Transaction Hash:
Block:
16821593 at Mar-13-2023 08:58:47 PM +UTC
Transaction Fee:
0.001404120653944765 ETH
$3.15
Gas Used:
51,455 Gas / 27.288322883 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1f9090aa...8e676c326
Miner
| 5.991160833839989645 Eth | 5.991289471339989645 Eth | 0.0001286375 | ||
0x4fe25c88...e48e71DC6 |
0.011048791274558736 Eth
Nonce: 148
|
0.009644670620613971 Eth
Nonce: 149
| 0.001404120653944765 | ||
0xBE82b953...4B919482C |
Execution Trace
OnChainBirds.toggleNesting( tokenIds=[4019] )
toggleNesting[OnChainBirds (ln:731)]
ownerOf[OnChainBirds (ln:734)]
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.12 <0.9.0; import "./ERC721A/ERC721A.sol"; import "./Base64.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; contract OnChainBirds is ERC721A, Ownable { /* ____ _______ _ ___ _ __ / __ \\___ / ___/ / ___ _(_)__ / _ )(_)______/ /__ / /_/ / _ \\/ /__/ _ \\/ _ `/ / _ \\/ _ / / __/ _ (_-< \\____/_//_/\\___/_//_/\\_,_/_/_//_/____/_/_/ \\_,_/___/ */ uint256 public constant MAX_SUPPLY = 10000; uint256 public price = 0.006 ether; uint256 public constant maxPerTx = 10; bool public imageDataLocked; bytes32[][16] traitNames; // nesting mapping(uint256 => uint256) private nestingTotal; mapping(uint256 => uint256) private nestingStarted; uint256 private nestingTransfer; bool public nestingIsOpen; // rendering uint256 private constant size = 42; uint256[7][8] private masks; // layer masks uint256[][][][7] private assets; // stores encoded pixeldata uint256[][6][4] private legendarybodies; mapping (uint256 => uint256) private hashExists; mapping (uint256 => DNA) private tokenIdToDNA; uint8[2592] private colorPalette; uint8[40] private alphaPalette = [0,0,0,77,155,154,134,7,0,0,0,115,0,0,0,26,255,255,255,115,146,235,252,102,135,234,254,38,34,34,34,26,255,255,255,128,0,0,0,38]; uint256[][] private goldHeadChance = [[4,0,19,0,3,24,0,13,29,14],[0,30,0,23,2,0,0,0,0,0],[11,6,0,26,0,0,0,0,0,0],[21,22,0,36,0,0,0,0,0,0]]; uint256[25] private rubyHeadChance = [17,20,32,4,0,35,11,2,30,26,14,1,33,23,36,0,19,22,16,15,3,13,0,18,34]; uint256[][] private goldEWChance = [[0,2,0,12,0,0,0,0,0,0],[0,0,3,0,0,0,0,0,0,0],[0,10,0,0,4,0,0,0,0,0],[0,0,1,8,0,0,0,0,0,0]]; uint256[85] private roboHeadChance = [21,0,0,0,1,2,3,5,6,7,9,11,12,14,16,17,22,23,24,25,26,27,28,30,32,33,34,35,36,0,0,0,1,2,3,5,6,7,9,11,12,14,16,17,22,23,24,25,26,27,28,30,32,33,34,35,36,0,0,0,1,2,3,5,6,7,9,11,12,14,16,17,22,23,24,25,26,27,28,30,32,33,34,35,36]; uint256[13] private roboEWChance = [0,0,0,0,0,0,1,9,10,9,10,11,12]; uint256[11] private skelleEWChance = [0,0,1,3,5,7,9,10,11,12,0]; uint256[25] private rubyEWChance = [0,0,7,0,10,0,0,0,0,0,0,0,5,0,0,1,0,0,0,9,3,0,0,0,0]; struct DNA { uint16 Background; uint16 Beak; uint16 Body; uint16 Eyes; uint16 Eyewear; uint16 Feathers; uint16 Headwear; uint16 Outerwear; uint16 EyeColor; uint16 BeakColor; uint16 LegendaryId; } struct DecompressionCursor { uint256 index; uint256 rlength; uint256 color; uint256 position; } bool private raffleLocked; event FallbackRaffle( uint256 tokenId ); constructor() ERC721A("OnChainBirds", "OCBIRD") {} function mint(uint256 quantity) external payable { unchecked { uint256 totalminted = _totalMinted(); uint256 newSupply = totalminted + quantity; require(newSupply <= MAX_SUPPLY, "SoldOut"); require(quantity <= maxPerTx, "MaxPerTx"); require(msg.value >= price * quantity); _mint(msg.sender, quantity); for(; totalminted < newSupply; ++totalminted) { createDNA(totalminted); } } } function tokenURI(uint256 tokenId) public view override (ERC721A) returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); return