tokens from a sender to a given recipient
            /// @param assetId Token address to transfer
            /// @param from Address of sender/owner
            /// @param to Address of recipient/spender
            /// @param amount Amount to transfer from owner to spender
            function transferFromERC20(
                address assetId,
                address from,
                address to,
                uint256 amount
            ) internal {
                if (isNativeAsset(assetId)) {
                    revert NullAddrIsNotAnERC20Token();
                }
                if (to == NULL_ADDRESS) {
                    revert NoTransferToNullAddress();
                }
                IERC20 asset = IERC20(assetId);
                uint256 prevBalance = asset.balanceOf(to);
                SafeERC20.safeTransferFrom(asset, from, to, amount);
                if (asset.balanceOf(to) - prevBalance != amount) {
                    revert InvalidAmount();
                }
            }
            function depositAsset(address assetId, uint256 amount) internal {
                if (amount == 0) revert InvalidAmount();
                if (isNativeAsset(assetId)) {
                    if (msg.value < amount) revert InvalidAmount();
                } else {
                    uint256 balance = IERC20(assetId).balanceOf(msg.sender);
                    if (balance < amount) revert InsufficientBalance(amount, balance);
                    transferFromERC20(assetId, msg.sender, address(this), amount);
                }
            }
            function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
                for (uint256 i = 0; i < swaps.length; ) {
                    LibSwap.SwapData calldata swap = swaps[i];
                    if (swap.requiresDeposit) {
                        depositAsset(swap.sendingAssetId, swap.fromAmount);
                    }
                    unchecked {
                        i++;
                    }
                }
            }
            /// @notice Determines whether the given assetId is the native asset
            /// @param assetId The asset identifier to evaluate
            /// @return Boolean indicating if the asset is the native asset
            function isNativeAsset(address assetId) internal pure returns (bool) {
                return assetId == NATIVE_ASSETID;
            }
            /// @notice Wrapper function to transfer a given asset (native or erc20) to
            ///         some recipient. Should handle all non-compliant return value
            ///         tokens as well by using the SafeERC20 contract by open zeppelin.
            /// @param assetId Asset id for transfer (address(0) for native asset,
            ///                token address for erc20s)
            /// @param recipient Address to send asset to
            /// @param amount Amount to send to given recipient
            function transferAsset(
                address assetId,
                address payable recipient,
                uint256 amount
            ) internal {
                isNativeAsset(assetId)
                    ? transferNativeAsset(recipient, amount)
                    : transferERC20(assetId, recipient, amount);
            }
            /// @dev Checks whether the given address is a contract and contains code
            function isContract(address _contractAddr) internal view returns (bool) {
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    size := extcodesize(_contractAddr)
                }
                return size > 0;
            }
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        import { LibAsset } from "./LibAsset.sol";
        import { LibUtil } from "./LibUtil.sol";
        import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
        import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
        library LibSwap {
            struct SwapData {
                address callTo;
                address approveTo;
                address sendingAssetId;
                address receivingAssetId;
                uint256 fromAmount;
                bytes callData;
                bool requiresDeposit;
            }
            event AssetSwapped(
                bytes32 transactionId,
                address dex,
                address fromAssetId,
                address toAssetId,
                uint256 fromAmount,
                uint256 toAmount,
                uint256 timestamp
            );
            function swap(bytes32 transactionId, SwapData calldata _swap) internal {
                if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
                uint256 fromAmount = _swap.fromAmount;
                if (fromAmount == 0) revert NoSwapFromZeroBalance();
                uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
                    ? _swap.fromAmount
                    : 0;
                uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
                    _swap.sendingAssetId
                );
                uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
                    _swap.receivingAssetId
                );
                if (nativeValue == 0) {
                    LibAsset.maxApproveERC20(
                        IERC20(_swap.sendingAssetId),
                        _swap.approveTo,
                        _swap.fromAmount
                    );
                }
                if (initialSendingAssetBalance < _swap.fromAmount) {
                    revert InsufficientBalance(
                        _swap.fromAmount,
                        initialSendingAssetBalance
                    );
                }
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory res) = _swap.callTo.call{
                    value: nativeValue
                }(_swap.callData);
                if (!success) {
                    LibUtil.revertWith(res);
                }
                uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
                emit AssetSwapped(
                    transactionId,
                    _swap.callTo,
                    _swap.sendingAssetId,
                    _swap.receivingAssetId,
