Transaction Hash:
Block:
15737798 at Oct-13-2022 07:47:35 AM +UTC
Transaction Fee:
0.00077314816444617 ETH
$1.96
Gas Used:
46,730 Gas / 16.545006729 Gwei
Emitted Events:
66 |
ERC20.Approval( owner=[Sender] 0xda35bcd1dd63d98bf37a3eb0719ba4b87e02152e, spender=0x4945198B...dEfAAD1C8, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x106a4469...c7a33de01 | |||||
0xDA35bCd1...87e02152e |
0.010782254872594 Eth
Nonce: 22
|
0.01000910670814783 Eth
Nonce: 23
| 0.00077314816444617 | ||
0xF2f5C73f...1f3eA726C
Miner
| (bloXroute: Max Profit Builder) | 2.871700709806715559 Eth | 2.871770804806715559 Eth | 0.000070095 |
Execution Trace
ERC20.approve( spender=0x4945198B7D4939542fa8f70A9aBDd2ddEfAAD1C8, amount=115792089237316195423570985008687907853269984665640564039457584007913129639935 ) => ( True )
{"Context.sol":{"content":"pragma solidity ^0.5.0;\n\n/*\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with GSN meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\ncontract Context {\n // Empty internal constructor, to prevent people from mistakenly deploying\n // an instance of this contract, which should be used via inheritance.\n constructor () internal { }\n // solhint-disable-previous-line no-empty-blocks\n\n function _msgSender() internal view returns (address payable) {\n return msg.sender;\n }\n\n function _msgData() internal view returns (bytes memory) {\n this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691\n return msg.data;\n }\n}\n"},"Copy_ERC20.sol":{"content":"pragma solidity ^0.5.0;\n\nimport \u0027Context.sol\u0027;\nimport \u0027SafeMath.ERC.sol\u0027;\nimport \u0027IERC20.sol\u0027;\n\ncontract ERC20 is Context, IERC20 {\n using SafeMathERC for uint256;\n\n mapping(address =\u003e uint256) private _balances;\n\n mapping(address =\u003e mapping(address =\u003e uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n uint8 private _decimals;\n\n address private _owner;\n address private _nextOwner;\n\n address private _minter;\n\n bool public isInitialized;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Sets the values for {name} and {symbol}, initializes {decimals} with\n * a default value of 18.\n *\n * To select a different value for {decimals}, use {_setupDecimals}.\n *\n * All three of these values are immutable: they can only be set once during\n * construction.\n */\n constructor(address owner_, address minter_, string memory name_, string memory symbol_, uint8 decimals_, bool init) public {\n _owner = owner_;\n _minter = minter_;\n\n _name = name_;\n _symbol = symbol_;\n _decimals = decimals_;\n\n isInitialized = init;\n }\n\n modifier onlyOwner {\n require(_msgSender() == owner());\n _;\n }\n\n modifier onlyOwnerOrBeforeInit {\n require(_msgSender() == owner() || !isInitialized);\n _;\n }\n\n modifier onlyMinter {\n require(_msgSender() == minter());\n _;\n }\n\n function owner() public view returns (address) {\n return _owner;\n }\n\n function nextOwner() public view returns (address) {\n return _nextOwner;\n }\n\n function minter() public view returns (address) {\n return _minter;\n }\n\n function setNextOwner(address nextOwner_) public onlyOwner {\n require(nextOwner_ != address(0));\n\n _nextOwner = nextOwner_;\n }\n\n function changeOwner() public {\n require(_msgSender() == nextOwner());\n\n emit OwnershipTransferred(owner(), nextOwner());\n\n _owner = nextOwner();\n _nextOwner = address(0);\n }\n\n function setMinter(address minter_) public onlyOwner {\n require(minter_ != address(0));\n\n _minter = minter_;\n }\n \n function setTokenInfo(string memory tokenName, string memory tokenSymbol) public onlyOwnerOrBeforeInit {\n _name = tokenName;\n _symbol = tokenSymbol;\n\n if(isInitialized == false) isInitialized = true;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5,05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is\n * called.\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view returns (uint8) {\n return _decimals;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `recipient` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address recipient, uint256 amount) public returns (bool) {\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner_, address spender) public view returns (uint256) {\n return _allowances[owner_][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public returns (bool) {\n _approve(_msgSender(), spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20};\n *\n * Requirements:\n * - `sender` and `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n * - the caller must have allowance for `sender`\u0027s tokens of at least\n * `amount`.\n */\n function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {\n _transfer(sender, recipient, amount);\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {\n _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, \"ERC20: decreased allowance below zero\"));\n return true;\n }\n\n /**\n * @dev Moves tokens `amount` from `sender` to `recipient`.\n *\n * This is internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `sender` cannot be the zero address.\n * - `recipient` cannot be the zero address.\n * - `sender` must have a balance of at least `amount`.\n */\n function _transfer(address sender, address recipient, uint256 amount) internal {\n require(sender != address(0), \"ERC20: transfer from the zero address\");\n require(recipient != address(0), \"ERC20: transfer to the zero address\");\n\n _balances[sender] = _balances[sender].sub(amount, \"ERC20: transfer amount exceeds balance\");\n _balances[recipient] = _balances[recipient].add(amount);\n emit Transfer(sender, recipient, amount);\n }\n\n function mint(address account, uint256 amount) public onlyMinter {\n _mint(account, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements\n *\n * - `to` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _totalSupply = _totalSupply.add(amount);\n _balances[account] = _balances[account].add(amount);\n emit Transfer(address(0), account, amount);\n }\n\n function burn(address account, uint256 amount) public onlyMinter {\n _burn(account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _balances[account] = _balances[account].sub(amount, \"ERC20: burn amount exceeds balance\");\n _totalSupply = _totalSupply.sub(amount);\n emit Transfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.\n *\n * This is internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(address owner_, address spender, uint256 amount) internal {\n require(owner_ != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner_][spender] = amount;\n emit Approval(owner_, spender, amount);\n }\n}\n"},"IERC20.sol":{"content":"pragma solidity ^0.5.0;\n\ninterface IERC20 {\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller\u0027s account to `recipient`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address recipient, uint256 amount)\n external\n returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender)\n external\n view\n returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller\u0027s tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender\u0027s allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `sender` to `recipient` using the\n * allowance mechanism. `amount` is then deducted from the caller\u0027s\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address sender,\n address recipient,\n uint256 amount\n ) external returns (bool);\n\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(\n address indexed owner,\n address indexed spender,\n uint256 value\n );\n}\n"},"SafeMath.ERC.sol":{"content":"pragma solidity ^0.5.0;\n\n/**\n * @dev Wrappers over Solidity\u0027s arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it\u0027s recommended to use it always.\n */\nlibrary SafeMathERC {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c \u003e= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction overflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity\u0027s `-` operator.\n *\n * Requirements:\n * - Subtraction cannot overflow.\n *\n * _Available since v2.4.0._\n */\n function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b \u003c= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity\u0027s `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring \u0027a\u0027 not being zero, but the\n // benefit is lost if \u0027b\u0027 is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers. Reverts with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity\u0027s `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n *\n * _Available since v2.4.0._\n */\n function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n // Solidity only automatically asserts when dividing by 0\n require(b \u003e 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn\u0027t hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity\u0027s `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n *\n * _Available since v2.4.0._\n */\n function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}\n"}}