Transaction Hash:
Block:
17862363 at Aug-07-2023 10:08:47 AM +UTC
Transaction Fee:
0.016786799075944288 ETH
$37.63
Gas Used:
845,926 Gas / 19.844287888 Gwei
Emitted Events:
197 |
TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a76, 0x2e221130d7fa9857768f04d1520c3982f719233d5953b2ba6bdd7f84e1f408cd )
|
198 |
TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a77, 0x014b206f9c212d5324f891d47d9a4732ec44f819f744351de8bd7ace0d626594 )
|
199 |
TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a78, 0x0d72eb383974f462474f6b9a094fc0f4fcc38ad8f123cc9335a46839d50dbfc3 )
|
200 |
TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a79, 0x1a894cb7f8a23b6e4f43333fe7eb4c5db32c680b1d7ecb8c7b11e89488a7b118 )
|
201 |
TransparentUpgradeableProxy.0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432( 0xf2c535759092d16e9334a11dd9b52eca543f1d9cca5ba9d16c472aef009de432, 0x0000000000000000000000000000000000000000000000000000000000022a7a, 0x054795614a584432bb250d3089f90c986853bffab23609c17f977ef724f6841d )
|
202 |
TransparentUpgradeableProxy.0x5c885a794662ebe3b08ae0874fc2c88b5343b0223ba9cd2cad92b69c0d0c901f( 0x5c885a794662ebe3b08ae0874fc2c88b5343b0223ba9cd2cad92b69c0d0c901f, 0x0000000000000000000000000000000000000000000000000000000000022a7a, 1b62bc27194be5efacf32ce6e6580368b392ef5adbbfe096dd50294721f0dabf, 054795614a584432bb250d3089f90c986853bffab23609c17f977ef724f6841d )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x9228624C...f5f5DAd64 | (Linea: Operator) |
272.094878390311483313 Eth
Nonce: 39126
|
272.078091591235539025 Eth
Nonce: 39127
| 0.016786799075944288 | |
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 14.270959982248811304 Eth | 14.271027524540307912 Eth | 0.000067542291496608 | |
0xd19d4B5d...D11B0876F | (Linea: L1 Message Service) |
Execution Trace
TransparentUpgradeableProxy.4165d6dd( )
ZkEvmV2.finalizeBlocks( _blocksData=, _proof=0x151158230A0D31985C536FD922851BDF360353BB3C07CAB9C03CEFF89D9CFB1B1C34507D87B11D05F054EE5B882C7B1BBC36E76034655FDA8D74FC825D2D69C72B5E3810B4A66BBBC45702C3C5DF58A70B6975FA077C7395AF339230471536811BA1AABA21A4D600BC3BE5834840FC51FBE0A20430236461B65648C569D84DA4121770FB5B97690D55BB8CE6958865BEB70C3B1262C8490D136D21FADA1CD282069823F32E5CCD2C58E16F37C25E1E1916373CFB21A572C97437DA472F9EA1310177D66B15F87DABD0368CB32745F2D5EC86D14732196C95D7CA25C4E1781CA9237941C04D1162499DAFC4C0A3E1C6BE26281A18C7D91EDE65C571842222649F0101191DDE83E20D488FC215136221F90A64453932C9745A2AAC8B7C5E8850CA128AFF2AB537F69ED2FAEC964E84F270E63D3BDB666C3B1518D144DF3FE7DA5609463AFB07C936F5D95DA365B46E4EA1ED62D2C9E4F35986B102054C7C91269D20CEAA2FD19A0959F1FE08359BDE101D44AEC588A0397F0CE81C2FCAEF8CFF822C38D8FA5DDC86AF49336D7382CE71EFD7302BDE4B841CC00E6B3C2ECB166C03164448820A9200DF87CCCC192B9D7197A9A26B5EA721AC2D39243036D566CFB1255E02360559572EE5875AB92459767CABC9364D465FBBAD2C6BABFDB5C5D33B19224735130023A0C2D9848DDC477EFADF79613E791F845EA657BE9035D6ABC4256F4EE99996A5F7E3773CA16733F276BA22EE6ED905010B43753FCE14263C4B1ED9366F3B6F1EE2D6DBA7A1CA097238D5EFE1EE92B2FA1B50587DE66D9A30DA2F7F92C363D9E442CBE6202D7090CFBC9A257CF6B092A59D5199B0E9AF76D81B2FC25744951A646A38E6809911EC9FBDC2ED75B0DDEE4C1C3035EC70EF8614481E0EA049B193ED40A652177E3D538527FAA875C1F6254F9A71D971BDE229C1FE00D0934F1D60DF457EBBA5C97140EC876B0F2EC067D188FF1FC0BA448A13346228D10DE521CA87BC1F013EC023013FEA8FF20C09885F6E6FFB85AE952312C72222D28C5EE0B782E510148B555DB88CC753A75FDEF309DDEE4275E3084E41A88923C360AB230CCC6399C887EE315FAB1A1F0FD3ED9A875E3AA5BBBCAF46EBD88A2538F561F6A90C82C2CC436F516395943DF6919CBBE6DFE695AEFBD128A752BD2DA6B082AE2E18DF2CFB0458CF31FA48935B7A819A97A58CB54AC26AB73F9E0F2ED6A076CF858F62BE41F1B7183D80DF819D49721DAB4CA0F7A8B71C495D103B0B102122211556B9F257205C2663B555E407439A350E9D270079D4FFA59B07A1215E9E873430EAFD26A50300DBCDA4600DB736C0F9081AEBFE699CBC54C56F75225908EEB4AB823321628DF1113A24FAB4D2C8567A13575C4504C37D94A8FBC81DC99B69FBEBF65D43E30AC43F667E30DD5C2B5660E7A7F81B33EF439F5A4F041690FF5EA8C21B1892C7142C3AFBA910020FA0218B9813898347E76766FDDB3F1862C7F05380A85FA179938C6C4E750B71416453BF7D870BABDD3B9F5B1E6BF727DD40876BEAFA954817DB1E491A213F08CC88D38F6EAF68B01A619522ED30B8, _proofType=0, _parentStateRootHash=1B62BC27194BE5EFACF32CE6E6580368B392EF5ADBBFE096DD50294721F0DABF )
PlonkVerifierFull.Verify( proof=0x151158230A0D31985C536FD922851BDF360353BB3C07CAB9C03CEFF89D9CFB1B1C34507D87B11D05F054EE5B882C7B1BBC36E76034655FDA8D74FC825D2D69C72B5E3810B4A66BBBC45702C3C5DF58A70B6975FA077C7395AF339230471536811BA1AABA21A4D600BC3BE5834840FC51FBE0A20430236461B65648C569D84DA4121770FB5B97690D55BB8CE6958865BEB70C3B1262C8490D136D21FADA1CD282069823F32E5CCD2C58E16F37C25E1E1916373CFB21A572C97437DA472F9EA1310177D66B15F87DABD0368CB32745F2D5EC86D14732196C95D7CA25C4E1781CA9237941C04D1162499DAFC4C0A3E1C6BE26281A18C7D91EDE65C571842222649F0101191DDE83E20D488FC215136221F90A64453932C9745A2AAC8B7C5E8850CA128AFF2AB537F69ED2FAEC964E84F270E63D3BDB666C3B1518D144DF3FE7DA5609463AFB07C936F5D95DA365B46E4EA1ED62D2C9E4F35986B102054C7C91269D20CEAA2FD19A0959F1FE08359BDE101D44AEC588A0397F0CE81C2FCAEF8CFF822C38D8FA5DDC86AF49336D7382CE71EFD7302BDE4B841CC00E6B3C2ECB166C03164448820A9200DF87CCCC192B9D7197A9A26B5EA721AC2D39243036D566CFB1255E02360559572EE5875AB92459767CABC9364D465FBBAD2C6BABFDB5C5D33B19224735130023A0C2D9848DDC477EFADF79613E791F845EA657BE9035D6ABC4256F4EE99996A5F7E3773CA16733F276BA22EE6ED905010B43753FCE14263C4B1ED9366F3B6F1EE2D6DBA7A1CA097238D5EFE1EE92B2FA1B50587DE66D9A30DA2F7F92C363D9E442CBE6202D7090CFBC9A257CF6B092A59D5199B0E9AF76D81B2FC25744951A646A38E6809911EC9FBDC2ED75B0DDEE4C1C3035EC70EF8614481E0EA049B193ED40A652177E3D538527FAA875C1F6254F9A71D971BDE229C1FE00D0934F1D60DF457EBBA5C97140EC876B0F2EC067D188FF1FC0BA448A13346228D10DE521CA87BC1F013EC023013FEA8FF20C09885F6E6FFB85AE952312C72222D28C5EE0B782E510148B555DB88CC753A75FDEF309DDEE4275E3084E41A88923C360AB230CCC6399C887EE315FAB1A1F0FD3ED9A875E3AA5BBBCAF46EBD88A2538F561F6A90C82C2CC436F516395943DF6919CBBE6DFE695AEFBD128A752BD2DA6B082AE2E18DF2CFB0458CF31FA48935B7A819A97A58CB54AC26AB73F9E0F2ED6A076CF858F62BE41F1B7183D80DF819D49721DAB4CA0F7A8B71C495D103B0B102122211556B9F257205C2663B555E407439A350E9D270079D4FFA59B07A1215E9E873430EAFD26A50300DBCDA4600DB736C0F9081AEBFE699CBC54C56F75225908EEB4AB823321628DF1113A24FAB4D2C8567A13575C4504C37D94A8FBC81DC99B69FBEBF65D43E30AC43F667E30DD5C2B5660E7A7F81B33EF439F5A4F041690FF5EA8C21B1892C7142C3AFBA910020FA0218B9813898347E76766FDDB3F1862C7F05380A85FA179938C6C4E750B71416453BF7D870BABDD3B9F5B1E6BF727DD40876BEAFA954817DB1E491A213F08CC88D38F6EAF68B01A619522ED30B8, public_inputs=[1859242604737611589489872749746777342297779241644766137917872047856018625034] ) => ( True )
-
Null: 0x000...002.67616d6d( )
-
Null: 0x000...002.62657461( )
-
Null: 0x000...002.616c7068( )
-
Null: 0x000...002.7a657461( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...002.00000000( )
-
Null: 0x000...002.47fe2584( )
-
Null: 0x000...002.82650e23( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...002.00000000( )
-
Null: 0x000...002.aa2f1df7( )
-
Null: 0x000...002.e6b363cb( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...002.00000000( )
-
Null: 0x000...002.5ef71e83( )
-
Null: 0x000...002.d72aed78( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...005.00000000( )
-
Null: 0x000...007.09463afb( )
-
Null: 0x000...006.0b7518ab( )
-
Null: 0x000...007.2ca2ae38( )
-
Null: 0x000...006.043e7423( )
-
Null: 0x000...007.1de747c8( )
-
Null: 0x000...007.1f47ced8( )
-
Null: 0x000...006.04edc729( )
-
Null: 0x000...007.1de5b062( )
-
Null: 0x000...006.2fd6ad93( )
-
Null: 0x000...007.0f9c3581( )
-
Null: 0x000...006.178fc0de( )
-
Null: 0x000...006.2c586ca5( )
-
Null: 0x000...007.215e9e87( )
-
Null: 0x000...006.1ed1669a( )
-
Null: 0x000...007.1dc99b69( )
-
Null: 0x000...006.1d28bfd3( )
-
Null: 0x000...007.1862c7f0( )
-
Null: 0x000...006.0c9f107a( )
-
Null: 0x000...007.0690a2db( )
-
Null: 0x000...006.28ac36a2( )
-
Null: 0x000...007.1ed9366f( )
-
Null: 0x000...006.1f1242ba( )
-
Null: 0x000...002.67616d6d( )
-
Null: 0x000...007.04169844( )
-
Null: 0x000...006.077eea25( )
-
Null: 0x000...007.15115823( )
-
Null: 0x000...006.29a42be5( )
-
Null: 0x000...007.2b5e3810( )
-
Null: 0x000...006.16f8b012( )
-
Null: 0x000...007.121770fb( )
-
Null: 0x000...006.09619138( )
-
Null: 0x000...007.1f84d6f8( )
-
Null: 0x000...006.098f56bd( )
-
Null: 0x000...007.0240cbaf( )
-
Null: 0x000...006.0b64aa6e( )
-
Null: 0x000...007.302bc66f( )
-
Null: 0x000...006.06d2f492( )
-
Null: 0x000...007.14b71eb4( )
-
Null: 0x000...006.2d89ca66( )
-
Null: 0x000...007.215a4aa1( )
-
Null: 0x000...006.21688a58( )
-
Null: 0x000...007.23c360ab( )
-
Null: 0x000...006.24029d21( )
-
Null: 0x000...007.1ed9366f( )
-
Null: 0x000...006.0ea39a49( )
-
Null: 0x000...007.1fa4be93( )
-
Null: 0x000...006.19e0c1bd( )
-
Null: 0x000...007.28d10de5( )
-
Null: 0x000...007.23c360ab( )
-
Null: 0x000...006.1d438a60( )
-
Null: 0x000...006.13c66cdd( )
-
Null: 0x000...008.09d67ae3( )
-
File 1 of 3: TransparentUpgradeableProxy
File 2 of 3: ZkEvmV2
File 3 of 3: PlonkVerifierFull
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol) pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.9._ */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol) pragma solidity ^0.8.0; import "./IBeacon.sol"; import "../Proxy.sol"; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}. * * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't * conflict with the storage layout of the implementation behind the proxy. * * _Available since v3.4._ */ contract BeaconProxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the proxy with `beacon`. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity * constructor. * * Requirements: * * - `beacon` must be a contract with the interface {IBeacon}. */ constructor(address beacon, bytes memory data) payable { _upgradeBeaconToAndCall(beacon, data, false); } /** * @dev Returns the current beacon address. */ function _beacon() internal view virtual returns (address) { return _getBeacon(); } /** * @dev Returns the current implementation address of the associated beacon. */ function _implementation() internal view virtual override returns (address) { return IBeacon(_getBeacon()).implementation(); } /** * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}. * * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. * * Requirements: * * - `beacon` must be a contract. * - The implementation returned by `beacon` must be a contract. */ function _setBeacon(address beacon, bytes memory data) internal virtual { _upgradeBeaconToAndCall(beacon, data, false); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol) pragma solidity ^0.8.0; import "./IBeacon.sol"; import "../../access/Ownable.sol"; import "../../utils/Address.sol"; /** * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their * implementation contract, which is where they will delegate all function calls. * * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon. */ contract UpgradeableBeacon is IBeacon, Ownable { address private _implementation; /** * @dev Emitted when the implementation returned by the beacon is changed. */ event Upgraded(address indexed implementation); /** * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the * beacon. */ constructor(address implementation_) { _setImplementation(implementation_); } /** * @dev Returns the current implementation address. */ function implementation() public view virtual override returns (address) { return _implementation; } /** * @dev Upgrades the beacon to a new implementation. * * Emits an {Upgraded} event. * * Requirements: * * - msg.sender must be the owner of the contract. * - `newImplementation` must be a contract. */ function upgradeTo(address newImplementation) public virtual onlyOwner { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Sets the implementation contract address for this beacon * * Requirements: * * - `newImplementation` must be a contract. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract"); _implementation = newImplementation; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializing the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../interfaces/IERC1967.sol"; import "../../interfaces/draft-IERC1822.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade is IERC1967 { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS( address newImplementation, bytes memory data, bool forceCall ) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overridden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol) pragma solidity ^0.8.0; import "./TransparentUpgradeableProxy.sol"; import "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev Returns the current implementation of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("implementation()")) == 0x5c60da1b (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b"); require(success); return abi.decode(returndata, (address)); } /** * @dev Returns the current admin of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("admin()")) == 0xf851a440 (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440"); require(success); return abi.decode(returndata, (address)); } /** * @dev Changes the admin of `proxy` to `newAdmin`. * * Requirements: * * - This contract must be the current admin of `proxy`. */ function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner { proxy.changeAdmin(newAdmin); } /** * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner { proxy.upgradeTo(implementation); } /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See * {TransparentUpgradeableProxy-upgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgradeAndCall( ITransparentUpgradeableProxy proxy, address implementation, bytes memory data ) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol) pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy} * does not implement this interface directly, and some of its functions are implemented by an internal dispatch * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not * include them in the ABI so this interface must be used to interact with it. */ interface ITransparentUpgradeableProxy is IERC1967 { function admin() external view returns (address); function implementation() external view returns (address); function changeAdmin(address) external; function upgradeTo(address) external; function upgradeToAndCall(address, bytes memory) external payable; } /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. * * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the * implementation. * * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor( address _logic, address admin_, bytes memory _data ) payable ERC1967Proxy(_logic, _data) { _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. * * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the * implementation provides a function with the same selector. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior */ function _fallback() internal virtual override { if (msg.sender == _getAdmin()) { bytes memory ret; bytes4 selector = msg.sig; if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) { ret = _dispatchUpgradeTo(); } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) { ret = _dispatchUpgradeToAndCall(); } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) { ret = _dispatchChangeAdmin(); } else if (selector == ITransparentUpgradeableProxy.admin.selector) { ret = _dispatchAdmin(); } else if (selector == ITransparentUpgradeableProxy.implementation.selector) { ret = _dispatchImplementation(); } else { revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target"); } assembly { return(add(ret, 0x20), mload(ret)) } } else { super._fallback(); } } /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function _dispatchAdmin() private returns (bytes memory) { _requireZeroValue(); address admin = _getAdmin(); return abi.encode(admin); } /** * @dev Returns the current implementation. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function _dispatchImplementation() private returns (bytes memory) { _requireZeroValue(); address implementation = _implementation(); return abi.encode(implementation); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _dispatchChangeAdmin() private returns (bytes memory) { _requireZeroValue(); address newAdmin = abi.decode(msg.data[4:], (address)); _changeAdmin(newAdmin); return ""; } /** * @dev Upgrade the implementation of the proxy. */ function _dispatchUpgradeTo() private returns (bytes memory) { _requireZeroValue(); address newImplementation = abi.decode(msg.data[4:], (address)); _upgradeToAndCall(newImplementation, bytes(""), false); return ""; } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. */ function _dispatchUpgradeToAndCall() private returns (bytes memory) { (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes)); _upgradeToAndCall(newImplementation, data, true); return ""; } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to * emulate some proxy functions being non-payable while still allowing value to pass through. */ function _requireZeroValue() private { require(msg.value == 0); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } }
File 2 of 3: ZkEvmV2
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol) pragma solidity ^0.8.0; import "./IAccessControlUpgradeable.sol"; import "../utils/ContextUpgradeable.sol"; import "../utils/StringsUpgradeable.sol"; import "../utils/introspection/ERC165Upgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable { function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with a standardized message including the required role. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ * * _Available since v4.1._ */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual override returns (bool) { return _roles[role].members[account]; } /** * @dev Revert with a standard message if `_msgSender()` is missing `role`. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Revert with a standard message if `account` is missing `role`. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", StringsUpgradeable.toHexString(account), " is missing role ", StringsUpgradeable.toHexString(uint256(role), 32) ) ) ); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address account) public virtual override { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * May emit a {RoleGranted} event. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== * * NOTE: This function is deprecated in favor of {_grantRole}. */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Grants `role` to `account`. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } /** * @dev Revokes `role` from `account`. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControlUpgradeable { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165Upgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165Upgradeable).interfaceId; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library MathUpgradeable { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMathUpgradeable { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/MathUpgradeable.sol"; import "./math/SignedMathUpgradeable.sol"; /** * @dev String operations. */ library StringsUpgradeable { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = MathUpgradeable.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, MathUpgradeable.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; interface IGenericErrors { /** * @dev Thrown when a parameter is the zero address. */ error ZeroAddressNotAllowed(); } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; interface IL1MessageManager { /** * @dev Emitted when L2->L1 message hashes have been added to L1 storage. */ event L2L1MessageHashAddedToInbox(bytes32 indexed messageHash); /** * @dev Emitted when L1->L2 messages have been anchored on L2 and updated on L1. */ event L1L2MessagesReceivedOnL2(bytes32[] messageHashes); /** * @dev Thrown when the message has been already sent. */ error MessageAlreadySent(); /** * @dev Thrown when the message has already been claimed. */ error MessageDoesNotExistOrHasAlreadyBeenClaimed(); /** * @dev Thrown when the message has already been received. */ error MessageAlreadyReceived(bytes32 messageHash); /** * @dev Thrown when the L1->L2 message has not been sent. */ error L1L2MessageNotSent(bytes32 messageHash); } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; interface IMessageService { /** * @dev Emitted when a message is sent. * @dev We include the message hash to save hashing costs on the rollup. */ event MessageSent( address indexed _from, address indexed _to, uint256 _fee, uint256 _value, uint256 _nonce, bytes _calldata, bytes32 indexed _messageHash ); /** * @dev Emitted when a message is claimed. */ event MessageClaimed(bytes32 indexed _messageHash); /** * @dev Thrown when fees are lower than the minimum fee. */ error FeeTooLow(); /** * @dev Thrown when fees are lower than value. */ error ValueShouldBeGreaterThanFee(); /** * @dev Thrown when the value sent is less than the fee. * @dev Value to forward on is msg.value - _fee. */ error ValueSentTooLow(); /** * @dev Thrown when the destination address reverts. */ error MessageSendingFailed(address destination); /** * @dev Thrown when the destination address reverts. */ error FeePaymentFailed(address recipient); /** * @notice Sends a message for transporting from the given chain. * @dev This function should be called with a msg.value = _value + _fee. The fee will be paid on the destination chain. * @param _to The destination address on the destination chain. * @param _fee The message service fee on the origin chain. * @param _calldata The calldata used by the destination message service to call the destination contract. */ function sendMessage(address _to, uint256 _fee, bytes calldata _calldata) external payable; /** * @notice Deliver a message to the destination chain. * @notice Is called automatically by the Postman, dApp or end user. * @param _from The msg.sender calling the origin message service. * @param _to The destination address on the destination chain. * @param _value The value to be transferred to the destination address. * @param _fee The message service fee on the origin chain. * @param _feeRecipient Address that will receive the fees. * @param _calldata The calldata used by the destination message service to call/forward to the destination contract. * @param _nonce Unique message number. */ function claimMessage( address _from, address _to, uint256 _fee, uint256 _value, address payable _feeRecipient, bytes calldata _calldata, uint256 _nonce ) external; /** * @notice Returns the original sender of the message on the origin layer. * @return The original sender of the message on the origin layer. */ function sender() external view returns (address); } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; interface IPauseManager { /** * @dev Thrown when a specific pause type is paused. */ error IsPaused(bytes32 pauseType); /** * @dev Thrown when a specific pause type is not paused and expected to be. */ error IsNotPaused(bytes32 pauseType); /** * @dev Emitted when a pause type is paused. */ event Paused(address messageSender, bytes32 pauseType); /** * @dev Emitted when a pause type is unpaused. */ event UnPaused(address messageSender, bytes32 pauseType); } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; /** * @title Contract to manage cross-chain messaging on L1 and rollup proving * @author ConsenSys Software Inc. */ interface IPlonkVerifier { /** * @notice Interface for verifier contracts. * @param _proof The proof used to verify. * @param _public_inputs The computed public inputs for the proof verification. */ function Verify(bytes memory _proof, uint256[] memory _public_inputs) external returns (bool); } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; interface IRateLimiter { /** * @dev Thrown when an amount breaches the limit in the period. */ error RateLimitExceeded(); /** * @dev Thrown when the period is initialised to zero. */ error PeriodIsZero(); /** * @dev Thrown when the limit is initialised to zero. */ error LimitIsZero(); /** * @dev Emitted when the amount in the period is reset to zero. */ event AmountUsedInPeriodReset(address indexed resettingAddress); /** * @dev Emitted when the limit is changed. * @dev If the current used amount is higher than the new limit, the used amount is lowered to the limit. */ event LimitAmountChanged( address indexed amountChangeBy, uint256 amount, bool amountUsedLoweredToLimit, bool usedAmountResetToZero ); /** * @notice Resets the rate limit amount to the amount specified. * @param _amount New message hashes. */ function resetRateLimitAmount(uint256 _amount) external; /** * @notice Resets the amount used in the period to zero. */ function resetAmountUsedInPeriod() external; } // SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.19; interface IZkEvmV2 { struct BlockData { bytes32 blockRootHash; uint32 l2BlockTimestamp; bytes[] transactions; bytes32[] l2ToL1MsgHashes; bytes fromAddresses; uint16[] batchReceptionIndices; } /** * @dev Emitted when a L2 block has been finalized on L1 */ event BlockFinalized(uint256 indexed blockNumber, bytes32 indexed stateRootHash); /** * @dev Emitted when a L2 blocks have been finalized on L1 */ event BlocksVerificationDone(uint256 indexed lastBlockFinalized, bytes32 startingRootHash, bytes32 finalRootHash); /** * @dev Emitted when a verifier is set for a particular proof type */ event VerifierAddressChanged( address indexed verifierAddress, uint256 indexed proofType, address indexed verifierSetBy ); /** * @dev Thrown when l2 block timestamp is not correct */ error BlockTimestampError(); /** * @dev Thrown when the starting rootHash does not match the existing state */ error StartingRootHashDoesNotMatch(); /** * @dev Thrown when block contains zero transactions */ error EmptyBlock(); /** * @dev Thrown when zk proof is empty bytes */ error ProofIsEmpty(); /** * @dev Thrown when zk proof type is invalid */ error InvalidProofType(); /** * @dev Thrown when zk proof is invalid */ error InvalidProof(); /** * @notice Adds or updated the verifier contract address for a proof type * @dev DEFAULT_ADMIN_ROLE is required to execute * @param _newVerifierAddress The address for the verifier contract * @param _proofType The proof type being set/updated **/ function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external; /** * @notice Finalizes blocks without using a proof * @dev DEFAULT_ADMIN_ROLE is required to execute * @param _calldata The full BlockData collection - block, transaction and log data **/ function finalizeBlocksWithoutProof(BlockData[] calldata _calldata) external; /** * @notice Finalizes blocks without using a proof * @dev OPERATOR_ROLE is required to execute * @dev If the verifier based on proof type is not found, it defaults to the default verifier type * @param _calldata The full BlockData collection - block, transaction and log data * @param _proof The proof to verified with the proof type verifier contract * @param _proofType The proof type to determine which verifier contract to use * @param _parentStateRootHash The beginning roothash to start with **/ function finalizeBlocks( BlockData[] calldata _calldata, bytes calldata _proof, uint256 _proofType, bytes32 _parentStateRootHash ) external; } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; import { IL1MessageManager } from "../../interfaces/IL1MessageManager.sol"; /** * @title Contract to manage cross-chain message hashes storage and status on L1. * @author ConsenSys Software Inc. */ abstract contract L1MessageManager is IL1MessageManager { uint8 public constant INBOX_STATUS_UNKNOWN = 0; uint8 public constant INBOX_STATUS_RECEIVED = 1; uint8 public constant OUTBOX_STATUS_UNKNOWN = 0; uint8 public constant OUTBOX_STATUS_SENT = 1; uint8 public constant OUTBOX_STATUS_RECEIVED = 2; /// @dev There is a uint216 worth of storage layout here. /// @dev Mapping to store L1->L2 message hashes status. /// @dev messageHash => messageStatus (0: unknown, 1: sent, 2: received). mapping(bytes32 => uint256) public outboxL1L2MessageStatus; /// @dev Mapping to store L2->L1 message hashes status. /// @dev messageHash => messageStatus (0: unknown, 1: received). mapping(bytes32 => uint256) public inboxL2L1MessageStatus; /// @dev Keep free storage slots for future implementation updates to avoid storage collision. // ******************************************************************************************* // NB: THIS GAP HAS BEEN PUSHED OUT IN FAVOUR OF THE GAP INSIDE THE REENTRANCY CODE //uint256[50] private __gap; // NB: DO NOT USE THIS GAP // ******************************************************************************************* /** * @notice Add a cross-chain L2->L1 message hash in storage. * @dev Once the event is emitted, it should be ready for claiming (post block finalization). * @param _messageHash Hash of the message. */ function _addL2L1MessageHash(bytes32 _messageHash) internal { if (inboxL2L1MessageStatus[_messageHash] != INBOX_STATUS_UNKNOWN) { revert MessageAlreadyReceived(_messageHash); } inboxL2L1MessageStatus[_messageHash] = INBOX_STATUS_RECEIVED; emit L2L1MessageHashAddedToInbox(_messageHash); } /** * @notice Update the status of L2->L1 message when a user claims a message on L1. * @dev The L2->L1 message is removed from storage. * @dev Due to the nature of the rollup, we should not get a second entry of this. * @param _messageHash Hash of the message. */ function _updateL2L1MessageStatusToClaimed(bytes32 _messageHash) internal { if (inboxL2L1MessageStatus[_messageHash] != INBOX_STATUS_RECEIVED) { revert MessageDoesNotExistOrHasAlreadyBeenClaimed(); } delete inboxL2L1MessageStatus[_messageHash]; } /** * @notice Add L1->L2 message hash in storage when a message is sent on L1. * @param _messageHash Hash of the message. */ function _addL1L2MessageHash(bytes32 _messageHash) internal { outboxL1L2MessageStatus[_messageHash] = OUTBOX_STATUS_SENT; } /** * @notice Update the status of L1->L2 messages as received when messages has been stored on L2. * @dev The expectation here is that the rollup is limited to 100 hashes being added here - array is not open ended. * @param _messageHashes List of message hashes. */ function _updateL1L2MessageStatusToReceived(bytes32[] memory _messageHashes) internal { uint256 messageHashArrayLength = _messageHashes.length; for (uint256 i; i < messageHashArrayLength; ) { bytes32 messageHash = _messageHashes[i]; uint256 existingStatus = outboxL1L2MessageStatus[messageHash]; if (existingStatus == OUTBOX_STATUS_UNKNOWN) { revert L1L2MessageNotSent(messageHash); } if (existingStatus != OUTBOX_STATUS_RECEIVED) { outboxL1L2MessageStatus[messageHash] = OUTBOX_STATUS_RECEIVED; } unchecked { i++; } } emit L1L2MessagesReceivedOnL2(_messageHashes); } } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol"; import { IMessageService } from "../../interfaces/IMessageService.sol"; import { IGenericErrors } from "../../interfaces/IGenericErrors.sol"; import { PauseManager } from "../lib/PauseManager.sol"; import { RateLimiter } from "../lib/RateLimiter.sol"; import { L1MessageManager } from "./L1MessageManager.sol"; /** * @title Contract to manage cross-chain messaging on L1. * @author ConsenSys Software Inc. */ abstract contract L1MessageService is Initializable, RateLimiter, L1MessageManager, ReentrancyGuardUpgradeable, PauseManager, IMessageService, IGenericErrors { // @dev This is initialised to save user cost with existing slot. uint256 public nextMessageNumber; address private _messageSender; // Keep free storage slots for future implementation updates to avoid storage collision. uint256[50] private __gap; // @dev adding these should not affect storage as they are constants and are store in bytecode uint256 private constant REFUND_OVERHEAD_IN_GAS = 42000; /** * @notice Initialises underlying message service dependencies. * @dev _messageSender is initialised to a non-zero value for gas efficiency on claiming. * @param _limitManagerAddress The address owning the rate limiting management role. * @param _pauseManagerAddress The address owning the pause management role. * @param _rateLimitPeriod The period to rate limit against. * @param _rateLimitAmount The limit allowed for withdrawing the period. **/ function __MessageService_init( address _limitManagerAddress, address _pauseManagerAddress, uint256 _rateLimitPeriod, uint256 _rateLimitAmount ) internal onlyInitializing { if (_limitManagerAddress == address(0)) { revert ZeroAddressNotAllowed(); } if (_pauseManagerAddress == address(0)) { revert ZeroAddressNotAllowed(); } __ERC165_init(); __Context_init(); __AccessControl_init(); __RateLimiter_init(_rateLimitPeriod, _rateLimitAmount); _grantRole(RATE_LIMIT_SETTER_ROLE, _limitManagerAddress); _grantRole(PAUSE_MANAGER_ROLE, _pauseManagerAddress); nextMessageNumber = 1; _messageSender = address(123456789); } /** * @notice Adds a message for sending cross-chain and emits MessageSent. * @dev The message number is preset (nextMessageNumber) and only incremented at the end if successful for the next caller. * @dev This function should be called with a msg.value = _value + _fee. The fee will be paid on the destination chain. * @param _to The address the message is intended for. * @param _fee The fee being paid for the message delivery. * @param _calldata The calldata to pass to the recipient. **/ function sendMessage( address _to, uint256 _fee, bytes calldata _calldata ) external payable whenTypeNotPaused(L1_L2_PAUSE_TYPE) whenTypeNotPaused(GENERAL_PAUSE_TYPE) { if (_to == address(0)) { revert ZeroAddressNotAllowed(); } if (_fee > msg.value) { revert ValueSentTooLow(); } uint256 messageNumber = nextMessageNumber; uint256 valueSent = msg.value - _fee; bytes32 messageHash = keccak256(abi.encode(msg.sender, _to, _fee, valueSent, messageNumber, _calldata)); // @dev Status check and revert is in the message manager _addL1L2MessageHash(messageHash); nextMessageNumber++; emit MessageSent(msg.sender, _to, _fee, valueSent, messageNumber, _calldata, messageHash); } /** * @notice Claims and delivers a cross-chain message. * @dev _feeRecipient can be set to address(0) to receive as msg.sender. * @dev _messageSender is set temporarily when claiming and reset post. Used in sender(). * @dev _messageSender is reset to address(123456789) to be more gas efficient. * @param _from The address of the original sender. * @param _to The address the message is intended for. * @param _fee The fee being paid for the message delivery. * @param _value The value to be transferred to the destination address. * @param _feeRecipient The recipient for the fee. * @param _calldata The calldata to pass to the recipient. * @param _nonce The unique auto generated nonce used when sending the message. **/ function claimMessage( address _from, address _to, uint256 _fee, uint256 _value, address payable _feeRecipient, bytes calldata _calldata, uint256 _nonce ) external nonReentrant distributeFees(_fee, _to, _calldata, _feeRecipient) { _requireTypeNotPaused(L2_L1_PAUSE_TYPE); _requireTypeNotPaused(GENERAL_PAUSE_TYPE); bytes32 messageHash = keccak256(abi.encode(_from, _to, _fee, _value, _nonce, _calldata)); // @dev Status check and revert is in the message manager. _updateL2L1MessageStatusToClaimed(messageHash); _addUsedAmount(_fee + _value); _messageSender = _from; (bool callSuccess, bytes memory returnData) = _to.call{ value: _value }(_calldata); if (!callSuccess) { if (returnData.length > 0) { assembly { let data_size := mload(returnData) revert(add(32, returnData), data_size) } } else { revert MessageSendingFailed(_to); } } _messageSender = address(123456789); emit MessageClaimed(messageHash); } /** * @notice Claims and delivers a cross-chain message. * @dev _messageSender is set temporarily when claiming. **/ function sender() external view returns (address) { return _messageSender; } /** * @notice Function to receive funds for liquidity purposes. **/ receive() external payable virtual {} /** * @notice The unspent fee is refunded if applicable. * @param _feeInWei The fee paid for delivery in Wei. * @param _to The recipient of the message and gas refund. * @param _calldata The calldata of the message. **/ modifier distributeFees( uint256 _feeInWei, address _to, bytes calldata _calldata, address _feeRecipient ) { //pre-execution uint256 startingGas = gasleft(); _; //post-execution // we have a fee if (_feeInWei > 0) { // default postman fee uint256 deliveryFee = _feeInWei; // do we have empty calldata? if (_calldata.length == 0) { bool isDestinationEOA; assembly { isDestinationEOA := iszero(extcodesize(_to)) } // are we calling an EOA if (isDestinationEOA) { // initial + cost to call and refund minus gasleft deliveryFee = (startingGas + REFUND_OVERHEAD_IN_GAS - gasleft()) * tx.gasprice; if (_feeInWei > deliveryFee) { payable(_to).send(_feeInWei - deliveryFee); } else { deliveryFee = _feeInWei; } } } address feeReceiver = _feeRecipient == address(0) ? msg.sender : _feeRecipient; bool callSuccess = payable(feeReceiver).send(deliveryFee); if (!callSuccess) { revert FeePaymentFailed(feeReceiver); } } } } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; /** * @title Decoding functions for message service anchoring and bytes slicing. * @author ConsenSys Software Inc. * @notice You can use this to slice bytes and extract anchoring hashes from calldata. **/ library CodecV2 { /** * @notice Decodes a collection of bytes32 (hashes) from the calldata of a transaction. * @dev Extracts and decodes skipping the function selector (selector is expected in the input). * @dev A check beforehand must be performed to confirm this is the correct type of transaction. * @param _calldataWithSelector The calldata for the transaction. * @return bytes32[] - array of message hashes. **/ function _extractXDomainAddHashes(bytes memory _calldataWithSelector) internal pure returns (bytes32[] memory) { assembly { let len := sub(mload(_calldataWithSelector), 4) _calldataWithSelector := add(_calldataWithSelector, 0x4) mstore(_calldataWithSelector, len) } return abi.decode(_calldataWithSelector, (bytes32[])); } } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import { IPauseManager } from "../../interfaces/IPauseManager.sol"; /** * @title Contract to manage cross-chain function pausing. * @author ConsenSys Software Inc. */ abstract contract PauseManager is Initializable, IPauseManager, AccessControlUpgradeable { bytes32 public constant PAUSE_MANAGER_ROLE = keccak256("PAUSE_MANAGER_ROLE"); bytes32 public constant GENERAL_PAUSE_TYPE = keccak256("GENERAL_PAUSE_TYPE"); bytes32 public constant L1_L2_PAUSE_TYPE = keccak256("L1_L2_PAUSE_TYPE"); bytes32 public constant L2_L1_PAUSE_TYPE = keccak256("L2_L1_PAUSE_TYPE"); bytes32 public constant PROVING_SYSTEM_PAUSE_TYPE = keccak256("PROVING_SYSTEM_PAUSE_TYPE"); mapping(bytes32 => bool) public pauseTypeStatuses; uint256[10] private _gap; /** * @dev Modifier to make a function callable only when the type is not paused. * * Requirements: * * - The type must not be paused. */ modifier whenTypeNotPaused(bytes32 _pauseType) { _requireTypeNotPaused(_pauseType); _; } /** * @dev Modifier to make a function callable only when the type is paused. * * Requirements: * * - The type must not be paused. */ modifier whenTypePaused(bytes32 _pauseType) { _requireTypePaused(_pauseType); _; } /** * @dev Throws if the type is not paused. * @param _pauseType The keccak256 pause type being checked, */ function _requireTypePaused(bytes32 _pauseType) internal view virtual { if (!pauseTypeStatuses[_pauseType]) { revert IsNotPaused(_pauseType); } } /** * @dev Throws if the type is paused. * @param _pauseType The keccak256 pause type being checked, */ function _requireTypeNotPaused(bytes32 _pauseType) internal view virtual { if (pauseTypeStatuses[_pauseType]) { revert IsPaused(_pauseType); } } /** * @notice Pauses functionality by specific type. * @dev Requires PAUSE_MANAGER_ROLE. * @param _pauseType keccak256 pause type. **/ function pauseByType(bytes32 _pauseType) external whenTypeNotPaused(_pauseType) onlyRole(PAUSE_MANAGER_ROLE) { pauseTypeStatuses[_pauseType] = true; emit Paused(_msgSender(), _pauseType); } /** * @notice Unpauses functionality by specific type. * @dev Requires PAUSE_MANAGER_ROLE. * @param _pauseType keccak256 pause type. **/ function unPauseByType(bytes32 _pauseType) external whenTypePaused(_pauseType) onlyRole(PAUSE_MANAGER_ROLE) { pauseTypeStatuses[_pauseType] = false; emit UnPaused(_msgSender(), _pauseType); } } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import { IRateLimiter } from "../../interfaces/IRateLimiter.sol"; /** * @title Rate Limiter by period and amount using the block timestamp. * @author ConsenSys Software Inc. * @notice You can use this control numeric limits over a period using timestamp. **/ contract RateLimiter is Initializable, IRateLimiter, AccessControlUpgradeable { bytes32 public constant RATE_LIMIT_SETTER_ROLE = keccak256("RATE_LIMIT_SETTER_ROLE"); uint256 public periodInSeconds; // how much time before limit resets. uint256 public limitInWei; // max ether to withdraw per period. // @dev Public for ease of consumption. // @notice The time at which the current period ends at. uint256 public currentPeriodEnd; // @dev Public for ease of consumption. // @notice Amounts already withdrawn this period. uint256 public currentPeriodAmountInWei; uint256[10] private _gap; /** * @notice Initialises the limits and period for the rate limiter. * @param _periodInSeconds The length of the period in seconds. * @param _limitInWei The limit allowed in the period in Wei. **/ function __RateLimiter_init(uint256 _periodInSeconds, uint256 _limitInWei) internal onlyInitializing { if (_periodInSeconds == 0) { revert PeriodIsZero(); } if (_limitInWei == 0) { revert LimitIsZero(); } periodInSeconds = _periodInSeconds; limitInWei = _limitInWei; currentPeriodEnd = block.timestamp + _periodInSeconds; } /** * @notice Increments the amount used in the period. * @dev The amount determining logic is external to this (e.g. fees are included when calling here). * @dev Reverts if the limit is breached. * @param _usedAmount The amount used to be added. **/ function _addUsedAmount(uint256 _usedAmount) internal { uint256 currentPeriodAmountTemp; if (currentPeriodEnd < block.timestamp) { currentPeriodEnd = block.timestamp + periodInSeconds; currentPeriodAmountTemp = _usedAmount; } else { currentPeriodAmountTemp = currentPeriodAmountInWei + _usedAmount; } if (currentPeriodAmountTemp > limitInWei) { revert RateLimitExceeded(); } currentPeriodAmountInWei = currentPeriodAmountTemp; } /** * @notice Resets the rate limit amount. * @dev If the used amount is higher, it is set to the limit to avoid confusion/issues. * @dev Only the RATE_LIMIT_SETTER_ROLE is allowed to execute this function. * @dev Emits the LimitAmountChanged event. * @dev usedLimitAmountToSet will use the default value of zero if period has expired * @param _amount The amount to reset the limit to. **/ function resetRateLimitAmount(uint256 _amount) external onlyRole(RATE_LIMIT_SETTER_ROLE) { uint256 usedLimitAmountToSet; bool amountUsedLoweredToLimit; bool usedAmountResetToZero; if (currentPeriodEnd < block.timestamp) { currentPeriodEnd = block.timestamp + periodInSeconds; usedAmountResetToZero = true; } else { if (_amount < currentPeriodAmountInWei) { usedLimitAmountToSet = _amount; amountUsedLoweredToLimit = true; } } limitInWei = _amount; if (usedAmountResetToZero || amountUsedLoweredToLimit) { currentPeriodAmountInWei = usedLimitAmountToSet; } emit LimitAmountChanged(_msgSender(), _amount, amountUsedLoweredToLimit, usedAmountResetToZero); } /** * @notice Resets the amount used to zero. * @dev Only the RATE_LIMIT_SETTER_ROLE is allowed to execute this function. * @dev Emits the AmountUsedInPeriodReset event. **/ function resetAmountUsedInPeriod() external onlyRole(RATE_LIMIT_SETTER_ROLE) { currentPeriodAmountInWei = 0; emit AmountUsedInPeriodReset(_msgSender()); } } // SPDX-License-Identifier: Apache-2.0 /** * @author Hamdi Allam [email protected] * @notice Please reach out with any questions or concerns. */ pragma solidity ^0.8.19; error NotList(); error WrongBytesLength(); error NoNext(); error MemoryOutOfBounds(uint256 inde); library RLPReader { uint8 internal constant STRING_SHORT_START = 0x80; uint8 internal constant STRING_LONG_START = 0xb8; uint8 internal constant LIST_SHORT_START = 0xc0; uint8 internal constant LIST_LONG_START = 0xf8; uint8 internal constant LIST_SHORT_START_MAX = 0xf7; uint8 internal constant WORD_SIZE = 32; struct RLPItem { uint256 len; uint256 memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint256 nextPtr; // Position of the next item in the list. } /** * @dev Returns the next element in the iteration. Reverts if it has no next element. * @param _self The iterator. * @return nextItem The next element in the iteration. */ function _next(Iterator memory _self) internal pure returns (RLPItem memory nextItem) { if (!_hasNext(_self)) { revert NoNext(); } uint256 ptr = _self.nextPtr; uint256 itemLength = _itemLength(ptr); _self.nextPtr = ptr + itemLength; nextItem.len = itemLength; nextItem.memPtr = ptr; } /** * @dev Returns the number 'skiptoNum' element in the iteration. * @param _self The iterator. * @param _skipToNum Element position in the RLP item iterator to return. * @return item The number 'skipToNum' element in the iteration. */ function _skipTo(Iterator memory _self, uint256 _skipToNum) internal pure returns (RLPItem memory item) { uint256 lenX; uint256 memPtrStart = _self.item.memPtr; uint256 endPtr; uint256 byte0; uint256 byteLen; assembly { // get first byte to know if it is a short/long list byte0 := byte(0, mload(memPtrStart)) // yul has no if/else so if it a short list ( < long list start ) switch lt(byte0, LIST_LONG_START) case 1 { // the length is just the difference in bytes lenX := sub(byte0, 0xc0) } case 0 { // at this point we care only about lists, so this is the default // get how many next bytes indicate the list length byteLen := sub(byte0, 0xf7) // move one over to the list length start memPtrStart := add(memPtrStart, 1) // shift over grabbing the bytelen elements lenX := div(mload(memPtrStart), exp(256, sub(32, byteLen))) } // get the end endPtr := add(memPtrStart, lenX) } uint256 ptr = _self.nextPtr; uint256 itemLength = _itemLength(ptr); _self.nextPtr = ptr + itemLength; for (uint256 i; i < _skipToNum - 1; ) { ptr = _self.nextPtr; if (ptr > endPtr) revert MemoryOutOfBounds(endPtr); itemLength = _itemLength(ptr); _self.nextPtr = ptr + itemLength; unchecked { i++; } } item.len = itemLength; item.memPtr = ptr; } /** * @dev Returns true if the iteration has more elements. * @param _self The iterator. * @return True if the iteration has more elements. */ function _hasNext(Iterator memory _self) internal pure returns (bool) { RLPItem memory item = _self.item; return _self.nextPtr < item.memPtr + item.len; } /** * @param item RLP encoded bytes. * @return newItem The RLP item. */ function _toRlpItem(bytes memory item) internal pure returns (RLPItem memory newItem) { uint256 memPtr; assembly { memPtr := add(item, 0x20) } newItem.len = item.length; newItem.memPtr = memPtr; } /** * @dev Creates an iterator. Reverts if item is not a list. * @param _self The RLP item. * @return iterator 'Iterator' over the item. */ function _iterator(RLPItem memory _self) internal pure returns (Iterator memory iterator) { if (!_isList(_self)) { revert NotList(); } uint256 ptr = _self.memPtr + _payloadOffset(_self.memPtr); iterator.item = _self; iterator.nextPtr = ptr; } /** * @param _item The RLP item. * @return (memPtr, len) Tuple: Location of the item's payload in memory. */ function _payloadLocation(RLPItem memory _item) internal pure returns (uint256, uint256) { uint256 offset = _payloadOffset(_item.memPtr); uint256 memPtr = _item.memPtr + offset; uint256 len = _item.len - offset; // data length return (memPtr, len); } /** * @param _item The RLP item. * @return Indicator whether encoded payload is a list. */ function _isList(RLPItem memory _item) internal pure returns (bool) { if (_item.len == 0) return false; uint8 byte0; uint256 memPtr = _item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /** * @param _item The RLP item. * @return result Returns the item as an address. */ function _toAddress(RLPItem memory _item) internal pure returns (address) { // 1 byte for the length prefix if (_item.len != 21) { revert WrongBytesLength(); } return address(uint160(_toUint(_item))); } /** * @param _item The RLP item. * @return result Returns the item as a uint256. */ function _toUint(RLPItem memory _item) internal pure returns (uint256 result) { if (_item.len == 0 || _item.len > 33) { revert WrongBytesLength(); } (uint256 memPtr, uint256 len) = _payloadLocation(_item); assembly { result := mload(memPtr) // Shfit to the correct location if neccesary. if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } } /** * @param _item The RLP item. * @return result Returns the item as bytes. */ function _toBytes(RLPItem memory _item) internal pure returns (bytes memory result) { if (_item.len == 0) { revert WrongBytesLength(); } (uint256 memPtr, uint256 len) = _payloadLocation(_item); result = new bytes(len); uint256 destPtr; assembly { destPtr := add(0x20, result) } _copy(memPtr, destPtr, len); } /* * Private Helpers */ /** * @param _memPtr Item memory pointer. * @return Entire RLP item byte length. */ function _itemLength(uint256 _memPtr) private pure returns (uint256) { uint256 itemLen; uint256 dataLen; uint256 byte0; assembly { byte0 := byte(0, mload(_memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # Of bytes the actual length is. _memPtr := add(_memPtr, 1) // Skip over the first byte. /* 32 byte word size */ dataLen := div(mload(_memPtr), exp(256, sub(32, byteLen))) // Right shifting to get the len. itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) _memPtr := add(_memPtr, 1) dataLen := div(mload(_memPtr), exp(256, sub(32, byteLen))) // Right shifting to the correct length. itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } /** * @param _memPtr Item memory pointer. * @return Number of bytes until the data. */ function _payloadOffset(uint256 _memPtr) private pure returns (uint256) { uint256 byte0; assembly { byte0 := byte(0, mload(_memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /** * @param _src Pointer to source. * @param _dest Pointer to destination. * @param _len Amount of memory to copy from the source. */ function _copy(uint256 _src, uint256 _dest, uint256 _len) private pure { if (_len == 0) return; // copy as many word sizes as possible for (; _len >= WORD_SIZE; _len -= WORD_SIZE) { assembly { mstore(_dest, mload(_src)) } _src += WORD_SIZE; _dest += WORD_SIZE; } if (_len > 0) { // Left over bytes. Mask is used to remove unwanted bytes from the word. uint256 mask = 256 ** (WORD_SIZE - _len) - 1; assembly { let srcpart := and(mload(_src), not(mask)) // Zero out src. let destpart := and(mload(_dest), mask) // Retrieve the bytes. mstore(_dest, or(destpart, srcpart)) } } } } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; import { RLPReader } from "./Rlp.sol"; using RLPReader for RLPReader.RLPItem; using RLPReader for RLPReader.Iterator; using RLPReader for bytes; /* * dev Thrown when the transaction data length is too short. */ error TransactionShort(); /* * dev Thrown when the transaction type is unknown. */ error UnknownTransactionType(); /** * @title Contract to decode RLP formatted transactions. * @author ConsenSys Software Inc. */ library TransactionDecoder { /** * @notice Decodes the transaction extracting the calldata. * @param _transaction The RLP transaction. * @return data Returns the transaction calldata as bytes. */ function decodeTransaction(bytes calldata _transaction) internal pure returns (bytes memory) { if (_transaction.length < 1) { revert TransactionShort(); } bytes1 version = _transaction[0]; if (version == 0x01) { return _decodeEIP2930Transaction(_transaction); } if (version == 0x02) { return _decodeEIP1559Transaction(_transaction); } if (version >= 0xc0) { return _decodeLegacyTransaction(_transaction); } revert UnknownTransactionType(); } /** * @notice Decodes the EIP1559 transaction extracting the calldata. * @param _transaction The RLP transaction. * @return data Returns the transaction calldata as bytes. */ function _decodeEIP1559Transaction(bytes calldata _transaction) private pure returns (bytes memory data) { bytes memory txData = _transaction[1:]; // skip the version byte RLPReader.RLPItem memory rlp = txData._toRlpItem(); RLPReader.Iterator memory it = rlp._iterator(); data = it._skipTo(8)._toBytes(); } /** * @notice Decodes the EIP29230 transaction extracting the calldata. * @param _transaction The RLP transaction. * @return data Returns the transaction calldata as bytes. */ function _decodeEIP2930Transaction(bytes calldata _transaction) private pure returns (bytes memory data) { bytes memory txData = _transaction[1:]; // skip the version byte RLPReader.RLPItem memory rlp = txData._toRlpItem(); RLPReader.Iterator memory it = rlp._iterator(); data = it._skipTo(7)._toBytes(); } /** * @notice Decodes the legacy transaction extracting the calldata. * @param _transaction The RLP transaction. * @return data Returns the transaction calldata as bytes. */ function _decodeLegacyTransaction(bytes calldata _transaction) private pure returns (bytes memory data) { bytes memory txData = _transaction; RLPReader.RLPItem memory rlp = txData._toRlpItem(); RLPReader.Iterator memory it = rlp._iterator(); data = it._skipTo(6)._toBytes(); } } // SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.19; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import { L1MessageService } from "./messageService/l1/L1MessageService.sol"; import { TransactionDecoder } from "./messageService/lib/TransactionDecoder.sol"; import { IZkEvmV2 } from "./interfaces/IZkEvmV2.sol"; import { IPlonkVerifier } from "./interfaces/IPlonkVerifier.sol"; import { CodecV2 } from "./messageService/lib/Codec.sol"; /** * @title Contract to manage cross-chain messaging on L1 and rollup proving. * @author ConsenSys Software Inc. */ contract ZkEvmV2 is IZkEvmV2, Initializable, AccessControlUpgradeable, L1MessageService { using TransactionDecoder for *; using CodecV2 for *; uint256 private constant MODULO_R = 21888242871839275222246405745257275088548364400416034343698204186575808495617; bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE"); uint256 public currentTimestamp; uint256 public currentL2BlockNumber; mapping(uint256 => bytes32) public stateRootHashes; mapping(uint256 => address) public verifiers; uint256[50] private __gap; /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /** * @notice Initializes zkEvm and underlying service dependencies. * @dev DEFAULT_ADMIN_ROLE is set for the security council. * @dev OPERATOR_ROLE is set for operators. * @param _initialStateRootHash The initial hash at migration used for proof verification. * @param _initialL2BlockNumber The initial block number at migration. * @param _defaultVerifier The default verifier for rollup proofs. * @param _securityCouncil The address for the security council performing admin operations. * @param _operators The allowed rollup operators at initialization. * @param _rateLimitPeriodInSeconds The period in which withdrawal amounts and fees will be accumulated. * @param _rateLimitAmountInWei The limit allowed for withdrawing in the period. **/ function initialize( bytes32 _initialStateRootHash, uint256 _initialL2BlockNumber, address _defaultVerifier, address _securityCouncil, address[] calldata _operators, uint256 _rateLimitPeriodInSeconds, uint256 _rateLimitAmountInWei ) public initializer { if (_defaultVerifier == address(0)) { revert ZeroAddressNotAllowed(); } for (uint256 i; i < _operators.length; ) { if (_operators[i] == address(0)) { revert ZeroAddressNotAllowed(); } _grantRole(OPERATOR_ROLE, _operators[i]); unchecked { i++; } } _grantRole(DEFAULT_ADMIN_ROLE, _securityCouncil); __MessageService_init(_securityCouncil, _securityCouncil, _rateLimitPeriodInSeconds, _rateLimitAmountInWei); verifiers[0] = _defaultVerifier; currentL2BlockNumber = _initialL2BlockNumber; stateRootHashes[_initialL2BlockNumber] = _initialStateRootHash; } /** * @notice Adds or updates the verifier contract address for a proof type. * @dev DEFAULT_ADMIN_ROLE is required to execute. * @param _newVerifierAddress The address for the verifier contract. * @param _proofType The proof type being set/updated. **/ function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external onlyRole(DEFAULT_ADMIN_ROLE) { if (_newVerifierAddress == address(0)) { revert ZeroAddressNotAllowed(); } emit VerifierAddressChanged(_newVerifierAddress, _proofType, msg.sender); verifiers[_proofType] = _newVerifierAddress; } /** * @notice Finalizes blocks without using a proof. * @dev DEFAULT_ADMIN_ROLE is required to execute. * @param _blocksData The full BlockData collection - block, transaction and log data. **/ function finalizeBlocksWithoutProof( BlockData[] calldata _blocksData ) external whenTypeNotPaused(GENERAL_PAUSE_TYPE) onlyRole(DEFAULT_ADMIN_ROLE) { _finalizeBlocks(_blocksData, new bytes(0), 0, bytes32(0), false); } /** * @notice Finalizes blocks using a proof. * @dev OPERATOR_ROLE is required to execute. * @dev If the verifier based on proof type is not found, it reverts. * @param _blocksData The full BlockData collection - block, transaction and log data. * @param _proof The proof to be verified with the proof type verifier contract. * @param _proofType The proof type to determine which verifier contract to use. * @param _parentStateRootHash The starting roothash for the last known block. **/ function finalizeBlocks( BlockData[] calldata _blocksData, bytes calldata _proof, uint256 _proofType, bytes32 _parentStateRootHash ) external whenTypeNotPaused(PROVING_SYSTEM_PAUSE_TYPE) whenTypeNotPaused(GENERAL_PAUSE_TYPE) onlyRole(OPERATOR_ROLE) { if (stateRootHashes[currentL2BlockNumber] != _parentStateRootHash) { revert StartingRootHashDoesNotMatch(); } _finalizeBlocks(_blocksData, _proof, _proofType, _parentStateRootHash, true); } /** * @notice Finalizes blocks with or without using a proof depending on _shouldProve * @dev If the verifier based on proof type is not found, it reverts. * @param _blocksData The full BlockData collection - block, transaction and log data. * @param _proof The proof to be verified with the proof type verifier contract. * @param _proofType The proof type to determine which verifier contract to use. * @param _parentStateRootHash The starting roothash for the last known block. **/ function _finalizeBlocks( BlockData[] calldata _blocksData, bytes memory _proof, uint256 _proofType, bytes32 _parentStateRootHash, bool _shouldProve ) private { uint256 currentBlockNumberTemp = currentL2BlockNumber; uint256 firstBlockNumber = currentBlockNumberTemp + 1; uint256[] memory timestamps = new uint256[](_blocksData.length); bytes32[] memory blockHashes = new bytes32[](_blocksData.length); bytes32[] memory hashOfRootHashes = new bytes32[](_blocksData.length + 1); hashOfRootHashes[0] = _parentStateRootHash; bytes32 hashOfTxHashes; bytes32 hashOfMessageHashes; for (uint256 i; i < _blocksData.length; ) { BlockData calldata blockInfo = _blocksData[i]; if (blockInfo.l2BlockTimestamp >= block.timestamp) { revert BlockTimestampError(); } hashOfTxHashes = _processBlockTransactions(blockInfo.transactions, blockInfo.batchReceptionIndices); hashOfMessageHashes = _processMessageHashes(blockInfo.l2ToL1MsgHashes); ++currentBlockNumberTemp; blockHashes[i] = keccak256( abi.encodePacked( hashOfTxHashes, hashOfMessageHashes, keccak256(abi.encodePacked(blockInfo.batchReceptionIndices)), keccak256(blockInfo.fromAddresses) ) ); timestamps[i] = blockInfo.l2BlockTimestamp; hashOfRootHashes[i + 1] = blockInfo.blockRootHash; emit BlockFinalized(currentBlockNumberTemp, blockInfo.blockRootHash); unchecked { i++; } } stateRootHashes[currentBlockNumberTemp] = _blocksData[_blocksData.length - 1].blockRootHash; currentTimestamp = _blocksData[_blocksData.length - 1].l2BlockTimestamp; currentL2BlockNumber = currentBlockNumberTemp; if (_shouldProve) { _verifyProof( uint256( keccak256( abi.encode( keccak256(abi.encodePacked(blockHashes)), firstBlockNumber, keccak256(abi.encodePacked(timestamps)), keccak256(abi.encodePacked(hashOfRootHashes)) ) ) ) % MODULO_R, _proofType, _proof, _parentStateRootHash ); } } /** * @notice Hashes all transactions individually and then hashes the packed hash array. * @dev Updates the outbox status on L1 as received. * @param _transactions The transactions in a particular block. * @param _batchReceptionIndices The indexes where the transaction type is the L1->L2 achoring message hashes transaction. **/ function _processBlockTransactions( bytes[] calldata _transactions, uint16[] calldata _batchReceptionIndices ) internal returns (bytes32 hashOfTxHashes) { bytes32[] memory transactionHashes = new bytes32[](_transactions.length); if (_transactions.length == 0) { revert EmptyBlock(); } for (uint256 i; i < _batchReceptionIndices.length; ) { _updateL1L2MessageStatusToReceived( TransactionDecoder.decodeTransaction(_transactions[_batchReceptionIndices[i]])._extractXDomainAddHashes() ); unchecked { i++; } } for (uint256 i; i < _transactions.length; ) { transactionHashes[i] = keccak256(_transactions[i]); unchecked { i++; } } hashOfTxHashes = keccak256(abi.encodePacked(transactionHashes)); } /** * @notice Anchors message hashes and hashes the packed hash array. * @dev Also adds L2->L1 sent message hashes for later claiming. * @param _messageHashes The hashes in the message sent event logs. **/ function _processMessageHashes(bytes32[] calldata _messageHashes) internal returns (bytes32 hashOfLogHashes) { for (uint256 i; i < _messageHashes.length; ) { _addL2L1MessageHash(_messageHashes[i]); unchecked { i++; } } hashOfLogHashes = keccak256(abi.encodePacked(_messageHashes)); } /** * @notice Verifies the proof with locally computed public inputs. * @dev If the verifier based on proof type is not found, it reverts with InvalidProofType. * @param _publicInputHash The full BlockData collection - block, transaction and log data. * @param _proofType The proof type to determine which verifier contract to use. * @param _proof The proof to be verified with the proof type verifier contract. * @param _parentStateRootHash The beginning roothash to start with. **/ function _verifyProof( uint256 _publicInputHash, uint256 _proofType, bytes memory _proof, bytes32 _parentStateRootHash ) private { uint256[] memory input = new uint256[](1); input[0] = _publicInputHash; address verifierToUse = verifiers[_proofType]; if (verifierToUse == address(0)) { revert InvalidProofType(); } bool success = IPlonkVerifier(verifierToUse).Verify(_proof, input); if (!success) { revert InvalidProof(); } emit BlocksVerificationDone(currentL2BlockNumber, _parentStateRootHash, stateRootHashes[currentL2BlockNumber]); } }
File 3 of 3: PlonkVerifierFull
// SPDX-License-Identifier: Apache-2.0 // Copyright 2023 Consensys Software Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Code generated by gnark DO NOT EDIT pragma solidity ^0.8.19; import { Utils } from "./Utils.sol"; contract PlonkVerifierFull { using Utils for *; uint256 private constant r_mod = 21888242871839275222246405745257275088548364400416034343698204186575808495617; uint256 private constant p_mod = 21888242871839275222246405745257275088696311157297823662689037894645226208583; uint256 private constant g2_srs_0_x_0 = 11559732032986387107991004021392285783925812861821192530917403151452391805634; uint256 private constant g2_srs_0_x_1 = 10857046999023057135944570762232829481370756359578518086990519993285655852781; uint256 private constant g2_srs_0_y_0 = 4082367875863433681332203403145435568316851327593401208105741076214120093531; uint256 private constant g2_srs_0_y_1 = 8495653923123431417604973247489272438418190587263600148770280649306958101930; uint256 private constant g2_srs_1_x_0 = 15805639136721018565402881920352193254830339253282065586954346329754995870280; uint256 private constant g2_srs_1_x_1 = 19089565590083334368588890253123139704298730990782503769911324779715431555531; uint256 private constant g2_srs_1_y_0 = 9779648407879205346559610309258181044130619080926897934572699915909528404984; uint256 private constant g2_srs_1_y_1 = 6779728121489434657638426458390319301070371227460768374343986326751507916979; // ----------------------- vk --------------------- uint256 private constant vk_domain_size = 67108864; uint256 private constant vk_inv_domain_size = 21888242545679039938882419398440172875981108180010270949818755658014750055173; uint256 private constant vk_omega = 7419588552507395652481651088034484897579724952953562618697845598160172257810; uint256 private constant vk_ql_com_x = 13525709715452455298954926042894212564628036321399789360566793694715937771352; uint256 private constant vk_ql_com_y = 16585249180591675138941559203780511979245575412908714775636958360987383792239; uint256 private constant vk_qr_com_x = 14148572045886251945792876173080813556116314088794324579574660284762914941669; uint256 private constant vk_qr_com_y = 13842239550691491428464191545817225601597189810026701643462638680503957744889; uint256 private constant vk_qm_com_x = 13522897959955119652865784834835976361490133655994054434262671514193248404625; uint256 private constant vk_qm_com_y = 13493447428329441420851370602159948706574248532218034239617820929323277518001; uint256 private constant vk_qo_com_x = 7060690164887603180822709561299613895672597716510049606680499562908505132709; uint256 private constant vk_qo_com_y = 17132453280808170663140286188647213203791535181032438058770464109374337899153; uint256 private constant vk_qk_com_x = 15216401052757890774219228156239863879308845760439647233724618177408901913570; uint256 private constant vk_qk_com_y = 12451956943068853170449619051211352834650857556519559497734074793907719431916; uint256 private constant vk_s1_com_x = 14256405778767051587276133608837021203518255961898101394303537378002866419040; uint256 private constant vk_s1_com_y = 21038700968212297875313747694611083193187035592187569106720411730639905255252; uint256 private constant vk_s2_com_x = 1019109700203543492729048562641359612628812305695299058467746496950485325794; uint256 private constant vk_s2_com_y = 490278430319379230242443848913755358662702057338304277498471180434097991836; uint256 private constant vk_s3_com_x = 2969427075258365849777260383285616082152301055041585820485498518017437026548; uint256 private constant vk_s3_com_y = 16099347285202727295431946911322450887583714417016216619148080599766330871066; uint256 private constant vk_coset_shift = 5; uint256 private constant vk_selector_commitments_commit_api_0_x = 21788360697493106829785246939901744021456836473452930837314992369057900122018; uint256 private constant vk_selector_commitments_commit_api_0_y = 16125341249761668633747631072985421243468892447965413965887015388783528206032; uint256 private constant vk_selector_commitments_commit_api_1_x = 9369801914206014217445122279591521815449013590744042826207321226401456655568; uint256 private constant vk_selector_commitments_commit_api_1_y = 20403534275150672051547282308343985824042675377185536764459718189767081861844; uint256 private constant vk_selector_commitments_commit_api_2_x = 15085855314213485493120090850643571722324905485327671636383375594981366630616; uint256 private constant vk_selector_commitments_commit_api_2_y = 9694401959517714837257605548316168182563966590362894961003011860886804708060; function load_vk_commitments_indices_commit_api(uint256[] memory v) internal pure { assembly { let _v := add(v, 0x20) mstore(_v, 22612113) _v := add(_v, 0x20) mstore(_v, 27501766) _v := add(_v, 0x20) mstore(_v, 60589135) _v := add(_v, 0x20) } } uint256 private constant vk_nb_commitments_commit_api = 3; // ------------------------------------------------ // offset proof uint256 private constant proof_l_com_x = 0x20; uint256 private constant proof_l_com_y = 0x40; uint256 private constant proof_r_com_x = 0x60; uint256 private constant proof_r_com_y = 0x80; uint256 private constant proof_o_com_x = 0xa0; uint256 private constant proof_o_com_y = 0xc0; // h = h_0 + x^{n+2}h_1 + x^{2(n+2)}h_2 uint256 private constant proof_h_0_x = 0xe0; uint256 private constant proof_h_0_y = 0x100; uint256 private constant proof_h_1_x = 0x120; uint256 private constant proof_h_1_y = 0x140; uint256 private constant proof_h_2_x = 0x160; uint256 private constant proof_h_2_y = 0x180; // wire values at zeta uint256 private constant proof_l_at_zeta = 0x1a0; uint256 private constant proof_r_at_zeta = 0x1c0; uint256 private constant proof_o_at_zeta = 0x1e0; //uint256[STATE_WIDTH-1] permutation_polynomials_at_zeta; // Sσ1(zeta),Sσ2(zeta) uint256 private constant proof_s1_at_zeta = 0x200; // Sσ1(zeta) uint256 private constant proof_s2_at_zeta = 0x220; // Sσ2(zeta) //Bn254.G1Point grand_product_commitment; // [z(x)] uint256 private constant proof_grand_product_commitment_x = 0x240; uint256 private constant proof_grand_product_commitment_y = 0x260; uint256 private constant proof_grand_product_at_zeta_omega = 0x280; // z(w*zeta) uint256 private constant proof_quotient_polynomial_at_zeta = 0x2a0; // t(zeta) uint256 private constant proof_linearised_polynomial_at_zeta = 0x2c0; // r(zeta) // Folded proof for the opening of H, linearised poly, l, r, o, s_1, s_2, qcp uint256 private constant proof_batch_opening_at_zeta_x = 0x2e0; // [Wzeta] uint256 private constant proof_batch_opening_at_zeta_y = 0x300; //Bn254.G1Point opening_at_zeta_omega_proof; // [Wzeta*omega] uint256 private constant proof_opening_at_zeta_omega_x = 0x320; uint256 private constant proof_opening_at_zeta_omega_y = 0x340; uint256 private constant proof_openings_selector_commit_api_at_zeta = 0x360; // -> next part of proof is // [ openings_selector_commits || commitments_wires_commit_api] // -------- offset state // challenges to check the claimed quotient uint256 private constant state_alpha = 0x00; uint256 private constant state_beta = 0x20; uint256 private constant state_gamma = 0x40; uint256 private constant state_zeta = 0x60; // reusable value uint256 private constant state_alpha_square_lagrange_0 = 0x80; // commitment to H uint256 private constant state_folded_h_x = 0xa0; uint256 private constant state_folded_h_y = 0xc0; // commitment to the linearised polynomial uint256 private constant state_linearised_polynomial_x = 0xe0; uint256 private constant state_linearised_polynomial_y = 0x100; // Folded proof for the opening of H, linearised poly, l, r, o, s_1, s_2, qcp uint256 private constant state_folded_claimed_values = 0x120; // folded digests of H, linearised poly, l, r, o, s_1, s_2, qcp // Bn254.G1Point folded_digests; uint256 private constant state_folded_digests_x = 0x140; uint256 private constant state_folded_digests_y = 0x160; uint256 private constant state_pi = 0x180; uint256 private constant state_zeta_power_n_minus_one = 0x1a0; uint256 private constant state_gamma_kzg = 0x1c0; uint256 private constant state_success = 0x1e0; uint256 private constant state_check_var = 0x200; // /!\\ this slot is used for debugging only uint256 private constant state_last_mem = 0x220; // -------- errors uint256 private constant error_string_id = 0x08c379a000000000000000000000000000000000000000000000000000000000; // selector for function Error(string) // read the commitments to the wires related to the commit api and store them in wire_commitments. // The commitments are points on Bn254(Fp) so they are stored on 2 uint256. function load_wire_commitments_commit_api(uint256[] memory wire_commitments, bytes memory proof) internal pure { assembly { let w := add(wire_commitments, 0x20) let p := add(proof, proof_openings_selector_commit_api_at_zeta) p := add(p, mul(vk_nb_commitments_commit_api, 0x20)) for { let i := 0 } lt(i, vk_nb_commitments_commit_api) { i := add(i, 1) } { // x coordinate mstore(w, mload(p)) w := add(w, 0x20) p := add(p, 0x20) // y coordinate mstore(w, mload(p)) w := add(w, 0x20) p := add(p, 0x20) } } } function derive_gamma_beta_alpha_zeta( bytes memory proof, uint256[] memory public_inputs ) internal view returns (uint256, uint256, uint256, uint256) { uint256 gamma; uint256 beta; uint256 alpha; uint256 zeta; assembly { let mem := mload(0x40) derive_gamma(proof, public_inputs) gamma := mload(mem) derive_beta(proof, gamma) beta := mload(mem) derive_alpha(proof, beta) alpha := mload(mem) derive_zeta(proof, alpha) zeta := mload(mem) gamma := mod(gamma, r_mod) beta := mod(beta, r_mod) alpha := mod(alpha, r_mod) zeta := mod(zeta, r_mod) function error_sha2_256() { let ptError := mload(0x40) mstore(ptError, error_string_id) // selector for function Error(string) mstore(add(ptError, 0x4), 0x20) mstore(add(ptError, 0x24), 0x19) mstore(add(ptError, 0x44), "error staticcall sha2-256") revert(ptError, 0x64) } // Derive gamma as Sha256(<transcript>) // where transcript is the concatenation (in this order) of: // * the word "gamma" in ascii, equal to [0x67,0x61,0x6d, 0x6d, 0x61] and encoded as a uint256. // * the commitments to the permutation polynomials S1, S2, S3, where we concatenate the coordinates of those points // * the commitments of Ql, Qr, Qm, Qo, Qk // * the public inputs // * the commitments of the wires related to the custom gates (commitments_wires_commit_api) // * commitments to L, R, O (proof_<l,r,o>_com_<x,y>) // The data described above is written starting at mPtr. "gamma" lies on 5 bytes, // and is encoded as a uint256 number n. In basis b = 256, the number looks like this // [0 0 0 .. 0x67 0x61 0x6d, 0x6d, 0x61]. The first non zero entry is at position 27=0x1b function derive_gamma(aproof, pub_inputs) { let mPtr := mload(0x40) // gamma // gamma in ascii is [0x67,0x61,0x6d, 0x6d, 0x61] // (same for alpha, beta, zeta) mstore(mPtr, 0x67616d6d61) // "gamma" mstore(add(mPtr, 0x20), vk_s1_com_x) mstore(add(mPtr, 0x40), vk_s1_com_y) mstore(add(mPtr, 0x60), vk_s2_com_x) mstore(add(mPtr, 0x80), vk_s2_com_y) mstore(add(mPtr, 0xa0), vk_s3_com_x) mstore(add(mPtr, 0xc0), vk_s3_com_y) mstore(add(mPtr, 0xe0), vk_ql_com_x) mstore(add(mPtr, 0x100), vk_ql_com_y) mstore(add(mPtr, 0x120), vk_qr_com_x) mstore(add(mPtr, 0x140), vk_qr_com_y) mstore(add(mPtr, 0x160), vk_qm_com_x) mstore(add(mPtr, 0x180), vk_qm_com_y) mstore(add(mPtr, 0x1a0), vk_qo_com_x) mstore(add(mPtr, 0x1c0), vk_qo_com_y) mstore(add(mPtr, 0x1e0), vk_qk_com_x) mstore(add(mPtr, 0x200), vk_qk_com_y) let pi := add(pub_inputs, 0x20) let _mPtr := add(mPtr, 0x220) for { let i := 0 } lt(i, mload(pub_inputs)) { i := add(i, 1) } { mstore(_mPtr, mload(pi)) pi := add(pi, 0x20) _mPtr := add(_mPtr, 0x20) } let _proof := add(aproof, proof_openings_selector_commit_api_at_zeta) _proof := add(_proof, mul(vk_nb_commitments_commit_api, 0x20)) for { let i := 0 } lt(i, vk_nb_commitments_commit_api) { i := add(i, 1) } { mstore(_mPtr, mload(_proof)) mstore(add(_mPtr, 0x20), mload(add(_proof, 0x20))) _mPtr := add(_mPtr, 0x40) _proof := add(_proof, 0x40) } mstore(_mPtr, mload(add(aproof, proof_l_com_x))) mstore(add(_mPtr, 0x20), mload(add(aproof, proof_l_com_y))) mstore(add(_mPtr, 0x40), mload(add(aproof, proof_r_com_x))) mstore(add(_mPtr, 0x60), mload(add(aproof, proof_r_com_y))) mstore(add(_mPtr, 0x80), mload(add(aproof, proof_o_com_x))) mstore(add(_mPtr, 0xa0), mload(add(aproof, proof_o_com_y))) let size := add(0x2c5, mul(mload(pub_inputs), 0x20)) // 0x2c5 = 22*32+5 size := add(size, mul(vk_nb_commitments_commit_api, 0x40)) let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1b), size, mPtr, 0x20) //0x1b -> 000.."gamma" if eq(success, 0) { error_sha2_256() } } function derive_beta(aproof, prev_challenge) { let mPtr := mload(0x40) // beta mstore(mPtr, 0x62657461) // "beta" mstore(add(mPtr, 0x20), prev_challenge) let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1c), 0x24, mPtr, 0x20) //0x1b -> 000.."gamma" if eq(success, 0) { error_sha2_256() } } // alpha depends on the previous challenge (beta) and on the commitment to the grand product polynomial function derive_alpha(aproof, prev_challenge) { let mPtr := mload(0x40) // alpha mstore(mPtr, 0x616C706861) // "alpha" mstore(add(mPtr, 0x20), prev_challenge) mstore(add(mPtr, 0x40), mload(add(aproof, proof_grand_product_commitment_x))) mstore(add(mPtr, 0x60), mload(add(aproof, proof_grand_product_commitment_y))) let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1b), 0x65, mPtr, 0x20) //0x1b -> 000.."gamma" if eq(success, 0) { error_sha2_256() } } // zeta depends on the previous challenge (alpha) and on the commitment to the quotient polynomial function derive_zeta(aproof, prev_challenge) { let mPtr := mload(0x40) // zeta mstore(mPtr, 0x7a657461) // "zeta" mstore(add(mPtr, 0x20), prev_challenge) mstore(add(mPtr, 0x40), mload(add(aproof, proof_h_0_x))) mstore(add(mPtr, 0x60), mload(add(aproof, proof_h_0_y))) mstore(add(mPtr, 0x80), mload(add(aproof, proof_h_1_x))) mstore(add(mPtr, 0xa0), mload(add(aproof, proof_h_1_y))) mstore(add(mPtr, 0xc0), mload(add(aproof, proof_h_2_x))) mstore(add(mPtr, 0xe0), mload(add(aproof, proof_h_2_y))) let success := staticcall(sub(gas(), 2000), 0x2, add(mPtr, 0x1c), 0xe4, mPtr, 0x20) if eq(success, 0) { error_sha2_256() } } } return (gamma, beta, alpha, zeta); } // Computes L_i(zeta) = ωⁱ/n * (ζⁿ-1)/(ζ-ωⁱ) where: // * n = vk_domain_size // * ω = vk_omega (generator of the multiplicative cyclic group of order n in (ℤ/rℤ)*) // * ζ = zeta (challenge derived with Fiat Shamir) function compute_ith_lagrange_at_z(uint256 zeta, uint256 i) internal view returns (uint256) { uint256 res; assembly { function error_pow_local() { let ptError := mload(0x40) mstore(ptError, error_string_id) mstore(add(ptError, 0x4), 0x20) mstore(add(ptError, 0x24), 0x17) mstore(add(ptError, 0x44), "error staticcall modexp") revert(ptError, 0x64) } // _n^_i [r] function pow_local(x, e) -> result { let mPtr := mload(0x40) mstore(mPtr, 0x20) mstore(add(mPtr, 0x20), 0x20) mstore(add(mPtr, 0x40), 0x20) mstore(add(mPtr, 0x60), x) mstore(add(mPtr, 0x80), e) mstore(add(mPtr, 0xa0), r_mod) let success := staticcall(sub(gas(), 2000), 0x05, mPtr, 0xc0, 0x00, 0x20) if eq(success, 0) { error_pow_local() } result := mload(0x00) } let w := pow_local(vk_omega, i) // w**i i := addmod(zeta, sub(r_mod, w), r_mod) // z-w**i zeta := pow_local(zeta, vk_domain_size) // z**n zeta := addmod(zeta, sub(r_mod, 1), r_mod) // z**n-1 w := mulmod(w, vk_inv_domain_size, r_mod) // w**i/n i := pow_local(i, sub(r_mod, 2)) // (z-w**i)**-1 w := mulmod(w, i, r_mod) // w**i/n*(z-w)**-1 res := mulmod(w, zeta, r_mod) } return res; } function compute_pi( uint256[] memory public_inputs, uint256 zeta, bytes memory proof ) internal view returns (uint256) { // evaluation of Z=Xⁿ⁻¹ at ζ // uint256 zeta_power_n_minus_one = Fr.pow(zeta, vk_domain_size); // zeta_power_n_minus_one = Fr.sub(zeta_power_n_minus_one, 1); uint256 zeta_power_n_minus_one; uint256 pi; assembly { function error_pow() { let ptError := mload(0x40) mstore(ptError, error_string_id) // selector for function Error(string) mstore(add(ptError, 0x4), 0x20) mstore(add(ptError, 0x24), 0x17) mstore(add(ptError, 0x44), "error staticcall modexp") revert(ptError, 0x64) } sum_pi_wo_api_commit(add(public_inputs, 0x20), mload(public_inputs), zeta) pi := mload(mload(0x40)) function sum_pi_wo_api_commit(ins, n, z) { let li := mload(0x40) batch_compute_lagranges_at_z(z, n, li) let res := 0 let tmp := 0 for { let i := 0 } lt(i, n) { i := add(i, 1) } { tmp := mulmod(mload(li), mload(ins), r_mod) res := addmod(res, tmp, r_mod) li := add(li, 0x20) ins := add(ins, 0x20) } mstore(mload(0x40), res) } // mPtr <- [L_0(z), .., L_{n-1}(z)] // // Here L_i(zeta) = ωⁱ/n * (ζⁿ-1)/(ζ-ωⁱ) where: // * n = vk_domain_size // * ω = vk_omega (generator of the multiplicative cyclic group of order n in (ℤ/rℤ)*) // * ζ = zeta (challenge derived with Fiat Shamir) function batch_compute_lagranges_at_z(z, n, mPtr) { let zn := addmod(pow(z, vk_domain_size, mPtr), sub(r_mod, 1), r_mod) zn := mulmod(zn, vk_inv_domain_size, r_mod) let _w := 1 let _mPtr := mPtr for { let i := 0 } lt(i, n) { i := add(i, 1) } { mstore(_mPtr, addmod(z, sub(r_mod, _w), r_mod)) _w := mulmod(_w, vk_omega, r_mod) _mPtr := add(_mPtr, 0x20) } batch_invert(mPtr, n, _mPtr) _mPtr := mPtr _w := 1 for { let i := 0 } lt(i, n) { i := add(i, 1) } { mstore(_mPtr, mulmod(mulmod(mload(_mPtr), zn, r_mod), _w, r_mod)) _mPtr := add(_mPtr, 0x20) _w := mulmod(_w, vk_omega, r_mod) } } // batch invert (modulo r) in place the nb_ins uint256 inputs starting at ins. function batch_invert(ins, nb_ins, mPtr) { mstore(mPtr, 1) let offset := 0 for { let i := 0 } lt(i, nb_ins) { i := add(i, 1) } { let prev := mload(add(mPtr, offset)) let cur := mload(add(ins, offset)) cur := mulmod(prev, cur, r_mod) offset := add(offset, 0x20) mstore(add(mPtr, offset), cur) } ins := add(ins, sub(offset, 0x20)) mPtr := add(mPtr, offset) let inv := pow(mload(mPtr), sub(r_mod, 2), add(mPtr, 0x20)) for { let i := 0 } lt(i, nb_ins) { i := add(i, 1) } { mPtr := sub(mPtr, 0x20) let tmp := mload(ins) let cur := mulmod(inv, mload(mPtr), r_mod) mstore(ins, cur) inv := mulmod(inv, tmp, r_mod) ins := sub(ins, 0x20) } } // res <- x^e mod r function pow(x, e, mPtr) -> res { mstore(mPtr, 0x20) mstore(add(mPtr, 0x20), 0x20) mstore(add(mPtr, 0x40), 0x20) mstore(add(mPtr, 0x60), x) mstore(add(mPtr, 0x80), e) mstore(add(mPtr, 0xa0), r_mod) let success := staticcall(sub(gas(), 2000), 0x05, mPtr, 0xc0, mPtr, 0x20) if eq(success, 0) { error_pow() } res := mload(mPtr) } zeta_power_n_minus_one := pow(zeta, vk_domain_size, mload(0x40)) zeta_power_n_minus_one := addmod(zeta_power_n_minus_one, sub(r_mod, 1), r_mod) } // compute the contribution of the public inputs whose indices are in commitment_indices, // and whose value is hash_fr of the corresponding commitme uint256[] memory commitment_indices = new uint256[](vk_nb_commitments_commit_api); load_vk_commitments_indices_commit_api(commitment_indices); uint256[] memory wire_committed_commitments; wire_committed_commitments = new uint256[](2 * vk_nb_commitments_commit_api); load_wire_commitments_commit_api(wire_committed_commitments, proof); for (uint256 i = 0; i < vk_nb_commitments_commit_api; i++) { uint256 hash_res = Utils.hash_fr(wire_committed_commitments[2 * i], wire_committed_commitments[2 * i + 1]); uint256 a = compute_ith_lagrange_at_z(zeta, commitment_indices[i] + public_inputs.length); assembly { a := mulmod(hash_res, a, r_mod) pi := addmod(pi, a, r_mod) } } return pi; } function check_inputs_size(uint256[] memory public_inputs) internal pure { bool input_checks = true; assembly { let s := mload(public_inputs) let p := add(public_inputs, 0x20) for { let i } lt(i, s) { i := add(i, 1) } { input_checks := and(input_checks, lt(mload(p), r_mod)) p := add(p, 0x20) } } require(input_checks, "some inputs are bigger than r"); } function check_proof_size(bytes memory proof) internal pure { uint256 expected_proof_size = 0x340 + vk_nb_commitments_commit_api * 0x60; uint256 actual_proof_size; assembly { actual_proof_size := mload(proof) } require(actual_proof_size == expected_proof_size, "wrong proof size"); } function check_proof_openings_size(bytes memory proof) internal pure { bool openings_check = true; assembly { // linearised polynomial at zeta let p := add(proof, proof_linearised_polynomial_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // quotient polynomial at zeta p := add(proof, proof_quotient_polynomial_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_l_at_zeta p := add(proof, proof_l_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_r_at_zeta p := add(proof, proof_r_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_o_at_zeta p := add(proof, proof_o_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_s1_at_zeta p := add(proof, proof_s1_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_s2_at_zeta p := add(proof, proof_s2_at_zeta) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_grand_product_at_zeta_omega p := add(proof, proof_grand_product_at_zeta_omega) openings_check := and(openings_check, lt(mload(p), r_mod)) // proof_openings_selector_commit_api_at_zeta p := add(proof, proof_openings_selector_commit_api_at_zeta) for { let i := 0 } lt(i, vk_nb_commitments_commit_api) { i := add(i, 1) } { openings_check := and(openings_check, lt(mload(p), r_mod)) p := add(p, 0x20) } } require(openings_check, "some openings are bigger than r"); } function Verify(bytes memory proof, uint256[] memory public_inputs) public view returns (bool) { check_inputs_size(public_inputs); check_proof_size(proof); check_proof_openings_size(proof); uint256 gamma; uint256 beta; uint256 alpha; uint256 zeta; (gamma, beta, alpha, zeta) = derive_gamma_beta_alpha_zeta(proof, public_inputs); uint256 pi = compute_pi(public_inputs, zeta, proof); uint256 check; bool success = false; // uint256 success; assembly { let mem := mload(0x40) mstore(add(mem, state_alpha), alpha) mstore(add(mem, state_gamma), gamma) mstore(add(mem, state_zeta), zeta) mstore(add(mem, state_beta), beta) mstore(add(mem, state_pi), pi) compute_alpha_square_lagrange_0() verify_quotient_poly_eval_at_zeta(proof) fold_h(proof) compute_commitment_linearised_polynomial(proof) compute_gamma_kzg(proof) fold_state(proof) batch_verify_multi_points(proof) success := mload(add(mem, state_success)) check := mload(add(mem, state_check_var)) function error_verify() { let ptError := mload(0x40) mstore(ptError, error_string_id) // selector for function Error(string) mstore(add(ptError, 0x4), 0x20) mstore(add(ptError, 0x24), 0xc) mstore(add(ptError, 0x44), "error verify") revert(ptError, 0x64) } // compute α² * 1/n * (ζ{n}-1)/(ζ - 1) where // * α = challenge derived in derive_gamma_beta_alpha_zeta // * n = vk_domain_size // * ω = vk_omega (generator of the multiplicative cyclic group of order n in (ℤ/rℤ)*) // * ζ = zeta (challenge derived with Fiat Shamir) function compute_alpha_square_lagrange_0() { let state := mload(0x40) let mPtr := add(mload(0x40), state_last_mem) // zeta**n - 1 let res := pow(mload(add(state, state_zeta)), vk_domain_size, mPtr) res := addmod(res, sub(r_mod, 1), r_mod) mstore(add(state, state_zeta_power_n_minus_one), res) // let res := mload(add(state, state_zeta_power_n_minus_one)) let den := addmod(mload(add(state, state_zeta)), sub(r_mod, 1), r_mod) den := pow(den, sub(r_mod, 2), mPtr) den := mulmod(den, vk_inv_domain_size, r_mod) res := mulmod(den, res, r_mod) let l_alpha := mload(add(state, state_alpha)) res := mulmod(res, l_alpha, r_mod) res := mulmod(res, l_alpha, r_mod) mstore(add(state, state_alpha_square_lagrange_0), res) } // follows alg. p.13 of https://eprint.iacr.org/2019/953.pdf // with t₁ = t₂ = 1, and the proofs are ([digest] + [quotient] +purported evaluation): // * [state_folded_state_digests], [proof_batch_opening_at_zeta_x], state_folded_evals // * [proof_grand_product_commitment], [proof_opening_at_zeta_omega_x], [proof_grand_product_at_zeta_omega] function batch_verify_multi_points(aproof) { let state := mload(0x40) let mPtr := add(state, state_last_mem) // here the random is not a challenge, hence no need to use Fiat Shamir, we just // need an unpredictible result. let random := mod(keccak256(state, 0x20), r_mod) let folded_quotients := mPtr mPtr := add(folded_quotients, 0x40) mstore(folded_quotients, mload(add(aproof, proof_batch_opening_at_zeta_x))) mstore(add(folded_quotients, 0x20), mload(add(aproof, proof_batch_opening_at_zeta_y))) point_acc_mul(folded_quotients, add(aproof, proof_opening_at_zeta_omega_x), random, mPtr) let folded_digests := add(state, state_folded_digests_x) point_acc_mul(folded_digests, add(aproof, proof_grand_product_commitment_x), random, mPtr) let folded_evals := add(state, state_folded_claimed_values) fr_acc_mul(folded_evals, add(aproof, proof_grand_product_at_zeta_omega), random) let folded_evals_commit := mPtr mPtr := add(folded_evals_commit, 0x40) mstore(folded_evals_commit, 14312776538779914388377568895031746459131577658076416373430523308756343304251) mstore( add(folded_evals_commit, 0x20), 11763105256161367503191792604679297387056316997144156930871823008787082098465 ) mstore(add(folded_evals_commit, 0x40), mload(folded_evals)) let check_staticcall := staticcall(sub(gas(), 2000), 7, folded_evals_commit, 0x60, folded_evals_commit, 0x40) if eq(check_staticcall, 0) { error_verify() } let folded_evals_commit_y := add(folded_evals_commit, 0x20) mstore(folded_evals_commit_y, sub(p_mod, mload(folded_evals_commit_y))) point_add(folded_digests, folded_digests, folded_evals_commit, mPtr) let folded_points_quotients := mPtr mPtr := add(mPtr, 0x40) point_mul( folded_points_quotients, add(aproof, proof_batch_opening_at_zeta_x), mload(add(state, state_zeta)), mPtr ) let zeta_omega := mulmod(mload(add(state, state_zeta)), vk_omega, r_mod) random := mulmod(random, zeta_omega, r_mod) point_acc_mul(folded_points_quotients, add(aproof, proof_opening_at_zeta_omega_x), random, mPtr) point_add(folded_digests, folded_digests, folded_points_quotients, mPtr) let folded_quotients_y := add(folded_quotients, 0x20) mstore(folded_quotients_y, sub(p_mod, mload(folded_quotients_y))) mstore(mPtr, mload(folded_digests)) mstore(add(mPtr, 0x20), mload(add(folded_digests, 0x20))) mstore(add(mPtr, 0x40), g2_srs_0_x_0) // the 4 lines are the canonical G2 point on BN254 mstore(add(mPtr, 0x60), g2_srs_0_x_1) mstore(add(mPtr, 0x80), g2_srs_0_y_0) mstore(add(mPtr, 0xa0), g2_srs_0_y_1) mstore(add(mPtr, 0xc0), mload(folded_quotients)) mstore(add(mPtr, 0xe0), mload(add(folded_quotients, 0x20))) mstore(add(mPtr, 0x100), g2_srs_1_x_0) mstore(add(mPtr, 0x120), g2_srs_1_x_1) mstore(add(mPtr, 0x140), g2_srs_1_y_0) mstore(add(mPtr, 0x160), g2_srs_1_y_1) check_pairing_kzg(mPtr) } // check_pairing_kzg checks the result of the final pairing product of the batched // kzg verification. The purpose of this function is too avoid exhausting the stack // in the function batch_verify_multi_points. // mPtr: pointer storing the tuple of pairs function check_pairing_kzg(mPtr) { let state := mload(0x40) // TODO test the staticcall using the method from audit_4-5 let l_success := staticcall(sub(gas(), 2000), 8, mPtr, 0x180, 0x00, 0x20) let res_pairing := mload(0x00) let s_success := mload(add(state, state_success)) res_pairing := and(and(res_pairing, l_success), s_success) mstore(add(state, state_success), res_pairing) } // Fold the opening proofs at ζ: // * at state+state_folded_digest we store: [H] + γ[Linearised_polynomial]+γ²[L] + γ³[R] + γ⁴[O] + γ⁵[S₁] +γ⁶[S₂] + ∑ᵢγ⁶⁺ⁱ[Pi_{i}] // * at state+state_folded_claimed_values we store: H(ζ) + γLinearised_polynomial(ζ)+γ²L(ζ) + γ³R(ζ)+ γ⁴O(ζ) + γ⁵S₁(ζ) +γ⁶S₂(ζ) + ∑ᵢγ⁶⁺ⁱPi_{i}(ζ) // acc_gamma stores the γⁱ function fold_state(aproof) { let state := mload(0x40) let mPtr := add(mload(0x40), state_last_mem) let l_gamma_kzg := mload(add(state, state_gamma_kzg)) let acc_gamma := l_gamma_kzg let offset := add(0x200, mul(vk_nb_commitments_commit_api, 0x40)) // 0x40 = 2*0x20 let mPtrOffset := add(mPtr, offset) mstore(add(state, state_folded_digests_x), mload(add(mPtr, 0x40))) mstore(add(state, state_folded_digests_y), mload(add(mPtr, 0x60))) mstore(add(state, state_folded_claimed_values), mload(add(aproof, proof_quotient_polynomial_at_zeta))) point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x80), acc_gamma, mPtrOffset) fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_linearised_polynomial_at_zeta), acc_gamma) mstore(add(state, state_check_var), acc_gamma) acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod) point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0xc0), acc_gamma, mPtrOffset) fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_l_at_zeta), acc_gamma) acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod) point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x100), acc_gamma, add(mPtr, offset)) fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_r_at_zeta), acc_gamma) acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod) point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x140), acc_gamma, add(mPtr, offset)) fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_o_at_zeta), acc_gamma) acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod) point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x180), acc_gamma, add(mPtr, offset)) fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_s1_at_zeta), acc_gamma) acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod) point_acc_mul(add(state, state_folded_digests_x), add(mPtr, 0x1c0), acc_gamma, add(mPtr, offset)) fr_acc_mul(add(state, state_folded_claimed_values), add(aproof, proof_s2_at_zeta), acc_gamma) let poscaz := add(aproof, proof_openings_selector_commit_api_at_zeta) let opca := add(mPtr, 0x200) // offset_proof_commits_api for { let i := 0 } lt(i, vk_nb_commitments_commit_api) { i := add(i, 1) } { acc_gamma := mulmod(acc_gamma, l_gamma_kzg, r_mod) point_acc_mul(add(state, state_folded_digests_x), opca, acc_gamma, add(mPtr, offset)) fr_acc_mul(add(state, state_folded_claimed_values), poscaz, acc_gamma) poscaz := add(poscaz, 0x20) opca := add(opca, 0x40) } } // generate the challenge (using Fiat Shamir) to fold the opening proofs // at ζ. // The process for deriving γ is the same as in derive_gamma but this time the inputs are // in this order (the [] means it's a commitment): // * ζ // * [H] ( = H₁ + ζᵐ⁺²*H₂ + ζ²⁽ᵐ⁺²⁾*H₃ ) // * [Linearised polynomial] // * [L], [R], [O] // * [S₁] [S₂] // * [Pi_{i}] (wires associated to custom gates) // Then there are the purported evaluations of the previous committed polynomials: // * H(ζ) // * Linearised_polynomial(ζ) // * L(ζ), R(ζ), O(ζ), S₁(ζ), S₂(ζ) // * Pi_{i}(ζ) function compute_gamma_kzg(aproof) { let state := mload(0x40) let mPtr := add(mload(0x40), state_last_mem) mstore(mPtr, 0x67616d6d61) // "gamma" mstore(add(mPtr, 0x20), mload(add(state, state_zeta))) mstore(add(mPtr, 0x40), mload(add(state, state_folded_h_x))) mstore(add(mPtr, 0x60), mload(add(state, state_folded_h_y))) mstore(add(mPtr, 0x80), mload(add(state, state_linearised_polynomial_x))) mstore(add(mPtr, 0xa0), mload(add(state, state_linearised_polynomial_y))) mstore(add(mPtr, 0xc0), mload(add(aproof, proof_l_com_x))) mstore(add(mPtr, 0xe0), mload(add(aproof, proof_l_com_y))) mstore(add(mPtr, 0x100), mload(add(aproof, proof_r_com_x))) mstore(add(mPtr, 0x120), mload(add(aproof, proof_r_com_y))) mstore(add(mPtr, 0x140), mload(add(aproof, proof_o_com_x))) mstore(add(mPtr, 0x160), mload(add(aproof, proof_o_com_y))) mstore(add(mPtr, 0x180), vk_s1_com_x) mstore(add(mPtr, 0x1a0), vk_s1_com_y) mstore(add(mPtr, 0x1c0), vk_s2_com_x) mstore(add(mPtr, 0x1e0), vk_s2_com_y) let offset := 0x200 mstore(add(mPtr, offset), vk_selector_commitments_commit_api_0_x) mstore(add(mPtr, add(offset, 0x20)), vk_selector_commitments_commit_api_0_y) offset := add(offset, 0x40) mstore(add(mPtr, offset), vk_selector_commitments_commit_api_1_x) mstore(add(mPtr, add(offset, 0x20)), vk_selector_commitments_commit_api_1_y) offset := add(offset, 0x40) mstore(add(mPtr, offset), vk_selector_commitments_commit_api_2_x) mstore(add(mPtr, add(offset, 0x20)), vk_selector_commitments_commit_api_2_y) offset := add(offset, 0x40) mstore(add(mPtr, offset), mload(add(aproof, proof_quotient_polynomial_at_zeta))) mstore(add(mPtr, add(offset, 0x20)), mload(add(aproof, proof_linearised_polynomial_at_zeta))) mstore(add(mPtr, add(offset, 0x40)), mload(add(aproof, proof_l_at_zeta))) mstore(add(mPtr, add(offset, 0x60)), mload(add(aproof, proof_r_at_zeta))) mstore(add(mPtr, add(offset, 0x80)), mload(add(aproof, proof_o_at_zeta))) mstore(add(mPtr, add(offset, 0xa0)), mload(add(aproof, proof_s1_at_zeta))) mstore(add(mPtr, add(offset, 0xc0)), mload(add(aproof, proof_s2_at_zeta))) let _mPtr := add(mPtr, add(offset, 0xe0)) let _poscaz := add(aproof, proof_openings_selector_commit_api_at_zeta) for { let i := 0 } lt(i, vk_nb_commitments_commit_api) { i := add(i, 1) } { mstore(_mPtr, mload(_poscaz)) _poscaz := add(_poscaz, 0x20) _mPtr := add(_mPtr, 0x20) } let start_input := 0x1b // 00.."gamma" let size_input := add(0x16, mul(vk_nb_commitments_commit_api, 3)) // number of 32bytes elmts = 0x16 (zeta+2*7+7 for the digests+openings) + 2*vk_nb_commitments_commit_api (for the commitments of the selectors) + vk_nb_commitments_commit_api (for the openings of the selectors) size_input := add(0x5, mul(size_input, 0x20)) // size in bytes: 15*32 bytes + 5 bytes for gamma let check_staticcall := staticcall( sub(gas(), 2000), 0x2, add(mPtr, start_input), size_input, add(state, state_gamma_kzg), 0x20 ) if eq(check_staticcall, 0) { error_verify() } mstore(add(state, state_gamma_kzg), mod(mload(add(state, state_gamma_kzg)), r_mod)) } function compute_commitment_linearised_polynomial_ec(aproof, s1, s2) { let state := mload(0x40) let mPtr := add(mload(0x40), state_last_mem) mstore(mPtr, vk_ql_com_x) mstore(add(mPtr, 0x20), vk_ql_com_y) point_mul(add(state, state_linearised_polynomial_x), mPtr, mload(add(aproof, proof_l_at_zeta)), add(mPtr, 0x40)) mstore(mPtr, vk_qr_com_x) mstore(add(mPtr, 0x20), vk_qr_com_y) point_acc_mul( add(state, state_linearised_polynomial_x), mPtr, mload(add(aproof, proof_r_at_zeta)), add(mPtr, 0x40) ) let rl := mulmod(mload(add(aproof, proof_l_at_zeta)), mload(add(aproof, proof_r_at_zeta)), r_mod) mstore(mPtr, vk_qm_com_x) mstore(add(mPtr, 0x20), vk_qm_com_y) point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, rl, add(mPtr, 0x40)) mstore(mPtr, vk_qo_com_x) mstore(add(mPtr, 0x20), vk_qo_com_y) point_acc_mul( add(state, state_linearised_polynomial_x), mPtr, mload(add(aproof, proof_o_at_zeta)), add(mPtr, 0x40) ) mstore(mPtr, vk_qk_com_x) mstore(add(mPtr, 0x20), vk_qk_com_y) point_add( add(state, state_linearised_polynomial_x), add(state, state_linearised_polynomial_x), mPtr, add(mPtr, 0x40) ) let commits_api_at_zeta := add(aproof, proof_openings_selector_commit_api_at_zeta) let commits_api := add( aproof, add(proof_openings_selector_commit_api_at_zeta, mul(vk_nb_commitments_commit_api, 0x20)) ) for { let i := 0 } lt(i, vk_nb_commitments_commit_api) { i := add(i, 1) } { mstore(mPtr, mload(commits_api)) mstore(add(mPtr, 0x20), mload(add(commits_api, 0x20))) point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, mload(commits_api_at_zeta), add(mPtr, 0x40)) commits_api_at_zeta := add(commits_api_at_zeta, 0x20) commits_api := add(commits_api, 0x40) } mstore(mPtr, vk_s3_com_x) mstore(add(mPtr, 0x20), vk_s3_com_y) point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, s1, add(mPtr, 0x40)) mstore(mPtr, mload(add(aproof, proof_grand_product_commitment_x))) mstore(add(mPtr, 0x20), mload(add(aproof, proof_grand_product_commitment_y))) point_acc_mul(add(state, state_linearised_polynomial_x), mPtr, s2, add(mPtr, 0x40)) } // Compute the commitment to the linearized polynomial equal to //\tL(ζ)[Qₗ]+r(ζ)[Qᵣ]+R(ζ)L(ζ)[Qₘ]+O(ζ)[Qₒ]+[Qₖ]+Σᵢqc'ᵢ(ζ)[BsbCommitmentᵢ] + //\tα*( Z(μζ)(L(ζ)+β*S₁(ζ)+γ)*(R(ζ)+β*S₂(ζ)+γ)[S₃]-[Z](L(ζ)+β*id_{1}(ζ)+γ)*(R(ζ)+β*id_{2(ζ)+γ)*(O(ζ)+β*id_{3}(ζ)+γ) ) + //\tα²*L₁(ζ)[Z] // where // * id_1 = id, id_2 = vk_coset_shift*id, id_3 = vk_coset_shift^{2}*id // * the [] means that it's a commitment (i.e. a point on Bn254(F_p)) function compute_commitment_linearised_polynomial(aproof) { let state := mload(0x40) let l_beta := mload(add(state, state_beta)) let l_gamma := mload(add(state, state_gamma)) let l_zeta := mload(add(state, state_zeta)) let l_alpha := mload(add(state, state_alpha)) let u := mulmod(mload(add(aproof, proof_grand_product_at_zeta_omega)), l_beta, r_mod) let v := mulmod(l_beta, mload(add(aproof, proof_s1_at_zeta)), r_mod) v := addmod(v, mload(add(aproof, proof_l_at_zeta)), r_mod) v := addmod(v, l_gamma, r_mod) let w := mulmod(l_beta, mload(add(aproof, proof_s2_at_zeta)), r_mod) w := addmod(w, mload(add(aproof, proof_r_at_zeta)), r_mod) w := addmod(w, l_gamma, r_mod) let s1 := mulmod(u, v, r_mod) s1 := mulmod(s1, w, r_mod) s1 := mulmod(s1, l_alpha, r_mod) let coset_square := mulmod(vk_coset_shift, vk_coset_shift, r_mod) let betazeta := mulmod(l_beta, l_zeta, r_mod) u := addmod(betazeta, mload(add(aproof, proof_l_at_zeta)), r_mod) u := addmod(u, l_gamma, r_mod) v := mulmod(betazeta, vk_coset_shift, r_mod) v := addmod(v, mload(add(aproof, proof_r_at_zeta)), r_mod) v := addmod(v, l_gamma, r_mod) w := mulmod(betazeta, coset_square, r_mod) w := addmod(w, mload(add(aproof, proof_o_at_zeta)), r_mod) w := addmod(w, l_gamma, r_mod) let s2 := mulmod(u, v, r_mod) s2 := mulmod(s2, w, r_mod) s2 := sub(r_mod, s2) s2 := mulmod(s2, l_alpha, r_mod) s2 := addmod(s2, mload(add(state, state_alpha_square_lagrange_0)), r_mod) // at this stage: // * s₁ = α*Z(μζ)(l(ζ)+β*s₁(ζ)+γ)*(r(ζ)+β*s₂(ζ)+γ)*β // * s₂ = -α*(l(ζ)+β*ζ+γ)*(r(ζ)+β*u*ζ+γ)*(o(ζ)+β*u²*ζ+γ) + α²*L₁(ζ) compute_commitment_linearised_polynomial_ec(aproof, s1, s2) } // compute H₁ + ζᵐ⁺²*H₂ + ζ²⁽ᵐ⁺²⁾*H₃ and store the result at // state + state_folded_h function fold_h(aproof) { let state := mload(0x40) let n_plus_two := add(vk_domain_size, 2) let mPtr := add(mload(0x40), state_last_mem) let zeta_power_n_plus_two := pow(mload(add(state, state_zeta)), n_plus_two, mPtr) point_mul(add(state, state_folded_h_x), add(aproof, proof_h_2_x), zeta_power_n_plus_two, mPtr) point_add(add(state, state_folded_h_x), add(state, state_folded_h_x), add(aproof, proof_h_1_x), mPtr) point_mul(add(state, state_folded_h_x), add(state, state_folded_h_x), zeta_power_n_plus_two, mPtr) point_add(add(state, state_folded_h_x), add(state, state_folded_h_x), add(aproof, proof_h_0_x), mPtr) } // check that //\tL(ζ)Qₗ(ζ)+r(ζ)Qᵣ(ζ)+R(ζ)L(ζ)Qₘ(ζ)+O(ζ)Qₒ(ζ)+Qₖ(ζ)+Σᵢqc'ᵢ(ζ)BsbCommitmentᵢ(ζ) + // α*( Z(μζ)(l(ζ)+β*s₁(ζ)+γ)*(r(ζ)+β*s₂(ζ)+γ)*β*s₃(X)-Z(X)(l(ζ)+β*id_1(ζ)+γ)*(r(ζ)+β*id_2(ζ)+γ)*(o(ζ)+β*id_3(ζ)+γ) ) ) // + α²*L₁(ζ) = // (ζⁿ-1)H(ζ) function verify_quotient_poly_eval_at_zeta(aproof) { let state := mload(0x40) // (l(ζ)+β*s1(ζ)+γ) let s1 := add(mload(0x40), state_last_mem) mstore(s1, mulmod(mload(add(aproof, proof_s1_at_zeta)), mload(add(state, state_beta)), r_mod)) mstore(s1, addmod(mload(s1), mload(add(state, state_gamma)), r_mod)) mstore(s1, addmod(mload(s1), mload(add(aproof, proof_l_at_zeta)), r_mod)) // (r(ζ)+β*s2(ζ)+γ) let s2 := add(s1, 0x20) mstore(s2, mulmod(mload(add(aproof, proof_s2_at_zeta)), mload(add(state, state_beta)), r_mod)) mstore(s2, addmod(mload(s2), mload(add(state, state_gamma)), r_mod)) mstore(s2, addmod(mload(s2), mload(add(aproof, proof_r_at_zeta)), r_mod)) // _s2 := mload(s2) // (o(ζ)+γ) let o := add(s1, 0x40) mstore(o, addmod(mload(add(aproof, proof_o_at_zeta)), mload(add(state, state_gamma)), r_mod)) // α*(Z(μζ))*(l(ζ)+β*s1(ζ)+γ)*(r(ζ)+β*s2(ζ)+γ)*(o(ζ)+γ) mstore(s1, mulmod(mload(s1), mload(s2), r_mod)) mstore(s1, mulmod(mload(s1), mload(o), r_mod)) mstore(s1, mulmod(mload(s1), mload(add(state, state_alpha)), r_mod)) mstore(s1, mulmod(mload(s1), mload(add(aproof, proof_grand_product_at_zeta_omega)), r_mod)) let computed_quotient := add(s1, 0x60) // linearizedpolynomial + pi(zeta) mstore( computed_quotient, addmod(mload(add(aproof, proof_linearised_polynomial_at_zeta)), mload(add(state, state_pi)), r_mod) ) mstore(computed_quotient, addmod(mload(computed_quotient), mload(s1), r_mod)) mstore( computed_quotient, addmod(mload(computed_quotient), sub(r_mod, mload(add(state, state_alpha_square_lagrange_0))), r_mod) ) mstore( s2, mulmod( mload(add(aproof, proof_quotient_polynomial_at_zeta)), mload(add(state, state_zeta_power_n_minus_one)), r_mod ) ) mstore(add(state, state_success), eq(mload(computed_quotient), mload(s2))) } function point_add(dst, p, q, mPtr) { // let mPtr := add(mload(0x40), state_last_mem) let state := mload(0x40) mstore(mPtr, mload(p)) mstore(add(mPtr, 0x20), mload(add(p, 0x20))) mstore(add(mPtr, 0x40), mload(q)) mstore(add(mPtr, 0x60), mload(add(q, 0x20))) let l_success := staticcall(sub(gas(), 2000), 6, mPtr, 0x80, dst, 0x40) mstore(add(state, state_success), and(l_success, mload(add(state, state_success)))) } // dst <- [s]src function point_mul(dst, src, s, mPtr) { // let mPtr := add(mload(0x40), state_last_mem) let state := mload(0x40) mstore(mPtr, mload(src)) mstore(add(mPtr, 0x20), mload(add(src, 0x20))) mstore(add(mPtr, 0x40), s) let l_success := staticcall(sub(gas(), 2000), 7, mPtr, 0x60, dst, 0x40) mstore(add(state, state_success), and(l_success, mload(add(state, state_success)))) } // dst <- dst + [s]src (Elliptic curve) function point_acc_mul(dst, src, s, mPtr) { let state := mload(0x40) mstore(mPtr, mload(src)) mstore(add(mPtr, 0x20), mload(add(src, 0x20))) mstore(add(mPtr, 0x40), s) let l_success := staticcall(sub(gas(), 2000), 7, mPtr, 0x60, mPtr, 0x40) mstore(add(mPtr, 0x40), mload(dst)) mstore(add(mPtr, 0x60), mload(add(dst, 0x20))) l_success := and(l_success, staticcall(sub(gas(), 2000), 6, mPtr, 0x80, dst, 0x40)) mstore(add(state, state_success), and(l_success, mload(add(state, state_success)))) } // dst <- dst + src (Fr) dst,src are addresses, s is a value function fr_acc_mul(dst, src, s) { let tmp := mulmod(mload(src), s, r_mod) mstore(dst, addmod(mload(dst), tmp, r_mod)) } // dst <- x ** e mod r (x, e are values, not pointers) function pow(x, e, mPtr) -> res { mstore(mPtr, 0x20) mstore(add(mPtr, 0x20), 0x20) mstore(add(mPtr, 0x40), 0x20) mstore(add(mPtr, 0x60), x) mstore(add(mPtr, 0x80), e) mstore(add(mPtr, 0xa0), r_mod) let check_staticcall := staticcall(sub(gas(), 2000), 0x05, mPtr, 0xc0, mPtr, 0x20) if eq(check_staticcall, 0) { error_verify() } res := mload(mPtr) } } return success; } } // SPDX-License-Identifier: AGPL-3.0 // It has not been audited and is provided as-is, we make no guarantees or warranties to its safety and reliability. // // According to https://eprint.iacr.org/archive/2019/953/1585767119.pdf pragma solidity ^0.8.19; library Utils { uint256 private constant r_mod = 21888242871839275222246405745257275088548364400416034343698204186575808495617; /** * @dev ExpandMsgXmd expands msg to a slice of lenInBytes bytes. * https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06#section-5 * https://tools.ietf.org/html/rfc8017#section-4.1 (I2OSP/O2ISP) */ function expand_msg(uint256 x, uint256 y) public pure returns (uint8[48] memory res) { string memory dst = "BSB22-Plonk"; //uint8[64] memory pad; // 64 is sha256 block size. // sha256(pad || msg || (0 || 48 || 0) || dst || 11) bytes memory tmp; uint8 zero = 0; uint8 lenInBytes = 48; uint8 sizeDomain = 11; // size of dst for (uint i = 0; i < 64; i++) { tmp = abi.encodePacked(tmp, zero); } tmp = abi.encodePacked(tmp, x, y, zero, lenInBytes, zero, dst, sizeDomain); bytes32 b0 = sha256(tmp); tmp = abi.encodePacked(b0, uint8(1), dst, sizeDomain); bytes32 b1 = sha256(tmp); for (uint i = 0; i < 32; i++) { res[i] = uint8(b1[i]); } tmp = abi.encodePacked(uint8(b0[0]) ^ uint8(b1[0])); for (uint i = 1; i < 32; i++) { tmp = abi.encodePacked(tmp, uint8(b0[i]) ^ uint8(b1[i])); } tmp = abi.encodePacked(tmp, uint8(2), dst, sizeDomain); b1 = sha256(tmp); // TODO handle the size of the dst (check gnark-crypto) for (uint i = 0; i < 16; i++) { res[i + 32] = uint8(b1[i]); } return res; } /** * @dev cf https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06#section-5.2 * corresponds to https://github.com/ConsenSys/gnark-crypto/blob/develop/ecc/bn254/fr/element.go */ function hash_fr(uint256 x, uint256 y) internal pure returns (uint256 res) { // interpret a as a bigEndian integer and reduce it mod r uint8[48] memory xmsg = expand_msg(x, y); // uint8[48] memory xmsg = [0x44, 0x74, 0xb5, 0x29, 0xd7, 0xfb, 0x29, 0x88, 0x3a, 0x7a, 0xc1, 0x65, 0xfd, 0x72, 0xce, 0xd0, 0xd4, 0xd1, 0x3f, 0x9e, 0x85, 0x8a, 0x3, 0x86, 0x1c, 0x90, 0x83, 0x1e, 0x94, 0xdc, 0xfc, 0x1d, 0x70, 0x82, 0xf5, 0xbf, 0x30, 0x3, 0x39, 0x87, 0x21, 0x38, 0x15, 0xed, 0x12, 0x75, 0x44, 0x6a]; // reduce xmsg mod r, where xmsg is intrepreted in big endian // (as SetBytes does for golang's Big.Int library). for (uint i = 0; i < 32; i++) { res += uint256(xmsg[47 - i]) << (8 * i); } res = res % r_mod; uint256 tmp; for (uint i = 0; i < 16; i++) { tmp += uint256(xmsg[15 - i]) << (8 * i); } // 2**256%r uint256 b = 6350874878119819312338956282401532410528162663560392320966563075034087161851; assembly { tmp := mulmod(tmp, b, r_mod) res := addmod(res, tmp, r_mod) } return res; } }