                    _swap.fromAmount,
                    newBalance > initialReceivingAssetBalance
                        ? newBalance - initialReceivingAssetBalance
                        : newBalance,
                    block.timestamp
                );
            }
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        import "./LibBytes.sol";
        library LibUtil {
            using LibBytes for bytes;
            function getRevertMsg(
                bytes memory _res
            ) internal pure returns (string memory) {
                // If the _res length is less than 68, then the transaction failed silently (without a revert message)
                if (_res.length < 68) return "Transaction reverted silently";
                bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
                return abi.decode(revertData, (string)); // All that remains is the revert string
            }
            /// @notice Determines whether the given address is the zero address
            /// @param addr The address to verify
            /// @return Boolean indicating if the address is the zero address
            function isZeroAddress(address addr) internal pure returns (bool) {
                return addr == address(0);
            }
            function revertWith(bytes memory data) internal pure {
                assembly {
                    let dataSize := mload(data) // Load the size of the data
                    let dataPtr := add(data, 0x20) // Advance data pointer to the next word
                    revert(dataPtr, dataSize) // Revert with the given data
                }
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        /// @title Reentrancy Guard
        /// @author LI.FI (https://li.fi)
        /// @notice Abstract contract to provide protection against reentrancy
        abstract contract ReentrancyGuard {
            /// Storage ///
            bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
            /// Types ///
            struct ReentrancyStorage {
                uint256 status;
            }
            /// Errors ///
            error ReentrancyError();
            /// Constants ///
            uint256 private constant _NOT_ENTERED = 0;
            uint256 private constant _ENTERED = 1;
            /// Modifiers ///
            modifier nonReentrant() {
                ReentrancyStorage storage s = reentrancyStorage();
                if (s.status == _ENTERED) revert ReentrancyError();
                s.status = _ENTERED;
                _;
                s.status = _NOT_ENTERED;
            }
            /// Private Methods ///
            /// @dev fetch local storage
            function reentrancyStorage()
                private
                pure
                returns (ReentrancyStorage storage data)
            {
                bytes32 position = NAMESPACE;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    data.slot := position
                }
            }
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        import { ILiFi } from "../Interfaces/ILiFi.sol";
        import { LibSwap } from "../Libraries/LibSwap.sol";
        import { LibAsset } from "../Libraries/LibAsset.sol";
        import { LibAllowList } from "../Libraries/LibAllowList.sol";
        import { ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
        /// @title Swapper
        /// @author LI.FI (https://li.fi)
        /// @notice Abstract contract to provide swap functionality
        contract SwapperV2 is ILiFi {
            /// Types ///
            /// @dev only used to get around "Stack Too Deep" errors
            struct ReserveData {
                bytes32 transactionId;
                address payable leftoverReceiver;
                uint256 nativeReserve;
            }
            /// Modifiers ///
            /// @dev Sends any leftover balances back to the user
            /// @notice Sends any leftover balances to the user
            /// @param _swaps Swap data array
            /// @param _leftoverReceiver Address to send leftover tokens to
            /// @param _initialBalances Array of initial token balances
            modifier noLeftovers(
                LibSwap.SwapData[] calldata _swaps,
                address payable _leftoverReceiver,
                uint256[] memory _initialBalances
            ) {
                uint256 numSwaps = _swaps.length;
                if (numSwaps != 1) {
                    address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                    uint256 curBalance;
                    _;
                    for (uint256 i = 0; i < numSwaps - 1; ) {
                        address curAsset = _swaps[i].receivingAssetId;
                        // Handle multi-to-one swaps
                        if (curAsset != finalAsset) {
                            curBalance =
                                LibAsset.getOwnBalance(curAsset) -
                                _initialBalances[i];
                            if (curBalance > 0) {
                                LibAsset.transferAsset(
                                    curAsset,
                                    _leftoverReceiver,
                                    curBalance
                                );
                            }
                        }
                        unchecked {
                            ++i;
                        }
                    }
                } else {
                    _;
                }
            }
            /// @dev Sends any leftover balances back to the user reserving native tokens
            /// @notice Sends any leftover balances to the user
            /// @param _swaps Swap data array
            /// @param _leftoverReceiver Address to send leftover tokens to
            /// @param _initialBalances Array of initial token balances
            modifier noLeftoversReserve(
                LibSwap.SwapData[] calldata _swaps,
                address payable _leftoverReceiver,
                uint256[] memory _initialBalances,
                uint256 _nativeReserve
            ) {
                uint256 numSwaps = _swaps.length;
                if (numSwaps != 1) {
                    address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
                    uint256 curBalance;
                    _;
                    for (uint256 i = 0; i < numSwaps - 1; ) {
                        address curAsset = _swaps[i].receivingAssetId;
                        // Handle multi-to-one swaps
                        if (curAsset != finalAsset) {
                            curBalance =
                                LibAsset.getOwnBalance(curAsset) -
                                _initialBalances[i];
                            uint256 reserve = LibAsset.isNativeAsset(curAsset)
                                ? _nativeReserve
                                : 0;
                            if (curBalance > 0) {
                                LibAsset.transferAsset(
                                    curAsset,
                                    _leftoverReceiver,
                                    curBalance - reserve
                                );
                            }
                        }
                        unchecked {
                            ++i;
                        }
                    }
                } else {
                    _;
                }
            }
            /// @dev Refunds any excess native asset sent to the contract after the main function
            /// @notice Refunds any excess native asset sent to the contract after the main function
            /// @param _refundReceiver Address to send refunds to
            modifier refundExcessNative(address payable _refundReceiver) {
                uint256 initialBalance = address(this).balance - msg.value;
                _;
                uint256 finalBalance = address(this).balance;
                if (finalBalance > initialBalance) {
                    LibAsset.transferAsset(
                        LibAsset.NATIVE_ASSETID,
                        _refundReceiver,
                        finalBalance - initialBalance
                    );
                }
            }
            /// Internal Methods ///
            /// @dev Deposits value, executes swaps, and performs minimum amount check
            /// @param _transactionId the transaction id associated with the operation
            /// @param _minAmount the minimum amount of the final asset to receive
            /// @param _swaps Array of data used to execute swaps
            /// @param _leftoverReceiver The address to send leftover funds to
            /// @return uint256 result of the swap
            function _depositAndSwap(
                bytes32 _transactionId,
                uint256 _minAmount,
                LibSwap.SwapData[] calldata _swaps,
                address payable _leftoverReceiver
            ) internal returns (uint256) {
                uint256 numSwaps = _swaps.length;
                if (numSwaps == 0) {
                    revert NoSwapDataProvided();
                }
                address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                if (LibAsset.isNativeAsset(finalTokenId)) {
                    initialBalance -= msg.value;
                }
                uint256[] memory initialBalances = _fetchBalances(_swaps);
                LibAsset.depositAssets(_swaps);
                _executeSwaps(
                    _transactionId,
                    _swaps,
                    _leftoverReceiver,
                    initialBalances
                );
                uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                    initialBalance;
                if (newBalance < _minAmount) {
                    revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                }
                return newBalance;
            }
            /// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
            /// @param _transactionId the transaction id associated with the operation
            /// @param _minAmount the minimum amount of the final asset to receive
            /// @param _swaps Array of data used to execute swaps
            /// @param _leftoverReceiver The address to send leftover funds to
            /// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
            function _depositAndSwap(
                bytes32 _transactionId,
                uint256 _minAmount,
                LibSwap.SwapData[] calldata _swaps,
                address payable _leftoverReceiver,
                uint256 _nativeReserve
            ) internal returns (uint256) {
                uint256 numSwaps = _swaps.length;
                if (numSwaps == 0) {
                    revert NoSwapDataProvided();
                }
                address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
                uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
                if (LibAsset.isNativeAsset(finalTokenId)) {
                    initialBalance -= msg.value;
                }
                uint256[] memory initialBalances = _fetchBalances(_swaps);
                LibAsset.depositAssets(_swaps);
                ReserveData memory rd = ReserveData(
                    _transactionId,
                    _leftoverReceiver,
                    _nativeReserve
                );
                _executeSwaps(rd, _swaps, initialBalances);
                uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
                    initialBalance;
                if (LibAsset.isNativeAsset(finalTokenId)) {
                    newBalance -= _nativeReserve;
                }
                if (newBalance < _minAmount) {
                    revert CumulativeSlippageTooHigh(_minAmount, newBalance);
                }
                return newBalance;
            }
            /// Private Methods ///
            /// @dev Executes swaps and checks that DEXs used are in the allowList
            /// @param _transactionId the transaction id associated with the operation
            /// @param _swaps Array of data used to execute swaps
            /// @param _leftoverReceiver Address to send leftover tokens to
            /// @param _initialBalances Array of initial balances
            function _executeSwaps(
                bytes32 _transactionId,
                LibSwap.SwapData[] calldata _swaps,
                address payable _leftoverReceiver,
                uint256[] memory _initialBalances
            ) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
                uint256 numSwaps = _swaps.length;
                for (uint256 i = 0; i < numSwaps; ) {
                    LibSwap.SwapData calldata currentSwap = _swaps[i];
                    if (
                        !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                            LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                            LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                            LibAllowList.selectorIsAllowed(
                                bytes4(currentSwap.callData[:4])
                            ))
                    ) revert ContractCallNotAllowed();
                    LibSwap.swap(_transactionId, currentSwap);
                    unchecked {
                        ++i;
                    }
                }
            }
            /// @dev Executes swaps and checks that DEXs used are in the allowList
            /// @param _reserveData Data passed used to reserve native tokens
            /// @param _swaps Array of data used to execute swaps
            function _executeSwaps(
                ReserveData memory _reserveData,
                LibSwap.SwapData[] calldata _swaps,
                uint256[] memory _initialBalances
            )
                internal
                noLeftoversReserve(
                    _swaps,
                    _reserveData.leftoverReceiver,
                    _initialBalances,
                    _reserveData.nativeReserve
                )
            {
                uint256 numSwaps = _swaps.length;
                for (uint256 i = 0; i < numSwaps; ) {
                    LibSwap.SwapData calldata currentSwap = _swaps[i];
                    if (
                        !((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
                            LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
                            LibAllowList.contractIsAllowed(currentSwap.callTo) &&
                            LibAllowList.selectorIsAllowed(
                                bytes4(currentSwap.callData[:4])
                            ))
                    ) revert ContractCallNotAllowed();
                    LibSwap.swap(_reserveData.transactionId, currentSwap);
                    unchecked {
                        ++i;
                    }
                }
            }
            /// @dev Fetches balances of tokens to be swapped before swapping.
            /// @param _swaps Array of data used to execute swaps
            /// @return uint256[] Array of token balances.
            function _fetchBalances(
                LibSwap.SwapData[] calldata _swaps
            ) private view returns (uint256[] memory) {
                uint256 numSwaps = _swaps.length;
                uint256[] memory balances = new uint256[](numSwaps);
                address asset;
                for (uint256 i = 0; i < numSwaps; ) {
                    asset = _swaps[i].receivingAssetId;
                    balances[i] = LibAsset.getOwnBalance(asset);
                    if (LibAsset.isNativeAsset(asset)) {
                        balances[i] -= msg.value;
                    }
                    unchecked {
                        ++i;
                    }
                }
                return balances;
            }
        }
        // SPDX-License-Identifier: UNLICENSED
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        import { LibAsset } from "../Libraries/LibAsset.sol";
        import { LibUtil } from "../Libraries/LibUtil.sol";
        import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain, CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
        import { ILiFi } from "../Interfaces/ILiFi.sol";
        import { LibSwap } from "../Libraries/LibSwap.sol";
        contract Validatable {
            modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
                if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
                    revert InvalidReceiver();
                }
                if (_bridgeData.minAmount == 0) {
                    revert InvalidAmount();
                }
                if (_bridgeData.destinationChainId == block.chainid) {
                    revert CannotBridgeToSameNetwork();
                }
                _;
            }
            modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
                if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
                    revert NativeAssetNotSupported();
                }
                _;
            }
            modifier onlyAllowSourceToken(
                ILiFi.BridgeData memory _bridgeData,
                address _token
            ) {
                if (_bridgeData.sendingAssetId != _token) {
                    revert InvalidSendingToken();
                }
                _;
            }
            modifier onlyAllowDestinationChain(
                ILiFi.BridgeData memory _bridgeData,
                uint256 _chainId
            ) {
                if (_bridgeData.destinationChainId != _chainId) {
                    revert InvalidDestinationChain();
                }
                _;
            }
            modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                if (!_bridgeData.hasSourceSwaps) {
                    revert InformationMismatch();
                }
                _;
            }
            modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
                if (_bridgeData.hasSourceSwaps) {
                    revert InformationMismatch();
                }
                _;
            }
            modifier doesNotContainDestinationCalls(
                ILiFi.BridgeData memory _bridgeData
            ) {
                if (_bridgeData.hasDestinationCall) {
                    revert InformationMismatch();
                }
                _;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.4;
        /// @notice Gas optimized ECDSA wrapper.