string( abi.encodePacked( "data:application/json;base64,", Base64.encode( abi.encodePacked( '{"name": "#', _toString(tokenId), '", "image": "data:image/svg+xml;base64,', Base64.encode( bytes(tokenIdToSVG(tokenId)) ), '","attributes":', tokenIdToMetadata(tokenId), "}" ) ) ) ); } function createDNA(uint256 tokenId) private { unchecked { uint256 randinput = uint256( keccak256( abi.encodePacked( block.timestamp, block.difficulty, tokenId, msg.sender ) ) ); uint256 newDNA; uint256 baseDNA; uint256 mask = 0xFFFF; uint256 Beak; uint256 Eyes; uint256 Eyewear; uint256 rand = randinput & mask; // background uint256 backgroundId; uint256[7] memory background = [uint256(520),11110,10914,10899,10833,10722,10538]; uint256 bound; uint256 lowerbound; for (uint256 j; j < background.length; ++j) { bound += background[j]; if ((rand-lowerbound) < (bound-lowerbound)) backgroundId = j; lowerbound = bound; } newDNA = backgroundId; uint256 bgIsNotZero = ((backgroundId | ((backgroundId^type(uint256).max) + 1)) >> 255) & 1; uint256 legendcount = tokenIdToDNA[tokenId-1].LegendaryId+(1>>bgIsNotZero); newDNA |= legendcount<<160; randinput >>= 16; rand = randinput & mask; // beak uint256[4] memory beak = [uint256(0),27675,27244,10617]; delete bound; delete lowerbound; for (uint256 j = 1; j < beak.length; ++j) { bound += beak[j]; if ((rand-lowerbound) < (bound-lowerbound)) Beak = j; lowerbound = bound; } randinput >>= 16; rand = randinput & mask; // eyes uint256[12] memory eyes = [uint256(0),16202,9708,9013,9006,8699,3332,1989,1936,1930,1877,1844]; delete bound; delete lowerbound; for (uint256 j = 1; j < eyes.length; ++j) { bound += eyes[j]; if ((rand-lowerbound) < (bound-lowerbound)) Eyes = j; lowerbound = bound; } baseDNA |= Eyes<<48; randinput >>= 16; rand = randinput & mask; // eyewear uint256[13] memory eyewear = [uint256(53738),1317,1226,1140,1121,1121,1055,931,891,878,826,800,492]; delete bound; delete lowerbound; for (uint256 j; j < eyewear.length; ++j) { bound += eyewear[j]; if ((rand-lowerbound) < (bound-lowerbound)) Eyewear = j; lowerbound = bound; } randinput >>= 16; rand = randinput & mask; // feathers uint256[10] memory feathers = [uint256(0),12345,9691,8301,7625,7507,7238,6072,3549,3208]; delete bound; delete lowerbound; for (uint256 j = 1; j < feathers.length; ++j) { bound += feathers[j]; if ((rand-lowerbound) < (bound-lowerbound)) baseDNA |= j<<80; lowerbound = bound; } randinput >>= 16; rand = randinput & mask; // head uint256 resultHead; uint256[38] memory headwear = [uint256(19390),2510,2340,2130,1730,1678,1665,1638,1632,1547,1527,1494,1429,1389,1357,1337,1324,1265,1265,1226,1199,1180,1180,1153,1147,1121,1101,970,950,826,819,786,688,662,603,524,380,374]; delete bound; delete lowerbound; uint256 bodybound; for (uint256 j; j < headwear.length; ++j) { bound += headwear[j]; if ((rand-lowerbound) < (bound-lowerbound)) {resultHead = j; bodybound=lowerbound;} lowerbound = bound; } // body uint256[11][38] memory body = [[uint256(4230),1752,2349,2204,2322,2270,2224,1182,717,94,48],[uint256(1489),952,0,0,0,0,0,0,0,48,21],[uint256(485),271,362,389,0,283,270,112,67,67,34],[uint256(847),495,698,0,0,0,0,0,0,62,28],[uint256(1051),625,0,0,0,0,0,0,0,0,54],[uint256(570),157,282,249,0,282,0,0,33,66,39],[uint256(401),211,309,348,335,0,0,0,0,27,34],[uint256(314),282,223,249,190,0,242,92,46,0,0],[uint256(1599),0,0,0,0,0,0,0,0,0,33],[uint256(563),387,492,0,0,0,0,0,0,66,39],[uint256(248),144,223,197,184,249,197,85,0,0,0],[uint256(348),212,146,205,0,199,198,0,73,73,40],[uint256(551),328,0,0,465,0,0,0,0,46,39],[uint256(792),597,0,0,0,0,0,0,0,0,0],[uint256(263),258,264,251,297,0,0,0,0,15,9],[uint256(467),277,0,447,0,0,0,0,86,0,60],[uint256(736),408,0,0,0,0,0,0,99,47,34],[uint256(288),140