ETH Price: $2,241.41 (-2.12%)

Transaction Decoder

Block:
17862363 at Aug-07-2023 10:08:47 AM +UTC
Transaction Fee:
0.016786799075944288 ETH $37.63
Gas Used:
845,926 Gas / 19.844287888 Gwei

Emitted Events:

197 TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a76, 0x2e221130d7fa9857768f04d1520c3982f719233d5953b2ba6bdd7f84e1f408cd )
198 TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a77, 0x014b206f9c212d5324f891d47d9a4732ec44f819f744351de8bd7ace0d626594 )
199 TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a78, 0x0d72eb383974f462474f6b9a094fc0f4fcc38ad8f123cc9335a46839d50dbfc3 )
200 TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a79, 0x1a894cb7f8a23b6e4f43333fe7eb4c5db32c680b1d7ecb8c7b11e89488a7b118 )
201 TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a7a, 0x054795614a584432bb250d3089f90c986853bffab23609c17f977ef724f6841d )
202 TransparentUpgradeableProxy.0x5c885a794662ebe3b08ae0874fc2c88b5343b0223ba9cd2cad92b69c0d0c901f( 0x5c885a794662ebe3b08ae0874fc2c88b5343b0223ba9cd2cad92b69c0d0c901f, 0x0000000000000000000000000000000000000000000000000000000000022a7a, 1b62bc27194be5efacf32ce6e6580368b392ef5adbbfe096dd50294721f0dabf, 054795614a584432bb250d3089f90c986853bffab23609c17f977ef724f6841d )

Account State Difference:

  Address   Before After State Difference Code
0x9228624C...f5f5DAd64
(Linea: Operator)
272.094878390311483313 Eth
Nonce: 39126
272.078091591235539025 Eth
Nonce: 39127
0.016786799075944288
(beaverbuild)
14.270959982248811304 Eth14.271027524540307912 Eth0.000067542291496608
0xd19d4B5d...D11B0876F
(Linea: L1 Message Service)

Execution Trace

TransparentUpgradeableProxy.4165d6dd( )
  • ZkEvmV2.finalizeBlocks( _blocksData=, _proof=0x151158230A0D31985C536FD922851BDF360353BB3C07CAB9C03CEFF89D9CFB1B1C34507D87B11D05F054EE5B882C7B1BBC36E76034655FDA8D74FC825D2D69C72B5E3810B4A66BBBC45702C3C5DF58A70B6975FA077C7395AF339230471536811BA1AABA21A4D600BC3BE5834840FC51FBE0A20430236461B65648C569D84DA4121770FB5B97690D55BB8CE6958865BEB70C3B1262C8490D136D21FADA1CD282069823F32E5CCD2C58E16F37C25E1E1916373CFB21A572C97437DA472F9EA1310177D66B15F87DABD0368CB32745F2D5EC86D14732196C95D7CA25C4E1781CA9237941C04D1162499DAFC4C0A3E1C6BE26281A18C7D91EDE65C571842222649F0101191DDE83E20D488FC215136221F90A64453932C9745A2AAC8B7C5E8850CA128AFF2AB537F69ED2FAEC964E84F270E63D3BDB666C3B1518D144DF3FE7DA5609463AFB07C936F5D95DA365B46E4EA1ED62D2C9E4F35986B102054C7C91269D20CEAA2FD19A0959F1FE08359BDE101D44AEC588A0397F0CE81C2FCAEF8CFF822C38D8FA5DDC86AF49336D7382CE71EFD7302BDE4B841CC00E6B3C2ECB166C03164448820A9200DF87CCCC192B9D7197A9A26B5EA721AC2D39243036D566CFB1255E02360559572EE5875AB92459767CABC9364D465FBBAD2C6BABFDB5C5D33B19224735130023A0C2D9848DDC477EFADF79613E791F845EA657BE9035D6ABC4256F4EE99996A5F7E3773CA16733F276BA22EE6ED905010B43753FCE14263C4B1ED9366F3B6F1EE2D6DBA7A1CA097238D5EFE1EE92B2FA1B50587DE66D9A30DA2F7F92C363D9E442CBE6202D7090CFBC9A257CF6B092A59D5199B0E9AF76D81B2FC25744951A646A38E6809911EC9FBDC2ED75B0DDEE4C1C3035EC70EF8614481E0EA049B193ED40A652177E3D538527FAA875C1F6254F9A71D971BDE229C1FE00D0934F1D60DF457EBBA5C97140EC876B0F2EC067D188FF1FC0BA448A13346228D10DE521CA87BC1F013EC023013FEA8FF20C09885F6E6FFB85AE952312C72222D28C5EE0B782E510148B555DB88CC753A75FDEF309DDEE4275E3084E41A88923C360AB230CCC6399C887EE315FAB1A1F0FD3ED9A875E3AA5BBBCAF46EBD88A2538F561F6A90C82C2CC436F516395943DF6919CBBE6DFE695AEFBD128A752BD2DA6B082AE2E18DF2CFB0458CF31FA48935B7A819A97A58CB54AC26AB73F9E0F2ED6A076CF858F62BE41F1B7183D80DF819D49721DAB4CA0F7A8B71C495D103B0B102122211556B9F257205C2663B555E407439A350E9D270079D4FFA59B07A1215E9E873430EAFD26A50300DBCDA4600DB736C0F9081AEBFE699CBC54C56F75225908EEB4AB823321628DF1113A24FAB4D2C8567A13575C4504C37D94A8FBC81DC99B69FBEBF65D43E30AC43F667E30DD5C2B5660E7A7F81B33EF439F5A4F041690FF5EA8C21B1892C7142C3AFBA910020FA0218B9813898347E76766FDDB3F1862C7F05380A85FA179938C6C4E750B71416453BF7D870BABDD3B9F5B1E6BF727DD40876BEAFA954817DB1E491A213F08CC88D38F6EAF68B01A619522ED30B8, _proofType=0, _parentStateRootHash=1B62BC27194BE5EFACF32CE6E6580368B392EF5ADBBFE096DD50294721F0DABF )
    • PlonkVerifierFull.Verify( proof=0x151158230A0D31985C536FD922851BDF360353BB3C07CAB9C03CEFF89D9CFB1B1C34507D87B11D05F054EE5B882C7B1BBC36E76034655FDA8D74FC825D2D69C72B5E3810B4A66BBBC45702C3C5DF58A70B6975FA077C7395AF339230471536811BA1AABA21A4D600BC3BE5834840FC51FBE0A20430236461B65648C569D84DA4121770FB5B97690D55BB8CE6958865BEB70C3B1262C8490D136D21FADA1CD282069823F32E5CCD2C58E16F37C25E1E1916373CFB21A572C97437DA472F9EA1310177D66B15F87DABD0368CB32745F2D5EC86D14732196C95D7CA25C4E1781CA9237941C04D1162499DAFC4C0A3E1C6BE26281A18C7D91EDE65C571842222649F0101191DDE83E20D488FC215136221F90A64453932C9745A2AAC8B7C5E8850CA128AFF2AB537F69ED2FAEC964E84F270E63D3BDB666C3B1518D144DF3FE7DA5609463AFB07C936F5D95DA365B46E4EA1ED62D2C9E4F35986B102054C7C91269D20CEAA2FD19A0959F1FE08359BDE101D44AEC588A0397F0CE81C2FCAEF8CFF822C38D8FA5DDC86AF49336D7382CE71EFD7302BDE4B841CC00E6B3C2ECB166C03164448820A9200DF87CCCC192B9D7197A9A26B5EA721AC2D39243036D566CFB1255E02360559572EE5875AB92459767CABC9364D465FBBAD2C6BABFDB5C5D33B19224735130023A0C2D9848DDC477EFADF79613E791F845EA657BE9035D6ABC4256F4EE99996A5F7E3773CA16733F276BA22EE6ED905010B43753FCE14263C4B1ED9366F3B6F1EE2D6DBA7A1CA097238D5EFE1EE92B2FA1B50587DE66D9A30DA2F7F92C363D9E442CBE6202D7090CFBC9A257CF6B092A59D5199B0E9AF76D81B2FC25744951A646A38E6809911EC9FBDC2ED75B0DDEE4C1C3035EC70EF8614481E0EA049B193ED40A652177E3D538527FAA875C1F6254F9A71D971BDE229C1FE00D0934F1D60DF457EBBA5C97140EC876B0F2EC067D188FF1FC0BA448A13346228D10DE521CA87BC1F013EC023013FEA8FF20C09885F6E6FFB85AE952312C72222D28C5EE0B782E510148B555DB88CC753A75FDEF309DDEE4275E3084E41A88923C360AB230CCC6399C887EE315FAB1A1F0FD3ED9A875E3AA5BBBCAF46EBD88A2538F561F6A90C82C2CC436F516395943DF6919CBBE6DFE695AEFBD128A752BD2DA6B082AE2E18DF2CFB0458CF31FA48935B7A819A97A58CB54AC26AB73F9E0F2ED6A076CF858F62BE41F1B7183D80DF819D49721DAB4CA0F7A8B71C495D103B0B102122211556B9F257205C2663B555E407439A350E9D270079D4FFA59B07A1215E9E873430EAFD26A50300DBCDA4600DB736C0F9081AEBFE699CBC54C56F75225908EEB4AB823321628DF1113A24FAB4D2C8567A13575C4504C37D94A8FBC81DC99B69FBEBF65D43E30AC43F667E30DD5C2B5660E7A7F81B33EF439F5A4F041690FF5EA8C21B1892C7142C3AFBA910020FA0218B9813898347E76766FDDB3F1862C7F05380A85FA179938C6C4E750B71416453BF7D870BABDD3B9F5B1E6BF727DD40876BEAFA954817DB1E491A213F08CC88D38F6EAF68B01A619522ED30B8, public_inputs=[1859242604737611589489872749746777342297779241644766137917872047856018625034] ) => ( True )
      • Null: 0x000...002.67616d6d( )
      • Null: 0x000...002.62657461( )
      • Null: 0x000...002.616c7068( )
      • Null: 0x000...002.7a657461( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...002.00000000( )
      • Null: 0x000...002.47fe2584( )
      • Null: 0x000...002.82650e23( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...002.00000000( )
      • Null: 0x000...002.aa2f1df7( )
      • Null: 0x000...002.e6b363cb( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...002.00000000( )
      • Null: 0x000...002.5ef71e83( )
      • Null: 0x000...002.d72aed78( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...005.00000000( )
      • Null: 0x000...007.09463afb( )
      • Null: 0x000...006.0b7518ab( )
      • Null: 0x000...007.2ca2ae38( )
      • Null: 0x000...006.043e7423( )
      • Null: 0x000...007.1de747c8( )
      • Null: 0x000...007.1f47ced8( )
      • Null: 0x000...006.04edc729( )
      • Null: 0x000...007.1de5b062( )
      • Null: 0x000...006.2fd6ad93( )
      • Null: 0x000...007.0f9c3581( )
      • Null: 0x000...006.178fc0de( )
      • Null: 0x000...006.2c586ca5( )
      • Null: 0x000...007.215e9e87( )
      • Null: 0x000...006.1ed1669a( )
      • Null: 0x000...007.1dc99b69( )
      • Null: 0x000...006.1d28bfd3( )
      • Null: 0x000...007.1862c7f0( )
      • Null: 0x000...006.0c9f107a( )
      • Null: 0x000...007.0690a2db( )
      • Null: 0x000...006.28ac36a2( )
      • Null: 0x000...007.1ed9366f( )
      • Null: 0x000...006.1f1242ba( )
      • Null: 0x000...002.67616d6d( )
      • Null: 0x000...007.04169844( )
      • Null: 0x000...006.077eea25( )
      • Null: 0x000...007.15115823( )
      • Null: 0x000...006.29a42be5( )
      • Null: 0x000...007.2b5e3810( )
      • Null: 0x000...006.16f8b012( )
      • Null: 0x000...007.121770fb( )
      • Null: 0x000...006.09619138( )
      • Null: 0x000...007.1f84d6f8( )
      • Null: 0x000...006.098f56bd( )
      • Null: 0x000...007.0240cbaf( )
      • Null: 0x000...006.0b64aa6e( )
      • Null: 0x000...007.302bc66f( )
      • Null: 0x000...006.06d2f492( )
      • Null: 0x000...007.14b71eb4( )
      • Null: 0x000...006.2d89ca66( )
      • Null: 0x000...007.215a4aa1( )
      • Null: 0x000...006.21688a58( )
      • Null: 0x000...007.23c360ab( )
      • Null: 0x000...006.24029d21( )
      • Null: 0x000...007.1ed9366f( )
      • Null: 0x000...006.0ea39a49( )
      • Null: 0x000...007.1fa4be93( )
      • Null: 0x000...006.19e0c1bd( )
      • Null: 0x000...007.28d10de5( )
      • Null: 0x000...007.23c360ab( )
      • Null: 0x000...006.1d438a60( )
      • Null: 0x000...006.13c66cdd( )
      • Null: 0x000...008.09d67ae3( )
        File 1 of 3: TransparentUpgradeableProxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor() {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
         * proxy whose upgrades are fully controlled by the current implementation.
         */
        interface IERC1822Proxiable {
            /**
             * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
             * address.
             *
             * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
             * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
             * function revert if invoked through a proxy.
             */
            function proxiableUUID() external view returns (bytes32);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         *
         * _Available since v4.9._
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../Proxy.sol";
        import "../ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
         *
         * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
         * conflict with the storage layout of the implementation behind the proxy.
         *
         * _Available since v3.4._
         */
        contract BeaconProxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the proxy with `beacon`.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
             * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
             * constructor.
             *
             * Requirements:
             *
             * - `beacon` must be a contract with the interface {IBeacon}.
             */
            constructor(address beacon, bytes memory data) payable {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
            /**
             * @dev Returns the current beacon address.
             */
            function _beacon() internal view virtual returns (address) {
                return _getBeacon();
            }
            /**
             * @dev Returns the current implementation address of the associated beacon.
             */
            function _implementation() internal view virtual override returns (address) {
                return IBeacon(_getBeacon()).implementation();
            }
            /**
             * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
             *
             * Requirements:
             *
             * - `beacon` must be a contract.
             * - The implementation returned by `beacon` must be a contract.
             */
            function _setBeacon(address beacon, bytes memory data) internal virtual {
                _upgradeBeaconToAndCall(beacon, data, false);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
        pragma solidity ^0.8.0;
        import "./IBeacon.sol";
        import "../../access/Ownable.sol";
        import "../../utils/Address.sol";
        /**
         * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
         * implementation contract, which is where they will delegate all function calls.
         *
         * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
         */
        contract UpgradeableBeacon is IBeacon, Ownable {
            address private _implementation;
            /**
             * @dev Emitted when the implementation returned by the beacon is changed.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
             * beacon.
             */
            constructor(address implementation_) {
                _setImplementation(implementation_);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function implementation() public view virtual override returns (address) {
                return _implementation;
            }
            /**
             * @dev Upgrades the beacon to a new implementation.
             *
             * Emits an {Upgraded} event.
             *
             * Requirements:
             *
             * - msg.sender must be the owner of the contract.
             * - `newImplementation` must be a contract.
             */
            function upgradeTo(address newImplementation) public virtual onlyOwner {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Sets the implementation contract address for this beacon
             *
             * Requirements:
             *
             * - `newImplementation` must be a contract.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
                _implementation = newImplementation;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity ^0.8.0;
        import "../Proxy.sol";
        import "./ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializing the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../interfaces/IERC1967.sol";
        import "../../interfaces/draft-IERC1822.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967Upgrade is IERC1967 {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                _upgradeTo(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallUUPS(
                address newImplementation,
                bytes memory data,
                bool forceCall
            ) internal {
                // Upgrades from old implementations will perform a rollback test. This test requires the new
                // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                // this special case will break upgrade paths from old UUPS implementation to new ones.
                if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                    _setImplementation(newImplementation);
                } else {
                    try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                        require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                    } catch {
                        revert("ERC1967Upgrade: new implementation is not UUPS");
                    }
                    _upgradeToAndCall(newImplementation, data, forceCall);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(
                address newBeacon,
                bytes memory data,
                bool forceCall
            ) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive() external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overridden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {}
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
        pragma solidity ^0.8.0;
        import "./TransparentUpgradeableProxy.sol";
        import "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev Returns the current implementation of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("implementation()")) == 0x5c60da1b
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Returns the current admin of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("admin()")) == 0xf851a440
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Changes the admin of `proxy` to `newAdmin`.
             *
             * Requirements:
             *
             * - This contract must be the current admin of `proxy`.
             */
            function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                proxy.changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                proxy.upgradeTo(implementation);
            }
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
             * {TransparentUpgradeableProxy-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgradeAndCall(
                ITransparentUpgradeableProxy proxy,
                address implementation,
                bytes memory data
            ) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Proxy.sol";
        /**
         * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
         * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
         * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
         * include them in the ABI so this interface must be used to interact with it.
         */
        interface ITransparentUpgradeableProxy is IERC1967 {
            function admin() external view returns (address);
            function implementation() external view returns (address);
            function changeAdmin(address) external;
            function upgradeTo(address) external;
            function upgradeToAndCall(address, bytes memory) external payable;
        }
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         *
         * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
         * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
         * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
         * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
         * implementation.
         *
         * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
         * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
         * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
         * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
             */
            constructor(
                address _logic,
                address admin_,
                bytes memory _data
            ) payable ERC1967Proxy(_logic, _data) {
                _changeAdmin(admin_);
            }
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             *
             * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
             * implementation provides a function with the same selector.
             */
            modifier ifAdmin() {
                if (msg.sender == _getAdmin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
             */
            function _fallback() internal virtual override {
                if (msg.sender == _getAdmin()) {
                    bytes memory ret;
                    bytes4 selector = msg.sig;
                    if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                        ret = _dispatchUpgradeTo();
                    } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                        ret = _dispatchUpgradeToAndCall();
                    } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                        ret = _dispatchChangeAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                        ret = _dispatchAdmin();
                    } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                        ret = _dispatchImplementation();
                    } else {
                        revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                    }
                    assembly {
                        return(add(ret, 0x20), mload(ret))
                    }
                } else {
                    super._fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function _dispatchAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address admin = _getAdmin();
                return abi.encode(admin);
            }
            /**
             * @dev Returns the current implementation.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function _dispatchImplementation() private returns (bytes memory) {
                _requireZeroValue();
                address implementation = _implementation();
                return abi.encode(implementation);
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _dispatchChangeAdmin() private returns (bytes memory) {
                _requireZeroValue();
                address newAdmin = abi.decode(msg.data[4:], (address));
                _changeAdmin(newAdmin);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             */
            function _dispatchUpgradeTo() private returns (bytes memory) {
                _requireZeroValue();
                address newImplementation = abi.decode(msg.data[4:], (address));
                _upgradeToAndCall(newImplementation, bytes(""), false);
                return "";
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             */
            function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                _upgradeToAndCall(newImplementation, data, true);
                return "";
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address) {
                return _getAdmin();
            }
            /**
             * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
             * emulate some proxy functions being non-payable while still allowing value to pass through.
             */
            function _requireZeroValue() private {
                require(msg.value == 0);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
        }
        

        File 2 of 3: ZkEvmV2
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
        pragma solidity ^0.8.0;
        import "./IAccessControlUpgradeable.sol";
        import "../utils/ContextUpgradeable.sol";
        import "../utils/StringsUpgradeable.sol";
        import "../utils/introspection/ERC165Upgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms. This is a lightweight version that doesn't allow enumerating role
         * members except through off-chain means by accessing the contract event logs. Some
         * applications may benefit from on-chain enumerability, for those cases see
         * {AccessControlEnumerable}.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```solidity
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```solidity
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
         * to enforce additional security measures for this role.
         */
        abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
            function __AccessControl_init() internal onlyInitializing {
            }
            function __AccessControl_init_unchained() internal onlyInitializing {
            }
            struct RoleData {
                mapping(address => bool) members;
                bytes32 adminRole;
            }
            mapping(bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Modifier that checks that an account has a specific role. Reverts
             * with a standardized message including the required role.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             *
             * _Available since v4.1._
             */
            modifier onlyRole(bytes32 role) {
                _checkRole(role);
                _;
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
            }
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                return _roles[role].members[account];
            }
            /**
             * @dev Revert with a standard message if `_msgSender()` is missing `role`.
             * Overriding this function changes the behavior of the {onlyRole} modifier.
             *
             * Format of the revert message is described in {_checkRole}.
             *
             * _Available since v4.6._
             */
            function _checkRole(bytes32 role) internal view virtual {
                _checkRole(role, _msgSender());
            }
            /**
             * @dev Revert with a standard message if `account` is missing `role`.
             *
             * The format of the revert reason is given by the following regular expression:
             *
             *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
             */
            function _checkRole(bytes32 role, address account) internal view virtual {
                if (!hasRole(role, account)) {
                    revert(
                        string(
                            abi.encodePacked(
                                "AccessControl: account ",
                                StringsUpgradeable.toHexString(account),
                                " is missing role ",
                                StringsUpgradeable.toHexString(uint256(role), 32)
                            )
                        )
                    );
                }
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleGranted} event.
             */
            function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             *
             * May emit a {RoleRevoked} event.
             */
            function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been revoked `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             *
             * May emit a {RoleRevoked} event.
             */
            function renounceRole(bytes32 role, address account) public virtual override {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * May emit a {RoleGranted} event.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             *
             * NOTE: This function is deprecated in favor of {_grantRole}.
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                bytes32 previousAdminRole = getRoleAdmin(role);
                _roles[role].adminRole = adminRole;
                emit RoleAdminChanged(role, previousAdminRole, adminRole);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleGranted} event.
             */
            function _grantRole(bytes32 role, address account) internal virtual {
                if (!hasRole(role, account)) {
                    _roles[role].members[account] = true;
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * Internal function without access restriction.
             *
             * May emit a {RoleRevoked} event.
             */
            function _revokeRole(bytes32 role, address account) internal virtual {
                if (hasRole(role, account)) {
                    _roles[role].members[account] = false;
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev External interface of AccessControl declared to support ERC165 detection.
         */
        interface IAccessControlUpgradeable {
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {AccessControl-_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) external view returns (bool);
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {AccessControl-_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) external view returns (bytes32);
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) external;
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) external;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module that helps prevent reentrant calls to a function.
         *
         * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
         * available, which can be applied to functions to make sure there are no nested
         * (reentrant) calls to them.
         *
         * Note that because there is a single `nonReentrant` guard, functions marked as
         * `nonReentrant` may not call one another. This can be worked around by making
         * those functions `private`, and then adding `external` `nonReentrant` entry
         * points to them.
         *
         * TIP: If you would like to learn more about reentrancy and alternative ways
         * to protect against it, check out our blog post
         * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
         */
        abstract contract ReentrancyGuardUpgradeable is Initializable {
            // Booleans are more expensive than uint256 or any type that takes up a full
            // word because each write operation emits an extra SLOAD to first read the
            // slot's contents, replace the bits taken up by the boolean, and then write
            // back. This is the compiler's defense against contract upgrades and
            // pointer aliasing, and it cannot be disabled.
            // The values being non-zero value makes deployment a bit more expensive,
            // but in exchange the refund on every call to nonReentrant will be lower in
            // amount. Since refunds are capped to a percentage of the total
            // transaction's gas, it is best to keep them low in cases like this one, to
            // increase the likelihood of the full refund coming into effect.
            uint256 private constant _NOT_ENTERED = 1;
            uint256 private constant _ENTERED = 2;
            uint256 private _status;
            function __ReentrancyGuard_init() internal onlyInitializing {
                __ReentrancyGuard_init_unchained();
            }
            function __ReentrancyGuard_init_unchained() internal onlyInitializing {
                _status = _NOT_ENTERED;
            }
            /**
             * @dev Prevents a contract from calling itself, directly or indirectly.
             * Calling a `nonReentrant` function from another `nonReentrant`
             * function is not supported. It is possible to prevent this from happening
             * by making the `nonReentrant` function external, and making it call a
             * `private` function that does the actual work.
             */
            modifier nonReentrant() {
                _nonReentrantBefore();
                _;
                _nonReentrantAfter();
            }
            function _nonReentrantBefore() private {
                // On the first call to nonReentrant, _status will be _NOT_ENTERED
                require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                // Any calls to nonReentrant after this point will fail
                _status = _ENTERED;
            }
            function _nonReentrantAfter() private {
                // By storing the original value once again, a refund is triggered (see
                // https://eips.ethereum.org/EIPS/eip-2200)
                _status = _NOT_ENTERED;
            }
            /**
             * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
             * `nonReentrant` function in the call stack.
             */
            function _reentrancyGuardEntered() internal view returns (bool) {
                return _status == _ENTERED;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
        pragma solidity ^0.8.0;
        import "./IERC165Upgradeable.sol";
        import "../../proxy/utils/Initializable.sol";
        /**
         * @dev Implementation of the {IERC165} interface.
         *
         * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
         * for the additional interface id that will be supported. For example:
         *
         * ```solidity
         * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
         *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
         * }
         * ```
         *
         * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
         */
        abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
            function __ERC165_init() internal onlyInitializing {
            }
            function __ERC165_init_unchained() internal onlyInitializing {
            }
            /**
             * @dev See {IERC165-supportsInterface}.
             */
            function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                return interfaceId == type(IERC165Upgradeable).interfaceId;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC165 standard, as defined in the
         * https://eips.ethereum.org/EIPS/eip-165[EIP].
         *
         * Implementers can declare support of contract interfaces, which can then be
         * queried by others ({ERC165Checker}).
         *
         * For an implementation, see {ERC165}.
         */
        interface IERC165Upgradeable {
            /**
             * @dev Returns true if this contract implements the interface defined by
             * `interfaceId`. See the corresponding
             * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
             * to learn more about how these ids are created.
             *
             * This function call must use less than 30 000 gas.
             */
            function supportsInterface(bytes4 interfaceId) external view returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library MathUpgradeable {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                        // The surrounding unchecked block does not change this fact.
                        // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1, "Math: mulDiv overflow");
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                //
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                //
                // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                //
                // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1 << (log2(a) >> 1);
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = sqrt(a);
                    return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 2, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 128;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 64;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 32;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 16;
                    }
                    if (value >> 8 > 0) {
                        value >>= 8;
                        result += 8;
                    }
                    if (value >> 4 > 0) {
                        value >>= 4;
                        result += 4;
                    }
                    if (value >> 2 > 0) {
                        value >>= 2;
                        result += 2;
                    }
                    if (value >> 1 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log2(value);
                    return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 10, rounded down, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >= 10 ** 64) {
                        value /= 10 ** 64;
                        result += 64;
                    }
                    if (value >= 10 ** 32) {
                        value /= 10 ** 32;
                        result += 32;
                    }
                    if (value >= 10 ** 16) {
                        value /= 10 ** 16;
                        result += 16;
                    }
                    if (value >= 10 ** 8) {
                        value /= 10 ** 8;
                        result += 8;
                    }
                    if (value >= 10 ** 4) {
                        value /= 10 ** 4;
                        result += 4;
                    }
                    if (value >= 10 ** 2) {
                        value /= 10 ** 2;
                        result += 2;
                    }
                    if (value >= 10 ** 1) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log10(value);
                    return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                }
            }
            /**
             * @dev Return the log in base 256, rounded down, of a positive value.
             * Returns 0 if given 0.
             *
             * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
             */
            function log256(uint256 value) internal pure returns (uint256) {
                uint256 result = 0;
                unchecked {
                    if (value >> 128 > 0) {
                        value >>= 128;
                        result += 16;
                    }
                    if (value >> 64 > 0) {
                        value >>= 64;
                        result += 8;
                    }
                    if (value >> 32 > 0) {
                        value >>= 32;
                        result += 4;
                    }
                    if (value >> 16 > 0) {
                        value >>= 16;
                        result += 2;
                    }
                    if (value >> 8 > 0) {
                        result += 1;
                    }
                }
                return result;
            }
            /**
             * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
             * Returns 0 if given 0.
             */
            function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                unchecked {
                    uint256 result = log256(value);
                    return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMathUpgradeable {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a > b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        import "./math/MathUpgradeable.sol";
        import "./math/SignedMathUpgradeable.sol";
        /**
         * @dev String operations.
         */
        library StringsUpgradeable {
            bytes16 private constant _SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    uint256 length = MathUpgradeable.log10(value) + 1;
                    string memory buffer = new string(length);
                    uint256 ptr;
                    /// @solidity memory-safe-assembly
                    assembly {
                        ptr := add(buffer, add(32, length))
                    }
                    while (true) {
                        ptr--;
                        /// @solidity memory-safe-assembly
                        assembly {
                            mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                        }
                        value /= 10;
                        if (value == 0) break;
                    }
                    return buffer;
                }
            }
            /**
             * @dev Converts a `int256` to its ASCII `string` decimal representation.
             */
            function toString(int256 value) internal pure returns (string memory) {
                return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                unchecked {
                    return toHexString(value, MathUpgradeable.log256(value) + 1);
                }
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
            /**
             * @dev Returns true if the two strings are equal.
             */
            function equal(string memory a, string memory b) internal pure returns (bool) {
                return keccak256(bytes(a)) == keccak256(bytes(b));
            }
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        interface IGenericErrors {
          /**
           * @dev Thrown when a parameter is the zero address.
           */
          error ZeroAddressNotAllowed();
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        interface IL1MessageManager {
          /**
           * @dev Emitted when L2->L1 message hashes have been added to L1 storage.
           */
          event L2L1MessageHashAddedToInbox(bytes32 indexed messageHash);
          /**
           * @dev Emitted when L1->L2 messages have been anchored on L2 and updated on L1.
           */
          event L1L2MessagesReceivedOnL2(bytes32[] messageHashes);
          /**
           * @dev Thrown when the message has been already sent.
           */
          error MessageAlreadySent();
          /**
           * @dev Thrown when the message has already been claimed.
           */
          error MessageDoesNotExistOrHasAlreadyBeenClaimed();
          /**
           * @dev Thrown when the message has already been received.
           */
          error MessageAlreadyReceived(bytes32 messageHash);
          /**
           * @dev Thrown when the L1->L2 message has not been sent.
           */
          error L1L2MessageNotSent(bytes32 messageHash);
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        interface IMessageService {
          /**
           * @dev Emitted when a message is sent.
           * @dev We include the message hash to save hashing costs on the rollup.
           */
          event MessageSent(
            address indexed _from,
            address indexed _to,
            uint256 _fee,
            uint256 _value,
            uint256 _nonce,
            bytes _calldata,
            bytes32 indexed _messageHash
          );
          /**
           * @dev Emitted when a message is claimed.
           */
          event MessageClaimed(bytes32 indexed _messageHash);
          /**
           * @dev Thrown when fees are lower than the minimum fee.
           */
          error FeeTooLow();
          /**
           * @dev Thrown when fees are lower than value.
           */
          error ValueShouldBeGreaterThanFee();
          /**
           * @dev Thrown when the value sent is less than the fee.
           * @dev Value to forward on is msg.value - _fee.
           */
          error ValueSentTooLow();
          /**
           * @dev Thrown when the destination address reverts.
           */
          error MessageSendingFailed(address destination);
          /**
           * @dev Thrown when the destination address reverts.
           */
          error FeePaymentFailed(address recipient);
          /**
           * @notice Sends a message for transporting from the given chain.
           * @dev This function should be called with a msg.value = _value + _fee. The fee will be paid on the destination chain.
           * @param _to The destination address on the destination chain.
           * @param _fee The message service fee on the origin chain.
           * @param _calldata The calldata used by the destination message service to call the destination contract.
           */
          function sendMessage(address _to, uint256 _fee, bytes calldata _calldata) external payable;
          /**
           * @notice Deliver a message to the destination chain.
           * @notice Is called automatically by the Postman, dApp or end user.
           * @param _from The msg.sender calling the origin message service.
           * @param _to The destination address on the destination chain.
           * @param _value The value to be transferred to the destination address.
           * @param _fee The message service fee on the origin chain.
           * @param _feeRecipient Address that will receive the fees.
           * @param _calldata The calldata used by the destination message service to call/forward to the destination contract.
           * @param _nonce Unique message number.
           */
          function claimMessage(
            address _from,
            address _to,
            uint256 _fee,
            uint256 _value,
            address payable _feeRecipient,
            bytes calldata _calldata,
            uint256 _nonce
          ) external;
          /**
           * @notice Returns the original sender of the message on the origin layer.
           * @return The original sender of the message on the origin layer.
           */
          function sender() external view returns (address);
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        interface IPauseManager {
          /**
           * @dev Thrown when a specific pause type is paused.
           */
          error IsPaused(bytes32 pauseType);
          /**
           * @dev Thrown when a specific pause type is not paused and expected to be.
           */
          error IsNotPaused(bytes32 pauseType);
          /**
           * @dev Emitted when a pause type is paused.
           */
          event Paused(address messageSender, bytes32 pauseType);
          /**
           * @dev Emitted when a pause type is unpaused.
           */
          event UnPaused(address messageSender, bytes32 pauseType);
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        /**
         * @title Contract to manage cross-chain messaging on L1 and rollup proving
         * @author ConsenSys Software Inc.
         */
        interface IPlonkVerifier {
          /**
           * @notice Interface for verifier contracts.
           * @param _proof The proof used to verify.
           * @param _public_inputs The computed public inputs for the proof verification.
           */
          function Verify(bytes memory _proof, uint256[] memory _public_inputs) external returns (bool);
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        interface IRateLimiter {
          /**
           * @dev Thrown when an amount breaches the limit in the period.
           */
          error RateLimitExceeded();
          /**
           * @dev Thrown when the period is initialised to zero.
           */
          error PeriodIsZero();
          /**
           * @dev Thrown when the limit is initialised to zero.
           */
          error LimitIsZero();
          /**
           * @dev Emitted when the amount in the period is reset to zero.
           */
          event AmountUsedInPeriodReset(address indexed resettingAddress);
          /**
           * @dev Emitted when the limit is changed.
           * @dev If the current used amount is higher than the new limit, the used amount is lowered to the limit.
           */
          event LimitAmountChanged(
            address indexed amountChangeBy,
            uint256 amount,
            bool amountUsedLoweredToLimit,
            bool usedAmountResetToZero
          );
          /**
           * @notice Resets the rate limit amount to the amount specified.
           * @param _amount New message hashes.
           */
          function resetRateLimitAmount(uint256 _amount) external;
          /**
           * @notice Resets the amount used in the period to zero.
           */
          function resetAmountUsedInPeriod() external;
        }
        // SPDX-License-Identifier: Apache-2.0
        pragma solidity ^0.8.19;
        interface IZkEvmV2 {
          struct BlockData {
            bytes32 blockRootHash;
            uint32 l2BlockTimestamp;
            bytes[] transactions;
            bytes32[] l2ToL1MsgHashes;
            bytes fromAddresses;
            uint16[] batchReceptionIndices;
          }
          /**
           * @dev Emitted when a L2 block has been finalized on L1
           */
          event BlockFinalized(uint256 indexed blockNumber, bytes32 indexed stateRootHash);
          /**
           * @dev Emitted when a L2 blocks have been finalized on L1
           */
          event BlocksVerificationDone(uint256 indexed lastBlockFinalized, bytes32 startingRootHash, bytes32 finalRootHash);
          /**
           * @dev Emitted when a verifier is set for a particular proof type
           */
          event VerifierAddressChanged(
            address indexed verifierAddress,
            uint256 indexed proofType,
            address indexed verifierSetBy
          );
          /**
           * @dev Thrown when l2 block timestamp is not correct
           */
          error BlockTimestampError();
          /**
           * @dev Thrown when the starting rootHash does not match the existing state
           */
          error StartingRootHashDoesNotMatch();
          /**
           * @dev Thrown when block contains zero transactions
           */
          error EmptyBlock();
          /**
           * @dev Thrown when zk proof is empty bytes
           */
          error ProofIsEmpty();
          /**
           * @dev Thrown when zk proof type is invalid
           */
          error InvalidProofType();
          /**
           * @dev Thrown when zk proof is invalid
           */
          error InvalidProof();
          /**
           * @notice Adds or updated the verifier contract address for a proof type
           * @dev DEFAULT_ADMIN_ROLE is required to execute
           * @param _newVerifierAddress The address for the verifier contract
           * @param _proofType The proof type being set/updated
           **/
          function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external;
          /**
           * @notice Finalizes blocks without using a proof
           * @dev DEFAULT_ADMIN_ROLE is required to execute
           * @param _calldata The full BlockData collection - block, transaction and log data
           **/
          function finalizeBlocksWithoutProof(BlockData[] calldata _calldata) external;
          /**
           * @notice Finalizes blocks without using a proof
           * @dev OPERATOR_ROLE is required to execute
           * @dev If the verifier based on proof type is not found, it defaults to the default verifier type
           * @param _calldata The full BlockData collection - block, transaction and log data
           * @param _proof The proof to verified with the proof type verifier contract
           * @param _proofType The proof type to determine which verifier contract to use
           * @param _parentStateRootHash The beginning roothash to start with
           **/
          function finalizeBlocks(
            BlockData[] calldata _calldata,
            bytes calldata _proof,
            uint256 _proofType,
            bytes32 _parentStateRootHash
          ) external;
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        import { IL1MessageManager } from "../../interfaces/IL1MessageManager.sol";
        /**
         * @title Contract to manage cross-chain message hashes storage and status on L1.
         * @author ConsenSys Software Inc.
         */
        abstract contract L1MessageManager is IL1MessageManager {
          uint8 public constant INBOX_STATUS_UNKNOWN = 0;
          uint8 public constant INBOX_STATUS_RECEIVED = 1;
          uint8 public constant OUTBOX_STATUS_UNKNOWN = 0;
          uint8 public constant OUTBOX_STATUS_SENT = 1;
          uint8 public constant OUTBOX_STATUS_RECEIVED = 2;
          /// @dev There is a uint216 worth of storage layout here.
          /// @dev Mapping to store L1->L2 message hashes status.
          /// @dev messageHash => messageStatus (0: unknown, 1: sent, 2: received).
          mapping(bytes32 => uint256) public outboxL1L2MessageStatus;
          /// @dev Mapping to store L2->L1 message hashes status.
          /// @dev messageHash => messageStatus (0: unknown, 1: received).
          mapping(bytes32 => uint256) public inboxL2L1MessageStatus;
          /// @dev Keep free storage slots for future implementation updates to avoid storage collision.
          // *******************************************************************************************
          // NB: THIS GAP HAS BEEN PUSHED OUT IN FAVOUR OF THE GAP INSIDE THE REENTRANCY CODE
          //uint256[50] private __gap;
          // NB: DO NOT USE THIS GAP
          // *******************************************************************************************
          /**
           * @notice Add a cross-chain L2->L1 message hash in storage.
           * @dev Once the event is emitted, it should be ready for claiming (post block finalization).
           * @param  _messageHash Hash of the message.
           */
          function _addL2L1MessageHash(bytes32 _messageHash) internal {
            if (inboxL2L1MessageStatus[_messageHash] != INBOX_STATUS_UNKNOWN) {
              revert MessageAlreadyReceived(_messageHash);
            }
            inboxL2L1MessageStatus[_messageHash] = INBOX_STATUS_RECEIVED;
            emit L2L1MessageHashAddedToInbox(_messageHash);
          }
          /**
           * @notice Update the status of L2->L1 message when a user claims a message on L1.
           * @dev The L2->L1 message is removed from storage.
           * @dev Due to the nature of the rollup, we should not get a second entry of this.
           * @param  _messageHash Hash of the message.
           */
          function _updateL2L1MessageStatusToClaimed(bytes32 _messageHash) internal {
            if (inboxL2L1MessageStatus[_messageHash] != INBOX_STATUS_RECEIVED) {
              revert MessageDoesNotExistOrHasAlreadyBeenClaimed();
            }
            delete inboxL2L1MessageStatus[_messageHash];
          }
          /**
           * @notice Add L1->L2 message hash in storage when a message is sent on L1.
           * @param  _messageHash Hash of the message.
           */
          function _addL1L2MessageHash(bytes32 _messageHash) internal {
            outboxL1L2MessageStatus[_messageHash] = OUTBOX_STATUS_SENT;
          }
          /**
           * @notice Update the status of L1->L2 messages as received when messages has been stored on L2.
           * @dev The expectation here is that the rollup is limited to 100 hashes being added here - array is not open ended.
           * @param  _messageHashes List of message hashes.
           */
          function _updateL1L2MessageStatusToReceived(bytes32[] memory _messageHashes) internal {
            uint256 messageHashArrayLength = _messageHashes.length;
            for (uint256 i; i < messageHashArrayLength; ) {
              bytes32 messageHash = _messageHashes[i];
              uint256 existingStatus = outboxL1L2MessageStatus[messageHash];
              if (existingStatus == OUTBOX_STATUS_UNKNOWN) {
                revert L1L2MessageNotSent(messageHash);
              }
              if (existingStatus != OUTBOX_STATUS_RECEIVED) {
                outboxL1L2MessageStatus[messageHash] = OUTBOX_STATUS_RECEIVED;
              }
              unchecked {
                i++;
              }
            }
            emit L1L2MessagesReceivedOnL2(_messageHashes);
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
        import { IMessageService } from "../../interfaces/IMessageService.sol";
        import { IGenericErrors } from "../../interfaces/IGenericErrors.sol";
        import { PauseManager } from "../lib/PauseManager.sol";
        import { RateLimiter } from "../lib/RateLimiter.sol";
        import { L1MessageManager } from "./L1MessageManager.sol";
        /**
         * @title Contract to manage cross-chain messaging on L1.
         * @author ConsenSys Software Inc.
         */
        abstract contract L1MessageService is
          Initializable,
          RateLimiter,
          L1MessageManager,
          ReentrancyGuardUpgradeable,
          PauseManager,
          IMessageService,
          IGenericErrors
        {
          // @dev This is initialised to save user cost with existing slot.
          uint256 public nextMessageNumber;
          address private _messageSender;
          // Keep free storage slots for future implementation updates to avoid storage collision.
          uint256[50] private __gap;
          // @dev adding these should not affect storage as they are constants and are store in bytecode
          uint256 private constant REFUND_OVERHEAD_IN_GAS = 42000;
          /**
           * @notice Initialises underlying message service dependencies.
           * @dev _messageSender is initialised to a non-zero value for gas efficiency on claiming.
           * @param _limitManagerAddress The address owning the rate limiting management role.
           * @param _pauseManagerAddress The address owning the pause management role.
           * @param _rateLimitPeriod The period to rate limit against.
           * @param _rateLimitAmount The limit allowed for withdrawing the period.
           **/
          function __MessageService_init(
            address _limitManagerAddress,
            address _pauseManagerAddress,
            uint256 _rateLimitPeriod,
            uint256 _rateLimitAmount
          ) internal onlyInitializing {
            if (_limitManagerAddress == address(0)) {
              revert ZeroAddressNotAllowed();
            }
            if (_pauseManagerAddress == address(0)) {
              revert ZeroAddressNotAllowed();
            }
            __ERC165_init();
            __Context_init();
            __AccessControl_init();
            __RateLimiter_init(_rateLimitPeriod, _rateLimitAmount);
            _grantRole(RATE_LIMIT_SETTER_ROLE, _limitManagerAddress);
            _grantRole(PAUSE_MANAGER_ROLE, _pauseManagerAddress);
            nextMessageNumber = 1;
            _messageSender = address(123456789);
          }
          /**
           * @notice Adds a message for sending cross-chain and emits MessageSent.
           * @dev The message number is preset (nextMessageNumber) and only incremented at the end if successful for the next caller.
           * @dev This function should be called with a msg.value = _value + _fee. The fee will be paid on the destination chain.
           * @param _to The address the message is intended for.
           * @param _fee The fee being paid for the message delivery.
           * @param _calldata The calldata to pass to the recipient.
           **/
          function sendMessage(
            address _to,
            uint256 _fee,
            bytes calldata _calldata
          ) external payable whenTypeNotPaused(L1_L2_PAUSE_TYPE) whenTypeNotPaused(GENERAL_PAUSE_TYPE) {
            if (_to == address(0)) {
              revert ZeroAddressNotAllowed();
            }
            if (_fee > msg.value) {
              revert ValueSentTooLow();
            }
            uint256 messageNumber = nextMessageNumber;
            uint256 valueSent = msg.value - _fee;
            bytes32 messageHash = keccak256(abi.encode(msg.sender, _to, _fee, valueSent, messageNumber, _calldata));
            // @dev Status check and revert is in the message manager
            _addL1L2MessageHash(messageHash);
            nextMessageNumber++;
            emit MessageSent(msg.sender, _to, _fee, valueSent, messageNumber, _calldata, messageHash);
          }
          /**
           * @notice Claims and delivers a cross-chain message.
           * @dev _feeRecipient can be set to address(0) to receive as msg.sender.
           * @dev _messageSender is set temporarily when claiming and reset post. Used in sender().
           * @dev _messageSender is reset to address(123456789) to be more gas efficient.
           * @param _from The address of the original sender.
           * @param _to The address the message is intended for.
           * @param _fee The fee being paid for the message delivery.
           * @param _value The value to be transferred to the destination address.
           * @param _feeRecipient The recipient for the fee.
           * @param _calldata The calldata to pass to the recipient.
           * @param _nonce The unique auto generated nonce used when sending the message.
           **/
          function claimMessage(
            address _from,
            address _to,
            uint256 _fee,
            uint256 _value,
            address payable _feeRecipient,
            bytes calldata _calldata,
            uint256 _nonce
          ) external nonReentrant distributeFees(_fee, _to, _calldata, _feeRecipient) {
            _requireTypeNotPaused(L2_L1_PAUSE_TYPE);
            _requireTypeNotPaused(GENERAL_PAUSE_TYPE);
            bytes32 messageHash = keccak256(abi.encode(_from, _to, _fee, _value, _nonce, _calldata));
            // @dev Status check and revert is in the message manager.
            _updateL2L1MessageStatusToClaimed(messageHash);
            _addUsedAmount(_fee + _value);
            _messageSender = _from;
            (bool callSuccess, bytes memory returnData) = _to.call{ value: _value }(_calldata);
            if (!callSuccess) {
              if (returnData.length > 0) {
                assembly {
                  let data_size := mload(returnData)
                  revert(add(32, returnData), data_size)
                }
              } else {
                revert MessageSendingFailed(_to);
              }
            }
            _messageSender = address(123456789);
            emit MessageClaimed(messageHash);
          }
          /**
           * @notice Claims and delivers a cross-chain message.
           * @dev _messageSender is set temporarily when claiming.
           **/
          function sender() external view returns (address) {
            return _messageSender;
          }
          /**
           * @notice Function to receive funds for liquidity purposes.
           **/
          receive() external payable virtual {}
          /**
           * @notice The unspent fee is refunded if applicable.
           * @param _feeInWei The fee paid for delivery in Wei.
           * @param _to The recipient of the message and gas refund.
           * @param _calldata The calldata of the message.
           **/
          modifier distributeFees(
            uint256 _feeInWei,
            address _to,
            bytes calldata _calldata,
            address _feeRecipient
          ) {
            //pre-execution
            uint256 startingGas = gasleft();
            _;
            //post-execution
            // we have a fee
            if (_feeInWei > 0) {
              // default postman fee
              uint256 deliveryFee = _feeInWei;
              // do we have empty calldata?
              if (_calldata.length == 0) {
                bool isDestinationEOA;
                assembly {
                  isDestinationEOA := iszero(extcodesize(_to))
                }
                // are we calling an EOA
                if (isDestinationEOA) {
                  // initial + cost to call and refund minus gasleft
                  deliveryFee = (startingGas + REFUND_OVERHEAD_IN_GAS - gasleft()) * tx.gasprice;
                  if (_feeInWei > deliveryFee) {
                    payable(_to).send(_feeInWei - deliveryFee);
                  } else {
                    deliveryFee = _feeInWei;
                  }
                }
              }
              address feeReceiver = _feeRecipient == address(0) ? msg.sender : _feeRecipient;
              bool callSuccess = payable(feeReceiver).send(deliveryFee);
              if (!callSuccess) {
                revert FeePaymentFailed(feeReceiver);
              }
            }
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        /**
         * @title Decoding functions for message service anchoring and bytes slicing.
         * @author ConsenSys Software Inc.
         * @notice You can use this to slice bytes and extract anchoring hashes from calldata.
         **/
        library CodecV2 {
          /**
           * @notice Decodes a collection of bytes32 (hashes) from the calldata of a transaction.
           * @dev Extracts and decodes skipping the function selector (selector is expected in the input).
           * @dev A check beforehand must be performed to confirm this is the correct type of transaction.
           * @param _calldataWithSelector The calldata for the transaction.
           * @return bytes32[] - array of message hashes.
           **/
          function _extractXDomainAddHashes(bytes memory _calldataWithSelector) internal pure returns (bytes32[] memory) {
            assembly {
              let len := sub(mload(_calldataWithSelector), 4)
              _calldataWithSelector := add(_calldataWithSelector, 0x4)
              mstore(_calldataWithSelector, len)
            }
            return abi.decode(_calldataWithSelector, (bytes32[]));
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import { IPauseManager } from "../../interfaces/IPauseManager.sol";
        /**
         * @title Contract to manage cross-chain function pausing.
         * @author ConsenSys Software Inc.
         */
        abstract contract PauseManager is Initializable, IPauseManager, AccessControlUpgradeable {
          bytes32 public constant PAUSE_MANAGER_ROLE = keccak256("PAUSE_MANAGER_ROLE");
          bytes32 public constant GENERAL_PAUSE_TYPE = keccak256("GENERAL_PAUSE_TYPE");
          bytes32 public constant L1_L2_PAUSE_TYPE = keccak256("L1_L2_PAUSE_TYPE");
          bytes32 public constant L2_L1_PAUSE_TYPE = keccak256("L2_L1_PAUSE_TYPE");
          bytes32 public constant PROVING_SYSTEM_PAUSE_TYPE = keccak256("PROVING_SYSTEM_PAUSE_TYPE");
          mapping(bytes32 => bool) public pauseTypeStatuses;
          uint256[10] private _gap;
          /**
           * @dev Modifier to make a function callable only when the type is not paused.
           *
           * Requirements:
           *
           * - The type must not be paused.
           */
          modifier whenTypeNotPaused(bytes32 _pauseType) {
            _requireTypeNotPaused(_pauseType);
            _;
          }
          /**
           * @dev Modifier to make a function callable only when the type is paused.
           *
           * Requirements:
           *
           * - The type must not be paused.
           */
          modifier whenTypePaused(bytes32 _pauseType) {
            _requireTypePaused(_pauseType);
            _;
          }
          /**
           * @dev Throws if the type is not paused.
           * @param _pauseType The keccak256 pause type being checked,
           */
          function _requireTypePaused(bytes32 _pauseType) internal view virtual {
            if (!pauseTypeStatuses[_pauseType]) {
              revert IsNotPaused(_pauseType);
            }
          }
          /**
           * @dev Throws if the type is paused.
           * @param _pauseType The keccak256 pause type being checked,
           */
          function _requireTypeNotPaused(bytes32 _pauseType) internal view virtual {
            if (pauseTypeStatuses[_pauseType]) {
              revert IsPaused(_pauseType);
            }
          }
          /**
           * @notice Pauses functionality by specific type.
           * @dev Requires PAUSE_MANAGER_ROLE.
           * @param _pauseType keccak256 pause type.
           **/
          function pauseByType(bytes32 _pauseType) external whenTypeNotPaused(_pauseType) onlyRole(PAUSE_MANAGER_ROLE) {
            pauseTypeStatuses[_pauseType] = true;
            emit Paused(_msgSender(), _pauseType);
          }
          /**
           * @notice Unpauses functionality by specific type.
           * @dev Requires PAUSE_MANAGER_ROLE.
           * @param _pauseType keccak256 pause type.
           **/
          function unPauseByType(bytes32 _pauseType) external whenTypePaused(_pauseType) onlyRole(PAUSE_MANAGER_ROLE) {
            pauseTypeStatuses[_pauseType] = false;
            emit UnPaused(_msgSender(), _pauseType);
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import { IRateLimiter } from "../../interfaces/IRateLimiter.sol";
        /**
         * @title Rate Limiter by period and amount using the block timestamp.
         * @author ConsenSys Software Inc.
         * @notice You can use this control numeric limits over a period using timestamp.
         **/
        contract RateLimiter is Initializable, IRateLimiter, AccessControlUpgradeable {
          bytes32 public constant RATE_LIMIT_SETTER_ROLE = keccak256("RATE_LIMIT_SETTER_ROLE");
          uint256 public periodInSeconds; // how much time before limit resets.
          uint256 public limitInWei; // max ether to withdraw per period.
          // @dev Public for ease of consumption.
          // @notice The time at which the current period ends at.
          uint256 public currentPeriodEnd;
          // @dev Public for ease of consumption.
          // @notice Amounts already withdrawn this period.
          uint256 public currentPeriodAmountInWei;
          uint256[10] private _gap;
          /**
           * @notice Initialises the limits and period for the rate limiter.
           * @param _periodInSeconds The length of the period in seconds.
           * @param _limitInWei The limit allowed in the period in Wei.
           **/
          function __RateLimiter_init(uint256 _periodInSeconds, uint256 _limitInWei) internal onlyInitializing {
            if (_periodInSeconds == 0) {
              revert PeriodIsZero();
            }
            if (_limitInWei == 0) {
              revert LimitIsZero();
            }
            periodInSeconds = _periodInSeconds;
            limitInWei = _limitInWei;
            currentPeriodEnd = block.timestamp + _periodInSeconds;
          }
          /**
           * @notice Increments the amount used in the period.
           * @dev The amount determining logic is external to this (e.g. fees are included when calling here).
           * @dev Reverts if the limit is breached.
           * @param _usedAmount The amount used to be added.
           **/
          function _addUsedAmount(uint256 _usedAmount) internal {
            uint256 currentPeriodAmountTemp;
            if (currentPeriodEnd < block.timestamp) {
              currentPeriodEnd = block.timestamp + periodInSeconds;
              currentPeriodAmountTemp = _usedAmount;
            } else {
              currentPeriodAmountTemp = currentPeriodAmountInWei + _usedAmount;
            }
            if (currentPeriodAmountTemp > limitInWei) {
              revert RateLimitExceeded();
            }
            currentPeriodAmountInWei = currentPeriodAmountTemp;
          }
          /**
           * @notice Resets the rate limit amount.
           * @dev If the used amount is higher, it is set to the limit to avoid confusion/issues.
           * @dev Only the RATE_LIMIT_SETTER_ROLE is allowed to execute this function.
           * @dev Emits the LimitAmountChanged event.
           * @dev usedLimitAmountToSet will use the default value of zero if period has expired
           * @param _amount The amount to reset the limit to.
           **/
          function resetRateLimitAmount(uint256 _amount) external onlyRole(RATE_LIMIT_SETTER_ROLE) {
            uint256 usedLimitAmountToSet;
            bool amountUsedLoweredToLimit;
            bool usedAmountResetToZero;
            if (currentPeriodEnd < block.timestamp) {
              currentPeriodEnd = block.timestamp + periodInSeconds;
              usedAmountResetToZero = true;
            } else {
              if (_amount < currentPeriodAmountInWei) {
                usedLimitAmountToSet = _amount;
                amountUsedLoweredToLimit = true;
              }
            }
            limitInWei = _amount;
            if (usedAmountResetToZero || amountUsedLoweredToLimit) {
              currentPeriodAmountInWei = usedLimitAmountToSet;
            }
            emit LimitAmountChanged(_msgSender(), _amount, amountUsedLoweredToLimit, usedAmountResetToZero);
          }
          /**
           * @notice Resets the amount used to zero.
           * @dev Only the RATE_LIMIT_SETTER_ROLE is allowed to execute this function.
           * @dev Emits the AmountUsedInPeriodReset event.
           **/
          function resetAmountUsedInPeriod() external onlyRole(RATE_LIMIT_SETTER_ROLE) {
            currentPeriodAmountInWei = 0;
            emit AmountUsedInPeriodReset(_msgSender());
          }
        }
        // SPDX-License-Identifier: Apache-2.0
        /**
         * @author Hamdi Allam [email protected]
         * @notice Please reach out with any questions or concerns.
         */
        pragma solidity ^0.8.19;
        error NotList();
        error WrongBytesLength();
        error NoNext();
        error MemoryOutOfBounds(uint256 inde);
        library RLPReader {
          uint8 internal constant STRING_SHORT_START = 0x80;
          uint8 internal constant STRING_LONG_START = 0xb8;
          uint8 internal constant LIST_SHORT_START = 0xc0;
          uint8 internal constant LIST_LONG_START = 0xf8;
          uint8 internal constant LIST_SHORT_START_MAX = 0xf7;
          uint8 internal constant WORD_SIZE = 32;
          struct RLPItem {
            uint256 len;
            uint256 memPtr;
          }
          struct Iterator {
            RLPItem item; // Item that's being iterated over.
            uint256 nextPtr; // Position of the next item in the list.
          }
          /**
           * @dev Returns the next element in the iteration. Reverts if it has no next element.
           * @param _self The iterator.
           * @return nextItem The next element in the iteration.
           */
          function _next(Iterator memory _self) internal pure returns (RLPItem memory nextItem) {
            if (!_hasNext(_self)) {
              revert NoNext();
            }
            uint256 ptr = _self.nextPtr;
            uint256 itemLength = _itemLength(ptr);
            _self.nextPtr = ptr + itemLength;
            nextItem.len = itemLength;
            nextItem.memPtr = ptr;
          }
          /**
           * @dev Returns the number 'skiptoNum' element in the iteration.
           * @param _self The iterator.
           * @param _skipToNum Element position in the RLP item iterator to return.
           * @return item The number 'skipToNum' element in the iteration.
           */
          function _skipTo(Iterator memory _self, uint256 _skipToNum) internal pure returns (RLPItem memory item) {
            uint256 lenX;
            uint256 memPtrStart = _self.item.memPtr;
            uint256 endPtr;
            uint256 byte0;
            uint256 byteLen;
            assembly {
              // get first byte to know if it is a short/long list
              byte0 := byte(0, mload(memPtrStart))
              // yul has no if/else so if it a short list ( < long list start )
              switch lt(byte0, LIST_LONG_START)
              case 1 {
                // the length is just the difference in bytes
                lenX := sub(byte0, 0xc0)
              }
              case 0 {
                // at this point we care only about lists, so this is the default
                // get how many next bytes indicate the list length
                byteLen := sub(byte0, 0xf7)
                // move one over to the list length start
                memPtrStart := add(memPtrStart, 1)
                // shift over grabbing the bytelen elements
                lenX := div(mload(memPtrStart), exp(256, sub(32, byteLen)))
              }
              // get the end
              endPtr := add(memPtrStart, lenX)
            }
            uint256 ptr = _self.nextPtr;
            uint256 itemLength = _itemLength(ptr);
            _self.nextPtr = ptr + itemLength;
            for (uint256 i; i < _skipToNum - 1; ) {
              ptr = _self.nextPtr;
              if (ptr > endPtr) revert MemoryOutOfBounds(endPtr);
              itemLength = _itemLength(ptr);
              _self.nextPtr = ptr + itemLength;
              unchecked {
                i++;
              }
            }
            item.len = itemLength;
            item.memPtr = ptr;
          }
          /**
           * @dev Returns true if the iteration has more elements.
           * @param _self The iterator.
           * @return True if the iteration has more elements.
           */
          function _hasNext(Iterator memory _self) internal pure returns (bool) {
            RLPItem memory item = _self.item;
            return _self.nextPtr < item.memPtr + item.len;
          }
          /**
           * @param item RLP encoded bytes.
           * @return newItem The RLP item.
           */
          function _toRlpItem(bytes memory item) internal pure returns (RLPItem memory newItem) {
            uint256 memPtr;
            assembly {
              memPtr := add(item, 0x20)
            }
            newItem.len = item.length;
            newItem.memPtr = memPtr;
          }
          /**
           * @dev Creates an iterator. Reverts if item is not a list.
           * @param _self The RLP item.
           * @return iterator 'Iterator' over the item.
           */
          function _iterator(RLPItem memory _self) internal pure returns (Iterator memory iterator) {
            if (!_isList(_self)) {
              revert NotList();
            }
            uint256 ptr = _self.memPtr + _payloadOffset(_self.memPtr);
            iterator.item = _self;
            iterator.nextPtr = ptr;
          }
          /**
           * @param _item The RLP item.
           * @return (memPtr, len) Tuple: Location of the item's payload in memory.
           */
          function _payloadLocation(RLPItem memory _item) internal pure returns (uint256, uint256) {
            uint256 offset = _payloadOffset(_item.memPtr);
            uint256 memPtr = _item.memPtr + offset;
            uint256 len = _item.len - offset; // data length
            return (memPtr, len);
          }
          /**
           * @param _item The RLP item.
           * @return Indicator whether encoded payload is a list.
           */
          function _isList(RLPItem memory _item) internal pure returns (bool) {
            if (_item.len == 0) return false;
            uint8 byte0;
            uint256 memPtr = _item.memPtr;
            assembly {
              byte0 := byte(0, mload(memPtr))
            }
            if (byte0 < LIST_SHORT_START) return false;
            return true;
          }
          /**
           * @param _item The RLP item.
           * @return result Returns the item as an address.
           */
          function _toAddress(RLPItem memory _item) internal pure returns (address) {
            // 1 byte for the length prefix
            if (_item.len != 21) {
              revert WrongBytesLength();
            }
            return address(uint160(_toUint(_item)));
          }
          /**
           * @param _item The RLP item.
           * @return result Returns the item as a uint256.
           */
          function _toUint(RLPItem memory _item) internal pure returns (uint256 result) {
            if (_item.len == 0 || _item.len > 33) {
              revert WrongBytesLength();
            }
            (uint256 memPtr, uint256 len) = _payloadLocation(_item);
            assembly {
              result := mload(memPtr)
              // Shfit to the correct location if neccesary.
              if lt(len, 32) {
                result := div(result, exp(256, sub(32, len)))
              }
            }
          }
          /**
           * @param _item The RLP item.
           * @return result Returns the item as bytes.
           */
          function _toBytes(RLPItem memory _item) internal pure returns (bytes memory result) {
            if (_item.len == 0) {
              revert WrongBytesLength();
            }
            (uint256 memPtr, uint256 len) = _payloadLocation(_item);
            result = new bytes(len);
            uint256 destPtr;
            assembly {
              destPtr := add(0x20, result)
            }
            _copy(memPtr, destPtr, len);
          }
          /*
           * Private Helpers
           */
          /**
           * @param _memPtr Item memory pointer.
           * @return Entire RLP item byte length.
           */
          function _itemLength(uint256 _memPtr) private pure returns (uint256) {
            uint256 itemLen;
            uint256 dataLen;
            uint256 byte0;
            assembly {
              byte0 := byte(0, mload(_memPtr))
            }
            if (byte0 < STRING_SHORT_START) itemLen = 1;
            else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1;
            else if (byte0 < LIST_SHORT_START) {
              assembly {
                let byteLen := sub(byte0, 0xb7) // # Of bytes the actual length is.
                _memPtr := add(_memPtr, 1) // Skip over the first byte.
                /* 32 byte word size */
                dataLen := div(mload(_memPtr), exp(256, sub(32, byteLen))) // Right shifting to get the len.
                itemLen := add(dataLen, add(byteLen, 1))
              }
            } else if (byte0 < LIST_LONG_START) {
              itemLen = byte0 - LIST_SHORT_START + 1;
            } else {
              assembly {
                let byteLen := sub(byte0, 0xf7)
                _memPtr := add(_memPtr, 1)
                dataLen := div(mload(_memPtr), exp(256, sub(32, byteLen))) // Right shifting to the correct length.
                itemLen := add(dataLen, add(byteLen, 1))
              }
            }
            return itemLen;
          }
          /**
           * @param _memPtr Item memory pointer.
           * @return Number of bytes until the data.
           */
          function _payloadOffset(uint256 _memPtr) private pure returns (uint256) {
            uint256 byte0;
            assembly {
              byte0 := byte(0, mload(_memPtr))
            }
            if (byte0 < STRING_SHORT_START) return 0;
            else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1;
            else if (byte0 < LIST_SHORT_START)
              // being explicit
              return byte0 - (STRING_LONG_START - 1) + 1;
            else return byte0 - (LIST_LONG_START - 1) + 1;
          }
          /**
           * @param _src Pointer to source.
           * @param _dest Pointer to destination.
           * @param _len Amount of memory to copy from the source.
           */
          function _copy(uint256 _src, uint256 _dest, uint256 _len) private pure {
            if (_len == 0) return;
            // copy as many word sizes as possible
            for (; _len >= WORD_SIZE; _len -= WORD_SIZE) {
              assembly {
                mstore(_dest, mload(_src))
              }
              _src += WORD_SIZE;
              _dest += WORD_SIZE;
            }
            if (_len > 0) {
              // Left over bytes. Mask is used to remove unwanted bytes from the word.
              uint256 mask = 256 ** (WORD_SIZE - _len) - 1;
              assembly {
                let srcpart := and(mload(_src), not(mask)) // Zero out src.
                let destpart := and(mload(_dest), mask) // Retrieve the bytes.
                mstore(_dest, or(destpart, srcpart))
              }
            }
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        import { RLPReader } from "./Rlp.sol";
        using RLPReader for RLPReader.RLPItem;
        using RLPReader for RLPReader.Iterator;
        using RLPReader for bytes;
        /*
         * dev Thrown when the transaction data length is too short.
         */
        error TransactionShort();
        /*
         * dev Thrown when the transaction type is unknown.
         */
        error UnknownTransactionType();
        /**
         * @title Contract to decode RLP formatted transactions.
         * @author ConsenSys Software Inc.
         */
        library TransactionDecoder {
          /**
           * @notice Decodes the transaction extracting the calldata.
           * @param _transaction The RLP transaction.
           * @return data Returns the transaction calldata as bytes.
           */
          function decodeTransaction(bytes calldata _transaction) internal pure returns (bytes memory) {
            if (_transaction.length < 1) {
              revert TransactionShort();
            }
            bytes1 version = _transaction[0];
            if (version == 0x01) {
              return _decodeEIP2930Transaction(_transaction);
            }
            if (version == 0x02) {
              return _decodeEIP1559Transaction(_transaction);
            }
            if (version >= 0xc0) {
              return _decodeLegacyTransaction(_transaction);
            }
            revert UnknownTransactionType();
          }
          /**
           * @notice Decodes the EIP1559 transaction extracting the calldata.
           * @param _transaction The RLP transaction.
           * @return data Returns the transaction calldata as bytes.
           */
          function _decodeEIP1559Transaction(bytes calldata _transaction) private pure returns (bytes memory data) {
            bytes memory txData = _transaction[1:]; // skip the version byte
            RLPReader.RLPItem memory rlp = txData._toRlpItem();
            RLPReader.Iterator memory it = rlp._iterator();
            data = it._skipTo(8)._toBytes();
          }
          /**
           * @notice Decodes the EIP29230 transaction extracting the calldata.
           * @param _transaction The RLP transaction.
           * @return data Returns the transaction calldata as bytes.
           */
          function _decodeEIP2930Transaction(bytes calldata _transaction) private pure returns (bytes memory data) {
            bytes memory txData = _transaction[1:]; // skip the version byte
            RLPReader.RLPItem memory rlp = txData._toRlpItem();
            RLPReader.Iterator memory it = rlp._iterator();
            data = it._skipTo(7)._toBytes();
          }
          /**
           * @notice Decodes the legacy transaction extracting the calldata.
           * @param _transaction The RLP transaction.
           * @return data Returns the transaction calldata as bytes.
           */
          function _decodeLegacyTransaction(bytes calldata _transaction) private pure returns (bytes memory data) {
            bytes memory txData = _transaction;
            RLPReader.RLPItem memory rlp = txData._toRlpItem();
            RLPReader.Iterator memory it = rlp._iterator();
            data = it._skipTo(6)._toBytes();
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        pragma solidity ^0.8.19;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import { L1MessageService } from "./messageService/l1/L1MessageService.sol";
        import { TransactionDecoder } from "./messageService/lib/TransactionDecoder.sol";
        import { IZkEvmV2 } from "./interfaces/IZkEvmV2.sol";
        import { IPlonkVerifier } from "./interfaces/IPlonkVerifier.sol";
        import { CodecV2 } from "./messageService/lib/Codec.sol";
        /**
         * @title Contract to manage cross-chain messaging on L1 and rollup proving.
         * @author ConsenSys Software Inc.
         */
        contract ZkEvmV2 is IZkEvmV2, Initializable, AccessControlUpgradeable, L1MessageService {
          using TransactionDecoder for *;
          using CodecV2 for *;
          uint256 private constant MODULO_R = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
          bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
          uint256 public currentTimestamp;
          uint256 public currentL2BlockNumber;
          mapping(uint256 => bytes32) public stateRootHashes;
          mapping(uint256 => address) public verifiers;
          uint256[50] private __gap;
          /// @custom:oz-upgrades-unsafe-allow constructor
          constructor() {
            _disableInitializers();
          }
          /**
           * @notice Initializes zkEvm and underlying service dependencies.
           * @dev DEFAULT_ADMIN_ROLE is set for the security council.
           * @dev OPERATOR_ROLE is set for operators.
           * @param _initialStateRootHash The initial hash at migration used for proof verification.
           * @param _initialL2BlockNumber The initial block number at migration.
           * @param _defaultVerifier The default verifier for rollup proofs.
           * @param _securityCouncil The address for the security council performing admin operations.
           * @param _operators The allowed rollup operators at initialization.
           * @param _rateLimitPeriodInSeconds The period in which withdrawal amounts and fees will be accumulated.
           * @param _rateLimitAmountInWei The limit allowed for withdrawing in the period.
           **/
          function initialize(
            bytes32 _initialStateRootHash,
            uint256 _initialL2BlockNumber,
            address _defaultVerifier,
            address _securityCouncil,
            address[] calldata _operators,
            uint256 _rateLimitPeriodInSeconds,
            uint256 _rateLimitAmountInWei
          ) public initializer {
            if (_defaultVerifier == address(0)) {
              revert ZeroAddressNotAllowed();
            }
            for (uint256 i; i < _operators.length; ) {
              if (_operators[i] == address(0)) {
                revert ZeroAddressNotAllowed();
              }
              _grantRole(OPERATOR_ROLE, _operators[i]);
              unchecked {
                i++;
              }
            }
            _grantRole(DEFAULT_ADMIN_ROLE, _securityCouncil);
            __MessageService_init(_securityCouncil, _securityCouncil, _rateLimitPeriodInSeconds, _rateLimitAmountInWei);
            verifiers[0] = _defaultVerifier;
            currentL2BlockNumber = _initialL2BlockNumber;
            stateRootHashes[_initialL2BlockNumber] = _initialStateRootHash;
          }
          /**
           * @notice Adds or updates the verifier contract address for a proof type.
           * @dev DEFAULT_ADMIN_ROLE is required to execute.
           * @param _newVerifierAddress The address for the verifier contract.
           * @param _proofType The proof type being set/updated.
           **/
          function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external onlyRole(DEFAULT_ADMIN_ROLE) {
            if (_newVerifierAddress == address(0)) {
              revert ZeroAddressNotAllowed();
            }
            emit VerifierAddressChanged(_newVerifierAddress, _proofType, msg.sender);
            verifiers[_proofType] = _newVerifierAddress;
          }
          /**
           * @notice Finalizes blocks without using a proof.
           * @dev DEFAULT_ADMIN_ROLE is required to execute.
           * @param _blocksData The full BlockData collection - block, transaction and log data.
           **/
          function finalizeBlocksWithoutProof(
            BlockData[] calldata _blocksData
          ) external whenTypeNotPaused(GENERAL_PAUSE_TYPE) onlyRole(DEFAULT_ADMIN_ROLE) {
            _finalizeBlocks(_blocksData, new bytes(0), 0, bytes32(0), false);
          }
          /**
           * @notice Finalizes blocks using a proof.
           * @dev OPERATOR_ROLE is required to execute.
           * @dev If the verifier based on proof type is not found, it reverts.
           * @param _blocksData The full BlockData collection - block, transaction and log data.
           * @param _proof The proof to be verified with the proof type verifier contract.
           * @param _proofType The proof type to determine which verifier contract to use.
           * @param _parentStateRootHash The starting roothash for the last known block.
           **/
          function finalizeBlocks(
            BlockData[] calldata _blocksData,
            bytes calldata _proof,
            uint256 _proofType,
            bytes32 _parentStateRootHash
          )
            external
            whenTypeNotPaused(PROVING_SYSTEM_PAUSE_TYPE)
            whenTypeNotPaused(GENERAL_PAUSE_TYPE)
            onlyRole(OPERATOR_ROLE)
          {
            if (stateRootHashes[currentL2BlockNumber] != _parentStateRootHash) {
              revert StartingRootHashDoesNotMatch();
            }
            _finalizeBlocks(_blocksData, _proof, _proofType, _parentStateRootHash, true);
          }
          /**
           * @notice Finalizes blocks with or without using a proof depending on _shouldProve
           * @dev If the verifier based on proof type is not found, it reverts.
           * @param _blocksData The full BlockData collection - block, transaction and log data.
           * @param _proof The proof to be verified with the proof type verifier contract.
           * @param _proofType The proof type to determine which verifier contract to use.
           * @param _parentStateRootHash The starting roothash for the last known block.
           **/
          function _finalizeBlocks(
            BlockData[] calldata _blocksData,
            bytes memory _proof,
            uint256 _proofType,
            bytes32 _parentStateRootHash,
            bool _shouldProve
          ) private {
            uint256 currentBlockNumberTemp = currentL2BlockNumber;
            uint256 firstBlockNumber = currentBlockNumberTemp + 1;
            uint256[] memory timestamps = new uint256[](_blocksData.length);
            bytes32[] memory blockHashes = new bytes32[](_blocksData.length);
            bytes32[] memory hashOfRootHashes = new bytes32[](_blocksData.length + 1);
            hashOfRootHashes[0] = _parentStateRootHash;
            bytes32 hashOfTxHashes;
            bytes32 hashOfMessageHashes;
            for (uint256 i; i < _blocksData.length; ) {
              BlockData calldata blockInfo = _blocksData[i];
              if (blockInfo.l2BlockTimestamp >= block.timestamp) {
                revert BlockTimestampError();
              }
              hashOfTxHashes = _processBlockTransactions(blockInfo.transactions, blockInfo.batchReceptionIndices);
              hashOfMessageHashes = _processMessageHashes(blockInfo.l2ToL1MsgHashes);
              ++currentBlockNumberTemp;
              blockHashes[i] = keccak256(
                abi.encodePacked(
                  hashOfTxHashes,
                  hashOfMessageHashes,
                  keccak256(abi.encodePacked(blockInfo.batchReceptionIndices)),
                  keccak256(blockInfo.fromAddresses)
                )
              );
              timestamps[i] = blockInfo.l2BlockTimestamp;
              hashOfRootHashes[i + 1] = blockInfo.blockRootHash;
              emit BlockFinalized(currentBlockNumberTemp, blockInfo.blockRootHash);
              unchecked {
                i++;
              }
            }
            stateRootHashes[currentBlockNumberTemp] = _blocksData[_blocksData.length - 1].blockRootHash;
            currentTimestamp = _blocksData[_blocksData.length - 1].l2BlockTimestamp;
            currentL2BlockNumber = currentBlockNumberTemp;
            if (_shouldProve) {
              _verifyProof(
                uint256(
                  keccak256(
                    abi.encode(
                      keccak256(abi.encodePacked(blockHashes)),
                      firstBlockNumber,
                      keccak256(abi.encodePacked(timestamps)),
                      keccak256(abi.encodePacked(hashOfRootHashes))
                    )
                  )
                ) % MODULO_R,
                _proofType,
                _proof,
                _parentStateRootHash
              );
            }
          }
          /**
           * @notice Hashes all transactions individually and then hashes the packed hash array.
           * @dev Updates the outbox status on L1 as received.
           * @param _transactions The transactions in a particular block.
           * @param _batchReceptionIndices The indexes where the transaction type is the L1->L2 achoring message hashes transaction.
           **/
          function _processBlockTransactions(
            bytes[] calldata _transactions,
            uint16[] calldata _batchReceptionIndices
          ) internal returns (bytes32 hashOfTxHashes) {
            bytes32[] memory transactionHashes = new bytes32[](_transactions.length);
            if (_transactions.length == 0) {
              revert EmptyBlock();
            }
            for (uint256 i; i < _batchReceptionIndices.length; ) {
              _updateL1L2MessageStatusToReceived(
                TransactionDecoder.decodeTransaction(_transactions[_batchReceptionIndices[i]])._extractXDomainAddHashes()
              );
              unchecked {
                i++;
              }
            }
            for (uint256 i; i < _transactions.length; ) {
              transactionHashes[i] = keccak256(_transactions[i]);
              unchecked {
                i++;
              }
            }
            hashOfTxHashes = keccak256(abi.encodePacked(transactionHashes));
          }
          /**
           * @notice Anchors message hashes and hashes the packed hash array.
           * @dev Also adds L2->L1 sent message hashes for later claiming.
           * @param _messageHashes The hashes in the message sent event logs.
           **/
          function _processMessageHashes(bytes32[] calldata _messageHashes) internal returns (bytes32 hashOfLogHashes) {
            for (uint256 i; i < _messageHashes.length; ) {
              _addL2L1MessageHash(_messageHashes[i]);
              unchecked {
                i++;
              }
            }
            hashOfLogHashes = keccak256(abi.encodePacked(_messageHashes));
          }
          /**
           * @notice Verifies the proof with locally computed public inputs.
           * @dev If the verifier based on proof type is not found, it reverts with InvalidProofType.
           * @param _publicInputHash The full BlockData collection - block, transaction and log data.
           * @param _proofType The proof type to determine which verifier contract to use.
           * @param _proof The proof to be verified with the proof type verifier contract.
           * @param _parentStateRootHash The beginning roothash to start with.
           **/
          function _verifyProof(
            uint256 _publicInputHash,
            uint256 _proofType,
            bytes memory _proof,
            bytes32 _parentStateRootHash
          ) private {
            uint256[] memory input = new uint256[](1);
            input[0] = _publicInputHash;
            address verifierToUse = verifiers[_proofType];
            if (verifierToUse == address(0)) {
              revert InvalidProofType();
            }
            bool success = IPlonkVerifier(verifierToUse).Verify(_proof, input);
            if (!success) {
              revert InvalidProof();
            }
            emit BlocksVerificationDone(currentL2BlockNumber, _parentStateRootHash, stateRootHashes[currentL2BlockNumber]);
          }
        }
        

        File 3 of 3: PlonkVerifierFull
        // SPDX-License-Identifier: Apache-2.0
        // Copyright 2023 Consensys Software Inc.
        //
        // Licensed under the Apache License, Version 2.0 (the "License");
        // you may not use this file except in compliance with the License.
        // You may obtain a copy of the License at
        //
        //     http://www.apache.org/licenses/LICENSE-2.0
        //
        // Unless required by applicable law or agreed to in writing, software
        // distributed under the License is distributed on an "AS IS" BASIS,
        // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        // See the License for the specific language governing permissions and
        // limitations under the License.
        // Code generated by gnark DO NOT EDIT
        pragma solidity ^0.8.19;
        import { Utils } from "./Utils.sol";
        contract PlonkVerifierFull {
          using Utils for *;
          uint256 private constant r_mod = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
          uint256 private constant p_mod = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
          uint256 private constant g2_srs_0_x_0 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
          uint256 private constant g2_srs_0_x_1 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
          uint256 private constant g2_srs_0_y_0 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
          uint256 private constant g2_srs_0_y_1 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
          uint256 private constant g2_srs_1_x_0 = 15805639136721018565402881920352193254830339253282065586954346329754995870280;
          uint256 private constant g2_srs_1_x_1 = 19089565590083334368588890253123139704298730990782503769911324779715431555531;
          uint256 private constant g2_srs_1_y_0 = 9779648407879205346559610309258181044130619080926897934572699915909528404984;
          uint256 private constant g2_srs_1_y_1 = 6779728121489434657638426458390319301070371227460768374343986326751507916979;
          // ----------------------- vk ---------------------
          uint256 private constant vk_domain_size = 67108864;
          uint256 private constant vk_inv_domain_size =
            21888242545679039938882419398440172875981108180010270949818755658014750055173;
          uint256 private constant vk_omega = 7419588552507395652481651088034484897579724952953562618697845598160172257810;
          uint256 private constant vk_ql_com_x = 13525709715452455298954926042894212564628036321399789360566793694715937771352;
          uint256 private constant vk_ql_com_y = 16585249180591675138941559203780511979245575412908714775636958360987383792239;
          uint256 private constant vk_qr_com_x = 14148572045886251945792876173080813556116314088794324579574660284762914941669;
          uint256 private constant vk_qr_com_y = 13842239550691491428464191545817225601597189810026701643462638680503957744889;
          uint256 private constant vk_qm_com_x = 13522897959955119652865784834835976361490133655994054434262671514193248404625;
          uint256 private constant vk_qm_com_y = 13493447428329441420851370602159948706574248532218034239617820929323277518001;
          uint256 private constant vk_qo_com_x = 7060690164887603180822709561299613895672597716510049606680499562908505132709;
          uint256 private constant vk_qo_com_y = 17132453280808170663140286188647213203791535181032438058770464109374337899153;
          uint256 private constant vk_qk_com_x = 15216401052757890774219228156239863879308845760439647233724618177408901913570;
          uint256 private constant vk_qk_com_y = 12451956943068853170449619051211352834650857556519559497734074793907719431916;
          uint256 private constant vk_s1_com_x = 14256405778767051587276133608837021203518255961898101394303537378002866419040;
          uint256 private constant vk_s1_com_y = 21038700968212297875313747694611083193187035592187569106720411730639905255252;
          uint256 private constant vk_s2_com_x = 1019109700203543492729048562641359612628812305695299058467746496950485325794;
          uint256 private constant vk_s2_com_y = 490278430319379230242443848913755358662702057338304277498471180434097991836;
          uint256 private constant vk_s3_com_x = 2969427075258365849777260383285616082152301055041585820485498518017437026548;
          uint256 private constant vk_s3_com_y = 16099347285202727295431946911322450887583714417016216619148080599766330871066;
          uint256 private constant vk_coset_shift = 5;
          uint256 private constant vk_selector_commitments_commit_api_0_x =
            21788360697493106829785246939901744021456836473452930837314992369057900122018;
          uint256 private constant vk_selector_commitments_commit_api_0_y =
            16125341249761668633747631072985421243468892447965413965887015388783528206032;
          uint256 private constant vk_selector_commitments_commit_api_1_x =
            9369801914206014217445122279591521815449013590744042826207321226401456655568;
          uint256 private constant vk_selector_commitments_commit_api_1_y =
            20403534275150672051547282308343985824042675377185536764459718189767081861844;
          uint256 private constant vk_selector_commitments_commit_api_2_x =
            15085855314213485493120090850643571722324905485327671636383375594981366630616;
          uint256 private constant vk_selector_commitments_commit_api_2_y =
            9694401959517714837257605548316168182563966590362894961003011860886804708060;
          function load_vk_commitments_indices_commit_api(uint256[] memory v) internal pure {
            assembly {
              let _v := add(v, 0x20)
              mstore(_v, 22612113)
              _v := add(_v, 0x20)
              mstore(_v, 27501766)
              _v := add(_v, 0x20)
              mstore(_v, 60589135)
              _v := add(_v, 0x20)
            }
          }
          uint256 private constant vk_nb_commitments_commit_api = 3;
          // ------------------------------------------------
          // offset proof
          uint256 private constant proof_l_com_x = 0x20;
          uint256 private constant proof_l_com_y = 0x40;
          uint256 private constant proof_r_com_x = 0x60;
          uint256 private constant proof_r_com_y = 0x80;
          uint256 private constant proof_o_com_x = 0xa0;
          uint256 private constant proof_o_com_y = 0xc0;
          // h = h_0 + x^{n+2}h_1 + x^{2(n+2)}h_2
          uint256 private constant proof_h_0_x = 0xe0;
          uint256 private constant proof_h_0_y = 0x100;
          uint256 private constant proof_h_1_x = 0x120;
          uint256 private constant proof_h_1_y = 0x140;
          uint256 private constant proof_h_2_x = 0x160;
          uint256 private constant proof_h_2_y = 0x180;
          // wire values at zeta
          uint256 private constant proof_l_at_zeta = 0x1a0;
          uint256 private constant proof_r_at_zeta = 0x1c0;
          uint256 private constant proof_o_at_zeta = 0x1e0;
          //uint256[STATE_WIDTH-1] permutation_polynomials_at_zeta; // Sσ1(zeta),Sσ2(zeta)
          uint256 private constant proof_s1_at_zeta = 0x200; // Sσ1(zeta)
          uint256 private constant proof_s2_at_zeta = 0x220; // Sσ2(zeta)
          //Bn254.G1Point grand_product_commitment;                 // [z(x)]
          uint256 private constant proof_grand_product_commitment_x = 0x240;
          uint256 private constant proof_grand_product_commitment_y = 0x260;
          uint256 private constant proof_grand_product_at_zeta_omega = 0x280; // z(w*zeta)
          uint256 private constant proof_quotient_polynomial_at_zeta = 0x2a0; // t(zeta)
          uint256 private constant proof_linearised_polynomial_at_zeta = 0x2c0; // r(zeta)
          // Folded proof for the opening of H, linearised poly, l, r, o, s_1, s_2, qcp
          uint256 private constant proof_batch_opening_at_zeta_x = 0x2e0; // [Wzeta]
          uint256 private constant proof_batch_opening_at_zeta_y = 0x300;
          //Bn254.G1Point opening_at_zeta_omega_proof;      // [Wzeta*omega]
          uint256 private constant proof_opening_at_zeta_omega_x = 0x320;
          uint256 private constant proof_opening_at_zeta_omega_y = 0x340;
          uint256 private constant proof_openings_selector_commit_api_at_zeta = 0x360;
          // -> next part of proof is
          // [ openings_selector_commits || commitments_wires_commit_api]
          // -------- offset state
          // challenges to check the claimed quotient
          uint256 private constant state_alpha = 0x00;
          uint256 private constant state_beta = 0x20;
          uint256 private constant state_gamma = 0x40;
          uint256 private constant state_zeta = 0x60;
          // reusable value
          uint256 private constant state_alpha_square_lagrange_0 = 0x80;
          // commitment to H
          uint256 private constant state_folded_h_x = 0xa0;
          uint256 private constant state_folded_h_y = 0xc0;
          // commitment to the linearised polynomial
          uint256 private constant state_linearised_polynomial_x = 0xe0;
          uint256 private constant state_linearised_polynomial_y = 0x100;
          // Folded proof for the opening of H, linearised poly, l, r, o, s_1, s_2, qcp
          uint256 private constant state_folded_claimed_values = 0x120;
          // folded digests of H, linearised poly, l, r, o, s_1, s_2, qcp
          // Bn254.G1Point folded_digests;
          uint256 private constant state_folded_digests_x = 0x140;
          uint256 private constant state_folded_digests_y = 0x160;
          uint256 private constant state_pi = 0x180;
          uint256 private constant state_zeta_power_n_minus_one = 0x1a0;
          uint256 private constant state_gamma_kzg = 0x1c0;
          uint256 private constant state_success = 0x1e0;
          uint256 private constant state_check_var = 0x200; // /!\\ this slot is used for debugging only
          uint256 private constant state_last_mem = 0x220;
          // -------- errors
          uint256 private constant error_string_id = 0x08c379a000000000000000000000000000000000000000000000000000000000; // selector for function Error(string)
          // read the commitments to the wires related to the commit api and store them in wire_commitments.
          // The commitments are points on Bn254(Fp) so they are stored on 2 uint256.
          function load_wire_commitments_commit_api(uint256[] memory wire_commitments, bytes memory proof) internal pure {
            assembly {
              let w := add(wire_commitments, 0x20)
              let p := add(proof, proof_openings_selector_commit_api_at_zeta)
              p := add(p, mul(vk_nb_commitments_commit_api, 0x20))
              for {
                let i := 0
              } lt(i, vk_nb_commitments_commit_api) {
                i := add(i, 1)
              } {
                // x coordinate
                mstore(w, mload(p))
                w := add(w, 0x20)
                p := add(p, 0x20)
                // y coordinate
                mstore(w, mload(p))
                w := add(w, 0x20)
                p := add(p, 0x20)
              }
            }
          }
          function derive_gamma_beta_alpha_zeta(
            bytes memory proof,
            uint256[] memory public_inputs
          ) internal view returns (uint256, uint256, uint256, uint256) {
            uint256 gamma;
            uint256 beta;
            uint256 alpha;
            uint256 zeta;
            assembly {
              let mem := mload(0x40)
              derive_gamma(proof, public_inputs)
              gamma := mload(mem)
              derive_beta(proof, gamma)
              beta := mload(mem)
              derive_alpha(proof, beta)
              alpha := mload(mem)
              derive_zeta(proof, alpha)
              zeta := mload(mem)
              gamma := mod(gamma, r_mod)
              beta := mod(beta, r_mod)
              alpha := mod(alpha, r_mod)
              zeta := mod(zeta, r_mod)
              function error_sha2_256() {
                let ptError := mload(0x40)
                mstore(ptError, error_string_id) // selector for function Error(string)
                mstore(add(ptError, 0x4), 0x20)
                mstore(add(ptError, 0x24), 0x19)
                mstore(add(ptError, 0x44), "error staticcall sha2-256")
                revert(ptError, 0x64)
              }
              // Derive gamma as Sha256(<transcript>)
              // where transcript is the concatenation (in this order) of:
              // * the word "gamma" in ascii, equal to [0x67,0x61,0x6d, 0x6d, 0x61] and encoded as a uint256.
              // * the commitments to the permutation polynomials S1, S2, S3, where we concatenate the coordinates of those points
              // * the commitments of Ql, Qr, Qm, Qo, Qk
              // * the public inputs
              // * the commitments of the wires related to the custom gates (commitments_wires_commit_api)
              // * commitments to L, R, O (proof_<l,r,o>_com_<x,y>)
              // The data described above is written starting at mPtr. "gamma" lies on 5 bytes,
              // and is encoded as a uint256 number n. In basis b = 256, the number looks like this
              // [0 0 0 .. 0x67 0x61 0x6d, 0x6d, 0x61]. The first non zero entry is at position 27=0x1b
              function derive_gamma(aproof, pub_inputs) {
                let mPtr := mload(0x40)
                // gamma
                // gamma in ascii is [0x67,0x61,0x6d, 0x6d, 0x61]
                // (same for alpha, beta, zeta)
                mstore(mPtr, 0x67616d6d61) // "gamma"
                mstore(add(mPtr, 0x20), vk_s1_com_x)
                mstore(add(mPtr, 0x40), vk_s1_com_y)
                mstore(add(mPtr, 0x60), vk_s2_com_x)
                mstore(add(mPtr, 0x80), vk_s2_com_y)
                mstore(add(mPtr, 0xa0), vk_s3_com_x)
                mstore(add(mPtr, 0xc0), vk_s3_com_y)
                mstore(add(mPtr, 0xe0), vk_ql_com_x)
                mstore(add(mPtr, 0x100), vk_ql_com_y)
                mstore(add(mPtr, 0x120), vk_qr_com_x)
                mstore(add(mPtr, 0x140), vk_qr_com_y)
                mstore(add(mPtr, 0x160), vk_qm_com_x)
                mstore(add(mPtr, 0x180), vk_qm_com_y)
                mstore(add(mPtr, 0x1a0), vk_qo_com_x)
                mstore(add(mPtr, 0x1c0), vk_qo_com_y)
                mstore(add(mPtr, 0x1e0), vk_qk_com_x)
                mstore(add(mPtr, 0x200), vk_qk_com_y)
                let pi := add(pub_inputs, 0x20)
                let _mPtr := add(mPtr, 0x220)
                for {
                  let i := 0
                } lt(i, mload(pub_inputs)) {
                  i := add(i, 1)
                } {
                  mstore(_mPtr, mload(pi))
                  pi := add(pi, 0x20)
                  _mPtr := add(_mPtr, 0x20)
                }
                let _proof := add(aproof, proof_openings_selector_commit_api_at_zeta)
                _proof := add(_proof, mul(vk_nb_commitments_commit_api, 0x20))
                for {
                  let i := 0
                } lt(i, vk_nb_commitments_commit_api) {
                  i := add(i, 1)
                } {
                  mstore(_mPtr, mload(_proof))
                  mstore(add(_mPtr, 0x20), mload(add(_proof, 0x20)))
                  _mPtr := add(_mPtr, 0x40)
                  _proof := add(_proof, 0x40)
                }
                mstore(_mPtr, mload(add(aproof, proof_l_com_x)))
                mstore(add(_mPtr, 0x20), mload(add(aproof, proof_l_com_y)))
                mstore(add(_mPtr, 0x40), mload(add(aproof, proof_r_com_x)))
                mstore(add(_mPtr, 0x60), mload(add(aproof, proof_r_com_y)))
                mstore(add(_mPtr, 0x80), mload(add(aproof, proof_o_com_x)))
                mstore(add(_mPtr, 0xa0), mload(add(aproof, proof_o_com_y)))
                let size := add(0x2c5, mul(mload(pub_inputs), 0x20)) // 0x2c5 = 22*32+5
                size := add(size, mul(vk_nb_commitments_commit_api, 0x40))
                let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1b), size, mPtr, 0x20) //0x1b -> 000.."gamma"
                if eq(success, 0) {
                  error_sha2_256()
                }
              }
              function derive_beta(aproof, prev_challenge) {
                let mPtr := mload(0x40)
                // beta
                mstore(mPtr, 0x62657461) // "beta"
                mstore(add(mPtr, 0x20), prev_challenge)
                let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1c), 0x24, mPtr, 0x20) //0x1b -> 000.."gamma"
                if eq(success, 0) {
                  error_sha2_256()
                }
              }
              // alpha depends on the previous challenge (beta) and on the commitment to the grand product polynomial
              function derive_alpha(aproof, prev_challenge) {
                let mPtr := mload(0x40)
                // alpha
                mstore(mPtr, 0x616C706861) // "alpha"
                mstore(add(mPtr, 0x20), prev_challenge)
                mstore(add(mPtr, 0x40), mload(add(aproof, proof_grand_product_commitment_x)))
                mstore(add(mPtr, 0x60), mload(add(aproof, proof_grand_product_commitment_y)))
                let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1b), 0x65, mPtr, 0x20) //0x1b -> 000.."gamma"
                if eq(success, 0) {
                  error_sha2_256()
                }
              }
              // zeta depends on the previous challenge (alpha) and on the commitment to the quotient polynomial
              function derive_zeta(aproof, prev_challenge) {
                let mPtr := mload(0x40)
                // zeta
                mstore(mPtr, 0x7a657461) // "zeta"
                mstore(add(mPtr, 0x20), prev_challenge)
                mstore(add(mPtr, 0x40), mload(add(aproof, proof_h_0_x)))
                mstore(add(mPtr, 0x60), mload(add(aproof, proof_h_0_y)))
                mstore(add(mPtr, 0x80), mload(add(aproof, proof_h_1_x)))
                mstore(add(mPtr, 0xa0), mload(add(aproof, proof_h_1_y)))
                mstore(add(mPtr, 0xc0), mload(add(aproof, proof_h_2_x)))
                mstore(add(mPtr, 0xe0), mload(add(aproof, proof_h_2_y)))
                let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1c), 0xe4, mPtr, 0x20)
                if eq(success, 0) {
                  error_sha2_256()
                }
              }
            }
            return (gamma, beta, alpha, zeta);
          }
          // Computes L_i(zeta) =  ωⁱ/n * (ζⁿ-1)/(ζ-ωⁱ) where:
          // * n = vk_domain_size
          // * ω = vk_omega (generator of the multiplicative cyclic group of order n in (ℤ/rℤ)*)
          // * ζ = zeta (challenge derived with Fiat Shamir)
          function compute_ith_lagrange_at_z(uint256 zeta, uint256 i) internal view returns (uint256) {
            uint256 res;
            assembly {
              function error_pow_local() {
                let ptError := mload(0x40)
                mstore(ptError, error_string_id)
                mstore(add(ptError, 0x4), 0x20)
                mstore(add(ptError, 0x24), 0x17)
                mstore(add(ptError, 0x44), "error staticcall modexp")
                revert(ptError, 0x64)
              }
              // _n^_i [r]
              function pow_local(x, e) -> result {
                let mPtr := mload(0x40)
                mstore(mPtr, 0x20)
                mstore(add(mPtr, 0x20), 0x20)
                mstore(add(mPtr, 0x40), 0x20)
                mstore(add(mPtr, 0x60), x)
                mstore(add(mPtr, 0x80), e)
                mstore(add(mPtr, 0xa0), r_mod)
                let success := staticcall(sub(gas(), 2000), 0x05, mPtr, 0xc0, 0x00, 0x20)
                if eq(success, 0) {
                  error_pow_local()
                }
                result := mload(0x00)
              }
              let w := pow_local(vk_omega, i) // w**i
              i := addmod(zeta, sub(r_mod, w), r_mod) // z-w**i
              zeta := pow_local(zeta, vk_domain_size) // z**n
              zeta := addmod(zeta, sub(r_mod, 1), r_mod) // z**n-1
              w := mulmod(w, vk_inv_domain_size, r_mod) // w**i/n
              i := pow_local(i, sub(r_mod, 2)) // (z-w**i)**-1
              w := mulmod(w, i, r_mod) // w**i/n*(z-w)**-1
              res := mulmod(w, zeta, r_mod)
            }
            return res;
          }
          function compute_pi(
            uint256[] memory public_inputs,
            uint256 zeta,
            bytes memory proof
          ) internal view returns (uint256) {
            // evaluation of Z=Xⁿ⁻¹ at ζ
            // uint256 zeta_power_n_minus_one = Fr.pow(zeta, vk_domain_size);
            // zeta_power_n_minus_one = Fr.sub(zeta_power_n_minus_one, 1);
            uint256 zeta_power_n_minus_one;
            uint256 pi;
            assembly {
              function error_pow() {
                let ptError := mload(0x40)
                mstore(ptError, error_string_id) // selector for function Error(string)
                mstore(add(ptError, 0x4), 0x20)
                mstore(add(ptError, 0x24), 0x17)
                mstore(add(ptError, 0x44), "error staticcall modexp")
                revert(ptError, 0x64)
              }
              sum_pi_wo_api_commit(add(public_inputs, 0x20), mload(public_inputs), zeta)
              pi := mload(mload(0x40))
              function sum_pi_wo_api_commit(ins, n, z) {
                let li := mload(0x40)
                batch_compute_lagranges_at_z(z, n, li)
                let res := 0
                let tmp := 0
                for {
                  let i := 0
                } lt(i, n) {
                  i := add(i, 1)
                } {
                  tmp := mulmod(mload(li), mload(ins), r_mod)
                  res := addmod(res, tmp, r_mod)
                  li := add(li, 0x20)
                  ins := add(ins, 0x20)
                }
                mstore(mload(0x40), res)
              }
              // mPtr <- [L_0(z), .., L_{n-1}(z)]
              //
              // Here L_i(zeta) =  ωⁱ/n * (ζⁿ-1)/(ζ-ωⁱ) where:
              // * n = vk_domain_size
              // * ω = vk_omega (generator of the multiplicative cyclic group of order n in (ℤ/rℤ)*)
              // * ζ = zeta (challenge derived with Fiat Shamir)
              function batch_compute_lagranges_at_z(z, n, mPtr) {
                let zn := addmod(pow(z, vk_domain_size, mPtr), sub(r_mod, 1), r_mod)
                zn := mulmod(zn, vk_inv_domain_size, r_mod)
                let _w := 1
                let _mPtr := mPtr
                for {
                  let i := 0
                } lt(i, n) {
                  i := add(i, 1)
                } {
                  mstore(_mPtr, addmod(z, sub(r_mod, _w), r_mod))
                  _w := mulmod(_w, vk_omega, r_mod)
                  _mPtr := add(_mPtr, 0x20)
                }
                batch_invert(mPtr, n, _mPtr)
                _mPtr := mPtr
                _w := 1
                for {
                  let i := 0
                } lt(i, n) {
                  i := add(i, 1)
                } {
                  mstore(_mPtr, mulmod(mulmod(mload(_mPtr), zn, r_mod), _w, r_mod))
                  _mPtr := add(_mPtr, 0x20)
                  _w := mulmod(_w, vk_omega, r_mod)
                }
              }
              // batch invert (modulo r) in place the nb_ins uint256 inputs starting at ins.
              function batch_invert(ins, nb_ins, mPtr) {
                mstore(mPtr, 1)
                let offset := 0
                for {
                  let i := 0
                } lt(i, nb_ins) {
                  i := add(i, 1)
                } {
                  let prev := mload(add(mPtr, offset))
                  let cur := mload(add(ins, offset))
                  cur := mulmod(prev, cur, r_mod)
                  offset := add(offset, 0x20)
                  mstore(add(mPtr, offset), cur)
                }
                ins := add(ins, sub(offset, 0x20))
                mPtr := add(mPtr, offset)
                let inv := pow(mload(mPtr), sub(r_mod, 2), add(mPtr, 0x20))
                for {
                  let i := 0
                } lt(i, nb_ins) {
                  i := add(i, 1)
                } {
                  mPtr := sub(mPtr, 0x20)
                  let tmp := mload(ins)
                  let cur := mulmod(inv, mload(mPtr), r_mod)
                  mstore(ins, cur)
                  inv := mulmod(inv, tmp, r_mod)
                  ins := sub(ins, 0x20)
                }
              }
              // res <- x^e mod r
              function pow(x, e, mPtr) -> res {
                mstore(mPtr, 0x20)
                mstore(add(mPtr, 0x20), 0x20)
                mstore(add(mPtr, 0x40), 0x20)
                mstore(add(mPtr, 0x60), x)
                mstore(add(mPtr, 0x80), e)
                mstore(add(mPtr, 0xa0), r_mod)
                let success := staticcall(sub(gas(), 2000), 0x05, mPtr, 0xc0, mPtr, 0x20)
                if eq(success, 0) {
                  error_pow()
                }
                res := mload(mPtr)
              }
              zeta_power_n_minus_one := pow(zeta, vk_domain_size, mload(0x40))
              zeta_power_n_minus_one := addmod(zeta_power_n_minus_one, sub(r_mod, 1), r_mod)
            }
            // compute the contribution of the public inputs whose indices are in commitment_indices,
            // and whose value is hash_fr of the corresponding commitme
            uint256[] memory commitment_indices = new uint256[](vk_nb_commitments_commit_api);
            load_vk_commitments_indices_commit_api(commitment_indices);
            uint256[] memory wire_committed_commitments;
            wire_committed_commitments = new uint256[](2 * vk_nb_commitments_commit_api);
            load_wire_commitments_commit_api(wire_committed_commitments, proof);
            for (uint256 i = 0; i < vk_nb_commitments_commit_api; i++) {
              uint256 hash_res = Utils.hash_fr(wire_committed_commitments[2 * i], wire_committed_commitments[2 * i + 1]);
              uint256 a = compute_ith_lagrange_at_z(zeta, commitment_indices[i] + public_inputs.length);
              assembly {
                a := mulmod(hash_res, a, r_mod)
                pi := addmod(pi, a, r_mod)
              }
            }
            return pi;
          }
          function check_inputs_size(uint256[] memory public_inputs) internal pure {
            bool input_checks = true;
            assembly {
              let s := mload(public_inputs)
              let p := add(public_inputs, 0x20)
              for {
                let i
              } lt(i, s) {
                i := add(i, 1)
              } {
                input_checks := and(input_checks, lt(mload(p), r_mod))
                p := add(p, 0x20)
              }
            }
            require(input_checks, "some inputs are bigger than r");
          }
          function check_proof_size(bytes memory proof) internal pure {
            uint256 expected_proof_size = 0x340 + vk_nb_commitments_commit_api * 0x60;
            uint256 actual_proof_size;
            assembly {
              actual_proof_size := mload(proof)
            }
            require(actual_proof_size == expected_proof_size, "wrong proof size");
          }
          function check_proof_openings_size(bytes memory proof) internal pure {
            bool openings_check = true;
            assembly {
              // linearised polynomial at zeta
              let p := add(proof, proof_linearised_polynomial_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // quotient polynomial at zeta
              p := add(proof, proof_quotient_polynomial_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_l_at_zeta
              p := add(proof, proof_l_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_r_at_zeta
              p := add(proof, proof_r_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_o_at_zeta
              p := add(proof, proof_o_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_s1_at_zeta
              p := add(proof, proof_s1_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_s2_at_zeta
              p := add(proof, proof_s2_at_zeta)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_grand_product_at_zeta_omega
              p := add(proof, proof_grand_product_at_zeta_omega)
              openings_check := and(openings_check, lt(mload(p), r_mod))
              // proof_openings_selector_commit_api_at_zeta
              p := add(proof, proof_openings_selector_commit_api_at_zeta)
              for {
                let i := 0
              } lt(i, vk_nb_commitments_commit_api) {
                i := add(i, 1)
              } {
                openings_check := and(openings_check, lt(mload(p), r_mod))
                p := add(p, 0x20)
              }
            }
            require(openings_check, "some openings are bigger than r");
          }
          function Verify(bytes memory proof, uint256[] memory public_inputs) public view returns (bool) {
            check_inputs_size(public_inputs);
            check_proof_size(proof);
            check_proof_openings_size(proof);
            uint256 gamma;
            uint256 beta;
            uint256 alpha;
            uint256 zeta;
            (gamma, beta, alpha, zeta) = derive_gamma_beta_alpha_zeta(proof, public_inputs);
            uint256 pi = compute_pi(public_inputs, zeta, proof);
            uint256 check;
            bool success = false;
            // uint256 success;
            assembly {
              let mem := mload(0x40)
              mstore(add(mem, state_alpha), alpha)
              mstore(add(mem, state_gamma), gamma)
              mstore(add(mem, state_zeta), zeta)
              mstore(add(mem, state_beta), beta)
              mstore(add(mem, state_pi), pi)
              compute_alpha_square_lagrange_0()
              verify_quotient_poly_eval_at_zeta(proof)
              fold_h(proof)
              compute_commitment_linearised_polynomial(proof)
              compute_gamma_kzg(proof)
              fold_state(proof)
              batch_verify_multi_points(proof)
              success := mload(add(mem, state_success))
              check := mload(add(mem, state_check_var))
              function error_verify() {
                let ptError := mload(0x40)
                mstore(ptError, error_string_id) // selector for function Error(string)
                mstore(add(ptError, 0x4), 0x20)
                mstore(add(ptError, 0x24), 0xc)
                mstore(add(ptError, 0x44), "error verify")
                revert(ptError, 0x64)
              }
              // compute α² * 1/n * (ζ{n}-1)/(ζ - 1) where
              // * α = challenge derived in derive_gamma_beta_alpha_zeta
              // * n = vk_domain_size
              // * ω = vk_omega (generator of the multiplicative cyclic group of order n in (ℤ/rℤ)*)
              // * ζ = zeta (challenge derived with Fiat Shamir)
              function compute_alpha_square_lagrange_0() {
                let state := mload(0x40)
                let mPtr := add(mload(0x40), state_last_mem)
                // zeta**n - 1
                let res := pow(mload(add(state, state_zeta)), vk_domain_size, mPtr)
                res := addmod(res, sub(r_mod, 1), r_mod)
                mstore(add(state, state_zeta_power_n_minus_one), res)
                // let res := mload(add(state, state_zeta_power_n_minus_one))
                let den := addmod(mload(add(state, state_zeta)), sub(r_mod, 1), r_mod)
                den := pow(den, sub(r_mod, 2), mPtr)
                den := mulmod(den, vk_inv_domain_size, r_mod)
                res := mulmod(den, res, r_mod)
                let l_alpha := mload(add(state, state_alpha))
                res := mulmod(res, l_alpha, r_mod)
                res := mulmod(res, l_alpha, r_mod)
                mstore(add(state, state_alpha_square_lagrange_0), res)
              }
              // follows alg. p.13 of https://eprint.iacr.org/2019/953.pdf
              // with t₁ = t₂ = 1, and the proofs are ([digest] + [quotient] +purported evaluation):
              // * [state_folded_state_digests], [proof_batch_opening_at_zeta_x], state_folded_evals
              // * [proof_grand_product_commitment], [proof_opening_at_zeta_omega_x], [proof_grand_product_at_zeta_omega]
              function batch_verify_multi_points(aproof) {
                let state := mload(0x40)
                let mPtr := add(state, state_last_mem)
                // here the random is not a challenge, hence no need to use Fiat Shamir, we just
                // need an unpredictible result.
                let random := mod(keccak256(state, 0x20), r_mod)
                let folded_quotients := mPtr
                mPtr := add(folded_quotients, 0x40)
                mstore(folded_quotients, mload(add(aproof, proof_batch_opening_at_zeta_x)))
                mstore(add(folded_quotients, 0x20), mload(add(aproof, proof_batch_opening_at_zeta_y)))
                point_acc_mul(folded_quotients, add(aproof, proof_opening_at_zeta_omega_x), random, mPtr)
                let folded_digests := add(state, state_folded_digests_x)
                point_acc_mul(folded_digests, add(aproof, proof_grand_product_commitment_x), random, mPtr)
                let folded_evals := add(state, state_folded_claimed_values)
                fr_acc_mul(folded_evals, add(aproof, proof_grand_product_at_zeta_omega), random)
                let folded_evals_commit := mPtr
                mPtr := add(folded_evals_commit, 0x40)
                mstore(folded_evals_commit, 14312776538779914388377568895031746459131577658076416373430523308756343304251)
                mstore(
                  add(folded_evals_commit, 0x20),
                  11763105256161367503191792604679297387056316997144156930871823008787082098465
                )
                mstore(add(folded_evals_commit, 0x40), mload(folded_evals))
                let check_staticcall := staticcall(sub(gas(), 2000), 7, folded_evals_commit, 0x60, folded_evals_commit, 0x40)
                if eq(check_staticcall, 0) {
                  error_verify()
                }
                let folded_evals_commit_y := add(folded_evals_commit, 0x20)
                mstore(folded_evals_commit_y, sub(p_mod, mload(folded_evals_commit_y)))
                point_add(folded_digests, folded_digests, folded_evals_commit, mPtr)
                let folded_points_quotients := mPtr
                mPtr := add(mPtr, 0x40)
                point_mul(
                  folded_points_quotients,
                  add(aproof, proof_batch_opening_at_zeta_x),
                  mload(add(state, state_zeta)),
                  mPtr
                )
                let zeta_omega := mulmod(mload(add(state, state_zeta)), vk_omega, r_mod)
                random := mulmod(random, zeta_omega, r_mod)
                point_acc_mul(folded_points_quotients, add(aproof, proof_opening_at_zeta_omega_x), random, mPtr)
                point_add(folded_digests, folded_digests, folded_points_quotients, mPtr)
                let folded_quotients_y := add(folded_quotients, 0x20)
                mstore(folded_quotients_y, sub(p_mod, mload(folded_quotients_y)))
                mstore(mPtr, mload(folded_digests))
                mstore(add(mPtr, 0x20), mload(add(folded_digests, 0x20)))
                mstore(add(mPtr, 0x40), g2_srs_0_x_0) // the 4 lines are the canonical G2 point on BN254
                mstore(add(mPtr, 0x60), g2_srs_0_x_1)
                mstore(add(mPtr, 0x80), g2_srs_0_y_0)
                mstore(add(mPtr, 0xa0), g2_srs_0_y_1)
                mstore(add(mPtr, 0xc0), mload(folded_quotients))
                mstore(add(mPtr, 0xe0), mload(add(folded_quotients, 0x20)))
                mstore(add(mPtr, 0x100), g2_srs_1_x_0)
                mstore(add(mPtr, 0x120), g2_srs_1_x_1)
                mstore(add(mPtr, 0x140), g2_srs_1_y_0)
                mstore(add(mPtr, 0x160), g2_srs_1_y_1)
                check_pairing_kzg(mPtr)
              }
              // check_pairing_kzg checks the result of the final pairing product of the batched
              // kzg verification. The purpose of this function is too avoid exhausting the stack
              // in the function batch_verify_multi_points.
              // mPtr: pointer storing the tuple of pairs
              function check_pairing_kzg(mPtr) {
                let state := mload(0x40)
                // TODO test the staticcall using the method from audit_4-5
                let l_success := staticcall(sub(gas(), 2000), 8, mPtr, 0x180, 0x00, 0x20)
                let res_pairing := mload(0x00)
                let s_success := mload(add(state, state_success))
                res_pairing := and(and(res_pairing, l_success), s_success)
                mstore(add(state, state_success), res_pairing)
              }
              // Fold the opening proofs at ζ:
              // * at state+state_folded_digest we store: [H] + γ[Linearised_polynomial]+γ²[L] + γ³[R] + γ⁴[O] + γ⁵[S₁] +γ⁶[S₂] + ∑ᵢγ⁶⁺ⁱ[Pi_{i}]
              // * at state+state_folded_claimed_values we store: H(ζ) + γLinearised_polynomial(ζ)+γ²L(ζ) + γ³R(ζ)+ γ⁴O(ζ) + γ⁵S₁(ζ) +γ⁶S₂(ζ) + ∑ᵢγ⁶⁺ⁱPi_{i}(ζ)
              // acc_gamma stores the γⁱ
              function fold_state(aproof) {
                let state := mload(0x40)
                let mPtr := add(mload(0x40), state_last_mem)
                let l_gamma_kzg := mload(add(state, state_gamma_kzg))
                let acc_gamma := l_gamma_kzg
                let offset := add(0x200, mul(vk_nb_commitments_commit_api, 0x40)) // 0x40 = 2*0x20
                let mPtrOffset := add(mPtr, offset)
                mstore(add(state, state_folded_digests_x), mload(add(mPtr, 0x40)))
                mstore(add(state, state_folded_digests_y), mload(add(mPtr, 0x60)))
                mstore(add(state, state_folded_claimed_values), mload(add(aproof, proof_quotient_polynomial_at_zeta)))
                point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x80), acc_gamma, mPtrOffset)
                fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_linearised_polynomial_at_zeta), acc_gamma)
                mstore(add(state, state_check_var), acc_gamma)
                acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod)
                point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0xc0), acc_gamma, mPtrOffset)
                fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_l_at_zeta), acc_gamma)
                acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod)
                point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x100), acc_gamma, add(mPtr, offset))
                fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_r_at_zeta), acc_gamma)
                acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod)
                point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x140), acc_gamma, add(mPtr, offset))
                fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_o_at_zeta), acc_gamma)
                acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod)
                point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x180), acc_gamma, add(mPtr, offset))
                fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_s1_at_zeta), acc_gamma)
                acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod)
                point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x1c0), acc_gamma, add(mPtr, offset))
                fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_s2_at_zeta), acc_gamma)
                let poscaz := add(aproof, proof_openings_selector_commit_api_at_zeta)
                let opca := add(mPtr, 0x200) // offset_proof_commits_api
                for {
                  let i := 0
                } lt(i, vk_nb_commitments_commit_api) {
                  i := add(i, 1)
                } {
                  acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod)
                  point_acc_mul(add(state, state_folded_digests_x), opca, acc_gamma, add(mPtr, offset))
                  fr_acc_mul(add(state, state_folded_claimed_values), poscaz, acc_gamma)
                  poscaz := add(poscaz, 0x20)
                  opca := add(opca, 0x40)
                }
              }
              // generate the challenge (using Fiat Shamir) to fold the opening proofs
              // at ζ.
              // The process for deriving γ is the same as in derive_gamma but this time the inputs are
              // in this order (the [] means it's a commitment):
              // * ζ
              // * [H] ( = H₁ + ζᵐ⁺²*H₂ + ζ²⁽ᵐ⁺²⁾*H₃ )
              // * [Linearised polynomial]
              // * [L], [R], [O]
              // * [S₁] [S₂]
              // * [Pi_{i}] (wires associated to custom gates)
              // Then there are the purported evaluations of the previous committed polynomials:
              // * H(ζ)
              // * Linearised_polynomial(ζ)
              // * L(ζ), R(ζ), O(ζ), S₁(ζ), S₂(ζ)
              // * Pi_{i}(ζ)
              function compute_gamma_kzg(aproof) {
                let state := mload(0x40)
                let mPtr := add(mload(0x40), state_last_mem)
                mstore(mPtr, 0x67616d6d61) // "gamma"
                mstore(add(mPtr, 0x20), mload(add(state, state_zeta)))
                mstore(add(mPtr, 0x40), mload(add(state, state_folded_h_x)))
                mstore(add(mPtr, 0x60), mload(add(state, state_folded_h_y)))
                mstore(add(mPtr, 0x80), mload(add(state, state_linearised_polynomial_x)))
                mstore(add(mPtr, 0xa0), mload(add(state, state_linearised_polynomial_y)))
                mstore(add(mPtr, 0xc0), mload(add(aproof, proof_l_com_x)))
                mstore(add(mPtr, 0xe0), mload(add(aproof, proof_l_com_y)))
                mstore(add(mPtr, 0x100), mload(add(aproof, proof_r_com_x)))
                mstore(add(mPtr, 0x120), mload(add(aproof, proof_r_com_y)))
                mstore(add(mPtr, 0x140), mload(add(aproof, proof_o_com_x)))
                mstore(add(mPtr, 0x160), mload(add(aproof, proof_o_com_y)))
                mstore(add(mPtr, 0x180), vk_s1_com_x)
                mstore(add(mPtr, 0x1a0), vk_s1_com_y)
                mstore(add(mPtr, 0x1c0), vk_s2_com_x)
                mstore(add(mPtr, 0x1e0), vk_s2_com_y)
                let offset := 0x200
                mstore(add(mPtr, offset), vk_selector_commitments_commit_api_0_x)
                mstore(add(mPtr, add(offset, 0x20)), vk_selector_commitments_commit_api_0_y)
                offset := add(offset, 0x40)
                mstore(add(mPtr, offset), vk_selector_commitments_commit_api_1_x)
                mstore(add(mPtr, add(offset, 0x20)), vk_selector_commitments_commit_api_1_y)
                offset := add(offset, 0x40)
                mstore(add(mPtr, offset), vk_selector_commitments_commit_api_2_x)
                mstore(add(mPtr, add(offset, 0x20)), vk_selector_commitments_commit_api_2_y)
                offset := add(offset, 0x40)
                mstore(add(mPtr, offset), mload(add(aproof, proof_quotient_polynomial_at_zeta)))
                mstore(add(mPtr, add(offset, 0x20)), mload(add(aproof, proof_linearised_polynomial_at_zeta)))
                mstore(add(mPtr, add(offset, 0x40)), mload(add(aproof, proof_l_at_zeta)))
                mstore(add(mPtr, add(offset, 0x60)), mload(add(aproof, proof_r_at_zeta)))
                mstore(add(mPtr, add(offset, 0x80)), mload(add(aproof, proof_o_at_zeta)))
                mstore(add(mPtr, add(offset, 0xa0)), mload(add(aproof, proof_s1_at_zeta)))
                mstore(add(mPtr, add(offset, 0xc0)), mload(add(aproof, proof_s2_at_zeta)))
                let _mPtr := add(mPtr, add(offset, 0xe0))
                let _poscaz := add(aproof, proof_openings_selector_commit_api_at_zeta)
                for {
                  let i := 0
                } lt(i, vk_nb_commitments_commit_api) {
                  i := add(i, 1)
                } {
                  mstore(_mPtr, mload(_poscaz))
                  _poscaz := add(_poscaz, 0x20)
                  _mPtr := add(_mPtr, 0x20)
                }
                let start_input := 0x1b // 00.."gamma"
                let size_input := add(0x16, mul(vk_nb_commitments_commit_api, 3)) // number of 32bytes elmts = 0x16 (zeta+2*7+7 for the digests+openings) + 2*vk_nb_commitments_commit_api (for the commitments of the selectors) + vk_nb_commitments_commit_api (for the openings of the selectors)
                size_input := add(0x5, mul(size_input, 0x20)) // size in bytes: 15*32 bytes + 5 bytes for gamma
                let check_staticcall := staticcall(
                  sub(gas(), 2000),
                  0x2,
                  add(mPtr, start_input),
                  size_input,
                  add(state, state_gamma_kzg),
                  0x20
                )
                if eq(check_staticcall, 0) {
                  error_verify()
                }
                mstore(add(state, state_gamma_kzg), mod(mload(add(state, state_gamma_kzg)), r_mod))
              }
              function compute_commitment_linearised_polynomial_ec(aproof, s1, s2) {
                let state := mload(0x40)
                let mPtr := add(mload(0x40), state_last_mem)
                mstore(mPtr, vk_ql_com_x)
                mstore(add(mPtr, 0x20), vk_ql_com_y)
                point_mul(add(state, state_linearised_polynomial_x), mPtr, mload(add(aproof, proof_l_at_zeta)), add(mPtr, 0x40))
                mstore(mPtr, vk_qr_com_x)
                mstore(add(mPtr, 0x20), vk_qr_com_y)
                point_acc_mul(
                  add(state, state_linearised_polynomial_x),
                  mPtr,
                  mload(add(aproof, proof_r_at_zeta)),
                  add(mPtr, 0x40)
                )
                let rl := mulmod(mload(add(aproof, proof_l_at_zeta)), mload(add(aproof, proof_r_at_zeta)), r_mod)
                mstore(mPtr, vk_qm_com_x)
                mstore(add(mPtr, 0x20), vk_qm_com_y)
                point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, rl, add(mPtr, 0x40))
                mstore(mPtr, vk_qo_com_x)
                mstore(add(mPtr, 0x20), vk_qo_com_y)
                point_acc_mul(
                  add(state, state_linearised_polynomial_x),
                  mPtr,
                  mload(add(aproof, proof_o_at_zeta)),
                  add(mPtr, 0x40)
                )
                mstore(mPtr, vk_qk_com_x)
                mstore(add(mPtr, 0x20), vk_qk_com_y)
                point_add(
                  add(state, state_linearised_polynomial_x),
                  add(state, state_linearised_polynomial_x),
                  mPtr,
                  add(mPtr, 0x40)
                )
                let commits_api_at_zeta := add(aproof, proof_openings_selector_commit_api_at_zeta)
                let commits_api := add(
                  aproof,
                  add(proof_openings_selector_commit_api_at_zeta, mul(vk_nb_commitments_commit_api, 0x20))
                )
                for {
                  let i := 0
                } lt(i, vk_nb_commitments_commit_api) {
                  i := add(i, 1)
                } {
                  mstore(mPtr, mload(commits_api))
                  mstore(add(mPtr, 0x20), mload(add(commits_api, 0x20)))
                  point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, mload(commits_api_at_zeta), add(mPtr, 0x40))
                  commits_api_at_zeta := add(commits_api_at_zeta, 0x20)
                  commits_api := add(commits_api, 0x40)
                }
                mstore(mPtr, vk_s3_com_x)
                mstore(add(mPtr, 0x20), vk_s3_com_y)
                point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, s1, add(mPtr, 0x40))
                mstore(mPtr, mload(add(aproof, proof_grand_product_commitment_x)))
                mstore(add(mPtr, 0x20), mload(add(aproof, proof_grand_product_commitment_y)))
                point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, s2, add(mPtr, 0x40))
              }
              // Compute the commitment to the linearized polynomial equal to
              //\tL(ζ)[Qₗ]+r(ζ)[Qᵣ]+R(ζ)L(ζ)[Qₘ]+O(ζ)[Qₒ]+[Qₖ]+Σᵢqc'ᵢ(ζ)[BsbCommitmentᵢ] +
              //\tα*( Z(μζ)(L(ζ)+β*S₁(ζ)+γ)*(R(ζ)+β*S₂(ζ)+γ)[S₃]-[Z](L(ζ)+β*id_{1}(ζ)+γ)*(R(ζ)+β*id_{2(ζ)+γ)*(O(ζ)+β*id_{3}(ζ)+γ) ) +
              //\tα²*L₁(ζ)[Z]
              // where
              // * id_1 = id, id_2 = vk_coset_shift*id, id_3 = vk_coset_shift^{2}*id
              // * the [] means that it's a commitment (i.e. a point on Bn254(F_p))
              function compute_commitment_linearised_polynomial(aproof) {
                let state := mload(0x40)
                let l_beta := mload(add(state, state_beta))
                let l_gamma := mload(add(state, state_gamma))
                let l_zeta := mload(add(state, state_zeta))
                let l_alpha := mload(add(state, state_alpha))
                let u := mulmod(mload(add(aproof, proof_grand_product_at_zeta_omega)), l_beta, r_mod)
                let v := mulmod(l_beta, mload(add(aproof, proof_s1_at_zeta)), r_mod)
                v := addmod(v, mload(add(aproof, proof_l_at_zeta)), r_mod)
                v := addmod(v, l_gamma, r_mod)
                let w := mulmod(l_beta, mload(add(aproof, proof_s2_at_zeta)), r_mod)
                w := addmod(w, mload(add(aproof, proof_r_at_zeta)), r_mod)
                w := addmod(w, l_gamma, r_mod)
                let s1 := mulmod(u, v, r_mod)
                s1 := mulmod(s1, w, r_mod)
                s1 := mulmod(s1, l_alpha, r_mod)
                let coset_square := mulmod(vk_coset_shift, vk_coset_shift, r_mod)
                let betazeta := mulmod(l_beta, l_zeta, r_mod)
                u := addmod(betazeta, mload(add(aproof, proof_l_at_zeta)), r_mod)
                u := addmod(u, l_gamma, r_mod)
                v := mulmod(betazeta, vk_coset_shift, r_mod)
                v := addmod(v, mload(add(aproof, proof_r_at_zeta)), r_mod)
                v := addmod(v, l_gamma, r_mod)
                w := mulmod(betazeta, coset_square, r_mod)
                w := addmod(w, mload(add(aproof, proof_o_at_zeta)), r_mod)
                w := addmod(w, l_gamma, r_mod)
                let s2 := mulmod(u, v, r_mod)
                s2 := mulmod(s2, w, r_mod)
                s2 := sub(r_mod, s2)
                s2 := mulmod(s2, l_alpha, r_mod)
                s2 := addmod(s2, mload(add(state, state_alpha_square_lagrange_0)), r_mod)
                // at this stage:
                // * s₁ = α*Z(μζ)(l(ζ)+β*s₁(ζ)+γ)*(r(ζ)+β*s₂(ζ)+γ)*β
                // * s₂ = -α*(l(ζ)+β*ζ+γ)*(r(ζ)+β*u*ζ+γ)*(o(ζ)+β*u²*ζ+γ) + α²*L₁(ζ)
                compute_commitment_linearised_polynomial_ec(aproof, s1, s2)
              }
              // compute H₁ + ζᵐ⁺²*H₂ + ζ²⁽ᵐ⁺²⁾*H₃ and store the result at
              // state + state_folded_h
              function fold_h(aproof) {
                let state := mload(0x40)
                let n_plus_two := add(vk_domain_size, 2)
                let mPtr := add(mload(0x40), state_last_mem)
                let zeta_power_n_plus_two := pow(mload(add(state, state_zeta)), n_plus_two, mPtr)
                point_mul(add(state, state_folded_h_x), add(aproof, proof_h_2_x), zeta_power_n_plus_two, mPtr)
                point_add(add(state, state_folded_h_x), add(state, state_folded_h_x), add(aproof, proof_h_1_x), mPtr)
                point_mul(add(state, state_folded_h_x), add(state, state_folded_h_x), zeta_power_n_plus_two, mPtr)
                point_add(add(state, state_folded_h_x), add(state, state_folded_h_x), add(aproof, proof_h_0_x), mPtr)
              }
              // check that
              //\tL(ζ)Qₗ(ζ)+r(ζ)Qᵣ(ζ)+R(ζ)L(ζ)Qₘ(ζ)+O(ζ)Qₒ(ζ)+Qₖ(ζ)+Σᵢqc'ᵢ(ζ)BsbCommitmentᵢ(ζ) +
              //  α*( Z(μζ)(l(ζ)+β*s₁(ζ)+γ)*(r(ζ)+β*s₂(ζ)+γ)*β*s₃(X)-Z(X)(l(ζ)+β*id_1(ζ)+γ)*(r(ζ)+β*id_2(ζ)+γ)*(o(ζ)+β*id_3(ζ)+γ) ) )
              // + α²*L₁(ζ) =
              // (ζⁿ-1)H(ζ)
              function verify_quotient_poly_eval_at_zeta(aproof) {
                let state := mload(0x40)
                // (l(ζ)+β*s1(ζ)+γ)
                let s1 := add(mload(0x40), state_last_mem)
                mstore(s1, mulmod(mload(add(aproof, proof_s1_at_zeta)), mload(add(state, state_beta)), r_mod))
                mstore(s1, addmod(mload(s1), mload(add(state, state_gamma)), r_mod))
                mstore(s1, addmod(mload(s1), mload(add(aproof, proof_l_at_zeta)), r_mod))
                // (r(ζ)+β*s2(ζ)+γ)
                let s2 := add(s1, 0x20)
                mstore(s2, mulmod(mload(add(aproof, proof_s2_at_zeta)), mload(add(state, state_beta)), r_mod))
                mstore(s2, addmod(mload(s2), mload(add(state, state_gamma)), r_mod))
                mstore(s2, addmod(mload(s2), mload(add(aproof, proof_r_at_zeta)), r_mod))
                // _s2 := mload(s2)
                // (o(ζ)+γ)
                let o := add(s1, 0x40)
                mstore(o, addmod(mload(add(aproof, proof_o_at_zeta)), mload(add(state, state_gamma)), r_mod))
                //  α*(Z(μζ))*(l(ζ)+β*s1(ζ)+γ)*(r(ζ)+β*s2(ζ)+γ)*(o(ζ)+γ)
                mstore(s1, mulmod(mload(s1), mload(s2), r_mod))
                mstore(s1, mulmod(mload(s1), mload(o), r_mod))
                mstore(s1, mulmod(mload(s1), mload(add(state, state_alpha)), r_mod))
                mstore(s1, mulmod(mload(s1), mload(add(aproof, proof_grand_product_at_zeta_omega)), r_mod))
                let computed_quotient := add(s1, 0x60)
                // linearizedpolynomial + pi(zeta)
                mstore(
                  computed_quotient,
                  addmod(mload(add(aproof, proof_linearised_polynomial_at_zeta)), mload(add(state, state_pi)), r_mod)
                )
                mstore(computed_quotient, addmod(mload(computed_quotient), mload(s1), r_mod))
                mstore(
                  computed_quotient,
                  addmod(mload(computed_quotient), sub(r_mod, mload(add(state, state_alpha_square_lagrange_0))), r_mod)
                )
                mstore(
                  s2,
                  mulmod(
                    mload(add(aproof, proof_quotient_polynomial_at_zeta)),
                    mload(add(state, state_zeta_power_n_minus_one)),
                    r_mod
                  )
                )
                mstore(add(state, state_success), eq(mload(computed_quotient), mload(s2)))
              }
              function point_add(dst, p, q, mPtr) {
                // let mPtr := add(mload(0x40), state_last_mem)
                let state := mload(0x40)
                mstore(mPtr, mload(p))
                mstore(add(mPtr, 0x20), mload(add(p, 0x20)))
                mstore(add(mPtr, 0x40), mload(q))
                mstore(add(mPtr, 0x60), mload(add(q, 0x20)))
                let l_success := staticcall(sub(gas(), 2000), 6, mPtr, 0x80, dst, 0x40)
                mstore(add(state, state_success), and(l_success, mload(add(state, state_success))))
              }
              // dst <- [s]src
              function point_mul(dst, src, s, mPtr) {
                // let mPtr := add(mload(0x40), state_last_mem)
                let state := mload(0x40)
                mstore(mPtr, mload(src))
                mstore(add(mPtr, 0x20), mload(add(src, 0x20)))
                mstore(add(mPtr, 0x40), s)
                let l_success := staticcall(sub(gas(), 2000), 7, mPtr, 0x60, dst, 0x40)
                mstore(add(state, state_success), and(l_success, mload(add(state, state_success))))
              }
              // dst <- dst + [s]src (Elliptic curve)
              function point_acc_mul(dst, src, s, mPtr) {
                let state := mload(0x40)
                mstore(mPtr, mload(src))
                mstore(add(mPtr, 0x20), mload(add(src, 0x20)))
                mstore(add(mPtr, 0x40), s)
                let l_success := staticcall(sub(gas(), 2000), 7, mPtr, 0x60, mPtr, 0x40)
                mstore(add(mPtr, 0x40), mload(dst))
                mstore(add(mPtr, 0x60), mload(add(dst, 0x20)))
                l_success := and(l_success, staticcall(sub(gas(), 2000), 6, mPtr, 0x80, dst, 0x40))
                mstore(add(state, state_success), and(l_success, mload(add(state, state_success))))
              }
              // dst <- dst + src (Fr) dst,src are addresses, s is a value
              function fr_acc_mul(dst, src, s) {
                let tmp := mulmod(mload(src), s, r_mod)
                mstore(dst, addmod(mload(dst), tmp, r_mod))
              }
              // dst <- x ** e mod r (x, e are values, not pointers)
              function pow(x, e, mPtr) -> res {
                mstore(mPtr, 0x20)
                mstore(add(mPtr, 0x20), 0x20)
                mstore(add(mPtr, 0x40), 0x20)
                mstore(add(mPtr, 0x60), x)
                mstore(add(mPtr, 0x80), e)
                mstore(add(mPtr, 0xa0), r_mod)
                let check_staticcall := staticcall(sub(gas(), 2000), 0x05, mPtr, 0xc0, mPtr, 0x20)
                if eq(check_staticcall, 0) {
                  error_verify()
                }
                res := mload(mPtr)
              }
            }
            return success;
          }
        }
        // SPDX-License-Identifier: AGPL-3.0
        // It has not been audited and is provided as-is, we make no guarantees or warranties to its safety and reliability.
        //
        // According to https://eprint.iacr.org/archive/2019/953/1585767119.pdf
        pragma solidity ^0.8.19;
        library Utils {
          uint256 private constant r_mod = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
          /**
           * @dev ExpandMsgXmd expands msg to a slice of lenInBytes bytes.
           *      https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06#section-5
           *      https://tools.ietf.org/html/rfc8017#section-4.1 (I2OSP/O2ISP)
           */
          function expand_msg(uint256 x, uint256 y) public pure returns (uint8[48] memory res) {
            string memory dst = "BSB22-Plonk";
            //uint8[64] memory pad; // 64 is sha256 block size.
            // sha256(pad || msg || (0 || 48 || 0) || dst || 11)
            bytes memory tmp;
            uint8 zero = 0;
            uint8 lenInBytes = 48;
            uint8 sizeDomain = 11; // size of dst
            for (uint i = 0; i < 64; i++) {
              tmp = abi.encodePacked(tmp, zero);
            }
            tmp = abi.encodePacked(tmp, x, y, zero, lenInBytes, zero, dst, sizeDomain);
            bytes32 b0 = sha256(tmp);
            tmp = abi.encodePacked(b0, uint8(1), dst, sizeDomain);
            bytes32 b1 = sha256(tmp);
            for (uint i = 0; i < 32; i++) {
              res[i] = uint8(b1[i]);
            }
            tmp = abi.encodePacked(uint8(b0[0]) ^ uint8(b1[0]));
            for (uint i = 1; i < 32; i++) {
              tmp = abi.encodePacked(tmp, uint8(b0[i]) ^ uint8(b1[i]));
            }
            tmp = abi.encodePacked(tmp, uint8(2), dst, sizeDomain);
            b1 = sha256(tmp);
            // TODO handle the size of the dst (check gnark-crypto)
            for (uint i = 0; i < 16; i++) {
              res[i + 32] = uint8(b1[i]);
            }
            return res;
          }
          /**
           * @dev cf https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06#section-5.2
           * corresponds to https://github.com/ConsenSys/gnark-crypto/blob/develop/ecc/bn254/fr/element.go
           */
          function hash_fr(uint256 x, uint256 y) internal pure returns (uint256 res) {
            // interpret a as a bigEndian integer and reduce it mod r
            uint8[48] memory xmsg = expand_msg(x, y);
            // uint8[48] memory xmsg = [0x44, 0x74, 0xb5, 0x29, 0xd7, 0xfb, 0x29, 0x88, 0x3a, 0x7a, 0xc1, 0x65, 0xfd, 0x72, 0xce, 0xd0, 0xd4, 0xd1, 0x3f, 0x9e, 0x85, 0x8a, 0x3, 0x86, 0x1c, 0x90, 0x83, 0x1e, 0x94, 0xdc, 0xfc, 0x1d, 0x70, 0x82, 0xf5, 0xbf, 0x30, 0x3, 0x39, 0x87, 0x21, 0x38, 0x15, 0xed, 0x12, 0x75, 0x44, 0x6a];
            // reduce xmsg mod r, where xmsg is intrepreted in big endian
            // (as SetBytes does for golang's Big.Int library).
            for (uint i = 0; i < 32; i++) {
              res += uint256(xmsg[47 - i]) << (8 * i);
            }
            res = res % r_mod;
            uint256 tmp;
            for (uint i = 0; i < 16; i++) {
              tmp += uint256(xmsg[15 - i]) << (8 * i);
            }
            // 2**256%r
            uint256 b = 6350874878119819312338956282401532410528162663560392320966563075034087161851;
            assembly {
              tmp := mulmod(tmp, b, r_mod)
              res := addmod(res, tmp, r_mod)
            }
            return res;
          }
        }