Transaction Hash:
Block:
15536164 at Sep-15-2022 01:33:50 AM +UTC
Transaction Fee:
0.00218088669858345 ETH
$7.20
Gas Used:
176,550 Gas / 12.352799199 Gwei
Emitted Events:
| 76 |
AppProxyUpgradeable.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000769a1ef6fbfa918d685ba02f3c2e45cfb902ebf7, 0x00000000000000000000000081c46feca27b31f3adc2b91ee4be9717d1cd3dd7, 0000000000000000000000000000000000000000000000057f793a529a79d400 )
|
| 77 |
AppProxyUpgradeable.0x9d9c909296d9c674451c0c24f02cb64981eb3b727f99865939192f880a755dcb( 0x9d9c909296d9c674451c0c24f02cb64981eb3b727f99865939192f880a755dcb, 0x000000000000000000000000769a1ef6fbfa918d685ba02f3c2e45cfb902ebf7, 0x00000000000000000000000081c46feca27b31f3adc2b91ee4be9717d1cd3dd7, 00000000000000000000000000000000000000000000000510794cab72e7da51 )
|
| 78 |
AppProxyUpgradeable.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x000000000000000000000000769a1ef6fbfa918d685ba02f3c2e45cfb902ebf7, 0x00000000000000000000000081c46feca27b31f3adc2b91ee4be9717d1cd3dd7, fffffffffffffffffffffffffffffffffffffffffffffff4dc66c04e2e071c36 )
|
| 79 |
AppProxyUpgradeable.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000081c46feca27b31f3adc2b91ee4be9717d1cd3dd7, 0x000000000000000000000000dc24316b9ae028f1497c275eb9192a3ea0f67022, 0000000000000000000000000000000000000000000000057f793a529a79d400 )
|
| 80 |
AppProxyUpgradeable.0x9d9c909296d9c674451c0c24f02cb64981eb3b727f99865939192f880a755dcb( 0x9d9c909296d9c674451c0c24f02cb64981eb3b727f99865939192f880a755dcb, 0x00000000000000000000000081c46feca27b31f3adc2b91ee4be9717d1cd3dd7, 0x000000000000000000000000dc24316b9ae028f1497c275eb9192a3ea0f67022, 00000000000000000000000000000000000000000000000510794cab72e7da51 )
|
| 81 |
AppProxyUpgradeable.0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925( 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925, 0x00000000000000000000000081c46feca27b31f3adc2b91ee4be9717d1cd3dd7, 0x000000000000000000000000dc24316b9ae028f1497c275eb9192a3ea0f67022, fffffffffffffffffffffffffffffffffffffffffffffd8c5a17bb8f1b21b64c )
|
| 82 |
Vyper_contract.TokenExchange( buyer=[Receiver] Vyper_contract, sold_id=1, tokens_sold=101419157410000000000, bought_id=0, tokens_bought=98469100822966955470 )
|
Account State Difference:
| Address | Before | After | State Difference | ||
|---|---|---|---|---|---|
| 0x769a1ef6...FB902EBF7 |
38.138865536425966769 Eth
Nonce: 1962
|
136.605785472694338789 Eth
Nonce: 1963
| 98.46691993626837202 | ||
| 0xae7ab965...312D7fE84 | |||||
|
0xB7e39086...afE43F707
Miner
| (Miner: 0xb7e...707) | 13.295663666831979833 Eth | 13.296105041831979833 Eth | 0.000441375 | |
| 0xDC24316b...Ea0f67022 | (Lido: Curve Liquidity Farming Pool Contract) | 141,614.843854820906098572 Eth | 141,516.374753997939143102 Eth | 98.46910082296695547 |
Execution Trace
Vyper_contract.9db4f7aa( )
AppProxyUpgradeable.23b872dd( )
KernelProxy.be00bbd8( )-
Kernel.getApp( _namespace=F1F3EB40F5BC1AD1344716CED8B8A0431D840B5783AEA1FD01786BC26F35AC0F, _appId=3CA7C3E38968823CCB4C78EA688DF41356F182AE1D159E4EE608D30D68CEF320 ) => ( 0x47EbaB13B806773ec2A2d16873e2dF770D130b50 )
-
-
Lido.transferFrom( _sender=0x769a1ef6FBfa918d685ba02F3c2E45CFB902EBF7, _recipient=0x81C46fECa27B31F3ADC2b91eE4be9717d1cd3DD7, _amount=101419157410000000000 ) => ( True )
-
Null: 0x000...004.00000000( )
Vyper_contract.exchange( i=1, j=0, dx=101419157410000000000, min_dy=0 ) => ( 98469100822966955470 )AppProxyUpgradeable.70a08231( )
KernelProxy.be00bbd8( )-
Kernel.getApp( _namespace=F1F3EB40F5BC1AD1344716CED8B8A0431D840B5783AEA1FD01786BC26F35AC0F, _appId=3CA7C3E38968823CCB4C78EA688DF41356F182AE1D159E4EE608D30D68CEF320 ) => ( 0x47EbaB13B806773ec2A2d16873e2dF770D130b50 )
-
-
Lido.balanceOf( _account=0xDC24316b9AE028F1497c275EB9192a3Ea0f67022 ) => ( 387762773524120455987153 )
AppProxyUpgradeable.23b872dd( )
KernelProxy.be00bbd8( )-
Kernel.getApp( _namespace=F1F3EB40F5BC1AD1344716CED8B8A0431D840B5783AEA1FD01786BC26F35AC0F, _appId=3CA7C3E38968823CCB4C78EA688DF41356F182AE1D159E4EE608D30D68CEF320 ) => ( 0x47EbaB13B806773ec2A2d16873e2dF770D130b50 )
-
-
Lido.transferFrom( _sender=0x81C46fECa27B31F3ADC2b91eE4be9717d1cd3DD7, _recipient=0xDC24316b9AE028F1497c275EB9192a3Ea0f67022, _amount=101419157410000000000 ) => ( True )
-
Null: 0x000...004.00000000( )
- ETH 98.46910082296695547
Vyper_contract.CALL( )
- ETH 98.46910082296695547
Sorbet Finance Hack Alert 78.CALL( )
File 1 of 6: Vyper_contract
File 2 of 6: AppProxyUpgradeable
File 3 of 6: Vyper_contract
File 4 of 6: KernelProxy
File 5 of 6: Kernel
File 6 of 6: Lido
# @version 0.3.1
"""
@title Curve Registry Exchange Contract
@license MIT
@author Curve.Fi
@notice Find pools, query exchange rates and perform swaps
"""
from vyper.interfaces import ERC20
interface AddressProvider:
def admin() -> address: view
def get_registry() -> address: view
def get_address(idx: uint256) -> address: view
interface Registry:
def address_provider() -> address: view
def get_A(_pool: address) -> uint256: view
def get_fees(_pool: address) -> uint256[2]: view
def get_coin_indices(_pool: address, _from: address, _to: address) -> (int128, int128, bool): view
def get_n_coins(_pool: address) -> uint256[2]: view
def get_balances(_pool: address) -> uint256[MAX_COINS]: view
def get_underlying_balances(_pool: address) -> uint256[MAX_COINS]: view
def get_rates(_pool: address) -> uint256[MAX_COINS]: view
def get_decimals(_pool: address) -> uint256[MAX_COINS]: view
def get_underlying_decimals(_pool: address) -> uint256[MAX_COINS]: view
def find_pool_for_coins(_from: address, _to: address, i: uint256) -> address: view
def get_lp_token(_pool: address) -> address: view
def is_meta(_pool: address) -> bool: view
interface CryptoRegistry:
def get_coin_indices(_pool: address, _from: address, _to: address) -> (uint256, uint256): view
interface CurvePool:
def exchange(i: int128, j: int128, dx: uint256, min_dy: uint256): payable
def exchange_underlying(i: int128, j: int128, dx: uint256, min_dy: uint256): payable
def get_dy(i: int128, j: int128, amount: uint256) -> uint256: view
def get_dy_underlying(i: int128, j: int128, amount: uint256) -> uint256: view
def coins(i: uint256) -> address: view
interface CryptoPool:
def exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256): payable
def exchange_underlying(i: uint256, j: uint256, dx: uint256, min_dy: uint256): payable
def get_dy(i: uint256, j: uint256, amount: uint256) -> uint256: view
def get_dy_underlying(i: uint256, j: uint256, amount: uint256) -> uint256: view
interface CryptoPoolETH:
def exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256, use_eth: bool): payable
interface PolygonMetaZap:
def exchange_underlying(pool: address, i: int128, j: int128, dx: uint256, min_dy: uint256): nonpayable
interface BasePool2Coins:
def add_liquidity(amounts: uint256[2], min_mint_amount: uint256): nonpayable
def calc_token_amount(amounts: uint256[2], is_deposit: bool) -> uint256: view
def remove_liquidity_one_coin(token_amount: uint256, i: int128, min_amount: uint256): nonpayable
def calc_withdraw_one_coin(token_amount: uint256, i: int128,) -> uint256: view
interface BasePool3Coins:
def add_liquidity(amounts: uint256[3], min_mint_amount: uint256): nonpayable
def calc_token_amount(amounts: uint256[3], is_deposit: bool) -> uint256: view
def remove_liquidity_one_coin(token_amount: uint256, i: int128, min_amount: uint256): nonpayable
def calc_withdraw_one_coin(token_amount: uint256, i: int128,) -> uint256: view
interface BaseLendingPool3Coins:
def add_liquidity(amounts: uint256[3], min_mint_amount: uint256, use_underlying: bool): nonpayable
def calc_token_amount(amounts: uint256[3], is_deposit: bool) -> uint256: view
def remove_liquidity_one_coin(token_amount: uint256, i: int128, min_amount: uint256, use_underlying: bool) -> uint256: nonpayable
def calc_withdraw_one_coin(token_amount: uint256, i: int128,) -> uint256: view
interface Calculator:
def get_dx(n_coins: uint256, balances: uint256[MAX_COINS], amp: uint256, fee: uint256,
rates: uint256[MAX_COINS], precisions: uint256[MAX_COINS],
i: int128, j: int128, dx: uint256) -> uint256: view
def get_dy(n_coins: uint256, balances: uint256[MAX_COINS], amp: uint256, fee: uint256,
rates: uint256[MAX_COINS], precisions: uint256[MAX_COINS],
i: int128, j: int128, dx: uint256[CALC_INPUT_SIZE]) -> uint256[CALC_INPUT_SIZE]: view
event TokenExchange:
buyer: indexed(address)
receiver: indexed(address)
pool: indexed(address)
token_sold: address
token_bought: address
amount_sold: uint256
amount_bought: uint256
ETH_ADDRESS: constant(address) = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
WETH_ADDRESS: constant(address) = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
MAX_COINS: constant(int128) = 8
CALC_INPUT_SIZE: constant(uint256) = 100
EMPTY_POOL_LIST: constant(address[8]) = [
ZERO_ADDRESS,
ZERO_ADDRESS,
ZERO_ADDRESS,
ZERO_ADDRESS,
ZERO_ADDRESS,
ZERO_ADDRESS,
ZERO_ADDRESS,
ZERO_ADDRESS,
]
address_provider: AddressProvider
registry: public(address)
factory_registry: public(address)
crypto_registry: public(address)
default_calculator: public(address)
is_killed: public(bool)
pool_calculator: HashMap[address, address]
is_approved: HashMap[address, HashMap[address, bool]]
base_coins: HashMap[address, address[2]]
@external
def __init__(_address_provider: address, _calculator: address):
"""
@notice Constructor function
"""
self.address_provider = AddressProvider(_address_provider)
self.registry = AddressProvider(_address_provider).get_registry()
self.factory_registry = AddressProvider(_address_provider).get_address(3)
self.crypto_registry = AddressProvider(_address_provider).get_address(5)
self.default_calculator = _calculator
@external
@payable
def __default__():
pass
@view
@internal
def _get_exchange_amount(
_registry: address,
_pool: address,
_from: address,
_to: address,
_amount: uint256
) -> uint256:
"""
@notice Get the current number of coins received in an exchange
@param _registry Registry address
@param _pool Pool address
@param _from Address of coin to be sent
@param _to Address of coin to be received
@param _amount Quantity of `_from` to be sent
@return Quantity of `_to` to be received
"""
i: int128 = 0
j: int128 = 0
is_underlying: bool = False
i, j, is_underlying = Registry(_registry).get_coin_indices(_pool, _from, _to) # dev: no market
if is_underlying and (_registry == self.registry or Registry(_registry).is_meta(_pool)):
return CurvePool(_pool).get_dy_underlying(i, j, _amount)
return CurvePool(_pool).get_dy(i, j, _amount)
@view
@internal
def _get_crypto_exchange_amount(
_registry: address,
_pool: address,
_from: address,
_to: address,
_amount: uint256
) -> uint256:
"""
@notice Get the current number of coins received in an exchange
@param _registry Registry address
@param _pool Pool address
@param _from Address of coin to be sent
@param _to Address of coin to be received
@param _amount Quantity of `_from` to be sent
@return Quantity of `_to` to be received
"""
i: uint256 = 0
j: uint256 = 0
i, j = CryptoRegistry(_registry).get_coin_indices(_pool, _from, _to) # dev: no market
return CryptoPool(_pool).get_dy(i, j, _amount)
@internal
def _exchange(
_registry: address,
_pool: address,
_from: address,
_to: address,
_amount: uint256,
_expected: uint256,
_sender: address,
_receiver: address,
) -> uint256:
assert not self.is_killed
eth_amount: uint256 = 0
received_amount: uint256 = 0
i: int128 = 0
j: int128 = 0
is_underlying: bool = False
i, j, is_underlying = Registry(_registry).get_coin_indices(_pool, _from, _to) # dev: no market
if is_underlying and _registry == self.factory_registry:
if Registry(_registry).is_meta(_pool):
base_coins: address[2] = self.base_coins[_pool]
if base_coins == empty(address[2]):
base_coins = [CurvePool(_pool).coins(0), CurvePool(_pool).coins(1)]
self.base_coins[_pool] = base_coins
# we only need to use exchange underlying if the input or output is not in the base coins
is_underlying = _from not in base_coins or _to not in base_coins
else:
# not a metapool so no underlying exchange method
is_underlying = False
# perform / verify input transfer
if _from == ETH_ADDRESS:
eth_amount = _amount
else:
response: Bytes[32] = raw_call(
_from,
_abi_encode(
_sender,
self,
_amount,
method_id=method_id("transferFrom(address,address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
# approve input token
if _from != ETH_ADDRESS and not self.is_approved[_from][_pool]:
response: Bytes[32] = raw_call(
_from,
_abi_encode(
_pool,
MAX_UINT256,
method_id=method_id("approve(address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
self.is_approved[_from][_pool] = True
# perform coin exchange
if is_underlying:
CurvePool(_pool).exchange_underlying(i, j, _amount, _expected, value=eth_amount)
else:
CurvePool(_pool).exchange(i, j, _amount, _expected, value=eth_amount)
# perform output transfer
if _to == ETH_ADDRESS:
received_amount = self.balance
raw_call(_receiver, b"", value=self.balance)
else:
received_amount = ERC20(_to).balanceOf(self)
response: Bytes[32] = raw_call(
_to,
_abi_encode(
_receiver,
received_amount,
method_id=method_id("transfer(address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
log TokenExchange(_sender, _receiver, _pool, _from, _to, _amount, received_amount)
return received_amount
@internal
def _crypto_exchange(
_pool: address,
_from: address,
_to: address,
_amount: uint256,
_expected: uint256,
_sender: address,
_receiver: address,
) -> uint256:
assert not self.is_killed
initial: address = _from
target: address = _to
if _from == ETH_ADDRESS:
initial = WETH_ADDRESS
if _to == ETH_ADDRESS:
target = WETH_ADDRESS
eth_amount: uint256 = 0
received_amount: uint256 = 0
i: uint256 = 0
j: uint256 = 0
i, j = CryptoRegistry(self.crypto_registry).get_coin_indices(_pool, initial, target) # dev: no market
# perform / verify input transfer
if _from == ETH_ADDRESS:
eth_amount = _amount
else:
response: Bytes[32] = raw_call(
_from,
_abi_encode(
_sender,
self,
_amount,
method_id=method_id("transferFrom(address,address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
# approve input token
if not self.is_approved[_from][_pool]:
response: Bytes[32] = raw_call(
_from,
_abi_encode(
_pool,
MAX_UINT256,
method_id=method_id("approve(address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
self.is_approved[_from][_pool] = True
# perform coin exchange
if ETH_ADDRESS in [_from, _to]:
CryptoPoolETH(_pool).exchange(i, j, _amount, _expected, True, value=eth_amount)
else:
CryptoPool(_pool).exchange(i, j, _amount, _expected)
# perform output transfer
if _to == ETH_ADDRESS:
received_amount = self.balance
raw_call(_receiver, b"", value=self.balance)
else:
received_amount = ERC20(_to).balanceOf(self)
response: Bytes[32] = raw_call(
_to,
_abi_encode(
_receiver,
received_amount,
method_id=method_id("transfer(address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
log TokenExchange(_sender, _receiver, _pool, _from, _to, _amount, received_amount)
return received_amount
@payable
@external
@nonreentrant("lock")
def exchange_with_best_rate(
_from: address,
_to: address,
_amount: uint256,
_expected: uint256,
_receiver: address = msg.sender,
) -> uint256:
"""
@notice Perform an exchange using the pool that offers the best rate
@dev Prior to calling this function, the caller must approve
this contract to transfer `_amount` coins from `_from`
Does NOT check rates in factory-deployed pools
@param _from Address of coin being sent
@param _to Address of coin being received
@param _amount Quantity of `_from` being sent
@param _expected Minimum quantity of `_from` received
in order for the transaction to succeed
@param _receiver Address to transfer the received tokens to
@return uint256 Amount received
"""
if _from == ETH_ADDRESS:
assert _amount == msg.value, "Incorrect ETH amount"
else:
assert msg.value == 0, "Incorrect ETH amount"
registry: address = self.registry
best_pool: address = ZERO_ADDRESS
max_dy: uint256 = 0
for i in range(65536):
pool: address = Registry(registry).find_pool_for_coins(_from, _to, i)
if pool == ZERO_ADDRESS:
break
dy: uint256 = self._get_exchange_amount(registry, pool, _from, _to, _amount)
if dy > max_dy:
best_pool = pool
max_dy = dy
return self._exchange(registry, best_pool, _from, _to, _amount, _expected, msg.sender, _receiver)
@payable
@external
@nonreentrant("lock")
def exchange(
_pool: address,
_from: address,
_to: address,
_amount: uint256,
_expected: uint256,
_receiver: address = msg.sender,
) -> uint256:
"""
@notice Perform an exchange using a specific pool
@dev Prior to calling this function, the caller must approve
this contract to transfer `_amount` coins from `_from`
Works for both regular and factory-deployed pools
@param _pool Address of the pool to use for the swap
@param _from Address of coin being sent
@param _to Address of coin being received
@param _amount Quantity of `_from` being sent
@param _expected Minimum quantity of `_from` received
in order for the transaction to succeed
@param _receiver Address to transfer the received tokens to
@return uint256 Amount received
"""
if _from == ETH_ADDRESS:
assert _amount == msg.value, "Incorrect ETH amount"
else:
assert msg.value == 0, "Incorrect ETH amount"
if Registry(self.crypto_registry).get_lp_token(_pool) != ZERO_ADDRESS:
return self._crypto_exchange(_pool, _from, _to, _amount, _expected, msg.sender, _receiver)
registry: address = self.registry
if Registry(registry).get_lp_token(_pool) == ZERO_ADDRESS:
registry = self.factory_registry
return self._exchange(registry, _pool, _from, _to, _amount, _expected, msg.sender, _receiver)
@external
@payable
def exchange_multiple(
_route: address[9],
_swap_params: uint256[3][4],
_amount: uint256,
_expected: uint256,
_pools: address[4]=[ZERO_ADDRESS, ZERO_ADDRESS, ZERO_ADDRESS, ZERO_ADDRESS],
_receiver: address=msg.sender
) -> uint256:
"""
@notice Perform up to four swaps in a single transaction
@dev Routing and swap params must be determined off-chain. This
functionality is designed for gas efficiency over ease-of-use.
@param _route Array of [initial token, pool, token, pool, token, ...]
The array is iterated until a pool address of 0x00, then the last
given token is transferred to `_receiver`
@param _swap_params Multidimensional array of [i, j, swap type] where i and j are the correct
values for the n'th pool in `_route`. The swap type should be 1 for
a stableswap `exchange`, 2 for stableswap `exchange_underlying`, 3
for a cryptoswap `exchange`, 4 for a cryptoswap `exchange_underlying`,
5 for Polygon factory metapools `exchange_underlying`, 6-8 for
underlying coin -> LP token "exchange" (actually `add_liquidity`), 9 and 10
for LP token -> underlying coin "exchange" (actually `remove_liquidity_one_coin`)
@param _amount The amount of `_route[0]` token being sent.
@param _expected The minimum amount received after the final swap.
@param _pools Array of pools for swaps via zap contracts. This parameter is only needed for
Polygon meta-factories underlying swaps.
@param _receiver Address to transfer the final output token to.
@return Received amount of the final output token
"""
input_token: address = _route[0]
amount: uint256 = _amount
output_token: address = ZERO_ADDRESS
# validate / transfer initial token
if input_token == ETH_ADDRESS:
assert msg.value == amount
else:
assert msg.value == 0
response: Bytes[32] = raw_call(
input_token,
_abi_encode(
msg.sender,
self,
amount,
method_id=method_id("transferFrom(address,address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
for i in range(1,5):
# 4 rounds of iteration to perform up to 4 swaps
swap: address = _route[i*2-1]
pool: address = _pools[i-1] # Only for Polygon meta-factories underlying swap (swap_type == 4)
output_token = _route[i*2]
params: uint256[3] = _swap_params[i-1] # i, j, swap type
if not self.is_approved[input_token][swap]:
# approve the pool to transfer the input token
response: Bytes[32] = raw_call(
input_token,
_abi_encode(
swap,
MAX_UINT256,
method_id=method_id("approve(address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
self.is_approved[input_token][swap] = True
eth_amount: uint256 = 0
if input_token == ETH_ADDRESS:
eth_amount = amount
# perform the swap according to the swap type
if params[2] == 1:
CurvePool(swap).exchange(convert(params[0], int128), convert(params[1], int128), amount, 0, value=eth_amount)
elif params[2] == 2:
CurvePool(swap).exchange_underlying(convert(params[0], int128), convert(params[1], int128), amount, 0, value=eth_amount)
elif params[2] == 3:
if input_token == ETH_ADDRESS or output_token == ETH_ADDRESS:
CryptoPoolETH(swap).exchange(params[0], params[1], amount, 0, True, value=eth_amount)
else:
CryptoPool(swap).exchange(params[0], params[1], amount, 0)
elif params[2] == 4:
CryptoPool(swap).exchange_underlying(params[0], params[1], amount, 0, value=eth_amount)
elif params[2] == 5:
PolygonMetaZap(swap).exchange_underlying(pool, convert(params[0], int128), convert(params[1], int128), amount, 0)
elif params[2] == 6:
_amounts: uint256[2] = [0, 0]
_amounts[params[0]] = amount
BasePool2Coins(swap).add_liquidity(_amounts, 0)
elif params[2] == 7:
_amounts: uint256[3] = [0, 0, 0]
_amounts[params[0]] = amount
BasePool3Coins(swap).add_liquidity(_amounts, 0)
elif params[2] == 8:
_amounts: uint256[3] = [0, 0, 0]
_amounts[params[0]] = amount
BaseLendingPool3Coins(swap).add_liquidity(_amounts, 0, True) # aave on Polygon
elif params[2] == 9:
# The number of coins doesn't matter here
BasePool3Coins(swap).remove_liquidity_one_coin(amount, convert(params[1], int128), 0)
elif params[2] == 10:
# The number of coins doesn't matter here
BaseLendingPool3Coins(swap).remove_liquidity_one_coin(amount, convert(params[1], int128), 0, True) # aave on Polygon
else:
raise "Bad swap type"
# update the amount received
if output_token == ETH_ADDRESS:
amount = self.balance
else:
amount = ERC20(output_token).balanceOf(self)
# sanity check, if the routing data is incorrect we will have a 0 balance and that is bad
assert amount != 0, "Received nothing"
# check if this was the last swap
if i == 4 or _route[i*2+1] == ZERO_ADDRESS:
break
# if there is another swap, the output token becomes the input for the next round
input_token = output_token
# validate the final amount received
assert amount >= _expected
# transfer the final token to the receiver
if output_token == ETH_ADDRESS:
raw_call(_receiver, b"", value=amount)
else:
response: Bytes[32] = raw_call(
output_token,
_abi_encode(
_receiver,
amount,
method_id=method_id("transfer(address,uint256)"),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
return amount
@view
@external
def get_best_rate(
_from: address, _to: address, _amount: uint256, _exclude_pools: address[8] = EMPTY_POOL_LIST
) -> (address, uint256):
"""
@notice Find the pool offering the best rate for a given swap.
@dev Checks rates for regular and factory pools
@param _from Address of coin being sent
@param _to Address of coin being received
@param _amount Quantity of `_from` being sent
@param _exclude_pools A list of up to 8 addresses which shouldn't be returned
@return Pool address, amount received
"""
best_pool: address = ZERO_ADDRESS
max_dy: uint256 = 0
initial: address = _from
target: address = _to
if _from == ETH_ADDRESS:
initial = WETH_ADDRESS
if _to == ETH_ADDRESS:
target = WETH_ADDRESS
registry: address = self.crypto_registry
for i in range(65536):
pool: address = Registry(registry).find_pool_for_coins(initial, target, i)
if pool == ZERO_ADDRESS:
if i == 0:
# we only check for stableswap pools if we did not find any crypto pools
break
return best_pool, max_dy
elif pool in _exclude_pools:
continue
dy: uint256 = self._get_crypto_exchange_amount(registry, pool, initial, target, _amount)
if dy > max_dy:
best_pool = pool
max_dy = dy
registry = self.registry
for i in range(65536):
pool: address = Registry(registry).find_pool_for_coins(_from, _to, i)
if pool == ZERO_ADDRESS:
break
elif pool in _exclude_pools:
continue
dy: uint256 = self._get_exchange_amount(registry, pool, _from, _to, _amount)
if dy > max_dy:
best_pool = pool
max_dy = dy
registry = self.factory_registry
for i in range(65536):
pool: address = Registry(registry).find_pool_for_coins(_from, _to, i)
if pool == ZERO_ADDRESS:
break
elif pool in _exclude_pools:
continue
if ERC20(pool).totalSupply() == 0:
# ignore pools without TVL as the call to `get_dy` will revert
continue
dy: uint256 = self._get_exchange_amount(registry, pool, _from, _to, _amount)
if dy > max_dy:
best_pool = pool
max_dy = dy
return best_pool, max_dy
@view
@external
def get_exchange_amount(_pool: address, _from: address, _to: address, _amount: uint256) -> uint256:
"""
@notice Get the current number of coins received in an exchange
@dev Works for both regular and factory-deployed pools
@param _pool Pool address
@param _from Address of coin to be sent
@param _to Address of coin to be received
@param _amount Quantity of `_from` to be sent
@return Quantity of `_to` to be received
"""
registry: address = self.crypto_registry
if Registry(registry).get_lp_token(_pool) != ZERO_ADDRESS:
initial: address = _from
target: address = _to
if _from == ETH_ADDRESS:
initial = WETH_ADDRESS
if _to == ETH_ADDRESS:
target = WETH_ADDRESS
return self._get_crypto_exchange_amount(registry, _pool, initial, target, _amount)
registry = self.registry
if Registry(registry).get_lp_token(_pool) == ZERO_ADDRESS:
registry = self.factory_registry
return self._get_exchange_amount(registry, _pool, _from, _to, _amount)
@view
@external
def get_input_amount(_pool: address, _from: address, _to: address, _amount: uint256) -> uint256:
"""
@notice Get the current number of coins required to receive the given amount in an exchange
@param _pool Pool address
@param _from Address of coin to be sent
@param _to Address of coin to be received
@param _amount Quantity of `_to` to be received
@return Quantity of `_from` to be sent
"""
registry: address = self.registry
i: int128 = 0
j: int128 = 0
is_underlying: bool = False
i, j, is_underlying = Registry(registry).get_coin_indices(_pool, _from, _to)
amp: uint256 = Registry(registry).get_A(_pool)
fee: uint256 = Registry(registry).get_fees(_pool)[0]
balances: uint256[MAX_COINS] = empty(uint256[MAX_COINS])
rates: uint256[MAX_COINS] = empty(uint256[MAX_COINS])
decimals: uint256[MAX_COINS] = empty(uint256[MAX_COINS])
n_coins: uint256 = Registry(registry).get_n_coins(_pool)[convert(is_underlying, uint256)]
if is_underlying:
balances = Registry(registry).get_underlying_balances(_pool)
decimals = Registry(registry).get_underlying_decimals(_pool)
for x in range(MAX_COINS):
if x == n_coins:
break
rates[x] = 10**18
else:
balances = Registry(registry).get_balances(_pool)
decimals = Registry(registry).get_decimals(_pool)
rates = Registry(registry).get_rates(_pool)
for x in range(MAX_COINS):
if x == n_coins:
break
decimals[x] = 10 ** (18 - decimals[x])
calculator: address = self.pool_calculator[_pool]
if calculator == ZERO_ADDRESS:
calculator = self.default_calculator
return Calculator(calculator).get_dx(n_coins, balances, amp, fee, rates, decimals, i, j, _amount)
@view
@external
def get_exchange_amounts(
_pool: address,
_from: address,
_to: address,
_amounts: uint256[CALC_INPUT_SIZE]
) -> uint256[CALC_INPUT_SIZE]:
"""
@notice Get the current number of coins required to receive the given amount in an exchange
@param _pool Pool address
@param _from Address of coin to be sent
@param _to Address of coin to be received
@param _amounts Quantity of `_to` to be received
@return Quantity of `_from` to be sent
"""
registry: address = self.registry
i: int128 = 0
j: int128 = 0
is_underlying: bool = False
balances: uint256[MAX_COINS] = empty(uint256[MAX_COINS])
rates: uint256[MAX_COINS] = empty(uint256[MAX_COINS])
decimals: uint256[MAX_COINS] = empty(uint256[MAX_COINS])
amp: uint256 = Registry(registry).get_A(_pool)
fee: uint256 = Registry(registry).get_fees(_pool)[0]
i, j, is_underlying = Registry(registry).get_coin_indices(_pool, _from, _to)
n_coins: uint256 = Registry(registry).get_n_coins(_pool)[convert(is_underlying, uint256)]
if is_underlying:
balances = Registry(registry).get_underlying_balances(_pool)
decimals = Registry(registry).get_underlying_decimals(_pool)
for x in range(MAX_COINS):
if x == n_coins:
break
rates[x] = 10**18
else:
balances = Registry(registry).get_balances(_pool)
decimals = Registry(registry).get_decimals(_pool)
rates = Registry(registry).get_rates(_pool)
for x in range(MAX_COINS):
if x == n_coins:
break
decimals[x] = 10 ** (18 - decimals[x])
calculator: address = self.pool_calculator[_pool]
if calculator == ZERO_ADDRESS:
calculator = self.default_calculator
return Calculator(calculator).get_dy(n_coins, balances, amp, fee, rates, decimals, i, j, _amounts)
@view
@external
def get_exchange_multiple_amount(
_route: address[9],
_swap_params: uint256[3][4],
_amount: uint256,
_pools: address[4]=[ZERO_ADDRESS, ZERO_ADDRESS, ZERO_ADDRESS, ZERO_ADDRESS]
) -> uint256:
"""
@notice Get the current number the final output tokens received in an exchange
@dev Routing and swap params must be determined off-chain. This
functionality is designed for gas efficiency over ease-of-use.
@param _route Array of [initial token, pool, token, pool, token, ...]
The array is iterated until a pool address of 0x00, then the last
given token is transferred to `_receiver`
@param _swap_params Multidimensional array of [i, j, swap type] where i and j are the correct
values for the n'th pool in `_route`. The swap type should be 1 for
a stableswap `exchange`, 2 for stableswap `exchange_underlying`, 3
for a cryptoswap `exchange`, 4 for a cryptoswap `exchange_underlying`,
5 for Polygon factory metapools `exchange_underlying`, 6-8 for
underlying coin -> LP token "exchange" (actually `add_liquidity`), 9 and 10
for LP token -> underlying coin "exchange" (actually `remove_liquidity_one_coin`)
@param _amount The amount of `_route[0]` token to be sent.
@param _pools Array of pools for swaps via zap contracts. This parameter is only needed for
Polygon meta-factories underlying swaps.
@return Expected amount of the final output token
"""
amount: uint256 = _amount
for i in range(1,5):
# 4 rounds of iteration to perform up to 4 swaps
swap: address = _route[i*2-1]
pool: address = _pools[i-1] # Only for Polygon meta-factories underlying swap (swap_type == 4)
params: uint256[3] = _swap_params[i-1] # i, j, swap type
# Calc output amount according to the swap type
if params[2] == 1:
amount = CurvePool(swap).get_dy(convert(params[0], int128), convert(params[1], int128), amount)
elif params[2] == 2:
amount = CurvePool(swap).get_dy_underlying(convert(params[0], int128), convert(params[1], int128), amount)
elif params[2] == 3:
amount = CryptoPool(swap).get_dy(params[0], params[1], amount)
elif params[2] == 4:
amount = CryptoPool(swap).get_dy_underlying(params[0], params[1], amount)
elif params[2] == 5:
amount = CurvePool(pool).get_dy_underlying(convert(params[0], int128), convert(params[1], int128), amount)
elif params[2] == 6:
_amounts: uint256[2] = [0, 0]
_amounts[params[0]] = amount
amount = BasePool2Coins(swap).calc_token_amount(_amounts, True)
elif params[2] in [7, 8]:
_amounts: uint256[3] = [0, 0, 0]
_amounts[params[0]] = amount
amount = BasePool3Coins(swap).calc_token_amount(_amounts, True)
elif params[2] in [9, 10]:
# The number of coins doesn't matter here
amount = BasePool3Coins(swap).calc_withdraw_one_coin(amount, convert(params[1], int128))
else:
raise "Bad swap type"
# check if this was the last swap
if i == 4 or _route[i*2+1] == ZERO_ADDRESS:
break
return amount
@view
@external
def get_calculator(_pool: address) -> address:
"""
@notice Set calculator contract
@dev Used to calculate `get_dy` for a pool
@param _pool Pool address
@return `CurveCalc` address
"""
calculator: address = self.pool_calculator[_pool]
if calculator == ZERO_ADDRESS:
return self.default_calculator
else:
return calculator
@external
def update_registry_address() -> bool:
"""
@notice Update registry address
@dev The registry address is kept in storage to reduce gas costs.
If a new registry is deployed this function should be called
to update the local address from the address provider.
@return bool success
"""
address_provider: address = self.address_provider.address
self.registry = AddressProvider(address_provider).get_registry()
self.factory_registry = AddressProvider(address_provider).get_address(3)
self.crypto_registry = AddressProvider(address_provider).get_address(5)
return True
@external
def set_calculator(_pool: address, _calculator: address) -> bool:
"""
@notice Set calculator contract
@dev Used to calculate `get_dy` for a pool
@param _pool Pool address
@param _calculator `CurveCalc` address
@return bool success
"""
assert msg.sender == self.address_provider.admin() # dev: admin-only function
self.pool_calculator[_pool] = _calculator
return True
@external
def set_default_calculator(_calculator: address) -> bool:
"""
@notice Set default calculator contract
@dev Used to calculate `get_dy` for a pool
@param _calculator `CurveCalc` address
@return bool success
"""
assert msg.sender == self.address_provider.admin() # dev: admin-only function
self.default_calculator = _calculator
return True
@external
def claim_balance(_token: address) -> bool:
"""
@notice Transfer an ERC20 or ETH balance held by this contract
@dev The entire balance is transferred to the owner
@param _token Token address
@return bool success
"""
assert msg.sender == self.address_provider.admin() # dev: admin-only function
if _token == ETH_ADDRESS:
raw_call(msg.sender, b"", value=self.balance)
else:
amount: uint256 = ERC20(_token).balanceOf(self)
response: Bytes[32] = raw_call(
_token,
concat(
method_id("transfer(address,uint256)"),
convert(msg.sender, bytes32),
convert(amount, bytes32),
),
max_outsize=32,
)
if len(response) != 0:
assert convert(response, bool)
return True
@external
def set_killed(_is_killed: bool) -> bool:
"""
@notice Kill or unkill the contract
@param _is_killed Killed status of the contract
@return bool success
"""
assert msg.sender == self.address_provider.admin() # dev: admin-only function
self.is_killed = _is_killed
return TrueFile 2 of 6: AppProxyUpgradeable
// File: contracts/common/UnstructuredStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
library UnstructuredStorage {
function getStorageBool(bytes32 position) internal view returns (bool data) {
assembly { data := sload(position) }
}
function getStorageAddress(bytes32 position) internal view returns (address data) {
assembly { data := sload(position) }
}
function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) {
assembly { data := sload(position) }
}
function getStorageUint256(bytes32 position) internal view returns (uint256 data) {
assembly { data := sload(position) }
}
function setStorageBool(bytes32 position, bool data) internal {
assembly { sstore(position, data) }
}
function setStorageAddress(bytes32 position, address data) internal {
assembly { sstore(position, data) }
}
function setStorageBytes32(bytes32 position, bytes32 data) internal {
assembly { sstore(position, data) }
}
function setStorageUint256(bytes32 position, uint256 data) internal {
assembly { sstore(position, data) }
}
}
// File: contracts/acl/IACL.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IACL {
function initialize(address permissionsCreator) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
}
// File: contracts/common/IVaultRecoverable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IVaultRecoverable {
event RecoverToVault(address indexed vault, address indexed token, uint256 amount);
function transferToVault(address token) external;
function allowRecoverability(address token) external view returns (bool);
function getRecoveryVault() external view returns (address);
}
// File: contracts/kernel/IKernel.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IKernelEvents {
event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app);
}
// This should be an interface, but interfaces can't inherit yet :(
contract IKernel is IKernelEvents, IVaultRecoverable {
function acl() public view returns (IACL);
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
function setApp(bytes32 namespace, bytes32 appId, address app) public;
function getApp(bytes32 namespace, bytes32 appId) public view returns (address);
}
// File: contracts/apps/AppStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract AppStorage {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel");
bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId");
*/
bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b;
bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b;
function kernel() public view returns (IKernel) {
return IKernel(KERNEL_POSITION.getStorageAddress());
}
function appId() public view returns (bytes32) {
return APP_ID_POSITION.getStorageBytes32();
}
function setKernel(IKernel _kernel) internal {
KERNEL_POSITION.setStorageAddress(address(_kernel));
}
function setAppId(bytes32 _appId) internal {
APP_ID_POSITION.setStorageBytes32(_appId);
}
}
// File: contracts/common/IsContract.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract IsContract {
/*
* NOTE: this should NEVER be used for authentication
* (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize).
*
* This is only intended to be used as a sanity check that an address is actually a contract,
* RATHER THAN an address not being a contract.
*/
function isContract(address _target) internal view returns (bool) {
if (_target == address(0)) {
return false;
}
uint256 size;
assembly { size := extcodesize(_target) }
return size > 0;
}
}
// File: contracts/lib/misc/ERCProxy.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract ERCProxy {
uint256 internal constant FORWARDING = 1;
uint256 internal constant UPGRADEABLE = 2;
function proxyType() public pure returns (uint256 proxyTypeId);
function implementation() public view returns (address codeAddr);
}
// File: contracts/common/DelegateProxy.sol
pragma solidity 0.4.24;
contract DelegateProxy is ERCProxy, IsContract {
uint256 internal constant FWD_GAS_LIMIT = 10000;
/**
* @dev Performs a delegatecall and returns whatever the delegatecall returned (entire context execution will return!)
* @param _dst Destination address to perform the delegatecall
* @param _calldata Calldata for the delegatecall
*/
function delegatedFwd(address _dst, bytes _calldata) internal {
require(isContract(_dst));
uint256 fwdGasLimit = FWD_GAS_LIMIT;
assembly {
let result := delegatecall(sub(gas, fwdGasLimit), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0)
let size := returndatasize
let ptr := mload(0x40)
returndatacopy(ptr, 0, size)
// revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas.
// if the call returned error data, forward it
switch result case 0 { revert(ptr, size) }
default { return(ptr, size) }
}
}
}
// File: contracts/common/DepositableStorage.sol
pragma solidity 0.4.24;
contract DepositableStorage {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.depositableStorage.depositable")
bytes32 internal constant DEPOSITABLE_POSITION = 0x665fd576fbbe6f247aff98f5c94a561e3f71ec2d3c988d56f12d342396c50cea;
function isDepositable() public view returns (bool) {
return DEPOSITABLE_POSITION.getStorageBool();
}
function setDepositable(bool _depositable) internal {
DEPOSITABLE_POSITION.setStorageBool(_depositable);
}
}
// File: contracts/common/DepositableDelegateProxy.sol
pragma solidity 0.4.24;
contract DepositableDelegateProxy is DepositableStorage, DelegateProxy {
event ProxyDeposit(address sender, uint256 value);
function () external payable {
uint256 forwardGasThreshold = FWD_GAS_LIMIT;
bytes32 isDepositablePosition = DEPOSITABLE_POSITION;
// Optimized assembly implementation to prevent EIP-1884 from breaking deposits, reference code in Solidity:
// https://github.com/aragon/aragonOS/blob/v4.2.1/contracts/common/DepositableDelegateProxy.sol#L10-L20
assembly {
// Continue only if the gas left is lower than the threshold for forwarding to the implementation code,
// otherwise continue outside of the assembly block.
if lt(gas, forwardGasThreshold) {
// Only accept the deposit and emit an event if all of the following are true:
// the proxy accepts deposits (isDepositable), msg.data.length == 0, and msg.value > 0
if and(and(sload(isDepositablePosition), iszero(calldatasize)), gt(callvalue, 0)) {
// Equivalent Solidity code for emitting the event:
// emit ProxyDeposit(msg.sender, msg.value);
let logData := mload(0x40) // free memory pointer
mstore(logData, caller) // add 'msg.sender' to the log data (first event param)
mstore(add(logData, 0x20), callvalue) // add 'msg.value' to the log data (second event param)
// Emit an event with one topic to identify the event: keccak256('ProxyDeposit(address,uint256)') = 0x15ee...dee1
log1(logData, 0x40, 0x15eeaa57c7bd188c1388020bcadc2c436ec60d647d36ef5b9eb3c742217ddee1)
stop() // Stop. Exits execution context
}
// If any of above checks failed, revert the execution (if ETH was sent, it is returned to the sender)
revert(0, 0)
}
}
address target = implementation();
delegatedFwd(target, msg.data);
}
}
// File: contracts/kernel/KernelConstants.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract KernelAppIds {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel");
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl");
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault");
*/
bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c;
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a;
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1;
}
contract KernelNamespaceConstants {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core");
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base");
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app");
*/
bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8;
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f;
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb;
}
// File: contracts/apps/AppProxyBase.sol
pragma solidity 0.4.24;
contract AppProxyBase is AppStorage, DepositableDelegateProxy, KernelNamespaceConstants {
/**
* @dev Initialize AppProxy
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public {
setKernel(_kernel);
setAppId(_appId);
// Implicit check that kernel is actually a Kernel
// The EVM doesn't actually provide a way for us to make sure, but we can force a revert to
// occur if the kernel is set to 0x0 or a non-code address when we try to call a method on
// it.
address appCode = getAppBase(_appId);
// If initialize payload is provided, it will be executed
if (_initializePayload.length > 0) {
require(isContract(appCode));
// Cannot make delegatecall as a delegateproxy.delegatedFwd as it
// returns ending execution context and halts contract deployment
require(appCode.delegatecall(_initializePayload));
}
}
function getAppBase(bytes32 _appId) internal view returns (address) {
return kernel().getApp(KERNEL_APP_BASES_NAMESPACE, _appId);
}
}
// File: contracts/apps/AppProxyUpgradeable.sol
pragma solidity 0.4.24;
contract AppProxyUpgradeable is AppProxyBase {
/**
* @dev Initialize AppProxyUpgradeable (makes it an upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
// solium-disable-previous-line no-empty-blocks
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return getAppBase(appId());
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
}File 3 of 6: Vyper_contract
# @version 0.2.8
"""
@title Curve ETH/stETH StableSwap
@author Curve.Fi
@license Copyright (c) Curve.Fi, 2020 - all rights reserved
"""
from vyper.interfaces import ERC20
interface CurveToken:
def mint(_to: address, _value: uint256) -> bool: nonpayable
def burnFrom(_to: address, _value: uint256) -> bool: nonpayable
# Events
event TokenExchange:
buyer: indexed(address)
sold_id: int128
tokens_sold: uint256
bought_id: int128
tokens_bought: uint256
event TokenExchangeUnderlying:
buyer: indexed(address)
sold_id: int128
tokens_sold: uint256
bought_id: int128
tokens_bought: uint256
event AddLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fees: uint256[N_COINS]
invariant: uint256
token_supply: uint256
event RemoveLiquidity:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fees: uint256[N_COINS]
token_supply: uint256
event RemoveLiquidityOne:
provider: indexed(address)
token_amount: uint256
coin_amount: uint256
event RemoveLiquidityImbalance:
provider: indexed(address)
token_amounts: uint256[N_COINS]
fees: uint256[N_COINS]
invariant: uint256
token_supply: uint256
event CommitNewAdmin:
deadline: indexed(uint256)
admin: indexed(address)
event NewAdmin:
admin: indexed(address)
event CommitNewFee:
deadline: indexed(uint256)
fee: uint256
admin_fee: uint256
event NewFee:
fee: uint256
admin_fee: uint256
event RampA:
old_A: uint256
new_A: uint256
initial_time: uint256
future_time: uint256
event StopRampA:
A: uint256
t: uint256
# These constants must be set prior to compiling
N_COINS: constant(int128) = 2
# fixed constants
FEE_DENOMINATOR: constant(uint256) = 10 ** 10
PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to
MAX_ADMIN_FEE: constant(uint256) = 10 * 10 ** 9
MAX_FEE: constant(uint256) = 5 * 10 ** 9
MAX_A: constant(uint256) = 10 ** 6
MAX_A_CHANGE: constant(uint256) = 10
A_PRECISION: constant(uint256) = 100
ADMIN_ACTIONS_DELAY: constant(uint256) = 3 * 86400
MIN_RAMP_TIME: constant(uint256) = 86400
coins: public(address[N_COINS])
admin_balances: public(uint256[N_COINS])
fee: public(uint256) # fee * 1e10
admin_fee: public(uint256) # admin_fee * 1e10
owner: public(address)
lp_token: public(address)
initial_A: public(uint256)
future_A: public(uint256)
initial_A_time: public(uint256)
future_A_time: public(uint256)
admin_actions_deadline: public(uint256)
transfer_ownership_deadline: public(uint256)
future_fee: public(uint256)
future_admin_fee: public(uint256)
future_owner: public(address)
is_killed: bool
kill_deadline: uint256
KILL_DEADLINE_DT: constant(uint256) = 2 * 30 * 86400
@external
def __init__(
_owner: address,
_coins: address[N_COINS],
_pool_token: address,
_A: uint256,
_fee: uint256,
_admin_fee: uint256
):
"""
@notice Contract constructor
@param _owner Contract owner address
@param _coins Addresses of ERC20 conracts of coins
@param _pool_token Address of the token representing LP share
@param _A Amplification coefficient multiplied by n * (n - 1)
@param _fee Fee to charge for exchanges
@param _admin_fee Admin fee
"""
assert _coins[0] == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
assert _coins[1] != ZERO_ADDRESS
self.coins = _coins
self.initial_A = _A * A_PRECISION
self.future_A = _A * A_PRECISION
self.fee = _fee
self.admin_fee = _admin_fee
self.owner = _owner
self.kill_deadline = block.timestamp + KILL_DEADLINE_DT
self.lp_token = _pool_token
@view
@internal
def _A() -> uint256:
t1: uint256 = self.future_A_time
A1: uint256 = self.future_A
if block.timestamp < t1:
# handle ramping up and down of A
A0: uint256 = self.initial_A
t0: uint256 = self.initial_A_time
# Expressions in uint256 cannot have negative numbers, thus "if"
if A1 > A0:
return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
else:
return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)
else: # when t1 == 0 or block.timestamp >= t1
return A1
@view
@external
def A() -> uint256:
return self._A() / A_PRECISION
@view
@external
def A_precise() -> uint256:
return self._A()
@view
@internal
def _balances(_value: uint256 = 0) -> uint256[N_COINS]:
return [
self.balance - self.admin_balances[0] - _value,
ERC20(self.coins[1]).balanceOf(self) - self.admin_balances[1]
]
@view
@external
def balances(i: uint256) -> uint256:
"""
@notice Get the current balance of a coin within the
pool, less the accrued admin fees
@param i Index value for the coin to query balance of
@return Token balance
"""
return self._balances()[i]
@pure
@internal
def get_D(xp: uint256[N_COINS], amp: uint256) -> uint256:
"""
D invariant calculation in non-overflowing integer operations
iteratively
A * sum(x_i) * n**n + D = A * D * n**n + D**(n+1) / (n**n * prod(x_i))
Converging solution:
D[j+1] = (A * n**n * sum(x_i) - D[j]**(n+1) / (n**n prod(x_i))) / (A * n**n - 1)
"""
S: uint256 = 0
Dprev: uint256 = 0
for _x in xp:
S += _x
if S == 0:
return 0
D: uint256 = S
Ann: uint256 = amp * N_COINS
for _i in range(255):
D_P: uint256 = D
for _x in xp:
D_P = D_P * D / (_x * N_COINS + 1) # +1 is to prevent /0
Dprev = D
D = (Ann * S / A_PRECISION + D_P * N_COINS) * D / ((Ann - A_PRECISION) * D / A_PRECISION + (N_COINS + 1) * D_P)
# Equality with the precision of 1
if D > Dprev:
if D - Dprev <= 1:
return D
else:
if Dprev - D <= 1:
return D
# convergence typically occurs in 4 rounds or less, this should be unreachable!
# if it does happen the pool is borked and LPs can withdraw via `remove_liquidity`
raise
@view
@external
def get_virtual_price() -> uint256:
"""
@notice The current virtual price of the pool LP token
@dev Useful for calculating profits
@return LP token virtual price normalized to 1e18
"""
D: uint256 = self.get_D(self._balances(), self._A())
# D is in the units similar to DAI (e.g. converted to precision 1e18)
# When balanced, D = n * x_u - total virtual value of the portfolio
token_supply: uint256 = ERC20(self.lp_token).totalSupply()
return D * PRECISION / token_supply
@view
@external
def calc_token_amount(amounts: uint256[N_COINS], is_deposit: bool) -> uint256:
"""
@notice Calculate addition or reduction in token supply from a deposit or withdrawal
@dev This calculation accounts for slippage, but not fees.
Needed to prevent front-running, not for precise calculations!
@param amounts Amount of each coin being deposited
@param is_deposit set True for deposits, False for withdrawals
@return Expected amount of LP tokens received
"""
amp: uint256 = self._A()
balances: uint256[N_COINS] = self._balances()
D0: uint256 = self.get_D(balances, amp)
for i in range(N_COINS):
if is_deposit:
balances[i] += amounts[i]
else:
balances[i] -= amounts[i]
D1: uint256 = self.get_D(balances, amp)
token_amount: uint256 = ERC20(self.lp_token).totalSupply()
diff: uint256 = 0
if is_deposit:
diff = D1 - D0
else:
diff = D0 - D1
return diff * token_amount / D0
@payable
@external
@nonreentrant('lock')
def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256) -> uint256:
"""
@notice Deposit coins into the pool
@param amounts List of amounts of coins to deposit
@param min_mint_amount Minimum amount of LP tokens to mint from the deposit
@return Amount of LP tokens received by depositing
"""
assert not self.is_killed # dev: is killed
# Initial invariant
amp: uint256 = self._A()
old_balances: uint256[N_COINS] = self._balances(msg.value)
D0: uint256 = self.get_D(old_balances, amp)
lp_token: address = self.lp_token
token_supply: uint256 = ERC20(lp_token).totalSupply()
new_balances: uint256[N_COINS] = old_balances
for i in range(N_COINS):
if token_supply == 0:
assert amounts[i] > 0 # dev: initial deposit requires all coins
new_balances[i] += amounts[i]
# Invariant after change
D1: uint256 = self.get_D(new_balances, amp)
assert D1 > D0
# We need to recalculate the invariant accounting for fees
# to calculate fair user's share
fees: uint256[N_COINS] = empty(uint256[N_COINS])
mint_amount: uint256 = 0
D2: uint256 = 0
if token_supply > 0:
# Only account for fees if we are not the first to deposit
fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
admin_fee: uint256 = self.admin_fee
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
if ideal_balance > new_balances[i]:
difference = ideal_balance - new_balances[i]
else:
difference = new_balances[i] - ideal_balance
fees[i] = fee * difference / FEE_DENOMINATOR
if admin_fee != 0:
self.admin_balances[i] += fees[i] * admin_fee / FEE_DENOMINATOR
new_balances[i] -= fees[i]
D2 = self.get_D(new_balances, amp)
mint_amount = token_supply * (D2 - D0) / D0
else:
mint_amount = D1 # Take the dust if there was any
assert mint_amount >= min_mint_amount, "Slippage screwed you"
# Take coins from the sender
assert msg.value == amounts[0]
if amounts[1] > 0:
assert ERC20(self.coins[1]).transferFrom(msg.sender, self, amounts[1])
# Mint pool tokens
CurveToken(lp_token).mint(msg.sender, mint_amount)
log AddLiquidity(msg.sender, amounts, fees, D1, token_supply + mint_amount)
return mint_amount
@view
@internal
def get_y(i: int128, j: int128, x: uint256, xp: uint256[N_COINS]) -> uint256:
"""
Calculate x[j] if one makes x[i] = x
Done by solving quadratic equation iteratively.
x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
x_1**2 + b*x_1 = c
x_1 = (x_1**2 + c) / (2*x_1 + b)
"""
# x in the input is converted to the same price/precision
assert i != j # dev: same coin
assert j >= 0 # dev: j below zero
assert j < N_COINS # dev: j above N_COINS
# should be unreachable, but good for safety
assert i >= 0
assert i < N_COINS
amp: uint256 = self._A()
D: uint256 = self.get_D(xp, amp)
Ann: uint256 = amp * N_COINS
c: uint256 = D
S_: uint256 = 0
_x: uint256 = 0
y_prev: uint256 = 0
for _i in range(N_COINS):
if _i == i:
_x = x
elif _i != j:
_x = xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D * A_PRECISION / (Ann * N_COINS)
b: uint256 = S_ + D * A_PRECISION / Ann # - D
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
return y
else:
if y_prev - y <= 1:
return y
raise
@view
@external
def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
xp: uint256[N_COINS] = self._balances()
x: uint256 = xp[i] + dx
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = xp[j] - y - 1
fee: uint256 = self.fee * dy / FEE_DENOMINATOR
return dy - fee
@payable
@external
@nonreentrant('lock')
def exchange(i: int128, j: int128, dx: uint256, min_dy: uint256) -> uint256:
"""
@notice Perform an exchange between two coins
@dev Index values can be found via the `coins` public getter method
@param i Index value for the coin to send
@param j Index valie of the coin to recieve
@param dx Amount of `i` being exchanged
@param min_dy Minimum amount of `j` to receive
@return Actual amount of `j` received
"""
assert not self.is_killed # dev: is killed
# dx and dy are in aTokens
xp: uint256[N_COINS] = self._balances(msg.value)
x: uint256 = xp[i] + dx
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = xp[j] - y - 1
dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR
# Convert all to real units
dy = dy - dy_fee
assert dy >= min_dy, "Exchange resulted in fewer coins than expected"
admin_fee: uint256 = self.admin_fee
if admin_fee != 0:
dy_admin_fee: uint256 = dy_fee * admin_fee / FEE_DENOMINATOR
if dy_admin_fee != 0:
self.admin_balances[j] += dy_admin_fee
coin: address = self.coins[1]
if i == 0:
assert msg.value == dx
assert ERC20(coin).transfer(msg.sender, dy)
else:
assert msg.value == 0
assert ERC20(coin).transferFrom(msg.sender, self, dx)
raw_call(msg.sender, b"", value=dy)
log TokenExchange(msg.sender, i, dx, j, dy)
return dy
@external
@nonreentrant('lock')
def remove_liquidity(
_amount: uint256,
_min_amounts: uint256[N_COINS],
) -> uint256[N_COINS]:
"""
@notice Withdraw coins from the pool
@dev Withdrawal amounts are based on current deposit ratios
@param _amount Quantity of LP tokens to burn in the withdrawal
@param _min_amounts Minimum amounts of underlying coins to receive
@return List of amounts of coins that were withdrawn
"""
amounts: uint256[N_COINS] = self._balances()
lp_token: address = self.lp_token
total_supply: uint256 = ERC20(lp_token).totalSupply()
CurveToken(lp_token).burnFrom(msg.sender, _amount) # dev: insufficient funds
for i in range(N_COINS):
value: uint256 = amounts[i] * _amount / total_supply
assert value >= _min_amounts[i], "Withdrawal resulted in fewer coins than expected"
amounts[i] = value
if i == 0:
raw_call(msg.sender, b"", value=value)
else:
assert ERC20(self.coins[1]).transfer(msg.sender, value)
log RemoveLiquidity(msg.sender, amounts, empty(uint256[N_COINS]), total_supply - _amount)
return amounts
@external
@nonreentrant('lock')
def remove_liquidity_imbalance(
_amounts: uint256[N_COINS],
_max_burn_amount: uint256
) -> uint256:
"""
@notice Withdraw coins from the pool in an imbalanced amount
@param _amounts List of amounts of underlying coins to withdraw
@param _max_burn_amount Maximum amount of LP token to burn in the withdrawal
@return Actual amount of the LP token burned in the withdrawal
"""
assert not self.is_killed # dev: is killed
amp: uint256 = self._A()
old_balances: uint256[N_COINS] = self._balances()
D0: uint256 = self.get_D(old_balances, amp)
new_balances: uint256[N_COINS] = old_balances
for i in range(N_COINS):
new_balances[i] -= _amounts[i]
D1: uint256 = self.get_D(new_balances, amp)
fees: uint256[N_COINS] = empty(uint256[N_COINS])
fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
admin_fee: uint256 = self.admin_fee
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
new_balance: uint256 = new_balances[i]
difference: uint256 = 0
if ideal_balance > new_balance:
difference = ideal_balance - new_balance
else:
difference = new_balance - ideal_balance
fees[i] = fee * difference / FEE_DENOMINATOR
if admin_fee != 0:
self.admin_balances[i] += fees[i] * admin_fee / FEE_DENOMINATOR
new_balances[i] -= fees[i]
D2: uint256 = self.get_D(new_balances, amp)
lp_token: address = self.lp_token
token_supply: uint256 = ERC20(lp_token).totalSupply()
token_amount: uint256 = (D0 - D2) * token_supply / D0
assert token_amount != 0 # dev: zero tokens burned
assert token_amount <= _max_burn_amount, "Slippage screwed you"
CurveToken(lp_token).burnFrom(msg.sender, token_amount) # dev: insufficient funds
if _amounts[0] != 0:
raw_call(msg.sender, b"", value=_amounts[0])
if _amounts[1] != 0:
assert ERC20(self.coins[1]).transfer(msg.sender, _amounts[1])
log RemoveLiquidityImbalance(msg.sender, _amounts, fees, D1, token_supply - token_amount)
return token_amount
@pure
@internal
def get_y_D(A_: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
"""
Calculate x[i] if one reduces D from being calculated for xp to D
Done by solving quadratic equation iteratively.
x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
x_1**2 + b*x_1 = c
x_1 = (x_1**2 + c) / (2*x_1 + b)
"""
# x in the input is converted to the same price/precision
assert i >= 0 # dev: i below zero
assert i < N_COINS # dev: i above N_COINS
Ann: uint256 = A_ * N_COINS
c: uint256 = D
S_: uint256 = 0
_x: uint256 = 0
y_prev: uint256 = 0
for _i in range(N_COINS):
if _i != i:
_x = xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D * A_PRECISION / (Ann * N_COINS)
b: uint256 = S_ + D * A_PRECISION / Ann
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
return y
else:
if y_prev - y <= 1:
return y
raise
@view
@internal
def _calc_withdraw_one_coin(_token_amount: uint256, i: int128) -> (uint256, uint256):
# First, need to calculate
# * Get current D
# * Solve Eqn against y_i for D - _token_amount
amp: uint256 = self._A()
xp: uint256[N_COINS] = self._balances()
D0: uint256 = self.get_D(xp, amp)
total_supply: uint256 = ERC20(self.lp_token).totalSupply()
D1: uint256 = D0 - _token_amount * D0 / total_supply
new_y: uint256 = self.get_y_D(amp, i, xp, D1)
fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
xp_reduced: uint256[N_COINS] = xp
for j in range(N_COINS):
dx_expected: uint256 = 0
if j == i:
dx_expected = xp[j] * D1 / D0 - new_y
else:
dx_expected = xp[j] - xp[j] * D1 / D0
xp_reduced[j] -= fee * dx_expected / FEE_DENOMINATOR
dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
dy -= 1 # Withdraw less to account for rounding errors
dy_0: uint256 = xp[i] - new_y # w/o fees
return dy, dy_0 - dy
@view
@external
def calc_withdraw_one_coin(_token_amount: uint256, i: int128) -> uint256:
"""
@notice Calculate the amount received when withdrawing a single coin
@dev Result is the same for underlying or wrapped asset withdrawals
@param _token_amount Amount of LP tokens to burn in the withdrawal
@param i Index value of the coin to withdraw
@return Amount of coin received
"""
return self._calc_withdraw_one_coin(_token_amount, i)[0]
@external
@nonreentrant('lock')
def remove_liquidity_one_coin(
_token_amount: uint256,
i: int128,
_min_amount: uint256
) -> uint256:
"""
@notice Withdraw a single coin from the pool
@param _token_amount Amount of LP tokens to burn in the withdrawal
@param i Index value of the coin to withdraw
@param _min_amount Minimum amount of coin to receive
@return Amount of coin received
"""
assert not self.is_killed # dev: is killed
dy: uint256 = 0
dy_fee: uint256 = 0
dy, dy_fee = self._calc_withdraw_one_coin(_token_amount, i)
assert dy >= _min_amount, "Not enough coins removed"
self.admin_balances[i] += dy_fee * self.admin_fee / FEE_DENOMINATOR
CurveToken(self.lp_token).burnFrom(msg.sender, _token_amount) # dev: insufficient funds
if i == 0:
raw_call(msg.sender, b"", value=dy)
else:
assert ERC20(self.coins[1]).transfer(msg.sender, dy)
log RemoveLiquidityOne(msg.sender, _token_amount, dy)
return dy
### Admin functions ###
@external
def ramp_A(_future_A: uint256, _future_time: uint256):
assert msg.sender == self.owner # dev: only owner
assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME
assert _future_time >= block.timestamp + MIN_RAMP_TIME # dev: insufficient time
_initial_A: uint256 = self._A()
_future_A_p: uint256 = _future_A * A_PRECISION
assert _future_A > 0 and _future_A < MAX_A
if _future_A_p < _initial_A:
assert _future_A_p * MAX_A_CHANGE >= _initial_A
else:
assert _future_A_p <= _initial_A * MAX_A_CHANGE
self.initial_A = _initial_A
self.future_A = _future_A_p
self.initial_A_time = block.timestamp
self.future_A_time = _future_time
log RampA(_initial_A, _future_A_p, block.timestamp, _future_time)
@external
def stop_ramp_A():
assert msg.sender == self.owner # dev: only owner
current_A: uint256 = self._A()
self.initial_A = current_A
self.future_A = current_A
self.initial_A_time = block.timestamp
self.future_A_time = block.timestamp
# now (block.timestamp < t1) is always False, so we return saved A
log StopRampA(current_A, block.timestamp)
@external
def commit_new_fee(new_fee: uint256, new_admin_fee: uint256):
assert msg.sender == self.owner # dev: only owner
assert self.admin_actions_deadline == 0 # dev: active action
assert new_fee <= MAX_FEE # dev: fee exceeds maximum
assert new_admin_fee <= MAX_ADMIN_FEE # dev: admin fee exceeds maximum
_deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY
self.admin_actions_deadline = _deadline
self.future_fee = new_fee
self.future_admin_fee = new_admin_fee
log CommitNewFee(_deadline, new_fee, new_admin_fee)
@external
@nonreentrant('lock')
def apply_new_fee():
assert msg.sender == self.owner # dev: only owner
assert block.timestamp >= self.admin_actions_deadline # dev: insufficient time
assert self.admin_actions_deadline != 0 # dev: no active action
self.admin_actions_deadline = 0
_fee: uint256 = self.future_fee
_admin_fee: uint256 = self.future_admin_fee
self.fee = _fee
self.admin_fee = _admin_fee
log NewFee(_fee, _admin_fee)
@external
def revert_new_parameters():
assert msg.sender == self.owner # dev: only owner
self.admin_actions_deadline = 0
@external
def commit_transfer_ownership(_owner: address):
assert msg.sender == self.owner # dev: only owner
assert self.transfer_ownership_deadline == 0 # dev: active transfer
_deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY
self.transfer_ownership_deadline = _deadline
self.future_owner = _owner
log CommitNewAdmin(_deadline, _owner)
@external
@nonreentrant('lock')
def apply_transfer_ownership():
assert msg.sender == self.owner # dev: only owner
assert block.timestamp >= self.transfer_ownership_deadline # dev: insufficient time
assert self.transfer_ownership_deadline != 0 # dev: no active transfer
self.transfer_ownership_deadline = 0
_owner: address = self.future_owner
self.owner = _owner
log NewAdmin(_owner)
@external
def revert_transfer_ownership():
assert msg.sender == self.owner # dev: only owner
self.transfer_ownership_deadline = 0
@external
@nonreentrant('lock')
def withdraw_admin_fees():
assert msg.sender == self.owner # dev: only owner
amount: uint256 = self.admin_balances[0]
if amount != 0:
raw_call(msg.sender, b"", value=amount)
amount = self.admin_balances[1]
if amount != 0:
assert ERC20(self.coins[1]).transfer(msg.sender, amount)
self.admin_balances = empty(uint256[N_COINS])
@external
def donate_admin_fees():
"""
Just in case admin balances somehow become higher than total (rounding error?)
this can be used to fix the state, too
"""
assert msg.sender == self.owner # dev: only owner
self.admin_balances = empty(uint256[N_COINS])
@external
def kill_me():
assert msg.sender == self.owner # dev: only owner
assert self.kill_deadline > block.timestamp # dev: deadline has passed
self.is_killed = True
@external
def unkill_me():
assert msg.sender == self.owner # dev: only owner
self.is_killed = FalseFile 4 of 6: KernelProxy
/**
*Submitted for verification at Etherscan.io on 2020-02-06
*/
// File: contracts/acl/IACL.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IACL {
function initialize(address permissionsCreator) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
}
// File: contracts/common/IVaultRecoverable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IVaultRecoverable {
event RecoverToVault(address indexed vault, address indexed token, uint256 amount);
function transferToVault(address token) external;
function allowRecoverability(address token) external view returns (bool);
function getRecoveryVault() external view returns (address);
}
// File: contracts/kernel/IKernel.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IKernelEvents {
event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app);
}
// This should be an interface, but interfaces can't inherit yet :(
contract IKernel is IKernelEvents, IVaultRecoverable {
function acl() public view returns (IACL);
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
function setApp(bytes32 namespace, bytes32 appId, address app) public;
function getApp(bytes32 namespace, bytes32 appId) public view returns (address);
}
// File: contracts/kernel/KernelConstants.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract KernelAppIds {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel");
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl");
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault");
*/
bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c;
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a;
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1;
}
contract KernelNamespaceConstants {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core");
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base");
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app");
*/
bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8;
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f;
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb;
}
// File: contracts/kernel/KernelStorage.sol
pragma solidity 0.4.24;
contract KernelStorage {
// namespace => app id => address
mapping (bytes32 => mapping (bytes32 => address)) public apps;
bytes32 public recoveryVaultAppId;
}
// File: contracts/acl/ACLSyntaxSugar.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract ACLSyntaxSugar {
function arr() internal pure returns (uint256[]) {
return new uint256[](0);
}
function arr(bytes32 _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(bytes32 _a, bytes32 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(address _a, address _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c);
}
function arr(address _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c, _d);
}
function arr(address _a, uint256 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, address _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), _c, _d, _e);
}
function arr(address _a, address _b, address _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(address _a, address _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(uint256 _a) internal pure returns (uint256[] r) {
r = new uint256[](1);
r[0] = _a;
}
function arr(uint256 _a, uint256 _b) internal pure returns (uint256[] r) {
r = new uint256[](2);
r[0] = _a;
r[1] = _b;
}
function arr(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
r = new uint256[](3);
r[0] = _a;
r[1] = _b;
r[2] = _c;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
r = new uint256[](4);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
r = new uint256[](5);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
r[4] = _e;
}
}
contract ACLHelpers {
function decodeParamOp(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 30));
}
function decodeParamId(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 31));
}
function decodeParamsList(uint256 _x) internal pure returns (uint32 a, uint32 b, uint32 c) {
a = uint32(_x);
b = uint32(_x >> (8 * 4));
c = uint32(_x >> (8 * 8));
}
}
// File: contracts/common/ConversionHelpers.sol
pragma solidity ^0.4.24;
library ConversionHelpers {
string private constant ERROR_IMPROPER_LENGTH = "CONVERSION_IMPROPER_LENGTH";
function dangerouslyCastUintArrayToBytes(uint256[] memory _input) internal pure returns (bytes memory output) {
// Force cast the uint256[] into a bytes array, by overwriting its length
// Note that the bytes array doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 byteLength = _input.length * 32;
assembly {
output := _input
mstore(output, byteLength)
}
}
function dangerouslyCastBytesToUintArray(bytes memory _input) internal pure returns (uint256[] memory output) {
// Force cast the bytes array into a uint256[], by overwriting its length
// Note that the uint256[] doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 intsLength = _input.length / 32;
require(_input.length == intsLength * 32, ERROR_IMPROPER_LENGTH);
assembly {
output := _input
mstore(output, intsLength)
}
}
}
// File: contracts/common/IsContract.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract IsContract {
/*
* NOTE: this should NEVER be used for authentication
* (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize).
*
* This is only intended to be used as a sanity check that an address is actually a contract,
* RATHER THAN an address not being a contract.
*/
function isContract(address _target) internal view returns (bool) {
if (_target == address(0)) {
return false;
}
uint256 size;
assembly { size := extcodesize(_target) }
return size > 0;
}
}
// File: contracts/common/Uint256Helpers.sol
pragma solidity ^0.4.24;
library Uint256Helpers {
uint256 private constant MAX_UINT64 = uint64(-1);
string private constant ERROR_NUMBER_TOO_BIG = "UINT64_NUMBER_TOO_BIG";
function toUint64(uint256 a) internal pure returns (uint64) {
require(a <= MAX_UINT64, ERROR_NUMBER_TOO_BIG);
return uint64(a);
}
}
// File: contracts/common/TimeHelpers.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract TimeHelpers {
using Uint256Helpers for uint256;
/**
* @dev Returns the current block number.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber() internal view returns (uint256) {
return block.number;
}
/**
* @dev Returns the current block number, converted to uint64.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber64() internal view returns (uint64) {
return getBlockNumber().toUint64();
}
/**
* @dev Returns the current timestamp.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp() internal view returns (uint256) {
return block.timestamp; // solium-disable-line security/no-block-members
}
/**
* @dev Returns the current timestamp, converted to uint64.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp64() internal view returns (uint64) {
return getTimestamp().toUint64();
}
}
// File: contracts/common/UnstructuredStorage.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
library UnstructuredStorage {
function getStorageBool(bytes32 position) internal view returns (bool data) {
assembly { data := sload(position) }
}
function getStorageAddress(bytes32 position) internal view returns (address data) {
assembly { data := sload(position) }
}
function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) {
assembly { data := sload(position) }
}
function getStorageUint256(bytes32 position) internal view returns (uint256 data) {
assembly { data := sload(position) }
}
function setStorageBool(bytes32 position, bool data) internal {
assembly { sstore(position, data) }
}
function setStorageAddress(bytes32 position, address data) internal {
assembly { sstore(position, data) }
}
function setStorageBytes32(bytes32 position, bytes32 data) internal {
assembly { sstore(position, data) }
}
function setStorageUint256(bytes32 position, uint256 data) internal {
assembly { sstore(position, data) }
}
}
// File: contracts/common/Initializable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract Initializable is TimeHelpers {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.initializable.initializationBlock")
bytes32 internal constant INITIALIZATION_BLOCK_POSITION = 0xebb05b386a8d34882b8711d156f463690983dc47815980fb82aeeff1aa43579e;
string private constant ERROR_ALREADY_INITIALIZED = "INIT_ALREADY_INITIALIZED";
string private constant ERROR_NOT_INITIALIZED = "INIT_NOT_INITIALIZED";
modifier onlyInit {
require(getInitializationBlock() == 0, ERROR_ALREADY_INITIALIZED);
_;
}
modifier isInitialized {
require(hasInitialized(), ERROR_NOT_INITIALIZED);
_;
}
/**
* @return Block number in which the contract was initialized
*/
function getInitializationBlock() public view returns (uint256) {
return INITIALIZATION_BLOCK_POSITION.getStorageUint256();
}
/**
* @return Whether the contract has been initialized by the time of the current block
*/
function hasInitialized() public view returns (bool) {
uint256 initializationBlock = getInitializationBlock();
return initializationBlock != 0 && getBlockNumber() >= initializationBlock;
}
/**
* @dev Function to be called by top level contract after initialization has finished.
*/
function initialized() internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(getBlockNumber());
}
/**
* @dev Function to be called by top level contract after initialization to enable the contract
* at a future block number rather than immediately.
*/
function initializedAt(uint256 _blockNumber) internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(_blockNumber);
}
}
// File: contracts/common/Petrifiable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract Petrifiable is Initializable {
// Use block UINT256_MAX (which should be never) as the initializable date
uint256 internal constant PETRIFIED_BLOCK = uint256(-1);
function isPetrified() public view returns (bool) {
return getInitializationBlock() == PETRIFIED_BLOCK;
}
/**
* @dev Function to be called by top level contract to prevent being initialized.
* Useful for freezing base contracts when they're used behind proxies.
*/
function petrify() internal onlyInit {
initializedAt(PETRIFIED_BLOCK);
}
}
// File: contracts/lib/token/ERC20.sol
// See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/a9f910d34f0ab33a1ae5e714f69f9596a02b4d91/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.4.24;
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function allowance(address _owner, address _spender)
public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
function approve(address _spender, uint256 _value)
public returns (bool);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: contracts/common/EtherTokenConstant.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
// aragonOS and aragon-apps rely on address(0) to denote native ETH, in
// contracts where both tokens and ETH are accepted
contract EtherTokenConstant {
address internal constant ETH = address(0);
}
// File: contracts/common/SafeERC20.sol
// Inspired by AdEx (https://github.com/AdExNetwork/adex-protocol-eth/blob/b9df617829661a7518ee10f4cb6c4108659dd6d5/contracts/libs/SafeERC20.sol)
// and 0x (https://github.com/0xProject/0x-monorepo/blob/737d1dc54d72872e24abce5a1dbe1b66d35fa21a/contracts/protocol/contracts/protocol/AssetProxy/ERC20Proxy.sol#L143)
pragma solidity ^0.4.24;
library SafeERC20 {
// Before 0.5, solidity has a mismatch between `address.transfer()` and `token.transfer()`:
// https://github.com/ethereum/solidity/issues/3544
bytes4 private constant TRANSFER_SELECTOR = 0xa9059cbb;
string private constant ERROR_TOKEN_BALANCE_REVERTED = "SAFE_ERC_20_BALANCE_REVERTED";
string private constant ERROR_TOKEN_ALLOWANCE_REVERTED = "SAFE_ERC_20_ALLOWANCE_REVERTED";
function invokeAndCheckSuccess(address _addr, bytes memory _calldata)
private
returns (bool)
{
bool ret;
assembly {
let ptr := mload(0x40) // free memory pointer
let success := call(
gas, // forward all gas
_addr, // address
0, // no value
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
// Check number of bytes returned from last function call
switch returndatasize
// No bytes returned: assume success
case 0 {
ret := 1
}
// 32 bytes returned: check if non-zero
case 0x20 {
// Only return success if returned data was true
// Already have output in ptr
ret := eq(mload(ptr), 1)
}
// Not sure what was returned: don't mark as success
default { }
}
}
return ret;
}
function staticInvoke(address _addr, bytes memory _calldata)
private
view
returns (bool, uint256)
{
bool success;
uint256 ret;
assembly {
let ptr := mload(0x40) // free memory pointer
success := staticcall(
gas, // forward all gas
_addr, // address
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
ret := mload(ptr)
}
}
return (success, ret);
}
/**
* @dev Same as a standards-compliant ERC20.transfer() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransfer(ERC20 _token, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferCallData = abi.encodeWithSelector(
TRANSFER_SELECTOR,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferCallData);
}
/**
* @dev Same as a standards-compliant ERC20.transferFrom() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransferFrom(ERC20 _token, address _from, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferFromCallData = abi.encodeWithSelector(
_token.transferFrom.selector,
_from,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferFromCallData);
}
/**
* @dev Same as a standards-compliant ERC20.approve() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeApprove(ERC20 _token, address _spender, uint256 _amount) internal returns (bool) {
bytes memory approveCallData = abi.encodeWithSelector(
_token.approve.selector,
_spender,
_amount
);
return invokeAndCheckSuccess(_token, approveCallData);
}
/**
* @dev Static call into ERC20.balanceOf().
* Reverts if the call fails for some reason (should never fail).
*/
function staticBalanceOf(ERC20 _token, address _owner) internal view returns (uint256) {
bytes memory balanceOfCallData = abi.encodeWithSelector(
_token.balanceOf.selector,
_owner
);
(bool success, uint256 tokenBalance) = staticInvoke(_token, balanceOfCallData);
require(success, ERROR_TOKEN_BALANCE_REVERTED);
return tokenBalance;
}
/**
* @dev Static call into ERC20.allowance().
* Reverts if the call fails for some reason (should never fail).
*/
function staticAllowance(ERC20 _token, address _owner, address _spender) internal view returns (uint256) {
bytes memory allowanceCallData = abi.encodeWithSelector(
_token.allowance.selector,
_owner,
_spender
);
(bool success, uint256 allowance) = staticInvoke(_token, allowanceCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return allowance;
}
/**
* @dev Static call into ERC20.totalSupply().
* Reverts if the call fails for some reason (should never fail).
*/
function staticTotalSupply(ERC20 _token) internal view returns (uint256) {
bytes memory totalSupplyCallData = abi.encodeWithSelector(_token.totalSupply.selector);
(bool success, uint256 totalSupply) = staticInvoke(_token, totalSupplyCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return totalSupply;
}
}
// File: contracts/common/VaultRecoverable.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract VaultRecoverable is IVaultRecoverable, EtherTokenConstant, IsContract {
using SafeERC20 for ERC20;
string private constant ERROR_DISALLOWED = "RECOVER_DISALLOWED";
string private constant ERROR_VAULT_NOT_CONTRACT = "RECOVER_VAULT_NOT_CONTRACT";
string private constant ERROR_TOKEN_TRANSFER_FAILED = "RECOVER_TOKEN_TRANSFER_FAILED";
/**
* @notice Send funds to recovery Vault. This contract should never receive funds,
* but in case it does, this function allows one to recover them.
* @param _token Token balance to be sent to recovery vault.
*/
function transferToVault(address _token) external {
require(allowRecoverability(_token), ERROR_DISALLOWED);
address vault = getRecoveryVault();
require(isContract(vault), ERROR_VAULT_NOT_CONTRACT);
uint256 balance;
if (_token == ETH) {
balance = address(this).balance;
vault.transfer(balance);
} else {
ERC20 token = ERC20(_token);
balance = token.staticBalanceOf(this);
require(token.safeTransfer(vault, balance), ERROR_TOKEN_TRANSFER_FAILED);
}
emit RecoverToVault(vault, _token, balance);
}
/**
* @dev By default deriving from AragonApp makes it recoverable
* @param token Token address that would be recovered
* @return bool whether the app allows the recovery
*/
function allowRecoverability(address token) public view returns (bool) {
return true;
}
// Cast non-implemented interface to be public so we can use it internally
function getRecoveryVault() public view returns (address);
}
// File: contracts/apps/AppStorage.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract AppStorage {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel");
bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId");
*/
bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b;
bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b;
function kernel() public view returns (IKernel) {
return IKernel(KERNEL_POSITION.getStorageAddress());
}
function appId() public view returns (bytes32) {
return APP_ID_POSITION.getStorageBytes32();
}
function setKernel(IKernel _kernel) internal {
KERNEL_POSITION.setStorageAddress(address(_kernel));
}
function setAppId(bytes32 _appId) internal {
APP_ID_POSITION.setStorageBytes32(_appId);
}
}
// File: contracts/lib/misc/ERCProxy.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract ERCProxy {
uint256 internal constant FORWARDING = 1;
uint256 internal constant UPGRADEABLE = 2;
function proxyType() public pure returns (uint256 proxyTypeId);
function implementation() public view returns (address codeAddr);
}
// File: contracts/common/DelegateProxy.sol
pragma solidity 0.4.24;
contract DelegateProxy is ERCProxy, IsContract {
uint256 internal constant FWD_GAS_LIMIT = 10000;
/**
* @dev Performs a delegatecall and returns whatever the delegatecall returned (entire context execution will return!)
* @param _dst Destination address to perform the delegatecall
* @param _calldata Calldata for the delegatecall
*/
function delegatedFwd(address _dst, bytes _calldata) internal {
require(isContract(_dst));
uint256 fwdGasLimit = FWD_GAS_LIMIT;
assembly {
let result := delegatecall(sub(gas, fwdGasLimit), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0)
let size := returndatasize
let ptr := mload(0x40)
returndatacopy(ptr, 0, size)
// revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas.
// if the call returned error data, forward it
switch result case 0 { revert(ptr, size) }
default { return(ptr, size) }
}
}
}
// File: contracts/common/DepositableStorage.sol
pragma solidity 0.4.24;
contract DepositableStorage {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.depositableStorage.depositable")
bytes32 internal constant DEPOSITABLE_POSITION = 0x665fd576fbbe6f247aff98f5c94a561e3f71ec2d3c988d56f12d342396c50cea;
function isDepositable() public view returns (bool) {
return DEPOSITABLE_POSITION.getStorageBool();
}
function setDepositable(bool _depositable) internal {
DEPOSITABLE_POSITION.setStorageBool(_depositable);
}
}
// File: contracts/common/DepositableDelegateProxy.sol
pragma solidity 0.4.24;
contract DepositableDelegateProxy is DepositableStorage, DelegateProxy {
event ProxyDeposit(address sender, uint256 value);
function () external payable {
uint256 forwardGasThreshold = FWD_GAS_LIMIT;
bytes32 isDepositablePosition = DEPOSITABLE_POSITION;
// Optimized assembly implementation to prevent EIP-1884 from breaking deposits, reference code in Solidity:
// https://github.com/aragon/aragonOS/blob/v4.2.1/contracts/common/DepositableDelegateProxy.sol#L10-L20
assembly {
// Continue only if the gas left is lower than the threshold for forwarding to the implementation code,
// otherwise continue outside of the assembly block.
if lt(gas, forwardGasThreshold) {
// Only accept the deposit and emit an event if all of the following are true:
// the proxy accepts deposits (isDepositable), msg.data.length == 0, and msg.value > 0
if and(and(sload(isDepositablePosition), iszero(calldatasize)), gt(callvalue, 0)) {
// Equivalent Solidity code for emitting the event:
// emit ProxyDeposit(msg.sender, msg.value);
let logData := mload(0x40) // free memory pointer
mstore(logData, caller) // add 'msg.sender' to the log data (first event param)
mstore(add(logData, 0x20), callvalue) // add 'msg.value' to the log data (second event param)
// Emit an event with one topic to identify the event: keccak256('ProxyDeposit(address,uint256)') = 0x15ee...dee1
log1(logData, 0x40, 0x15eeaa57c7bd188c1388020bcadc2c436ec60d647d36ef5b9eb3c742217ddee1)
stop() // Stop. Exits execution context
}
// If any of above checks failed, revert the execution (if ETH was sent, it is returned to the sender)
revert(0, 0)
}
}
address target = implementation();
delegatedFwd(target, msg.data);
}
}
// File: contracts/apps/AppProxyBase.sol
pragma solidity 0.4.24;
contract AppProxyBase is AppStorage, DepositableDelegateProxy, KernelNamespaceConstants {
/**
* @dev Initialize AppProxy
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public {
setKernel(_kernel);
setAppId(_appId);
// Implicit check that kernel is actually a Kernel
// The EVM doesn't actually provide a way for us to make sure, but we can force a revert to
// occur if the kernel is set to 0x0 or a non-code address when we try to call a method on
// it.
address appCode = getAppBase(_appId);
// If initialize payload is provided, it will be executed
if (_initializePayload.length > 0) {
require(isContract(appCode));
// Cannot make delegatecall as a delegateproxy.delegatedFwd as it
// returns ending execution context and halts contract deployment
require(appCode.delegatecall(_initializePayload));
}
}
function getAppBase(bytes32 _appId) internal view returns (address) {
return kernel().getApp(KERNEL_APP_BASES_NAMESPACE, _appId);
}
}
// File: contracts/apps/AppProxyUpgradeable.sol
pragma solidity 0.4.24;
contract AppProxyUpgradeable is AppProxyBase {
/**
* @dev Initialize AppProxyUpgradeable (makes it an upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
// solium-disable-previous-line no-empty-blocks
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return getAppBase(appId());
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
}
// File: contracts/apps/AppProxyPinned.sol
pragma solidity 0.4.24;
contract AppProxyPinned is IsContract, AppProxyBase {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.appStorage.pinnedCode")
bytes32 internal constant PINNED_CODE_POSITION = 0xdee64df20d65e53d7f51cb6ab6d921a0a6a638a91e942e1d8d02df28e31c038e;
/**
* @dev Initialize AppProxyPinned (makes it an un-upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
setPinnedCode(getAppBase(_appId));
require(isContract(pinnedCode()));
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return pinnedCode();
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return FORWARDING;
}
function setPinnedCode(address _pinnedCode) internal {
PINNED_CODE_POSITION.setStorageAddress(_pinnedCode);
}
function pinnedCode() internal view returns (address) {
return PINNED_CODE_POSITION.getStorageAddress();
}
}
// File: contracts/factory/AppProxyFactory.sol
pragma solidity 0.4.24;
contract AppProxyFactory {
event NewAppProxy(address proxy, bool isUpgradeable, bytes32 appId);
/**
* @notice Create a new upgradeable app instance on `_kernel` with identifier `_appId`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyUpgradeable
*/
function newAppProxy(IKernel _kernel, bytes32 _appId) public returns (AppProxyUpgradeable) {
return newAppProxy(_kernel, _appId, new bytes(0));
}
/**
* @notice Create a new upgradeable app instance on `_kernel` with identifier `_appId` and initialization payload `_initializePayload`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyUpgradeable
*/
function newAppProxy(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public returns (AppProxyUpgradeable) {
AppProxyUpgradeable proxy = new AppProxyUpgradeable(_kernel, _appId, _initializePayload);
emit NewAppProxy(address(proxy), true, _appId);
return proxy;
}
/**
* @notice Create a new pinned app instance on `_kernel` with identifier `_appId`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyPinned
*/
function newAppProxyPinned(IKernel _kernel, bytes32 _appId) public returns (AppProxyPinned) {
return newAppProxyPinned(_kernel, _appId, new bytes(0));
}
/**
* @notice Create a new pinned app instance on `_kernel` with identifier `_appId` and initialization payload `_initializePayload`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @param _initializePayload Proxy initialization payload
* @return AppProxyPinned
*/
function newAppProxyPinned(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public returns (AppProxyPinned) {
AppProxyPinned proxy = new AppProxyPinned(_kernel, _appId, _initializePayload);
emit NewAppProxy(address(proxy), false, _appId);
return proxy;
}
}
// File: contracts/kernel/Kernel.sol
pragma solidity 0.4.24;
// solium-disable-next-line max-len
contract Kernel is IKernel, KernelStorage, KernelAppIds, KernelNamespaceConstants, Petrifiable, IsContract, VaultRecoverable, AppProxyFactory, ACLSyntaxSugar {
/* Hardcoded constants to save gas
bytes32 public constant APP_MANAGER_ROLE = keccak256("APP_MANAGER_ROLE");
*/
bytes32 public constant APP_MANAGER_ROLE = 0xb6d92708f3d4817afc106147d969e229ced5c46e65e0a5002a0d391287762bd0;
string private constant ERROR_APP_NOT_CONTRACT = "KERNEL_APP_NOT_CONTRACT";
string private constant ERROR_INVALID_APP_CHANGE = "KERNEL_INVALID_APP_CHANGE";
string private constant ERROR_AUTH_FAILED = "KERNEL_AUTH_FAILED";
/**
* @dev Constructor that allows the deployer to choose if the base instance should be petrified immediately.
* @param _shouldPetrify Immediately petrify this instance so that it can never be initialized
*/
constructor(bool _shouldPetrify) public {
if (_shouldPetrify) {
petrify();
}
}
/**
* @dev Initialize can only be called once. It saves the block number in which it was initialized.
* @notice Initialize this kernel instance along with its ACL and set `_permissionsCreator` as the entity that can create other permissions
* @param _baseAcl Address of base ACL app
* @param _permissionsCreator Entity that will be given permission over createPermission
*/
function initialize(IACL _baseAcl, address _permissionsCreator) public onlyInit {
initialized();
// Set ACL base
_setApp(KERNEL_APP_BASES_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID, _baseAcl);
// Create ACL instance and attach it as the default ACL app
IACL acl = IACL(newAppProxy(this, KERNEL_DEFAULT_ACL_APP_ID));
acl.initialize(_permissionsCreator);
_setApp(KERNEL_APP_ADDR_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID, acl);
recoveryVaultAppId = KERNEL_DEFAULT_VAULT_APP_ID;
}
/**
* @dev Create a new instance of an app linked to this kernel
* @notice Create a new upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @return AppProxy instance
*/
function newAppInstance(bytes32 _appId, address _appBase)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
return newAppInstance(_appId, _appBase, new bytes(0), false);
}
/**
* @dev Create a new instance of an app linked to this kernel and set its base
* implementation if it was not already set
* @notice Create a new upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`. `_setDefault ? 'Also sets it as the default app instance.':''`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @param _initializePayload Payload for call made by the proxy during its construction to initialize
* @param _setDefault Whether the app proxy app is the default one.
* Useful when the Kernel needs to know of an instance of a particular app,
* like Vault for escape hatch mechanism.
* @return AppProxy instance
*/
function newAppInstance(bytes32 _appId, address _appBase, bytes _initializePayload, bool _setDefault)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
_setAppIfNew(KERNEL_APP_BASES_NAMESPACE, _appId, _appBase);
appProxy = newAppProxy(this, _appId, _initializePayload);
// By calling setApp directly and not the internal functions, we make sure the params are checked
// and it will only succeed if sender has permissions to set something to the namespace.
if (_setDefault) {
setApp(KERNEL_APP_ADDR_NAMESPACE, _appId, appProxy);
}
}
/**
* @dev Create a new pinned instance of an app linked to this kernel
* @notice Create a new non-upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`.
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @return AppProxy instance
*/
function newPinnedAppInstance(bytes32 _appId, address _appBase)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
return newPinnedAppInstance(_appId, _appBase, new bytes(0), false);
}
/**
* @dev Create a new pinned instance of an app linked to this kernel and set
* its base implementation if it was not already set
* @notice Create a new non-upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`. `_setDefault ? 'Also sets it as the default app instance.':''`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @param _initializePayload Payload for call made by the proxy during its construction to initialize
* @param _setDefault Whether the app proxy app is the default one.
* Useful when the Kernel needs to know of an instance of a particular app,
* like Vault for escape hatch mechanism.
* @return AppProxy instance
*/
function newPinnedAppInstance(bytes32 _appId, address _appBase, bytes _initializePayload, bool _setDefault)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
_setAppIfNew(KERNEL_APP_BASES_NAMESPACE, _appId, _appBase);
appProxy = newAppProxyPinned(this, _appId, _initializePayload);
// By calling setApp directly and not the internal functions, we make sure the params are checked
// and it will only succeed if sender has permissions to set something to the namespace.
if (_setDefault) {
setApp(KERNEL_APP_ADDR_NAMESPACE, _appId, appProxy);
}
}
/**
* @dev Set the resolving address of an app instance or base implementation
* @notice Set the resolving address of `_appId` in namespace `_namespace` to `_app`
* @param _namespace App namespace to use
* @param _appId Identifier for app
* @param _app Address of the app instance or base implementation
* @return ID of app
*/
function setApp(bytes32 _namespace, bytes32 _appId, address _app)
public
auth(APP_MANAGER_ROLE, arr(_namespace, _appId))
{
_setApp(_namespace, _appId, _app);
}
/**
* @dev Set the default vault id for the escape hatch mechanism
* @param _recoveryVaultAppId Identifier of the recovery vault app
*/
function setRecoveryVaultAppId(bytes32 _recoveryVaultAppId)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_ADDR_NAMESPACE, _recoveryVaultAppId))
{
recoveryVaultAppId = _recoveryVaultAppId;
}
// External access to default app id and namespace constants to mimic default getters for constants
/* solium-disable function-order, mixedcase */
function CORE_NAMESPACE() external pure returns (bytes32) { return KERNEL_CORE_NAMESPACE; }
function APP_BASES_NAMESPACE() external pure returns (bytes32) { return KERNEL_APP_BASES_NAMESPACE; }
function APP_ADDR_NAMESPACE() external pure returns (bytes32) { return KERNEL_APP_ADDR_NAMESPACE; }
function KERNEL_APP_ID() external pure returns (bytes32) { return KERNEL_CORE_APP_ID; }
function DEFAULT_ACL_APP_ID() external pure returns (bytes32) { return KERNEL_DEFAULT_ACL_APP_ID; }
/* solium-enable function-order, mixedcase */
/**
* @dev Get the address of an app instance or base implementation
* @param _namespace App namespace to use
* @param _appId Identifier for app
* @return Address of the app
*/
function getApp(bytes32 _namespace, bytes32 _appId) public view returns (address) {
return apps[_namespace][_appId];
}
/**
* @dev Get the address of the recovery Vault instance (to recover funds)
* @return Address of the Vault
*/
function getRecoveryVault() public view returns (address) {
return apps[KERNEL_APP_ADDR_NAMESPACE][recoveryVaultAppId];
}
/**
* @dev Get the installed ACL app
* @return ACL app
*/
function acl() public view returns (IACL) {
return IACL(getApp(KERNEL_APP_ADDR_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID));
}
/**
* @dev Function called by apps to check ACL on kernel or to check permission status
* @param _who Sender of the original call
* @param _where Address of the app
* @param _what Identifier for a group of actions in app
* @param _how Extra data for ACL auth
* @return Boolean indicating whether the ACL allows the role or not.
* Always returns false if the kernel hasn't been initialized yet.
*/
function hasPermission(address _who, address _where, bytes32 _what, bytes _how) public view returns (bool) {
IACL defaultAcl = acl();
return address(defaultAcl) != address(0) && // Poor man's initialization check (saves gas)
defaultAcl.hasPermission(_who, _where, _what, _how);
}
function _setApp(bytes32 _namespace, bytes32 _appId, address _app) internal {
require(isContract(_app), ERROR_APP_NOT_CONTRACT);
apps[_namespace][_appId] = _app;
emit SetApp(_namespace, _appId, _app);
}
function _setAppIfNew(bytes32 _namespace, bytes32 _appId, address _app) internal {
address app = getApp(_namespace, _appId);
if (app != address(0)) {
// The only way to set an app is if it passes the isContract check, so no need to check it again
require(app == _app, ERROR_INVALID_APP_CHANGE);
} else {
_setApp(_namespace, _appId, _app);
}
}
modifier auth(bytes32 _role, uint256[] memory _params) {
require(
hasPermission(msg.sender, address(this), _role, ConversionHelpers.dangerouslyCastUintArrayToBytes(_params)),
ERROR_AUTH_FAILED
);
_;
}
}
// File: contracts/kernel/KernelProxy.sol
pragma solidity 0.4.24;
contract KernelProxy is IKernelEvents, KernelStorage, KernelAppIds, KernelNamespaceConstants, IsContract, DepositableDelegateProxy {
/**
* @dev KernelProxy is a proxy contract to a kernel implementation. The implementation
* can update the reference, which effectively upgrades the contract
* @param _kernelImpl Address of the contract used as implementation for kernel
*/
constructor(IKernel _kernelImpl) public {
require(isContract(address(_kernelImpl)));
apps[KERNEL_CORE_NAMESPACE][KERNEL_CORE_APP_ID] = _kernelImpl;
// Note that emitting this event is important for verifying that a KernelProxy instance
// was never upgraded to a malicious Kernel logic contract over its lifespan.
// This starts the "chain of trust", that can be followed through later SetApp() events
// emitted during kernel upgrades.
emit SetApp(KERNEL_CORE_NAMESPACE, KERNEL_CORE_APP_ID, _kernelImpl);
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return apps[KERNEL_CORE_NAMESPACE][KERNEL_CORE_APP_ID];
}
}
// File: contracts/common/Autopetrified.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract Autopetrified is Petrifiable {
constructor() public {
// Immediately petrify base (non-proxy) instances of inherited contracts on deploy.
// This renders them uninitializable (and unusable without a proxy).
petrify();
}
}
// File: contracts/common/ReentrancyGuard.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract ReentrancyGuard {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant REENTRANCY_MUTEX_POSITION = keccak256("aragonOS.reentrancyGuard.mutex");
*/
bytes32 private constant REENTRANCY_MUTEX_POSITION = 0xe855346402235fdd185c890e68d2c4ecad599b88587635ee285bce2fda58dacb;
string private constant ERROR_REENTRANT = "REENTRANCY_REENTRANT_CALL";
modifier nonReentrant() {
// Ensure mutex is unlocked
require(!REENTRANCY_MUTEX_POSITION.getStorageBool(), ERROR_REENTRANT);
// Lock mutex before function call
REENTRANCY_MUTEX_POSITION.setStorageBool(true);
// Perform function call
_;
// Unlock mutex after function call
REENTRANCY_MUTEX_POSITION.setStorageBool(false);
}
}
// File: contracts/evmscript/IEVMScriptExecutor.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IEVMScriptExecutor {
function execScript(bytes script, bytes input, address[] blacklist) external returns (bytes);
function executorType() external pure returns (bytes32);
}
// File: contracts/evmscript/IEVMScriptRegistry.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract EVMScriptRegistryConstants {
/* Hardcoded constants to save gas
bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = apmNamehash("evmreg");
*/
bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = 0xddbcfd564f642ab5627cf68b9b7d374fb4f8a36e941a75d89c87998cef03bd61;
}
interface IEVMScriptRegistry {
function addScriptExecutor(IEVMScriptExecutor executor) external returns (uint id);
function disableScriptExecutor(uint256 executorId) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function getScriptExecutor(bytes script) public view returns (IEVMScriptExecutor);
}
// File: contracts/evmscript/EVMScriptRunner.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract EVMScriptRunner is AppStorage, Initializable, EVMScriptRegistryConstants, KernelNamespaceConstants {
string private constant ERROR_EXECUTOR_UNAVAILABLE = "EVMRUN_EXECUTOR_UNAVAILABLE";
string private constant ERROR_PROTECTED_STATE_MODIFIED = "EVMRUN_PROTECTED_STATE_MODIFIED";
/* This is manually crafted in assembly
string private constant ERROR_EXECUTOR_INVALID_RETURN = "EVMRUN_EXECUTOR_INVALID_RETURN";
*/
event ScriptResult(address indexed executor, bytes script, bytes input, bytes returnData);
function getEVMScriptExecutor(bytes _script) public view returns (IEVMScriptExecutor) {
return IEVMScriptExecutor(getEVMScriptRegistry().getScriptExecutor(_script));
}
function getEVMScriptRegistry() public view returns (IEVMScriptRegistry) {
address registryAddr = kernel().getApp(KERNEL_APP_ADDR_NAMESPACE, EVMSCRIPT_REGISTRY_APP_ID);
return IEVMScriptRegistry(registryAddr);
}
function runScript(bytes _script, bytes _input, address[] _blacklist)
internal
isInitialized
protectState
returns (bytes)
{
IEVMScriptExecutor executor = getEVMScriptExecutor(_script);
require(address(executor) != address(0), ERROR_EXECUTOR_UNAVAILABLE);
bytes4 sig = executor.execScript.selector;
bytes memory data = abi.encodeWithSelector(sig, _script, _input, _blacklist);
bytes memory output;
assembly {
let success := delegatecall(
gas, // forward all gas
executor, // address
add(data, 0x20), // calldata start
mload(data), // calldata length
0, // don't write output (we'll handle this ourselves)
0 // don't write output
)
output := mload(0x40) // free mem ptr get
switch success
case 0 {
// If the call errored, forward its full error data
returndatacopy(output, 0, returndatasize)
revert(output, returndatasize)
}
default {
switch gt(returndatasize, 0x3f)
case 0 {
// Need at least 0x40 bytes returned for properly ABI-encoded bytes values,
// revert with "EVMRUN_EXECUTOR_INVALID_RETURN"
// See remix: doing a `revert("EVMRUN_EXECUTOR_INVALID_RETURN")` always results in
// this memory layout
mstore(output, 0x08c379a000000000000000000000000000000000000000000000000000000000) // error identifier
mstore(add(output, 0x04), 0x0000000000000000000000000000000000000000000000000000000000000020) // starting offset
mstore(add(output, 0x24), 0x000000000000000000000000000000000000000000000000000000000000001e) // reason length
mstore(add(output, 0x44), 0x45564d52554e5f4558454355544f525f494e56414c49445f52455455524e0000) // reason
revert(output, 100) // 100 = 4 + 3 * 32 (error identifier + 3 words for the ABI encoded error)
}
default {
// Copy result
//
// Needs to perform an ABI decode for the expected `bytes` return type of
// `executor.execScript()` as solidity will automatically ABI encode the returned bytes as:
// [ position of the first dynamic length return value = 0x20 (32 bytes) ]
// [ output length (32 bytes) ]
// [ output content (N bytes) ]
//
// Perform the ABI decode by ignoring the first 32 bytes of the return data
let copysize := sub(returndatasize, 0x20)
returndatacopy(output, 0x20, copysize)
mstore(0x40, add(output, copysize)) // free mem ptr set
}
}
}
emit ScriptResult(address(executor), _script, _input, output);
return output;
}
modifier protectState {
address preKernel = address(kernel());
bytes32 preAppId = appId();
_; // exec
require(address(kernel()) == preKernel, ERROR_PROTECTED_STATE_MODIFIED);
require(appId() == preAppId, ERROR_PROTECTED_STATE_MODIFIED);
}
}
// File: contracts/apps/AragonApp.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
// Contracts inheriting from AragonApp are, by default, immediately petrified upon deployment so
// that they can never be initialized.
// Unless overriden, this behaviour enforces those contracts to be usable only behind an AppProxy.
// ReentrancyGuard, EVMScriptRunner, and ACLSyntaxSugar are not directly used by this contract, but
// are included so that they are automatically usable by subclassing contracts
contract AragonApp is AppStorage, Autopetrified, VaultRecoverable, ReentrancyGuard, EVMScriptRunner, ACLSyntaxSugar {
string private constant ERROR_AUTH_FAILED = "APP_AUTH_FAILED";
modifier auth(bytes32 _role) {
require(canPerform(msg.sender, _role, new uint256[](0)), ERROR_AUTH_FAILED);
_;
}
modifier authP(bytes32 _role, uint256[] _params) {
require(canPerform(msg.sender, _role, _params), ERROR_AUTH_FAILED);
_;
}
/**
* @dev Check whether an action can be performed by a sender for a particular role on this app
* @param _sender Sender of the call
* @param _role Role on this app
* @param _params Permission params for the role
* @return Boolean indicating whether the sender has the permissions to perform the action.
* Always returns false if the app hasn't been initialized yet.
*/
function canPerform(address _sender, bytes32 _role, uint256[] _params) public view returns (bool) {
if (!hasInitialized()) {
return false;
}
IKernel linkedKernel = kernel();
if (address(linkedKernel) == address(0)) {
return false;
}
return linkedKernel.hasPermission(
_sender,
address(this),
_role,
ConversionHelpers.dangerouslyCastUintArrayToBytes(_params)
);
}
/**
* @dev Get the recovery vault for the app
* @return Recovery vault address for the app
*/
function getRecoveryVault() public view returns (address) {
// Funds recovery via a vault is only available when used with a kernel
return kernel().getRecoveryVault(); // if kernel is not set, it will revert
}
}
// File: contracts/acl/IACLOracle.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
interface IACLOracle {
function canPerform(address who, address where, bytes32 what, uint256[] how) external view returns (bool);
}
// File: contracts/acl/ACL.sol
pragma solidity 0.4.24;
/* solium-disable function-order */
// Allow public initialize() to be first
contract ACL is IACL, TimeHelpers, AragonApp, ACLHelpers {
/* Hardcoded constants to save gas
bytes32 public constant CREATE_PERMISSIONS_ROLE = keccak256("CREATE_PERMISSIONS_ROLE");
*/
bytes32 public constant CREATE_PERMISSIONS_ROLE = 0x0b719b33c83b8e5d300c521cb8b54ae9bd933996a14bef8c2f4e0285d2d2400a;
enum Op { NONE, EQ, NEQ, GT, LT, GTE, LTE, RET, NOT, AND, OR, XOR, IF_ELSE } // op types
struct Param {
uint8 id;
uint8 op;
uint240 value; // even though value is an uint240 it can store addresses
// in the case of 32 byte hashes losing 2 bytes precision isn't a huge deal
// op and id take less than 1 byte each so it can be kept in 1 sstore
}
uint8 internal constant BLOCK_NUMBER_PARAM_ID = 200;
uint8 internal constant TIMESTAMP_PARAM_ID = 201;
// 202 is unused
uint8 internal constant ORACLE_PARAM_ID = 203;
uint8 internal constant LOGIC_OP_PARAM_ID = 204;
uint8 internal constant PARAM_VALUE_PARAM_ID = 205;
// TODO: Add execution times param type?
/* Hardcoded constant to save gas
bytes32 public constant EMPTY_PARAM_HASH = keccak256(uint256(0));
*/
bytes32 public constant EMPTY_PARAM_HASH = 0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563;
bytes32 public constant NO_PERMISSION = bytes32(0);
address public constant ANY_ENTITY = address(-1);
address public constant BURN_ENTITY = address(1); // address(0) is already used as "no permission manager"
string private constant ERROR_AUTH_INIT_KERNEL = "ACL_AUTH_INIT_KERNEL";
string private constant ERROR_AUTH_NO_MANAGER = "ACL_AUTH_NO_MANAGER";
string private constant ERROR_EXISTENT_MANAGER = "ACL_EXISTENT_MANAGER";
// Whether someone has a permission
mapping (bytes32 => bytes32) internal permissions; // permissions hash => params hash
mapping (bytes32 => Param[]) internal permissionParams; // params hash => params
// Who is the manager of a permission
mapping (bytes32 => address) internal permissionManager;
event SetPermission(address indexed entity, address indexed app, bytes32 indexed role, bool allowed);
event SetPermissionParams(address indexed entity, address indexed app, bytes32 indexed role, bytes32 paramsHash);
event ChangePermissionManager(address indexed app, bytes32 indexed role, address indexed manager);
modifier onlyPermissionManager(address _app, bytes32 _role) {
require(msg.sender == getPermissionManager(_app, _role), ERROR_AUTH_NO_MANAGER);
_;
}
modifier noPermissionManager(address _app, bytes32 _role) {
// only allow permission creation (or re-creation) when there is no manager
require(getPermissionManager(_app, _role) == address(0), ERROR_EXISTENT_MANAGER);
_;
}
/**
* @dev Initialize can only be called once. It saves the block number in which it was initialized.
* @notice Initialize an ACL instance and set `_permissionsCreator` as the entity that can create other permissions
* @param _permissionsCreator Entity that will be given permission over createPermission
*/
function initialize(address _permissionsCreator) public onlyInit {
initialized();
require(msg.sender == address(kernel()), ERROR_AUTH_INIT_KERNEL);
_createPermission(_permissionsCreator, this, CREATE_PERMISSIONS_ROLE, _permissionsCreator);
}
/**
* @dev Creates a permission that wasn't previously set and managed.
* If a created permission is removed it is possible to reset it with createPermission.
* This is the **ONLY** way to create permissions and set managers to permissions that don't
* have a manager.
* In terms of the ACL being initialized, this function implicitly protects all the other
* state-changing external functions, as they all require the sender to be a manager.
* @notice Create a new permission granting `_entity` the ability to perform actions requiring `_role` on `_app`, setting `_manager` as the permission's manager
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app in which the role will be allowed (requires app to depend on kernel for ACL)
* @param _role Identifier for the group of actions in app given access to perform
* @param _manager Address of the entity that will be able to grant and revoke the permission further.
*/
function createPermission(address _entity, address _app, bytes32 _role, address _manager)
external
auth(CREATE_PERMISSIONS_ROLE)
noPermissionManager(_app, _role)
{
_createPermission(_entity, _app, _role, _manager);
}
/**
* @dev Grants permission if allowed. This requires `msg.sender` to be the permission manager
* @notice Grant `_entity` the ability to perform actions requiring `_role` on `_app`
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app in which the role will be allowed (requires app to depend on kernel for ACL)
* @param _role Identifier for the group of actions in app given access to perform
*/
function grantPermission(address _entity, address _app, bytes32 _role)
external
{
grantPermissionP(_entity, _app, _role, new uint256[](0));
}
/**
* @dev Grants a permission with parameters if allowed. This requires `msg.sender` to be the permission manager
* @notice Grant `_entity` the ability to perform actions requiring `_role` on `_app`
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app in which the role will be allowed (requires app to depend on kernel for ACL)
* @param _role Identifier for the group of actions in app given access to perform
* @param _params Permission parameters
*/
function grantPermissionP(address _entity, address _app, bytes32 _role, uint256[] _params)
public
onlyPermissionManager(_app, _role)
{
bytes32 paramsHash = _params.length > 0 ? _saveParams(_params) : EMPTY_PARAM_HASH;
_setPermission(_entity, _app, _role, paramsHash);
}
/**
* @dev Revokes permission if allowed. This requires `msg.sender` to be the the permission manager
* @notice Revoke from `_entity` the ability to perform actions requiring `_role` on `_app`
* @param _entity Address of the whitelisted entity to revoke access from
* @param _app Address of the app in which the role will be revoked
* @param _role Identifier for the group of actions in app being revoked
*/
function revokePermission(address _entity, address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermission(_entity, _app, _role, NO_PERMISSION);
}
/**
* @notice Set `_newManager` as the manager of `_role` in `_app`
* @param _newManager Address for the new manager
* @param _app Address of the app in which the permission management is being transferred
* @param _role Identifier for the group of actions being transferred
*/
function setPermissionManager(address _newManager, address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermissionManager(_newManager, _app, _role);
}
/**
* @notice Remove the manager of `_role` in `_app`
* @param _app Address of the app in which the permission is being unmanaged
* @param _role Identifier for the group of actions being unmanaged
*/
function removePermissionManager(address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermissionManager(address(0), _app, _role);
}
/**
* @notice Burn non-existent `_role` in `_app`, so no modification can be made to it (grant, revoke, permission manager)
* @param _app Address of the app in which the permission is being burned
* @param _role Identifier for the group of actions being burned
*/
function createBurnedPermission(address _app, bytes32 _role)
external
auth(CREATE_PERMISSIONS_ROLE)
noPermissionManager(_app, _role)
{
_setPermissionManager(BURN_ENTITY, _app, _role);
}
/**
* @notice Burn `_role` in `_app`, so no modification can be made to it (grant, revoke, permission manager)
* @param _app Address of the app in which the permission is being burned
* @param _role Identifier for the group of actions being burned
*/
function burnPermissionManager(address _app, bytes32 _role)
external
onlyPermissionManager(_app, _role)
{
_setPermissionManager(BURN_ENTITY, _app, _role);
}
/**
* @notice Get parameters for permission array length
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app
* @param _role Identifier for a group of actions in app
* @return Length of the array
*/
function getPermissionParamsLength(address _entity, address _app, bytes32 _role) external view returns (uint) {
return permissionParams[permissions[permissionHash(_entity, _app, _role)]].length;
}
/**
* @notice Get parameter for permission
* @param _entity Address of the whitelisted entity that will be able to perform the role
* @param _app Address of the app
* @param _role Identifier for a group of actions in app
* @param _index Index of parameter in the array
* @return Parameter (id, op, value)
*/
function getPermissionParam(address _entity, address _app, bytes32 _role, uint _index)
external
view
returns (uint8, uint8, uint240)
{
Param storage param = permissionParams[permissions[permissionHash(_entity, _app, _role)]][_index];
return (param.id, param.op, param.value);
}
/**
* @dev Get manager for permission
* @param _app Address of the app
* @param _role Identifier for a group of actions in app
* @return address of the manager for the permission
*/
function getPermissionManager(address _app, bytes32 _role) public view returns (address) {
return permissionManager[roleHash(_app, _role)];
}
/**
* @dev Function called by apps to check ACL on kernel or to check permission statu
* @param _who Sender of the original call
* @param _where Address of the app
* @param _where Identifier for a group of actions in app
* @param _how Permission parameters
* @return boolean indicating whether the ACL allows the role or not
*/
function hasPermission(address _who, address _where, bytes32 _what, bytes memory _how) public view returns (bool) {
return hasPermission(_who, _where, _what, ConversionHelpers.dangerouslyCastBytesToUintArray(_how));
}
function hasPermission(address _who, address _where, bytes32 _what, uint256[] memory _how) public view returns (bool) {
bytes32 whoParams = permissions[permissionHash(_who, _where, _what)];
if (whoParams != NO_PERMISSION && evalParams(whoParams, _who, _where, _what, _how)) {
return true;
}
bytes32 anyParams = permissions[permissionHash(ANY_ENTITY, _where, _what)];
if (anyParams != NO_PERMISSION && evalParams(anyParams, ANY_ENTITY, _where, _what, _how)) {
return true;
}
return false;
}
function hasPermission(address _who, address _where, bytes32 _what) public view returns (bool) {
uint256[] memory empty = new uint256[](0);
return hasPermission(_who, _where, _what, empty);
}
function evalParams(
bytes32 _paramsHash,
address _who,
address _where,
bytes32 _what,
uint256[] _how
) public view returns (bool)
{
if (_paramsHash == EMPTY_PARAM_HASH) {
return true;
}
return _evalParam(_paramsHash, 0, _who, _where, _what, _how);
}
/**
* @dev Internal createPermission for access inside the kernel (on instantiation)
*/
function _createPermission(address _entity, address _app, bytes32 _role, address _manager) internal {
_setPermission(_entity, _app, _role, EMPTY_PARAM_HASH);
_setPermissionManager(_manager, _app, _role);
}
/**
* @dev Internal function called to actually save the permission
*/
function _setPermission(address _entity, address _app, bytes32 _role, bytes32 _paramsHash) internal {
permissions[permissionHash(_entity, _app, _role)] = _paramsHash;
bool entityHasPermission = _paramsHash != NO_PERMISSION;
bool permissionHasParams = entityHasPermission && _paramsHash != EMPTY_PARAM_HASH;
emit SetPermission(_entity, _app, _role, entityHasPermission);
if (permissionHasParams) {
emit SetPermissionParams(_entity, _app, _role, _paramsHash);
}
}
function _saveParams(uint256[] _encodedParams) internal returns (bytes32) {
bytes32 paramHash = keccak256(abi.encodePacked(_encodedParams));
Param[] storage params = permissionParams[paramHash];
if (params.length == 0) { // params not saved before
for (uint256 i = 0; i < _encodedParams.length; i++) {
uint256 encodedParam = _encodedParams[i];
Param memory param = Param(decodeParamId(encodedParam), decodeParamOp(encodedParam), uint240(encodedParam));
params.push(param);
}
}
return paramHash;
}
function _evalParam(
bytes32 _paramsHash,
uint32 _paramId,
address _who,
address _where,
bytes32 _what,
uint256[] _how
) internal view returns (bool)
{
if (_paramId >= permissionParams[_paramsHash].length) {
return false; // out of bounds
}
Param memory param = permissionParams[_paramsHash][_paramId];
if (param.id == LOGIC_OP_PARAM_ID) {
return _evalLogic(param, _paramsHash, _who, _where, _what, _how);
}
uint256 value;
uint256 comparedTo = uint256(param.value);
// get value
if (param.id == ORACLE_PARAM_ID) {
value = checkOracle(IACLOracle(param.value), _who, _where, _what, _how) ? 1 : 0;
comparedTo = 1;
} else if (param.id == BLOCK_NUMBER_PARAM_ID) {
value = getBlockNumber();
} else if (param.id == TIMESTAMP_PARAM_ID) {
value = getTimestamp();
} else if (param.id == PARAM_VALUE_PARAM_ID) {
value = uint256(param.value);
} else {
if (param.id >= _how.length) {
return false;
}
value = uint256(uint240(_how[param.id])); // force lost precision
}
if (Op(param.op) == Op.RET) {
return uint256(value) > 0;
}
return compare(value, Op(param.op), comparedTo);
}
function _evalLogic(Param _param, bytes32 _paramsHash, address _who, address _where, bytes32 _what, uint256[] _how)
internal
view
returns (bool)
{
if (Op(_param.op) == Op.IF_ELSE) {
uint32 conditionParam;
uint32 successParam;
uint32 failureParam;
(conditionParam, successParam, failureParam) = decodeParamsList(uint256(_param.value));
bool result = _evalParam(_paramsHash, conditionParam, _who, _where, _what, _how);
return _evalParam(_paramsHash, result ? successParam : failureParam, _who, _where, _what, _how);
}
uint32 param1;
uint32 param2;
(param1, param2,) = decodeParamsList(uint256(_param.value));
bool r1 = _evalParam(_paramsHash, param1, _who, _where, _what, _how);
if (Op(_param.op) == Op.NOT) {
return !r1;
}
if (r1 && Op(_param.op) == Op.OR) {
return true;
}
if (!r1 && Op(_param.op) == Op.AND) {
return false;
}
bool r2 = _evalParam(_paramsHash, param2, _who, _where, _what, _how);
if (Op(_param.op) == Op.XOR) {
return r1 != r2;
}
return r2; // both or and and depend on result of r2 after checks
}
function compare(uint256 _a, Op _op, uint256 _b) internal pure returns (bool) {
if (_op == Op.EQ) return _a == _b; // solium-disable-line lbrace
if (_op == Op.NEQ) return _a != _b; // solium-disable-line lbrace
if (_op == Op.GT) return _a > _b; // solium-disable-line lbrace
if (_op == Op.LT) return _a < _b; // solium-disable-line lbrace
if (_op == Op.GTE) return _a >= _b; // solium-disable-line lbrace
if (_op == Op.LTE) return _a <= _b; // solium-disable-line lbrace
return false;
}
function checkOracle(IACLOracle _oracleAddr, address _who, address _where, bytes32 _what, uint256[] _how) internal view returns (bool) {
bytes4 sig = _oracleAddr.canPerform.selector;
// a raw call is required so we can return false if the call reverts, rather than reverting
bytes memory checkCalldata = abi.encodeWithSelector(sig, _who, _where, _what, _how);
bool ok;
assembly {
// send all available gas; if the oracle eats up all the gas, we will eventually revert
// note that we are currently guaranteed to still have some gas after the call from
// EIP-150's 63/64 gas forward rule
ok := staticcall(gas, _oracleAddr, add(checkCalldata, 0x20), mload(checkCalldata), 0, 0)
}
if (!ok) {
return false;
}
uint256 size;
assembly { size := returndatasize }
if (size != 32) {
return false;
}
bool result;
assembly {
let ptr := mload(0x40) // get next free memory ptr
returndatacopy(ptr, 0, size) // copy return from above `staticcall`
result := mload(ptr) // read data at ptr and set it to result
mstore(ptr, 0) // set pointer memory to 0 so it still is the next free ptr
}
return result;
}
/**
* @dev Internal function that sets management
*/
function _setPermissionManager(address _newManager, address _app, bytes32 _role) internal {
permissionManager[roleHash(_app, _role)] = _newManager;
emit ChangePermissionManager(_app, _role, _newManager);
}
function roleHash(address _where, bytes32 _what) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("ROLE", _where, _what));
}
function permissionHash(address _who, address _where, bytes32 _what) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("PERMISSION", _who, _where, _what));
}
}
// File: contracts/evmscript/ScriptHelpers.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
library ScriptHelpers {
function getSpecId(bytes _script) internal pure returns (uint32) {
return uint32At(_script, 0);
}
function uint256At(bytes _data, uint256 _location) internal pure returns (uint256 result) {
assembly {
result := mload(add(_data, add(0x20, _location)))
}
}
function addressAt(bytes _data, uint256 _location) internal pure returns (address result) {
uint256 word = uint256At(_data, _location);
assembly {
result := div(and(word, 0xffffffffffffffffffffffffffffffffffffffff000000000000000000000000),
0x1000000000000000000000000)
}
}
function uint32At(bytes _data, uint256 _location) internal pure returns (uint32 result) {
uint256 word = uint256At(_data, _location);
assembly {
result := div(and(word, 0xffffffff00000000000000000000000000000000000000000000000000000000),
0x100000000000000000000000000000000000000000000000000000000)
}
}
function locationOf(bytes _data, uint256 _location) internal pure returns (uint256 result) {
assembly {
result := add(_data, add(0x20, _location))
}
}
function toBytes(bytes4 _sig) internal pure returns (bytes) {
bytes memory payload = new bytes(4);
assembly { mstore(add(payload, 0x20), _sig) }
return payload;
}
}
// File: contracts/evmscript/EVMScriptRegistry.sol
pragma solidity 0.4.24;
/* solium-disable function-order */
// Allow public initialize() to be first
contract EVMScriptRegistry is IEVMScriptRegistry, EVMScriptRegistryConstants, AragonApp {
using ScriptHelpers for bytes;
/* Hardcoded constants to save gas
bytes32 public constant REGISTRY_ADD_EXECUTOR_ROLE = keccak256("REGISTRY_ADD_EXECUTOR_ROLE");
bytes32 public constant REGISTRY_MANAGER_ROLE = keccak256("REGISTRY_MANAGER_ROLE");
*/
bytes32 public constant REGISTRY_ADD_EXECUTOR_ROLE = 0xc4e90f38eea8c4212a009ca7b8947943ba4d4a58d19b683417f65291d1cd9ed2;
// WARN: Manager can censor all votes and the like happening in an org
bytes32 public constant REGISTRY_MANAGER_ROLE = 0xf7a450ef335e1892cb42c8ca72e7242359d7711924b75db5717410da3f614aa3;
uint256 internal constant SCRIPT_START_LOCATION = 4;
string private constant ERROR_INEXISTENT_EXECUTOR = "EVMREG_INEXISTENT_EXECUTOR";
string private constant ERROR_EXECUTOR_ENABLED = "EVMREG_EXECUTOR_ENABLED";
string private constant ERROR_EXECUTOR_DISABLED = "EVMREG_EXECUTOR_DISABLED";
string private constant ERROR_SCRIPT_LENGTH_TOO_SHORT = "EVMREG_SCRIPT_LENGTH_TOO_SHORT";
struct ExecutorEntry {
IEVMScriptExecutor executor;
bool enabled;
}
uint256 private executorsNextIndex;
mapping (uint256 => ExecutorEntry) public executors;
event EnableExecutor(uint256 indexed executorId, address indexed executorAddress);
event DisableExecutor(uint256 indexed executorId, address indexed executorAddress);
modifier executorExists(uint256 _executorId) {
require(_executorId > 0 && _executorId < executorsNextIndex, ERROR_INEXISTENT_EXECUTOR);
_;
}
/**
* @notice Initialize the registry
*/
function initialize() public onlyInit {
initialized();
// Create empty record to begin executor IDs at 1
executorsNextIndex = 1;
}
/**
* @notice Add a new script executor with address `_executor` to the registry
* @param _executor Address of the IEVMScriptExecutor that will be added to the registry
* @return id Identifier of the executor in the registry
*/
function addScriptExecutor(IEVMScriptExecutor _executor) external auth(REGISTRY_ADD_EXECUTOR_ROLE) returns (uint256 id) {
uint256 executorId = executorsNextIndex++;
executors[executorId] = ExecutorEntry(_executor, true);
emit EnableExecutor(executorId, _executor);
return executorId;
}
/**
* @notice Disable script executor with ID `_executorId`
* @param _executorId Identifier of the executor in the registry
*/
function disableScriptExecutor(uint256 _executorId)
external
authP(REGISTRY_MANAGER_ROLE, arr(_executorId))
{
// Note that we don't need to check for an executor's existence in this case, as only
// existing executors can be enabled
ExecutorEntry storage executorEntry = executors[_executorId];
require(executorEntry.enabled, ERROR_EXECUTOR_DISABLED);
executorEntry.enabled = false;
emit DisableExecutor(_executorId, executorEntry.executor);
}
/**
* @notice Enable script executor with ID `_executorId`
* @param _executorId Identifier of the executor in the registry
*/
function enableScriptExecutor(uint256 _executorId)
external
authP(REGISTRY_MANAGER_ROLE, arr(_executorId))
executorExists(_executorId)
{
ExecutorEntry storage executorEntry = executors[_executorId];
require(!executorEntry.enabled, ERROR_EXECUTOR_ENABLED);
executorEntry.enabled = true;
emit EnableExecutor(_executorId, executorEntry.executor);
}
/**
* @dev Get the script executor that can execute a particular script based on its first 4 bytes
* @param _script EVMScript being inspected
*/
function getScriptExecutor(bytes _script) public view returns (IEVMScriptExecutor) {
require(_script.length >= SCRIPT_START_LOCATION, ERROR_SCRIPT_LENGTH_TOO_SHORT);
uint256 id = _script.getSpecId();
// Note that we don't need to check for an executor's existence in this case, as only
// existing executors can be enabled
ExecutorEntry storage entry = executors[id];
return entry.enabled ? entry.executor : IEVMScriptExecutor(0);
}
}
// File: contracts/evmscript/executors/BaseEVMScriptExecutor.sol
/*
* SPDX-License-Identifier: MIT
*/
pragma solidity ^0.4.24;
contract BaseEVMScriptExecutor is IEVMScriptExecutor, Autopetrified {
uint256 internal constant SCRIPT_START_LOCATION = 4;
}
// File: contracts/evmscript/executors/CallsScript.sol
pragma solidity 0.4.24;
// Inspired by https://github.com/reverendus/tx-manager
contract CallsScript is BaseEVMScriptExecutor {
using ScriptHelpers for bytes;
/* Hardcoded constants to save gas
bytes32 internal constant EXECUTOR_TYPE = keccak256("CALLS_SCRIPT");
*/
bytes32 internal constant EXECUTOR_TYPE = 0x2dc858a00f3e417be1394b87c07158e989ec681ce8cc68a9093680ac1a870302;
string private constant ERROR_BLACKLISTED_CALL = "EVMCALLS_BLACKLISTED_CALL";
string private constant ERROR_INVALID_LENGTH = "EVMCALLS_INVALID_LENGTH";
/* This is manually crafted in assembly
string private constant ERROR_CALL_REVERTED = "EVMCALLS_CALL_REVERTED";
*/
event LogScriptCall(address indexed sender, address indexed src, address indexed dst);
/**
* @notice Executes a number of call scripts
* @param _script [ specId (uint32) ] many calls with this structure ->
* [ to (address: 20 bytes) ] [ calldataLength (uint32: 4 bytes) ] [ calldata (calldataLength bytes) ]
* @param _blacklist Addresses the script cannot call to, or will revert.
* @return Always returns empty byte array
*/
function execScript(bytes _script, bytes, address[] _blacklist) external isInitialized returns (bytes) {
uint256 location = SCRIPT_START_LOCATION; // first 32 bits are spec id
while (location < _script.length) {
// Check there's at least address + calldataLength available
require(_script.length - location >= 0x18, ERROR_INVALID_LENGTH);
address contractAddress = _script.addressAt(location);
// Check address being called is not blacklist
for (uint256 i = 0; i < _blacklist.length; i++) {
require(contractAddress != _blacklist[i], ERROR_BLACKLISTED_CALL);
}
// logged before execution to ensure event ordering in receipt
// if failed entire execution is reverted regardless
emit LogScriptCall(msg.sender, address(this), contractAddress);
uint256 calldataLength = uint256(_script.uint32At(location + 0x14));
uint256 startOffset = location + 0x14 + 0x04;
uint256 calldataStart = _script.locationOf(startOffset);
// compute end of script / next location
location = startOffset + calldataLength;
require(location <= _script.length, ERROR_INVALID_LENGTH);
bool success;
assembly {
success := call(
sub(gas, 5000), // forward gas left - 5000
contractAddress, // address
0, // no value
calldataStart, // calldata start
calldataLength, // calldata length
0, // don't write output
0 // don't write output
)
switch success
case 0 {
let ptr := mload(0x40)
switch returndatasize
case 0 {
// No error data was returned, revert with "EVMCALLS_CALL_REVERTED"
// See remix: doing a `revert("EVMCALLS_CALL_REVERTED")` always results in
// this memory layout
mstore(ptr, 0x08c379a000000000000000000000000000000000000000000000000000000000) // error identifier
mstore(add(ptr, 0x04), 0x0000000000000000000000000000000000000000000000000000000000000020) // starting offset
mstore(add(ptr, 0x24), 0x0000000000000000000000000000000000000000000000000000000000000016) // reason length
mstore(add(ptr, 0x44), 0x45564d43414c4c535f43414c4c5f524556455254454400000000000000000000) // reason
revert(ptr, 100) // 100 = 4 + 3 * 32 (error identifier + 3 words for the ABI encoded error)
}
default {
// Forward the full error data
returndatacopy(ptr, 0, returndatasize)
revert(ptr, returndatasize)
}
}
default { }
}
}
// No need to allocate empty bytes for the return as this can only be called via an delegatecall
// (due to the isInitialized modifier)
}
function executorType() external pure returns (bytes32) {
return EXECUTOR_TYPE;
}
}
// File: contracts/factory/EVMScriptRegistryFactory.sol
pragma solidity 0.4.24;
contract EVMScriptRegistryFactory is EVMScriptRegistryConstants {
EVMScriptRegistry public baseReg;
IEVMScriptExecutor public baseCallScript;
/**
* @notice Create a new EVMScriptRegistryFactory.
*/
constructor() public {
baseReg = new EVMScriptRegistry();
baseCallScript = IEVMScriptExecutor(new CallsScript());
}
/**
* @notice Install a new pinned instance of EVMScriptRegistry on `_dao`.
* @param _dao Kernel
* @return Installed EVMScriptRegistry
*/
function newEVMScriptRegistry(Kernel _dao) public returns (EVMScriptRegistry reg) {
bytes memory initPayload = abi.encodeWithSelector(reg.initialize.selector);
reg = EVMScriptRegistry(_dao.newPinnedAppInstance(EVMSCRIPT_REGISTRY_APP_ID, baseReg, initPayload, true));
ACL acl = ACL(_dao.acl());
acl.createPermission(this, reg, reg.REGISTRY_ADD_EXECUTOR_ROLE(), this);
reg.addScriptExecutor(baseCallScript); // spec 1 = CallsScript
// Clean up the permissions
acl.revokePermission(this, reg, reg.REGISTRY_ADD_EXECUTOR_ROLE());
acl.removePermissionManager(reg, reg.REGISTRY_ADD_EXECUTOR_ROLE());
return reg;
}
}
// File: contracts/factory/DAOFactory.sol
pragma solidity 0.4.24;
contract DAOFactory {
IKernel public baseKernel;
IACL public baseACL;
EVMScriptRegistryFactory public regFactory;
event DeployDAO(address dao);
event DeployEVMScriptRegistry(address reg);
/**
* @notice Create a new DAOFactory, creating DAOs with Kernels proxied to `_baseKernel`, ACLs proxied to `_baseACL`, and new EVMScriptRegistries created from `_regFactory`.
* @param _baseKernel Base Kernel
* @param _baseACL Base ACL
* @param _regFactory EVMScriptRegistry factory
*/
constructor(IKernel _baseKernel, IACL _baseACL, EVMScriptRegistryFactory _regFactory) public {
// No need to init as it cannot be killed by devops199
if (address(_regFactory) != address(0)) {
regFactory = _regFactory;
}
baseKernel = _baseKernel;
baseACL = _baseACL;
}
/**
* @notice Create a new DAO with `_root` set as the initial admin
* @param _root Address that will be granted control to setup DAO permissions
* @return Newly created DAO
*/
function newDAO(address _root) public returns (Kernel) {
Kernel dao = Kernel(new KernelProxy(baseKernel));
if (address(regFactory) == address(0)) {
dao.initialize(baseACL, _root);
} else {
dao.initialize(baseACL, this);
ACL acl = ACL(dao.acl());
bytes32 permRole = acl.CREATE_PERMISSIONS_ROLE();
bytes32 appManagerRole = dao.APP_MANAGER_ROLE();
acl.grantPermission(regFactory, acl, permRole);
acl.createPermission(regFactory, dao, appManagerRole, this);
EVMScriptRegistry reg = regFactory.newEVMScriptRegistry(dao);
emit DeployEVMScriptRegistry(address(reg));
// Clean up permissions
// First, completely reset the APP_MANAGER_ROLE
acl.revokePermission(regFactory, dao, appManagerRole);
acl.removePermissionManager(dao, appManagerRole);
// Then, make root the only holder and manager of CREATE_PERMISSIONS_ROLE
acl.revokePermission(regFactory, acl, permRole);
acl.revokePermission(this, acl, permRole);
acl.grantPermission(_root, acl, permRole);
acl.setPermissionManager(_root, acl, permRole);
}
emit DeployDAO(address(dao));
return dao;
}
}File 5 of 6: Kernel
// File: contracts/acl/IACL.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IACL {
function initialize(address permissionsCreator) external;
// TODO: this should be external
// See https://github.com/ethereum/solidity/issues/4832
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
}
// File: contracts/common/IVaultRecoverable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IVaultRecoverable {
event RecoverToVault(address indexed vault, address indexed token, uint256 amount);
function transferToVault(address token) external;
function allowRecoverability(address token) external view returns (bool);
function getRecoveryVault() external view returns (address);
}
// File: contracts/kernel/IKernel.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
interface IKernelEvents {
event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app);
}
// This should be an interface, but interfaces can't inherit yet :(
contract IKernel is IKernelEvents, IVaultRecoverable {
function acl() public view returns (IACL);
function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool);
function setApp(bytes32 namespace, bytes32 appId, address app) public;
function getApp(bytes32 namespace, bytes32 appId) public view returns (address);
}
// File: contracts/kernel/KernelConstants.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract KernelAppIds {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel");
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl");
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault");
*/
bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c;
bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a;
bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1;
}
contract KernelNamespaceConstants {
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core");
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base");
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app");
*/
bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8;
bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f;
bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb;
}
// File: contracts/kernel/KernelStorage.sol
pragma solidity 0.4.24;
contract KernelStorage {
// namespace => app id => address
mapping (bytes32 => mapping (bytes32 => address)) public apps;
bytes32 public recoveryVaultAppId;
}
// File: contracts/acl/ACLSyntaxSugar.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract ACLSyntaxSugar {
function arr() internal pure returns (uint256[]) {
return new uint256[](0);
}
function arr(bytes32 _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(bytes32 _a, bytes32 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a) internal pure returns (uint256[] r) {
return arr(uint256(_a));
}
function arr(address _a, address _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c);
}
function arr(address _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
return arr(uint256(_a), _b, _c, _d);
}
function arr(address _a, uint256 _b) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b));
}
function arr(address _a, address _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), _c, _d, _e);
}
function arr(address _a, address _b, address _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(address _a, address _b, uint256 _c) internal pure returns (uint256[] r) {
return arr(uint256(_a), uint256(_b), uint256(_c));
}
function arr(uint256 _a) internal pure returns (uint256[] r) {
r = new uint256[](1);
r[0] = _a;
}
function arr(uint256 _a, uint256 _b) internal pure returns (uint256[] r) {
r = new uint256[](2);
r[0] = _a;
r[1] = _b;
}
function arr(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) {
r = new uint256[](3);
r[0] = _a;
r[1] = _b;
r[2] = _c;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) {
r = new uint256[](4);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
}
function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) {
r = new uint256[](5);
r[0] = _a;
r[1] = _b;
r[2] = _c;
r[3] = _d;
r[4] = _e;
}
}
contract ACLHelpers {
function decodeParamOp(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 30));
}
function decodeParamId(uint256 _x) internal pure returns (uint8 b) {
return uint8(_x >> (8 * 31));
}
function decodeParamsList(uint256 _x) internal pure returns (uint32 a, uint32 b, uint32 c) {
a = uint32(_x);
b = uint32(_x >> (8 * 4));
c = uint32(_x >> (8 * 8));
}
}
// File: contracts/common/ConversionHelpers.sol
pragma solidity ^0.4.24;
library ConversionHelpers {
string private constant ERROR_IMPROPER_LENGTH = "CONVERSION_IMPROPER_LENGTH";
function dangerouslyCastUintArrayToBytes(uint256[] memory _input) internal pure returns (bytes memory output) {
// Force cast the uint256[] into a bytes array, by overwriting its length
// Note that the bytes array doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 byteLength = _input.length * 32;
assembly {
output := _input
mstore(output, byteLength)
}
}
function dangerouslyCastBytesToUintArray(bytes memory _input) internal pure returns (uint256[] memory output) {
// Force cast the bytes array into a uint256[], by overwriting its length
// Note that the uint256[] doesn't need to be initialized as we immediately overwrite it
// with the input and a new length. The input becomes invalid from this point forward.
uint256 intsLength = _input.length / 32;
require(_input.length == intsLength * 32, ERROR_IMPROPER_LENGTH);
assembly {
output := _input
mstore(output, intsLength)
}
}
}
// File: contracts/common/IsContract.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract IsContract {
/*
* NOTE: this should NEVER be used for authentication
* (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize).
*
* This is only intended to be used as a sanity check that an address is actually a contract,
* RATHER THAN an address not being a contract.
*/
function isContract(address _target) internal view returns (bool) {
if (_target == address(0)) {
return false;
}
uint256 size;
assembly { size := extcodesize(_target) }
return size > 0;
}
}
// File: contracts/common/Uint256Helpers.sol
pragma solidity ^0.4.24;
library Uint256Helpers {
uint256 private constant MAX_UINT64 = uint64(-1);
string private constant ERROR_NUMBER_TOO_BIG = "UINT64_NUMBER_TOO_BIG";
function toUint64(uint256 a) internal pure returns (uint64) {
require(a <= MAX_UINT64, ERROR_NUMBER_TOO_BIG);
return uint64(a);
}
}
// File: contracts/common/TimeHelpers.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract TimeHelpers {
using Uint256Helpers for uint256;
/**
* @dev Returns the current block number.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber() internal view returns (uint256) {
return block.number;
}
/**
* @dev Returns the current block number, converted to uint64.
* Using a function rather than `block.number` allows us to easily mock the block number in
* tests.
*/
function getBlockNumber64() internal view returns (uint64) {
return getBlockNumber().toUint64();
}
/**
* @dev Returns the current timestamp.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp() internal view returns (uint256) {
return block.timestamp; // solium-disable-line security/no-block-members
}
/**
* @dev Returns the current timestamp, converted to uint64.
* Using a function rather than `block.timestamp` allows us to easily mock it in
* tests.
*/
function getTimestamp64() internal view returns (uint64) {
return getTimestamp().toUint64();
}
}
// File: contracts/common/UnstructuredStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
library UnstructuredStorage {
function getStorageBool(bytes32 position) internal view returns (bool data) {
assembly { data := sload(position) }
}
function getStorageAddress(bytes32 position) internal view returns (address data) {
assembly { data := sload(position) }
}
function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) {
assembly { data := sload(position) }
}
function getStorageUint256(bytes32 position) internal view returns (uint256 data) {
assembly { data := sload(position) }
}
function setStorageBool(bytes32 position, bool data) internal {
assembly { sstore(position, data) }
}
function setStorageAddress(bytes32 position, address data) internal {
assembly { sstore(position, data) }
}
function setStorageBytes32(bytes32 position, bytes32 data) internal {
assembly { sstore(position, data) }
}
function setStorageUint256(bytes32 position, uint256 data) internal {
assembly { sstore(position, data) }
}
}
// File: contracts/common/Initializable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract Initializable is TimeHelpers {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.initializable.initializationBlock")
bytes32 internal constant INITIALIZATION_BLOCK_POSITION = 0xebb05b386a8d34882b8711d156f463690983dc47815980fb82aeeff1aa43579e;
string private constant ERROR_ALREADY_INITIALIZED = "INIT_ALREADY_INITIALIZED";
string private constant ERROR_NOT_INITIALIZED = "INIT_NOT_INITIALIZED";
modifier onlyInit {
require(getInitializationBlock() == 0, ERROR_ALREADY_INITIALIZED);
_;
}
modifier isInitialized {
require(hasInitialized(), ERROR_NOT_INITIALIZED);
_;
}
/**
* @return Block number in which the contract was initialized
*/
function getInitializationBlock() public view returns (uint256) {
return INITIALIZATION_BLOCK_POSITION.getStorageUint256();
}
/**
* @return Whether the contract has been initialized by the time of the current block
*/
function hasInitialized() public view returns (bool) {
uint256 initializationBlock = getInitializationBlock();
return initializationBlock != 0 && getBlockNumber() >= initializationBlock;
}
/**
* @dev Function to be called by top level contract after initialization has finished.
*/
function initialized() internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(getBlockNumber());
}
/**
* @dev Function to be called by top level contract after initialization to enable the contract
* at a future block number rather than immediately.
*/
function initializedAt(uint256 _blockNumber) internal onlyInit {
INITIALIZATION_BLOCK_POSITION.setStorageUint256(_blockNumber);
}
}
// File: contracts/common/Petrifiable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract Petrifiable is Initializable {
// Use block UINT256_MAX (which should be never) as the initializable date
uint256 internal constant PETRIFIED_BLOCK = uint256(-1);
function isPetrified() public view returns (bool) {
return getInitializationBlock() == PETRIFIED_BLOCK;
}
/**
* @dev Function to be called by top level contract to prevent being initialized.
* Useful for freezing base contracts when they're used behind proxies.
*/
function petrify() internal onlyInit {
initializedAt(PETRIFIED_BLOCK);
}
}
// File: contracts/lib/token/ERC20.sol
// See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/a9f910d34f0ab33a1ae5e714f69f9596a02b4d91/contracts/token/ERC20/ERC20.sol
pragma solidity ^0.4.24;
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 {
function totalSupply() public view returns (uint256);
function balanceOf(address _who) public view returns (uint256);
function allowance(address _owner, address _spender)
public view returns (uint256);
function transfer(address _to, uint256 _value) public returns (bool);
function approve(address _spender, uint256 _value)
public returns (bool);
function transferFrom(address _from, address _to, uint256 _value)
public returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: contracts/common/EtherTokenConstant.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
// aragonOS and aragon-apps rely on address(0) to denote native ETH, in
// contracts where both tokens and ETH are accepted
contract EtherTokenConstant {
address internal constant ETH = address(0);
}
// File: contracts/common/SafeERC20.sol
// Inspired by AdEx (https://github.com/AdExNetwork/adex-protocol-eth/blob/b9df617829661a7518ee10f4cb6c4108659dd6d5/contracts/libs/SafeERC20.sol)
// and 0x (https://github.com/0xProject/0x-monorepo/blob/737d1dc54d72872e24abce5a1dbe1b66d35fa21a/contracts/protocol/contracts/protocol/AssetProxy/ERC20Proxy.sol#L143)
pragma solidity ^0.4.24;
library SafeERC20 {
// Before 0.5, solidity has a mismatch between `address.transfer()` and `token.transfer()`:
// https://github.com/ethereum/solidity/issues/3544
bytes4 private constant TRANSFER_SELECTOR = 0xa9059cbb;
string private constant ERROR_TOKEN_BALANCE_REVERTED = "SAFE_ERC_20_BALANCE_REVERTED";
string private constant ERROR_TOKEN_ALLOWANCE_REVERTED = "SAFE_ERC_20_ALLOWANCE_REVERTED";
function invokeAndCheckSuccess(address _addr, bytes memory _calldata)
private
returns (bool)
{
bool ret;
assembly {
let ptr := mload(0x40) // free memory pointer
let success := call(
gas, // forward all gas
_addr, // address
0, // no value
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
// Check number of bytes returned from last function call
switch returndatasize
// No bytes returned: assume success
case 0 {
ret := 1
}
// 32 bytes returned: check if non-zero
case 0x20 {
// Only return success if returned data was true
// Already have output in ptr
ret := eq(mload(ptr), 1)
}
// Not sure what was returned: don't mark as success
default { }
}
}
return ret;
}
function staticInvoke(address _addr, bytes memory _calldata)
private
view
returns (bool, uint256)
{
bool success;
uint256 ret;
assembly {
let ptr := mload(0x40) // free memory pointer
success := staticcall(
gas, // forward all gas
_addr, // address
add(_calldata, 0x20), // calldata start
mload(_calldata), // calldata length
ptr, // write output over free memory
0x20 // uint256 return
)
if gt(success, 0) {
ret := mload(ptr)
}
}
return (success, ret);
}
/**
* @dev Same as a standards-compliant ERC20.transfer() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransfer(ERC20 _token, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferCallData = abi.encodeWithSelector(
TRANSFER_SELECTOR,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferCallData);
}
/**
* @dev Same as a standards-compliant ERC20.transferFrom() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeTransferFrom(ERC20 _token, address _from, address _to, uint256 _amount) internal returns (bool) {
bytes memory transferFromCallData = abi.encodeWithSelector(
_token.transferFrom.selector,
_from,
_to,
_amount
);
return invokeAndCheckSuccess(_token, transferFromCallData);
}
/**
* @dev Same as a standards-compliant ERC20.approve() that never reverts (returns false).
* Note that this makes an external call to the token.
*/
function safeApprove(ERC20 _token, address _spender, uint256 _amount) internal returns (bool) {
bytes memory approveCallData = abi.encodeWithSelector(
_token.approve.selector,
_spender,
_amount
);
return invokeAndCheckSuccess(_token, approveCallData);
}
/**
* @dev Static call into ERC20.balanceOf().
* Reverts if the call fails for some reason (should never fail).
*/
function staticBalanceOf(ERC20 _token, address _owner) internal view returns (uint256) {
bytes memory balanceOfCallData = abi.encodeWithSelector(
_token.balanceOf.selector,
_owner
);
(bool success, uint256 tokenBalance) = staticInvoke(_token, balanceOfCallData);
require(success, ERROR_TOKEN_BALANCE_REVERTED);
return tokenBalance;
}
/**
* @dev Static call into ERC20.allowance().
* Reverts if the call fails for some reason (should never fail).
*/
function staticAllowance(ERC20 _token, address _owner, address _spender) internal view returns (uint256) {
bytes memory allowanceCallData = abi.encodeWithSelector(
_token.allowance.selector,
_owner,
_spender
);
(bool success, uint256 allowance) = staticInvoke(_token, allowanceCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return allowance;
}
/**
* @dev Static call into ERC20.totalSupply().
* Reverts if the call fails for some reason (should never fail).
*/
function staticTotalSupply(ERC20 _token) internal view returns (uint256) {
bytes memory totalSupplyCallData = abi.encodeWithSelector(_token.totalSupply.selector);
(bool success, uint256 totalSupply) = staticInvoke(_token, totalSupplyCallData);
require(success, ERROR_TOKEN_ALLOWANCE_REVERTED);
return totalSupply;
}
}
// File: contracts/common/VaultRecoverable.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract VaultRecoverable is IVaultRecoverable, EtherTokenConstant, IsContract {
using SafeERC20 for ERC20;
string private constant ERROR_DISALLOWED = "RECOVER_DISALLOWED";
string private constant ERROR_VAULT_NOT_CONTRACT = "RECOVER_VAULT_NOT_CONTRACT";
string private constant ERROR_TOKEN_TRANSFER_FAILED = "RECOVER_TOKEN_TRANSFER_FAILED";
/**
* @notice Send funds to recovery Vault. This contract should never receive funds,
* but in case it does, this function allows one to recover them.
* @param _token Token balance to be sent to recovery vault.
*/
function transferToVault(address _token) external {
require(allowRecoverability(_token), ERROR_DISALLOWED);
address vault = getRecoveryVault();
require(isContract(vault), ERROR_VAULT_NOT_CONTRACT);
uint256 balance;
if (_token == ETH) {
balance = address(this).balance;
vault.transfer(balance);
} else {
ERC20 token = ERC20(_token);
balance = token.staticBalanceOf(this);
require(token.safeTransfer(vault, balance), ERROR_TOKEN_TRANSFER_FAILED);
}
emit RecoverToVault(vault, _token, balance);
}
/**
* @dev By default deriving from AragonApp makes it recoverable
* @param token Token address that would be recovered
* @return bool whether the app allows the recovery
*/
function allowRecoverability(address token) public view returns (bool) {
return true;
}
// Cast non-implemented interface to be public so we can use it internally
function getRecoveryVault() public view returns (address);
}
// File: contracts/apps/AppStorage.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract AppStorage {
using UnstructuredStorage for bytes32;
/* Hardcoded constants to save gas
bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel");
bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId");
*/
bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b;
bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b;
function kernel() public view returns (IKernel) {
return IKernel(KERNEL_POSITION.getStorageAddress());
}
function appId() public view returns (bytes32) {
return APP_ID_POSITION.getStorageBytes32();
}
function setKernel(IKernel _kernel) internal {
KERNEL_POSITION.setStorageAddress(address(_kernel));
}
function setAppId(bytes32 _appId) internal {
APP_ID_POSITION.setStorageBytes32(_appId);
}
}
// File: contracts/lib/misc/ERCProxy.sol
/*
* SPDX-License-Identitifer: MIT
*/
pragma solidity ^0.4.24;
contract ERCProxy {
uint256 internal constant FORWARDING = 1;
uint256 internal constant UPGRADEABLE = 2;
function proxyType() public pure returns (uint256 proxyTypeId);
function implementation() public view returns (address codeAddr);
}
// File: contracts/common/DelegateProxy.sol
pragma solidity 0.4.24;
contract DelegateProxy is ERCProxy, IsContract {
uint256 internal constant FWD_GAS_LIMIT = 10000;
/**
* @dev Performs a delegatecall and returns whatever the delegatecall returned (entire context execution will return!)
* @param _dst Destination address to perform the delegatecall
* @param _calldata Calldata for the delegatecall
*/
function delegatedFwd(address _dst, bytes _calldata) internal {
require(isContract(_dst));
uint256 fwdGasLimit = FWD_GAS_LIMIT;
assembly {
let result := delegatecall(sub(gas, fwdGasLimit), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0)
let size := returndatasize
let ptr := mload(0x40)
returndatacopy(ptr, 0, size)
// revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas.
// if the call returned error data, forward it
switch result case 0 { revert(ptr, size) }
default { return(ptr, size) }
}
}
}
// File: contracts/common/DepositableStorage.sol
pragma solidity 0.4.24;
contract DepositableStorage {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.depositableStorage.depositable")
bytes32 internal constant DEPOSITABLE_POSITION = 0x665fd576fbbe6f247aff98f5c94a561e3f71ec2d3c988d56f12d342396c50cea;
function isDepositable() public view returns (bool) {
return DEPOSITABLE_POSITION.getStorageBool();
}
function setDepositable(bool _depositable) internal {
DEPOSITABLE_POSITION.setStorageBool(_depositable);
}
}
// File: contracts/common/DepositableDelegateProxy.sol
pragma solidity 0.4.24;
contract DepositableDelegateProxy is DepositableStorage, DelegateProxy {
event ProxyDeposit(address sender, uint256 value);
function () external payable {
uint256 forwardGasThreshold = FWD_GAS_LIMIT;
bytes32 isDepositablePosition = DEPOSITABLE_POSITION;
// Optimized assembly implementation to prevent EIP-1884 from breaking deposits, reference code in Solidity:
// https://github.com/aragon/aragonOS/blob/v4.2.1/contracts/common/DepositableDelegateProxy.sol#L10-L20
assembly {
// Continue only if the gas left is lower than the threshold for forwarding to the implementation code,
// otherwise continue outside of the assembly block.
if lt(gas, forwardGasThreshold) {
// Only accept the deposit and emit an event if all of the following are true:
// the proxy accepts deposits (isDepositable), msg.data.length == 0, and msg.value > 0
if and(and(sload(isDepositablePosition), iszero(calldatasize)), gt(callvalue, 0)) {
// Equivalent Solidity code for emitting the event:
// emit ProxyDeposit(msg.sender, msg.value);
let logData := mload(0x40) // free memory pointer
mstore(logData, caller) // add 'msg.sender' to the log data (first event param)
mstore(add(logData, 0x20), callvalue) // add 'msg.value' to the log data (second event param)
// Emit an event with one topic to identify the event: keccak256('ProxyDeposit(address,uint256)') = 0x15ee...dee1
log1(logData, 0x40, 0x15eeaa57c7bd188c1388020bcadc2c436ec60d647d36ef5b9eb3c742217ddee1)
stop() // Stop. Exits execution context
}
// If any of above checks failed, revert the execution (if ETH was sent, it is returned to the sender)
revert(0, 0)
}
}
address target = implementation();
delegatedFwd(target, msg.data);
}
}
// File: contracts/apps/AppProxyBase.sol
pragma solidity 0.4.24;
contract AppProxyBase is AppStorage, DepositableDelegateProxy, KernelNamespaceConstants {
/**
* @dev Initialize AppProxy
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public {
setKernel(_kernel);
setAppId(_appId);
// Implicit check that kernel is actually a Kernel
// The EVM doesn't actually provide a way for us to make sure, but we can force a revert to
// occur if the kernel is set to 0x0 or a non-code address when we try to call a method on
// it.
address appCode = getAppBase(_appId);
// If initialize payload is provided, it will be executed
if (_initializePayload.length > 0) {
require(isContract(appCode));
// Cannot make delegatecall as a delegateproxy.delegatedFwd as it
// returns ending execution context and halts contract deployment
require(appCode.delegatecall(_initializePayload));
}
}
function getAppBase(bytes32 _appId) internal view returns (address) {
return kernel().getApp(KERNEL_APP_BASES_NAMESPACE, _appId);
}
}
// File: contracts/apps/AppProxyUpgradeable.sol
pragma solidity 0.4.24;
contract AppProxyUpgradeable is AppProxyBase {
/**
* @dev Initialize AppProxyUpgradeable (makes it an upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
// solium-disable-previous-line no-empty-blocks
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return getAppBase(appId());
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return UPGRADEABLE;
}
}
// File: contracts/apps/AppProxyPinned.sol
pragma solidity 0.4.24;
contract AppProxyPinned is IsContract, AppProxyBase {
using UnstructuredStorage for bytes32;
// keccak256("aragonOS.appStorage.pinnedCode")
bytes32 internal constant PINNED_CODE_POSITION = 0xdee64df20d65e53d7f51cb6ab6d921a0a6a638a91e942e1d8d02df28e31c038e;
/**
* @dev Initialize AppProxyPinned (makes it an un-upgradeable Aragon app)
* @param _kernel Reference to organization kernel for the app
* @param _appId Identifier for app
* @param _initializePayload Payload for call to be made after setup to initialize
*/
constructor(IKernel _kernel, bytes32 _appId, bytes _initializePayload)
AppProxyBase(_kernel, _appId, _initializePayload)
public // solium-disable-line visibility-first
{
setPinnedCode(getAppBase(_appId));
require(isContract(pinnedCode()));
}
/**
* @dev ERC897, the address the proxy would delegate calls to
*/
function implementation() public view returns (address) {
return pinnedCode();
}
/**
* @dev ERC897, whether it is a forwarding (1) or an upgradeable (2) proxy
*/
function proxyType() public pure returns (uint256 proxyTypeId) {
return FORWARDING;
}
function setPinnedCode(address _pinnedCode) internal {
PINNED_CODE_POSITION.setStorageAddress(_pinnedCode);
}
function pinnedCode() internal view returns (address) {
return PINNED_CODE_POSITION.getStorageAddress();
}
}
// File: contracts/factory/AppProxyFactory.sol
pragma solidity 0.4.24;
contract AppProxyFactory {
event NewAppProxy(address proxy, bool isUpgradeable, bytes32 appId);
/**
* @notice Create a new upgradeable app instance on `_kernel` with identifier `_appId`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyUpgradeable
*/
function newAppProxy(IKernel _kernel, bytes32 _appId) public returns (AppProxyUpgradeable) {
return newAppProxy(_kernel, _appId, new bytes(0));
}
/**
* @notice Create a new upgradeable app instance on `_kernel` with identifier `_appId` and initialization payload `_initializePayload`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyUpgradeable
*/
function newAppProxy(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public returns (AppProxyUpgradeable) {
AppProxyUpgradeable proxy = new AppProxyUpgradeable(_kernel, _appId, _initializePayload);
emit NewAppProxy(address(proxy), true, _appId);
return proxy;
}
/**
* @notice Create a new pinned app instance on `_kernel` with identifier `_appId`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @return AppProxyPinned
*/
function newAppProxyPinned(IKernel _kernel, bytes32 _appId) public returns (AppProxyPinned) {
return newAppProxyPinned(_kernel, _appId, new bytes(0));
}
/**
* @notice Create a new pinned app instance on `_kernel` with identifier `_appId` and initialization payload `_initializePayload`
* @param _kernel App's Kernel reference
* @param _appId Identifier for app
* @param _initializePayload Proxy initialization payload
* @return AppProxyPinned
*/
function newAppProxyPinned(IKernel _kernel, bytes32 _appId, bytes _initializePayload) public returns (AppProxyPinned) {
AppProxyPinned proxy = new AppProxyPinned(_kernel, _appId, _initializePayload);
emit NewAppProxy(address(proxy), false, _appId);
return proxy;
}
}
// File: contracts/kernel/Kernel.sol
pragma solidity 0.4.24;
// solium-disable-next-line max-len
contract Kernel is IKernel, KernelStorage, KernelAppIds, KernelNamespaceConstants, Petrifiable, IsContract, VaultRecoverable, AppProxyFactory, ACLSyntaxSugar {
/* Hardcoded constants to save gas
bytes32 public constant APP_MANAGER_ROLE = keccak256("APP_MANAGER_ROLE");
*/
bytes32 public constant APP_MANAGER_ROLE = 0xb6d92708f3d4817afc106147d969e229ced5c46e65e0a5002a0d391287762bd0;
string private constant ERROR_APP_NOT_CONTRACT = "KERNEL_APP_NOT_CONTRACT";
string private constant ERROR_INVALID_APP_CHANGE = "KERNEL_INVALID_APP_CHANGE";
string private constant ERROR_AUTH_FAILED = "KERNEL_AUTH_FAILED";
/**
* @dev Constructor that allows the deployer to choose if the base instance should be petrified immediately.
* @param _shouldPetrify Immediately petrify this instance so that it can never be initialized
*/
constructor(bool _shouldPetrify) public {
if (_shouldPetrify) {
petrify();
}
}
/**
* @dev Initialize can only be called once. It saves the block number in which it was initialized.
* @notice Initialize this kernel instance along with its ACL and set `_permissionsCreator` as the entity that can create other permissions
* @param _baseAcl Address of base ACL app
* @param _permissionsCreator Entity that will be given permission over createPermission
*/
function initialize(IACL _baseAcl, address _permissionsCreator) public onlyInit {
initialized();
// Set ACL base
_setApp(KERNEL_APP_BASES_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID, _baseAcl);
// Create ACL instance and attach it as the default ACL app
IACL acl = IACL(newAppProxy(this, KERNEL_DEFAULT_ACL_APP_ID));
acl.initialize(_permissionsCreator);
_setApp(KERNEL_APP_ADDR_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID, acl);
recoveryVaultAppId = KERNEL_DEFAULT_VAULT_APP_ID;
}
/**
* @dev Create a new instance of an app linked to this kernel
* @notice Create a new upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @return AppProxy instance
*/
function newAppInstance(bytes32 _appId, address _appBase)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
return newAppInstance(_appId, _appBase, new bytes(0), false);
}
/**
* @dev Create a new instance of an app linked to this kernel and set its base
* implementation if it was not already set
* @notice Create a new upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`. `_setDefault ? 'Also sets it as the default app instance.':''`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @param _initializePayload Payload for call made by the proxy during its construction to initialize
* @param _setDefault Whether the app proxy app is the default one.
* Useful when the Kernel needs to know of an instance of a particular app,
* like Vault for escape hatch mechanism.
* @return AppProxy instance
*/
function newAppInstance(bytes32 _appId, address _appBase, bytes _initializePayload, bool _setDefault)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
_setAppIfNew(KERNEL_APP_BASES_NAMESPACE, _appId, _appBase);
appProxy = newAppProxy(this, _appId, _initializePayload);
// By calling setApp directly and not the internal functions, we make sure the params are checked
// and it will only succeed if sender has permissions to set something to the namespace.
if (_setDefault) {
setApp(KERNEL_APP_ADDR_NAMESPACE, _appId, appProxy);
}
}
/**
* @dev Create a new pinned instance of an app linked to this kernel
* @notice Create a new non-upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`.
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @return AppProxy instance
*/
function newPinnedAppInstance(bytes32 _appId, address _appBase)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
return newPinnedAppInstance(_appId, _appBase, new bytes(0), false);
}
/**
* @dev Create a new pinned instance of an app linked to this kernel and set
* its base implementation if it was not already set
* @notice Create a new non-upgradeable instance of `_appId` app linked to the Kernel, setting its code to `_appBase`. `_setDefault ? 'Also sets it as the default app instance.':''`
* @param _appId Identifier for app
* @param _appBase Address of the app's base implementation
* @param _initializePayload Payload for call made by the proxy during its construction to initialize
* @param _setDefault Whether the app proxy app is the default one.
* Useful when the Kernel needs to know of an instance of a particular app,
* like Vault for escape hatch mechanism.
* @return AppProxy instance
*/
function newPinnedAppInstance(bytes32 _appId, address _appBase, bytes _initializePayload, bool _setDefault)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_BASES_NAMESPACE, _appId))
returns (ERCProxy appProxy)
{
_setAppIfNew(KERNEL_APP_BASES_NAMESPACE, _appId, _appBase);
appProxy = newAppProxyPinned(this, _appId, _initializePayload);
// By calling setApp directly and not the internal functions, we make sure the params are checked
// and it will only succeed if sender has permissions to set something to the namespace.
if (_setDefault) {
setApp(KERNEL_APP_ADDR_NAMESPACE, _appId, appProxy);
}
}
/**
* @dev Set the resolving address of an app instance or base implementation
* @notice Set the resolving address of `_appId` in namespace `_namespace` to `_app`
* @param _namespace App namespace to use
* @param _appId Identifier for app
* @param _app Address of the app instance or base implementation
* @return ID of app
*/
function setApp(bytes32 _namespace, bytes32 _appId, address _app)
public
auth(APP_MANAGER_ROLE, arr(_namespace, _appId))
{
_setApp(_namespace, _appId, _app);
}
/**
* @dev Set the default vault id for the escape hatch mechanism
* @param _recoveryVaultAppId Identifier of the recovery vault app
*/
function setRecoveryVaultAppId(bytes32 _recoveryVaultAppId)
public
auth(APP_MANAGER_ROLE, arr(KERNEL_APP_ADDR_NAMESPACE, _recoveryVaultAppId))
{
recoveryVaultAppId = _recoveryVaultAppId;
}
// External access to default app id and namespace constants to mimic default getters for constants
/* solium-disable function-order, mixedcase */
function CORE_NAMESPACE() external pure returns (bytes32) { return KERNEL_CORE_NAMESPACE; }
function APP_BASES_NAMESPACE() external pure returns (bytes32) { return KERNEL_APP_BASES_NAMESPACE; }
function APP_ADDR_NAMESPACE() external pure returns (bytes32) { return KERNEL_APP_ADDR_NAMESPACE; }
function KERNEL_APP_ID() external pure returns (bytes32) { return KERNEL_CORE_APP_ID; }
function DEFAULT_ACL_APP_ID() external pure returns (bytes32) { return KERNEL_DEFAULT_ACL_APP_ID; }
/* solium-enable function-order, mixedcase */
/**
* @dev Get the address of an app instance or base implementation
* @param _namespace App namespace to use
* @param _appId Identifier for app
* @return Address of the app
*/
function getApp(bytes32 _namespace, bytes32 _appId) public view returns (address) {
return apps[_namespace][_appId];
}
/**
* @dev Get the address of the recovery Vault instance (to recover funds)
* @return Address of the Vault
*/
function getRecoveryVault() public view returns (address) {
return apps[KERNEL_APP_ADDR_NAMESPACE][recoveryVaultAppId];
}
/**
* @dev Get the installed ACL app
* @return ACL app
*/
function acl() public view returns (IACL) {
return IACL(getApp(KERNEL_APP_ADDR_NAMESPACE, KERNEL_DEFAULT_ACL_APP_ID));
}
/**
* @dev Function called by apps to check ACL on kernel or to check permission status
* @param _who Sender of the original call
* @param _where Address of the app
* @param _what Identifier for a group of actions in app
* @param _how Extra data for ACL auth
* @return Boolean indicating whether the ACL allows the role or not.
* Always returns false if the kernel hasn't been initialized yet.
*/
function hasPermission(address _who, address _where, bytes32 _what, bytes _how) public view returns (bool) {
IACL defaultAcl = acl();
return address(defaultAcl) != address(0) && // Poor man's initialization check (saves gas)
defaultAcl.hasPermission(_who, _where, _what, _how);
}
function _setApp(bytes32 _namespace, bytes32 _appId, address _app) internal {
require(isContract(_app), ERROR_APP_NOT_CONTRACT);
apps[_namespace][_appId] = _app;
emit SetApp(_namespace, _appId, _app);
}
function _setAppIfNew(bytes32 _namespace, bytes32 _appId, address _app) internal {
address app = getApp(_namespace, _appId);
if (app != address(0)) {
// The only way to set an app is if it passes the isContract check, so no need to check it again
require(app == _app, ERROR_INVALID_APP_CHANGE);
} else {
_setApp(_namespace, _appId, _app);
}
}
modifier auth(bytes32 _role, uint256[] memory _params) {
require(
hasPermission(msg.sender, address(this), _role, ConversionHelpers.dangerouslyCastUintArrayToBytes(_params)),
ERROR_AUTH_FAILED
);
_;
}
}File 6 of 6: Lido
// SPDX-FileCopyrightText: 2020 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 /* See contracts/COMPILERS.md */ pragma solidity 0.4.24; import "@aragon/os/contracts/apps/AragonApp.sol"; import "@aragon/os/contracts/lib/math/SafeMath.sol"; import "@aragon/os/contracts/lib/math/SafeMath64.sol"; import "solidity-bytes-utils/contracts/BytesLib.sol"; import "./interfaces/ILido.sol"; import "./interfaces/INodeOperatorsRegistry.sol"; import "./interfaces/IDepositContract.sol"; import "./interfaces/ILidoExecutionLayerRewardsVault.sol"; import "./StETH.sol"; import "./lib/StakeLimitUtils.sol"; interface IERC721 { /// @notice Transfer ownership of an NFT /// @param _from The current owner of the NFT /// @param _to The new owner /// @param _tokenId The NFT to transfer function transferFrom(address _from, address _to, uint256 _tokenId) external payable; } /** * @title Liquid staking pool implementation * * Lido is an Ethereum 2.0 liquid staking protocol solving the problem of frozen staked Ethers * until transfers become available in Ethereum 2.0. * Whitepaper: https://lido.fi/static/Lido:Ethereum-Liquid-Staking.pdf * * NOTE: the code below assumes moderate amount of node operators, e.g. up to 200. * * Since balances of all token holders change when the amount of total pooled Ether * changes, this token cannot fully implement ERC20 standard: it only emits `Transfer` * events upon explicit transfer between holders. In contrast, when Lido oracle reports * rewards, no Transfer events are generated: doing so would require emitting an event * for each token holder and thus running an unbounded loop. * * At the moment withdrawals are not possible in the beacon chain and there's no workaround. * Pool will be upgraded to an actual implementation when withdrawals are enabled * (Phase 1.5 or 2 of Eth2 launch, likely late 2022 or 2023). */ contract Lido is ILido, StETH, AragonApp { using SafeMath for uint256; using UnstructuredStorage for bytes32; using StakeLimitUnstructuredStorage for bytes32; using StakeLimitUtils for StakeLimitState.Data; /// ACL bytes32 constant public PAUSE_ROLE = keccak256("PAUSE_ROLE"); bytes32 constant public RESUME_ROLE = keccak256("RESUME_ROLE"); bytes32 constant public STAKING_PAUSE_ROLE = keccak256("STAKING_PAUSE_ROLE"); bytes32 constant public STAKING_CONTROL_ROLE = keccak256("STAKING_CONTROL_ROLE"); bytes32 constant public MANAGE_FEE = keccak256("MANAGE_FEE"); bytes32 constant public MANAGE_WITHDRAWAL_KEY = keccak256("MANAGE_WITHDRAWAL_KEY"); bytes32 constant public MANAGE_PROTOCOL_CONTRACTS_ROLE = keccak256("MANAGE_PROTOCOL_CONTRACTS_ROLE"); bytes32 constant public BURN_ROLE = keccak256("BURN_ROLE"); bytes32 constant public DEPOSIT_ROLE = keccak256("DEPOSIT_ROLE"); bytes32 constant public SET_EL_REWARDS_VAULT_ROLE = keccak256("SET_EL_REWARDS_VAULT_ROLE"); bytes32 constant public SET_EL_REWARDS_WITHDRAWAL_LIMIT_ROLE = keccak256( "SET_EL_REWARDS_WITHDRAWAL_LIMIT_ROLE" ); uint256 constant public PUBKEY_LENGTH = 48; uint256 constant public WITHDRAWAL_CREDENTIALS_LENGTH = 32; uint256 constant public SIGNATURE_LENGTH = 96; uint256 constant public DEPOSIT_SIZE = 32 ether; uint256 internal constant DEPOSIT_AMOUNT_UNIT = 1000000000 wei; uint256 internal constant TOTAL_BASIS_POINTS = 10000; /// @dev default value for maximum number of Ethereum 2.0 validators registered in a single depositBufferedEther call uint256 internal constant DEFAULT_MAX_DEPOSITS_PER_CALL = 150; bytes32 internal constant FEE_POSITION = keccak256("lido.Lido.fee"); bytes32 internal constant TREASURY_FEE_POSITION = keccak256("lido.Lido.treasuryFee"); bytes32 internal constant INSURANCE_FEE_POSITION = keccak256("lido.Lido.insuranceFee"); bytes32 internal constant NODE_OPERATORS_FEE_POSITION = keccak256("lido.Lido.nodeOperatorsFee"); bytes32 internal constant DEPOSIT_CONTRACT_POSITION = keccak256("lido.Lido.depositContract"); bytes32 internal constant ORACLE_POSITION = keccak256("lido.Lido.oracle"); bytes32 internal constant NODE_OPERATORS_REGISTRY_POSITION = keccak256("lido.Lido.nodeOperatorsRegistry"); bytes32 internal constant TREASURY_POSITION = keccak256("lido.Lido.treasury"); bytes32 internal constant INSURANCE_FUND_POSITION = keccak256("lido.Lido.insuranceFund"); bytes32 internal constant EL_REWARDS_VAULT_POSITION = keccak256("lido.Lido.executionLayerRewardsVault"); /// @dev storage slot position of the staking rate limit structure bytes32 internal constant STAKING_STATE_POSITION = keccak256("lido.Lido.stakeLimit"); /// @dev amount of Ether (on the current Ethereum side) buffered on this smart contract balance bytes32 internal constant BUFFERED_ETHER_POSITION = keccak256("lido.Lido.bufferedEther"); /// @dev number of deposited validators (incrementing counter of deposit operations). bytes32 internal constant DEPOSITED_VALIDATORS_POSITION = keccak256("lido.Lido.depositedValidators"); /// @dev total amount of Beacon-side Ether (sum of all the balances of Lido validators) bytes32 internal constant BEACON_BALANCE_POSITION = keccak256("lido.Lido.beaconBalance"); /// @dev number of Lido's validators available in the Beacon state bytes32 internal constant BEACON_VALIDATORS_POSITION = keccak256("lido.Lido.beaconValidators"); /// @dev percent in basis points of total pooled ether allowed to withdraw from LidoExecutionLayerRewardsVault per LidoOracle report bytes32 internal constant EL_REWARDS_WITHDRAWAL_LIMIT_POSITION = keccak256("lido.Lido.ELRewardsWithdrawalLimit"); /// @dev Just a counter of total amount of execution layer rewards received by Lido contract /// Not used in the logic bytes32 internal constant TOTAL_EL_REWARDS_COLLECTED_POSITION = keccak256("lido.Lido.totalELRewardsCollected"); /// @dev Credentials which allows the DAO to withdraw Ether on the 2.0 side bytes32 internal constant WITHDRAWAL_CREDENTIALS_POSITION = keccak256("lido.Lido.withdrawalCredentials"); /** * @dev As AragonApp, Lido contract must be initialized with following variables: * @param _depositContract official ETH2 Deposit contract * @param _oracle oracle contract * @param _operators instance of Node Operators Registry * @param _treasury treasury contract * @param _insuranceFund insurance fund contract * NB: by default, staking and the whole Lido pool are in paused state */ function initialize( IDepositContract _depositContract, address _oracle, INodeOperatorsRegistry _operators, address _treasury, address _insuranceFund ) public onlyInit { NODE_OPERATORS_REGISTRY_POSITION.setStorageAddress(address(_operators)); DEPOSIT_CONTRACT_POSITION.setStorageAddress(address(_depositContract)); _setProtocolContracts(_oracle, _treasury, _insuranceFund); initialized(); } /** * @notice Stops accepting new Ether to the protocol * * @dev While accepting new Ether is stopped, calls to the `submit` function, * as well as to the default payable function, will revert. * * Emits `StakingPaused` event. */ function pauseStaking() external { _auth(STAKING_PAUSE_ROLE); _pauseStaking(); } /** * @notice Resumes accepting new Ether to the protocol (if `pauseStaking` was called previously) * NB: Staking could be rate-limited by imposing a limit on the stake amount * at each moment in time, see `setStakingLimit()` and `removeStakingLimit()` * * @dev Preserves staking limit if it was set previously * * Emits `StakingResumed` event */ function resumeStaking() external { _auth(STAKING_CONTROL_ROLE); _resumeStaking(); } /** * @notice Sets the staking rate limit * * ▲ Stake limit * │..... ..... ........ ... .... ... Stake limit = max * │ . . . . . . . . . * │ . . . . . . . . . * │ . . . . . * │──────────────────────────────────────────────────> Time * │ ^ ^ ^ ^^^ ^ ^ ^ ^^^ ^ Stake events * * @dev Reverts if: * - `_maxStakeLimit` == 0 * - `_maxStakeLimit` >= 2^96 * - `_maxStakeLimit` < `_stakeLimitIncreasePerBlock` * - `_maxStakeLimit` / `_stakeLimitIncreasePerBlock` >= 2^32 (only if `_stakeLimitIncreasePerBlock` != 0) * * Emits `StakingLimitSet` event * * @param _maxStakeLimit max stake limit value * @param _stakeLimitIncreasePerBlock stake limit increase per single block */ function setStakingLimit(uint256 _maxStakeLimit, uint256 _stakeLimitIncreasePerBlock) external { _auth(STAKING_CONTROL_ROLE); STAKING_STATE_POSITION.setStorageStakeLimitStruct( STAKING_STATE_POSITION.getStorageStakeLimitStruct().setStakingLimit( _maxStakeLimit, _stakeLimitIncreasePerBlock ) ); emit StakingLimitSet(_maxStakeLimit, _stakeLimitIncreasePerBlock); } /** * @notice Removes the staking rate limit * * Emits `StakingLimitRemoved` event */ function removeStakingLimit() external { _auth(STAKING_CONTROL_ROLE); STAKING_STATE_POSITION.setStorageStakeLimitStruct( STAKING_STATE_POSITION.getStorageStakeLimitStruct().removeStakingLimit() ); emit StakingLimitRemoved(); } /** * @notice Check staking state: whether it's paused or not */ function isStakingPaused() external view returns (bool) { return STAKING_STATE_POSITION.getStorageStakeLimitStruct().isStakingPaused(); } /** * @notice Returns how much Ether can be staked in the current block * @dev Special return values: * - 2^256 - 1 if staking is unlimited; * - 0 if staking is paused or if limit is exhausted. */ function getCurrentStakeLimit() public view returns (uint256) { return _getCurrentStakeLimit(STAKING_STATE_POSITION.getStorageStakeLimitStruct()); } /** * @notice Returns full info about current stake limit params and state * @dev Might be used for the advanced integration requests. * @return isStakingPaused staking pause state (equivalent to return of isStakingPaused()) * @return isStakingLimitSet whether the stake limit is set * @return currentStakeLimit current stake limit (equivalent to return of getCurrentStakeLimit()) * @return maxStakeLimit max stake limit * @return maxStakeLimitGrowthBlocks blocks needed to restore max stake limit from the fully exhausted state * @return prevStakeLimit previously reached stake limit * @return prevStakeBlockNumber previously seen block number */ function getStakeLimitFullInfo() external view returns ( bool isStakingPaused, bool isStakingLimitSet, uint256 currentStakeLimit, uint256 maxStakeLimit, uint256 maxStakeLimitGrowthBlocks, uint256 prevStakeLimit, uint256 prevStakeBlockNumber ) { StakeLimitState.Data memory stakeLimitData = STAKING_STATE_POSITION.getStorageStakeLimitStruct(); isStakingPaused = stakeLimitData.isStakingPaused(); isStakingLimitSet = stakeLimitData.isStakingLimitSet(); currentStakeLimit = _getCurrentStakeLimit(stakeLimitData); maxStakeLimit = stakeLimitData.maxStakeLimit; maxStakeLimitGrowthBlocks = stakeLimitData.maxStakeLimitGrowthBlocks; prevStakeLimit = stakeLimitData.prevStakeLimit; prevStakeBlockNumber = stakeLimitData.prevStakeBlockNumber; } /** * @notice Send funds to the pool * @dev Users are able to submit their funds by transacting to the fallback function. * Unlike vanilla Eth2.0 Deposit contract, accepting only 32-Ether transactions, Lido * accepts payments of any size. Submitted Ethers are stored in Buffer until someone calls * depositBufferedEther() and pushes them to the ETH2 Deposit contract. */ function() external payable { // protection against accidental submissions by calling non-existent function require(msg.data.length == 0, "NON_EMPTY_DATA"); _submit(0); } /** * @notice Send funds to the pool with optional _referral parameter * @dev This function is alternative way to submit funds. Supports optional referral address. * @return Amount of StETH shares generated */ function submit(address _referral) external payable returns (uint256) { return _submit(_referral); } /** * @notice A payable function for execution layer rewards. Can be called only by ExecutionLayerRewardsVault contract * @dev We need a dedicated function because funds received by the default payable function * are treated as a user deposit */ function receiveELRewards() external payable { require(msg.sender == EL_REWARDS_VAULT_POSITION.getStorageAddress()); TOTAL_EL_REWARDS_COLLECTED_POSITION.setStorageUint256( TOTAL_EL_REWARDS_COLLECTED_POSITION.getStorageUint256().add(msg.value)); emit ELRewardsReceived(msg.value); } /** * @notice Deposits buffered ethers to the official DepositContract. * @dev This function is separated from submit() to reduce the cost of sending funds. */ function depositBufferedEther() external { _auth(DEPOSIT_ROLE); return _depositBufferedEther(DEFAULT_MAX_DEPOSITS_PER_CALL); } /** * @notice Deposits buffered ethers to the official DepositContract, making no more than `_maxDeposits` deposit calls. * @dev This function is separated from submit() to reduce the cost of sending funds. */ function depositBufferedEther(uint256 _maxDeposits) external { _auth(DEPOSIT_ROLE); return _depositBufferedEther(_maxDeposits); } function burnShares(address _account, uint256 _sharesAmount) external authP(BURN_ROLE, arr(_account, _sharesAmount)) returns (uint256 newTotalShares) { return _burnShares(_account, _sharesAmount); } /** * @notice Stop pool routine operations */ function stop() external { _auth(PAUSE_ROLE); _stop(); _pauseStaking(); } /** * @notice Resume pool routine operations * @dev Staking should be resumed manually after this call using the desired limits */ function resume() external { _auth(RESUME_ROLE); _resume(); _resumeStaking(); } /** * @notice Set fee rate to `_feeBasisPoints` basis points. * The fees are accrued when: * - oracles report staking results (beacon chain balance increase) * - validators gain execution layer rewards (priority fees and MEV) * @param _feeBasisPoints Fee rate, in basis points */ function setFee(uint16 _feeBasisPoints) external { _auth(MANAGE_FEE); _setBPValue(FEE_POSITION, _feeBasisPoints); emit FeeSet(_feeBasisPoints); } /** * @notice Set fee distribution * @param _treasuryFeeBasisPoints basis points go to the treasury, * @param _insuranceFeeBasisPoints basis points go to the insurance fund, * @param _operatorsFeeBasisPoints basis points go to node operators. * @dev The sum has to be 10 000. */ function setFeeDistribution( uint16 _treasuryFeeBasisPoints, uint16 _insuranceFeeBasisPoints, uint16 _operatorsFeeBasisPoints ) external { _auth(MANAGE_FEE); require( TOTAL_BASIS_POINTS == uint256(_treasuryFeeBasisPoints) .add(uint256(_insuranceFeeBasisPoints)) .add(uint256(_operatorsFeeBasisPoints)), "FEES_DONT_ADD_UP" ); _setBPValue(TREASURY_FEE_POSITION, _treasuryFeeBasisPoints); _setBPValue(INSURANCE_FEE_POSITION, _insuranceFeeBasisPoints); _setBPValue(NODE_OPERATORS_FEE_POSITION, _operatorsFeeBasisPoints); emit FeeDistributionSet(_treasuryFeeBasisPoints, _insuranceFeeBasisPoints, _operatorsFeeBasisPoints); } /** * @notice Set Lido protocol contracts (oracle, treasury, insurance fund). * * @dev Oracle contract specified here is allowed to make * periodical updates of beacon stats * by calling pushBeacon. Treasury contract specified here is used * to accumulate the protocol treasury fee. Insurance fund contract * specified here is used to accumulate the protocol insurance fee. * * @param _oracle oracle contract * @param _treasury treasury contract * @param _insuranceFund insurance fund contract */ function setProtocolContracts( address _oracle, address _treasury, address _insuranceFund ) external { _auth(MANAGE_PROTOCOL_CONTRACTS_ROLE); _setProtocolContracts(_oracle, _treasury, _insuranceFund); } /** * @notice Set credentials to withdraw ETH on ETH 2.0 side after the phase 2 is launched to `_withdrawalCredentials` * @dev Note that setWithdrawalCredentials discards all unused signing keys as the signatures are invalidated. * @param _withdrawalCredentials withdrawal credentials field as defined in the Ethereum PoS consensus specs */ function setWithdrawalCredentials(bytes32 _withdrawalCredentials) external { _auth(MANAGE_WITHDRAWAL_KEY); WITHDRAWAL_CREDENTIALS_POSITION.setStorageBytes32(_withdrawalCredentials); getOperators().trimUnusedKeys(); emit WithdrawalCredentialsSet(_withdrawalCredentials); } /** * @dev Sets the address of LidoExecutionLayerRewardsVault contract * @param _executionLayerRewardsVault Execution layer rewards vault contract address */ function setELRewardsVault(address _executionLayerRewardsVault) external { _auth(SET_EL_REWARDS_VAULT_ROLE); EL_REWARDS_VAULT_POSITION.setStorageAddress(_executionLayerRewardsVault); emit ELRewardsVaultSet(_executionLayerRewardsVault); } /** * @dev Sets limit on amount of ETH to withdraw from execution layer rewards vault per LidoOracle report * @param _limitPoints limit in basis points to amount of ETH to withdraw per LidoOracle report */ function setELRewardsWithdrawalLimit(uint16 _limitPoints) external { _auth(SET_EL_REWARDS_WITHDRAWAL_LIMIT_ROLE); _setBPValue(EL_REWARDS_WITHDRAWAL_LIMIT_POSITION, _limitPoints); emit ELRewardsWithdrawalLimitSet(_limitPoints); } /** * @notice Updates beacon stats, collects rewards from LidoExecutionLayerRewardsVault and distributes all rewards if beacon balance increased * @dev periodically called by the Oracle contract * @param _beaconValidators number of Lido's keys in the beacon state * @param _beaconBalance summarized balance of Lido-controlled keys in wei */ function handleOracleReport(uint256 _beaconValidators, uint256 _beaconBalance) external whenNotStopped { require(msg.sender == getOracle(), "APP_AUTH_FAILED"); uint256 depositedValidators = DEPOSITED_VALIDATORS_POSITION.getStorageUint256(); require(_beaconValidators <= depositedValidators, "REPORTED_MORE_DEPOSITED"); uint256 beaconValidators = BEACON_VALIDATORS_POSITION.getStorageUint256(); // Since the calculation of funds in the ingress queue is based on the number of validators // that are in a transient state (deposited but not seen on beacon yet), we can't decrease the previously // reported number (we'll be unable to figure out who is in the queue and count them). // See LIP-1 for details https://github.com/lidofinance/lido-improvement-proposals/blob/develop/LIPS/lip-1.md require(_beaconValidators >= beaconValidators, "REPORTED_LESS_VALIDATORS"); uint256 appearedValidators = _beaconValidators.sub(beaconValidators); // RewardBase is the amount of money that is not included in the reward calculation // Just appeared validators * 32 added to the previously reported beacon balance uint256 rewardBase = (appearedValidators.mul(DEPOSIT_SIZE)).add(BEACON_BALANCE_POSITION.getStorageUint256()); // Save the current beacon balance and validators to // calculate rewards on the next push BEACON_BALANCE_POSITION.setStorageUint256(_beaconBalance); BEACON_VALIDATORS_POSITION.setStorageUint256(_beaconValidators); // If LidoExecutionLayerRewardsVault address is not set just do as if there were no execution layer rewards at all // Otherwise withdraw all rewards and put them to the buffer // Thus, execution layer rewards are handled the same way as beacon rewards uint256 executionLayerRewards; address executionLayerRewardsVaultAddress = getELRewardsVault(); if (executionLayerRewardsVaultAddress != address(0)) { executionLayerRewards = ILidoExecutionLayerRewardsVault(executionLayerRewardsVaultAddress).withdrawRewards( (_getTotalPooledEther() * EL_REWARDS_WITHDRAWAL_LIMIT_POSITION.getStorageUint256()) / TOTAL_BASIS_POINTS ); if (executionLayerRewards != 0) { BUFFERED_ETHER_POSITION.setStorageUint256(_getBufferedEther().add(executionLayerRewards)); } } // Don’t mint/distribute any protocol fee on the non-profitable Lido oracle report // (when beacon chain balance delta is zero or negative). // See ADR #3 for details: https://research.lido.fi/t/rewards-distribution-after-the-merge-architecture-decision-record/1535 if (_beaconBalance > rewardBase) { uint256 rewards = _beaconBalance.sub(rewardBase); distributeFee(rewards.add(executionLayerRewards)); } } /** * @notice Send funds to recovery Vault. Overrides default AragonApp behaviour * @param _token Token to be sent to recovery vault */ function transferToVault(address _token) external { require(allowRecoverability(_token), "RECOVER_DISALLOWED"); address vault = getRecoveryVault(); require(vault != address(0), "RECOVER_VAULT_ZERO"); uint256 balance; if (_token == ETH) { balance = _getUnaccountedEther(); // Transfer replaced by call to prevent transfer gas amount issue require(vault.call.value(balance)(), "RECOVER_TRANSFER_FAILED"); } else { ERC20 token = ERC20(_token); balance = token.staticBalanceOf(this); // safeTransfer comes from overridden default implementation require(token.safeTransfer(vault, balance), "RECOVER_TOKEN_TRANSFER_FAILED"); } emit RecoverToVault(vault, _token, balance); } /** * @notice Returns staking rewards fee rate */ function getFee() public view returns (uint16 feeBasisPoints) { return uint16(FEE_POSITION.getStorageUint256()); } /** * @notice Returns fee distribution proportion */ function getFeeDistribution() public view returns ( uint16 treasuryFeeBasisPoints, uint16 insuranceFeeBasisPoints, uint16 operatorsFeeBasisPoints ) { treasuryFeeBasisPoints = uint16(TREASURY_FEE_POSITION.getStorageUint256()); insuranceFeeBasisPoints = uint16(INSURANCE_FEE_POSITION.getStorageUint256()); operatorsFeeBasisPoints = uint16(NODE_OPERATORS_FEE_POSITION.getStorageUint256()); } /** * @notice Returns current credentials to withdraw ETH on ETH 2.0 side after the phase 2 is launched */ function getWithdrawalCredentials() public view returns (bytes32) { return WITHDRAWAL_CREDENTIALS_POSITION.getStorageBytes32(); } /** * @notice Get the amount of Ether temporary buffered on this contract balance * @dev Buffered balance is kept on the contract from the moment the funds are received from user * until the moment they are actually sent to the official Deposit contract. * @return amount of buffered funds in wei */ function getBufferedEther() external view returns (uint256) { return _getBufferedEther(); } /** * @notice Get total amount of execution layer rewards collected to Lido contract * @dev Ether got through LidoExecutionLayerRewardsVault is kept on this contract's balance the same way * as other buffered Ether is kept (until it gets deposited) * @return amount of funds received as execution layer rewards (in wei) */ function getTotalELRewardsCollected() external view returns (uint256) { return TOTAL_EL_REWARDS_COLLECTED_POSITION.getStorageUint256(); } /** * @notice Get limit in basis points to amount of ETH to withdraw per LidoOracle report * @return limit in basis points to amount of ETH to withdraw per LidoOracle report */ function getELRewardsWithdrawalLimit() external view returns (uint256) { return EL_REWARDS_WITHDRAWAL_LIMIT_POSITION.getStorageUint256(); } /** * @notice Gets deposit contract handle */ function getDepositContract() public view returns (IDepositContract) { return IDepositContract(DEPOSIT_CONTRACT_POSITION.getStorageAddress()); } /** * @notice Gets authorized oracle address * @return address of oracle contract */ function getOracle() public view returns (address) { return ORACLE_POSITION.getStorageAddress(); } /** * @notice Gets node operators registry interface handle */ function getOperators() public view returns (INodeOperatorsRegistry) { return INodeOperatorsRegistry(NODE_OPERATORS_REGISTRY_POSITION.getStorageAddress()); } /** * @notice Returns the treasury address */ function getTreasury() public view returns (address) { return TREASURY_POSITION.getStorageAddress(); } /** * @notice Returns the insurance fund address */ function getInsuranceFund() public view returns (address) { return INSURANCE_FUND_POSITION.getStorageAddress(); } /** * @notice Returns the key values related to Beacon-side * @return depositedValidators - number of deposited validators * @return beaconValidators - number of Lido's validators visible in the Beacon state, reported by oracles * @return beaconBalance - total amount of Beacon-side Ether (sum of all the balances of Lido validators) */ function getBeaconStat() public view returns (uint256 depositedValidators, uint256 beaconValidators, uint256 beaconBalance) { depositedValidators = DEPOSITED_VALIDATORS_POSITION.getStorageUint256(); beaconValidators = BEACON_VALIDATORS_POSITION.getStorageUint256(); beaconBalance = BEACON_BALANCE_POSITION.getStorageUint256(); } /** * @notice Returns address of the contract set as LidoExecutionLayerRewardsVault */ function getELRewardsVault() public view returns (address) { return EL_REWARDS_VAULT_POSITION.getStorageAddress(); } /** * @dev Internal function to set authorized oracle address * @param _oracle oracle contract */ function _setProtocolContracts(address _oracle, address _treasury, address _insuranceFund) internal { require(_oracle != address(0), "ORACLE_ZERO_ADDRESS"); require(_treasury != address(0), "TREASURY_ZERO_ADDRESS"); require(_insuranceFund != address(0), "INSURANCE_FUND_ZERO_ADDRESS"); ORACLE_POSITION.setStorageAddress(_oracle); TREASURY_POSITION.setStorageAddress(_treasury); INSURANCE_FUND_POSITION.setStorageAddress(_insuranceFund); emit ProtocolContactsSet(_oracle, _treasury, _insuranceFund); } /** * @dev Process user deposit, mints liquid tokens and increase the pool buffer * @param _referral address of referral. * @return amount of StETH shares generated */ function _submit(address _referral) internal returns (uint256) { require(msg.value != 0, "ZERO_DEPOSIT"); StakeLimitState.Data memory stakeLimitData = STAKING_STATE_POSITION.getStorageStakeLimitStruct(); require(!stakeLimitData.isStakingPaused(), "STAKING_PAUSED"); if (stakeLimitData.isStakingLimitSet()) { uint256 currentStakeLimit = stakeLimitData.calculateCurrentStakeLimit(); require(msg.value <= currentStakeLimit, "STAKE_LIMIT"); STAKING_STATE_POSITION.setStorageStakeLimitStruct( stakeLimitData.updatePrevStakeLimit(currentStakeLimit - msg.value) ); } uint256 sharesAmount = getSharesByPooledEth(msg.value); if (sharesAmount == 0) { // totalControlledEther is 0: either the first-ever deposit or complete slashing // assume that shares correspond to Ether 1-to-1 sharesAmount = msg.value; } _mintShares(msg.sender, sharesAmount); BUFFERED_ETHER_POSITION.setStorageUint256(_getBufferedEther().add(msg.value)); emit Submitted(msg.sender, msg.value, _referral); _emitTransferAfterMintingShares(msg.sender, sharesAmount); return sharesAmount; } /** * @dev Emits {Transfer} and {TransferShares} events where `from` is 0 address. Indicates mint events. */ function _emitTransferAfterMintingShares(address _to, uint256 _sharesAmount) internal { emit Transfer(address(0), _to, getPooledEthByShares(_sharesAmount)); emit TransferShares(address(0), _to, _sharesAmount); } /** * @dev Deposits buffered eth to the DepositContract and assigns chunked deposits to node operators */ function _depositBufferedEther(uint256 _maxDeposits) internal whenNotStopped { uint256 buffered = _getBufferedEther(); if (buffered >= DEPOSIT_SIZE) { uint256 unaccounted = _getUnaccountedEther(); uint256 numDeposits = buffered.div(DEPOSIT_SIZE); _markAsUnbuffered(_ETH2Deposit(numDeposits < _maxDeposits ? numDeposits : _maxDeposits)); assert(_getUnaccountedEther() == unaccounted); } } /** * @dev Performs deposits to the ETH 2.0 side * @param _numDeposits Number of deposits to perform * @return actually deposited Ether amount */ function _ETH2Deposit(uint256 _numDeposits) internal returns (uint256) { (bytes memory pubkeys, bytes memory signatures) = getOperators().assignNextSigningKeys(_numDeposits); if (pubkeys.length == 0) { return 0; } require(pubkeys.length.mod(PUBKEY_LENGTH) == 0, "REGISTRY_INCONSISTENT_PUBKEYS_LEN"); require(signatures.length.mod(SIGNATURE_LENGTH) == 0, "REGISTRY_INCONSISTENT_SIG_LEN"); uint256 numKeys = pubkeys.length.div(PUBKEY_LENGTH); require(numKeys == signatures.length.div(SIGNATURE_LENGTH), "REGISTRY_INCONSISTENT_SIG_COUNT"); for (uint256 i = 0; i < numKeys; ++i) { bytes memory pubkey = BytesLib.slice(pubkeys, i * PUBKEY_LENGTH, PUBKEY_LENGTH); bytes memory signature = BytesLib.slice(signatures, i * SIGNATURE_LENGTH, SIGNATURE_LENGTH); _stake(pubkey, signature); } DEPOSITED_VALIDATORS_POSITION.setStorageUint256( DEPOSITED_VALIDATORS_POSITION.getStorageUint256().add(numKeys) ); return numKeys.mul(DEPOSIT_SIZE); } /** * @dev Invokes a deposit call to the official Deposit contract * @param _pubkey Validator to stake for * @param _signature Signature of the deposit call */ function _stake(bytes memory _pubkey, bytes memory _signature) internal { bytes32 withdrawalCredentials = getWithdrawalCredentials(); require(withdrawalCredentials != 0, "EMPTY_WITHDRAWAL_CREDENTIALS"); uint256 value = DEPOSIT_SIZE; // The following computations and Merkle tree-ization will make official Deposit contract happy uint256 depositAmount = value.div(DEPOSIT_AMOUNT_UNIT); assert(depositAmount.mul(DEPOSIT_AMOUNT_UNIT) == value); // properly rounded // Compute deposit data root (`DepositData` hash tree root) according to deposit_contract.sol bytes32 pubkeyRoot = sha256(_pad64(_pubkey)); bytes32 signatureRoot = sha256( abi.encodePacked( sha256(BytesLib.slice(_signature, 0, 64)), sha256(_pad64(BytesLib.slice(_signature, 64, SIGNATURE_LENGTH.sub(64)))) ) ); bytes32 depositDataRoot = sha256( abi.encodePacked( sha256(abi.encodePacked(pubkeyRoot, withdrawalCredentials)), sha256(abi.encodePacked(_toLittleEndian64(depositAmount), signatureRoot)) ) ); uint256 targetBalance = address(this).balance.sub(value); getDepositContract().deposit.value(value)( _pubkey, abi.encodePacked(withdrawalCredentials), _signature, depositDataRoot); require(address(this).balance == targetBalance, "EXPECTING_DEPOSIT_TO_HAPPEN"); } /** * @dev Distributes fee portion of the rewards by minting and distributing corresponding amount of liquid tokens. * @param _totalRewards Total rewards accrued on the Ethereum 2.0 side in wei */ function distributeFee(uint256 _totalRewards) internal { // We need to take a defined percentage of the reported reward as a fee, and we do // this by minting new token shares and assigning them to the fee recipients (see // StETH docs for the explanation of the shares mechanics). The staking rewards fee // is defined in basis points (1 basis point is equal to 0.01%, 10000 (TOTAL_BASIS_POINTS) is 100%). // // Since we've increased totalPooledEther by _totalRewards (which is already // performed by the time this function is called), the combined cost of all holders' // shares has became _totalRewards StETH tokens more, effectively splitting the reward // between each token holder proportionally to their token share. // // Now we want to mint new shares to the fee recipient, so that the total cost of the // newly-minted shares exactly corresponds to the fee taken: // // shares2mint * newShareCost = (_totalRewards * feeBasis) / TOTAL_BASIS_POINTS // newShareCost = newTotalPooledEther / (prevTotalShares + shares2mint) // // which follows to: // // _totalRewards * feeBasis * prevTotalShares // shares2mint = -------------------------------------------------------------- // (newTotalPooledEther * TOTAL_BASIS_POINTS) - (feeBasis * _totalRewards) // // The effect is that the given percentage of the reward goes to the fee recipient, and // the rest of the reward is distributed between token holders proportionally to their // token shares. uint256 feeBasis = getFee(); uint256 shares2mint = ( _totalRewards.mul(feeBasis).mul(_getTotalShares()) .div( _getTotalPooledEther().mul(TOTAL_BASIS_POINTS) .sub(feeBasis.mul(_totalRewards)) ) ); // Mint the calculated amount of shares to this contract address. This will reduce the // balances of the holders, as if the fee was taken in parts from each of them. _mintShares(address(this), shares2mint); (,uint16 insuranceFeeBasisPoints, uint16 operatorsFeeBasisPoints) = getFeeDistribution(); uint256 toInsuranceFund = shares2mint.mul(insuranceFeeBasisPoints).div(TOTAL_BASIS_POINTS); address insuranceFund = getInsuranceFund(); _transferShares(address(this), insuranceFund, toInsuranceFund); _emitTransferAfterMintingShares(insuranceFund, toInsuranceFund); uint256 distributedToOperatorsShares = _distributeNodeOperatorsReward( shares2mint.mul(operatorsFeeBasisPoints).div(TOTAL_BASIS_POINTS) ); // Transfer the rest of the fee to treasury uint256 toTreasury = shares2mint.sub(toInsuranceFund).sub(distributedToOperatorsShares); address treasury = getTreasury(); _transferShares(address(this), treasury, toTreasury); _emitTransferAfterMintingShares(treasury, toTreasury); } /** * @dev Internal function to distribute reward to node operators * @param _sharesToDistribute amount of shares to distribute * @return actual amount of shares that was transferred to node operators as a reward */ function _distributeNodeOperatorsReward(uint256 _sharesToDistribute) internal returns (uint256 distributed) { (address[] memory recipients, uint256[] memory shares) = getOperators().getRewardsDistribution(_sharesToDistribute); assert(recipients.length == shares.length); distributed = 0; for (uint256 idx = 0; idx < recipients.length; ++idx) { _transferShares( address(this), recipients[idx], shares[idx] ); _emitTransferAfterMintingShares(recipients[idx], shares[idx]); distributed = distributed.add(shares[idx]); } } /** * @dev Records a deposit to the deposit_contract.deposit function * @param _amount Total amount deposited to the ETH 2.0 side */ function _markAsUnbuffered(uint256 _amount) internal { BUFFERED_ETHER_POSITION.setStorageUint256( BUFFERED_ETHER_POSITION.getStorageUint256().sub(_amount)); emit Unbuffered(_amount); } /** * @dev Write a value nominated in basis points */ function _setBPValue(bytes32 _slot, uint16 _value) internal { require(_value <= TOTAL_BASIS_POINTS, "VALUE_OVER_100_PERCENT"); _slot.setStorageUint256(uint256(_value)); } /** * @dev Gets the amount of Ether temporary buffered on this contract balance */ function _getBufferedEther() internal view returns (uint256) { uint256 buffered = BUFFERED_ETHER_POSITION.getStorageUint256(); assert(address(this).balance >= buffered); return buffered; } /** * @dev Gets unaccounted (excess) Ether on this contract balance */ function _getUnaccountedEther() internal view returns (uint256) { return address(this).balance.sub(_getBufferedEther()); } /** * @dev Calculates and returns the total base balance (multiple of 32) of validators in transient state, * i.e. submitted to the official Deposit contract but not yet visible in the beacon state. * @return transient balance in wei (1e-18 Ether) */ function _getTransientBalance() internal view returns (uint256) { uint256 depositedValidators = DEPOSITED_VALIDATORS_POSITION.getStorageUint256(); uint256 beaconValidators = BEACON_VALIDATORS_POSITION.getStorageUint256(); // beaconValidators can never be less than deposited ones. assert(depositedValidators >= beaconValidators); return depositedValidators.sub(beaconValidators).mul(DEPOSIT_SIZE); } /** * @dev Gets the total amount of Ether controlled by the system * @return total balance in wei */ function _getTotalPooledEther() internal view returns (uint256) { return _getBufferedEther().add( BEACON_BALANCE_POSITION.getStorageUint256() ).add(_getTransientBalance()); } /** * @dev Padding memory array with zeroes up to 64 bytes on the right * @param _b Memory array of size 32 .. 64 */ function _pad64(bytes memory _b) internal pure returns (bytes memory) { assert(_b.length >= 32 && _b.length <= 64); if (64 == _b.length) return _b; bytes memory zero32 = new bytes(32); assembly { mstore(add(zero32, 0x20), 0) } if (32 == _b.length) return BytesLib.concat(_b, zero32); else return BytesLib.concat(_b, BytesLib.slice(zero32, 0, uint256(64).sub(_b.length))); } /** * @dev Converting value to little endian bytes and padding up to 32 bytes on the right * @param _value Number less than `2**64` for compatibility reasons */ function _toLittleEndian64(uint256 _value) internal pure returns (uint256 result) { result = 0; uint256 temp_value = _value; for (uint256 i = 0; i < 8; ++i) { result = (result << 8) | (temp_value & 0xFF); temp_value >>= 8; } assert(0 == temp_value); // fully converted result <<= (24 * 8); } function _pauseStaking() internal { STAKING_STATE_POSITION.setStorageStakeLimitStruct( STAKING_STATE_POSITION.getStorageStakeLimitStruct().setStakeLimitPauseState(true) ); emit StakingPaused(); } function _resumeStaking() internal { STAKING_STATE_POSITION.setStorageStakeLimitStruct( STAKING_STATE_POSITION.getStorageStakeLimitStruct().setStakeLimitPauseState(false) ); emit StakingResumed(); } function _getCurrentStakeLimit(StakeLimitState.Data memory _stakeLimitData) internal view returns(uint256) { if (_stakeLimitData.isStakingPaused()) { return 0; } if (!_stakeLimitData.isStakingLimitSet()) { return uint256(-1); } return _stakeLimitData.calculateCurrentStakeLimit(); } /** * @dev Size-efficient analog of the `auth(_role)` modifier * @param _role Permission name */ function _auth(bytes32 _role) internal view auth(_role) { // no-op } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./AppStorage.sol"; import "../acl/ACLSyntaxSugar.sol"; import "../common/Autopetrified.sol"; import "../common/ConversionHelpers.sol"; import "../common/ReentrancyGuard.sol"; import "../common/VaultRecoverable.sol"; import "../evmscript/EVMScriptRunner.sol"; // Contracts inheriting from AragonApp are, by default, immediately petrified upon deployment so // that they can never be initialized. // Unless overriden, this behaviour enforces those contracts to be usable only behind an AppProxy. // ReentrancyGuard, EVMScriptRunner, and ACLSyntaxSugar are not directly used by this contract, but // are included so that they are automatically usable by subclassing contracts contract AragonApp is AppStorage, Autopetrified, VaultRecoverable, ReentrancyGuard, EVMScriptRunner, ACLSyntaxSugar { string private constant ERROR_AUTH_FAILED = "APP_AUTH_FAILED"; modifier auth(bytes32 _role) { require(canPerform(msg.sender, _role, new uint256[](0)), ERROR_AUTH_FAILED); _; } modifier authP(bytes32 _role, uint256[] _params) { require(canPerform(msg.sender, _role, _params), ERROR_AUTH_FAILED); _; } /** * @dev Check whether an action can be performed by a sender for a particular role on this app * @param _sender Sender of the call * @param _role Role on this app * @param _params Permission params for the role * @return Boolean indicating whether the sender has the permissions to perform the action. * Always returns false if the app hasn't been initialized yet. */ function canPerform(address _sender, bytes32 _role, uint256[] _params) public view returns (bool) { if (!hasInitialized()) { return false; } IKernel linkedKernel = kernel(); if (address(linkedKernel) == address(0)) { return false; } return linkedKernel.hasPermission( _sender, address(this), _role, ConversionHelpers.dangerouslyCastUintArrayToBytes(_params) ); } /** * @dev Get the recovery vault for the app * @return Recovery vault address for the app */ function getRecoveryVault() public view returns (address) { // Funds recovery via a vault is only available when used with a kernel return kernel().getRecoveryVault(); // if kernel is not set, it will revert } } // See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/d51e38758e1d985661534534d5c61e27bece5042/contracts/math/SafeMath.sol // Adapted to use pragma ^0.4.24 and satisfy our linter rules pragma solidity ^0.4.24; /** * @title SafeMath * @dev Math operations with safety checks that revert on error */ library SafeMath { string private constant ERROR_ADD_OVERFLOW = "MATH_ADD_OVERFLOW"; string private constant ERROR_SUB_UNDERFLOW = "MATH_SUB_UNDERFLOW"; string private constant ERROR_MUL_OVERFLOW = "MATH_MUL_OVERFLOW"; string private constant ERROR_DIV_ZERO = "MATH_DIV_ZERO"; /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint256 _a, uint256 _b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } uint256 c = _a * _b; require(c / _a == _b, ERROR_MUL_OVERFLOW); return c; } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint256 _a, uint256 _b) internal pure returns (uint256) { require(_b > 0, ERROR_DIV_ZERO); // Solidity only automatically asserts when dividing by 0 uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { require(_b <= _a, ERROR_SUB_UNDERFLOW); uint256 c = _a - _b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint256 _a, uint256 _b) internal pure returns (uint256) { uint256 c = _a + _b; require(c >= _a, ERROR_ADD_OVERFLOW); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, ERROR_DIV_ZERO); return a % b; } } // See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/d51e38758e1d985661534534d5c61e27bece5042/contracts/math/SafeMath.sol // Adapted for uint64, pragma ^0.4.24, and satisfying our linter rules // Also optimized the mul() implementation, see https://github.com/aragon/aragonOS/pull/417 pragma solidity ^0.4.24; /** * @title SafeMath64 * @dev Math operations for uint64 with safety checks that revert on error */ library SafeMath64 { string private constant ERROR_ADD_OVERFLOW = "MATH64_ADD_OVERFLOW"; string private constant ERROR_SUB_UNDERFLOW = "MATH64_SUB_UNDERFLOW"; string private constant ERROR_MUL_OVERFLOW = "MATH64_MUL_OVERFLOW"; string private constant ERROR_DIV_ZERO = "MATH64_DIV_ZERO"; /** * @dev Multiplies two numbers, reverts on overflow. */ function mul(uint64 _a, uint64 _b) internal pure returns (uint64) { uint256 c = uint256(_a) * uint256(_b); require(c < 0x010000000000000000, ERROR_MUL_OVERFLOW); // 2**64 (less gas this way) return uint64(c); } /** * @dev Integer division of two numbers truncating the quotient, reverts on division by zero. */ function div(uint64 _a, uint64 _b) internal pure returns (uint64) { require(_b > 0, ERROR_DIV_ZERO); // Solidity only automatically asserts when dividing by 0 uint64 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint64 _a, uint64 _b) internal pure returns (uint64) { require(_b <= _a, ERROR_SUB_UNDERFLOW); uint64 c = _a - _b; return c; } /** * @dev Adds two numbers, reverts on overflow. */ function add(uint64 _a, uint64 _b) internal pure returns (uint64) { uint64 c = _a + _b; require(c >= _a, ERROR_ADD_OVERFLOW); return c; } /** * @dev Divides two numbers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint64 a, uint64 b) internal pure returns (uint64) { require(b != 0, ERROR_DIV_ZERO); return a % b; } } /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity ^0.4.19; library BytesLib { function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes_slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes_slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes_slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes_slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes_slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes_slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice(bytes _bytes, uint _start, uint _length) internal pure returns (bytes) { require(_bytes.length >= (_start + _length)); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes _bytes, uint _start) internal pure returns (address) { require(_bytes.length >= (_start + 20)); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes _bytes, uint _start) internal pure returns (uint8) { require(_bytes.length >= (_start + 1)); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes _bytes, uint _start) internal pure returns (uint16) { require(_bytes.length >= (_start + 2)); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes _bytes, uint _start) internal pure returns (uint32) { require(_bytes.length >= (_start + 4)); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint(bytes _bytes, uint _start) internal pure returns (uint256) { require(_bytes.length >= (_start + 32)); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes _bytes, uint _start) internal pure returns (bytes32) { require(_bytes.length >= (_start + 32)); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes_slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes_slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } } // SPDX-FileCopyrightText: 2020 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 pragma solidity 0.4.24; /** * @title Liquid staking pool * * For the high-level description of the pool operation please refer to the paper. * Pool manages withdrawal keys and fees. It receives ether submitted by users on the ETH 1 side * and stakes it via the deposit_contract.sol contract. It doesn't hold ether on it's balance, * only a small portion (buffer) of it. * It also mints new tokens for rewards generated at the ETH 2.0 side. * * At the moment withdrawals are not possible in the beacon chain and there's no workaround. * Pool will be upgraded to an actual implementation when withdrawals are enabled * (Phase 1.5 or 2 of Eth2 launch, likely late 2022 or 2023). */ interface ILido { function totalSupply() external view returns (uint256); function getTotalShares() external view returns (uint256); /** * @notice Stop pool routine operations */ function stop() external; /** * @notice Resume pool routine operations */ function resume() external; /** * @notice Stops accepting new Ether to the protocol * * @dev While accepting new Ether is stopped, calls to the `submit` function, * as well as to the default payable function, will revert. * * Emits `StakingPaused` event. */ function pauseStaking() external; /** * @notice Resumes accepting new Ether to the protocol (if `pauseStaking` was called previously) * NB: Staking could be rate-limited by imposing a limit on the stake amount * at each moment in time, see `setStakingLimit()` and `removeStakingLimit()` * * @dev Preserves staking limit if it was set previously * * Emits `StakingResumed` event */ function resumeStaking() external; /** * @notice Sets the staking rate limit * * @dev Reverts if: * - `_maxStakeLimit` == 0 * - `_maxStakeLimit` >= 2^96 * - `_maxStakeLimit` < `_stakeLimitIncreasePerBlock` * - `_maxStakeLimit` / `_stakeLimitIncreasePerBlock` >= 2^32 (only if `_stakeLimitIncreasePerBlock` != 0) * * Emits `StakingLimitSet` event * * @param _maxStakeLimit max stake limit value * @param _stakeLimitIncreasePerBlock stake limit increase per single block */ function setStakingLimit(uint256 _maxStakeLimit, uint256 _stakeLimitIncreasePerBlock) external; /** * @notice Removes the staking rate limit * * Emits `StakingLimitRemoved` event */ function removeStakingLimit() external; /** * @notice Check staking state: whether it's paused or not */ function isStakingPaused() external view returns (bool); /** * @notice Returns how much Ether can be staked in the current block * @dev Special return values: * - 2^256 - 1 if staking is unlimited; * - 0 if staking is paused or if limit is exhausted. */ function getCurrentStakeLimit() external view returns (uint256); /** * @notice Returns full info about current stake limit params and state * @dev Might be used for the advanced integration requests. * @return isStakingPaused staking pause state (equivalent to return of isStakingPaused()) * @return isStakingLimitSet whether the stake limit is set * @return currentStakeLimit current stake limit (equivalent to return of getCurrentStakeLimit()) * @return maxStakeLimit max stake limit * @return maxStakeLimitGrowthBlocks blocks needed to restore max stake limit from the fully exhausted state * @return prevStakeLimit previously reached stake limit * @return prevStakeBlockNumber previously seen block number */ function getStakeLimitFullInfo() external view returns ( bool isStakingPaused, bool isStakingLimitSet, uint256 currentStakeLimit, uint256 maxStakeLimit, uint256 maxStakeLimitGrowthBlocks, uint256 prevStakeLimit, uint256 prevStakeBlockNumber ); event Stopped(); event Resumed(); event StakingPaused(); event StakingResumed(); event StakingLimitSet(uint256 maxStakeLimit, uint256 stakeLimitIncreasePerBlock); event StakingLimitRemoved(); /** * @notice Set Lido protocol contracts (oracle, treasury, insurance fund). * @param _oracle oracle contract * @param _treasury treasury contract * @param _insuranceFund insurance fund contract */ function setProtocolContracts( address _oracle, address _treasury, address _insuranceFund ) external; event ProtocolContactsSet(address oracle, address treasury, address insuranceFund); /** * @notice Set fee rate to `_feeBasisPoints` basis points. * The fees are accrued when: * - oracles report staking results (beacon chain balance increase) * - validators gain execution layer rewards (priority fees and MEV) * @param _feeBasisPoints Fee rate, in basis points */ function setFee(uint16 _feeBasisPoints) external; /** * @notice Set fee distribution * @param _treasuryFeeBasisPoints basis points go to the treasury, * @param _insuranceFeeBasisPoints basis points go to the insurance fund, * @param _operatorsFeeBasisPoints basis points go to node operators. * @dev The sum has to be 10 000. */ function setFeeDistribution( uint16 _treasuryFeeBasisPoints, uint16 _insuranceFeeBasisPoints, uint16 _operatorsFeeBasisPoints ) external; /** * @notice Returns staking rewards fee rate */ function getFee() external view returns (uint16 feeBasisPoints); /** * @notice Returns fee distribution proportion */ function getFeeDistribution() external view returns ( uint16 treasuryFeeBasisPoints, uint16 insuranceFeeBasisPoints, uint16 operatorsFeeBasisPoints ); event FeeSet(uint16 feeBasisPoints); event FeeDistributionSet(uint16 treasuryFeeBasisPoints, uint16 insuranceFeeBasisPoints, uint16 operatorsFeeBasisPoints); /** * @notice A payable function supposed to be called only by LidoExecutionLayerRewardsVault contract * @dev We need a dedicated function because funds received by the default payable function * are treated as a user deposit */ function receiveELRewards() external payable; // The amount of ETH withdrawn from LidoExecutionLayerRewardsVault contract to Lido contract event ELRewardsReceived(uint256 amount); /** * @dev Sets limit on amount of ETH to withdraw from execution layer rewards vault per LidoOracle report * @param _limitPoints limit in basis points to amount of ETH to withdraw per LidoOracle report */ function setELRewardsWithdrawalLimit(uint16 _limitPoints) external; // Percent in basis points of total pooled ether allowed to withdraw from LidoExecutionLayerRewardsVault per LidoOracle report event ELRewardsWithdrawalLimitSet(uint256 limitPoints); /** * @notice Set credentials to withdraw ETH on ETH 2.0 side after the phase 2 is launched to `_withdrawalCredentials` * @dev Note that setWithdrawalCredentials discards all unused signing keys as the signatures are invalidated. * @param _withdrawalCredentials withdrawal credentials field as defined in the Ethereum PoS consensus specs */ function setWithdrawalCredentials(bytes32 _withdrawalCredentials) external; /** * @notice Returns current credentials to withdraw ETH on ETH 2.0 side after the phase 2 is launched */ function getWithdrawalCredentials() external view returns (bytes); event WithdrawalCredentialsSet(bytes32 withdrawalCredentials); /** * @dev Sets the address of LidoExecutionLayerRewardsVault contract * @param _executionLayerRewardsVault Execution layer rewards vault contract address */ function setELRewardsVault(address _executionLayerRewardsVault) external; // The `executionLayerRewardsVault` was set as the execution layer rewards vault for Lido event ELRewardsVaultSet(address executionLayerRewardsVault); /** * @notice Ether on the ETH 2.0 side reported by the oracle * @param _epoch Epoch id * @param _eth2balance Balance in wei on the ETH 2.0 side */ function handleOracleReport(uint256 _epoch, uint256 _eth2balance) external; // User functions /** * @notice Adds eth to the pool * @return StETH Amount of StETH generated */ function submit(address _referral) external payable returns (uint256 StETH); // Records a deposit made by a user event Submitted(address indexed sender, uint256 amount, address referral); // The `amount` of ether was sent to the deposit_contract.deposit function event Unbuffered(uint256 amount); // Requested withdrawal of `etherAmount` to `pubkeyHash` on the ETH 2.0 side, `tokenAmount` burned by `sender`, // `sentFromBuffer` was sent on the current Ethereum side. event Withdrawal(address indexed sender, uint256 tokenAmount, uint256 sentFromBuffer, bytes32 indexed pubkeyHash, uint256 etherAmount); // Info functions /** * @notice Gets the amount of Ether controlled by the system */ function getTotalPooledEther() external view returns (uint256); /** * @notice Gets the amount of Ether temporary buffered on this contract balance */ function getBufferedEther() external view returns (uint256); /** * @notice Returns the key values related to Beacon-side * @return depositedValidators - number of deposited validators * @return beaconValidators - number of Lido's validators visible in the Beacon state, reported by oracles * @return beaconBalance - total amount of Beacon-side Ether (sum of all the balances of Lido validators) */ function getBeaconStat() external view returns (uint256 depositedValidators, uint256 beaconValidators, uint256 beaconBalance); } // SPDX-FileCopyrightText: 2020 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 pragma solidity 0.4.24; /** * @title Node Operator registry * * Node Operator registry manages signing keys and other node operator data. * It's also responsible for distributing rewards to node operators. */ interface INodeOperatorsRegistry { /** * @notice Add node operator named `name` with reward address `rewardAddress` and staking limit = 0 validators * @param _name Human-readable name * @param _rewardAddress Ethereum 1 address which receives stETH rewards for this operator * @return a unique key of the added operator */ function addNodeOperator(string _name, address _rewardAddress) external returns (uint256 id); /** * @notice `_active ? 'Enable' : 'Disable'` the node operator #`_id` */ function setNodeOperatorActive(uint256 _id, bool _active) external; /** * @notice Change human-readable name of the node operator #`_id` to `_name` */ function setNodeOperatorName(uint256 _id, string _name) external; /** * @notice Change reward address of the node operator #`_id` to `_rewardAddress` */ function setNodeOperatorRewardAddress(uint256 _id, address _rewardAddress) external; /** * @notice Set the maximum number of validators to stake for the node operator #`_id` to `_stakingLimit` */ function setNodeOperatorStakingLimit(uint256 _id, uint64 _stakingLimit) external; /** * @notice Report `_stoppedIncrement` more stopped validators of the node operator #`_id` */ function reportStoppedValidators(uint256 _id, uint64 _stoppedIncrement) external; /** * @notice Remove unused signing keys * @dev Function is used by the pool */ function trimUnusedKeys() external; /** * @notice Returns total number of node operators */ function getNodeOperatorsCount() external view returns (uint256); /** * @notice Returns number of active node operators */ function getActiveNodeOperatorsCount() external view returns (uint256); /** * @notice Returns the n-th node operator * @param _id Node Operator id * @param _fullInfo If true, name will be returned as well */ function getNodeOperator(uint256 _id, bool _fullInfo) external view returns ( bool active, string name, address rewardAddress, uint64 stakingLimit, uint64 stoppedValidators, uint64 totalSigningKeys, uint64 usedSigningKeys); /** * @notice Returns the rewards distribution proportional to the effective stake for each node operator. * @param _totalRewardShares Total amount of reward shares to distribute. */ function getRewardsDistribution(uint256 _totalRewardShares) external view returns ( address[] memory recipients, uint256[] memory shares ); event NodeOperatorAdded(uint256 id, string name, address rewardAddress, uint64 stakingLimit); event NodeOperatorActiveSet(uint256 indexed id, bool active); event NodeOperatorNameSet(uint256 indexed id, string name); event NodeOperatorRewardAddressSet(uint256 indexed id, address rewardAddress); event NodeOperatorStakingLimitSet(uint256 indexed id, uint64 stakingLimit); event NodeOperatorTotalStoppedValidatorsReported(uint256 indexed id, uint64 totalStopped); event NodeOperatorTotalKeysTrimmed(uint256 indexed id, uint64 totalKeysTrimmed); /** * @notice Selects and returns at most `_numKeys` signing keys (as well as the corresponding * signatures) from the set of active keys and marks the selected keys as used. * May only be called by the pool contract. * * @param _numKeys The number of keys to select. The actual number of selected keys may be less * due to the lack of active keys. */ function assignNextSigningKeys(uint256 _numKeys) external returns (bytes memory pubkeys, bytes memory signatures); /** * @notice Add `_quantity` validator signing keys to the keys of the node operator #`_operator_id`. Concatenated keys are: `_pubkeys` * @dev Along with each key the DAO has to provide a signatures for the * (pubkey, withdrawal_credentials, 32000000000) message. * Given that information, the contract'll be able to call * deposit_contract.deposit on-chain. * @param _operator_id Node Operator id * @param _quantity Number of signing keys provided * @param _pubkeys Several concatenated validator signing keys * @param _signatures Several concatenated signatures for (pubkey, withdrawal_credentials, 32000000000) messages */ function addSigningKeys(uint256 _operator_id, uint256 _quantity, bytes _pubkeys, bytes _signatures) external; /** * @notice Add `_quantity` validator signing keys of operator #`_id` to the set of usable keys. Concatenated keys are: `_pubkeys`. Can be done by node operator in question by using the designated rewards address. * @dev Along with each key the DAO has to provide a signatures for the * (pubkey, withdrawal_credentials, 32000000000) message. * Given that information, the contract'll be able to call * deposit_contract.deposit on-chain. * @param _operator_id Node Operator id * @param _quantity Number of signing keys provided * @param _pubkeys Several concatenated validator signing keys * @param _signatures Several concatenated signatures for (pubkey, withdrawal_credentials, 32000000000) messages */ function addSigningKeysOperatorBH(uint256 _operator_id, uint256 _quantity, bytes _pubkeys, bytes _signatures) external; /** * @notice Removes a validator signing key #`_index` from the keys of the node operator #`_operator_id` * @param _operator_id Node Operator id * @param _index Index of the key, starting with 0 */ function removeSigningKey(uint256 _operator_id, uint256 _index) external; /** * @notice Removes a validator signing key #`_index` of operator #`_id` from the set of usable keys. Executed on behalf of Node Operator. * @param _operator_id Node Operator id * @param _index Index of the key, starting with 0 */ function removeSigningKeyOperatorBH(uint256 _operator_id, uint256 _index) external; /** * @notice Removes an #`_amount` of validator signing keys starting from #`_index` of operator #`_id` usable keys. Executed on behalf of DAO. * @param _operator_id Node Operator id * @param _index Index of the key, starting with 0 * @param _amount Number of keys to remove */ function removeSigningKeys(uint256 _operator_id, uint256 _index, uint256 _amount) external; /** * @notice Removes an #`_amount` of validator signing keys starting from #`_index` of operator #`_id` usable keys. Executed on behalf of Node Operator. * @param _operator_id Node Operator id * @param _index Index of the key, starting with 0 * @param _amount Number of keys to remove */ function removeSigningKeysOperatorBH(uint256 _operator_id, uint256 _index, uint256 _amount) external; /** * @notice Returns total number of signing keys of the node operator #`_operator_id` */ function getTotalSigningKeyCount(uint256 _operator_id) external view returns (uint256); /** * @notice Returns number of usable signing keys of the node operator #`_operator_id` */ function getUnusedSigningKeyCount(uint256 _operator_id) external view returns (uint256); /** * @notice Returns n-th signing key of the node operator #`_operator_id` * @param _operator_id Node Operator id * @param _index Index of the key, starting with 0 * @return key Key * @return depositSignature Signature needed for a deposit_contract.deposit call * @return used Flag indication if the key was used in the staking */ function getSigningKey(uint256 _operator_id, uint256 _index) external view returns (bytes key, bytes depositSignature, bool used); /** * @notice Returns a monotonically increasing counter that gets incremented when any of the following happens: * 1. a node operator's key(s) is added; * 2. a node operator's key(s) is removed; * 3. a node operator's approved keys limit is changed. * 4. a node operator was activated/deactivated. Activation or deactivation of node operator * might lead to usage of unvalidated keys in the assignNextSigningKeys method. */ function getKeysOpIndex() external view returns (uint256); event SigningKeyAdded(uint256 indexed operatorId, bytes pubkey); event SigningKeyRemoved(uint256 indexed operatorId, bytes pubkey); event KeysOpIndexSet(uint256 keysOpIndex); } // SPDX-FileCopyrightText: 2020 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 pragma solidity 0.4.24; /** * @title Deposit contract interface */ interface IDepositContract { /** * @notice Top-ups deposit of a validator on the ETH 2.0 side * @param pubkey Validator signing key * @param withdrawal_credentials Credentials that allows to withdraw funds * @param signature Signature of the request * @param deposit_data_root The deposits Merkle tree node, used as a checksum */ function deposit( bytes /* 48 */ pubkey, bytes /* 32 */ withdrawal_credentials, bytes /* 96 */ signature, bytes32 deposit_data_root ) external payable; } // SPDX-FileCopyrightText: 2021 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 pragma solidity 0.4.24; interface ILidoExecutionLayerRewardsVault { /** * @notice Withdraw all accumulated execution layer rewards to Lido contract * @param _maxAmount Max amount of ETH to withdraw * @return amount of funds received as execution layer rewards (in wei) */ function withdrawRewards(uint256 _maxAmount) external returns (uint256 amount); } // SPDX-FileCopyrightText: 2020 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 /* See contracts/COMPILERS.md */ pragma solidity 0.4.24; import "openzeppelin-solidity/contracts/token/ERC20/IERC20.sol"; import "@aragon/os/contracts/common/UnstructuredStorage.sol"; import "@aragon/os/contracts/lib/math/SafeMath.sol"; import "./lib/Pausable.sol"; /** * @title Interest-bearing ERC20-like token for Lido Liquid Stacking protocol. * * This contract is abstract. To make the contract deployable override the * `_getTotalPooledEther` function. `Lido.sol` contract inherits StETH and defines * the `_getTotalPooledEther` function. * * StETH balances are dynamic and represent the holder's share in the total amount * of Ether controlled by the protocol. Account shares aren't normalized, so the * contract also stores the sum of all shares to calculate each account's token balance * which equals to: * * shares[account] * _getTotalPooledEther() / _getTotalShares() * * For example, assume that we have: * * _getTotalPooledEther() -> 10 ETH * sharesOf(user1) -> 100 * sharesOf(user2) -> 400 * * Therefore: * * balanceOf(user1) -> 2 tokens which corresponds 2 ETH * balanceOf(user2) -> 8 tokens which corresponds 8 ETH * * Since balances of all token holders change when the amount of total pooled Ether * changes, this token cannot fully implement ERC20 standard: it only emits `Transfer` * events upon explicit transfer between holders. In contrast, when total amount of * pooled Ether increases, no `Transfer` events are generated: doing so would require * emitting an event for each token holder and thus running an unbounded loop. * * The token inherits from `Pausable` and uses `whenNotStopped` modifier for methods * which change `shares` or `allowances`. `_stop` and `_resume` functions are overridden * in `Lido.sol` and might be called by an account with the `PAUSE_ROLE` assigned by the * DAO. This is useful for emergency scenarios, e.g. a protocol bug, where one might want * to freeze all token transfers and approvals until the emergency is resolved. */ contract StETH is IERC20, Pausable { using SafeMath for uint256; using UnstructuredStorage for bytes32; /** * @dev StETH balances are dynamic and are calculated based on the accounts' shares * and the total amount of Ether controlled by the protocol. Account shares aren't * normalized, so the contract also stores the sum of all shares to calculate * each account's token balance which equals to: * * shares[account] * _getTotalPooledEther() / _getTotalShares() */ mapping (address => uint256) private shares; /** * @dev Allowances are nominated in tokens, not token shares. */ mapping (address => mapping (address => uint256)) private allowances; /** * @dev Storage position used for holding the total amount of shares in existence. * * The Lido protocol is built on top of Aragon and uses the Unstructured Storage pattern * for value types: * * https://blog.openzeppelin.com/upgradeability-using-unstructured-storage * https://blog.8bitzen.com/posts/20-02-2020-understanding-how-solidity-upgradeable-unstructured-proxies-work * * For reference types, conventional storage variables are used since it's non-trivial * and error-prone to implement reference-type unstructured storage using Solidity v0.4; * see https://github.com/lidofinance/lido-dao/issues/181#issuecomment-736098834 */ bytes32 internal constant TOTAL_SHARES_POSITION = keccak256("lido.StETH.totalShares"); /** * @notice An executed shares transfer from `sender` to `recipient`. * * @dev emitted in pair with an ERC20-defined `Transfer` event. */ event TransferShares( address indexed from, address indexed to, uint256 sharesValue ); /** * @notice An executed `burnShares` request * * @dev Reports simultaneously burnt shares amount * and corresponding stETH amount. * The stETH amount is calculated twice: before and after the burning incurred rebase. * * @param account holder of the burnt shares * @param preRebaseTokenAmount amount of stETH the burnt shares corresponded to before the burn * @param postRebaseTokenAmount amount of stETH the burnt shares corresponded to after the burn * @param sharesAmount amount of burnt shares */ event SharesBurnt( address indexed account, uint256 preRebaseTokenAmount, uint256 postRebaseTokenAmount, uint256 sharesAmount ); /** * @return the name of the token. */ function name() public pure returns (string) { return "Liquid staked Ether 2.0"; } /** * @return the symbol of the token, usually a shorter version of the * name. */ function symbol() public pure returns (string) { return "stETH"; } /** * @return the number of decimals for getting user representation of a token amount. */ function decimals() public pure returns (uint8) { return 18; } /** * @return the amount of tokens in existence. * * @dev Always equals to `_getTotalPooledEther()` since token amount * is pegged to the total amount of Ether controlled by the protocol. */ function totalSupply() public view returns (uint256) { return _getTotalPooledEther(); } /** * @return the entire amount of Ether controlled by the protocol. * * @dev The sum of all ETH balances in the protocol, equals to the total supply of stETH. */ function getTotalPooledEther() public view returns (uint256) { return _getTotalPooledEther(); } /** * @return the amount of tokens owned by the `_account`. * * @dev Balances are dynamic and equal the `_account`'s share in the amount of the * total Ether controlled by the protocol. See `sharesOf`. */ function balanceOf(address _account) public view returns (uint256) { return getPooledEthByShares(_sharesOf(_account)); } /** * @notice Moves `_amount` tokens from the caller's account to the `_recipient` account. * * @return a boolean value indicating whether the operation succeeded. * Emits a `Transfer` event. * Emits a `TransferShares` event. * * Requirements: * * - `_recipient` cannot be the zero address. * - the caller must have a balance of at least `_amount`. * - the contract must not be paused. * * @dev The `_amount` argument is the amount of tokens, not shares. */ function transfer(address _recipient, uint256 _amount) public returns (bool) { _transfer(msg.sender, _recipient, _amount); return true; } /** * @return the remaining number of tokens that `_spender` is allowed to spend * on behalf of `_owner` through `transferFrom`. This is zero by default. * * @dev This value changes when `approve` or `transferFrom` is called. */ function allowance(address _owner, address _spender) public view returns (uint256) { return allowances[_owner][_spender]; } /** * @notice Sets `_amount` as the allowance of `_spender` over the caller's tokens. * * @return a boolean value indicating whether the operation succeeded. * Emits an `Approval` event. * * Requirements: * * - `_spender` cannot be the zero address. * - the contract must not be paused. * * @dev The `_amount` argument is the amount of tokens, not shares. */ function approve(address _spender, uint256 _amount) public returns (bool) { _approve(msg.sender, _spender, _amount); return true; } /** * @notice Moves `_amount` tokens from `_sender` to `_recipient` using the * allowance mechanism. `_amount` is then deducted from the caller's * allowance. * * @return a boolean value indicating whether the operation succeeded. * * Emits a `Transfer` event. * Emits a `TransferShares` event. * Emits an `Approval` event indicating the updated allowance. * * Requirements: * * - `_sender` and `_recipient` cannot be the zero addresses. * - `_sender` must have a balance of at least `_amount`. * - the caller must have allowance for `_sender`'s tokens of at least `_amount`. * - the contract must not be paused. * * @dev The `_amount` argument is the amount of tokens, not shares. */ function transferFrom(address _sender, address _recipient, uint256 _amount) public returns (bool) { uint256 currentAllowance = allowances[_sender][msg.sender]; require(currentAllowance >= _amount, "TRANSFER_AMOUNT_EXCEEDS_ALLOWANCE"); _transfer(_sender, _recipient, _amount); _approve(_sender, msg.sender, currentAllowance.sub(_amount)); return true; } /** * @notice Atomically increases the allowance granted to `_spender` by the caller by `_addedValue`. * * This is an alternative to `approve` that can be used as a mitigation for * problems described in: * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol#L42 * Emits an `Approval` event indicating the updated allowance. * * Requirements: * * - `_spender` cannot be the the zero address. * - the contract must not be paused. */ function increaseAllowance(address _spender, uint256 _addedValue) public returns (bool) { _approve(msg.sender, _spender, allowances[msg.sender][_spender].add(_addedValue)); return true; } /** * @notice Atomically decreases the allowance granted to `_spender` by the caller by `_subtractedValue`. * * This is an alternative to `approve` that can be used as a mitigation for * problems described in: * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol#L42 * Emits an `Approval` event indicating the updated allowance. * * Requirements: * * - `_spender` cannot be the zero address. * - `_spender` must have allowance for the caller of at least `_subtractedValue`. * - the contract must not be paused. */ function decreaseAllowance(address _spender, uint256 _subtractedValue) public returns (bool) { uint256 currentAllowance = allowances[msg.sender][_spender]; require(currentAllowance >= _subtractedValue, "DECREASED_ALLOWANCE_BELOW_ZERO"); _approve(msg.sender, _spender, currentAllowance.sub(_subtractedValue)); return true; } /** * @return the total amount of shares in existence. * * @dev The sum of all accounts' shares can be an arbitrary number, therefore * it is necessary to store it in order to calculate each account's relative share. */ function getTotalShares() public view returns (uint256) { return _getTotalShares(); } /** * @return the amount of shares owned by `_account`. */ function sharesOf(address _account) public view returns (uint256) { return _sharesOf(_account); } /** * @return the amount of shares that corresponds to `_ethAmount` protocol-controlled Ether. */ function getSharesByPooledEth(uint256 _ethAmount) public view returns (uint256) { uint256 totalPooledEther = _getTotalPooledEther(); if (totalPooledEther == 0) { return 0; } else { return _ethAmount .mul(_getTotalShares()) .div(totalPooledEther); } } /** * @return the amount of Ether that corresponds to `_sharesAmount` token shares. */ function getPooledEthByShares(uint256 _sharesAmount) public view returns (uint256) { uint256 totalShares = _getTotalShares(); if (totalShares == 0) { return 0; } else { return _sharesAmount .mul(_getTotalPooledEther()) .div(totalShares); } } /** * @notice Moves `_sharesAmount` token shares from the caller's account to the `_recipient` account. * * @return amount of transferred tokens. * Emits a `TransferShares` event. * Emits a `Transfer` event. * * Requirements: * * - `_recipient` cannot be the zero address. * - the caller must have at least `_sharesAmount` shares. * - the contract must not be paused. * * @dev The `_sharesAmount` argument is the amount of shares, not tokens. */ function transferShares(address _recipient, uint256 _sharesAmount) public returns (uint256) { _transferShares(msg.sender, _recipient, _sharesAmount); emit TransferShares(msg.sender, _recipient, _sharesAmount); uint256 tokensAmount = getPooledEthByShares(_sharesAmount); emit Transfer(msg.sender, _recipient, tokensAmount); return tokensAmount; } /** * @return the total amount (in wei) of Ether controlled by the protocol. * @dev This is used for calculating tokens from shares and vice versa. * @dev This function is required to be implemented in a derived contract. */ function _getTotalPooledEther() internal view returns (uint256); /** * @notice Moves `_amount` tokens from `_sender` to `_recipient`. * Emits a `Transfer` event. * Emits a `TransferShares` event. */ function _transfer(address _sender, address _recipient, uint256 _amount) internal { uint256 _sharesToTransfer = getSharesByPooledEth(_amount); _transferShares(_sender, _recipient, _sharesToTransfer); emit Transfer(_sender, _recipient, _amount); emit TransferShares(_sender, _recipient, _sharesToTransfer); } /** * @notice Sets `_amount` as the allowance of `_spender` over the `_owner` s tokens. * * Emits an `Approval` event. * * Requirements: * * - `_owner` cannot be the zero address. * - `_spender` cannot be the zero address. * - the contract must not be paused. */ function _approve(address _owner, address _spender, uint256 _amount) internal whenNotStopped { require(_owner != address(0), "APPROVE_FROM_ZERO_ADDRESS"); require(_spender != address(0), "APPROVE_TO_ZERO_ADDRESS"); allowances[_owner][_spender] = _amount; emit Approval(_owner, _spender, _amount); } /** * @return the total amount of shares in existence. */ function _getTotalShares() internal view returns (uint256) { return TOTAL_SHARES_POSITION.getStorageUint256(); } /** * @return the amount of shares owned by `_account`. */ function _sharesOf(address _account) internal view returns (uint256) { return shares[_account]; } /** * @notice Moves `_sharesAmount` shares from `_sender` to `_recipient`. * * Requirements: * * - `_sender` cannot be the zero address. * - `_recipient` cannot be the zero address. * - `_sender` must hold at least `_sharesAmount` shares. * - the contract must not be paused. */ function _transferShares(address _sender, address _recipient, uint256 _sharesAmount) internal whenNotStopped { require(_sender != address(0), "TRANSFER_FROM_THE_ZERO_ADDRESS"); require(_recipient != address(0), "TRANSFER_TO_THE_ZERO_ADDRESS"); uint256 currentSenderShares = shares[_sender]; require(_sharesAmount <= currentSenderShares, "TRANSFER_AMOUNT_EXCEEDS_BALANCE"); shares[_sender] = currentSenderShares.sub(_sharesAmount); shares[_recipient] = shares[_recipient].add(_sharesAmount); } /** * @notice Creates `_sharesAmount` shares and assigns them to `_recipient`, increasing the total amount of shares. * @dev This doesn't increase the token total supply. * * Requirements: * * - `_recipient` cannot be the zero address. * - the contract must not be paused. */ function _mintShares(address _recipient, uint256 _sharesAmount) internal whenNotStopped returns (uint256 newTotalShares) { require(_recipient != address(0), "MINT_TO_THE_ZERO_ADDRESS"); newTotalShares = _getTotalShares().add(_sharesAmount); TOTAL_SHARES_POSITION.setStorageUint256(newTotalShares); shares[_recipient] = shares[_recipient].add(_sharesAmount); // Notice: we're not emitting a Transfer event from the zero address here since shares mint // works by taking the amount of tokens corresponding to the minted shares from all other // token holders, proportionally to their share. The total supply of the token doesn't change // as the result. This is equivalent to performing a send from each other token holder's // address to `address`, but we cannot reflect this as it would require sending an unbounded // number of events. } /** * @notice Destroys `_sharesAmount` shares from `_account`'s holdings, decreasing the total amount of shares. * @dev This doesn't decrease the token total supply. * * Requirements: * * - `_account` cannot be the zero address. * - `_account` must hold at least `_sharesAmount` shares. * - the contract must not be paused. */ function _burnShares(address _account, uint256 _sharesAmount) internal whenNotStopped returns (uint256 newTotalShares) { require(_account != address(0), "BURN_FROM_THE_ZERO_ADDRESS"); uint256 accountShares = shares[_account]; require(_sharesAmount <= accountShares, "BURN_AMOUNT_EXCEEDS_BALANCE"); uint256 preRebaseTokenAmount = getPooledEthByShares(_sharesAmount); newTotalShares = _getTotalShares().sub(_sharesAmount); TOTAL_SHARES_POSITION.setStorageUint256(newTotalShares); shares[_account] = accountShares.sub(_sharesAmount); uint256 postRebaseTokenAmount = getPooledEthByShares(_sharesAmount); emit SharesBurnt(_account, preRebaseTokenAmount, postRebaseTokenAmount, _sharesAmount); // Notice: we're not emitting a Transfer event to the zero address here since shares burn // works by redistributing the amount of tokens corresponding to the burned shares between // all other token holders. The total supply of the token doesn't change as the result. // This is equivalent to performing a send from `address` to each other token holder address, // but we cannot reflect this as it would require sending an unbounded number of events. // We're emitting `SharesBurnt` event to provide an explicit rebase log record nonetheless. } } // SPDX-FileCopyrightText: 2022 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 /* See contracts/COMPILERS.md */ pragma solidity 0.4.24; import "@aragon/os/contracts/common/UnstructuredStorage.sol"; // // We need to pack four variables into the same 256bit-wide storage slot // to lower the costs per each staking request. // // As a result, slot's memory aligned as follows: // // MSB ------------------------------------------------------------------------------> LSB // 256____________160_________________________128_______________32_____________________ 0 // |_______________|___________________________|________________|_______________________| // | maxStakeLimit | maxStakeLimitGrowthBlocks | prevStakeLimit | prevStakeBlockNumber | // |<-- 96 bits -->|<---------- 32 bits ------>|<-- 96 bits --->|<----- 32 bits ------->| // // // NB: Internal representation conventions: // // - the `maxStakeLimitGrowthBlocks` field above represented as follows: // `maxStakeLimitGrowthBlocks` = `maxStakeLimit` / `stakeLimitIncreasePerBlock` // 32 bits 96 bits 96 bits // // // - the "staking paused" state is encoded by `prevStakeBlockNumber` being zero, // - the "staking unlimited" state is encoded by `maxStakeLimit` being zero and `prevStakeBlockNumber` being non-zero. // /** * @notice Library for the internal structs definitions * @dev solidity <0.6 doesn't support top-level structs * using the library to have a proper namespace */ library StakeLimitState { /** * @dev Internal representation struct (slot-wide) */ struct Data { uint32 prevStakeBlockNumber; uint96 prevStakeLimit; uint32 maxStakeLimitGrowthBlocks; uint96 maxStakeLimit; } } library StakeLimitUnstructuredStorage { using UnstructuredStorage for bytes32; /// @dev Storage offset for `maxStakeLimit` (bits) uint256 internal constant MAX_STAKE_LIMIT_OFFSET = 160; /// @dev Storage offset for `maxStakeLimitGrowthBlocks` (bits) uint256 internal constant MAX_STAKE_LIMIT_GROWTH_BLOCKS_OFFSET = 128; /// @dev Storage offset for `prevStakeLimit` (bits) uint256 internal constant PREV_STAKE_LIMIT_OFFSET = 32; /// @dev Storage offset for `prevStakeBlockNumber` (bits) uint256 internal constant PREV_STAKE_BLOCK_NUMBER_OFFSET = 0; /** * @dev Read stake limit state from the unstructured storage position * @param _position storage offset */ function getStorageStakeLimitStruct(bytes32 _position) internal view returns (StakeLimitState.Data memory stakeLimit) { uint256 slotValue = _position.getStorageUint256(); stakeLimit.prevStakeBlockNumber = uint32(slotValue >> PREV_STAKE_BLOCK_NUMBER_OFFSET); stakeLimit.prevStakeLimit = uint96(slotValue >> PREV_STAKE_LIMIT_OFFSET); stakeLimit.maxStakeLimitGrowthBlocks = uint32(slotValue >> MAX_STAKE_LIMIT_GROWTH_BLOCKS_OFFSET); stakeLimit.maxStakeLimit = uint96(slotValue >> MAX_STAKE_LIMIT_OFFSET); } /** * @dev Write stake limit state to the unstructured storage position * @param _position storage offset * @param _data stake limit state structure instance */ function setStorageStakeLimitStruct(bytes32 _position, StakeLimitState.Data memory _data) internal { _position.setStorageUint256( uint256(_data.prevStakeBlockNumber) << PREV_STAKE_BLOCK_NUMBER_OFFSET | uint256(_data.prevStakeLimit) << PREV_STAKE_LIMIT_OFFSET | uint256(_data.maxStakeLimitGrowthBlocks) << MAX_STAKE_LIMIT_GROWTH_BLOCKS_OFFSET | uint256(_data.maxStakeLimit) << MAX_STAKE_LIMIT_OFFSET ); } } /** * @notice Interface library with helper functions to deal with stake limit struct in a more high-level approach. */ library StakeLimitUtils { /** * @notice Calculate stake limit for the current block. */ function calculateCurrentStakeLimit(StakeLimitState.Data memory _data) internal view returns(uint256 limit) { uint256 stakeLimitIncPerBlock; if (_data.maxStakeLimitGrowthBlocks != 0) { stakeLimitIncPerBlock = _data.maxStakeLimit / _data.maxStakeLimitGrowthBlocks; } limit = _data.prevStakeLimit + ((block.number - _data.prevStakeBlockNumber) * stakeLimitIncPerBlock); if (limit > _data.maxStakeLimit) { limit = _data.maxStakeLimit; } } /** * @notice check if staking is on pause */ function isStakingPaused(StakeLimitState.Data memory _data) internal pure returns(bool) { return _data.prevStakeBlockNumber == 0; } /** * @notice check if staking limit is set (otherwise staking is unlimited) */ function isStakingLimitSet(StakeLimitState.Data memory _data) internal pure returns(bool) { return _data.maxStakeLimit != 0; } /** * @notice update stake limit repr with the desired limits * @dev input `_data` param is mutated and the func returns effectively the same pointer * @param _data stake limit state struct * @param _maxStakeLimit stake limit max value * @param _stakeLimitIncreasePerBlock stake limit increase (restoration) per block */ function setStakingLimit( StakeLimitState.Data memory _data, uint256 _maxStakeLimit, uint256 _stakeLimitIncreasePerBlock ) internal view returns (StakeLimitState.Data memory) { require(_maxStakeLimit != 0, "ZERO_MAX_STAKE_LIMIT"); require(_maxStakeLimit <= uint96(-1), "TOO_LARGE_MAX_STAKE_LIMIT"); require(_maxStakeLimit >= _stakeLimitIncreasePerBlock, "TOO_LARGE_LIMIT_INCREASE"); require( (_stakeLimitIncreasePerBlock == 0) || (_maxStakeLimit / _stakeLimitIncreasePerBlock <= uint32(-1)), "TOO_SMALL_LIMIT_INCREASE" ); // if staking was paused or unlimited previously, // or new limit is lower than previous, then // reset prev stake limit to the new max stake limit if ((_data.maxStakeLimit == 0) || (_maxStakeLimit < _data.prevStakeLimit)) { _data.prevStakeLimit = uint96(_maxStakeLimit); } _data.maxStakeLimitGrowthBlocks = _stakeLimitIncreasePerBlock != 0 ? uint32(_maxStakeLimit / _stakeLimitIncreasePerBlock) : 0; _data.maxStakeLimit = uint96(_maxStakeLimit); if (_data.prevStakeBlockNumber != 0) { _data.prevStakeBlockNumber = uint32(block.number); } return _data; } /** * @notice update stake limit repr to remove the limit * @dev input `_data` param is mutated and the func returns effectively the same pointer * @param _data stake limit state struct */ function removeStakingLimit( StakeLimitState.Data memory _data ) internal view returns (StakeLimitState.Data memory) { _data.maxStakeLimit = 0; return _data; } /** * @notice update stake limit repr after submitting user's eth * @dev input `_data` param is mutated and the func returns effectively the same pointer * @param _data stake limit state struct * @param _newPrevStakeLimit new value for the `prevStakeLimit` field */ function updatePrevStakeLimit( StakeLimitState.Data memory _data, uint256 _newPrevStakeLimit ) internal view returns (StakeLimitState.Data memory) { assert(_newPrevStakeLimit <= uint96(-1)); assert(_data.prevStakeBlockNumber != 0); _data.prevStakeLimit = uint96(_newPrevStakeLimit); _data.prevStakeBlockNumber = uint32(block.number); return _data; } /** * @notice set stake limit pause state (on or off) * @dev input `_data` param is mutated and the func returns effectively the same pointer * @param _data stake limit state struct * @param _isPaused pause state flag */ function setStakeLimitPauseState( StakeLimitState.Data memory _data, bool _isPaused ) internal view returns (StakeLimitState.Data memory) { _data.prevStakeBlockNumber = uint32(_isPaused ? 0 : block.number); return _data; } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "../common/UnstructuredStorage.sol"; import "../kernel/IKernel.sol"; contract AppStorage { using UnstructuredStorage for bytes32; /* Hardcoded constants to save gas bytes32 internal constant KERNEL_POSITION = keccak256("aragonOS.appStorage.kernel"); bytes32 internal constant APP_ID_POSITION = keccak256("aragonOS.appStorage.appId"); */ bytes32 internal constant KERNEL_POSITION = 0x4172f0f7d2289153072b0a6ca36959e0cbe2efc3afe50fc81636caa96338137b; bytes32 internal constant APP_ID_POSITION = 0xd625496217aa6a3453eecb9c3489dc5a53e6c67b444329ea2b2cbc9ff547639b; function kernel() public view returns (IKernel) { return IKernel(KERNEL_POSITION.getStorageAddress()); } function appId() public view returns (bytes32) { return APP_ID_POSITION.getStorageBytes32(); } function setKernel(IKernel _kernel) internal { KERNEL_POSITION.setStorageAddress(address(_kernel)); } function setAppId(bytes32 _appId) internal { APP_ID_POSITION.setStorageBytes32(_appId); } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; contract ACLSyntaxSugar { function arr() internal pure returns (uint256[]) { return new uint256[](0); } function arr(bytes32 _a) internal pure returns (uint256[] r) { return arr(uint256(_a)); } function arr(bytes32 _a, bytes32 _b) internal pure returns (uint256[] r) { return arr(uint256(_a), uint256(_b)); } function arr(address _a) internal pure returns (uint256[] r) { return arr(uint256(_a)); } function arr(address _a, address _b) internal pure returns (uint256[] r) { return arr(uint256(_a), uint256(_b)); } function arr(address _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) { return arr(uint256(_a), _b, _c); } function arr(address _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) { return arr(uint256(_a), _b, _c, _d); } function arr(address _a, uint256 _b) internal pure returns (uint256[] r) { return arr(uint256(_a), uint256(_b)); } function arr(address _a, address _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) { return arr(uint256(_a), uint256(_b), _c, _d, _e); } function arr(address _a, address _b, address _c) internal pure returns (uint256[] r) { return arr(uint256(_a), uint256(_b), uint256(_c)); } function arr(address _a, address _b, uint256 _c) internal pure returns (uint256[] r) { return arr(uint256(_a), uint256(_b), uint256(_c)); } function arr(uint256 _a) internal pure returns (uint256[] r) { r = new uint256[](1); r[0] = _a; } function arr(uint256 _a, uint256 _b) internal pure returns (uint256[] r) { r = new uint256[](2); r[0] = _a; r[1] = _b; } function arr(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256[] r) { r = new uint256[](3); r[0] = _a; r[1] = _b; r[2] = _c; } function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d) internal pure returns (uint256[] r) { r = new uint256[](4); r[0] = _a; r[1] = _b; r[2] = _c; r[3] = _d; } function arr(uint256 _a, uint256 _b, uint256 _c, uint256 _d, uint256 _e) internal pure returns (uint256[] r) { r = new uint256[](5); r[0] = _a; r[1] = _b; r[2] = _c; r[3] = _d; r[4] = _e; } } contract ACLHelpers { function decodeParamOp(uint256 _x) internal pure returns (uint8 b) { return uint8(_x >> (8 * 30)); } function decodeParamId(uint256 _x) internal pure returns (uint8 b) { return uint8(_x >> (8 * 31)); } function decodeParamsList(uint256 _x) internal pure returns (uint32 a, uint32 b, uint32 c) { a = uint32(_x); b = uint32(_x >> (8 * 4)); c = uint32(_x >> (8 * 8)); } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./Petrifiable.sol"; contract Autopetrified is Petrifiable { constructor() public { // Immediately petrify base (non-proxy) instances of inherited contracts on deploy. // This renders them uninitializable (and unusable without a proxy). petrify(); } } pragma solidity ^0.4.24; library ConversionHelpers { string private constant ERROR_IMPROPER_LENGTH = "CONVERSION_IMPROPER_LENGTH"; function dangerouslyCastUintArrayToBytes(uint256[] memory _input) internal pure returns (bytes memory output) { // Force cast the uint256[] into a bytes array, by overwriting its length // Note that the bytes array doesn't need to be initialized as we immediately overwrite it // with the input and a new length. The input becomes invalid from this point forward. uint256 byteLength = _input.length * 32; assembly { output := _input mstore(output, byteLength) } } function dangerouslyCastBytesToUintArray(bytes memory _input) internal pure returns (uint256[] memory output) { // Force cast the bytes array into a uint256[], by overwriting its length // Note that the uint256[] doesn't need to be initialized as we immediately overwrite it // with the input and a new length. The input becomes invalid from this point forward. uint256 intsLength = _input.length / 32; require(_input.length == intsLength * 32, ERROR_IMPROPER_LENGTH); assembly { output := _input mstore(output, intsLength) } } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "../common/UnstructuredStorage.sol"; contract ReentrancyGuard { using UnstructuredStorage for bytes32; /* Hardcoded constants to save gas bytes32 internal constant REENTRANCY_MUTEX_POSITION = keccak256("aragonOS.reentrancyGuard.mutex"); */ bytes32 private constant REENTRANCY_MUTEX_POSITION = 0xe855346402235fdd185c890e68d2c4ecad599b88587635ee285bce2fda58dacb; string private constant ERROR_REENTRANT = "REENTRANCY_REENTRANT_CALL"; modifier nonReentrant() { // Ensure mutex is unlocked require(!REENTRANCY_MUTEX_POSITION.getStorageBool(), ERROR_REENTRANT); // Lock mutex before function call REENTRANCY_MUTEX_POSITION.setStorageBool(true); // Perform function call _; // Unlock mutex after function call REENTRANCY_MUTEX_POSITION.setStorageBool(false); } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "../lib/token/ERC20.sol"; import "./EtherTokenConstant.sol"; import "./IsContract.sol"; import "./IVaultRecoverable.sol"; import "./SafeERC20.sol"; contract VaultRecoverable is IVaultRecoverable, EtherTokenConstant, IsContract { using SafeERC20 for ERC20; string private constant ERROR_DISALLOWED = "RECOVER_DISALLOWED"; string private constant ERROR_VAULT_NOT_CONTRACT = "RECOVER_VAULT_NOT_CONTRACT"; string private constant ERROR_TOKEN_TRANSFER_FAILED = "RECOVER_TOKEN_TRANSFER_FAILED"; /** * @notice Send funds to recovery Vault. This contract should never receive funds, * but in case it does, this function allows one to recover them. * @param _token Token balance to be sent to recovery vault. */ function transferToVault(address _token) external { require(allowRecoverability(_token), ERROR_DISALLOWED); address vault = getRecoveryVault(); require(isContract(vault), ERROR_VAULT_NOT_CONTRACT); uint256 balance; if (_token == ETH) { balance = address(this).balance; vault.transfer(balance); } else { ERC20 token = ERC20(_token); balance = token.staticBalanceOf(this); require(token.safeTransfer(vault, balance), ERROR_TOKEN_TRANSFER_FAILED); } emit RecoverToVault(vault, _token, balance); } /** * @dev By default deriving from AragonApp makes it recoverable * @param token Token address that would be recovered * @return bool whether the app allows the recovery */ function allowRecoverability(address token) public view returns (bool) { return true; } // Cast non-implemented interface to be public so we can use it internally function getRecoveryVault() public view returns (address); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./IEVMScriptExecutor.sol"; import "./IEVMScriptRegistry.sol"; import "../apps/AppStorage.sol"; import "../kernel/KernelConstants.sol"; import "../common/Initializable.sol"; contract EVMScriptRunner is AppStorage, Initializable, EVMScriptRegistryConstants, KernelNamespaceConstants { string private constant ERROR_EXECUTOR_UNAVAILABLE = "EVMRUN_EXECUTOR_UNAVAILABLE"; string private constant ERROR_PROTECTED_STATE_MODIFIED = "EVMRUN_PROTECTED_STATE_MODIFIED"; /* This is manually crafted in assembly string private constant ERROR_EXECUTOR_INVALID_RETURN = "EVMRUN_EXECUTOR_INVALID_RETURN"; */ event ScriptResult(address indexed executor, bytes script, bytes input, bytes returnData); function getEVMScriptExecutor(bytes _script) public view returns (IEVMScriptExecutor) { return IEVMScriptExecutor(getEVMScriptRegistry().getScriptExecutor(_script)); } function getEVMScriptRegistry() public view returns (IEVMScriptRegistry) { address registryAddr = kernel().getApp(KERNEL_APP_ADDR_NAMESPACE, EVMSCRIPT_REGISTRY_APP_ID); return IEVMScriptRegistry(registryAddr); } function runScript(bytes _script, bytes _input, address[] _blacklist) internal isInitialized protectState returns (bytes) { IEVMScriptExecutor executor = getEVMScriptExecutor(_script); require(address(executor) != address(0), ERROR_EXECUTOR_UNAVAILABLE); bytes4 sig = executor.execScript.selector; bytes memory data = abi.encodeWithSelector(sig, _script, _input, _blacklist); bytes memory output; assembly { let success := delegatecall( gas, // forward all gas executor, // address add(data, 0x20), // calldata start mload(data), // calldata length 0, // don't write output (we'll handle this ourselves) 0 // don't write output ) output := mload(0x40) // free mem ptr get switch success case 0 { // If the call errored, forward its full error data returndatacopy(output, 0, returndatasize) revert(output, returndatasize) } default { switch gt(returndatasize, 0x3f) case 0 { // Need at least 0x40 bytes returned for properly ABI-encoded bytes values, // revert with "EVMRUN_EXECUTOR_INVALID_RETURN" // See remix: doing a `revert("EVMRUN_EXECUTOR_INVALID_RETURN")` always results in // this memory layout mstore(output, 0x08c379a000000000000000000000000000000000000000000000000000000000) // error identifier mstore(add(output, 0x04), 0x0000000000000000000000000000000000000000000000000000000000000020) // starting offset mstore(add(output, 0x24), 0x000000000000000000000000000000000000000000000000000000000000001e) // reason length mstore(add(output, 0x44), 0x45564d52554e5f4558454355544f525f494e56414c49445f52455455524e0000) // reason revert(output, 100) // 100 = 4 + 3 * 32 (error identifier + 3 words for the ABI encoded error) } default { // Copy result // // Needs to perform an ABI decode for the expected `bytes` return type of // `executor.execScript()` as solidity will automatically ABI encode the returned bytes as: // [ position of the first dynamic length return value = 0x20 (32 bytes) ] // [ output length (32 bytes) ] // [ output content (N bytes) ] // // Perform the ABI decode by ignoring the first 32 bytes of the return data let copysize := sub(returndatasize, 0x20) returndatacopy(output, 0x20, copysize) mstore(0x40, add(output, copysize)) // free mem ptr set } } } emit ScriptResult(address(executor), _script, _input, output); return output; } modifier protectState { address preKernel = address(kernel()); bytes32 preAppId = appId(); _; // exec require(address(kernel()) == preKernel, ERROR_PROTECTED_STATE_MODIFIED); require(appId() == preAppId, ERROR_PROTECTED_STATE_MODIFIED); } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; library UnstructuredStorage { function getStorageBool(bytes32 position) internal view returns (bool data) { assembly { data := sload(position) } } function getStorageAddress(bytes32 position) internal view returns (address data) { assembly { data := sload(position) } } function getStorageBytes32(bytes32 position) internal view returns (bytes32 data) { assembly { data := sload(position) } } function getStorageUint256(bytes32 position) internal view returns (uint256 data) { assembly { data := sload(position) } } function setStorageBool(bytes32 position, bool data) internal { assembly { sstore(position, data) } } function setStorageAddress(bytes32 position, address data) internal { assembly { sstore(position, data) } } function setStorageBytes32(bytes32 position, bytes32 data) internal { assembly { sstore(position, data) } } function setStorageUint256(bytes32 position, uint256 data) internal { assembly { sstore(position, data) } } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "../acl/IACL.sol"; import "../common/IVaultRecoverable.sol"; interface IKernelEvents { event SetApp(bytes32 indexed namespace, bytes32 indexed appId, address app); } // This should be an interface, but interfaces can't inherit yet :( contract IKernel is IKernelEvents, IVaultRecoverable { function acl() public view returns (IACL); function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool); function setApp(bytes32 namespace, bytes32 appId, address app) public; function getApp(bytes32 namespace, bytes32 appId) public view returns (address); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; interface IACL { function initialize(address permissionsCreator) external; // TODO: this should be external // See https://github.com/ethereum/solidity/issues/4832 function hasPermission(address who, address where, bytes32 what, bytes how) public view returns (bool); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; interface IVaultRecoverable { event RecoverToVault(address indexed vault, address indexed token, uint256 amount); function transferToVault(address token) external; function allowRecoverability(address token) external view returns (bool); function getRecoveryVault() external view returns (address); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./Initializable.sol"; contract Petrifiable is Initializable { // Use block UINT256_MAX (which should be never) as the initializable date uint256 internal constant PETRIFIED_BLOCK = uint256(-1); function isPetrified() public view returns (bool) { return getInitializationBlock() == PETRIFIED_BLOCK; } /** * @dev Function to be called by top level contract to prevent being initialized. * Useful for freezing base contracts when they're used behind proxies. */ function petrify() internal onlyInit { initializedAt(PETRIFIED_BLOCK); } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./TimeHelpers.sol"; import "./UnstructuredStorage.sol"; contract Initializable is TimeHelpers { using UnstructuredStorage for bytes32; // keccak256("aragonOS.initializable.initializationBlock") bytes32 internal constant INITIALIZATION_BLOCK_POSITION = 0xebb05b386a8d34882b8711d156f463690983dc47815980fb82aeeff1aa43579e; string private constant ERROR_ALREADY_INITIALIZED = "INIT_ALREADY_INITIALIZED"; string private constant ERROR_NOT_INITIALIZED = "INIT_NOT_INITIALIZED"; modifier onlyInit { require(getInitializationBlock() == 0, ERROR_ALREADY_INITIALIZED); _; } modifier isInitialized { require(hasInitialized(), ERROR_NOT_INITIALIZED); _; } /** * @return Block number in which the contract was initialized */ function getInitializationBlock() public view returns (uint256) { return INITIALIZATION_BLOCK_POSITION.getStorageUint256(); } /** * @return Whether the contract has been initialized by the time of the current block */ function hasInitialized() public view returns (bool) { uint256 initializationBlock = getInitializationBlock(); return initializationBlock != 0 && getBlockNumber() >= initializationBlock; } /** * @dev Function to be called by top level contract after initialization has finished. */ function initialized() internal onlyInit { INITIALIZATION_BLOCK_POSITION.setStorageUint256(getBlockNumber()); } /** * @dev Function to be called by top level contract after initialization to enable the contract * at a future block number rather than immediately. */ function initializedAt(uint256 _blockNumber) internal onlyInit { INITIALIZATION_BLOCK_POSITION.setStorageUint256(_blockNumber); } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./Uint256Helpers.sol"; contract TimeHelpers { using Uint256Helpers for uint256; /** * @dev Returns the current block number. * Using a function rather than `block.number` allows us to easily mock the block number in * tests. */ function getBlockNumber() internal view returns (uint256) { return block.number; } /** * @dev Returns the current block number, converted to uint64. * Using a function rather than `block.number` allows us to easily mock the block number in * tests. */ function getBlockNumber64() internal view returns (uint64) { return getBlockNumber().toUint64(); } /** * @dev Returns the current timestamp. * Using a function rather than `block.timestamp` allows us to easily mock it in * tests. */ function getTimestamp() internal view returns (uint256) { return block.timestamp; // solium-disable-line security/no-block-members } /** * @dev Returns the current timestamp, converted to uint64. * Using a function rather than `block.timestamp` allows us to easily mock it in * tests. */ function getTimestamp64() internal view returns (uint64) { return getTimestamp().toUint64(); } } pragma solidity ^0.4.24; library Uint256Helpers { uint256 private constant MAX_UINT64 = uint64(-1); string private constant ERROR_NUMBER_TOO_BIG = "UINT64_NUMBER_TOO_BIG"; function toUint64(uint256 a) internal pure returns (uint64) { require(a <= MAX_UINT64, ERROR_NUMBER_TOO_BIG); return uint64(a); } } // See https://github.com/OpenZeppelin/openzeppelin-solidity/blob/a9f910d34f0ab33a1ae5e714f69f9596a02b4d91/contracts/token/ERC20/ERC20.sol pragma solidity ^0.4.24; /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 { function totalSupply() public view returns (uint256); function balanceOf(address _who) public view returns (uint256); function allowance(address _owner, address _spender) public view returns (uint256); function transfer(address _to, uint256 _value) public returns (bool); function approve(address _spender, uint256 _value) public returns (bool); function transferFrom(address _from, address _to, uint256 _value) public returns (bool); event Transfer( address indexed from, address indexed to, uint256 value ); event Approval( address indexed owner, address indexed spender, uint256 value ); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; // aragonOS and aragon-apps rely on address(0) to denote native ETH, in // contracts where both tokens and ETH are accepted contract EtherTokenConstant { address internal constant ETH = address(0); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; contract IsContract { /* * NOTE: this should NEVER be used for authentication * (see pitfalls: https://github.com/fergarrui/ethereum-security/tree/master/contracts/extcodesize). * * This is only intended to be used as a sanity check that an address is actually a contract, * RATHER THAN an address not being a contract. */ function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // Inspired by AdEx (https://github.com/AdExNetwork/adex-protocol-eth/blob/b9df617829661a7518ee10f4cb6c4108659dd6d5/contracts/libs/SafeERC20.sol) // and 0x (https://github.com/0xProject/0x-monorepo/blob/737d1dc54d72872e24abce5a1dbe1b66d35fa21a/contracts/protocol/contracts/protocol/AssetProxy/ERC20Proxy.sol#L143) pragma solidity ^0.4.24; import "../lib/token/ERC20.sol"; library SafeERC20 { // Before 0.5, solidity has a mismatch between `address.transfer()` and `token.transfer()`: // https://github.com/ethereum/solidity/issues/3544 bytes4 private constant TRANSFER_SELECTOR = 0xa9059cbb; string private constant ERROR_TOKEN_BALANCE_REVERTED = "SAFE_ERC_20_BALANCE_REVERTED"; string private constant ERROR_TOKEN_ALLOWANCE_REVERTED = "SAFE_ERC_20_ALLOWANCE_REVERTED"; function invokeAndCheckSuccess(address _addr, bytes memory _calldata) private returns (bool) { bool ret; assembly { let ptr := mload(0x40) // free memory pointer let success := call( gas, // forward all gas _addr, // address 0, // no value add(_calldata, 0x20), // calldata start mload(_calldata), // calldata length ptr, // write output over free memory 0x20 // uint256 return ) if gt(success, 0) { // Check number of bytes returned from last function call switch returndatasize // No bytes returned: assume success case 0 { ret := 1 } // 32 bytes returned: check if non-zero case 0x20 { // Only return success if returned data was true // Already have output in ptr ret := eq(mload(ptr), 1) } // Not sure what was returned: don't mark as success default { } } } return ret; } function staticInvoke(address _addr, bytes memory _calldata) private view returns (bool, uint256) { bool success; uint256 ret; assembly { let ptr := mload(0x40) // free memory pointer success := staticcall( gas, // forward all gas _addr, // address add(_calldata, 0x20), // calldata start mload(_calldata), // calldata length ptr, // write output over free memory 0x20 // uint256 return ) if gt(success, 0) { ret := mload(ptr) } } return (success, ret); } /** * @dev Same as a standards-compliant ERC20.transfer() that never reverts (returns false). * Note that this makes an external call to the token. */ function safeTransfer(ERC20 _token, address _to, uint256 _amount) internal returns (bool) { bytes memory transferCallData = abi.encodeWithSelector( TRANSFER_SELECTOR, _to, _amount ); return invokeAndCheckSuccess(_token, transferCallData); } /** * @dev Same as a standards-compliant ERC20.transferFrom() that never reverts (returns false). * Note that this makes an external call to the token. */ function safeTransferFrom(ERC20 _token, address _from, address _to, uint256 _amount) internal returns (bool) { bytes memory transferFromCallData = abi.encodeWithSelector( _token.transferFrom.selector, _from, _to, _amount ); return invokeAndCheckSuccess(_token, transferFromCallData); } /** * @dev Same as a standards-compliant ERC20.approve() that never reverts (returns false). * Note that this makes an external call to the token. */ function safeApprove(ERC20 _token, address _spender, uint256 _amount) internal returns (bool) { bytes memory approveCallData = abi.encodeWithSelector( _token.approve.selector, _spender, _amount ); return invokeAndCheckSuccess(_token, approveCallData); } /** * @dev Static call into ERC20.balanceOf(). * Reverts if the call fails for some reason (should never fail). */ function staticBalanceOf(ERC20 _token, address _owner) internal view returns (uint256) { bytes memory balanceOfCallData = abi.encodeWithSelector( _token.balanceOf.selector, _owner ); (bool success, uint256 tokenBalance) = staticInvoke(_token, balanceOfCallData); require(success, ERROR_TOKEN_BALANCE_REVERTED); return tokenBalance; } /** * @dev Static call into ERC20.allowance(). * Reverts if the call fails for some reason (should never fail). */ function staticAllowance(ERC20 _token, address _owner, address _spender) internal view returns (uint256) { bytes memory allowanceCallData = abi.encodeWithSelector( _token.allowance.selector, _owner, _spender ); (bool success, uint256 allowance) = staticInvoke(_token, allowanceCallData); require(success, ERROR_TOKEN_ALLOWANCE_REVERTED); return allowance; } /** * @dev Static call into ERC20.totalSupply(). * Reverts if the call fails for some reason (should never fail). */ function staticTotalSupply(ERC20 _token) internal view returns (uint256) { bytes memory totalSupplyCallData = abi.encodeWithSelector(_token.totalSupply.selector); (bool success, uint256 totalSupply) = staticInvoke(_token, totalSupplyCallData); require(success, ERROR_TOKEN_ALLOWANCE_REVERTED); return totalSupply; } } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; interface IEVMScriptExecutor { function execScript(bytes script, bytes input, address[] blacklist) external returns (bytes); function executorType() external pure returns (bytes32); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; import "./IEVMScriptExecutor.sol"; contract EVMScriptRegistryConstants { /* Hardcoded constants to save gas bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = apmNamehash("evmreg"); */ bytes32 internal constant EVMSCRIPT_REGISTRY_APP_ID = 0xddbcfd564f642ab5627cf68b9b7d374fb4f8a36e941a75d89c87998cef03bd61; } interface IEVMScriptRegistry { function addScriptExecutor(IEVMScriptExecutor executor) external returns (uint id); function disableScriptExecutor(uint256 executorId) external; // TODO: this should be external // See https://github.com/ethereum/solidity/issues/4832 function getScriptExecutor(bytes script) public view returns (IEVMScriptExecutor); } /* * SPDX-License-Identifier: MIT */ pragma solidity ^0.4.24; contract KernelAppIds { /* Hardcoded constants to save gas bytes32 internal constant KERNEL_CORE_APP_ID = apmNamehash("kernel"); bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = apmNamehash("acl"); bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = apmNamehash("vault"); */ bytes32 internal constant KERNEL_CORE_APP_ID = 0x3b4bf6bf3ad5000ecf0f989d5befde585c6860fea3e574a4fab4c49d1c177d9c; bytes32 internal constant KERNEL_DEFAULT_ACL_APP_ID = 0xe3262375f45a6e2026b7e7b18c2b807434f2508fe1a2a3dfb493c7df8f4aad6a; bytes32 internal constant KERNEL_DEFAULT_VAULT_APP_ID = 0x7e852e0fcfce6551c13800f1e7476f982525c2b5277ba14b24339c68416336d1; } contract KernelNamespaceConstants { /* Hardcoded constants to save gas bytes32 internal constant KERNEL_CORE_NAMESPACE = keccak256("core"); bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = keccak256("base"); bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = keccak256("app"); */ bytes32 internal constant KERNEL_CORE_NAMESPACE = 0xc681a85306374a5ab27f0bbc385296a54bcd314a1948b6cf61c4ea1bc44bb9f8; bytes32 internal constant KERNEL_APP_BASES_NAMESPACE = 0xf1f3eb40f5bc1ad1344716ced8b8a0431d840b5783aea1fd01786bc26f35ac0f; bytes32 internal constant KERNEL_APP_ADDR_NAMESPACE = 0xd6f028ca0e8edb4a8c9757ca4fdccab25fa1e0317da1188108f7d2dee14902fb; } pragma solidity ^0.4.24; /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ interface IERC20 { function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); event Transfer( address indexed from, address indexed to, uint256 value ); event Approval( address indexed owner, address indexed spender, uint256 value ); } // SPDX-FileCopyrightText: 2020 Lido <[email protected]> // SPDX-License-Identifier: GPL-3.0 pragma solidity 0.4.24; import "@aragon/os/contracts/common/UnstructuredStorage.sol"; contract Pausable { using UnstructuredStorage for bytes32; event Stopped(); event Resumed(); bytes32 internal constant ACTIVE_FLAG_POSITION = keccak256("lido.Pausable.activeFlag"); modifier whenNotStopped() { require(ACTIVE_FLAG_POSITION.getStorageBool(), "CONTRACT_IS_STOPPED"); _; } modifier whenStopped() { require(!ACTIVE_FLAG_POSITION.getStorageBool(), "CONTRACT_IS_ACTIVE"); _; } function isStopped() external view returns (bool) { return !ACTIVE_FLAG_POSITION.getStorageBool(); } function _stop() internal whenNotStopped { ACTIVE_FLAG_POSITION.setStorageBool(false); emit Stopped(); } function _resume() internal whenStopped { ACTIVE_FLAG_POSITION.setStorageBool(true); emit Resumed(); } }