,159,140,126,145,152,60,21,0,34],[uint256(493),317,0,342,0,0,0,0,86,0,27],[uint256(1199),0,0,0,0,0,0,0,0,0,27],[uint256(1183),0,0,0,0,0,0,0,0,0,16],[uint256(277),131,216,229,229,0,0,98,0,0,0],[uint256(290),166,153,192,0,199,0,73,40,27,40],[uint256(223),140,153,107,205,204,0,53,34,0,34],[uint256(506),244,389,0,0,0,0,0,0,0,8],[uint256(210),125,144,229,164,164,0,59,0,0,26],[uint256(166),100,146,171,119,132,86,73,53,47,8],[uint256(373),223,308,0,0,0,0,0,0,59,7],[uint256(897),0,0,0,0,0,0,0,0,33,20],[uint256(826),0,0,0,0,0,0,0,0,0,0],[uint256(93),74,113,133,159,126,0,67,14,0,40],[uint256(786),0,0,0,0,0,0,0,0,0,0],[uint256(93),73,99,73,112,67,73,26,13,33,26],[uint256(98),67,93,73,106,73,67,52,0,0,33],[uint256(83),67,67,93,0,60,80,21,20,66,46],[uint256(105),47,67,86,0,73,0,0,21,73,52],[uint256(60),68,74,54,0,0,0,0,15,74,35],[uint256(45),39,59,66,0,66,46,0,7,0,46]]; bound = bodybound; lowerbound = bodybound; for (uint256 j; j < 11; ++j) { bound += body[resultHead][j]; if ((rand-lowerbound) < (bound-lowerbound)) baseDNA |= (j+1)<<32; lowerbound = bound; } baseDNA |= resultHead<<96; randinput >>= 16; rand = randinput & mask; // outerwear uint256[8] memory outerwear = [uint256(54563),2031,1979,1717,1659,1351,1331,905]; delete bound; delete lowerbound; for (uint256 j; j < outerwear.length; ++j) { bound += outerwear[j]; if ((rand-lowerbound) < (bound-lowerbound)) baseDNA |= j<<112; lowerbound = bound; } randinput >>= 16; rand = randinput & mask; // beakcolor newDNA|=(rand & 1)<<144; randinput >>= 16; rand = randinput & mask; // eyecolor uint256 eyeIsNotColored = Eyes/6; uint256 EyeColor = (rand%7+1)*(1>>eyeIsNotColored)+eyeIsNotColored; baseDNA |= EyeColor<<128; // store dna uint256 found; randinput >>= 16; uint256 baseHash = baseDNA|bgIsNotZero<<192; for(uint256 i; i<5; ++i) { uint256 isNotLast = 1>>(i>>2);//1>>(i/4); uint256 hashedDNA = baseHash|Beak<<16|Eyewear<<64|(((1>>isNotLast)*tokenId)<<212); if(hashExists[hashedDNA]+found == 0) { newDNA |= (hashedDNA<<64)>>64; assembly { mstore(0, tokenId) mstore(32, tokenIdToDNA.slot) let hash := keccak256(0, 64) sstore(hash, newDNA) } ++hashExists[hashedDNA]; ++found; } Beak = Beak%3+1; if(i==0) Eyewear = (Eyewear + randinput%8)%13; Eyewear = ++Eyewear%13; } } } function getDNA(uint256 tokenId) public view returns(DNA memory) { DNA memory realDNA = tokenIdToDNA[tokenId]; // legendary id if(realDNA.Background == 0) { if(realDNA.LegendaryId>74) { realDNA.Background = 1; delete realDNA.LegendaryId; } else { uint256 specialType = realDNA.LegendaryId%3; uint256 specialIndex = realDNA.LegendaryId/3; if(specialType==0) { //legendary (specialIndex starts at 1) delete realDNA.Beak; delete realDNA.Eyes; delete realDNA.Eyewear; delete realDNA.Headwear; delete realDNA.Outerwear; delete realDNA.EyeColor; delete realDNA.BeakColor; uint256 legendmod = (specialIndex-1)%4; uint256 legenddiv = (specialIndex-1)/4; realDNA.Background = uint16(7 + legendmod); realDNA.Body = uint16(legendmod+1); realDNA.Feathers = uint16(legenddiv+1); return realDNA; } else if(specialType==1) { //golden (specialIndex starts at 0) realDNA.Body = 12; uint256 feathermod = specialIndex%5; uint256 featherdiv = specialIndex/5; if(feathermod<2) featherdiv=(featherdiv<<1)+feathermod; if(feathermod==0) ++feathermod; realDNA.Feathers=uint16(feathermod); realDNA.Headwear = uint16(goldHeadChance[--feathermod][featherdiv]); realDNA.Background = uint16((specialIndex%6)+1); realDNA.Eyewear = uint16(goldEWChance[feathermod][featherdiv]); } else if(specialType==2) { //ruby (specialIndex starts at 0) realDNA.Body = 13; realDNA.Background = uint16((specialIndex%6)+1); realDNA.Headwear = uint16(rubyHeadChance[specialIndex%25]); realDNA.Eyewear = uint16(rubyEWChance[specialIndex%25]); } } } else { delete realDNA.LegendaryId; } // special bodies except robot -> no outerwear if(realDNA.Body > 10) { delete realDNA.Outerwear; } // single color eyes if(realDNA.Eyes > 5) { realDNA.EyeColor = 1; } // special bodies if(realDNA.Body > 9) { delete realDNA.BeakColor; delete realDNA.EyeColor; // golden body if(realDNA.Body == 12) { if(realDNA.Eyes == 2 || realDNA.Eyes == 9) { realDNA.Eyes = 1; } else if(realDNA.Eyes == 7 || realDNA.Eyes == 6) { realDNA.Eyes = 2; } else if(realDNA.Eyes == 5) { realDNA.Eyes = 4; } else if(realDNA.Eyes == 8 || realDNA.Eyes > 9) { realDNA.Eyes = 5; } else { realDNA.Eyes = 3; } } else { realDNA.Feathers = 1; // shuffle hash uint256 dist = uint256(keccak256(abi.encodePacked(tokenId,realDNA.Eyes))); uint256 mask = 0xFFFFFFFFFFFFFFFF; if(realDNA.Body == 10) { // robot body realDNA.Outerwear = uint16((dist&mask)%3); realDNA.Eyewear = uint16(roboEWChance[((dist>>64)&mask)%11]); realDNA.Headwear = uint16(roboHeadChance[((dist>>128)&mask)%85]); realDNA.Eyes = uint16((dist>>192)%2+1); } else if(realDNA.Body == 11) { // skelleton body realDNA.Eyes = uint16((dist&mask)%6+1); realDNA.Eyewear = uint16(skelleEWChance[(dist>>64)%11]); } else { // ruby skelleton realDNA.Beak = 1; if(realDNA.Eyes > 5 && realDNA.Eyes < 9) { realDNA.Eyes = 1; } else if(realDNA.Eyes == 3 || realDNA.Eyes > 8) { realDNA.Eyes = 2; } else if(realDNA.Eyes == 5 || realDNA.Eyes == 1) { realDNA.Eyes = 3; } else { realDNA.Eyes = 4; } } } } // hoodie -> raincloud, crescent, no eyewear if(realDNA.Outerwear == 3) { realDNA.Body = 1; delete realDNA.Eyewear; if(realDNA.Headwear < 26) { delete realDNA.Headwear; } else { realDNA.Headwear = 5; } } // heros cap -> heros outerwear, no eyewear if(realDNA.Headwear == 31) { realDNA.Outerwear = 8; delete realDNA.Eyewear; } // space helmet -> no outerwear if(realDNA.Headwear == 6) { delete realDNA.Outerwear; if(realDNA.Eyewear == 8) { delete realDNA.Eyewear; } } // headphones if(realDNA.Headwear == 21) { // -> job glasses or none if(realDNA.Eyewear != 2) delete realDNA.Eyewear; // -> diamond necklace or none if(realDNA.Outerwear != 6) delete realDNA.Outerwear; } // aviators cap -> no eyewear, no bomber, jeans and hoodie down outerwear if(realDNA.Headwear == 13) { delete realDNA.Eyewear; if(realDNA.Outerwear % 2 == 1 && realDNA.Outerwear != 3) delete realDNA.Outerwear; } // beanie -> no sunglasses, rose-colored glasses, aviators, monocle, 3d glasses if(realDNA.Headwear == 8) { if((realDNA.Eyewear%2 == 1 && realDNA.Eyewear != 1) || realDNA.Eyewear == 8) delete realDNA.Eyewear; } // eyewear -> no eyes except if eyepatch, monocle, half-moon, big tech if(realDNA.Eyewear > 1) { // monocle -> no side-eyes if(realDNA.Eyewear == 8) { // no bucket hat combo if(realDNA.Headwear == 28) { delete realDNA.Eyewear; } else if(realDNA.Eyes == 5 && realDNA.Body != 11) realDNA.Eyes = 1; } // half-moon spectacles -> open, adorable, fire eyes else if(realDNA.Eyewear == 12) { if(realDNA.Body == 10) { realDNA.Eyes = 2; } else if(realDNA.Body == 11) { if(realDNA.Eyes != 4 && realDNA.Eyes != 5) realDNA.Eyes = 1; } else if(realDNA.Body == 12) { realDNA.Eyes = 3; } else if(realDNA.Body == 13) { if(realDNA.Eyes != 3) realDNA.Eyes = 1; } else if(realDNA.Eyes != 6 && realDNA.Eyes != 9) { realDNA.Eyes = 1; } } // big tech -> open eyes else if(realDNA.Eyewear == 10) { if(realDNA.Body == 10) { realDNA.Eyes = 2; } else if(realDNA.Body == 11) { realDNA.Eyes = 5; } else if(realDNA.Body > 11) { realDNA.Eyes = 3; } else { realDNA.Eyes = 1; } } else { delete realDNA.Eyes; delete realDNA.EyeColor; } } return realDNA; } function decodeLength(uint256[] memory