        /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
        /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
        /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
        ///
        /// @dev Note:
        /// - The recovery functions use the ecrecover precompile (0x1).
        /// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
        ///   This is for more safety by default.
        ///   Use the `tryRecover` variants if you need to get the zero address back
        ///   upon recovery failure instead.
        /// - As of Solady version 0.0.134, all `bytes signature` variants accept both
        ///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
        ///   See: https://eips.ethereum.org/EIPS/eip-2098
        ///   This is for calldata efficiency on smart accounts prevalent on L2s.
        ///
        /// WARNING! Do NOT use signatures as unique identifiers:
        /// - Use a nonce in the digest to prevent replay attacks on the same contract.
        /// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
        ///   EIP-712 also enables readable signing of typed data for better user safety.
        /// This implementation does NOT check if a signature is non-malleable.
        library ECDSA {
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                        CUSTOM ERRORS                       */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev The signature is invalid.
            error InvalidSignature();
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                    RECOVERY OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
            function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
                /// @solidity memory-safe-assembly
                assembly {
                    result := 1
                    let m := mload(0x40) // Cache the free memory pointer.
                    for {} 1 {} {
                        mstore(0x00, hash)
                        mstore(0x40, mload(add(signature, 0x20))) // `r`.
                        if eq(mload(signature), 64) {
                            let vs := mload(add(signature, 0x40))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            break
                        }
                        if eq(mload(signature), 65) {
                            mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                            mstore(0x60, mload(add(signature, 0x40))) // `s`.
                            break
                        }
                        result := 0
                        break
                    }
                    result :=
                        mload(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                result, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(returndatasize()) {
                        mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
            function recoverCalldata(bytes32 hash, bytes calldata signature)
                internal
                view
                returns (address result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    result := 1
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x00, hash)
                    for {} 1 {} {
                        if eq(signature.length, 64) {
                            let vs := calldataload(add(signature.offset, 0x20))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x40, calldataload(signature.offset)) // `r`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            break
                        }
                        if eq(signature.length, 65) {
                            mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                            calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                            break
                        }
                        result := 0
                        break
                    }
                    result :=
                        mload(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                result, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(returndatasize()) {
                        mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Recovers the signer's address from a message digest `hash`,
            /// and the EIP-2098 short form signature defined by `r` and `vs`.
            function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x00, hash)
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x40, r)
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                    result :=
                        mload(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(returndatasize()) {
                        mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Recovers the signer's address from a message digest `hash`,
            /// and the signature defined by `v`, `r`, `s`.
            function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                internal
                view
                returns (address result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x00, hash)
                    mstore(0x20, and(v, 0xff))
                    mstore(0x40, r)
                    mstore(0x60, s)
                    result :=
                        mload(
                            staticcall(
                                gas(), // Amount of gas left for the transaction.
                                1, // Address of `ecrecover`.
                                0x00, // Start of input.
                                0x80, // Size of input.
                                0x01, // Start of output.
                                0x20 // Size of output.
                            )
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(returndatasize()) {
                        mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                        revert(0x1c, 0x04)
                    }
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   TRY-RECOVER OPERATIONS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            // WARNING!
            // These functions will NOT revert upon recovery failure.
            // Instead, they will return the zero address upon recovery failure.
            // It is critical that the returned address is NEVER compared against
            // a zero address (e.g. an uninitialized address variable).
            /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
            function tryRecover(bytes32 hash, bytes memory signature)
                internal
                view
                returns (address result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    result := 1
                    let m := mload(0x40) // Cache the free memory pointer.
                    for {} 1 {} {
                        mstore(0x00, hash)
                        mstore(0x40, mload(add(signature, 0x20))) // `r`.
                        if eq(mload(signature), 64) {
                            let vs := mload(add(signature, 0x40))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            break
                        }
                        if eq(mload(signature), 65) {
                            mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                            mstore(0x60, mload(add(signature, 0x40))) // `s`.
                            break
                        }
                        result := 0
                        break
                    }
                    pop(
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            result, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x40, // Start of output.
                            0x20 // Size of output.
                        )
                    )
                    mstore(0x60, 0) // Restore the zero slot.
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    result := mload(xor(0x60, returndatasize()))
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
            function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
                internal
                view
                returns (address result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    result := 1
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x00, hash)
                    for {} 1 {} {
                        if eq(signature.length, 64) {
                            let vs := calldataload(add(signature.offset, 0x20))
                            mstore(0x20, add(shr(255, vs), 27)) // `v`.
                            mstore(0x40, calldataload(signature.offset)) // `r`.
                            mstore(0x60, shr(1, shl(1, vs))) // `s`.
                            break
                        }
                        if eq(signature.length, 65) {
                            mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                            calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                            break
                        }
                        result := 0
                        break
                    }
                    pop(
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            result, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x40, // Start of output.
                            0x20 // Size of output.
                        )
                    )
                    mstore(0x60, 0) // Restore the zero slot.
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    result := mload(xor(0x60, returndatasize()))
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Recovers the signer's address from a message digest `hash`,
            /// and the EIP-2098 short form signature defined by `r` and `vs`.
            function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
                internal
                view
                returns (address result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x00, hash)
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x40, r)
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                    pop(
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x40, // Start of output.
                            0x20 // Size of output.
                        )
                    )
                    mstore(0x60, 0) // Restore the zero slot.
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    result := mload(xor(0x60, returndatasize()))
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /// @dev Recovers the signer's address from a message digest `hash`,
            /// and the signature defined by `v`, `r`, `s`.
            function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
                internal
                view
                returns (address result)
            {
                /// @solidity memory-safe-assembly
                assembly {
                    let m := mload(0x40) // Cache the free memory pointer.
                    mstore(0x00, hash)
                    mstore(0x20, and(v, 0xff))
                    mstore(0x40, r)
                    mstore(0x60, s)
                    pop(
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x40, // Start of output.
                            0x20 // Size of output.
                        )
                    )
                    mstore(0x60, 0) // Restore the zero slot.
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    result := mload(xor(0x60, returndatasize()))
                    mstore(0x40, m) // Restore the free memory pointer.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                     HASHING OPERATIONS                     */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns an Ethereum Signed Message, created from a `hash`.
            /// This produces a hash corresponding to the one signed with the
            /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
            /// JSON-RPC method as part of EIP-191.
            function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    mstore(0x20, hash) // Store into scratch space for keccak256.
                    mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
        32") // 28 bytes.
                    result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
                }
            }
            /// @dev Returns an Ethereum Signed Message, created from `s`.
            /// This produces a hash corresponding to the one signed with the
            /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
            /// JSON-RPC method as part of EIP-191.
            /// Note: Supports lengths of `s` up to 999999 bytes.
            function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
                /// @solidity memory-safe-assembly
                assembly {
                    let sLength := mload(s)
                    let o := 0x20
                    mstore(o, "\\x19Ethereum Signed Message:\
        ") // 26 bytes, zero-right-padded.
                    mstore(0x00, 0x00)
                    // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
                    for { let temp := sLength } 1 {} {
                        o := sub(o, 1)
                        mstore8(o, add(48, mod(temp, 10)))
                        temp := div(temp, 10)
                        if iszero(temp) { break }
                    }
                    let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
                    // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
                    returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
                    mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
                    result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
                    mstore(s, sLength) // Restore the length.
                }
            }
            /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
            /*                   EMPTY CALLDATA HELPERS                   */
            /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
            /// @dev Returns an empty calldata bytes.
            function emptySignature() internal pure returns (bytes calldata signature) {
                /// @solidity memory-safe-assembly
                assembly {
                    signature.length := 0
                }
            }
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        error AlreadyInitialized();
        error CannotAuthoriseSelf();
        error CannotBridgeToSameNetwork();
        error ContractCallNotAllowed();
        error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
        error DiamondIsPaused();
        error ExternalCallFailed();
        error FunctionDoesNotExist();
        error InformationMismatch();
        error InsufficientBalance(uint256 required, uint256 balance);
        error InvalidAmount();
        error InvalidCallData();
        error InvalidConfig();
        error InvalidContract();
        error InvalidDestinationChain();
        error InvalidFallbackAddress();
        error InvalidReceiver();
        error InvalidSendingToken();
        error NativeAssetNotSupported();
        error NativeAssetTransferFailed();
        error NoSwapDataProvided();
        error NoSwapFromZeroBalance();
        error NotAContract();
        error NotInitialized();
        error NoTransferToNullAddress();
        error NullAddrIsNotAnERC20Token();
        error NullAddrIsNotAValidSpender();
        error OnlyContractOwner();
        error RecoveryAddressCannotBeZero();
        error ReentrancyError();
        error TokenNotSupported();
        error UnAuthorized();
        error UnsupportedChainId(uint256 chainId);
        error WithdrawFailed();
        error ZeroAmount();
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.0;
        import "../IERC20.sol";
        import "../extensions/IERC20Permit.sol";
        import "../../../utils/Address.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            using Address for address;
            /**
             * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeTransfer(IERC20 token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
            /**
             * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
             * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
             */
            function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
            /**
             * @dev Deprecated. This function has issues similar to the ones found in
             * {IERC20-approve}, and its usage is discouraged.
             *
             * Whenever possible, use {safeIncreaseAllowance} and
             * {safeDecreaseAllowance} instead.
             */
            function safeApprove(IERC20 token, address spender, uint256 value) internal {
                // safeApprove should only be called when setting an initial allowance,
                // or when resetting it to zero. To increase and decrease it, use
                // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                require(
                    (value == 0) || (token.allowance(address(this), spender) == 0),
                    "SafeERC20: approve from non-zero to non-zero allowance"
                );
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
            /**
             * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                uint256 oldAllowance = token.allowance(address(this), spender);
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
            }
            /**
             * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful.
             */
            function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                unchecked {
                    uint256 oldAllowance = token.allowance(address(this), spender);
                    require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                }
            }
            /**
             * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
             * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
             * 0 before setting it to a non-zero value.
             */
            function forceApprove(IERC20 token, address spender, uint256 value) internal {
                bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                if (!_callOptionalReturnBool(token, approvalCall)) {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                    _callOptionalReturn(token, approvalCall);
                }
            }
            /**
             * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
             * Revert on invalid signature.
             */
            function safePermit(
                IERC20Permit token,
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal {
                uint256 nonceBefore = token.nonces(owner);
                token.permit(owner, spender, value, deadline, v, r, s);
                uint256 nonceAfter = token.nonces(owner);
                require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                // the target address contains contract code and also asserts for success in the low-level call.
                bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             *
             * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
             */
            function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                // and not revert is the subcall reverts.
                (bool success, bytes memory returndata) = address(token).call(data);
                return
                    success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address from, address to, uint256 amount) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        library LibBytes {
            // solhint-disable no-inline-assembly
            // LibBytes specific errors
            error SliceOverflow();
            error SliceOutOfBounds();
            error AddressOutOfBounds();
            bytes16 private constant _SYMBOLS = "0123456789abcdef";
            // -------------------------
            function slice(
                bytes memory _bytes,
                uint256 _start,
                uint256 _length
            ) internal pure returns (bytes memory) {
                if (_length + 31 < _length) revert SliceOverflow();
                if (_bytes.length < _start + _length) revert SliceOutOfBounds();
                bytes memory tempBytes;
                assembly {
                    switch iszero(_length)
                    case 0 {
                        // Get a location of some free memory and store it in tempBytes as
                        // Solidity does for memory variables.
                        tempBytes := mload(0x40)
                        // The first word of the slice result is potentially a partial
                        // word read from the original array. To read it, we calculate
                        // the length of that partial word and start copying that many
                        // bytes into the array. The first word we copy will start with
                        // data we don't care about, but the last `lengthmod` bytes will
                        // land at the beginning of the contents of the new array. When
                        // we're done copying, we overwrite the full first word with
                        // the actual length of the slice.
                        let lengthmod := and(_length, 31)
                        // The multiplication in the next line is necessary
                        // because when slicing multiples of 32 bytes (lengthmod == 0)
                        // the following copy loop was copying the origin's length
                        // and then ending prematurely not copying everything it should.
                        let mc := add(
                            add(tempBytes, lengthmod),
                            mul(0x20, iszero(lengthmod))
                        )
                        let end := add(mc, _length)
                        for {
                            // The multiplication in the next line has the same exact purpose
                            // as the one above.
                            let cc := add(
                                add(
                                    add(_bytes, lengthmod),
                                    mul(0x20, iszero(lengthmod))
                                ),
                                _start
                            )
                        } lt(mc, end) {
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } {
                            mstore(mc, mload(cc))
                        }
                        mstore(tempBytes, _length)
                        //update free-memory pointer
                        //allocating the array padded to 32 bytes like the compiler does now
                        mstore(0x40, and(add(mc, 31), not(31)))
                    }
                    //if we want a zero-length slice let's just return a zero-length array
                    default {
                        tempBytes := mload(0x40)
                        //zero out the 32 bytes slice we are about to return
                        //we need to do it because Solidity does not garbage collect
                        mstore(tempBytes, 0)
                        mstore(0x40, add(tempBytes, 0x20))
                    }
                }
                return tempBytes;
            }
            function toAddress(
                bytes memory _bytes,
                uint256 _start
            ) internal pure returns (address) {
                if (_bytes.length < _start + 20) {
                    revert AddressOutOfBounds();
                }
                address tempAddress;
                assembly {
                    tempAddress := div(
                        mload(add(add(_bytes, 0x20), _start)),
                        0x1000000000000000000000000
                    )
                }
                return tempAddress;
            }
            /// Copied from OpenZeppelin's `Strings.sol` utility library.
            /// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
            function toHexString(
                uint256 value,
                uint256 length
            ) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
        }
        // SPDX-License-Identifier: MIT
        /// @custom:version 1.0.0
        pragma solidity ^0.8.17;
        import { InvalidContract } from "../Errors/GenericErrors.sol";
        /// @title Lib Allow List
        /// @author LI.FI (https://li.fi)
        /// @notice Library for managing and accessing the conract address allow list
        library LibAllowList {
            /// Storage ///
            bytes32 internal constant NAMESPACE =
                keccak256("com.lifi.library.allow.list");
            struct AllowListStorage {
                mapping(address => bool) allowlist;
                mapping(bytes4 => bool) selectorAllowList;
                address[] contracts;
            }
            /// @dev Adds a contract address to the allow list
            /// @param _contract the contract address to add
            function addAllowedContract(address _contract) internal {
                _checkAddress(_contract);
                AllowListStorage storage als = _getStorage();
                if (als.allowlist[_contract]) return;
                als.allowlist[_contract] = true;
                als.contracts.push(_contract);
            }
            /// @dev Checks whether a contract address has been added to the allow list
            /// @param _contract the contract address to check
            function contractIsAllowed(
                address _contract
            ) internal view returns (bool) {
                return _getStorage().allowlist[_contract];
            }
            /// @dev Remove a contract address from the allow list
            /// @param _contract the contract address to remove
            function removeAllowedContract(address _contract) internal {
                AllowListStorage storage als = _getStorage();
                if (!als.allowlist[_contract]) {
                    return;
                }
                als.allowlist[_contract] = false;
                uint256 length = als.contracts.length;
                // Find the contract in the list
                for (uint256 i = 0; i < length; i++) {
                    if (als.contracts[i] == _contract) {
                        // Move the last element into the place to delete
                        als.contracts[i] = als.contracts[length - 1];
                        // Remove the last element
                        als.contracts.pop();
                        break;
                    }
                }
            }
            /// @dev Fetch contract addresses from the allow list
            function getAllowedContracts() internal view returns (address[] memory) {
                return _getStorage().contracts;
            }
            /// @dev Add a selector to the allow list
            /// @param _selector the selector to add
            function addAllowedSelector(bytes4 _selector) internal {
                _getStorage().selectorAllowList[_selector] = true;
            }
            /// @dev Removes a selector from the allow list
            /// @param _selector the selector to remove
            function removeAllowedSelector(bytes4 _selector) internal {
                _getStorage().selectorAllowList[_selector] = false;
            }
            /// @dev Returns if selector has been added to the allow list
            /// @param _selector the selector to check
            function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
                return _getStorage().selectorAllowList[_selector];
            }
            /// @dev Fetch local storage struct
            function _getStorage()
                internal
                pure
                returns (AllowListStorage storage als)
            {
                bytes32 position = NAMESPACE;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    als.slot := position
                }
            }
            /// @dev Contains business logic for validating a contract address.
            /// @param _contract address of the dex to check
            function _checkAddress(address _contract) private view {
                if (_contract == address(0)) revert InvalidContract();
                if (_contract.code.length == 0) revert InvalidContract();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }