ETH Price: $2,489.73 (+1.79%)

Transaction Decoder

Block:
21158685 at Nov-10-2024 05:12:11 PM +UTC
Transaction Fee:
0.0040693240992888 ETH $10.13
Gas Used:
155,760 Gas / 26.12560413 Gwei

Emitted Events:

205 SpaceNationIndependence44.Transfer( from=0x00000000...000000000, to=[Sender] 0x6f8d69b89cdb797a64563ba264e4a39d99c13ff4, tokenId=2187 )
206 SpaceNationLaunchpad.Sale( requestId=2650243592886277, Type=2 )

Account State Difference:

  Address   Before After State Difference Code
0x21E70Ed3...A98Fa0505
0x6f8d69b8...D99C13fF4
0.176312564034759984 Eth
Nonce: 620
0.016243239935471184 Eth
Nonce: 621
0.1600693240992888
0x81E1666c...28B21736c 113.256 Eth113.412 Eth0.156
(beaverbuild)
19.400179143770213594 Eth19.400475205104533114 Eth0.00029606133431952

Execution Trace

ETH 0.156 SpaceNationLaunchpad.backupsale( _lpIndex=10000, payTokenIndex=0, num64=[2650243592886277, 1731258707, 1, 1], signature=0xF5EDCF81773EE63C321ADD784B29F05447B3AF31A40D82F4AFCCFB8A15C968DB359C28E8FFFF4B1FC33A9CAFB38A9BC506F50F4DE67744DA5AF7DC8CC6ACD67D1C )
  • Null: 0x000...001.ad8c9c7c( )
  • SpaceNationIndependence44.mint( qty=1, to=0x6f8d69b89CdB797a64563bA264e4a39D99C13fF4 ) => ( True )
    File 1 of 2: SpaceNationLaunchpad
    // File: @openzeppelin/contracts/utils/Context.sol
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // File: @openzeppelin/contracts/access/Ownable.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // File: @openzeppelin/contracts/utils/math/Math.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1, "Math: mulDiv overflow");
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
            }
        }
    }
    // File: @openzeppelin/contracts/utils/math/SignedMath.sol
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMath {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    // File: @openzeppelin/contracts/utils/Strings.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toString(int256 value) internal pure returns (string memory) {
            return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }
    // File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS,
            InvalidSignatureV // Deprecated in v4.8
        }
        function _throwError(RecoverError error) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert("ECDSA: invalid signature");
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert("ECDSA: invalid signature length");
            } else if (error == RecoverError.InvalidSignatureS) {
                revert("ECDSA: invalid signature 's' value");
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature` or error string. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength);
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, signature);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         *
         * _Available since v4.2._
         */
        function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, r, vs);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS);
            }
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature);
            }
            return (signer, RecoverError.NoError);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from a `hash`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
            // 32 is the length in bytes of hash,
            // enforced by the type signature above
            /// @solidity memory-safe-assembly
            assembly {
                mstore(0x00, "\\x19Ethereum Signed Message:\
    32")
                mstore(0x1c, hash)
                message := keccak256(0x00, 0x3c)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from `s`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
    ", Strings.toString(s.length), s));
        }
        /**
         * @dev Returns an Ethereum Signed Typed Data, created from a
         * `domainSeparator` and a `structHash`. This produces hash corresponding
         * to the one signed with the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
         * JSON-RPC method as part of EIP-712.
         *
         * See {recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
            /// @solidity memory-safe-assembly
            assembly {
                let ptr := mload(0x40)
                mstore(ptr, "\\x19\\x01")
                mstore(add(ptr, 0x02), domainSeparator)
                mstore(add(ptr, 0x22), structHash)
                data := keccak256(ptr, 0x42)
            }
        }
        /**
         * @dev Returns an Ethereum Signed Data with intended validator, created from a
         * `validator` and `data` according to the version 0 of EIP-191.
         *
         * See {recover}.
         */
        function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19\\x00", validator, data));
        }
    }
    // File: @openzeppelin/contracts/interfaces/IERC1271.sol
    // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC1271 standard signature validation method for
     * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
     *
     * _Available since v4.1._
     */
    interface IERC1271 {
        /**
         * @dev Should return whether the signature provided is valid for the provided data
         * @param hash      Hash of the data to be signed
         * @param signature Signature byte array associated with _data
         */
        function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
    }
    // File: @openzeppelin/contracts/utils/cryptography/SignatureChecker.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
     * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
     * Argent and Gnosis Safe.
     *
     * _Available since v4.1._
     */
    library SignatureChecker {
        /**
         * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
         * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
         *
         * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
         * change through time. It could return true at block N and false at block N+1 (or the opposite).
         */
        function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
            (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
            return
                (error == ECDSA.RecoverError.NoError && recovered == signer) ||
                isValidERC1271SignatureNow(signer, hash, signature);
        }
        /**
         * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
         * against the signer smart contract using ERC1271.
         *
         * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
         * change through time. It could return true at block N and false at block N+1 (or the opposite).
         */
        function isValidERC1271SignatureNow(
            address signer,
            bytes32 hash,
            bytes memory signature
        ) internal view returns (bool) {
            (bool success, bytes memory result) = signer.staticcall(
                abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
            );
            return (success &&
                result.length >= 32 &&
                abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
        }
    }
    // File: @openzeppelin/contracts/security/ReentrancyGuard.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        constructor() {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be _NOT_ENTERED
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
        }
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == _ENTERED;
        }
    }
    // File: @openzeppelin/contracts/utils/Address.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // File: solmate/src/tokens/ERC20.sol
    pragma solidity >=0.8.0;
    /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
    /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
    /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
    /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
    abstract contract ERC20 {
        /*//////////////////////////////////////////////////////////////
                                     EVENTS
        //////////////////////////////////////////////////////////////*/
        event Transfer(address indexed from, address indexed to, uint256 amount);
        event Approval(address indexed owner, address indexed spender, uint256 amount);
        /*//////////////////////////////////////////////////////////////
                                METADATA STORAGE
        //////////////////////////////////////////////////////////////*/
        string public name;
        string public symbol;
        uint8 public immutable decimals;
        /*//////////////////////////////////////////////////////////////
                                  ERC20 STORAGE
        //////////////////////////////////////////////////////////////*/
        uint256 public totalSupply;
        mapping(address => uint256) public balanceOf;
        mapping(address => mapping(address => uint256)) public allowance;
        /*//////////////////////////////////////////////////////////////
                                EIP-2612 STORAGE
        //////////////////////////////////////////////////////////////*/
        uint256 internal immutable INITIAL_CHAIN_ID;
        bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
        mapping(address => uint256) public nonces;
        /*//////////////////////////////////////////////////////////////
                                   CONSTRUCTOR
        //////////////////////////////////////////////////////////////*/
        constructor(
            string memory _name,
            string memory _symbol,
            uint8 _decimals
        ) {
            name = _name;
            symbol = _symbol;
            decimals = _decimals;
            INITIAL_CHAIN_ID = block.chainid;
            INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
        }
        /*//////////////////////////////////////////////////////////////
                                   ERC20 LOGIC
        //////////////////////////////////////////////////////////////*/
        function approve(address spender, uint256 amount) public virtual returns (bool) {
            allowance[msg.sender][spender] = amount;
            emit Approval(msg.sender, spender, amount);
            return true;
        }
        function transfer(address to, uint256 amount) public virtual returns (bool) {
            balanceOf[msg.sender] -= amount;
            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] += amount;
            }
            emit Transfer(msg.sender, to, amount);
            return true;
        }
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual returns (bool) {
            uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
            if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
            balanceOf[from] -= amount;
            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] += amount;
            }
            emit Transfer(from, to, amount);
            return true;
        }
        /*//////////////////////////////////////////////////////////////
                                 EIP-2612 LOGIC
        //////////////////////////////////////////////////////////////*/
        function permit(
            address owner,
            address spender,
            uint256 value,
            uint256 deadline,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) public virtual {
            require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
            // Unchecked because the only math done is incrementing
            // the owner's nonce which cannot realistically overflow.
            unchecked {
                address recoveredAddress = ecrecover(
                    keccak256(
                        abi.encodePacked(
                            "\\x19\\x01",
                            DOMAIN_SEPARATOR(),
                            keccak256(
                                abi.encode(
                                    keccak256(
                                        "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                    ),
                                    owner,
                                    spender,
                                    value,
                                    nonces[owner]++,
                                    deadline
                                )
                            )
                        )
                    ),
                    v,
                    r,
                    s
                );
                require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                allowance[recoveredAddress][spender] = value;
            }
            emit Approval(owner, spender, value);
        }
        function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
            return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
        }
        function computeDomainSeparator() internal view virtual returns (bytes32) {
            return
                keccak256(
                    abi.encode(
                        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                        keccak256(bytes(name)),
                        keccak256("1"),
                        block.chainid,
                        address(this)
                    )
                );
        }
        /*//////////////////////////////////////////////////////////////
                            INTERNAL MINT/BURN LOGIC
        //////////////////////////////////////////////////////////////*/
        function _mint(address to, uint256 amount) internal virtual {
            totalSupply += amount;
            // Cannot overflow because the sum of all user
            // balances can't exceed the max uint256 value.
            unchecked {
                balanceOf[to] += amount;
            }
            emit Transfer(address(0), to, amount);
        }
        function _burn(address from, uint256 amount) internal virtual {
            balanceOf[from] -= amount;
            // Cannot underflow because a user's balance
            // will never be larger than the total supply.
            unchecked {
                totalSupply -= amount;
            }
            emit Transfer(from, address(0), amount);
        }
    }
    // File: solmate/src/utils/SafeTransferLib.sol
    pragma solidity >=0.8.0;
    /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
    /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
    /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
    library SafeTransferLib {
        /*//////////////////////////////////////////////////////////////
                                 ETH OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function safeTransferETH(address to, uint256 amount) internal {
            bool success;
            /// @solidity memory-safe-assembly
            assembly {
                // Transfer the ETH and store if it succeeded or not.
                success := call(gas(), to, amount, 0, 0, 0, 0)
            }
            require(success, "ETH_TRANSFER_FAILED");
        }
        /*//////////////////////////////////////////////////////////////
                                ERC20 OPERATIONS
        //////////////////////////////////////////////////////////////*/
        function safeTransferFrom(
            ERC20 token,
            address from,
            address to,
            uint256 amount
        ) internal {
            bool success;
            /// @solidity memory-safe-assembly
            assembly {
                // Get a pointer to some free memory.
                let freeMemoryPointer := mload(0x40)
                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
                mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                success := call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
                if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                    success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
                }
            }
            require(success, "TRANSFER_FROM_FAILED");
        }
        function safeTransfer(
            ERC20 token,
            address to,
            uint256 amount
        ) internal {
            bool success;
            /// @solidity memory-safe-assembly
            assembly {
                // Get a pointer to some free memory.
                let freeMemoryPointer := mload(0x40)
                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
                if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                    success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
                }
            }
            require(success, "TRANSFER_FAILED");
        }
        function safeApprove(
            ERC20 token,
            address to,
            uint256 amount
        ) internal {
            bool success;
            /// @solidity memory-safe-assembly
            assembly {
                // Get a pointer to some free memory.
                let freeMemoryPointer := mload(0x40)
                // Write the abi-encoded calldata into memory, beginning with the function selector.
                mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
                mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
                if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                    success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
                }
            }
            require(success, "APPROVE_FAILED");
        }
    }
    // File: mint.sol
    pragma solidity 0.8.19;
    interface INFTMinter {
        function mint(uint64, address) external returns (bool);
    }
    contract SpaceNationLaunchpad is Ownable, ReentrancyGuard {
        using ECDSA for bytes32;
        LPGlobalConfig public lpInfo;
        LPPayToken[] public payTokens;
        mapping(uint64 => bool) private lpStageIndex;
        mapping(uint64 => LPMintInfo) public mintInfo;
        mapping(uint64 => bool) private ridvalue;
        mapping(uint64 => uint256) gtdTotalMinted;
        mapping(uint64 => uint256) totalMintedSupply;
        mapping(address => mapping(uint64 => uint256)) public addrBackupMinted;
        mapping(address => mapping(uint64 => uint256)) public addrGtdMinted;
        error DuplicatedLPIndex();
        error ExceedPerAddressLimit();
        error ExceedLPMaxSupply();
        error ExceedLPStageMaxSupply();
        error IncorrectERC20();
        error StageNotActive();
        enum MintType {
            Public,
            GTD,
            Backup
        }
        struct LPMintInfo {
            uint64[4] timestamp;
            uint64 gtdSupply;
            uint64 maxSupply;
            address nftAddress;
        }
        struct LPPayToken {
            address paymentToken;
            uint256 whitePrice;
            uint256 publicPrice;
            string symbol;
        }
        struct LPGlobalConfig {
            bool enableMultiBackup;
            uint32 limitationForBackupAddress;
            uint32 limitationForPubSale;
            uint32 expireTime;
            address beneficiary;
            address signer;
        }
        event Sale(uint64 indexed requestId, MintType indexed Type); // 0-Public 1-GTD 2-Backup
        constructor(uint64 lpIndex, address _nftAddress) {
            _verifyLPStage(lpIndex);
            mintInfo[lpIndex] = LPMintInfo({
                timestamp: [uint64(1731247200), 1731254400, 1731261600, 1731268800],
                gtdSupply: 1880,
                maxSupply: 1980,
                nftAddress: _nftAddress
            });
            lpInfo = LPGlobalConfig({
                expireTime: 300,
                beneficiary: 0x464868685F5ED7cc8260840a8a0e797F48b0Dbd0,
                signer: 0xF9f477d9B8E772aE5138d91D7d7B88a05d62E62E,
                enableMultiBackup: false,
                limitationForBackupAddress: 1,
                limitationForPubSale: 1
            });
            LPPayToken memory _payToken;
            _payToken = LPPayToken({
                paymentToken: address(0),
                whitePrice: 160000000000000000,
                publicPrice: 160000000000000000,
                symbol: "ETH"
            });
            payTokens.push(_payToken);
            _payToken = LPPayToken({
                paymentToken: 0xdAC17F958D2ee523a2206206994597C13D831ec7,
                whitePrice: 499000000,
                publicPrice: 499000000,
                symbol: "USDT_ETH"
            });
            payTokens.push(_payToken);
        }
        function _verifyLPStage(uint64 stageIndex) private {
            if (lpStageIndex[stageIndex]) {
                revert DuplicatedLPIndex();
            }
            lpStageIndex[stageIndex] = true;
        }
        function newLaunchpad(uint64 lpIndex, LPMintInfo memory _mintInfo)
        external
        onlyOwner
        {
            _verifyLPStage(lpIndex);
            mintInfo[lpIndex] = _mintInfo;
        }
        function renounceOwnership() public view override onlyOwner {
            revert("Closed_Interface");
        }
        function setMintTime(uint64 lpIndex, uint64[4] calldata ts)
        external
        onlyOwner
        {
            mintInfo[lpIndex].timestamp = ts;
        }
        function setgtdSupply(uint64 lpIndex, uint64 _count) external onlyOwner {
            mintInfo[lpIndex].gtdSupply = _count;
        }
        function setmaxSupply(uint64 lpIndex, uint64 _count) external onlyOwner {
            mintInfo[lpIndex].maxSupply = _count;
        }
        function setNft(uint64 lpIndex, address newNft) external onlyOwner {
            mintInfo[lpIndex].nftAddress = newNft;
        }
        function setPrice(
            uint64[] memory payTokenIndexs,
            uint256[] memory wlprices,
            uint256[] memory pubprices
        ) external onlyOwner {
            uint256 len = payTokenIndexs.length;
            require(wlprices.length == len && pubprices.length == len);
            uint64 payTokenIndex;
            uint256 _wlprice;
            uint256 _pubprice;
            for (uint256 index = 0; index < len; index++) {
                payTokenIndex = payTokenIndexs[index];
                _wlprice = wlprices[index];
                _pubprice = pubprices[index];
                payTokens[payTokenIndex].whitePrice = _wlprice;
                payTokens[payTokenIndex].publicPrice = _pubprice;
            }
        }
        function addPrice(
            address paymentToken,
            uint256 whitePrice,
            uint256 publicPrice,
            string memory symbol
        ) external onlyOwner {
            LPPayToken memory _payToken;
            _payToken = LPPayToken({
                paymentToken: paymentToken,
                whitePrice: whitePrice,
                publicPrice: publicPrice,
                symbol: symbol
            });
            payTokens.push(_payToken);
        }
        function setEnableMutiBackup(bool status) external onlyOwner {
            lpInfo.enableMultiBackup = status;
        }
        function setLimitForBackupAddress(uint32 _count) external onlyOwner {
            lpInfo.limitationForBackupAddress = _count;
        }
        function setLimitForPublicAddress(uint32 _count) external onlyOwner {
            lpInfo.limitationForPubSale = _count;
        }
        function setExpire(uint32 _expireTime) external onlyOwner {
            lpInfo.expireTime = _expireTime;
        }
        function setBene(address _bene) external onlyOwner {
            lpInfo.beneficiary = _bene;
        }
        function setCosigner(address _signer) external onlyOwner {
            lpInfo.signer = _signer;
        }
        //num64 [requestId,timestamp,qty,supply]
        function gtdsale(
            uint64 _lpIndex,
            uint32 payTokenIndex,
            uint64[4] calldata num64,
            bytes calldata signature
        ) external payable nonReentrant {
            MintType mintType = MintType.GTD;
            _handlesale(_lpIndex, payTokenIndex, mintType, num64, signature);
        }
        function backupsale(
            uint64 _lpIndex,
            uint32 payTokenIndex,
            uint64[4] calldata num64,
            bytes calldata signature
        ) external payable nonReentrant {
            MintType mintType = MintType.Backup;
            _handlesale(_lpIndex, payTokenIndex, mintType, num64, signature);
        }
        function publicsale(
            uint64 _lpIndex,
            uint32 payTokenIndex,
            uint64[4] calldata num64,
            bytes calldata signature
        ) external payable nonReentrant {
            MintType mintType = MintType.Public;
            _handlesale(_lpIndex, payTokenIndex, mintType, num64, signature);
        }
        function _handlesale(
            uint64 _lpIndex,
            uint32 payTokenIndex,
            MintType mintType,
            uint64[4] calldata num64,
            bytes calldata signature
        ) private {
            _validateActive(_lpIndex, mintType, num64[1]);
            address sender = _msgSender();
            (uint64 amount, uint64 maxSupplyForAddress) = (num64[2], num64[3]);
            if (mintType == MintType.Backup) {
                if (!lpInfo.enableMultiBackup) {
                    maxSupplyForAddress = lpInfo.limitationForBackupAddress;
                }
            }
            _validateAmount(
                _lpIndex,
                mintType,
                sender,
                amount,
                maxSupplyForAddress
            );
            _validateSignature(
                mintType,
                payTokenIndex,
                lpInfo.expireTime,
                sender,
                lpInfo.signer,
                num64,
                signature
            );
            _handlePayment(mintType, num64[2], payTokenIndex);
            _handleMint(_lpIndex, mintType, num64[2], sender);
            emit Sale(num64[0], mintType);
        }
        function _validateAmount(
            uint64 _lpIndex,
            MintType mintType,
            address sender,
            uint256 amount,
            uint256 mintLimitationPerAddress
        ) internal view {
            if (mintType == MintType.Public) {
                if (amount != lpInfo.limitationForPubSale) {
                    revert ExceedLPStageMaxSupply();
                }
                return;
            }
            uint256 mintedAmount;
            if (mintType == MintType.GTD) {
                uint256 _gtdTotalMinted = gtdTotalMinted[_lpIndex];
                uint256 maxSupplyForGtdStage = mintInfo[_lpIndex].gtdSupply;
                if (_gtdTotalMinted + amount > maxSupplyForGtdStage) {
                    revert ExceedLPStageMaxSupply();
                }
                mintedAmount = addrGtdMinted[sender][_lpIndex];
            } else if (mintType == MintType.Backup) {
                mintedAmount = addrBackupMinted[sender][_lpIndex];
            }
            //check per address mint limitation
            if (mintedAmount + amount > mintLimitationPerAddress) {
                revert ExceedPerAddressLimit();
            }
            uint256 _totalMintedSupply = totalMintedSupply[_lpIndex];
            uint256 globalTotalSupply = mintInfo[_lpIndex].maxSupply;
            //check total maxSupply
            if (_totalMintedSupply + amount > globalTotalSupply) {
                revert ExceedLPMaxSupply();
            }
        }
        function _validateActive(
            uint64 _lpIndex,
            MintType mintType,
            uint64 signTs
        ) internal view {
            uint256 blockTs = block.timestamp;
            uint64[4] memory ts = mintInfo[_lpIndex].timestamp;
            uint64 startTime = ts[0];
            uint64 endTime = ts[1];
            if (mintType == MintType.Backup) {
                startTime = ts[1];
                endTime = ts[2];
            } else if (mintType == MintType.Public) {
                startTime = ts[2];
                endTime = ts[3];
            }
            if (_cast(blockTs < startTime) | _cast(blockTs > endTime) == 1) {
                // Revert if the stage is not active.
                revert StageNotActive();
            }
            if (mintType != MintType.Public) {
                if (_cast(signTs < startTime) | _cast(signTs > endTime) == 1) {
                    // Revert if the stage is not active.
                    revert StageNotActive();
                }
            }
        }
        function _cast(bool b) internal pure returns (uint256 u) {
            assembly {
                u := b
            }
        }
        function _handlePayment(
            MintType mintType,
            uint64 amount,
            uint32 payTokenIndex
        ) internal {
            LPPayToken memory payToken = payTokens[payTokenIndex];
            uint256 price = payToken.whitePrice;
            if (mintType == MintType.Public) {
                price = payToken.publicPrice;
            }
            address paymentToken = payToken.paymentToken;
            if (paymentToken == address(0)) {
                // Revert if the tx's value doesn't match the total cost.
                if (msg.value != amount * price) {
                    revert("Insufficient value for payment");
                }
            } else {
                if (msg.value != 0) {
                    revert("No need value in token payment");
                }
                if (!_isContract(paymentToken)) {
                    revert IncorrectERC20();
                }
                SafeTransferLib.safeTransferFrom(
                    ERC20(paymentToken),
                    msg.sender,
                    lpInfo.beneficiary,
                    amount * price
                );
            }
        }
        function _isContract(address account) internal view returns (bool) {
            return (account.code.length > 0);
        }
        /**
         * @dev Implementation of minting.
         */
        function _handleMint(
            uint64 _lpIndex,
            MintType mintType,
            uint64 amount,
            address to
        ) private {
            address nftAddress = mintInfo[_lpIndex].nftAddress;
            totalMintedSupply[_lpIndex] += amount;
            if (mintType == MintType.GTD) {
                gtdTotalMinted[_lpIndex] += amount;
                addrGtdMinted[to][_lpIndex] += amount;
            } else if (mintType == MintType.Backup) {
                addrBackupMinted[to][_lpIndex] += amount;
            }
            require(INFTMinter(nftAddress).mint(amount, to), "Fail to mint a NFT");
        }
        function withdraw() external onlyOwner {
            Address.sendValue(payable(lpInfo.beneficiary), address(this).balance);
        }
        function _validateSignature(
            MintType mintType,
            uint32 payTokenIndex,
            uint32 expireTime,
            address sender,
            address signer,
            uint64[4] calldata num64,
            bytes calldata signature
        ) internal {
            if (mintType == MintType.Public) {
                return;
            }
            uint256 blockTs = block.timestamp;
            if (mintType == MintType.GTD) {
                require((expireTime + num64[1] >= blockTs), "Signature expired");
            }
            uint64 rid = num64[0];
            require((!ridvalue[rid]), "Duplicated signature");
            require(
                matchSigner(
                    signer,
                    getCosignDigest(mintType, payTokenIndex, sender, num64),
                    signature
                ),
                "Invalid signature"
            );
            ridvalue[rid] = true;
        }
        /**
         * @dev Returns data hash for the given minter, qty and timestamp.
         */
        function getCosignDigest(
            MintType mintType,
            uint32 payTokenIndex,
            address sender,
            uint64[4] memory num64
        ) private view returns (bytes32) {
            return
                keccak256(
                    abi.encodePacked(
                        sender,
                        uint32(mintType),
                        payTokenIndex,
                        _chainID(),
                        num64
                    )
                ).toEthSignedMessageHash();
        }
        function matchSigner(
            address signer,
            bytes32 hash,
            bytes memory signature
        ) private view returns (bool) {
            return SignatureChecker.isValidSignatureNow(signer, hash, signature);
        }
        /**
         * @dev Returns chain id.
         */
        function _chainID() public view returns (uint32) {
            uint32 chainID;
            assembly {
                chainID := chainid()
            }
            return chainID;
        }
        function getMintTime(uint64 _lpIndex)
        external
        view
        returns (uint64[4] memory)
        {
            return mintInfo[_lpIndex].timestamp;
        }
    }
    

    File 2 of 2: SpaceNationIndependence44
    // File: erc721a/contracts/IERC721A.sol
    // ERC721A Contracts v4.3.0
    // Creator: Chiru Labs
    pragma solidity ^0.8.4;
    /**
     * @dev Interface of ERC721A.
     */
    interface IERC721A {
        /**
         * The caller must own the token or be an approved operator.
         */
        error ApprovalCallerNotOwnerNorApproved();
        /**
         * The token does not exist.
         */
        error ApprovalQueryForNonexistentToken();
        /**
         * Cannot query the balance for the zero address.
         */
        error BalanceQueryForZeroAddress();
        /**
         * Cannot mint to the zero address.
         */
        error MintToZeroAddress();
        /**
         * The quantity of tokens minted must be more than zero.
         */
        error MintZeroQuantity();
        /**
         * The token does not exist.
         */
        error OwnerQueryForNonexistentToken();
        /**
         * The caller must own the token or be an approved operator.
         */
        error TransferCallerNotOwnerNorApproved();
        /**
         * The token must be owned by `from`.
         */
        error TransferFromIncorrectOwner();
        /**
         * Cannot safely transfer to a contract that does not implement the
         * ERC721Receiver interface.
         */
        error TransferToNonERC721ReceiverImplementer();
        /**
         * Cannot transfer to the zero address.
         */
        error TransferToZeroAddress();
        /**
         * The token does not exist.
         */
        error URIQueryForNonexistentToken();
        /**
         * The `quantity` minted with ERC2309 exceeds the safety limit.
         */
        error MintERC2309QuantityExceedsLimit();
        /**
         * The `extraData` cannot be set on an unintialized ownership slot.
         */
        error OwnershipNotInitializedForExtraData();
        /**
         * `_sequentialUpTo()` must be greater than `_startTokenId()`.
         */
        error SequentialUpToTooSmall();
        /**
         * The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`.
         */
        error SequentialMintExceedsLimit();
        /**
         * Spot minting requires a `tokenId` greater than `_sequentialUpTo()`.
         */
        error SpotMintTokenIdTooSmall();
        /**
         * Cannot mint over a token that already exists.
         */
        error TokenAlreadyExists();
        /**
         * The feature is not compatible with spot mints.
         */
        error NotCompatibleWithSpotMints();
        // =============================================================
        //                            STRUCTS
        // =============================================================
        struct TokenOwnership {
            // The address of the owner.
            address addr;
            // Stores the start time of ownership with minimal overhead for tokenomics.
            uint64 startTimestamp;
            // Whether the token has been burned.
            bool burned;
            // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
            uint24 extraData;
        }
        // =============================================================
        //                         TOKEN COUNTERS
        // =============================================================
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see {_totalMinted}.
         */
        function totalSupply() external view returns (uint256);
        // =============================================================
        //                            IERC165
        // =============================================================
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
        // =============================================================
        //                            IERC721
        // =============================================================
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables or disables
         * (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
        /**
         * @dev Returns the number of tokens in `owner`'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`,
         * checking first that contract recipients are aware of the ERC721 protocol
         * to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be have been allowed to move
         * this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes calldata data
        ) external payable;
        /**
         * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external payable;
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
         * whenever possible.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external payable;
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the
         * zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external payable;
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom}
         * for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool _approved) external;
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
        // =============================================================
        //                        IERC721Metadata
        // =============================================================
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
        // =============================================================
        //                           IERC2309
        // =============================================================
        /**
         * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
         * (inclusive) is transferred from `from` to `to`, as defined in the
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
         *
         * See {_mintERC2309} for more details.
         */
        event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
    }
    // File: erc721a/contracts/extensions/IERC721ABurnable.sol
    // ERC721A Contracts v4.3.0
    // Creator: Chiru Labs
    pragma solidity ^0.8.4;
    /**
     * @dev Interface of ERC721ABurnable.
     */
    interface IERC721ABurnable is IERC721A {
        /**
         * @dev Burns `tokenId`. See {ERC721A-_burn}.
         *
         * Requirements:
         *
         * - The caller must own `tokenId` or be an approved operator.
         */
        function burn(uint256 tokenId) external;
    }
    // File: erc721a/contracts/ERC721A.sol
    // ERC721A Contracts v4.3.0
    // Creator: Chiru Labs
    pragma solidity ^0.8.4;
    /**
     * @dev Interface of ERC721 token receiver.
     */
    interface ERC721A__IERC721Receiver {
        function onERC721Received(
            address operator,
            address from,
            uint256 tokenId,
            bytes calldata data
        ) external returns (bytes4);
    }
    /**
     * @title ERC721A
     *
     * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
     * Non-Fungible Token Standard, including the Metadata extension.
     * Optimized for lower gas during batch mints.
     *
     * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
     * starting from `_startTokenId()`.
     *
     * The `_sequentialUpTo()` function can be overriden to enable spot mints
     * (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`.
     *
     * Assumptions:
     *
     * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
     * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
     */
    contract ERC721A is IERC721A {
        // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
        struct TokenApprovalRef {
            address value;
        }
        // =============================================================
        //                           CONSTANTS
        // =============================================================
        // Mask of an entry in packed address data.
        uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
        // The bit position of `numberMinted` in packed address data.
        uint256 private constant _BITPOS_NUMBER_MINTED = 64;
        // The bit position of `numberBurned` in packed address data.
        uint256 private constant _BITPOS_NUMBER_BURNED = 128;
        // The bit position of `aux` in packed address data.
        uint256 private constant _BITPOS_AUX = 192;
        // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
        uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
        // The bit position of `startTimestamp` in packed ownership.
        uint256 private constant _BITPOS_START_TIMESTAMP = 160;
        // The bit mask of the `burned` bit in packed ownership.
        uint256 private constant _BITMASK_BURNED = 1 << 224;
        // The bit position of the `nextInitialized` bit in packed ownership.
        uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
        // The bit mask of the `nextInitialized` bit in packed ownership.
        uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
        // The bit position of `extraData` in packed ownership.
        uint256 private constant _BITPOS_EXTRA_DATA = 232;
        // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
        uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
        // The mask of the lower 160 bits for addresses.
        uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
        // The maximum `quantity` that can be minted with {_mintERC2309}.
        // This limit is to prevent overflows on the address data entries.
        // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
        // is required to cause an overflow, which is unrealistic.
        uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
        // The `Transfer` event signature is given by:
        // `keccak256(bytes("Transfer(address,address,uint256)"))`.
        bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
            0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
        // =============================================================
        //                            STORAGE
        // =============================================================
        // The next token ID to be minted.
        uint256 private _currentIndex;
        // The number of tokens burned.
        uint256 private _burnCounter;
        // Token name
        string private _name;
        // Token symbol
        string private _symbol;
        // Mapping from token ID to ownership details
        // An empty struct value does not necessarily mean the token is unowned.
        // See {_packedOwnershipOf} implementation for details.
        //
        // Bits Layout:
        // - [0..159]   `addr`
        // - [160..223] `startTimestamp`
        // - [224]      `burned`
        // - [225]      `nextInitialized`
        // - [232..255] `extraData`
        mapping(uint256 => uint256) private _packedOwnerships;
        // Mapping owner address to address data.
        //
        // Bits Layout:
        // - [0..63]    `balance`
        // - [64..127]  `numberMinted`
        // - [128..191] `numberBurned`
        // - [192..255] `aux`
        mapping(address => uint256) private _packedAddressData;
        // Mapping from token ID to approved address.
        mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
        // Mapping from owner to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
        // The amount of tokens minted above `_sequentialUpTo()`.
        // We call these spot mints (i.e. non-sequential mints).
        uint256 private _spotMinted;
        // =============================================================
        //                          CONSTRUCTOR
        // =============================================================
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
            _currentIndex = _startTokenId();
            if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector);
        }
        // =============================================================
        //                   TOKEN COUNTING OPERATIONS
        // =============================================================
        /**
         * @dev Returns the starting token ID for sequential mints.
         *
         * Override this function to change the starting token ID for sequential mints.
         *
         * Note: The value returned must never change after any tokens have been minted.
         */
        function _startTokenId() internal view virtual returns (uint256) {
            return 0;
        }
        /**
         * @dev Returns the maximum token ID (inclusive) for sequential mints.
         *
         * Override this function to return a value less than 2**256 - 1,
         * but greater than `_startTokenId()`, to enable spot (non-sequential) mints.
         *
         * Note: The value returned must never change after any tokens have been minted.
         */
        function _sequentialUpTo() internal view virtual returns (uint256) {
            return type(uint256).max;
        }
        /**
         * @dev Returns the next token ID to be minted.
         */
        function _nextTokenId() internal view virtual returns (uint256) {
            return _currentIndex;
        }
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see {_totalMinted}.
         */
        function totalSupply() public view virtual override returns (uint256 result) {
            // Counter underflow is impossible as `_burnCounter` cannot be incremented
            // more than `_currentIndex + _spotMinted - _startTokenId()` times.
            unchecked {
                // With spot minting, the intermediate `result` can be temporarily negative,
                // and the computation must be unchecked.
                result = _currentIndex - _burnCounter - _startTokenId();
                if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
            }
        }
        /**
         * @dev Returns the total amount of tokens minted in the contract.
         */
        function _totalMinted() internal view virtual returns (uint256 result) {
            // Counter underflow is impossible as `_currentIndex` does not decrement,
            // and it is initialized to `_startTokenId()`.
            unchecked {
                result = _currentIndex - _startTokenId();
                if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
            }
        }
        /**
         * @dev Returns the total number of tokens burned.
         */
        function _totalBurned() internal view virtual returns (uint256) {
            return _burnCounter;
        }
        /**
         * @dev Returns the total number of tokens that are spot-minted.
         */
        function _totalSpotMinted() internal view virtual returns (uint256) {
            return _spotMinted;
        }
        // =============================================================
        //                    ADDRESS DATA OPERATIONS
        // =============================================================
        /**
         * @dev Returns the number of tokens in `owner`'s account.
         */
        function balanceOf(address owner) public view virtual override returns (uint256) {
            if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
            return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the number of tokens minted by `owner`.
         */
        function _numberMinted(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the number of tokens burned by or on behalf of `owner`.
         */
        function _numberBurned(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         */
        function _getAux(address owner) internal view returns (uint64) {
            return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
        }
        /**
         * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         * If there are multiple variables, please pack them into a uint64.
         */
        function _setAux(address owner, uint64 aux) internal virtual {
            uint256 packed = _packedAddressData[owner];
            uint256 auxCasted;
            // Cast `aux` with assembly to avoid redundant masking.
            assembly {
                auxCasted := aux
            }
            packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
            _packedAddressData[owner] = packed;
        }
        // =============================================================
        //                            IERC165
        // =============================================================
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30000 gas.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            // The interface IDs are constants representing the first 4 bytes
            // of the XOR of all function selectors in the interface.
            // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
            // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
            return
                interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
                interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
                interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
        }
        // =============================================================
        //                        IERC721Metadata
        // =============================================================
        /**
         * @dev Returns the token collection name.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
            if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);
            string memory baseURI = _baseURI();
            return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
        }
        /**
         * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
         * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
         * by default, it can be overridden in child contracts.
         */
        function _baseURI() internal view virtual returns (string memory) {
            return '';
        }
        // =============================================================
        //                     OWNERSHIPS OPERATIONS
        // =============================================================
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) public view virtual override returns (address) {
            return address(uint160(_packedOwnershipOf(tokenId)));
        }
        /**
         * @dev Gas spent here starts off proportional to the maximum mint batch size.
         * It gradually moves to O(1) as tokens get transferred around over time.
         */
        function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnershipOf(tokenId));
        }
        /**
         * @dev Returns the unpacked `TokenOwnership` struct at `index`.
         */
        function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnerships[index]);
        }
        /**
         * @dev Returns whether the ownership slot at `index` is initialized.
         * An uninitialized slot does not necessarily mean that the slot has no owner.
         */
        function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
            return _packedOwnerships[index] != 0;
        }
        /**
         * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
         */
        function _initializeOwnershipAt(uint256 index) internal virtual {
            if (_packedOwnerships[index] == 0) {
                _packedOwnerships[index] = _packedOwnershipOf(index);
            }
        }
        /**
         * @dev Returns the packed ownership data of `tokenId`.
         */
        function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
            if (_startTokenId() <= tokenId) {
                packed = _packedOwnerships[tokenId];
                if (tokenId > _sequentialUpTo()) {
                    if (_packedOwnershipExists(packed)) return packed;
                    _revert(OwnerQueryForNonexistentToken.selector);
                }
                // If the data at the starting slot does not exist, start the scan.
                if (packed == 0) {
                    if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector);
                    // Invariant:
                    // There will always be an initialized ownership slot
                    // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                    // before an unintialized ownership slot
                    // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                    // Hence, `tokenId` will not underflow.
                    //
                    // We can directly compare the packed value.
                    // If the address is zero, packed will be zero.
                    for (;;) {
                        unchecked {
                            packed = _packedOwnerships[--tokenId];
                        }
                        if (packed == 0) continue;
                        if (packed & _BITMASK_BURNED == 0) return packed;
                        // Otherwise, the token is burned, and we must revert.
                        // This handles the case of batch burned tokens, where only the burned bit
                        // of the starting slot is set, and remaining slots are left uninitialized.
                        _revert(OwnerQueryForNonexistentToken.selector);
                    }
                }
                // Otherwise, the data exists and we can skip the scan.
                // This is possible because we have already achieved the target condition.
                // This saves 2143 gas on transfers of initialized tokens.
                // If the token is not burned, return `packed`. Otherwise, revert.
                if (packed & _BITMASK_BURNED == 0) return packed;
            }
            _revert(OwnerQueryForNonexistentToken.selector);
        }
        /**
         * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
         */
        function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
            ownership.addr = address(uint160(packed));
            ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
            ownership.burned = packed & _BITMASK_BURNED != 0;
            ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
        }
        /**
         * @dev Packs ownership data into a single uint256.
         */
        function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, _BITMASK_ADDRESS)
                // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
                result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
            }
        }
        /**
         * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
         */
        function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
            // For branchless setting of the `nextInitialized` flag.
            assembly {
                // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
                result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
            }
        }
        // =============================================================
        //                      APPROVAL OPERATIONS
        // =============================================================
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         */
        function approve(address to, uint256 tokenId) public payable virtual override {
            _approve(to, tokenId, true);
        }
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) public view virtual override returns (address) {
            if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector);
            return _tokenApprovals[tokenId].value;
        }
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom}
         * for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            _operatorApprovals[_msgSenderERC721A()][operator] = approved;
            emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
        }
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[owner][operator];
        }
        /**
         * @dev Returns whether `tokenId` exists.
         *
         * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
         *
         * Tokens start existing when they are minted. See {_mint}.
         */
        function _exists(uint256 tokenId) internal view virtual returns (bool result) {
            if (_startTokenId() <= tokenId) {
                if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]);
                if (tokenId < _currentIndex) {
                    uint256 packed;
                    while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId;
                    result = packed & _BITMASK_BURNED == 0;
                }
            }
        }
        /**
         * @dev Returns whether `packed` represents a token that exists.
         */
        function _packedOwnershipExists(uint256 packed) private pure returns (bool result) {
            assembly {
                // The following is equivalent to `owner != address(0) && burned == false`.
                // Symbolically tested.
                result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED))
            }
        }
        /**
         * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
         */
        function _isSenderApprovedOrOwner(
            address approvedAddress,
            address owner,
            address msgSender
        ) private pure returns (bool result) {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, _BITMASK_ADDRESS)
                // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                msgSender := and(msgSender, _BITMASK_ADDRESS)
                // `msgSender == owner || msgSender == approvedAddress`.
                result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
            }
        }
        /**
         * @dev Returns the storage slot and value for the approved address of `tokenId`.
         */
        function _getApprovedSlotAndAddress(uint256 tokenId)
            private
            view
            returns (uint256 approvedAddressSlot, address approvedAddress)
        {
            TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
            // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
            assembly {
                approvedAddressSlot := tokenApproval.slot
                approvedAddress := sload(approvedAddressSlot)
            }
        }
        // =============================================================
        //                      TRANSFER OPERATIONS
        // =============================================================
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public payable virtual override {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
            // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
            from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));
            if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector);
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
            _beforeTokenTransfers(from, to, tokenId, 1);
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // We can directly increment and decrement the balances.
                --_packedAddressData[from]; // Updates: `balance -= 1`.
                ++_packedAddressData[to]; // Updates: `balance += 1`.
                // Updates:
                // - `address` to the next owner.
                // - `startTimestamp` to the timestamp of transfering.
                // - `burned` to `false`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    to,
                    _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
                );
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
            // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
            uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
            assembly {
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    from, // `from`.
                    toMasked, // `to`.
                    tokenId // `tokenId`.
                )
            }
            if (toMasked == 0) _revert(TransferToZeroAddress.selector);
            _afterTokenTransfers(from, to, tokenId, 1);
        }
        /**
         * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) public payable virtual override {
            safeTransferFrom(from, to, tokenId, '');
        }
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes memory _data
        ) public payable virtual override {
            transferFrom(from, to, tokenId);
            if (to.code.length != 0)
                if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                    _revert(TransferToNonERC721ReceiverImplementer.selector);
                }
        }
        /**
         * @dev Hook that is called before a set of serially-ordered token IDs
         * are about to be transferred. This includes minting.
         * And also called before burning one token.
         *
         * `startTokenId` - the first token ID to be transferred.
         * `quantity` - the amount to be transferred.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _beforeTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual {}
        /**
         * @dev Hook that is called after a set of serially-ordered token IDs
         * have been transferred. This includes minting.
         * And also called after one token has been burned.
         *
         * `startTokenId` - the first token ID to be transferred.
         * `quantity` - the amount to be transferred.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
         * transferred to `to`.
         * - When `from` is zero, `tokenId` has been minted for `to`.
         * - When `to` is zero, `tokenId` has been burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _afterTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual {}
        /**
         * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
         *
         * `from` - Previous owner of the given token ID.
         * `to` - Target address that will receive the token.
         * `tokenId` - Token ID to be transferred.
         * `_data` - Optional data to send along with the call.
         *
         * Returns whether the call correctly returned the expected magic value.
         */
        function _checkContractOnERC721Received(
            address from,
            address to,
            uint256 tokenId,
            bytes memory _data
        ) private returns (bool) {
            try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                bytes4 retval
            ) {
                return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    _revert(TransferToNonERC721ReceiverImplementer.selector);
                }
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
        // =============================================================
        //                        MINT OPERATIONS
        // =============================================================
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _mint(address to, uint256 quantity) internal virtual {
            uint256 startTokenId = _currentIndex;
            if (quantity == 0) _revert(MintZeroQuantity.selector);
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
            // Overflows are incredibly unrealistic.
            // `balance` and `numberMinted` have a maximum limit of 2**64.
            // `tokenId` has a maximum limit of 2**256.
            unchecked {
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                );
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
                if (toMasked == 0) _revert(MintToZeroAddress.selector);
                uint256 end = startTokenId + quantity;
                uint256 tokenId = startTokenId;
                if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
                do {
                    assembly {
                        // Emit the `Transfer` event.
                        log4(
                            0, // Start of data (0, since no data).
                            0, // End of data (0, since no data).
                            _TRANSFER_EVENT_SIGNATURE, // Signature.
                            0, // `address(0)`.
                            toMasked, // `to`.
                            tokenId // `tokenId`.
                        )
                    }
                    // The `!=` check ensures that large values of `quantity`
                    // that overflows uint256 will make the loop run out of gas.
                } while (++tokenId != end);
                _currentIndex = end;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * This function is intended for efficient minting only during contract creation.
         *
         * It emits only one {ConsecutiveTransfer} as defined in
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
         * instead of a sequence of {Transfer} event(s).
         *
         * Calling this function outside of contract creation WILL make your contract
         * non-compliant with the ERC721 standard.
         * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
         * {ConsecutiveTransfer} event is only permissible during contract creation.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {ConsecutiveTransfer} event.
         */
        function _mintERC2309(address to, uint256 quantity) internal virtual {
            uint256 startTokenId = _currentIndex;
            if (to == address(0)) _revert(MintToZeroAddress.selector);
            if (quantity == 0) _revert(MintZeroQuantity.selector);
            if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector);
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
            // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
            unchecked {
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
                );
                if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
                emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
                _currentIndex = startTokenId + quantity;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
        /**
         * @dev Safely mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
         * - `quantity` must be greater than 0.
         *
         * See {_mint}.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _safeMint(
            address to,
            uint256 quantity,
            bytes memory _data
        ) internal virtual {
            _mint(to, quantity);
            unchecked {
                if (to.code.length != 0) {
                    uint256 end = _currentIndex;
                    uint256 index = end - quantity;
                    do {
                        if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                            _revert(TransferToNonERC721ReceiverImplementer.selector);
                        }
                    } while (index < end);
                    // This prevents reentrancy to `_safeMint`.
                    // It does not prevent reentrancy to `_safeMintSpot`.
                    if (_currentIndex != end) revert();
                }
            }
        }
        /**
         * @dev Equivalent to `_safeMint(to, quantity, '')`.
         */
        function _safeMint(address to, uint256 quantity) internal virtual {
            _safeMint(to, quantity, '');
        }
        /**
         * @dev Mints a single token at `tokenId`.
         *
         * Note: A spot-minted `tokenId` that has been burned can be re-minted again.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `tokenId` must be greater than `_sequentialUpTo()`.
         * - `tokenId` must not exist.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _mintSpot(address to, uint256 tokenId) internal virtual {
            if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector);
            uint256 prevOwnershipPacked = _packedOwnerships[tokenId];
            if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector);
            _beforeTokenTransfers(address(0), to, tokenId, 1);
            // Overflows are incredibly unrealistic.
            // The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1.
            // `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1.
            unchecked {
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `true` (as `quantity == 1`).
                _packedOwnerships[tokenId] = _packOwnershipData(
                    to,
                    _nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)
                );
                // Updates:
                // - `balance += 1`.
                // - `numberMinted += 1`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1;
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
                if (toMasked == 0) _revert(MintToZeroAddress.selector);
                assembly {
                    // Emit the `Transfer` event.
                    log4(
                        0, // Start of data (0, since no data).
                        0, // End of data (0, since no data).
                        _TRANSFER_EVENT_SIGNATURE, // Signature.
                        0, // `address(0)`.
                        toMasked, // `to`.
                        tokenId // `tokenId`.
                    )
                }
                ++_spotMinted;
            }
            _afterTokenTransfers(address(0), to, tokenId, 1);
        }
        /**
         * @dev Safely mints a single token at `tokenId`.
         *
         * Note: A spot-minted `tokenId` that has been burned can be re-minted again.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}.
         * - `tokenId` must be greater than `_sequentialUpTo()`.
         * - `tokenId` must not exist.
         *
         * See {_mintSpot}.
         *
         * Emits a {Transfer} event.
         */
        function _safeMintSpot(
            address to,
            uint256 tokenId,
            bytes memory _data
        ) internal virtual {
            _mintSpot(to, tokenId);
            unchecked {
                if (to.code.length != 0) {
                    uint256 currentSpotMinted = _spotMinted;
                    if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) {
                        _revert(TransferToNonERC721ReceiverImplementer.selector);
                    }
                    // This prevents reentrancy to `_safeMintSpot`.
                    // It does not prevent reentrancy to `_safeMint`.
                    if (_spotMinted != currentSpotMinted) revert();
                }
            }
        }
        /**
         * @dev Equivalent to `_safeMintSpot(to, tokenId, '')`.
         */
        function _safeMintSpot(address to, uint256 tokenId) internal virtual {
            _safeMintSpot(to, tokenId, '');
        }
        // =============================================================
        //                       APPROVAL OPERATIONS
        // =============================================================
        /**
         * @dev Equivalent to `_approve(to, tokenId, false)`.
         */
        function _approve(address to, uint256 tokenId) internal virtual {
            _approve(to, tokenId, false);
        }
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the
         * zero address clears previous approvals.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function _approve(
            address to,
            uint256 tokenId,
            bool approvalCheck
        ) internal virtual {
            address owner = ownerOf(tokenId);
            if (approvalCheck && _msgSenderERC721A() != owner)
                if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                    _revert(ApprovalCallerNotOwnerNorApproved.selector);
                }
            _tokenApprovals[tokenId].value = to;
            emit Approval(owner, to, tokenId);
        }
        // =============================================================
        //                        BURN OPERATIONS
        // =============================================================
        /**
         * @dev Equivalent to `_burn(tokenId, false)`.
         */
        function _burn(uint256 tokenId) internal virtual {
            _burn(tokenId, false);
        }
        /**
         * @dev Destroys `tokenId`.
         * The approval is cleared when the token is burned.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits a {Transfer} event.
         */
        function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
            address from = address(uint160(prevOwnershipPacked));
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
            if (approvalCheck) {
                // The nested ifs save around 20+ gas over a compound boolean condition.
                if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                    if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
            }
            _beforeTokenTransfers(from, address(0), tokenId, 1);
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // Updates:
                // - `balance -= 1`.
                // - `numberBurned += 1`.
                //
                // We can directly decrement the balance, and increment the number burned.
                // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
                _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
                // Updates:
                // - `address` to the last owner.
                // - `startTimestamp` to the timestamp of burning.
                // - `burned` to `true`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    from,
                    (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                );
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
            emit Transfer(from, address(0), tokenId);
            _afterTokenTransfers(from, address(0), tokenId, 1);
            // Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times.
            unchecked {
                _burnCounter++;
            }
        }
        // =============================================================
        //                     EXTRA DATA OPERATIONS
        // =============================================================
        /**
         * @dev Directly sets the extra data for the ownership data `index`.
         */
        function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
            uint256 packed = _packedOwnerships[index];
            if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
            uint256 extraDataCasted;
            // Cast `extraData` with assembly to avoid redundant masking.
            assembly {
                extraDataCasted := extraData
            }
            packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
            _packedOwnerships[index] = packed;
        }
        /**
         * @dev Called during each token transfer to set the 24bit `extraData` field.
         * Intended to be overridden by the cosumer contract.
         *
         * `previousExtraData` - the value of `extraData` before transfer.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _extraData(
            address from,
            address to,
            uint24 previousExtraData
        ) internal view virtual returns (uint24) {}
        /**
         * @dev Returns the next extra data for the packed ownership data.
         * The returned result is shifted into position.
         */
        function _nextExtraData(
            address from,
            address to,
            uint256 prevOwnershipPacked
        ) private view returns (uint256) {
            uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
            return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
        }
        // =============================================================
        //                       OTHER OPERATIONS
        // =============================================================
        /**
         * @dev Returns the message sender (defaults to `msg.sender`).
         *
         * If you are writing GSN compatible contracts, you need to override this function.
         */
        function _msgSenderERC721A() internal view virtual returns (address) {
            return msg.sender;
        }
        /**
         * @dev Converts a uint256 to its ASCII string decimal representation.
         */
        function _toString(uint256 value) internal pure virtual returns (string memory str) {
            assembly {
                // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                // We will need 1 word for the trailing zeros padding, 1 word for the length,
                // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
                let m := add(mload(0x40), 0xa0)
                // Update the free memory pointer to allocate.
                mstore(0x40, m)
                // Assign the `str` to the end.
                str := sub(m, 0x20)
                // Zeroize the slot after the string.
                mstore(str, 0)
                // Cache the end of the memory to calculate the length later.
                let end := str
                // We write the string from rightmost digit to leftmost digit.
                // The following is essentially a do-while loop that also handles the zero case.
                // prettier-ignore
                for { let temp := value } 1 {} {
                    str := sub(str, 1)
                    // Write the character to the pointer.
                    // The ASCII index of the '0' character is 48.
                    mstore8(str, add(48, mod(temp, 10)))
                    // Keep dividing `temp` until zero.
                    temp := div(temp, 10)
                    // prettier-ignore
                    if iszero(temp) { break }
                }
                let length := sub(end, str)
                // Move the pointer 32 bytes leftwards to make room for the length.
                str := sub(str, 0x20)
                // Store the length.
                mstore(str, length)
            }
        }
        /**
         * @dev For more efficient reverts.
         */
        function _revert(bytes4 errorSelector) internal pure {
            assembly {
                mstore(0x00, errorSelector)
                revert(0x00, 0x04)
            }
        }
    }
    // File: erc721a/contracts/extensions/ERC721ABurnable.sol
    // ERC721A Contracts v4.3.0
    // Creator: Chiru Labs
    pragma solidity ^0.8.4;
    /**
     * @title ERC721ABurnable.
     *
     * @dev ERC721A token that can be irreversibly burned (destroyed).
     */
    abstract contract ERC721ABurnable is ERC721A, IERC721ABurnable {
        /**
         * @dev Burns `tokenId`. See {ERC721A-_burn}.
         *
         * Requirements:
         *
         * - The caller must own `tokenId` or be an approved operator.
         */
        function burn(uint256 tokenId) public virtual override {
            _burn(tokenId, true);
        }
    }
    // File: @openzeppelin/contracts/utils/Context.sol
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    // File: @openzeppelin/contracts/access/Ownable.sol
    // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // File: nft.sol
    pragma solidity 0.8.19;
    contract SpaceNationIndependence44 is Ownable, ERC721ABurnable {
        NFTGlobalInfo public nftInfo;
        error NotMintable();
        error NotInAllowlist();
        error LimitedTransfer();
        error LimitedBurn();
        error LimitedStake();
        address limitStake;
        /// @dev Limit the transfer address of contract.
        mapping(address => bool) public senderAllowlist;
        mapping(address => bool) public recipientAllowlist;
    //bool[4] {isTransferRestricted,isBurnRestricted,isCheckAllowlist,isStakeRestricted}
        struct NFTGlobalInfo {
            bool[4] restriction;
            bool mintable;
            uint32 maxSupply;
            address launchcaller;
            uint256 transferStartTime;
            uint256 burnStartTime;
            uint256 stakeStartTime;
            string name;
            string symbol;
            string baseUri;
            string uriSuffix;
        }
        constructor(string memory _name, string memory _symbol,address _stake)
        ERC721A(_name, _symbol)
        {
            bool[4] memory res = [true,false,false,true];
            nftInfo = NFTGlobalInfo({
                restriction: res,
                mintable: true,
                maxSupply: 2200,
                transferStartTime: 1731319200,
                burnStartTime: 0,
                stakeStartTime:1731628800,
                launchcaller: address(0),
                name: _name,
                symbol: _symbol,
                baseUri: "https://metadata.spacenation.online/event/independence44/tokens/",
                uriSuffix: ""
            });
            limitStake = _stake;
        }
        modifier onlyCaller() {
            _checkCaller();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function caller() public view virtual returns (address) {
            return nftInfo.launchcaller;
        }
        /**
         * @dev Sets mintable.
         */
        function setMintable(bool _mintable) external onlyOwner {
            nftInfo.mintable = _mintable;
        }
        /**
         * @dev Sets token base URI.
         */
        function setBaseURI(string calldata baseURI) external onlyOwner {
            nftInfo.baseUri = baseURI;
        }
        /**
         * @dev Sets token URI suffix. e.g. ".json".
         */
        function setTokenURISuffix(string calldata suffix) external onlyOwner {
            nftInfo.uriSuffix = suffix;
        }
        function setMaxsupply(uint32 _maxsupply) external onlyOwner {
            nftInfo.maxSupply = _maxsupply;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkCaller() internal view virtual {
            require(
                caller() == _msgSender(),
                "Ownable: caller is not the launchpad mint contract"
            );
        }
        function updateCaller(address _caller) external onlyOwner {
            nftInfo.launchcaller = _caller;
        }
        function checkWl(bool _status) external onlyOwner {
            nftInfo.restriction[2] = _status;
        }
        function restrictTrans(bool _status, uint256 startTime) external onlyOwner {
            nftInfo.restriction[0] = _status;
            nftInfo.transferStartTime = startTime;
        }
        function restrictBurns(bool _status, uint256 burnTime) external onlyOwner {
            nftInfo.restriction[1] = _status;
            nftInfo.burnStartTime = burnTime;
        }
        function restrictStake(bool _status, uint256 stakeTime) external onlyOwner {
            nftInfo.restriction[3] = _status;
            nftInfo.stakeStartTime = stakeTime;
        }
        function renounceOwnership() public view override onlyOwner {
            revert("CLOSED_INTERFACE");
        }
        function mint(uint64 qty, address to)
        external
        virtual
        onlyCaller
        returns (bool)
        {
            _mintInternal(qty, to);
            return true;
        }
        function ownermint(address to, uint64 qty) external virtual onlyOwner {
            _mintInternal(qty, to);
        }
        function totalMinted() public view virtual returns (uint256) {
            return _totalMinted();
        }
        /**
         * @dev Implementation of minting.
         */
        function _mintInternal(uint64 qty, address to) private {
            if (!nftInfo.mintable) revert NotMintable();
            require(
                (totalMinted() + qty <= nftInfo.maxSupply),
                "Exceeds NFT maximum supply"
            );
            _safeMint(to, qty);
        }
        function burn(uint256 tokenId) public virtual override {
            if (nftInfo.restriction[1]) {
                if (_cast(block.timestamp < nftInfo.burnStartTime) == 1) {
                    // Revert if the transfer is limited.
                    revert LimitedBurn();
                }
            }
            require(
                (ownerOf(tokenId) == _msgSender()),
                "Ownable: caller is not the NFT owner"
            );
            super.burn(tokenId);
        }
        /**
         * @dev Returns token URI for a given token id.
         */
        function tokenURI(uint256 tokenId)
        public
        view
        override(ERC721A, IERC721A)
        returns (string memory)
        {
            if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
            string memory baseURI = nftInfo.baseUri;
            return
                bytes(baseURI).length != 0
                    ? string(
                    abi.encodePacked(
                        baseURI,
                        _toString(tokenId),
                        nftInfo.uriSuffix
                    )
                )
                    : "";
        }
        function setSenderAllowlist(address[] calldata allowlist, bool knob)
        external
        onlyOwner
        {
            uint256 len = allowlist.length;
            for (uint256 i = 0; i < len; i++) {
                // Already set the same value
                if (senderAllowlist[allowlist[i]] == knob) {
                    continue;
                }
                senderAllowlist[allowlist[i]] = knob;
            }
        }
        function setRecipientAllowlist(address[] calldata allowlist, bool knob)
        external
        onlyOwner
        {
            uint256 len = allowlist.length;
            for (uint256 i = 0; i < len; i++) {
                // Already set the same value
                if (recipientAllowlist[allowlist[i]] == knob) {
                    continue;
                }
                recipientAllowlist[allowlist[i]] = knob;
            }
        }
        function _beforeTokenTransfers(
            address from,
            address to,
            uint256 startTokenId,
            uint256 quantity
        ) internal virtual override {
            super._beforeTokenTransfers(from, to, startTokenId, quantity);
            if (
                from != address(0) &&
                to != address(0) &&
                nftInfo.restriction[0]
            ) {
                if (_cast(block.timestamp < nftInfo.transferStartTime) == 1) {
                    // Revert if the transfer is limited.
                    revert LimitedTransfer();
                }
            }
            if(nftInfo.restriction[3] && to ==limitStake){
                if (_cast(block.timestamp < nftInfo.stakeStartTime) == 1) {
                    // Revert if the stake is limited.
                    revert LimitedStake();
                }
            }
            if (nftInfo.restriction[2]) {
                if (_isContract(msg.sender)) {
                    if (!senderAllowlist[msg.sender]) {
                        revert NotInAllowlist();
                    }
                }
                if (_isContract(to)) {
                    if (!recipientAllowlist[to]) {
                        revert NotInAllowlist();
                    }
                }
            }
        }
        function _cast(bool b) internal pure returns (uint256 u) {
            assembly {
                u := b
            }
        }
        function _isContract(address account) internal view returns (bool) {
            return (account.code.length > 0);
        }
    }