imgdata, uint256 index) private pure returns (uint256) { uint256 bucket = index >> 4; uint256 offset = (index & 0xf) << 4; uint256 data = imgdata[bucket] >> (250-offset); uint256 mask = 0x3F; return data & mask; } function decodeColorIndex(uint256[] memory imgdata, uint256 index) private pure returns (uint256) { uint256 bucket = index >> 4; uint256 offset = (index & 0xf) << 4; uint256 data = imgdata[bucket] >> (240-offset); uint256 mask = 0x3FF; return data & mask; } function tokenIdToSVG(uint256 tokenId) private view returns (string memory) { // load data DNA memory birdDNA = getDNA(tokenId); bool trueLegend = birdDNA.Background>6; uint256 colorPaletteLength = colorPalette.length/3; uint256 lastcolor; uint256 lastwidth = 1; bool[] memory usedcolors = new bool[](875); bytes memory svgString; // load pixeldata uint256[][7] memory compressedData; compressedData[0] = assets[0][birdDNA.Background-1][0]; // legendary bodies if(trueLegend){ compressedData[1] = legendarybodies[birdDNA.Body-1][birdDNA.Feathers-1]; } else { compressedData[1] = assets[2][birdDNA.Body-1][birdDNA.Feathers-1]; } if(birdDNA.Beak!=0){ // special bodies -> special beaks if(birdDNA.Body>9){ compressedData[2] = assets[1][birdDNA.Body-7][birdDNA.Beak-1]; } else { compressedData[2] = assets[1][birdDNA.Beak-1][birdDNA.BeakColor]; } } if(birdDNA.Eyes!=0) { // special bodies -> special eyes if(birdDNA.Body>9){ compressedData[3] = assets[3][birdDNA.Body+1][birdDNA.Eyes-1]; } else { compressedData[3] = assets[3][birdDNA.Eyes-1][birdDNA.EyeColor-1]; } } if(birdDNA.Eyewear!=0) compressedData[4] = assets[4][birdDNA.Eyewear-1][0]; if(birdDNA.Headwear!=0) compressedData[5] = assets[5][birdDNA.Headwear-1][0]; if(birdDNA.Outerwear!=0) compressedData[6] = assets[6][birdDNA.Outerwear-1][0]; DecompressionCursor[7] memory cursors; for(uint256 i = 1; i<7; ++i) { if(compressedData[i].length != 0) { cursors[i]=DecompressionCursor(0,decodeLength(compressedData[i],0),decodeColorIndex(compressedData[i],0),0); } } // masks uint256[7][7] memory bitmasks; for(uint256 i; i<7; ++i) { if(i==1 && trueLegend) { bitmasks[i] = masks[7]; } else { bitmasks[i] = masks[i]; } } // create SVG bytes14 preRect = "<rect class='c"; for(uint256 y; y < size;++y){ bytes memory svgBlendString; for(uint256 x; x < size;++x){ bool blendMode; uint256 coloridx; uint256 index = y*size+x; uint256 bucket = index >> 8; uint256 mask = 0x8000000000000000000000000000000000000000000000000000000000000000 >> (index & 0xff); // pixeldata decoding for(uint256 i = 6; i!=0; i--) { if(compressedData[i].length != 0) { if (bitmasks[i][bucket] & mask != 0) { cursors[i].index++; if(cursors[i].color != 0) { if(coloridx == 0) { coloridx = cursors[i].color; if(cursors[i].color>colorPaletteLength) { blendMode=true; } } else if(blendMode) { svgBlendString = abi.encodePacked( preRect, _toString(cursors[i].color), "' x='", _toString(x), "' y='", _toString(y), "' width='1'/>", svgBlendString ); if(cursors[i].color<=colorPaletteLength) { blendMode=false; } usedcolors[cursors[i].color] = true; } } if(cursors[i].index==cursors[i].rlength) { cursors[i].index=0; cursors[i].position++; if(cursors[i].position<compressedData[i].length*16){ cursors[i].rlength=decodeLength(compressedData[i],cursors[i].position); cursors[i].color=decodeColorIndex(compressedData[i],cursors[i].position); } } } } } // finalize pixel color if(coloridx==0 || blendMode) { uint256 bgcolor; if(birdDNA.Background > 6 && birdDNA.Background != 9){ bgcolor = decodeColorIndex(compressedData[0],y); } else { bgcolor = decodeColorIndex(compressedData[0],0); } if(coloridx==0) { coloridx=bgcolor; } else if(blendMode){ svgBlendString = abi.encodePacked( preRect, _toString(bgcolor), "' x='", _toString(x), "' y='", _toString(y), "' width='1'/>", svgBlendString ); usedcolors[bgcolor] = true; } } usedcolors[coloridx] = true; if(x == 0) { lastwidth = 1; } else if(lastcolor == coloridx) { lastwidth++; } else { svgString = abi.encodePacked( svgString, svgBlendString, preRect, _toString(lastcolor), "' x='", _toString(x-lastwidth), "' y='", _toString(y), "' width='", _toString(lastwidth), "'/>" ); svgBlendString = ""; lastwidth = 1; } lastcolor = coloridx; } svgString = abi.encodePacked( svgString, svgBlendString, preRect, _toString(lastcolor), "' x='", _toString(42-lastwidth), "' y='", _toString(y), "' width='", _toString(lastwidth), "'/>" ); svgBlendString = ""; } // generate stylesheet bytes memory stylesheet; for(uint256 i; i<usedcolors.length; ++i) { if(usedcolors[i]) { bytes memory colorCSS; uint256 paletteIdx = (i-1)*3; if(paletteIdx>=colorPalette.length) { uint256 fixedColorIdx = (i-1)-colorPalette.length/3; paletteIdx = fixedColorIdx<<2; uint256 dec = uint256(alphaPalette[paletteIdx+3])*100/255; colorCSS = abi.encodePacked("rgba(", _toString(uint256(alphaPalette[paletteIdx])), ",", _toString(uint256(alphaPalette[paletteIdx+1])), ",", _toString(uint256(alphaPalette[paletteIdx+2])), ",0.", _toString(dec), ")"); } else { colorCSS = abi.encodePacked("rgb(", _toString(uint256(colorPalette[paletteIdx])), ",", _toString(uint256(colorPalette[paletteIdx+1])), ",", _toString(uint256(colorPalette[paletteIdx+2])), ")"); } stylesheet = abi.encodePacked(stylesheet, ".c", _toString(i), "{fill:", colorCSS, "}"); } } // combine full SVG svgString = abi.encodePacked( '<svg id="bird-svg" xmlns="http://www.w3.org/2000/svg" preserveAspectRatio="xMinYMin meet" viewBox="0 0 42 42"> ', svgString, "<style>rect{height:1px;} #bird-svg{shape-rendering: crispedges;} ", stylesheet, "</style></svg>" ); return string(svgString); } function tokenIdToMetadata(uint256 tokenId) private view returns (string memory) { unchecked { DNA memory tokenDNA = getDNA(tokenId); string memory metadataString; for (uint256 i; i < 8; ++i) { uint256 traitId; uint idx1; uint idx2; if(i==0) { traitId = tokenDNA.Background; } else if(i==1) { traitId = tokenDNA.Beak; } else if(i==2) { traitId = tokenDNA.Body; if(tokenDNA.Background > 6) { idx1 = 8; idx2 = traitId-1; } } else if(i==3) { traitId = tokenDNA.Eyes; if(tokenDNA.Body > 9) { idx1 = tokenDNA.Body; idx2 = traitId-1; } } else if(i==4) { traitId = tokenDNA.Eyewear; } else if(i==5) { traitId = tokenDNA.Feathers; if(tokenDNA.LegendaryId != 0 && tokenDNA.Body != 13) { idx1 = 9; idx2 = traitId-1; } else if(tokenDNA.Body > 9) { idx1 = 14; idx2 = tokenDNA.Body-10; } } else if(i==6) { traitId = tokenDNA.Headwear; } else if(i==7) { traitId = tokenDNA.Outerwear; } if(traitId == 0) continue; string memory traitName; if(idx1 == 0) { idx1 = i; idx2 = traitId-1; } traitName = bytes32ToString(traitNames[idx1][idx2]); string memory startline; if(i!=0) startline = ","; metadataString = string( abi.encodePacked( metadataString, startline, '{"trait_type":"', bytes32ToString(traitNames[15][i]), '","value":"', traitName, '"}' )); } return string.concat("[", metadataString, "]"); } } /** Nesting Functions */ function nestingPeriod(uint256 tokenId) external view returns (bool nesting, uint256 current, uint256 total) { uint256 start = nestingStarted[tokenId]; if (start != 0) { nesting = true; current = block.timestamp - start; } total = current + nestingTotal[tokenId]; } function transferWhileNesting(address from, address to, uint256 tokenId) external { require(ownerOf(tokenId) == msg.sender); nestingTransfer = 1; transferFrom(from, to, tokenId); delete nestingTransfer; } function _beforeTokenTransfers(address, address, uint256 startTokenId, uint256 quantity) internal view override { uint256 tokenId = startTokenId; for (uint256 end = tokenId + quantity; tokenId < end; ++tokenId) { require(nestingStarted[tokenId] == 0 || nestingTransfer != 0, "Nesting"); } } function toggleNesting(uint256[] calldata tokenIds) external { bool nestOpen = nestingIsOpen; for (uint256 i; i < tokenIds.length; ++i) { require(ownerOf(tokenIds[i]) == msg.sender); uint256 start = nestingStarted[tokenIds[i]]; if (start == 0) { require(nestOpen); nestingStarted[tokenIds[i]] = block.timestamp; } else { nestingTotal[tokenIds[i]] += block.timestamp - start; nestingStarted[tokenIds[i]] = 0; } } } /** Admin Functions */ // fallback raffle in case the random generation does result in a few missing special/legendary birds function raffleUnmintedSpecials() external onlyOwner { uint256 supply = _totalMinted(); require(!raffleLocked && supply>=MAX_SUPPLY); uint256 specialsMinted = tokenIdToDNA[supply-1].LegendaryId; while(specialsMinted < 74) { uint256 randomId = uint256(keccak256(abi.encodePacked(block.timestamp, block.difficulty, specialsMinted))) % supply; while(tokenIdToDNA[randomId].Background == 0) { randomId = (++randomId)%supply; } tokenIdToDNA[randomId].LegendaryId = uint16(++specialsMinted); delete tokenIdToDNA[randomId].Background; emit FallbackRaffle(randomId); } raffleLocked = true; } // fallback reroll to prevent clones, is fairly rare, called as fast as possible after mint if detected function rerollClone(uint256 tokenId1, uint256 tokenId2) external onlyOwner { DNA memory bird = getDNA(tokenId1); DNA memory clone = getDNA(tokenId2); delete bird.Background; delete bird.BeakColor; delete clone.Background; delete clone.BeakColor; require(keccak256(abi.encode(bird)) == keccak256(abi.encode(clone))); uint256 randomHash = uint256(keccak256(abi.encodePacked(block.timestamp, block.difficulty))); tokenIdToDNA[tokenId1].Eyes = uint16((randomHash&0xFFFFFFFF)%11+1); randomHash>>=32; tokenIdToDNA[tokenId1].Beak = uint16((randomHash&0xFFFFFFFF)%3+1); randomHash>>=32; tokenIdToDNA[tokenId1].Outerwear = uint16(randomHash%8); } function setPrice(uint256 newPrice) external onlyOwner { price = newPrice; } function withdraw() external onlyOwner { (bool success, ) = msg.sender.call{value: address(this).balance}(""); if (!success) revert(); } function expelFromNest(uint256 tokenId) external onlyOwner { require(nestingStarted[tokenId] != 0); nestingTotal[tokenId] += block.timestamp - nestingStarted[tokenId]; delete nestingStarted[tokenId]; } function setNestingOpen() external onlyOwner { nestingIsOpen = !nestingIsOpen; } function uploadImages1(uint256[][][][7] calldata defaultdata) external onlyOwner { if(imageDataLocked) revert(); assets = defaultdata; } function uploadImages2(uint256[][][] calldata bodydata) external onlyOwner { if(imageDataLocked) revert(); assets[2] = bodydata; } function uploadImages3(uint256[][][4] calldata specialbodydata, uint256[][6][4] calldata legenbodydata, uint8[2592] calldata cpalette, uint256[7][8] calldata _masks, bytes32[][16] calldata _traitnames) external onlyOwner { if(imageDataLocked) revert(); assets[2].push(specialbodydata[0]); assets[2].push(specialbodydata[1]); assets[2].push(specialbodydata[2]); assets[2].push(specialbodydata[3]); colorPalette = cpalette; masks = _masks; traitNames = _traitnames; legendarybodies = legenbodydata; imageDataLocked=true; } /** Utility Functions */ function bytes32ToString(bytes32 _bytes32) private pure returns (string memory) { uint256 i; while(_bytes32[i] != 0 && i < 32) { ++i; } bytes memory bytesArray = new bytes(i); for (i = 0; i < bytesArray.length; ++i) { bytesArray[i] = _bytes32[i]; } return string(bytesArray); } // tokensOfOwner function: MIT License function tokensOfOwner(address owner) external view returns (uint256[] memory) { unchecked { uint256 tokenIdsIdx; address currOwnershipAddr; uint256 tokenIdsLength = balanceOf(owner); uint256[] memory tokenIds = new uint256[](tokenIdsLength); TokenOwnership memory ownership; for (uint256 i; tokenIdsIdx != tokenIdsLength; ++i) { ownership = _ownershipAt(i); if (ownership.burned) { continue; } if (ownership.addr != address(0)) { currOwnershipAddr = ownership.addr; } if (currOwnershipAddr == owner) { tokenIds[tokenIdsIdx++] = i; } } return tokenIds; } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0; /// @title Base64 /// @author Brecht Devos - <[email protected]> /// @notice Provides functions for encoding/decoding base64 library Base64 { string internal constant TABLE_ENCODE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; function encode(bytes memory data) internal pure returns (string memory) { if (data.length == 0) return ''; // load the table into memory string memory table = TABLE_ENCODE; // multiply by 4/3 rounded up uint256 encodedLen = 4 * ((data.length + 2) / 3); // add some extra buffer at the end required for the writing string memory result = new string(encodedLen + 32); assembly { // set the actual output length mstore(result, encodedLen) // prepare the lookup table let tablePtr := add(table, 1) // input ptr let dataPtr := data let endPtr := add(dataPtr, mload(data)) // result ptr, jump over length let resultPtr := add(result, 32) // run over the input, 3 bytes at a time for {} lt(dataPtr, endPtr) {} { // read 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // write 4 characters mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) mstore8(resultPtr, mload(add(tablePtr, and(shr( 6, input), 0x3F)))) resultPtr := add(resultPtr, 1) mstore8(resultPtr, mload(add(tablePtr, and( input, 0x3F)))) resultPtr := add(resultPtr, 1) } // padding with '=' switch mod(mload(data), 3) case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) } case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) } } return result; } }// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.2 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Reference type for token approval. struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return _currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr) if (curr < _currentIndex) { uint256 packed = _packedOwnerships[curr]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `curr` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. while (packed == 0) { packed = _packedOwnerships[--curr]; } return packed; } } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ownerOf(tokenId); if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { if (operator == _msgSenderERC721A()) revert ApproveToCaller(); _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && // If within bounds, _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId]`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), // but we allocate 0x80 bytes to keep the free memory pointer 32-byte word aliged. // We will need 1 32-byte word to store the length, // and 3 32-byte words to store a maximum of 78 digits. Total: 0x20 + 3 * 0x20 = 0x80. str := add(mload(0x40), 0x80) // Update the free memory pointer to allocate. mstore(0x40, str) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.2 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * The caller cannot approve to their own address. */ error ApproveToCaller(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }