ETH Price: $4,064.07 (+4.24%)

Transaction Decoder

Block:
23467592 at Sep-29-2025 08:55:23 AM +UTC
Transaction Fee:
0.00016917881042128 ETH $0.69
Gas Used:
145,640 Gas / 1.161623252 Gwei

Emitted Events:

366 DexRouter.SwapOrderId( id=105357 )
367 WETH9.Deposit( dst=[Receiver] DexRouter, wad=88850000000000000 )
368 WETH9.Transfer( src=[Receiver] DexRouter, dst=UniswapV2Pair, wad=88850000000000000 )
369 Gasspas.Transfer( from=UniswapV2Pair, to=[Sender] 0x9d431e0233bfc7d627f94bed456b40befdbc9de1, value=118047926397721343790478969710 )
370 UniswapV2Pair.Sync( reserve0=56490733210766171305970334671933, reserve1=42479633078895646054 )
371 UniswapV2Pair.Swap( sender=[Receiver] DexRouter, amount0In=0, amount1In=88850000000000000, amount0Out=118047926397721343790478969710, amount1Out=0, to=[Sender] 0x9d431e0233bfc7d627f94bed456b40befdbc9de1 )
372 DexRouter.OrderRecord( fromToken=0x00000000...000000000, toToken=Gasspas, sender=[Sender] 0x9d431e0233bfc7d627f94bed456b40befdbc9de1, fromAmount=88850000000000000, returnAmount=118047926397721343790478969710 )

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
17.676781698112707085 Eth17.676927338112707085 Eth0.00014564
0x774eaF7A...7d34b9a55
0x9D431E02...eFDbC9DE1
0.100480442672726053 Eth
Nonce: 273
0.011461263862304773 Eth
Nonce: 274
0.08901917881042128
0xC02aaA39...83C756Cc2 2,524,198.852425054128778542 Eth2,524,198.941275054128778542 Eth0.08885
0xcFB26DF3...3Bd56Aa8C

Execution Trace

ETH 0.08885 DexRouter.unxswapByOrderId( ) => ( returnAmount=118047926397721343790478969710 )
  • UniswapV2Pair.STATICCALL( )
  • UniswapV2Pair.STATICCALL( )
  • ETH 0.08885 WETH9.CALL( )
  • WETH9.transfer( dst=0xcFB26DF385D790Aa7E417394EC1196a3Bd56Aa8C, wad=88850000000000000 ) => ( True )
  • UniswapV2Pair.STATICCALL( )
  • Gasspas.balanceOf( account=0x9D431E0233BFC7d627f94bed456B40BeFDbC9DE1 ) => ( 0 )
  • UniswapV2Pair.STATICCALL( )
  • UniswapV2Pair.STATICCALL( )
  • WETH9.balanceOf( 0xcFB26DF385D790Aa7E417394EC1196a3Bd56Aa8C ) => ( 42479633078895646054 )
  • UniswapV2Pair.swap( amount0Out=118047926397721343790478969710, amount1Out=0, to=0x9D431E0233BFC7d627f94bed456B40BeFDbC9DE1, data=0x )
    • Gasspas.transfer( recipient=0x9D431E0233BFC7d627f94bed456B40BeFDbC9DE1, amount=118047926397721343790478969710 ) => ( True )
    • Gasspas.balanceOf( account=0xcFB26DF385D790Aa7E417394EC1196a3Bd56Aa8C ) => ( 56490733210766171305970334671933 )
    • WETH9.balanceOf( 0xcFB26DF385D790Aa7E417394EC1196a3Bd56Aa8C ) => ( 42479633078895646054 )
    • Gasspas.balanceOf( account=0x9D431E0233BFC7d627f94bed456B40BeFDbC9DE1 ) => ( 118047926397721343790478969710 )
      File 1 of 4: DexRouter
      // SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import "./UnxswapRouter.sol";
      import "./UnxswapV3Router.sol";
      import "./interfaces/IWETH.sol";
      import "./interfaces/IAdapter.sol";
      import "./interfaces/IApproveProxy.sol";
      import "./interfaces/IWNativeRelayer.sol";
      import "./libraries/PMMLib.sol";
      import "./libraries/CommissionLib.sol";
      import "./libraries/EthReceiver.sol";
      import "./libraries/UniswapTokenInfoHelper.sol";
      /// @title DexRouterV1
      /// @notice Entrance of Split trading in Dex platform
      /// @dev Entrance of Split trading in Dex platform
      contract DexRouter is
          EthReceiver,
          UnxswapRouter,
          UnxswapV3Router,
          CommissionLib,
          UniswapTokenInfoHelper
      {
          string public constant version = "v1.0.5-tee";
          using UniversalERC20 for IERC20;
          struct BaseRequest {
              uint256 fromToken;
              address toToken;
              uint256 fromTokenAmount;
              uint256 minReturnAmount;
              uint256 deadLine;
          }
          struct RouterPath {
              address[] mixAdapters;
              address[] assetTo;
              uint256[] rawData;
              bytes[] extraData;
              uint256 fromToken;
          }
          //-------------------------------
          //------- Modifier --------------
          //-------------------------------
          /// @notice Ensures a function is called before a specified deadline.
          /// @param deadLine The UNIX timestamp deadline.
          modifier isExpired(uint256 deadLine) {
              require(deadLine >= block.timestamp, "Route: expired");
              _;
          }
          function _exeAdapter(
              bool reverse,
              address adapter,
              address to,
              address poolAddress,
              bytes memory moreinfo,
              address refundTo
          ) internal {
              if (reverse) {
                  (bool s, bytes memory res) = address(adapter).call(
                      abi.encodePacked(
                          abi.encodeWithSelector(
                              IAdapter.sellQuote.selector,
                              to,
                              poolAddress,
                              moreinfo
                          ),
                          ORIGIN_PAYER + uint(uint160(refundTo))
                      )
                  );
                  if (!s) {
                      _revert(res);
                  }
              } else {
                  (bool s, bytes memory res) = address(adapter).call(
                      abi.encodePacked(
                          abi.encodeWithSelector(
                              IAdapter.sellBase.selector,
                              to,
                              poolAddress,
                              moreinfo
                          ),
                          ORIGIN_PAYER + uint(uint160(refundTo))
                      )
                  );
                  if (!s) {
                      _revert(res);
                  }
              }
          }
          //-------------------------------
          //------- Internal Functions ----
          //-------------------------------
          /// @notice Executes multiple adapters for a transaction pair.
          /// @param payer The address of the payer.
          /// @param to The address of the receiver.
          /// @param batchAmount The amount to be transferred in each batch.
          /// @param path The routing path for the swap.
          /// @param noTransfer A flag to indicate whether the token transfer should be skipped.
          /// @dev It includes checks for the total weight of the paths and executes the swapping through the adapters.
          function _exeForks(
              address payer,
              address refundTo,
              address to,
              uint256 batchAmount,
              RouterPath memory path,
              bool noTransfer
          ) private {
              uint256 totalWeight;
              for (uint256 i = 0; i < path.mixAdapters.length; i++) {
                  bytes32 rawData = bytes32(path.rawData[i]);
                  address poolAddress;
                  bool reverse;
                  {
                      uint256 weight;
                      address fromToken = _bytes32ToAddress(path.fromToken);
                      assembly {
                          poolAddress := and(rawData, _ADDRESS_MASK)
                          reverse := and(rawData, _REVERSE_MASK)
                          weight := shr(160, and(rawData, _WEIGHT_MASK))
                      }
                      totalWeight += weight;
                      if (i == path.mixAdapters.length - 1) {
                          require(
                              totalWeight <= 10_000,
                              "totalWeight can not exceed 10000 limit"
                          );
                      }
                      if (!noTransfer) {
                          uint256 _fromTokenAmount = weight == 10_000
                              ? batchAmount
                              : (batchAmount * weight) / 10_000;
                          _transferInternal(
                              payer,
                              path.assetTo[i],
                              fromToken,
                              _fromTokenAmount
                          );
                      }
                  }
                  _exeAdapter(
                      reverse,
                      path.mixAdapters[i],
                      to,
                      poolAddress,
                      path.extraData[i],
                      refundTo
                  );
              }
          }
          /// @notice Executes a series of swaps or operations defined by a set of routing paths, potentially across different protocols or pools.
          /// @param payer The address providing the tokens for the swap.
          /// @param receiver The address receiving the output tokens.
          /// @param isToNative Indicates whether the final asset should be converted to the native blockchain asset (e.g., ETH).
          /// @param batchAmount The total amount of the input token to be swapped.
          /// @param hops An array of RouterPath structures, each defining a segment of the swap route.
          /// @dev This function manages complex swap routes that might involve multiple hops through different liquidity pools or swapping protocols.
          /// It iterates through the provided `hops`, executing each segment of the route in sequence.
          function _exeHop(
              address payer,
              address refundTo,
              address receiver,
              bool isToNative,
              uint256 batchAmount,
              RouterPath[] memory hops
          ) private {
              address fromToken = _bytes32ToAddress(hops[0].fromToken);
              bool toNext;
              bool noTransfer;
              // execute hop
              uint256 hopLength = hops.length;
              for (uint256 i = 0; i < hopLength; ) {
                  if (i > 0) {
                      fromToken = _bytes32ToAddress(hops[i].fromToken);
                      batchAmount = IERC20(fromToken).universalBalanceOf(
                          address(this)
                      );
                      payer = address(this);
                  }
                  address to = address(this);
                  if (i == hopLength - 1 && !isToNative) {
                      to = receiver;
                  } else if (i < hopLength - 1 && hops[i + 1].assetTo.length == 1) {
                      to = hops[i + 1].assetTo[0];
                      toNext = true;
                  } else {
                      toNext = false;
                  }
                  // 3.2 execute forks
                  _exeForks(payer, refundTo, to, batchAmount, hops[i], noTransfer);
                  noTransfer = toNext;
                  unchecked {
                      ++i;
                  }
              }
          }
          /// @notice Transfers tokens internally within the contract.
          /// @param payer The address of the payer.
          /// @param to The address of the receiver.
          /// @param token The address of the token to be transferred.
          /// @param amount The amount of tokens to be transferred.
          /// @dev Handles the transfer of ERC20 tokens or native tokens within the contract.
          function _transferInternal(
              address payer,
              address to,
              address token,
              uint256 amount
          ) private {
              if (payer == address(this)) {
                  SafeERC20.safeTransfer(IERC20(token), to, amount);
              } else {
                  IApproveProxy(_APPROVE_PROXY).claimTokens(token, payer, to, amount);
              }
          }
          /// @notice Transfers the specified token to the user.
          /// @param token The address of the token to be transferred.
          /// @param to The address of the receiver.
          /// @dev Handles the withdrawal of tokens to the user, converting WETH to ETH if necessary.
          function _transferTokenToUser(address token, address to) private {
              if ((IERC20(token).isETH())) {
                  uint256 wethBal = IERC20(address(uint160(_WETH))).balanceOf(
                      address(this)
                  );
                  if (wethBal > 0) {
                      IWETH(address(uint160(_WETH))).transfer(
                          _WNATIVE_RELAY,
                          wethBal
                      );
                      IWNativeRelayer(_WNATIVE_RELAY).withdraw(wethBal);
                  }
                  if (to != address(this)) {
                      uint256 ethBal = address(this).balance;
                      if (ethBal > 0) {
                          (bool success, ) = payable(to).call{value: ethBal}("");
                          require(success, "transfer native token failed");
                      }
                  }
              } else {
                  if (to != address(this)) {
                      uint256 bal = IERC20(token).balanceOf(address(this));
                      if (bal > 0) {
                          SafeERC20.safeTransfer(IERC20(token), to, bal);
                      }
                  }
              }
          }
          /// @notice Converts a uint256 value into an address.
          /// @param param The uint256 value to be converted.
          /// @return result The address obtained from the conversion.
          /// @dev This function is used to extract an address from a uint256,
          /// typically used when dealing with low-level data operations or when addresses are packed into larger data types.
          function _bytes32ToAddress(
              uint256 param
          ) private pure returns (address result) {
              assembly {
                  result := and(param, _ADDRESS_MASK)
              }
          }
          /// @notice Executes a complex swap based on provided parameters and paths.
          /// @param baseRequest Basic swap details including tokens, amounts, and deadline.
          /// @param batchesAmount Amounts for each swap batch.
          /// @param batches Detailed swap paths for execution.
          /// @param payer Address providing the tokens.
          /// @param receiver Address receiving the swapped tokens.
          /// @return returnAmount Total received tokens from the swap.
          function _smartSwapInternal(
              BaseRequest memory baseRequest,
              uint256[] memory batchesAmount,
              RouterPath[][] memory batches,
              address payer,
              address refundTo,
              address receiver
          ) private returns (uint256 returnAmount) {
              // 1. transfer from token in
              BaseRequest memory _baseRequest = baseRequest;
              require(
                  _baseRequest.fromTokenAmount > 0,
                  "Route: fromTokenAmount must be > 0"
              );
              address fromToken = _bytes32ToAddress(_baseRequest.fromToken);
              returnAmount = IERC20(_baseRequest.toToken).universalBalanceOf(
                  receiver
              );
              // In order to deal with ETH/WETH transfer rules in a unified manner,
              // we do not need to judge according to fromToken.
              if (UniversalERC20.isETH(IERC20(fromToken))) {
                  IWETH(address(uint160(_WETH))).deposit{
                      value: _baseRequest.fromTokenAmount
                  }();
                  payer = address(this);
              }
              // 2. check total batch amount
              {
                  // avoid stack too deep
                  uint256 totalBatchAmount;
                  for (uint256 i = 0; i < batchesAmount.length; ) {
                      totalBatchAmount += batchesAmount[i];
                      unchecked {
                          ++i;
                      }
                  }
                  require(
                      totalBatchAmount <= _baseRequest.fromTokenAmount,
                      "Route: number of batches should be <= fromTokenAmount"
                  );
              }
              // 4. execute batch
              // check length, fix DRW-02: LACK OF LENGTH CHECK ON BATATCHES
              require(batchesAmount.length == batches.length, "length mismatch");
              for (uint256 i = 0; i < batches.length; ) {
                  // execute hop, if the whole swap replacing by pmm fails, the funds will return to dexRouter
                  _exeHop(
                      payer,
                      refundTo,
                      receiver,
                      IERC20(_baseRequest.toToken).isETH(),
                      batchesAmount[i],
                      batches[i]
                  );
                  unchecked {
                      ++i;
                  }
              }
              // 5. transfer tokens to user
              _transferTokenToUser(_baseRequest.toToken, receiver);
              // 6. check minReturnAmount
              returnAmount =
                  IERC20(_baseRequest.toToken).universalBalanceOf(receiver) -
                  returnAmount;
              require(
                  returnAmount >= _baseRequest.minReturnAmount,
                  "Min return not reached"
              );
              emit OrderRecord(
                  fromToken,
                  _baseRequest.toToken,
                  tx.origin,
                  _baseRequest.fromTokenAmount,
                  returnAmount
              );
              return returnAmount;
          }
          //-------------------------------
          //------- Users Functions -------
          //-------------------------------
          /// @notice Executes a smart swap based on the given order ID, supporting complex multi-path swaps. For smartSwap, if fromToken or toToken is ETH, the address needs to be 0xEeee.
          /// @param orderId The unique identifier for the swap order, facilitating tracking and reference.
          /// @param baseRequest Struct containing the base parameters for the swap, including the source and destination tokens, amount, minimum return, and deadline.
          /// @param batchesAmount An array specifying the amount to be swapped in each batch, allowing for split operations.
          /// @param batches An array of RouterPath structs defining the routing paths for each batch, enabling swaps through multiple protocols or liquidity pools.
          /// @return returnAmount The total amount of destination tokens received from executing the swap.
          /// @dev This function orchestrates a swap operation that may involve multiple steps, routes, or protocols based on the provided parameters.
          /// It's designed to ensure flexibility and efficiency in finding the best swap paths.
          function smartSwapByOrderId(
              uint256 orderId,
              BaseRequest calldata baseRequest,
              uint256[] calldata batchesAmount,
              RouterPath[][] calldata batches,
              PMMLib.PMMSwapRequest[] calldata // extraData
          )
              external
              payable
              isExpired(baseRequest.deadLine)
              returns (uint256 returnAmount)
          {
              emit SwapOrderId(orderId);
              return
                  _smartSwapTo(
                      msg.sender,
                      msg.sender,
                      msg.sender,
                      baseRequest,
                      batchesAmount,
                      batches
                  );
          }
          /// @notice Executes a token swap using the Unxswap protocol based on a specified order ID.
          /// @param srcToken The source token involved in the swap.
          /// @param amount The amount of the source token to be swapped.
          /// @param minReturn The minimum amount of tokens expected to be received to ensure the swap does not proceed under unfavorable conditions.
          /// @param pools An array of pool identifiers specifying the pools to use for the swap, allowing for optimized routing.
          /// @return returnAmount The amount of destination tokens received from the swap.
          /// @dev This function allows users to perform token swaps based on predefined orders, leveraging the Unxswap protocol's liquidity pools. It ensures that the swap meets the user's specified minimum return criteria, enhancing trade efficiency and security.
          function unxswapByOrderId(
              uint256 srcToken,
              uint256 amount,
              uint256 minReturn,
              // solhint-disable-next-line no-unused-vars
              bytes32[] calldata pools
          ) external payable returns (uint256 returnAmount) {
              return unxswapTo(
                  srcToken,
                  amount,
                  minReturn,
                  msg.sender,
                  pools
              );
          }
          /// @notice Executes a swap tailored for investment purposes, adjusting swap amounts based on the contract's balance. For smartSwap, if fromToken or toToken is ETH, the address needs to be 0xEeee.
          /// @param baseRequest Struct containing essential swap parameters like source and destination tokens, amounts, and deadline.
          /// @param batchesAmount Array indicating how much of the source token to swap in each batch, facilitating diversified investments.
          /// @param batches Detailed routing information for executing the swap across different paths or protocols.
          /// @param extraData Additional data for swaps, supporting protocol-specific requirements.
          /// @param to The address where the swapped tokens will be sent, typically an investment contract or pool.
          /// @return returnAmount The total amount of destination tokens received, ready for investment.
          /// @dev This function is designed for scenarios where investments are made in batches or through complex paths to optimize returns. Adjustments are made based on the contract's current token balance to ensure precise allocation.
          function smartSwapByInvest(
              BaseRequest memory baseRequest,
              uint256[] memory batchesAmount,
              RouterPath[][] memory batches,
              PMMLib.PMMSwapRequest[] memory extraData,
              address to
          ) external payable returns (uint256 returnAmount) {
              return
                  smartSwapByInvestWithRefund(
                      baseRequest,
                      batchesAmount,
                      batches,
                      extraData,
                      to,
                      to
                  );
          }
          function smartSwapByInvestWithRefund(
              BaseRequest memory baseRequest,
              uint256[] memory batchesAmount,
              RouterPath[][] memory batches,
              PMMLib.PMMSwapRequest[] memory, // extraData
              address to,
              address refundTo
          )
              public
              payable
              isExpired(baseRequest.deadLine)
              returns (uint256 returnAmount)
          {
              address fromToken = _bytes32ToAddress(baseRequest.fromToken);
              require(fromToken != _ETH, "Invalid source token");
              require(refundTo != address(0), "refundTo is address(0)");
              require(to != address(0), "to is address(0)");
              require(baseRequest.fromTokenAmount > 0, "fromTokenAmount is 0");
              uint256 amount = IERC20(fromToken).balanceOf(address(this));
              for (uint256 i = 0; i < batchesAmount.length; ) {
                  batchesAmount[i] =
                      (batchesAmount[i] * amount) /
                      baseRequest.fromTokenAmount;
                  unchecked {
                      ++i;
                  }
              }
              baseRequest.fromTokenAmount = amount;
              return
                  _smartSwapInternal(
                      baseRequest,
                      batchesAmount,
                      batches,
                      address(this), // payer
                      refundTo, // refundTo
                      to // receiver
                  );
          }
          /// @notice Executes a swap using the Uniswap V3 protocol.
          /// @param receiver The address that will receive the swap funds.
          /// @param amount The amount of the source token to be swapped.
          /// @param minReturn The minimum acceptable amount of tokens to receive from the swap, guarding against excessive slippage.
          /// @param pools An array of pool identifiers used to define the swap route within Uniswap V3.
          /// @return returnAmount The amount of tokens received after the completion of the swap.
          /// @dev This function wraps and unwraps ETH as required, ensuring the transaction only accepts non-zero `msg.value` for ETH swaps. It invokes `_uniswapV3Swap` to execute the actual swap and handles commission post-swap.
          function uniswapV3SwapTo(
              uint256 receiver,
              uint256 amount,
              uint256 minReturn,
              uint256[] calldata pools
          ) external payable returns (uint256 returnAmount) {
              emit SwapOrderId((receiver & _ORDER_ID_MASK) >> 160);
              (address srcToken, address toToken) = _getUniswapV3TokenInfo(msg.value > 0, pools);
              return
                  _uniswapV3SwapTo(
                      msg.sender,
                      receiver,
                      srcToken,
                      toToken,
                      amount,
                      minReturn,
                      pools
                  );
          }
          /// @notice If srcToken or toToken is ETH, the address needs to be 0xEeee. And for commission validation, ETH needs to be 0xEeee.
          function _uniswapV3SwapTo(
              address payer,
              uint256 receiver,
              address srcToken,
              address toToken,
              uint256 amount,
              uint256 minReturn,
              uint256[] calldata pools
          ) internal returns (uint256 returnAmount) {
              CommissionInfo memory commissionInfo = _getCommissionInfo();
              _validateCommissionInfo(commissionInfo, srcToken, toToken);
              (
                  address middleReceiver,
                  uint256 balanceBefore
              ) = _doCommissionFromToken(
                      commissionInfo,
                      payer,
                      address(uint160(receiver)),
                      amount
                  );
              uint256 swappedAmount = _uniswapV3Swap(
                  payer,
                  payable(middleReceiver),
                  amount,
                  minReturn,
                  pools
              );
              uint256 commissionAmount = _doCommissionToToken(
                  commissionInfo,
                  address(uint160(receiver)),
                  balanceBefore
              );
              return swappedAmount - commissionAmount;
          }
          /// @notice Executes a smart swap directly to a specified receiver address.
          /// @param orderId Unique identifier for the swap order, facilitating tracking.
          /// @param receiver Address to receive the output tokens from the swap.
          /// @param baseRequest Contains essential parameters for the swap such as source and destination tokens, amounts, and deadline.
          /// @param batchesAmount Array indicating amounts for each batch in the swap, allowing for split operations.
          /// @param batches Detailed routing information for executing the swap across different paths or protocols.
          /// @return returnAmount The total amount of destination tokens received from the swap.
          /// @dev This function enables users to perform token swaps with complex routing directly to a specified address,
          /// optimizing for best returns and accommodating specific trading strategies.
          function smartSwapTo(
              uint256 orderId,
              address receiver,
              BaseRequest calldata baseRequest,
              uint256[] calldata batchesAmount,
              RouterPath[][] calldata batches,
              PMMLib.PMMSwapRequest[] calldata // extraData
          )
              external
              payable
              isExpired(baseRequest.deadLine)
              returns (uint256 returnAmount)
          {
              emit SwapOrderId(orderId);
              return
                  _smartSwapTo(
                      msg.sender,
                      msg.sender,
                      receiver,
                      baseRequest,
                      batchesAmount,
                      batches
                  );
          }
          /// @notice If fromToken or toToken is ETH, the address needs to be 0xEeee. And for commission validation, ETH needs to be 0xEeee.
          function _smartSwapTo(
              address payer,
              address refundTo,
              address receiver,
              BaseRequest memory baseRequest,
              uint256[] memory batchesAmount,
              RouterPath[][] memory batches
          ) internal returns (uint256) {
              require(receiver != address(0), "not addr(0)");
              CommissionInfo memory commissionInfo = _getCommissionInfo();
              _validateCommissionInfo(commissionInfo, _bytes32ToAddress(baseRequest.fromToken), baseRequest.toToken);
              (
                  address middleReceiver,
                  uint256 balanceBefore
              ) = _doCommissionFromToken(
                      commissionInfo,
                      payer,
                      receiver,
                      baseRequest.fromTokenAmount
                  );
              address _payer = payer; // avoid stack too deep
              uint256 swappedAmount = _smartSwapInternal(
                  baseRequest,
                  batchesAmount,
                  batches,
                  _payer,
                  refundTo,
                  middleReceiver
              );
              uint256 commissionAmount = _doCommissionToToken(
                  commissionInfo,
                  receiver,
                  balanceBefore
              );
              return swappedAmount - commissionAmount;
          }
          /// @notice Executes a token swap using the Unxswap protocol, sending the output directly to a specified receiver. For unxswap, if srcToken is ETH, srcToken needs to be address(0).
          /// @param srcToken The source token to be swapped.
          /// @param amount The amount of the source token to be swapped.
          /// @param minReturn The minimum amount of destination tokens expected from the swap, ensuring the trade does not proceed under unfavorable conditions.
          /// @param receiver The address where the swapped tokens will be sent.
          /// @param pools An array of pool identifiers to specify the swap route, optimizing for best rates.
          /// @return returnAmount The total amount of destination tokens received from the swap.
          /// @dev This function facilitates direct swaps using Unxswap, allowing users to specify custom swap routes and ensuring that the output is sent to a predetermined address. It is designed for scenarios where the user wants to directly receive the tokens in their wallet or another contract.
          function unxswapTo(
              uint256 srcToken,
              uint256 amount,
              uint256 minReturn,
              address receiver,
              // solhint-disable-next-line no-unused-vars
              bytes32[] calldata pools
          ) public payable returns (uint256 returnAmount) {
              emit SwapOrderId((srcToken & _ORDER_ID_MASK) >> 160);
              // validate token info
              (address fromToken, address toToken) = _getUnxswapTokenInfo(msg.value > 0, pools);
              address srcTokenAddr = _bytes32ToAddress(srcToken);
              require(
                  (srcTokenAddr == fromToken && fromToken != _ETH) || (srcTokenAddr == address(0) && fromToken == _ETH),
                  "unxswap: token mismatch"
              );
              
              return
                  _unxswapTo(
                      fromToken,
                      toToken,
                      amount,
                      minReturn,
                      msg.sender,
                      receiver,
                      pools
                  );
          }
          /// @notice If srcToken is ETH, srcToken needs to be 0xEeee. And for commission validation, ETH needs to be 0xEeee. But _unxswapInternal needs srcToken to be address(0) if srcToken is ETH.
          function _unxswapTo(
              address srcToken,
              address toToken,
              uint256 amount,
              uint256 minReturn,
              address payer,
              address receiver,
              // solhint-disable-next-line no-unused-vars
              bytes32[] calldata pools
          ) internal returns (uint256 returnAmount) {
              require(receiver != address(0), "not addr(0)");
              CommissionInfo memory commissionInfo = _getCommissionInfo();
              _validateCommissionInfo(commissionInfo, srcToken, toToken);
              (
                  address middleReceiver,
                  uint256 balanceBefore
              ) = _doCommissionFromToken(
                      commissionInfo,
                      payer,
                      receiver,
                      amount
                  );
              uint256 swappedAmount = _unxswapInternal(
                  srcToken == _ETH ? IERC20(address(0)) : IERC20(srcToken),
                  amount,
                  minReturn,
                  pools,
                  payer,
                  middleReceiver
              );
              uint256 commissionAmount = _doCommissionToToken(
                  commissionInfo,
                  receiver,
                  balanceBefore
              );
              return swappedAmount - commissionAmount;
          }
          /// @notice Executes a Uniswap V3 token swap to a specified receiver using structured base request parameters. For uniswapV3, if fromToken or toToken is ETH, the address needs to be 0xEeee.
          /// @param orderId Unique identifier for the swap order, facilitating tracking and reference.
          /// @param receiver The address that will receive the swapped tokens.
          /// @param baseRequest Struct containing essential swap parameters including source token, destination token, amount, minimum return, and deadline.
          /// @param pools An array of pool identifiers defining the Uniswap V3 swap route, with encoded swap direction and unwrap flags.
          /// @return returnAmount The total amount of destination tokens received from the swap.
          /// @dev This function validates token compatibility with the provided pool route and ensures proper swap execution.
          /// It supports both ETH and ERC20 token swaps, with automatic WETH wrapping/unwrapping as needed.
          /// The function verifies that fromToken matches the first pool and toToken matches the last pool in the route.
          function uniswapV3SwapToWithBaseRequest(
              uint256 orderId,
              address receiver,
              BaseRequest calldata baseRequest,
              uint256[] calldata pools
          )
              external
              payable
              isExpired(baseRequest.deadLine)
              returns (uint256 returnAmount)
          {
              emit SwapOrderId(orderId);
              (address srcToken, address toToken) = _getUniswapV3TokenInfo(msg.value > 0, pools);
              // validate fromToken and toToken from baseRequest
              require(
                  _bytes32ToAddress(baseRequest.fromToken) == srcToken && baseRequest.toToken == toToken,
                  "uniswapV3: token mismatch"
              );
              return
                  _uniswapV3SwapTo(
                      msg.sender,
                      uint256(uint160(receiver)),
                      srcToken,
                      toToken,
                      baseRequest.fromTokenAmount,
                      baseRequest.minReturnAmount,
                      pools
                  );
          }
          /// @notice Executes a Unxswap token swap to a specified receiver using structured base request parameters. For unxswap, if fromToken or toToken is ETH, the address needs to be address(0).
          /// @param orderId Unique identifier for the swap order, facilitating tracking and reference.
          /// @param receiver The address that will receive the swapped tokens.
          /// @param baseRequest Struct containing essential swap parameters including source token, destination token, amount, minimum return, and deadline.
          /// @param pools An array of pool identifiers defining the Unxswap route, with encoded swap direction and WETH unwrap flags.
          /// @return returnAmount The total amount of destination tokens received from the swap.
          /// @dev This function validates token compatibility with the provided pool route and ensures proper swap execution.
          /// It supports both ETH and ERC20 token swaps, with automatic WETH wrapping/unwrapping as needed.
          /// The function verifies that toToken matches the expected output token from the last pool in the route.
          function unxswapToWithBaseRequest(
              uint256 orderId,
              address receiver,
              BaseRequest calldata baseRequest,
              bytes32[] calldata pools
          )
              external
              payable
              isExpired(baseRequest.deadLine)
              returns (uint256 returnAmount)
          {
              emit SwapOrderId(orderId);
              (address fromToken, address toToken) = _getUnxswapTokenInfo(msg.value > 0, pools);
              // validate fromToken and toToken from baseRequest
              address fromTokenAddr = _bytes32ToAddress(baseRequest.fromToken);
              require((fromTokenAddr == fromToken && fromToken != _ETH) || (fromTokenAddr == address(0) && fromToken == _ETH), "unxswap: fromToken mismatch");
              require((baseRequest.toToken == toToken && toToken != _ETH) || (baseRequest.toToken == address(0) && toToken == _ETH), "unxswap: toToken mismatch");
              return
                  _unxswapTo(
                      fromToken,
                      toToken,
                      baseRequest.fromTokenAmount,
                      baseRequest.minReturnAmount,
                      msg.sender,
                      receiver,
                      pools
                  );
          }
          /// @notice For commission validation, ETH needs to be 0xEeee.
          function _swapWrap(
              uint256 orderId,
              address receiver,
              bool reversed,
              uint256 amount
          ) internal {
              require(amount > 0, "amount must be > 0");
              CommissionInfo memory commissionInfo = _getCommissionInfo();
              address srcToken = reversed ? _WETH : _ETH;
              address toToken = reversed ? _ETH : _WETH;
              _validateCommissionInfo(commissionInfo, srcToken, toToken);
              (
                  address middleReceiver,
                  uint256 balanceBefore
              ) = _doCommissionFromToken(
                      commissionInfo,
                      msg.sender,
                      receiver,
                      amount
                  );
              if (reversed) {
                  IApproveProxy(_APPROVE_PROXY).claimTokens(
                      _WETH,
                      msg.sender,
                      _WNATIVE_RELAY,
                      amount
                  );
                  IWNativeRelayer(_WNATIVE_RELAY).withdraw(amount);
                  if (middleReceiver != address(this)) {
                      (bool success, ) = payable(middleReceiver).call{
                          value: address(this).balance
                      }("");
                      require(success, "transfer native token failed");
                  }
              } else {
                  if (!commissionInfo.isFromTokenCommission) {
                      require(msg.value == amount, "value not equal amount");
                  }
                  IWETH(_WETH).deposit{value: amount}();
                  if (middleReceiver != address(this)) {
                      SafeERC20.safeTransfer(IERC20(_WETH), middleReceiver, amount);
                  }
              }
              _doCommissionToToken(
                  commissionInfo,
                  receiver,
                  balanceBefore
              );
              emit SwapOrderId(orderId);
              emit OrderRecord(
                  srcToken,
                  toToken,
                  tx.origin,
                  amount,
                  amount
              );
          }
          /// @notice Executes a simple swap between ETH and WETH using encoded parameters.
          /// @param orderId Unique identifier for the swap order, facilitating tracking and reference.
          /// @param rawdata Encoded data containing swap direction and amount information using bit masks.
          /// @dev This function supports bidirectional swaps between ETH and WETH with minimal gas overhead.
          /// The rawdata parameter encodes both the direction (reversed flag) and amount using bit operations.
          /// When reversed=false: ETH -> WETH, when reversed=true: WETH -> ETH.
          function swapWrap(uint256 orderId, uint256 rawdata) external payable {
              bool reversed;
              uint128 amount;
              assembly {
                  reversed := and(rawdata, _REVERSE_MASK)
                  amount := and(rawdata, SWAP_AMOUNT)
              }
              _swapWrap(orderId, msg.sender, reversed, amount);
          }
          /// @notice Executes a swap between ETH and WETH using structured base request parameters to a specified receiver.
          /// @param orderId Unique identifier for the swap order, facilitating tracking and reference.
          /// @param receiver The address that will receive the swapped tokens.
          /// @param baseRequest Struct containing essential swap parameters including source token, destination token, amount, minimum return, and deadline.
          /// @dev This function validates that the token pair is either ETH->WETH or WETH->ETH and executes the swap accordingly.
          /// It extracts the amount from the baseRequest and determines the swap direction based on the token addresses.
          function swapWrapToWithBaseRequest(
              uint256 orderId,
              address receiver,
              BaseRequest calldata baseRequest
          )
              external
              payable
              isExpired(baseRequest.deadLine)
          {
              bool reversed;
              address fromTokenAddr = address(uint160(baseRequest.fromToken));
              if (fromTokenAddr == _ETH && baseRequest.toToken == _WETH) {
                  reversed = false;
              } else if (fromTokenAddr == _WETH && baseRequest.toToken == _ETH) {
                  reversed = true;
              } else {
                  revert("SwapWrap: invalid token pair");
              }
              _swapWrap(orderId, receiver, reversed, baseRequest.fromTokenAmount);
          }
          /**
           * @dev Reverts with returndata if present. Otherwise reverts with "FailedCall".
           * https://github.com/OpenZeppelin/openzeppelin-contracts/blob/c64a1edb67b6e3f4a15cca8909c9482ad33a02b0/contracts/utils/Address.sol#L135-L149
           */
          function _revert(bytes memory returndata) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  assembly ("memory-safe") {
                      revert(add(returndata, 0x20), mload(returndata))
                  }
              } else {
                  revert("adaptor call failed");
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /// @title Abstract base contract with virtual functions
      abstract contract AbstractCommissionLib {
          struct CommissionInfo {
              bool isFromTokenCommission; //0x00
              bool isToTokenCommission; //0x20
              uint256 commissionRate; //0x40
              address refererAddress; //0x60
              address token; //0x80
              uint256 commissionRate2; //0xa0
              address refererAddress2; //0xc0
              bool isToBCommission; //0xe0
          }
          function _getCommissionInfo()
              internal
              pure
              virtual
              returns (CommissionInfo memory commissionInfo);
          // function _getBalanceOf(address token, address user)
          //     internal
          //     virtual
          //     returns (uint256);
          function _doCommissionFromToken(
              CommissionInfo memory commissionInfo,
              address payer,
              address receiver,
              uint256 inputAmount
          ) internal virtual returns (address, uint256);
          function _doCommissionToToken(
              CommissionInfo memory commissionInfo,
              address receiver,
              uint256 balanceBefore
          ) internal virtual returns (uint256);
          function _validateCommissionInfo(
              CommissionInfo memory commissionInfo,
              address fromToken,
              address toToken
          ) internal pure virtual;
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v2;
      interface IAdapter {
          function sellBase(
              address to,
              address pool,
              bytes memory data
          ) external;
          function sellQuote(
              address to,
              address pool,
              bytes memory data
          ) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      interface IApproveProxy {
          function isAllowedProxy(address _proxy) external view returns (bool);
          function claimTokens(
              address token,
              address who,
              address dest,
              uint256 amount
          ) external;
          function tokenApprove() external view returns (address);
          function addProxy(address) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /// @title Interface for DAI-style permits
      interface IDaiLikePermit {
          function permit(
              address holder,
              address spender,
              uint256 nonce,
              uint256 expiry,
              bool allowed,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      interface IERC20 {
          event Approval(
              address indexed owner,
              address indexed spender,
              uint256 value
          );
          event Transfer(address indexed from, address indexed to, uint256 value);
          function name() external view returns (string memory);
          function symbol() external view returns (string memory);
          function decimals() external view returns (uint8);
          function totalSupply() external view returns (uint256);
          function balanceOf(address owner) external view returns (uint256);
          function allowance(address owner, address spender)
              external
              view
              returns (uint256);
          function approve(address spender, uint256 value) external returns (bool);
          function transfer(address to, uint256 value) external returns (bool);
          function transferFrom(
              address from,
              address to,
              uint256 value
          ) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
       * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
       *
       * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
       * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
       * need to send a transaction, and thus is not required to hold Ether at all.
       */
      interface IERC20Permit {
          /**
           * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
           * given `owner`'s signed approval.
           *
           * IMPORTANT: The same issues {IERC20-approve} has related to transaction
           * ordering also apply here.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `deadline` must be a timestamp in the future.
           * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
           * over the EIP712-formatted function arguments.
           * - the signature must use ``owner``'s current nonce (see {nonces}).
           *
           * For more information on the signature format, see the
           * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
           * section].
           */
          function permit(
              address owner,
              address spender,
              uint256 value,
              uint256 deadline,
              uint8 v,
              bytes32 r,
              bytes32 s
          ) external;
          /**
           * @dev Returns the current nonce for `owner`. This value must be
           * included whenever a signature is generated for {permit}.
           *
           * Every successful call to {permit} increases ``owner``'s nonce by one. This
           * prevents a signature from being used multiple times.
           */
          function nonces(address owner) external view returns (uint256);
          /**
           * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
           */
          // solhint-disable-next-line func-name-mixedcase
          function DOMAIN_SEPARATOR() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v2;
      interface IUni {
          function swapExactTokensForTokens(
              uint256 amountIn,
              uint256 amountOutMin,
              address[] calldata path,
              address to,
              uint256 deadline
          ) external returns (uint256[] memory amounts);
          function swap(
              uint256 amount0Out,
              uint256 amount1Out,
              address to,
              bytes calldata data
          ) external;
          function getReserves()
              external
              view
              returns (
                  uint112 reserve0,
                  uint112 reserve1,
                  uint32 blockTimestampLast
              );
          function token0() external view returns (address);
          function token1() external view returns (address);
          function sync() external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /// @title Callback for IUniswapV3PoolActions#swap
      /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
      interface IUniswapV3SwapCallback {
          /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
          /// @dev In the implementation you must pay the pool tokens owed for the swap.
          /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
          /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
          /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
          /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
          /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
          /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
          /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
          function uniswapV3SwapCallback(
              int256 amount0Delta,
              int256 amount1Delta,
              bytes calldata data
          ) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v2;
      interface IUniV3 {
          function swap(
              address recipient,
              bool zeroForOne,
              int256 amountSpecified,
              uint160 sqrtPriceLimitX96,
              bytes calldata data
          ) external returns (int256 amount0, int256 amount1);
          function slot0()
              external
              view
              returns (
                  uint160 sqrtPriceX96,
                  int24 tick,
                  uint16 observationIndex,
                  uint16 observationCardinality,
                  uint16 observationCardinalityNext,
                  uint8 feeProtocol,
                  bool unlocked
              );
          function token0() external view returns (address);
          function token1() external view returns (address);
          /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
          /// @return The fee
          function fee() external view returns (uint24);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v2;
      interface IWETH {
          function totalSupply() external view returns (uint256);
          function balanceOf(address account) external view returns (uint256);
          function transfer(address recipient, uint256 amount)
              external
              returns (bool);
          function allowance(address owner, address spender)
              external
              view
              returns (uint256);
          function approve(address spender, uint256 amount) external returns (bool);
          function transferFrom(
              address src,
              address dst,
              uint256 wad
          ) external returns (bool);
          function deposit() external payable;
          function withdraw(uint256 wad) external;
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      pragma abicoder v2;
      interface IWNativeRelayer {
          function withdraw(uint256 _amount) external;
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
              // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
              // for accounts without code, i.e. `keccak256('')`
              bytes32 codehash;
              bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  codehash := extcodehash(account)
              }
              return (codehash != accountHash && codehash != 0x0);
          }
          /**
           * @dev Converts an `address` into `address payable`. Note that this is
           * simply a type cast: the actual underlying value is not changed.
           *
           * _Available since v2.4.0._
           */
          function toPayable(address account)
              internal
              pure
              returns (address payable)
          {
              return payable(account);
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           *
           * _Available since v2.4.0._
           */
          function sendValue(address recipient, uint256 amount) internal {
              require(
                  address(this).balance >= amount,
                  "Address: insufficient balance"
              );
              // solhint-disable-next-line avoid-call-value
              (bool success, ) = recipient.call{value: amount}("");
              require(
                  success,
                  "Address: unable to send value, recipient may have reverted"
              );
          }
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./CommonUtils.sol";
      import "../interfaces/AbstractCommissionLib.sol";
      /// @title Base contract with common permit handling logics
      abstract contract CommissionLib is AbstractCommissionLib, CommonUtils {
          uint256 internal constant _COMMISSION_RATE_MASK =
              0x000000000000ffffffffffff0000000000000000000000000000000000000000;
          uint256 internal constant _COMMISSION_FLAG_MASK =
              0xffffffffffff0000000000000000000000000000000000000000000000000000;
          uint256 internal constant FROM_TOKEN_COMMISSION =
              0x3ca20afc2aaa0000000000000000000000000000000000000000000000000000;
          uint256 internal constant TO_TOKEN_COMMISSION =
              0x3ca20afc2bbb0000000000000000000000000000000000000000000000000000;
          uint256 internal constant FROM_TOKEN_COMMISSION_DUAL =
              0x22220afc2aaa0000000000000000000000000000000000000000000000000000;
          uint256 internal constant TO_TOKEN_COMMISSION_DUAL =
              0x22220afc2bbb0000000000000000000000000000000000000000000000000000;
          uint256 internal constant _TO_B_COMMISSION_MASK =
              0x8000000000000000000000000000000000000000000000000000000000000000;
          event CommissionFromTokenRecord(
              address fromTokenAddress,
              uint256 commissionAmount,
              address referrerAddress
          );
          event CommissionToTokenRecord(
              address toTokenAddress,
              uint256 commissionAmount,
              address referrerAddress
          );
          // set default value can change when need.
          uint256 public constant commissionRateLimit = 30000000;
          uint public constant DENOMINATOR = 10 ** 9;
          uint constant WAD = 1 ether;
          function _getCommissionInfo()
              internal
              pure
              override
              returns (CommissionInfo memory commissionInfo)
          {
              assembly ("memory-safe") {
                  // let freePtr := mload(0x40)
                  // mstore(0x40, add(freePtr, 0x100))
                  let commissionData := calldataload(sub(calldatasize(), 0x20))
                  let flag := and(commissionData, _COMMISSION_FLAG_MASK)
                  let isDualreferrers := or(
                      eq(flag, FROM_TOKEN_COMMISSION_DUAL),
                      eq(flag, TO_TOKEN_COMMISSION_DUAL)
                  )
                  mstore(
                      commissionInfo,
                      or(
                          eq(flag, FROM_TOKEN_COMMISSION),
                          eq(flag, FROM_TOKEN_COMMISSION_DUAL)
                      )
                  ) // isFromTokenCommission
                  mstore(
                      add(0x20, commissionInfo),
                      or(
                          eq(flag, TO_TOKEN_COMMISSION),
                          eq(flag, TO_TOKEN_COMMISSION_DUAL)
                      )
                  ) // isToTokenCommission
                  mstore(
                      add(0x40, commissionInfo),
                      shr(160, and(commissionData, _COMMISSION_RATE_MASK))
                  ) //commissionRate1
                  mstore(
                      add(0x60, commissionInfo),
                      and(commissionData, _ADDRESS_MASK)
                  ) //referrerAddress1
                  commissionData := calldataload(sub(calldatasize(), 0x40))
                  mstore(
                      add(0xe0, commissionInfo),
                      gt(and(commissionData, _TO_B_COMMISSION_MASK), 0) //isToBCommission
                  )
                  mstore(
                      add(0x80, commissionInfo),
                      and(commissionData, _ADDRESS_MASK) //token
                  )
                  switch eq(isDualreferrers, 1)
                  case 1 {
                      let commissionData2 := calldataload(sub(calldatasize(), 0x60))
                      mstore(
                          add(0xa0, commissionInfo),
                          shr(160, and(commissionData2, _COMMISSION_RATE_MASK))
                      ) //commissionRate2
                      mstore(
                          add(0xc0, commissionInfo),
                          and(commissionData2, _ADDRESS_MASK)
                      ) //referrerAddress2
                  }
                  default {
                      mstore(add(0xa0, commissionInfo), 0) //commissionRate2
                      mstore(add(0xc0, commissionInfo), 0) //referrerAddress2
                  }
              }
          }
          function _getBalanceOf(
              address token,
              address user
          ) internal returns (uint256 amount) {
              assembly {
                  function _revertWithReason(m, len) {
                      mstore(
                          0,
                          0x08c379a000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(
                          0x20,
                          0x0000002000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(0x40, m)
                      revert(0, len)
                  }
                  switch eq(token, _ETH)
                  case 1 {
                      amount := balance(user)
                  }
                  default {
                      let freePtr := mload(0x40)
                      mstore(0x40, add(freePtr, 0x24))
                      mstore(
                          freePtr,
                          0x70a0823100000000000000000000000000000000000000000000000000000000
                      ) //balanceOf
                      mstore(add(freePtr, 0x04), user)
                      let success := staticcall(gas(), token, freePtr, 0x24, 0, 0x20)
                      if eq(success, 0) {
                          _revertWithReason(
                              0x000000146765742062616c616e63654f66206661696c65640000000000000000,
                              0x58
                          )
                      }
                      amount := mload(0x00)
                  }
              }
          }
          function _doCommissionFromToken(
              CommissionInfo memory commissionInfo,
              address payer,
              address receiver,
              uint256 inputAmount
          ) internal override returns (address, uint256) {
              if (commissionInfo.isToTokenCommission) {
                  return (
                      address(this),
                      _getBalanceOf(commissionInfo.token, address(this))
                  );
              }
              if (!commissionInfo.isFromTokenCommission) {
                  return (address(receiver), 0);
              }
              assembly ("memory-safe") {
                  // https://github.com/Vectorized/solady/blob/701406e8126cfed931645727b274df303fbcd94d/src/utils/FixedPointMathLib.sol#L595
                  function _mulDiv(x, y, d) -> z {
                      z := mul(x, y)
                      // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
                      if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                          mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                          revert(0x1c, 0x04)
                      }
                      z := div(z, d)
                  }
                  function _safeSub(x, y) -> z {
                      if lt(x, y) {
                          mstore(0x00, 0x46e72d03) // `SafeSubFailed()`.
                          revert(0x1c, 0x04)
                      }
                      z := sub(x, y)
                  }
                  // a << 8 | b << 4 | c => 0xabc
                  function _getStatus(token, isToB, hasNextRefer) -> d {
                      let a := mul(eq(token, _ETH), 256)
                      let b := mul(isToB, 16)
                      let c := hasNextRefer
                      d := add(a, add(b, c))
                  }
                  function _revertWithReason(m, len) {
                      mstore(
                          0,
                          0x08c379a000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(
                          0x20,
                          0x0000002000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(0x40, m)
                      revert(0, len)
                  }
                  function _sendETH(to, amount) {
                      let success := call(gas(), to, amount, 0, 0, 0, 0)
                      if eq(success, 0) {
                          _revertWithReason(
                              0x0000001c20636f6d6d697373696f6e2077697468206574686572206572726f72, //commission with ether error
                              0x60
                          )
                      }
                  }
                  function _claimToken(token, _payer, to, amount) {
                      let freePtr := mload(0x40)
                      mstore(0x40, add(freePtr, 0x84))
                      mstore(
                          freePtr,
                          0x0a5ea46600000000000000000000000000000000000000000000000000000000
                      ) // claimTokens
                      mstore(add(freePtr, 0x04), token)
                      mstore(add(freePtr, 0x24), _payer)
                      mstore(add(freePtr, 0x44), to)
                      mstore(add(freePtr, 0x64), amount)
                      let success := call(
                          gas(),
                          _APPROVE_PROXY,
                          0,
                          freePtr,
                          0x84,
                          0,
                          0
                      )
                      if eq(success, 0) {
                          _revertWithReason(
                              0x00000013636c61696d20746f6b656e73206661696c6564000000000000000000,
                              0x57
                          )
                      }
                  }
                  // get balance, then scale amount1, amount2 according to balance
                  function _sendTokenWithinBalance(token, to1, amount1, to2, amount2)
                      -> amount1Scaled, amount2Scaled
                  {
                      let freePtr := mload(0x40)
                      mstore(0x40, add(freePtr, 0x48))
                      mstore(
                          freePtr,
                          0xa9059cbba9059cbb70a082310000000000000000000000000000000000000000
                      ) // transfer transfer balanceOf
                      // balanceOf
                      mstore(add(freePtr, 0x0c), address())
                      let success := staticcall(
                          gas(),
                          token,
                          add(freePtr, 0x08),
                          0x24,
                          0,
                          0x20
                      )
                      if eq(success, 0) {
                          _revertWithReason(
                              0x000000146765742062616c616e63654f66206661696c65640000000000000000,
                              0x58
                          )
                      }
                      let balanceAfter := mload(0x00)
                      let amountTotal := add(amount1, amount2)
                      amount1Scaled := _mulDiv(
                          _mulDiv(amount1, WAD, amountTotal),
                          balanceAfter,
                          WAD
                      ) // WARNING: Precision issues may also exist!!
                      if gt(amount1Scaled, balanceAfter) {
                          _revertWithReason(
                              0x00000015696e76616c696420616d6f756e74315363616c656400000000000000,
                              0x59
                          ) //invalid amount1Scaled
                      }
                      mstore(add(freePtr, 0x08), to1)
                      mstore(add(freePtr, 0x28), amount1Scaled)
                      success := call(
                          gas(),
                          token,
                          0,
                          add(freePtr, 0x4),
                          0x44,
                          0,
                          0x20
                      )
                      // https://github.com/transmissions11/solmate/blob/e5e0ed64c75e74974151780884e59071d026d84e/src/utils/SafeTransferLib.sol#L54
                      if and(
                          iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))),
                          success
                      ) {
                          success := iszero(
                              or(iszero(extcodesize(token)), returndatasize())
                          )
                      }
                      if eq(success, 0) {
                          _revertWithReason(
                              0x0000001b7472616e7366657220746f6b656e2072656665726572206661696c00,
                              0x5f
                          ) //transfer token referrer fail
                      }
                      if gt(to2, 0) {
                          amount2Scaled := _safeSub(balanceAfter, amount1Scaled)
                          mstore(add(freePtr, 0x04), to2)
                          mstore(add(freePtr, 0x24), amount2Scaled)
                          success := call(gas(), token, 0, freePtr, 0x44, 0, 0x20)
                          // https://github.com/transmissions11/solmate/blob/e5e0ed64c75e74974151780884e59071d026d84e/src/utils/SafeTransferLib.sol#L54
                          if and(
                              iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))),
                              success
                          ) {
                              success := iszero(
                                  or(iszero(extcodesize(token)), returndatasize())
                              )
                          }
                          if eq(success, 0) {
                              _revertWithReason(
                                  0x0000001b7472616e7366657220746f6b656e2072656665726572206661696c00,
                                  0x5f
                              ) //transfer token referrer fail
                          }
                      }
                  }
                  function _emitCommissionFromToken(token, amount, referrer) {
                      let freePtr := mload(0x40)
                      mstore(0x40, add(freePtr, 0x60))
                      mstore(freePtr, token)
                      mstore(add(freePtr, 0x20), amount)
                      mstore(add(freePtr, 0x40), referrer)
                      log1(
                          freePtr,
                          0x60,
                          0x0d3b1268ca3dbb6d3d8a0ea35f44f8f9d58cf578d732680b71b6904fb2733e0d
                      ) //emit CommissionFromTokenRecord(address,uint256,address)
                  }
                  let token, status
                  {
                      token := mload(add(commissionInfo, 0x80))
                      let isToB := mload(add(commissionInfo, 0xe0))
                      let hasNextRefer := gt(mload(add(commissionInfo, 0xa0)), 0)
                      status := _getStatus(token, isToB, hasNextRefer)
                  }
                  let referrer1, referrer2, amount1, amount2
                  {
                      let rate1 := mload(add(commissionInfo, 0x40))
                      let rate2 := mload(add(commissionInfo, 0xa0))
                      // let totalRate := add(rate, rate2)
                      if gt(add(rate1, rate2), commissionRateLimit) {
                          _revertWithReason(
                              0x0000001b6572726f7220636f6d6d697373696f6e2072617465206c696d697400,
                              0x5f
                          ) //"error commission rate limit"
                      }
                      referrer1 := mload(add(commissionInfo, 0x60))
                      amount1 := div(
                          mul(inputAmount, rate1),
                          sub(DENOMINATOR, add(rate1, rate2))
                      )
                      referrer2 := mload(add(commissionInfo, 0xc0))
                      amount2 := div(
                          mul(inputAmount, rate2),
                          sub(DENOMINATOR, add(rate1, rate2))
                      )
                  }
                  switch status
                  case 0x100 {
                      _sendETH(referrer1, amount1)
                      _emitCommissionFromToken(_ETH, amount1, referrer1)
                  }
                  case 0x101 {
                      _sendETH(referrer1, amount1)
                      _emitCommissionFromToken(_ETH, amount1, referrer1)
                      _sendETH(referrer2, amount2)
                      _emitCommissionFromToken(_ETH, amount2, referrer2)
                  }
                  case 0x110 {
                      _sendETH(referrer1, amount1)
                      _emitCommissionFromToken(_ETH, amount1, referrer1)
                  }
                  case 0x111 {
                      _sendETH(referrer1, amount1)
                      _emitCommissionFromToken(_ETH, amount1, referrer1)
                      _sendETH(referrer2, amount2)
                      _emitCommissionFromToken(_ETH, amount2, referrer2)
                  }
                  case 0x000 {
                      _claimToken(token, payer, referrer1, amount1)
                      _emitCommissionFromToken(token, amount1, referrer1)
                  }
                  case 0x001 {
                      _claimToken(token, payer, referrer1, amount1)
                      _emitCommissionFromToken(token, amount1, referrer1)
                      _claimToken(token, payer, referrer2, amount2)
                      _emitCommissionFromToken(token, amount2, referrer2)
                  }
                  case 0x010 {
                      _claimToken(token, payer, address(), amount1)
                      // considering the tax token, we first transfer it into dexrouter, then check balance, after that
                      // scaled amount accordingly
                      let amount1Scaled, amount2Scaled := _sendTokenWithinBalance(
                          token,
                          referrer1,
                          amount1,
                          0,
                          0
                      )
                      _emitCommissionFromToken(token, amount1Scaled, referrer1)
                  }
                  case 0x011 {
                      _claimToken(token, payer, address(), add(amount1, amount2))
                      // considering the tax token, we first transfer it into dexrouter, then check balance, after that
                      // scaled amount accordingly
                      let amount1Scaled, amount2Scaled := _sendTokenWithinBalance(
                          token,
                          referrer1,
                          amount1,
                          referrer2,
                          amount2
                      )
                      _emitCommissionFromToken(token, amount1Scaled, referrer1)
                      _emitCommissionFromToken(token, amount2Scaled, referrer2)
                  }
                  default {
                      _revertWithReason(
                          0x0000000e696e76616c6964207374617475730000000000000000000000000000,
                          0x52
                      ) // invalid status
                  }
              }
              return (address(receiver), 0);
          }
          function _doCommissionToToken(
              CommissionInfo memory commissionInfo,
              address receiver,
              uint256 balanceBefore
          ) internal override returns (uint256 amount) {
              if (!commissionInfo.isToTokenCommission) {
                  return 0;
              }
              assembly ("memory-safe") {
                  function _revertWithReason(m, len) {
                      mstore(
                          0,
                          0x08c379a000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(
                          0x20,
                          0x0000002000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(0x40, m)
                      revert(0, len)
                  }
                  let rate := mload(add(commissionInfo, 0x40))
                  let rate2 := mload(add(commissionInfo, 0xa0))
                  if gt(add(rate, rate2), commissionRateLimit) {
                      _revertWithReason(
                          0x0000001b6572726f7220636f6d6d697373696f6e2072617465206c696d697400,
                          0x5f
                      ) //"error commission rate limit"
                  }
                  let token := mload(add(commissionInfo, 0x80))
                  let referrer := mload(add(commissionInfo, 0x60))
                  let eventPtr := mload(0x40)
                  mstore(0x40, add(eventPtr, 0x60))
                  switch eq(token, _ETH)
                  case 1 {
                      if lt(selfbalance(), balanceBefore) {
                          _revertWithReason(
                              0x0000000a737562206661696c6564000000000000000000000000000000000000,
                              0x4d
                          ) // sub failed
                      }
                      let inputAmount := sub(selfbalance(), balanceBefore)
                      amount := div(mul(inputAmount, rate), DENOMINATOR)
                      let success := call(gas(), referrer, amount, 0, 0, 0, 0)
                      if eq(success, 0) {
                          _revertWithReason(
                              0x000000197472616e73666572206574682072656665726572206661696c000000,
                              0x5d
                          ) // transfer eth referrer fail
                      }
                      mstore(eventPtr, token)
                      mstore(add(eventPtr, 0x20), amount)
                      mstore(add(eventPtr, 0x40), referrer)
                      log1(
                          eventPtr,
                          0x60,
                          0xf171268de859ec269c52bbfac94dcb7715e784de194342abb284bf34fd30b32d
                      ) //emit CommissionToTokenRecord(address,uint256,address)
                      if gt(rate2, 0) {
                          let referrer2 := mload(add(commissionInfo, 0xc0))
                          let amount2 := div(mul(inputAmount, rate2), DENOMINATOR)
                          amount := add(amount, amount2)
                          let success2 := call(gas(), referrer2, amount2, 0, 0, 0, 0)
                          if eq(success2, 0) {
                              _revertWithReason(
                                  0x000000197472616e73666572206574682072656665726572206661696c000000,
                                  0x5d
                              ) // transfer eth referrer fail
                          }
                          mstore(eventPtr, token)
                          mstore(add(eventPtr, 0x20), amount2)
                          mstore(add(eventPtr, 0x40), referrer2)
                          log1(
                              eventPtr,
                              0x60,
                              0xf171268de859ec269c52bbfac94dcb7715e784de194342abb284bf34fd30b32d
                          ) //emit CommissionToTokenRecord(address,uint256,address)
                      }
                      // The purpose of using shr(96, shl(96, receiver)) is to handle an edge case where the original order ID combined with the receiver address might be passed into this call. This combined value would be longer than a standard address length, which could cause the transfer to fail. The bit-shifting operations ensure we extract only the proper address portion by:
                      // First shifting left by 96 bits (shl(96, receiver)) to align the address
                      // Then shifting right by 96 bits (shr(96, ...)) to isolate the correct address value
                      // This prevents potential failures by enforcing the correct address length.
                      success := call(
                          gas(),
                          shr(96, shl(96, receiver)),
                          sub(inputAmount, amount),
                          0,
                          0,
                          0,
                          0
                      )
                      if eq(success, 0) {
                          _revertWithReason(
                              0x0000001a7472616e7366657220657468207265636569766572206661696c0000,
                              0x5e
                          ) // transfer eth receiver fail
                      }
                  }
                  default {
                      let freePtr := mload(0x40)
                      mstore(0x40, add(freePtr, 0x4c))
                      mstore(
                          freePtr,
                          0xa9059cbba9059cbba9059cbb70a0823100000000000000000000000000000000
                      ) // transfer transfer transfer balanceOf
                      mstore(add(freePtr, 0x10), address())
                      let success := staticcall(
                          gas(),
                          token,
                          add(freePtr, 0xc),
                          0x24,
                          0,
                          0x20
                      )
                      if eq(success, 0) {
                          _revertWithReason(
                              0x000000146765742062616c616e63654f66206661696c65640000000000000000,
                              0x58
                          )
                      }
                      let balanceAfter := mload(0x00)
                      if lt(balanceAfter, balanceBefore) {
                          _revertWithReason(
                              0x0000000a737562206661696c6564000000000000000000000000000000000000,
                              0x4d
                          ) // sub failed
                      }
                      let inputAmount := sub(balanceAfter, balanceBefore)
                      amount := div(mul(inputAmount, rate), DENOMINATOR)
                      mstore(add(freePtr, 0x0c), referrer)
                      mstore(add(freePtr, 0x2c), amount)
                      success := call(
                          gas(),
                          token,
                          0,
                          add(freePtr, 0x8),
                          0x44,
                          0,
                          0x20
                      )
                      if and(
                          iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))),
                          success
                      ) {
                          success := iszero(
                              or(iszero(extcodesize(token)), returndatasize())
                          )
                      }
                      if eq(success, 0) {
                          _revertWithReason(
                              0x0000001b7472616e7366657220746f6b656e2072656665726572206661696c00,
                              0x5f
                          ) //transfer token referrer fail
                      }
                      mstore(eventPtr, token)
                      mstore(add(eventPtr, 0x20), amount)
                      mstore(add(eventPtr, 0x40), referrer)
                      log1(
                          eventPtr,
                          0x60,
                          0xf171268de859ec269c52bbfac94dcb7715e784de194342abb284bf34fd30b32d
                      ) //emit CommissionToTokenRecord(address,uint256,address)
                      if gt(rate2, 0) {
                          let referrer2 := mload(add(commissionInfo, 0xc0))
                          let amount2 := div(mul(inputAmount, rate2), DENOMINATOR)
                          amount := add(amount, amount2)
                          mstore(add(freePtr, 0x08), referrer2)
                          mstore(add(freePtr, 0x28), amount2)
                          success := call(
                              gas(),
                              token,
                              0,
                              add(freePtr, 0x4),
                              0x44,
                              0,
                              0x20
                          )
                          if and(
                              iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))),
                              success
                          ) {
                              success := iszero(
                                  or(iszero(extcodesize(token)), returndatasize())
                              )
                          }
                          if eq(success, 0) {
                              _revertWithReason(
                                  0x0000001b7472616e7366657220746f6b656e2072656665726572206661696c00,
                                  0x5f
                              ) //transfer token referrer fail
                          }
                          /// @notice emit ETH address is from commissionInfo.token, so it is 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
                          mstore(eventPtr, token)
                          mstore(add(eventPtr, 0x20), amount2)
                          mstore(add(eventPtr, 0x40), referrer2)
                          log1(
                              eventPtr,
                              0x60,
                              0xf171268de859ec269c52bbfac94dcb7715e784de194342abb284bf34fd30b32d
                          ) //emit CommissionToTokenRecord(address,uint256,address)
                      }
                      // The purpose of using shr(96, shl(96, receiver)) is to handle an edge case where the original order ID combined with the receiver address might be passed into this call. This combined value would be longer than a standard address length, which could cause the transfer to fail. The bit-shifting operations ensure we extract only the proper address portion by:
                      // First shifting left by 96 bits (shl(96, receiver)) to align the address
                      // Then shifting right by 96 bits (shr(96, ...)) to isolate the correct address value
                      // This prevents potential failures by enforcing the correct address length.
                      mstore(add(freePtr, 0x04), shr(96, shl(96, receiver)))
                      mstore(add(freePtr, 0x24), sub(inputAmount, amount))
                      success := call(gas(), token, 0, freePtr, 0x44, 0, 0x20)
                      if and(
                          iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))),
                          success
                      ) {
                          success := iszero(
                              or(iszero(extcodesize(token)), returndatasize())
                          )
                      }
                      if eq(success, 0) {
                          _revertWithReason(
                              0x0000001c7472616e7366657220746f6b656e207265636569766572206661696c,
                              0x60
                          ) //transfer token receiver fail
                      }
                  }
              }
          }
          function _validateCommissionInfo(
              CommissionInfo memory commissionInfo,
              address fromToken,
              address toToken
          ) internal pure override {
              require(
                  (commissionInfo.isFromTokenCommission && commissionInfo.token == fromToken)
                      || (commissionInfo.isToTokenCommission && commissionInfo.token == toToken)
                      || (!commissionInfo.isFromTokenCommission && !commissionInfo.isToTokenCommission),
                  "Invalid commission info"
              );
          }
      }/// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /// @title Base contract with common permit handling logics
      abstract contract CommonUtils {
          address internal constant _ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
          uint256 internal constant _ADDRESS_MASK =
              0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
          uint256 internal constant _REVERSE_MASK =
              0x8000000000000000000000000000000000000000000000000000000000000000;
          uint256 internal constant _ORDER_ID_MASK =
              0xffffffffffffffffffffffff0000000000000000000000000000000000000000;
          uint256 internal constant _WEIGHT_MASK =
              0x00000000000000000000ffff0000000000000000000000000000000000000000;
          uint256 internal constant _CALL_GAS_LIMIT = 5000;
          uint256 internal constant ORIGIN_PAYER =
              0x3ca20afc2ccc0000000000000000000000000000000000000000000000000000;
          uint256 internal constant SWAP_AMOUNT =
              0x00000000000000000000000000000000ffffffffffffffffffffffffffffffff;
          uint256 internal constant _WETH_MASK =
              0x4000000000000000000000000000000000000000000000000000000000000000;
          uint256 internal constant _ONE_FOR_ZERO_MASK = 1 << 255; // Mask for identifying if the swap is one-for-zero
          uint256 internal constant _WETH_UNWRAP_MASK = 1 << 253; // Mask for identifying if WETH should be unwrapped to ETH
          /// @dev WETH address is network-specific and needs to be changed before deployment.
          /// It can not be moved to immutable as immutables are not supported in assembly
          // ETH:     C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
          // BSC:     bb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c
          // OEC:     8f8526dbfd6e38e3d8307702ca8469bae6c56c15
          // LOCAL:   5FbDB2315678afecb367f032d93F642f64180aa3
          // LOCAL2:  02121128f1Ed0AdA5Df3a87f42752fcE4Ad63e59
          // POLYGON: 0d500B1d8E8eF31E21C99d1Db9A6444d3ADf1270
          // AVAX:    B31f66AA3C1e785363F0875A1B74E27b85FD66c7
          // FTM:     21be370D5312f44cB42ce377BC9b8a0cEF1A4C83
          // ARB:     82aF49447D8a07e3bd95BD0d56f35241523fBab1
          // OP:      4200000000000000000000000000000000000006
          // CRO:     5C7F8A570d578ED84E63fdFA7b1eE72dEae1AE23
          // CFX:     14b2D3bC65e74DAE1030EAFd8ac30c533c976A9b
          // POLYZK   4F9A0e7FD2Bf6067db6994CF12E4495Df938E6e9
          address public constant _WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
          // address public constant _WETH = 0x5FbDB2315678afecb367f032d93F642f64180aa3;    // hardhat1
          // address public constant _WETH = 0x707531c9999AaeF9232C8FEfBA31FBa4cB78d84a;    // hardhat2
          // ETH:     70cBb871E8f30Fc8Ce23609E9E0Ea87B6b222F58
          // ETH-DEV:02D0131E5Cc86766e234EbF1eBe33444443b98a3
          // BSC:     d99cAE3FAC551f6b6Ba7B9f19bDD316951eeEE98
          // OEC:     E9BBD6eC0c9Ca71d3DcCD1282EE9de4F811E50aF
          // LOCAL:   e7f1725E7734CE288F8367e1Bb143E90bb3F0512
          // LOCAL2:  95D7fF1684a8F2e202097F28Dc2e56F773A55D02
          // POLYGON: 40aA958dd87FC8305b97f2BA922CDdCa374bcD7f
          // AVAX:    70cBb871E8f30Fc8Ce23609E9E0Ea87B6b222F58
          // FTM:     E9BBD6eC0c9Ca71d3DcCD1282EE9de4F811E50aF
          // ARB:     E9BBD6eC0c9Ca71d3DcCD1282EE9de4F811E50aF
          // OP:      100F3f74125C8c724C7C0eE81E4dd5626830dD9a
          // CRO:     E9BBD6eC0c9Ca71d3DcCD1282EE9de4F811E50aF
          // CFX:     100F3f74125C8c724C7C0eE81E4dd5626830dD9a
          // POLYZK   1b5d39419C268b76Db06DE49e38B010fbFB5e226
          address public constant _APPROVE_PROXY = 0x70cBb871E8f30Fc8Ce23609E9E0Ea87B6b222F58;
          // address public constant _APPROVE_PROXY = 0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512;    // hardhat1
          // address public constant _APPROVE_PROXY = 0x2538a10b7fFb1B78c890c870FC152b10be121f04;    // hardhat2
          // ETH:     5703B683c7F928b721CA95Da988d73a3299d4757
          // BSC:     0B5f474ad0e3f7ef629BD10dbf9e4a8Fd60d9A48
          // OEC:     d99cAE3FAC551f6b6Ba7B9f19bDD316951eeEE98
          // LOCAL:   D49a0e9A4CD5979aE36840f542D2d7f02C4817Be
          // LOCAL2:  11457D5b1025D162F3d9B7dBeab6E1fBca20e043
          // POLYGON: f332761c673b59B21fF6dfa8adA44d78c12dEF09
          // AVAX:    3B86917369B83a6892f553609F3c2F439C184e31
          // FTM:     40aA958dd87FC8305b97f2BA922CDdCa374bcD7f
          // ARB:     d99cAE3FAC551f6b6Ba7B9f19bDD316951eeEE98
          // OP:      40aA958dd87FC8305b97f2BA922CDdCa374bcD7f
          // CRO:     40aA958dd87FC8305b97f2BA922CDdCa374bcD7f
          // CFX:     40aA958dd87FC8305b97f2BA922CDdCa374bcD7f
          // POLYZK   d2F0aC2012C8433F235c8e5e97F2368197DD06C7
          address public constant _WNATIVE_RELAY = 0x5703B683c7F928b721CA95Da988d73a3299d4757;
          // address public constant _WNATIVE_RELAY = 0x0B306BF915C4d645ff596e518fAf3F9669b97016;   // hardhat1
          // address public constant _WNATIVE_RELAY = 0x6A47346e722937B60Df7a1149168c0E76DD6520f;   // hardhat2
          event OrderRecord(
              address fromToken,
              address toToken,
              address sender,
              uint256 fromAmount,
              uint256 returnAmount
          );
          event SwapOrderId(uint256 id);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /// @title Library for reverting with custom errors efficiently
      /// @notice Contains functions for reverting with custom errors with different argument types efficiently
      /// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with
      /// `CustomError.selector.revertWith()`
      /// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately
      library CustomRevert {
          /// @dev ERC-7751 error for wrapping bubbled up reverts
          error WrappedError(address target, bytes4 selector, bytes reason, bytes details);
          /// @dev Reverts with the selector of a custom error in the scratch space
          function revertWith(bytes4 selector) internal pure {
              assembly ("memory-safe") {
                  mstore(0, selector)
                  revert(0, 0x04)
              }
          }
          /// @dev Reverts with a custom error with an address argument in the scratch space
          function revertWith(bytes4 selector, address addr) internal pure {
              assembly ("memory-safe") {
                  mstore(0, selector)
                  mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
                  revert(0, 0x24)
              }
          }
          /// @dev Reverts with a custom error with an int24 argument in the scratch space
          function revertWith(bytes4 selector, int24 value) internal pure {
              assembly ("memory-safe") {
                  mstore(0, selector)
                  mstore(0x04, signextend(2, value))
                  revert(0, 0x24)
              }
          }
          /// @dev Reverts with a custom error with a uint160 argument in the scratch space
          function revertWith(bytes4 selector, uint160 value) internal pure {
              assembly ("memory-safe") {
                  mstore(0, selector)
                  mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff))
                  revert(0, 0x24)
              }
          }
          /// @dev Reverts with a custom error with two int24 arguments
          function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure {
              assembly ("memory-safe") {
                  let fmp := mload(0x40)
                  mstore(fmp, selector)
                  mstore(add(fmp, 0x04), signextend(2, value1))
                  mstore(add(fmp, 0x24), signextend(2, value2))
                  revert(fmp, 0x44)
              }
          }
          /// @dev Reverts with a custom error with two uint160 arguments
          function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure {
              assembly ("memory-safe") {
                  let fmp := mload(0x40)
                  mstore(fmp, selector)
                  mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
                  mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
                  revert(fmp, 0x44)
              }
          }
          /// @dev Reverts with a custom error with two address arguments
          function revertWith(bytes4 selector, address value1, address value2) internal pure {
              assembly ("memory-safe") {
                  let fmp := mload(0x40)
                  mstore(fmp, selector)
                  mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
                  mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
                  revert(fmp, 0x44)
              }
          }
          /// @notice bubble up the revert message returned by a call and revert with a wrapped ERC-7751 error
          /// @dev this method can be vulnerable to revert data bombs
          function bubbleUpAndRevertWith(
              address revertingContract,
              bytes4 revertingFunctionSelector,
              bytes4 additionalContext
          ) internal pure {
              bytes4 wrappedErrorSelector = WrappedError.selector;
              assembly ("memory-safe") {
                  // Ensure the size of the revert data is a multiple of 32 bytes
                  let encodedDataSize := mul(div(add(returndatasize(), 31), 32), 32)
                  let fmp := mload(0x40)
                  // Encode wrapped error selector, address, function selector, offset, additional context, size, revert reason
                  mstore(fmp, wrappedErrorSelector)
                  mstore(add(fmp, 0x04), and(revertingContract, 0xffffffffffffffffffffffffffffffffffffffff))
                  mstore(
                      add(fmp, 0x24),
                      and(revertingFunctionSelector, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                  )
                  // offset revert reason
                  mstore(add(fmp, 0x44), 0x80)
                  // offset additional context
                  mstore(add(fmp, 0x64), add(0xa0, encodedDataSize))
                  // size revert reason
                  mstore(add(fmp, 0x84), returndatasize())
                  // revert reason
                  returndatacopy(add(fmp, 0xa4), 0, returndatasize())
                  // size additional context
                  mstore(add(fmp, add(0xa4, encodedDataSize)), 0x04)
                  // additional context
                  mstore(
                      add(fmp, add(0xc4, encodedDataSize)),
                      and(additionalContext, 0xffffffff00000000000000000000000000000000000000000000000000000000)
                  )
                  revert(fmp, add(0xe4, encodedDataSize))
              }
          }
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      /// @title Base contract with common payable logics
      abstract contract EthReceiver {
        receive() external payable {
          // solhint-disable-next-line avoid-tx-origin
          require(msg.sender != tx.origin, "ETH deposit rejected");
        }
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      library PMMLib {
        // ============ Struct ============
        struct PMMSwapRequest {
            uint256 pathIndex;
            address payer;
            address fromToken;
            address toToken;
            uint256 fromTokenAmountMax;
            uint256 toTokenAmountMax;
            uint256 salt;
            uint256 deadLine;
            bool isPushOrder;
            bytes extension;
            // address marketMaker;
            // uint256 subIndex;
            // bytes signature;
            // uint256 source;  1byte type + 1byte bool(reverse) + 0...0 + 20 bytes address
        }
        struct PMMBaseRequest {
          uint256 fromTokenAmount;
          uint256 minReturnAmount;
          uint256 deadLine;
          bool fromNative;
          bool toNative;
        }
        enum PMM_ERROR {
            NO_ERROR,
            INVALID_OPERATOR,
            QUOTE_EXPIRED,
            ORDER_CANCELLED_OR_FINALIZED,
            REMAINING_AMOUNT_NOT_ENOUGH,
            INVALID_AMOUNT_REQUEST,
            FROM_TOKEN_PAYER_ERROR,
            TO_TOKEN_PAYER_ERROR,
            WRONG_FROM_TOKEN
        }
        event PMMSwap(
          uint256 pathIndex,
          uint256 subIndex,
          uint256 errorCode
        );
        error PMMErrorCode(uint256 errorCode);
      }/// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      library RevertReasonForwarder {
          function reRevert() internal pure {
              // bubble up revert reason from latest external call
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let ptr := mload(0x40)
                  returndatacopy(ptr, 0, returndatasize())
                  revert(ptr, returndatasize())
              }
          }
      }/// SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      library RouterErrors {
          error ReturnAmountIsNotEnough();
          error InvalidMsgValue();
          error ERC20TransferFailed();
          error EmptyPools();
          error InvalidFromToken();
          error MsgValuedNotRequired();
      }/// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import {CustomRevert} from "./CustomRevert.sol";
      /**
       * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       *
       * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
       * all math on `uint256` and `int256` and then downcasting.
       */
      library SafeCast {
          error SafeCastOverflow();
          using CustomRevert for bytes4;
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           *
           * _Available since v4.7._
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           *
           * _Available since v4.7._
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           *
           * _Available since v4.7._
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           *
           * _Available since v4.2._
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           *
           * _Available since v4.7._
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           *
           * _Available since v4.7._
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           *
           * _Available since v4.7._
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           *
           * _Available since v4.7._
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           *
           * _Available since v4.7._
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           *
           * _Available since v4.7._
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           *
           * _Available since v4.7._
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           *
           * _Available since v4.7._
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           *
           * _Available since v4.7._
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           *
           * _Available since v4.7._
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           *
           * _Available since v4.7._
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           *
           * _Available since v2.5._
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
              return uint128(value);
          }
          /// @notice Cast a int128 to a uint128, revert on overflow or underflow
          /// @param x The int128 to be casted
          /// @return y The casted integer, now type uint128
          function toUint128(int128 x) internal pure returns (uint128 y) {
              if (x < 0) SafeCastOverflow.selector.revertWith();
              y = uint128(x);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           *
           * _Available since v4.7._
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           *
           * _Available since v4.7._
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           *
           * _Available since v4.7._
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           *
           * _Available since v4.2._
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           *
           * _Available since v4.7._
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           *
           * _Available since v4.7._
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           *
           * _Available since v4.7._
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           *
           * _Available since v2.5._
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           *
           * _Available since v4.7._
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           *
           * _Available since v4.7._
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           *
           * _Available since v4.7._
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           *
           * _Available since v2.5._
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           *
           * _Available since v4.7._
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           *
           * _Available since v2.5._
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           *
           * _Available since v2.5._
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           *
           * _Available since v3.0._
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              require(value >= 0, "SafeCast: value must be positive");
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           *
           * _Available since v4.7._
           */
          function toInt248(int256 value) internal pure returns (int248) {
              require(value >= type(int248).min && value <= type(int248).max, "SafeCast: value doesn't fit in 248 bits");
              return int248(value);
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           *
           * _Available since v4.7._
           */
          function toInt240(int256 value) internal pure returns (int240) {
              require(value >= type(int240).min && value <= type(int240).max, "SafeCast: value doesn't fit in 240 bits");
              return int240(value);
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           *
           * _Available since v4.7._
           */
          function toInt232(int256 value) internal pure returns (int232) {
              require(value >= type(int232).min && value <= type(int232).max, "SafeCast: value doesn't fit in 232 bits");
              return int232(value);
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           *
           * _Available since v4.7._
           */
          function toInt224(int256 value) internal pure returns (int224) {
              require(value >= type(int224).min && value <= type(int224).max, "SafeCast: value doesn't fit in 224 bits");
              return int224(value);
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           *
           * _Available since v4.7._
           */
          function toInt216(int256 value) internal pure returns (int216) {
              require(value >= type(int216).min && value <= type(int216).max, "SafeCast: value doesn't fit in 216 bits");
              return int216(value);
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           *
           * _Available since v4.7._
           */
          function toInt208(int256 value) internal pure returns (int208) {
              require(value >= type(int208).min && value <= type(int208).max, "SafeCast: value doesn't fit in 208 bits");
              return int208(value);
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           *
           * _Available since v4.7._
           */
          function toInt200(int256 value) internal pure returns (int200) {
              require(value >= type(int200).min && value <= type(int200).max, "SafeCast: value doesn't fit in 200 bits");
              return int200(value);
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           *
           * _Available since v4.7._
           */
          function toInt192(int256 value) internal pure returns (int192) {
              require(value >= type(int192).min && value <= type(int192).max, "SafeCast: value doesn't fit in 192 bits");
              return int192(value);
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           *
           * _Available since v4.7._
           */
          function toInt184(int256 value) internal pure returns (int184) {
              require(value >= type(int184).min && value <= type(int184).max, "SafeCast: value doesn't fit in 184 bits");
              return int184(value);
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           *
           * _Available since v4.7._
           */
          function toInt176(int256 value) internal pure returns (int176) {
              require(value >= type(int176).min && value <= type(int176).max, "SafeCast: value doesn't fit in 176 bits");
              return int176(value);
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           *
           * _Available since v4.7._
           */
          function toInt168(int256 value) internal pure returns (int168) {
              require(value >= type(int168).min && value <= type(int168).max, "SafeCast: value doesn't fit in 168 bits");
              return int168(value);
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           *
           * _Available since v4.7._
           */
          function toInt160(int256 value) internal pure returns (int160) {
              require(value >= type(int160).min && value <= type(int160).max, "SafeCast: value doesn't fit in 160 bits");
              return int160(value);
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           *
           * _Available since v4.7._
           */
          function toInt152(int256 value) internal pure returns (int152) {
              require(value >= type(int152).min && value <= type(int152).max, "SafeCast: value doesn't fit in 152 bits");
              return int152(value);
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           *
           * _Available since v4.7._
           */
          function toInt144(int256 value) internal pure returns (int144) {
              require(value >= type(int144).min && value <= type(int144).max, "SafeCast: value doesn't fit in 144 bits");
              return int144(value);
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           *
           * _Available since v4.7._
           */
          function toInt136(int256 value) internal pure returns (int136) {
              require(value >= type(int136).min && value <= type(int136).max, "SafeCast: value doesn't fit in 136 bits");
              return int136(value);
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           *
           * _Available since v3.1._
           */
          function toInt128(int256 value) internal pure returns (int128) {
              require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
              return int128(value);
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           *
           * _Available since v4.7._
           */
          function toInt120(int256 value) internal pure returns (int120) {
              require(value >= type(int120).min && value <= type(int120).max, "SafeCast: value doesn't fit in 120 bits");
              return int120(value);
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           *
           * _Available since v4.7._
           */
          function toInt112(int256 value) internal pure returns (int112) {
              require(value >= type(int112).min && value <= type(int112).max, "SafeCast: value doesn't fit in 112 bits");
              return int112(value);
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           *
           * _Available since v4.7._
           */
          function toInt104(int256 value) internal pure returns (int104) {
              require(value >= type(int104).min && value <= type(int104).max, "SafeCast: value doesn't fit in 104 bits");
              return int104(value);
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           *
           * _Available since v4.7._
           */
          function toInt96(int256 value) internal pure returns (int96) {
              require(value >= type(int96).min && value <= type(int96).max, "SafeCast: value doesn't fit in 96 bits");
              return int96(value);
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           *
           * _Available since v4.7._
           */
          function toInt88(int256 value) internal pure returns (int88) {
              require(value >= type(int88).min && value <= type(int88).max, "SafeCast: value doesn't fit in 88 bits");
              return int88(value);
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           *
           * _Available since v4.7._
           */
          function toInt80(int256 value) internal pure returns (int80) {
              require(value >= type(int80).min && value <= type(int80).max, "SafeCast: value doesn't fit in 80 bits");
              return int80(value);
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           *
           * _Available since v4.7._
           */
          function toInt72(int256 value) internal pure returns (int72) {
              require(value >= type(int72).min && value <= type(int72).max, "SafeCast: value doesn't fit in 72 bits");
              return int72(value);
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           *
           * _Available since v3.1._
           */
          function toInt64(int256 value) internal pure returns (int64) {
              require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
              return int64(value);
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           *
           * _Available since v4.7._
           */
          function toInt56(int256 value) internal pure returns (int56) {
              require(value >= type(int56).min && value <= type(int56).max, "SafeCast: value doesn't fit in 56 bits");
              return int56(value);
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           *
           * _Available since v4.7._
           */
          function toInt48(int256 value) internal pure returns (int48) {
              require(value >= type(int48).min && value <= type(int48).max, "SafeCast: value doesn't fit in 48 bits");
              return int48(value);
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           *
           * _Available since v4.7._
           */
          function toInt40(int256 value) internal pure returns (int40) {
              require(value >= type(int40).min && value <= type(int40).max, "SafeCast: value doesn't fit in 40 bits");
              return int40(value);
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           *
           * _Available since v3.1._
           */
          function toInt32(int256 value) internal pure returns (int32) {
              require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
              return int32(value);
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           *
           * _Available since v4.7._
           */
          function toInt24(int256 value) internal pure returns (int24) {
              require(value >= type(int24).min && value <= type(int24).max, "SafeCast: value doesn't fit in 24 bits");
              return int24(value);
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           *
           * _Available since v3.1._
           */
          function toInt16(int256 value) internal pure returns (int16) {
              require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
              return int16(value);
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           *
           * _Available since v3.1._
           */
          function toInt8(int256 value) internal pure returns (int8) {
              require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
              return int8(value);
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           *
           * _Available since v3.0._
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
              return int256(value);
          }
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./SafeMath.sol";
      import "./Address.sol";
      import "./RevertReasonForwarder.sol";
      import "../interfaces/IERC20.sol";
      import "../interfaces/IERC20Permit.sol";
      import "../interfaces/IDaiLikePermit.sol";
      // File @1inch/solidity-utils/contracts/libraries/[email protected]
      library SafeERC20 {
          error SafeTransferFailed();
          error SafeTransferFromFailed();
          error ForceApproveFailed();
          error SafeIncreaseAllowanceFailed();
          error SafeDecreaseAllowanceFailed();
          error SafePermitBadLength();
          // Ensures method do not revert or return boolean `true`, admits call to non-smart-contract
          function safeTransferFrom(IERC20 token, address from, address to, uint256 amount) internal {
              bytes4 selector = token.transferFrom.selector;
              bool success;
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), from)
                  mstore(add(data, 0x24), to)
                  mstore(add(data, 0x44), amount)
                  success := call(gas(), token, 0, data, 100, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 { success := gt(extcodesize(token), 0) }
                      default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) }
                  }
              }
              if (!success) revert SafeTransferFromFailed();
          }
          // Ensures method do not revert or return boolean `true`, admits call to non-smart-contract
          function safeTransfer(IERC20 token, address to, uint256 value) internal {
              if (!_makeCall(token, token.transfer.selector, to, value)) {
                  revert SafeTransferFailed();
              }
          }
          function safeApprove(IERC20 token, address spender, uint256 value) internal {
              forceApprove(token, spender, value);
          }
          // If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry
          function forceApprove(IERC20 token, address spender, uint256 value) internal {
              if (!_makeCall(token, token.approve.selector, spender, value)) {
                  if (!_makeCall(token, token.approve.selector, spender, 0) ||
                      !_makeCall(token, token.approve.selector, spender, value))
                  {
                      revert ForceApproveFailed();
                  }
              }
          }
          
          function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
              forceApprove(token, spender, allowance + value);
          }
          function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
              uint256 allowance = token.allowance(address(this), spender);
              if (value > allowance) revert SafeDecreaseAllowanceFailed();
              forceApprove(token, spender, allowance - value);
          }
          function safePermit(IERC20 token, bytes calldata permit) internal {
              bool success;
              if (permit.length == 32 * 7) {
                  success = _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
              } else if (permit.length == 32 * 8) {
                  success = _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
              } else {
                  revert SafePermitBadLength();
              }
              if (!success) RevertReasonForwarder.reRevert();
          }
          function _makeCall(IERC20 token, bytes4 selector, address to, uint256 amount) private returns(bool success) {
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let data := mload(0x40)
                  mstore(data, selector)
                  mstore(add(data, 0x04), to)
                  mstore(add(data, 0x24), amount)
                  success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 { success := gt(extcodesize(token), 0) }
                      default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) }
                  }
              }
          }
          function _makeCalldataCall(IERC20 token, bytes4 selector, bytes calldata args) private returns(bool success) {
              /// @solidity memory-safe-assembly
              assembly { // solhint-disable-line no-inline-assembly
                  let len := add(4, args.length)
                  let data := mload(0x40)
                  mstore(data, selector)
                  calldatacopy(add(data, 0x04), args.offset, args.length)
                  success := call(gas(), token, 0, data, len, 0x0, 0x20)
                  if success {
                      switch returndatasize()
                      case 0 { success := gt(extcodesize(token), 0) }
                      default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) }
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      library SafeMath {
          uint256 constant WAD = 10**18;
          uint256 constant RAY = 10**27;
          function wad() public pure returns (uint256) {
              return WAD;
          }
          function ray() public pure returns (uint256) {
              return RAY;
          }
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a, "SafeMath: addition overflow");
              return c;
          }
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              return sub(a, b, "SafeMath: subtraction overflow");
          }
          function sub(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              require(b <= a, errorMessage);
              uint256 c = a - b;
              return c;
          }
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
              if (a == 0) {
                  return 0;
              }
              uint256 c = a * b;
              require(c / a == b, "SafeMath: multiplication overflow");
              return c;
          }
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(a, b, "SafeMath: division by zero");
          }
          function div(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              // Solidity only automatically asserts when dividing by 0
              require(b > 0, errorMessage);
              uint256 c = a / b;
              // assert(a == b * c + a % b); // There is no case in which this doesn't hold
              return c;
          }
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              return mod(a, b, "SafeMath: modulo by zero");
          }
          function mod(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              require(b != 0, errorMessage);
              return a % b;
          }
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return a <= b ? a : b;
          }
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
          function sqrt(uint256 a) internal pure returns (uint256 b) {
              if (a > 3) {
                  b = a;
                  uint256 x = a / 2 + 1;
                  while (x < b) {
                      b = x;
                      x = (a / x + x) / 2;
                  }
              } else if (a != 0) {
                  b = 1;
              }
          }
          function wmul(uint256 a, uint256 b) internal pure returns (uint256) {
              return mul(a, b) / WAD;
          }
          function wmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
              return add(mul(a, b), WAD / 2) / WAD;
          }
          function rmul(uint256 a, uint256 b) internal pure returns (uint256) {
              return mul(a, b) / RAY;
          }
          function rmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
              return add(mul(a, b), RAY / 2) / RAY;
          }
          function wdiv(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(mul(a, WAD), b);
          }
          function wdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
              return add(mul(a, WAD), b / 2) / b;
          }
          function rdiv(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(mul(a, RAY), b);
          }
          function rdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
              return add(mul(a, RAY), b / 2) / b;
          }
          function wpow(uint256 x, uint256 n) internal pure returns (uint256) {
              uint256 result = WAD;
              while (n > 0) {
                  if (n % 2 != 0) {
                      result = wmul(result, x);
                  }
                  x = wmul(x, x);
                  n /= 2;
              }
              return result;
          }
          function rpow(uint256 x, uint256 n) internal pure returns (uint256) {
              uint256 result = RAY;
              while (n > 0) {
                  if (n % 2 != 0) {
                      result = rmul(result, x);
                  }
                  x = rmul(x, x);
                  n /= 2;
              }
              return result;
          }
          function divCeil(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 quotient = div(a, b);
              uint256 remainder = a - quotient * b;
              if (remainder > 0) {
                  return quotient + 1;
              } else {
                  return quotient;
              }
          }
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import {CommonUtils} from "./CommonUtils.sol";
      import {IUni} from "../interfaces/IUni.sol";
      import {IUniV3} from "../interfaces/IUniV3.sol";
      /// @title UniswapTokenInfoHelper
      /// @notice Helper functions for getting fromToken and toToken from
      /// encoded pools array of unxswap and uniswapV3Swap methods.
      /// @dev This contract will be used in DexRouter and DexRouterExactOut. So the
      /// masks are re-defined here and keep the same as in the original contracts.
      abstract contract UniswapTokenInfoHelper is CommonUtils {
          function _getUnxswapTokenInfo(bool sendValue, bytes32[] calldata pools)
              internal
              view
              returns (address fromToken, address toToken)
          {
              require(pools.length > 0, "pools must be greater than 0");
              // get fromToken
              address firstPoolAddr = address(uint160(uint256(pools[0]) & _ADDRESS_MASK));
              // default: token0 to token1; reverse: token1 to token0
              bool firstReversed = (uint256(pools[0]) & _REVERSE_MASK) != 0;
              fromToken = firstReversed ? IUni(firstPoolAddr).token1() : IUni(firstPoolAddr).token0();
              if (fromToken == _WETH && sendValue) {
                  fromToken = _ETH;
              }
              // get toToken
              bytes32 lastPool = pools[pools.length - 1];
              address lastPoolAddr = address(uint160(uint256(lastPool) & _ADDRESS_MASK));
              bool lastReversed = (uint256(lastPool) & _REVERSE_MASK) != 0;
              toToken = lastReversed ? IUni(lastPoolAddr).token0() : IUni(lastPoolAddr).token1();
              bool isWeth = (uint256(lastPool) & _WETH_MASK) != 0; // unwrap weth to eth eventually
              if (toToken == _WETH && isWeth) {
                  toToken = _ETH;
              }
          }
          function _getUniswapV3TokenInfo(bool sendValue, uint256[] calldata pools)
              internal
              view
              returns (address fromToken, address toToken)
          {
              require(pools.length > 0, "pools must be greater than 0");
              // get fromToken
              address firstPoolAddr = address(uint160(pools[0] & _ADDRESS_MASK));
              bool firstZeroForOne = (pools[0] & _ONE_FOR_ZERO_MASK) == 0;
              fromToken = firstZeroForOne ? IUniV3(firstPoolAddr).token0() : IUniV3(firstPoolAddr).token1();
              if (fromToken == _WETH && sendValue) {
                  fromToken = _ETH;
              }
              // get toToken
              uint256 lastPool = pools[pools.length - 1];
              address lastPoolAddr = address(uint160(lastPool & _ADDRESS_MASK));
              bool lastZeroForOne = (lastPool & _ONE_FOR_ZERO_MASK) == 0;
              toToken = lastZeroForOne ? IUniV3(lastPoolAddr).token1() : IUniV3(lastPoolAddr).token0();
              bool unwrapWeth = (lastPool & _WETH_UNWRAP_MASK) != 0; // unwrap weth to eth eventually
              if (toToken == _WETH && unwrapWeth) {
                  toToken = _ETH;
              }
          }
      }// SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import {SafeMath} from "./SafeMath.sol";
      import {IERC20} from "../interfaces/IERC20.sol";
      import {SafeERC20} from "./SafeERC20.sol";
      library UniversalERC20 {
          using SafeMath for uint256;
          using SafeERC20 for IERC20;
          IERC20 private constant ETH_ADDRESS =
              IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
          function universalTransfer(
              IERC20 token,
              address payable to,
              uint256 amount
          ) internal {
              if (amount > 0) {
                  if (isETH(token)) {
                      to.transfer(amount);
                  } else {
                      token.safeTransfer(to, amount);
                  }
              }
          }
          function universalTransferFrom(
              IERC20 token,
              address from,
              address payable to,
              uint256 amount
          ) internal {
              if (amount > 0) {
                  token.safeTransferFrom(from, to, amount);
              }
          }
          function universalApproveMax(
              IERC20 token,
              address to,
              uint256 amount
          ) internal {
              uint256 allowance = token.allowance(address(this), to);
              if (allowance < amount) {
                  token.forceApprove(to, type(uint256).max);
              }
          }
          function universalBalanceOf(IERC20 token, address who)
              internal
              view
              returns (uint256)
          {
              if (isETH(token)) {
                  return who.balance;
              } else {
                  return token.balanceOf(who);
              }
          }
          function tokenBalanceOf(IERC20 token, address who)
              internal
              view
              returns (uint256)
          {
              return token.balanceOf(who);
          }
          function isETH(IERC20 token) internal pure returns (bool) {
              return token == ETH_ADDRESS;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      import "./interfaces/IUni.sol";
      import "./libraries/UniversalERC20.sol";
      import "./libraries/CommonUtils.sol";
      contract UnxswapRouter is CommonUtils {
          uint256 private constant _IS_TOKEN0_TAX =
              0x1000000000000000000000000000000000000000000000000000000000000000;
          uint256 private constant _IS_TOKEN1_TAX =
              0x2000000000000000000000000000000000000000000000000000000000000000;
          uint256 private constant _CLAIM_TOKENS_CALL_SELECTOR_32 =
              0x0a5ea46600000000000000000000000000000000000000000000000000000000;
          uint256 private constant _TRANSFER_DEPOSIT_SELECTOR =
              0xa9059cbbd0e30db0000000000000000000000000000000000000000000000000;
          uint256 private constant _SWAP_GETRESERVES_SELECTOR =
              0x022c0d9f0902f1ac000000000000000000000000000000000000000000000000;
          uint256 private constant _WITHDRAW_TRNASFER_SELECTOR =
              0x2e1a7d4da9059cbb000000000000000000000000000000000000000000000000;
          uint256 private constant _BALANCEOF_TOKEN0_SELECTOR =
              0x70a082310dfe1681000000000000000000000000000000000000000000000000;
          uint256 private constant _BALANCEOF_TOKEN1_SELECTOR =
              0x70a08231d21220a7000000000000000000000000000000000000000000000000;
          uint256 private constant _NUMERATOR_MASK =
              0x0000000000000000ffffffff0000000000000000000000000000000000000000;
          uint256 private constant _DENOMINATOR = 1_000_000_000;
          uint256 private constant _NUMERATOR_OFFSET = 160;
          uint256 private constant ETH_ADDRESS = 0x00;
          //-------------------------------
          //------- Internal Functions ----
          //-------------------------------
          /// @notice Performs the internal logic for executing a swap using the Unxswap protocol.
          /// @param srcToken The token to be swapped.
          /// @param amount The amount of the source token to be swapped.
          /// @param minReturn The minimum amount of tokens that must be received for the swap to be valid, protecting against slippage.
          /// @param pools The array of pool identifiers that define the swap route.
          /// @param payer The address of the entity providing the source tokens for the swap.
          /// @param receiver The address that will receive the tokens after the swap.
          /// @return returnAmount The amount of tokens received from the swap.
          /// @dev This internal function encapsulates the core logic of the Unxswap token swap process. It is meant to be called by other external functions that set up the required parameters. The actual interaction with the Unxswap pools and the token transfer mechanics are implemented here.
          function _unxswapInternal(
              IERC20 srcToken,
              uint256 amount,
              uint256 minReturn,
              // solhint-disable-next-line no-unused-vars
              bytes32[] calldata pools,
              address payer,
              address receiver
          ) internal returns (uint256 returnAmount) {
              assembly {
                  // solhint-disable-line no-inline-assembly
                  function revertWithReason(m, len) {
                      mstore(
                          0,
                          0x08c379a000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(
                          0x20,
                          0x0000002000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(0x40, m)
                      revert(0, len)
                  }
                  function _getTokenAddr(emptyPtr, pair, selector) -> token {
                      mstore(emptyPtr, selector)
                      if iszero(
                          staticcall(
                              gas(),
                              pair,
                              add(0x04, emptyPtr),
                              0x04,
                              0x00,
                              0x20
                          )
                      ) {
                          revertWithReason(
                              0x0000001067657420746f6b656e206661696c6564000000000000000000000000,
                              0x54
                          ) // "get token failed"
                      }
                      token := mload(0x00)
                  }
                  function _getBalanceOfToken0(emptyPtr, pair) -> token0, balance0 {
                      mstore(emptyPtr, _BALANCEOF_TOKEN0_SELECTOR)
                      if iszero(
                          staticcall(
                              gas(),
                              pair,
                              add(0x04, emptyPtr),
                              0x04,
                              0x00,
                              0x20
                          )
                      ) {
                          revertWithReason(
                              0x00000012746f6b656e302063616c6c206661696c656400000000000000000000,
                              0x56
                          ) // "token0 call failed"
                      }
                      token0 := mload(0x00)
                      mstore(add(0x04, emptyPtr), pair)
                      if iszero(
                          staticcall(gas(), token0, emptyPtr, 0x24, 0x00, 0x20)
                      ) {
                          revertWithReason(
                              0x0000001562616c616e63654f662063616c6c206661696c656400000000000000,
                              0x59
                          ) // "balanceOf call failed"
                      }
                      balance0 := mload(0x00)
                  }
                  function _getBalanceOfToken1(emptyPtr, pair) -> token1, balance1 {
                      mstore(emptyPtr, _BALANCEOF_TOKEN1_SELECTOR)
                      if iszero(
                          staticcall(
                              gas(),
                              pair,
                              add(0x04, emptyPtr),
                              0x04,
                              0x00,
                              0x20
                          )
                      ) {
                          revertWithReason(
                              0x00000012746f6b656e312063616c6c206661696c656400000000000000000000,
                              0x56
                          ) // "token1 call failed"
                      }
                      token1 := mload(0x00)
                      mstore(add(0x04, emptyPtr), pair)
                      if iszero(
                          staticcall(gas(), token1, emptyPtr, 0x24, 0x00, 0x20)
                      ) {
                          revertWithReason(
                              0x0000001562616c616e63654f662063616c6c206661696c656400000000000000,
                              0x59
                          ) // "balanceOf call failed"
                      }
                      balance1 := mload(0x00)
                  }
                  function swap(
                      emptyPtr,
                      swapAmount,
                      pair,
                      reversed,
                      isToken0Tax,
                      isToken1Tax,
                      numerator,
                      dst
                  ) -> ret {
                      mstore(emptyPtr, _SWAP_GETRESERVES_SELECTOR)
                      if iszero(
                          staticcall(
                              gas(),
                              pair,
                              add(0x04, emptyPtr),
                              0x4,
                              0x00,
                              0x40
                          )
                      ) {
                          // we only need the first 0x40 bytes, no need timestamp info
                          revertWithReason(
                              0x0000001472657365727665732063616c6c206661696c65640000000000000000,
                              0x58
                          ) // "reserves call failed"
                      }
                      let reserve0 := mload(0x00)
                      let reserve1 := mload(0x20)
                      switch reversed
                      case 0 {
                          //swap token0 for token1
                          if isToken0Tax {
                              let token0, balance0 := _getBalanceOfToken0(
                                  emptyPtr,
                                  pair
                              )
                              swapAmount := sub(balance0, reserve0)
                          }
                      }
                      default {
                          //swap token1 for token0
                          if isToken1Tax {
                              let token1, balance1 := _getBalanceOfToken1(
                                  emptyPtr,
                                  pair
                              )
                              swapAmount := sub(balance1, reserve1)
                          }
                          let temp := reserve0
                          reserve0 := reserve1
                          reserve1 := temp
                      }
                      ret := mul(swapAmount, numerator)
                      ret := div(
                          mul(ret, reserve1),
                          add(ret, mul(reserve0, _DENOMINATOR))
                      )
                      mstore(emptyPtr, _SWAP_GETRESERVES_SELECTOR)
                      switch reversed
                      case 0 {
                          mstore(add(emptyPtr, 0x04), 0)
                          mstore(add(emptyPtr, 0x24), ret)
                      }
                      default {
                          mstore(add(emptyPtr, 0x04), ret)
                          mstore(add(emptyPtr, 0x24), 0)
                      }
                      mstore(add(emptyPtr, 0x44), dst)
                      mstore(add(emptyPtr, 0x64), 0x80)
                      mstore(add(emptyPtr, 0x84), 0)
                      if iszero(call(gas(), pair, 0, emptyPtr, 0xa4, 0, 0)) {
                          revertWithReason(
                              0x00000010737761702063616c6c206661696c6564000000000000000000000000,
                              0x54
                          ) // "swap call failed"
                      }
                  }
                  let poolsOffset
                  let poolsEndOffset
                  {
                      let len := pools.length
                      poolsOffset := pools.offset //
                      poolsEndOffset := add(poolsOffset, mul(len, 32))
                      if eq(len, 0) {
                          revertWithReason(
                              0x000000b656d70747920706f6f6c73000000000000000000000000000000000000,
                              0x4e
                          ) // "empty pools"
                      }
                  }
                  let emptyPtr := mload(0x40)
                  let rawPair := calldataload(poolsOffset)
                  switch eq(ETH_ADDRESS, srcToken)
                  case 1 {
                      // require callvalue() >= amount, lt: if x < y return 1,else return 0
                      if eq(lt(callvalue(), amount), 1) {
                          revertWithReason(
                              0x00000011696e76616c6964206d73672e76616c75650000000000000000000000,
                              0x55
                          ) // "invalid msg.value"
                      }
                      mstore(emptyPtr, _TRANSFER_DEPOSIT_SELECTOR)
                      if iszero(
                          call(gas(), _WETH, amount, add(emptyPtr, 0x04), 0x4, 0, 0)
                      ) {
                          revertWithReason(
                              0x000000126465706f73697420455448206661696c656400000000000000000000,
                              0x56
                          ) // "deposit ETH failed"
                      }
                      mstore(add(0x04, emptyPtr), and(rawPair, _ADDRESS_MASK))
                      mstore(add(0x24, emptyPtr), amount)
                      if iszero(call(gas(), _WETH, 0, emptyPtr, 0x44, 0, 0x20)) {
                          revertWithReason(
                              0x000000147472616e736665722057455448206661696c65640000000000000000,
                              0x58
                          ) // "transfer WETH failed"
                      }
                  }
                  default {
                      if callvalue() {
                          revertWithReason(
                              0x00000011696e76616c6964206d73672e76616c75650000000000000000000000,
                              0x55
                          ) // "invalid msg.value"
                      }
                      mstore(emptyPtr, _CLAIM_TOKENS_CALL_SELECTOR_32)
                      mstore(add(emptyPtr, 0x4), srcToken)
                      mstore(add(emptyPtr, 0x24), payer)
                      mstore(add(emptyPtr, 0x44), and(rawPair, _ADDRESS_MASK))
                      mstore(add(emptyPtr, 0x64), amount)
                      if iszero(
                          call(gas(), _APPROVE_PROXY, 0, emptyPtr, 0x84, 0, 0)
                      ) {
                          revertWithReason(
                              0x00000012636c61696d20746f6b656e206661696c656400000000000000000000,
                              0x56
                          ) // "claim token failed"
                      }
                  }
                  returnAmount := amount
                  for {
                      let i := add(poolsOffset, 0x20)
                  } lt(i, poolsEndOffset) {
                      i := add(i, 0x20)
                  } {
                      let nextRawPair := calldataload(i)
                      returnAmount := swap(
                          emptyPtr,
                          returnAmount,
                          and(rawPair, _ADDRESS_MASK),
                          and(rawPair, _REVERSE_MASK),
                          and(rawPair, _IS_TOKEN0_TAX),
                          and(rawPair, _IS_TOKEN1_TAX),
                          shr(_NUMERATOR_OFFSET, and(rawPair, _NUMERATOR_MASK)),
                          and(nextRawPair, _ADDRESS_MASK)
                      )
                      rawPair := nextRawPair
                  }
                  let toToken
                  switch and(rawPair, _WETH_MASK)
                  case 0 {
                      let beforeAmount
                      switch and(rawPair, _REVERSE_MASK)
                      case 0 {
                          if and(rawPair, _IS_TOKEN1_TAX) {
                              mstore(emptyPtr, _BALANCEOF_TOKEN1_SELECTOR)
                              if iszero(
                                  staticcall(
                                      gas(),
                                      and(rawPair, _ADDRESS_MASK),
                                      add(0x04, emptyPtr),
                                      0x04,
                                      0x00,
                                      0x20
                                  )
                              ) {
                                  revertWithReason(
                                      0x00000012746f6b656e312063616c6c206661696c656400000000000000000000,
                                      0x56
                                  ) // "token1 call failed"
                              }
                              toToken := mload(0)
                              mstore(add(0x04, emptyPtr), receiver)
                              if iszero(
                                  staticcall(
                                      gas(),
                                      toToken,
                                      emptyPtr,
                                      0x24,
                                      0x00,
                                      0x20
                                  )
                              ) {
                                  revertWithReason(
                                      0x00000015746f6b656e312062616c616e6365206661696c656400000000000000,
                                      0x59
                                  ) // "token1 balance failed"
                              }
                              beforeAmount := mload(0)
                          }
                      }
                      default {
                          if and(rawPair, _IS_TOKEN0_TAX) {
                              mstore(emptyPtr, _BALANCEOF_TOKEN0_SELECTOR)
                              if iszero(
                                  staticcall(
                                      gas(),
                                      and(rawPair, _ADDRESS_MASK),
                                      add(0x04, emptyPtr),
                                      0x04,
                                      0x00,
                                      0x20
                                  )
                              ) {
                                  revertWithReason(
                                      0x00000012746f6b656e302063616c6c206661696c656400000000000000000000,
                                      0x56
                                  ) // "token0 call failed"
                              }
                              toToken := mload(0)
                              mstore(add(0x04, emptyPtr), receiver)
                              if iszero(
                                  staticcall(
                                      gas(),
                                      toToken,
                                      emptyPtr,
                                      0x24,
                                      0x00,
                                      0x20
                                  )
                              ) {
                                  revertWithReason(
                                      0x00000015746f6b656e302062616c616e6365206661696c656400000000000000,
                                      0x56
                                  ) // "token0 balance failed"
                              }
                              beforeAmount := mload(0)
                          }
                      }
                      returnAmount := swap(
                          emptyPtr,
                          returnAmount,
                          and(rawPair, _ADDRESS_MASK),
                          and(rawPair, _REVERSE_MASK),
                          and(rawPair, _IS_TOKEN0_TAX),
                          and(rawPair, _IS_TOKEN1_TAX),
                          shr(_NUMERATOR_OFFSET, and(rawPair, _NUMERATOR_MASK)),
                          receiver
                      )
                      switch lt(0x0, toToken)
                      case 1 {
                          mstore(emptyPtr, _BALANCEOF_TOKEN0_SELECTOR)
                          mstore(add(0x04, emptyPtr), receiver)
                          if iszero(
                              staticcall(gas(), toToken, emptyPtr, 0x24, 0x00, 0x20)
                          ) {
                              revertWithReason(
                                  0x000000146765742062616c616e63654f66206661696c65640000000000000000,
                                  0x58
                              ) // "get balanceOf failed"
                          }
                          returnAmount := sub(mload(0), beforeAmount)
                      }
                      default {
                          // set token0 addr for the non-safemoon token
                          switch and(rawPair, _REVERSE_MASK)
                          case 0 {
                              // get token1
                              toToken := _getTokenAddr(
                                  emptyPtr,
                                  and(rawPair, _ADDRESS_MASK),
                                  _BALANCEOF_TOKEN1_SELECTOR
                              )
                          }
                          default {
                              // get token0
                              toToken := _getTokenAddr(
                                  emptyPtr,
                                  and(rawPair, _ADDRESS_MASK),
                                  _BALANCEOF_TOKEN0_SELECTOR
                              )
                          }
                      }
                  }
                  default {
                      toToken := ETH_ADDRESS
                      returnAmount := swap(
                          emptyPtr,
                          returnAmount,
                          and(rawPair, _ADDRESS_MASK),
                          and(rawPair, _REVERSE_MASK),
                          and(rawPair, _IS_TOKEN0_TAX),
                          and(rawPair, _IS_TOKEN1_TAX),
                          shr(_NUMERATOR_OFFSET, and(rawPair, _NUMERATOR_MASK)),
                          address()
                      )
                      mstore(emptyPtr, _WITHDRAW_TRNASFER_SELECTOR)
                      mstore(add(emptyPtr, 0x08), _WNATIVE_RELAY)
                      mstore(add(emptyPtr, 0x28), returnAmount)
                      if iszero(
                          call(gas(), _WETH, 0, add(0x04, emptyPtr), 0x44, 0, 0x20)
                      ) {
                          revertWithReason(
                              0x000000147472616e736665722057455448206661696c65640000000000000000,
                              0x58
                          ) // "transfer WETH failed"
                      }
                      mstore(add(emptyPtr, 0x04), returnAmount)
                      if iszero(
                          call(gas(), _WNATIVE_RELAY, 0, emptyPtr, 0x24, 0, 0x20)
                      ) {
                          revertWithReason(
                              0x00000013776974686472617720455448206661696c6564000000000000000000,
                              0x57
                          ) // "withdraw ETH failed"
                      }
                      if iszero(call(gas(), receiver, returnAmount, 0, 0, 0, 0)) {
                          revertWithReason(
                              0x000000137472616e7366657220455448206661696c6564000000000000000000,
                              0x57
                          ) // "transfer ETH failed"
                      }
                  }
                  if lt(returnAmount, minReturn) {
                      revertWithReason(
                          0x000000164d696e2072657475726e206e6f742072656163686564000000000000,
                          0x5a
                      ) // "Min return not reached"
                  }
                  // emit event
                  mstore(emptyPtr, srcToken)
                  mstore(add(emptyPtr, 0x20), toToken)
                  mstore(add(emptyPtr, 0x40), origin())
                  mstore(add(emptyPtr, 0x60), amount)
                  mstore(add(emptyPtr, 0x80), returnAmount)
                  log1(
                      emptyPtr,
                      0xa0,
                      0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c
                  )
              }
          }
      }
      /// SPDX-License-Identifier: MIT
      pragma solidity 0.8.17;
      import "./interfaces/IUniswapV3SwapCallback.sol";
      import "./interfaces/IUniV3.sol";
      import "./interfaces/IWETH.sol";
      import "./interfaces/IWNativeRelayer.sol";
      import "./libraries/Address.sol";
      import "./libraries/CommonUtils.sol";
      import "./libraries/RouterErrors.sol";
      import "./libraries/SafeCast.sol";
      contract UnxswapV3Router is IUniswapV3SwapCallback, CommonUtils {
          using Address for address payable;
          bytes32 private constant _POOL_INIT_CODE_HASH =
              0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54; // Pool init code hash
          bytes32 private constant _FF_FACTORY = 0xff1F98431c8aD98523631AE4a59f267346ea31F9840000000000000000000000; // Factory address
          // concatenation of token0(), token1() fee(), transfer() and claimTokens() selectors
          bytes32 private constant _SELECTORS =
              0x0dfe1681d21220a7ddca3f43a9059cbb0a5ea466000000000000000000000000;
          // concatenation of withdraw(uint),transfer()
          bytes32 private constant _SELECTORS2 =
              0x2e1a7d4da9059cbb000000000000000000000000000000000000000000000000;
          bytes32 private constant _SELECTORS3 =
              0xa9059cbb70a08231000000000000000000000000000000000000000000000000;
          uint160 private constant _MIN_SQRT_RATIO = 4_295_128_739 + 1;
          uint160 private constant _MAX_SQRT_RATIO =
              1_461_446_703_485_210_103_287_273_052_203_988_822_378_723_970_342 - 1;
          bytes32 private constant _SWAP_SELECTOR =
              0x128acb0800000000000000000000000000000000000000000000000000000000; // Swap function selector
          uint256 private constant _INT256_MAX =
              0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff; // Maximum int256
          uint256 private constant _INT256_MIN =
              0x8000000000000000000000000000000000000000000000000000000000000000; // Minimum int256
          /// @notice Conducts a swap using the Uniswap V3 protocol internally within the contract.
          /// @param payer The address of the account providing the tokens for the swap.
          /// @param receiver The address that will receive the tokens after the swap.
          /// @param amount The amount of the source token to be swapped.
          /// @param minReturn The minimum amount of tokens that must be received for the swap to be valid, safeguarding against excessive slippage.
          /// @param pools An array of pool identifiers defining the swap route within Uniswap V3.
          /// @return returnAmount The amount of tokens received from the swap.
          /// @dev This internal function encapsulates the core logic for executing swaps on Uniswap V3. It is intended to be used by other functions in the contract that prepare and pass the necessary parameters. The function handles the swapping process, ensuring that the minimum return is met and managing the transfer of tokens.
          function _uniswapV3Swap(
              address payer,
              address payable receiver,
              uint256 amount,
              uint256 minReturn,
              uint256[] calldata pools
          ) internal returns (uint256 returnAmount) {
              assembly {
                  function _revertWithReason(m, len) {
                      mstore(
                          0,
                          0x08c379a000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(
                          0x20,
                          0x0000002000000000000000000000000000000000000000000000000000000000
                      )
                      mstore(0x40, m)
                      revert(0, len)
                  }
                  function _makeSwap(_receiver, _payer, _refundTo, _pool, _amount)
                      -> _returnAmount
                  {
                      if lt(_INT256_MAX, _amount) {
                          mstore(
                              0,
                              0xb3f79fd000000000000000000000000000000000000000000000000000000000
                          ) //SafeCastToInt256Failed()
                          revert(0, 4)
                      }
                      let freePtr := mload(0x40)
                      let zeroForOne := eq(and(_pool, _ONE_FOR_ZERO_MASK), 0)
                      let poolAddr := and(_pool, _ADDRESS_MASK)
                      switch zeroForOne
                      case 1 {
                          mstore(freePtr, _SWAP_SELECTOR)
                          let paramPtr := add(freePtr, 4)
                          mstore(paramPtr, _receiver)
                          mstore(add(paramPtr, 0x20), true)
                          mstore(add(paramPtr, 0x40), _amount)
                          mstore(add(paramPtr, 0x60), _MIN_SQRT_RATIO)
                          mstore(add(paramPtr, 0x80), 0xa0)
                          mstore(add(paramPtr, 0xa0), 64)
                          mstore(add(paramPtr, 0xc0), _payer)
                          mstore(add(paramPtr, 0xe0), _refundTo)
                          let success := call(
                              gas(),
                              poolAddr,
                              0,
                              freePtr,
                              0x104,
                              0,
                              0
                          )
                          if iszero(success) {
                              revert(0, 32)
                          }
                          returndatacopy(0, 32, 32) // only copy _amount1   MEM[0:] <= RETURNDATA[32:32+32]
                      }
                      default {
                          mstore(freePtr, _SWAP_SELECTOR)
                          let paramPtr := add(freePtr, 4)
                          mstore(paramPtr, _receiver)
                          mstore(add(paramPtr, 0x20), false)
                          mstore(add(paramPtr, 0x40), _amount)
                          mstore(add(paramPtr, 0x60), _MAX_SQRT_RATIO)
                          mstore(add(paramPtr, 0x80), 0xa0)
                          mstore(add(paramPtr, 0xa0), 64)
                          mstore(add(paramPtr, 0xc0), _payer)
                          mstore(add(paramPtr, 0xe0), _refundTo)
                          let success := call(
                              gas(),
                              poolAddr,
                              0,
                              freePtr,
                              0x104,
                              0,
                              0
                          )
                          if iszero(success) {
                              revert(0, 32)
                          }
                          returndatacopy(0, 0, 32) // only copy _amount0   MEM[0:] <= RETURNDATA[0:0+32]
                      }
                      _returnAmount := mload(0)
                      if lt(_returnAmount, _INT256_MIN) {
                          mstore(
                              0,
                              0x88c8ee9c00000000000000000000000000000000000000000000000000000000
                          ) //SafeCastToUint256Failed()
                          revert(0, 4)
                      }
                      _returnAmount := add(1, not(_returnAmount)) // -a = ~a + 1
                  }
                  function _wrapWeth(_amount) {
                      // require callvalue() >= amount, lt: if x < y return 1,else return 0
                      if eq(lt(callvalue(), _amount), 1) {
                          mstore(
                              0,
                              0x1841b4e100000000000000000000000000000000000000000000000000000000
                          ) // InvalidMsgValue()
                          revert(0, 4)
                      }
                      let success := call(gas(), _WETH, _amount, 0, 0, 0, 0) //进入fallback逻辑
                      if iszero(success) {
                          _revertWithReason(
                              0x0000001357455448206465706f736974206661696c6564000000000000000000,
                              87
                          ) //WETH deposit failed
                      }
                  }
                  function _unWrapWeth(_receiver, _amount) {
                      let freePtr := mload(0x40)
                      let transferPtr := add(freePtr, 4)
                      mstore(freePtr, _SELECTORS2) // withdraw amountWith to amount
                      // transfer
                      mstore(add(transferPtr, 4), _WNATIVE_RELAY)
                      mstore(add(transferPtr, 36), _amount)
                      let success := call(gas(), _WETH, 0, transferPtr, 68, 0, 0)
                      if iszero(success) {
                          _revertWithReason(
                              0x000000147472616e736665722077657468206661696c65640000000000000000,
                              88
                          ) // transfer weth failed
                      }
                      // withdraw
                      mstore(add(freePtr, 4), _amount)
                      success := call(gas(), _WNATIVE_RELAY, 0, freePtr, 36, 0, 0)
                      if iszero(success) {
                          _revertWithReason(
                              0x0000001477697468647261772077657468206661696c65640000000000000000,
                              88
                          ) // withdraw weth failed
                      }
                      // msg.value transfer
                      success := call(gas(), _receiver, _amount, 0, 0, 0, 0)
                      if iszero(success) {
                          _revertWithReason(
                              0x0000001173656e64206574686572206661696c65640000000000000000000000,
                              85
                          ) // send ether failed
                      }
                  }
                  function _token0(_pool) -> token0 {
                      let freePtr := mload(0x40)
                      mstore(freePtr, _SELECTORS)
                      let success := staticcall(gas(), _pool, freePtr, 0x4, 0, 0)
                      if iszero(success) {
                          _revertWithReason(
                              0x0000001167657420746f6b656e30206661696c65640000000000000000000000,
                              85
                          ) // get token0 failed
                      }
                      returndatacopy(0, 0, 32)
                      token0 := mload(0)
                  }
                  function _token1(_pool) -> token1 {
                      let freePtr := mload(0x40)
                      mstore(freePtr, _SELECTORS)
                      let success := staticcall(
                          gas(),
                          _pool,
                          add(freePtr, 4),
                          0x4,
                          0,
                          0
                      )
                      if iszero(success) {
                          _revertWithReason(
                              0x0000001167657420746f6b656e31206661696c65640000000000000000000000,
                              84
                          ) // get token1 failed
                      }
                      returndatacopy(0, 0, 32)
                      token1 := mload(0)
                  }
                  function _emitEvent(
                      _firstPoolStart,
                      _lastPoolStart,
                      _returnAmount
                  ) {
                      let srcToken := _ETH
                      let toToken := _ETH
                      if eq(callvalue(), 0) {
                          let firstPool := calldataload(_firstPoolStart)
                          switch eq(0, and(firstPool, _ONE_FOR_ZERO_MASK))
                          case true {
                              srcToken := _token0(firstPool)
                          }
                          default {
                              srcToken := _token1(firstPool)
                          }
                      }
                      if eq(and(calldataload(_lastPoolStart), _WETH_UNWRAP_MASK), 0) {
                          let lastPool := calldataload(_lastPoolStart)
                          switch eq(0, and(lastPool, _ONE_FOR_ZERO_MASK))
                          case true {
                              toToken := _token1(lastPool)
                          }
                          default {
                              toToken := _token0(lastPool)
                          }
                      }
                      let freePtr := mload(0x40)
                      mstore(0, srcToken)
                      mstore(32, toToken)
                      mstore(64, origin())
                      // mstore(96, _initAmount) //avoid stack too deep, since i mstore the initAmount to 96, so no need to re-mstore it
                      mstore(128, _returnAmount)
                      log1(
                          0,
                          160,
                          0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c
                      )
                      mstore(0x40, freePtr)
                  }
                  let firstPoolStart
                  let lastPoolStart
                  {
                      let len := pools.length
                      firstPoolStart := pools.offset //
                      lastPoolStart := sub(add(firstPoolStart, mul(len, 32)), 32)
                      if eq(len, 0) {
                          mstore(
                              0,
                              0x67e7c0f600000000000000000000000000000000000000000000000000000000
                          ) // EmptyPools()
                          revert(0, 4)
                      }
                  }
                  let refundTo := payer
                  {
                      let wrapWeth := gt(callvalue(), 0)
                      if wrapWeth {
                          _wrapWeth(amount)
                          payer := address()
                      }
                  }
                  mstore(96, amount) // 96 is not override by _makeSwap, since it only use freePtr memory, and it is not override by unWrapWeth ethier
                  for {
                      let i := firstPoolStart
                  } lt(i, lastPoolStart) {
                      i := add(i, 32)
                  } {
                      amount := _makeSwap(
                          address(),
                          payer,
                          refundTo,
                          calldataload(i),
                          amount
                      )
                      payer := address()
                  }
                  {
                      let unwrapWeth := gt(
                          and(calldataload(lastPoolStart), _WETH_UNWRAP_MASK),
                          0
                      ) // pools[lastIndex] & _WETH_UNWRAP_MASK > 0
                      // last one or only one
                      switch unwrapWeth
                      case 1 {
                          returnAmount := _makeSwap(
                              address(),
                              payer,
                              refundTo,
                              calldataload(lastPoolStart),
                              amount
                          )
                          _unWrapWeth(receiver, returnAmount)
                      }
                      case 0 {
                          returnAmount := _makeSwap(
                              receiver,
                              payer,
                              refundTo,
                              calldataload(lastPoolStart),
                              amount
                          )
                      }
                  }
                  if lt(returnAmount, minReturn) {
                      _revertWithReason(
                          0x000000164d696e2072657475726e206e6f742072656163686564000000000000,
                          90
                      ) // Min return not reached
                  }
                  _emitEvent(firstPoolStart, lastPoolStart, returnAmount)
              }
          }
          /// @inheritdoc IUniswapV3SwapCallback
          function uniswapV3SwapCallback(
              int256 amount0Delta,
              int256 amount1Delta,
              bytes calldata /*data*/
          ) external override {
              assembly {
                  // solhint-disable-line no-inline-assembly
                  function reRevert() {
                      returndatacopy(0, 0, returndatasize())
                      revert(0, returndatasize())
                  }
                  function getBalanceAndTransfer(emptyPtr, token) {
                      mstore(emptyPtr, _SELECTORS3)
                      mstore(add(8, emptyPtr), address())
                      if iszero(
                          staticcall(gas(), token, add(4, emptyPtr), 36, 0, 32)
                      ) {
                          reRevert()
                      }
                      let amount := mload(0)
                      if gt(amount, 0) {
                          let refundTo := calldataload(164)
                          mstore(add(4, emptyPtr), refundTo)
                          mstore(add(36, emptyPtr), amount)
                          validateERC20Transfer(
                              call(gas(), token, 0, emptyPtr, 0x44, 0, 0x20)
                          )
                      }
                  }
                  function validateERC20Transfer(status) {
                      if iszero(status) {
                          reRevert()
                      }
                      let success := or(
                          iszero(returndatasize()), // empty return data
                          and(gt(returndatasize(), 31), eq(mload(0), 1)) // true in return data
                      )
                      if iszero(success) {
                          mstore(
                              0,
                              0xf27f64e400000000000000000000000000000000000000000000000000000000
                          ) // ERC20TransferFailed()
                          revert(0, 4)
                      }
                  }
                  let emptyPtr := mload(0x40)
                  let resultPtr := add(emptyPtr, 21) // 0x15 = _FF_FACTORY size
                  mstore(emptyPtr, _SELECTORS)
                  // token0
                  if iszero(staticcall(gas(), caller(), emptyPtr, 4, 0, 32)) {
                      reRevert()
                  }
                  //token1
                  if iszero(
                      staticcall(gas(), caller(), add(emptyPtr, 4), 4, 32, 32)
                  ) {
                      reRevert()
                  }
                  // fee
                  if iszero(
                      staticcall(gas(), caller(), add(emptyPtr, 8), 4, 64, 32)
                  ) {
                      reRevert()
                  }
                  let token
                  let amount
                  switch sgt(amount0Delta, 0)
                  case 1 {
                      token := mload(0)
                      amount := amount0Delta
                  }
                  default {
                      token := mload(32)
                      amount := amount1Delta
                  }
                  // let salt := keccak256(0, 96)
                  mstore(emptyPtr, _FF_FACTORY)
                  mstore(resultPtr, keccak256(0, 96)) // Compute the inner hash in-place
                  mstore(add(resultPtr, 32), _POOL_INIT_CODE_HASH)
                  let pool := and(keccak256(emptyPtr, 85), _ADDRESS_MASK)
                  if iszero(eq(pool, caller())) {
                      // if xor(pool, caller()) {
                      mstore(
                          0,
                          0xb2c0272200000000000000000000000000000000000000000000000000000000
                      ) // BadPool()
                      revert(0, 4)
                  }
                  let payer := calldataload(132) // 4+32+32+32+32 = 132
                  mstore(emptyPtr, _SELECTORS)
                  switch eq(payer, address())
                  case 1 {
                      // token.safeTransfer(msg.sender,amount)
                      mstore(add(emptyPtr, 0x10), caller())
                      mstore(add(emptyPtr, 0x30), amount)
                      validateERC20Transfer(
                          call(gas(), token, 0, add(emptyPtr, 0x0c), 0x44, 0, 0x20)
                      )
                      getBalanceAndTransfer(emptyPtr, token)
                  }
                  default {
                      // approveProxy.claimTokens(token, payer, msg.sender, amount);
                      mstore(add(emptyPtr, 0x14), token)
                      mstore(add(emptyPtr, 0x34), payer)
                      mstore(add(emptyPtr, 0x54), caller())
                      mstore(add(emptyPtr, 0x74), amount)
                      validateERC20Transfer(
                          call(
                              gas(),
                              _APPROVE_PROXY,
                              0,
                              add(emptyPtr, 0x10),
                              0x84,
                              0,
                              0x20
                          )
                      )
                  }
              }
          }
      }
      

      File 2 of 4: WETH9
      // Copyright (C) 2015, 2016, 2017 Dapphub
      
      // This program is free software: you can redistribute it and/or modify
      // it under the terms of the GNU General Public License as published by
      // the Free Software Foundation, either version 3 of the License, or
      // (at your option) any later version.
      
      // This program is distributed in the hope that it will be useful,
      // but WITHOUT ANY WARRANTY; without even the implied warranty of
      // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      // GNU General Public License for more details.
      
      // You should have received a copy of the GNU General Public License
      // along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      pragma solidity ^0.4.18;
      
      contract WETH9 {
          string public name     = "Wrapped Ether";
          string public symbol   = "WETH";
          uint8  public decimals = 18;
      
          event  Approval(address indexed src, address indexed guy, uint wad);
          event  Transfer(address indexed src, address indexed dst, uint wad);
          event  Deposit(address indexed dst, uint wad);
          event  Withdrawal(address indexed src, uint wad);
      
          mapping (address => uint)                       public  balanceOf;
          mapping (address => mapping (address => uint))  public  allowance;
      
          function() public payable {
              deposit();
          }
          function deposit() public payable {
              balanceOf[msg.sender] += msg.value;
              Deposit(msg.sender, msg.value);
          }
          function withdraw(uint wad) public {
              require(balanceOf[msg.sender] >= wad);
              balanceOf[msg.sender] -= wad;
              msg.sender.transfer(wad);
              Withdrawal(msg.sender, wad);
          }
      
          function totalSupply() public view returns (uint) {
              return this.balance;
          }
      
          function approve(address guy, uint wad) public returns (bool) {
              allowance[msg.sender][guy] = wad;
              Approval(msg.sender, guy, wad);
              return true;
          }
      
          function transfer(address dst, uint wad) public returns (bool) {
              return transferFrom(msg.sender, dst, wad);
          }
      
          function transferFrom(address src, address dst, uint wad)
              public
              returns (bool)
          {
              require(balanceOf[src] >= wad);
      
              if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                  require(allowance[src][msg.sender] >= wad);
                  allowance[src][msg.sender] -= wad;
              }
      
              balanceOf[src] -= wad;
              balanceOf[dst] += wad;
      
              Transfer(src, dst, wad);
      
              return true;
          }
      }
      
      
      /*
                          GNU GENERAL PUBLIC LICENSE
                             Version 3, 29 June 2007
      
       Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
       Everyone is permitted to copy and distribute verbatim copies
       of this license document, but changing it is not allowed.
      
                                  Preamble
      
        The GNU General Public License is a free, copyleft license for
      software and other kinds of works.
      
        The licenses for most software and other practical works are designed
      to take away your freedom to share and change the works.  By contrast,
      the GNU General Public License is intended to guarantee your freedom to
      share and change all versions of a program--to make sure it remains free
      software for all its users.  We, the Free Software Foundation, use the
      GNU General Public License for most of our software; it applies also to
      any other work released this way by its authors.  You can apply it to
      your programs, too.
      
        When we speak of free software, we are referring to freedom, not
      price.  Our General Public Licenses are designed to make sure that you
      have the freedom to distribute copies of free software (and charge for
      them if you wish), that you receive source code or can get it if you
      want it, that you can change the software or use pieces of it in new
      free programs, and that you know you can do these things.
      
        To protect your rights, we need to prevent others from denying you
      these rights or asking you to surrender the rights.  Therefore, you have
      certain responsibilities if you distribute copies of the software, or if
      you modify it: responsibilities to respect the freedom of others.
      
        For example, if you distribute copies of such a program, whether
      gratis or for a fee, you must pass on to the recipients the same
      freedoms that you received.  You must make sure that they, too, receive
      or can get the source code.  And you must show them these terms so they
      know their rights.
      
        Developers that use the GNU GPL protect your rights with two steps:
      (1) assert copyright on the software, and (2) offer you this License
      giving you legal permission to copy, distribute and/or modify it.
      
        For the developers' and authors' protection, the GPL clearly explains
      that there is no warranty for this free software.  For both users' and
      authors' sake, the GPL requires that modified versions be marked as
      changed, so that their problems will not be attributed erroneously to
      authors of previous versions.
      
        Some devices are designed to deny users access to install or run
      modified versions of the software inside them, although the manufacturer
      can do so.  This is fundamentally incompatible with the aim of
      protecting users' freedom to change the software.  The systematic
      pattern of such abuse occurs in the area of products for individuals to
      use, which is precisely where it is most unacceptable.  Therefore, we
      have designed this version of the GPL to prohibit the practice for those
      products.  If such problems arise substantially in other domains, we
      stand ready to extend this provision to those domains in future versions
      of the GPL, as needed to protect the freedom of users.
      
        Finally, every program is threatened constantly by software patents.
      States should not allow patents to restrict development and use of
      software on general-purpose computers, but in those that do, we wish to
      avoid the special danger that patents applied to a free program could
      make it effectively proprietary.  To prevent this, the GPL assures that
      patents cannot be used to render the program non-free.
      
        The precise terms and conditions for copying, distribution and
      modification follow.
      
                             TERMS AND CONDITIONS
      
        0. Definitions.
      
        "This License" refers to version 3 of the GNU General Public License.
      
        "Copyright" also means copyright-like laws that apply to other kinds of
      works, such as semiconductor masks.
      
        "The Program" refers to any copyrightable work licensed under this
      License.  Each licensee is addressed as "you".  "Licensees" and
      "recipients" may be individuals or organizations.
      
        To "modify" a work means to copy from or adapt all or part of the work
      in a fashion requiring copyright permission, other than the making of an
      exact copy.  The resulting work is called a "modified version" of the
      earlier work or a work "based on" the earlier work.
      
        A "covered work" means either the unmodified Program or a work based
      on the Program.
      
        To "propagate" a work means to do anything with it that, without
      permission, would make you directly or secondarily liable for
      infringement under applicable copyright law, except executing it on a
      computer or modifying a private copy.  Propagation includes copying,
      distribution (with or without modification), making available to the
      public, and in some countries other activities as well.
      
        To "convey" a work means any kind of propagation that enables other
      parties to make or receive copies.  Mere interaction with a user through
      a computer network, with no transfer of a copy, is not conveying.
      
        An interactive user interface displays "Appropriate Legal Notices"
      to the extent that it includes a convenient and prominently visible
      feature that (1) displays an appropriate copyright notice, and (2)
      tells the user that there is no warranty for the work (except to the
      extent that warranties are provided), that licensees may convey the
      work under this License, and how to view a copy of this License.  If
      the interface presents a list of user commands or options, such as a
      menu, a prominent item in the list meets this criterion.
      
        1. Source Code.
      
        The "source code" for a work means the preferred form of the work
      for making modifications to it.  "Object code" means any non-source
      form of a work.
      
        A "Standard Interface" means an interface that either is an official
      standard defined by a recognized standards body, or, in the case of
      interfaces specified for a particular programming language, one that
      is widely used among developers working in that language.
      
        The "System Libraries" of an executable work include anything, other
      than the work as a whole, that (a) is included in the normal form of
      packaging a Major Component, but which is not part of that Major
      Component, and (b) serves only to enable use of the work with that
      Major Component, or to implement a Standard Interface for which an
      implementation is available to the public in source code form.  A
      "Major Component", in this context, means a major essential component
      (kernel, window system, and so on) of the specific operating system
      (if any) on which the executable work runs, or a compiler used to
      produce the work, or an object code interpreter used to run it.
      
        The "Corresponding Source" for a work in object code form means all
      the source code needed to generate, install, and (for an executable
      work) run the object code and to modify the work, including scripts to
      control those activities.  However, it does not include the work's
      System Libraries, or general-purpose tools or generally available free
      programs which are used unmodified in performing those activities but
      which are not part of the work.  For example, Corresponding Source
      includes interface definition files associated with source files for
      the work, and the source code for shared libraries and dynamically
      linked subprograms that the work is specifically designed to require,
      such as by intimate data communication or control flow between those
      subprograms and other parts of the work.
      
        The Corresponding Source need not include anything that users
      can regenerate automatically from other parts of the Corresponding
      Source.
      
        The Corresponding Source for a work in source code form is that
      same work.
      
        2. Basic Permissions.
      
        All rights granted under this License are granted for the term of
      copyright on the Program, and are irrevocable provided the stated
      conditions are met.  This License explicitly affirms your unlimited
      permission to run the unmodified Program.  The output from running a
      covered work is covered by this License only if the output, given its
      content, constitutes a covered work.  This License acknowledges your
      rights of fair use or other equivalent, as provided by copyright law.
      
        You may make, run and propagate covered works that you do not
      convey, without conditions so long as your license otherwise remains
      in force.  You may convey covered works to others for the sole purpose
      of having them make modifications exclusively for you, or provide you
      with facilities for running those works, provided that you comply with
      the terms of this License in conveying all material for which you do
      not control copyright.  Those thus making or running the covered works
      for you must do so exclusively on your behalf, under your direction
      and control, on terms that prohibit them from making any copies of
      your copyrighted material outside their relationship with you.
      
        Conveying under any other circumstances is permitted solely under
      the conditions stated below.  Sublicensing is not allowed; section 10
      makes it unnecessary.
      
        3. Protecting Users' Legal Rights From Anti-Circumvention Law.
      
        No covered work shall be deemed part of an effective technological
      measure under any applicable law fulfilling obligations under article
      11 of the WIPO copyright treaty adopted on 20 December 1996, or
      similar laws prohibiting or restricting circumvention of such
      measures.
      
        When you convey a covered work, you waive any legal power to forbid
      circumvention of technological measures to the extent such circumvention
      is effected by exercising rights under this License with respect to
      the covered work, and you disclaim any intention to limit operation or
      modification of the work as a means of enforcing, against the work's
      users, your or third parties' legal rights to forbid circumvention of
      technological measures.
      
        4. Conveying Verbatim Copies.
      
        You may convey verbatim copies of the Program's source code as you
      receive it, in any medium, provided that you conspicuously and
      appropriately publish on each copy an appropriate copyright notice;
      keep intact all notices stating that this License and any
      non-permissive terms added in accord with section 7 apply to the code;
      keep intact all notices of the absence of any warranty; and give all
      recipients a copy of this License along with the Program.
      
        You may charge any price or no price for each copy that you convey,
      and you may offer support or warranty protection for a fee.
      
        5. Conveying Modified Source Versions.
      
        You may convey a work based on the Program, or the modifications to
      produce it from the Program, in the form of source code under the
      terms of section 4, provided that you also meet all of these conditions:
      
          a) The work must carry prominent notices stating that you modified
          it, and giving a relevant date.
      
          b) The work must carry prominent notices stating that it is
          released under this License and any conditions added under section
          7.  This requirement modifies the requirement in section 4 to
          "keep intact all notices".
      
          c) You must license the entire work, as a whole, under this
          License to anyone who comes into possession of a copy.  This
          License will therefore apply, along with any applicable section 7
          additional terms, to the whole of the work, and all its parts,
          regardless of how they are packaged.  This License gives no
          permission to license the work in any other way, but it does not
          invalidate such permission if you have separately received it.
      
          d) If the work has interactive user interfaces, each must display
          Appropriate Legal Notices; however, if the Program has interactive
          interfaces that do not display Appropriate Legal Notices, your
          work need not make them do so.
      
        A compilation of a covered work with other separate and independent
      works, which are not by their nature extensions of the covered work,
      and which are not combined with it such as to form a larger program,
      in or on a volume of a storage or distribution medium, is called an
      "aggregate" if the compilation and its resulting copyright are not
      used to limit the access or legal rights of the compilation's users
      beyond what the individual works permit.  Inclusion of a covered work
      in an aggregate does not cause this License to apply to the other
      parts of the aggregate.
      
        6. Conveying Non-Source Forms.
      
        You may convey a covered work in object code form under the terms
      of sections 4 and 5, provided that you also convey the
      machine-readable Corresponding Source under the terms of this License,
      in one of these ways:
      
          a) Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by the
          Corresponding Source fixed on a durable physical medium
          customarily used for software interchange.
      
          b) Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by a
          written offer, valid for at least three years and valid for as
          long as you offer spare parts or customer support for that product
          model, to give anyone who possesses the object code either (1) a
          copy of the Corresponding Source for all the software in the
          product that is covered by this License, on a durable physical
          medium customarily used for software interchange, for a price no
          more than your reasonable cost of physically performing this
          conveying of source, or (2) access to copy the
          Corresponding Source from a network server at no charge.
      
          c) Convey individual copies of the object code with a copy of the
          written offer to provide the Corresponding Source.  This
          alternative is allowed only occasionally and noncommercially, and
          only if you received the object code with such an offer, in accord
          with subsection 6b.
      
          d) Convey the object code by offering access from a designated
          place (gratis or for a charge), and offer equivalent access to the
          Corresponding Source in the same way through the same place at no
          further charge.  You need not require recipients to copy the
          Corresponding Source along with the object code.  If the place to
          copy the object code is a network server, the Corresponding Source
          may be on a different server (operated by you or a third party)
          that supports equivalent copying facilities, provided you maintain
          clear directions next to the object code saying where to find the
          Corresponding Source.  Regardless of what server hosts the
          Corresponding Source, you remain obligated to ensure that it is
          available for as long as needed to satisfy these requirements.
      
          e) Convey the object code using peer-to-peer transmission, provided
          you inform other peers where the object code and Corresponding
          Source of the work are being offered to the general public at no
          charge under subsection 6d.
      
        A separable portion of the object code, whose source code is excluded
      from the Corresponding Source as a System Library, need not be
      included in conveying the object code work.
      
        A "User Product" is either (1) a "consumer product", which means any
      tangible personal property which is normally used for personal, family,
      or household purposes, or (2) anything designed or sold for incorporation
      into a dwelling.  In determining whether a product is a consumer product,
      doubtful cases shall be resolved in favor of coverage.  For a particular
      product received by a particular user, "normally used" refers to a
      typical or common use of that class of product, regardless of the status
      of the particular user or of the way in which the particular user
      actually uses, or expects or is expected to use, the product.  A product
      is a consumer product regardless of whether the product has substantial
      commercial, industrial or non-consumer uses, unless such uses represent
      the only significant mode of use of the product.
      
        "Installation Information" for a User Product means any methods,
      procedures, authorization keys, or other information required to install
      and execute modified versions of a covered work in that User Product from
      a modified version of its Corresponding Source.  The information must
      suffice to ensure that the continued functioning of the modified object
      code is in no case prevented or interfered with solely because
      modification has been made.
      
        If you convey an object code work under this section in, or with, or
      specifically for use in, a User Product, and the conveying occurs as
      part of a transaction in which the right of possession and use of the
      User Product is transferred to the recipient in perpetuity or for a
      fixed term (regardless of how the transaction is characterized), the
      Corresponding Source conveyed under this section must be accompanied
      by the Installation Information.  But this requirement does not apply
      if neither you nor any third party retains the ability to install
      modified object code on the User Product (for example, the work has
      been installed in ROM).
      
        The requirement to provide Installation Information does not include a
      requirement to continue to provide support service, warranty, or updates
      for a work that has been modified or installed by the recipient, or for
      the User Product in which it has been modified or installed.  Access to a
      network may be denied when the modification itself materially and
      adversely affects the operation of the network or violates the rules and
      protocols for communication across the network.
      
        Corresponding Source conveyed, and Installation Information provided,
      in accord with this section must be in a format that is publicly
      documented (and with an implementation available to the public in
      source code form), and must require no special password or key for
      unpacking, reading or copying.
      
        7. Additional Terms.
      
        "Additional permissions" are terms that supplement the terms of this
      License by making exceptions from one or more of its conditions.
      Additional permissions that are applicable to the entire Program shall
      be treated as though they were included in this License, to the extent
      that they are valid under applicable law.  If additional permissions
      apply only to part of the Program, that part may be used separately
      under those permissions, but the entire Program remains governed by
      this License without regard to the additional permissions.
      
        When you convey a copy of a covered work, you may at your option
      remove any additional permissions from that copy, or from any part of
      it.  (Additional permissions may be written to require their own
      removal in certain cases when you modify the work.)  You may place
      additional permissions on material, added by you to a covered work,
      for which you have or can give appropriate copyright permission.
      
        Notwithstanding any other provision of this License, for material you
      add to a covered work, you may (if authorized by the copyright holders of
      that material) supplement the terms of this License with terms:
      
          a) Disclaiming warranty or limiting liability differently from the
          terms of sections 15 and 16 of this License; or
      
          b) Requiring preservation of specified reasonable legal notices or
          author attributions in that material or in the Appropriate Legal
          Notices displayed by works containing it; or
      
          c) Prohibiting misrepresentation of the origin of that material, or
          requiring that modified versions of such material be marked in
          reasonable ways as different from the original version; or
      
          d) Limiting the use for publicity purposes of names of licensors or
          authors of the material; or
      
          e) Declining to grant rights under trademark law for use of some
          trade names, trademarks, or service marks; or
      
          f) Requiring indemnification of licensors and authors of that
          material by anyone who conveys the material (or modified versions of
          it) with contractual assumptions of liability to the recipient, for
          any liability that these contractual assumptions directly impose on
          those licensors and authors.
      
        All other non-permissive additional terms are considered "further
      restrictions" within the meaning of section 10.  If the Program as you
      received it, or any part of it, contains a notice stating that it is
      governed by this License along with a term that is a further
      restriction, you may remove that term.  If a license document contains
      a further restriction but permits relicensing or conveying under this
      License, you may add to a covered work material governed by the terms
      of that license document, provided that the further restriction does
      not survive such relicensing or conveying.
      
        If you add terms to a covered work in accord with this section, you
      must place, in the relevant source files, a statement of the
      additional terms that apply to those files, or a notice indicating
      where to find the applicable terms.
      
        Additional terms, permissive or non-permissive, may be stated in the
      form of a separately written license, or stated as exceptions;
      the above requirements apply either way.
      
        8. Termination.
      
        You may not propagate or modify a covered work except as expressly
      provided under this License.  Any attempt otherwise to propagate or
      modify it is void, and will automatically terminate your rights under
      this License (including any patent licenses granted under the third
      paragraph of section 11).
      
        However, if you cease all violation of this License, then your
      license from a particular copyright holder is reinstated (a)
      provisionally, unless and until the copyright holder explicitly and
      finally terminates your license, and (b) permanently, if the copyright
      holder fails to notify you of the violation by some reasonable means
      prior to 60 days after the cessation.
      
        Moreover, your license from a particular copyright holder is
      reinstated permanently if the copyright holder notifies you of the
      violation by some reasonable means, this is the first time you have
      received notice of violation of this License (for any work) from that
      copyright holder, and you cure the violation prior to 30 days after
      your receipt of the notice.
      
        Termination of your rights under this section does not terminate the
      licenses of parties who have received copies or rights from you under
      this License.  If your rights have been terminated and not permanently
      reinstated, you do not qualify to receive new licenses for the same
      material under section 10.
      
        9. Acceptance Not Required for Having Copies.
      
        You are not required to accept this License in order to receive or
      run a copy of the Program.  Ancillary propagation of a covered work
      occurring solely as a consequence of using peer-to-peer transmission
      to receive a copy likewise does not require acceptance.  However,
      nothing other than this License grants you permission to propagate or
      modify any covered work.  These actions infringe copyright if you do
      not accept this License.  Therefore, by modifying or propagating a
      covered work, you indicate your acceptance of this License to do so.
      
        10. Automatic Licensing of Downstream Recipients.
      
        Each time you convey a covered work, the recipient automatically
      receives a license from the original licensors, to run, modify and
      propagate that work, subject to this License.  You are not responsible
      for enforcing compliance by third parties with this License.
      
        An "entity transaction" is a transaction transferring control of an
      organization, or substantially all assets of one, or subdividing an
      organization, or merging organizations.  If propagation of a covered
      work results from an entity transaction, each party to that
      transaction who receives a copy of the work also receives whatever
      licenses to the work the party's predecessor in interest had or could
      give under the previous paragraph, plus a right to possession of the
      Corresponding Source of the work from the predecessor in interest, if
      the predecessor has it or can get it with reasonable efforts.
      
        You may not impose any further restrictions on the exercise of the
      rights granted or affirmed under this License.  For example, you may
      not impose a license fee, royalty, or other charge for exercise of
      rights granted under this License, and you may not initiate litigation
      (including a cross-claim or counterclaim in a lawsuit) alleging that
      any patent claim is infringed by making, using, selling, offering for
      sale, or importing the Program or any portion of it.
      
        11. Patents.
      
        A "contributor" is a copyright holder who authorizes use under this
      License of the Program or a work on which the Program is based.  The
      work thus licensed is called the contributor's "contributor version".
      
        A contributor's "essential patent claims" are all patent claims
      owned or controlled by the contributor, whether already acquired or
      hereafter acquired, that would be infringed by some manner, permitted
      by this License, of making, using, or selling its contributor version,
      but do not include claims that would be infringed only as a
      consequence of further modification of the contributor version.  For
      purposes of this definition, "control" includes the right to grant
      patent sublicenses in a manner consistent with the requirements of
      this License.
      
        Each contributor grants you a non-exclusive, worldwide, royalty-free
      patent license under the contributor's essential patent claims, to
      make, use, sell, offer for sale, import and otherwise run, modify and
      propagate the contents of its contributor version.
      
        In the following three paragraphs, a "patent license" is any express
      agreement or commitment, however denominated, not to enforce a patent
      (such as an express permission to practice a patent or covenant not to
      sue for patent infringement).  To "grant" such a patent license to a
      party means to make such an agreement or commitment not to enforce a
      patent against the party.
      
        If you convey a covered work, knowingly relying on a patent license,
      and the Corresponding Source of the work is not available for anyone
      to copy, free of charge and under the terms of this License, through a
      publicly available network server or other readily accessible means,
      then you must either (1) cause the Corresponding Source to be so
      available, or (2) arrange to deprive yourself of the benefit of the
      patent license for this particular work, or (3) arrange, in a manner
      consistent with the requirements of this License, to extend the patent
      license to downstream recipients.  "Knowingly relying" means you have
      actual knowledge that, but for the patent license, your conveying the
      covered work in a country, or your recipient's use of the covered work
      in a country, would infringe one or more identifiable patents in that
      country that you have reason to believe are valid.
      
        If, pursuant to or in connection with a single transaction or
      arrangement, you convey, or propagate by procuring conveyance of, a
      covered work, and grant a patent license to some of the parties
      receiving the covered work authorizing them to use, propagate, modify
      or convey a specific copy of the covered work, then the patent license
      you grant is automatically extended to all recipients of the covered
      work and works based on it.
      
        A patent license is "discriminatory" if it does not include within
      the scope of its coverage, prohibits the exercise of, or is
      conditioned on the non-exercise of one or more of the rights that are
      specifically granted under this License.  You may not convey a covered
      work if you are a party to an arrangement with a third party that is
      in the business of distributing software, under which you make payment
      to the third party based on the extent of your activity of conveying
      the work, and under which the third party grants, to any of the
      parties who would receive the covered work from you, a discriminatory
      patent license (a) in connection with copies of the covered work
      conveyed by you (or copies made from those copies), or (b) primarily
      for and in connection with specific products or compilations that
      contain the covered work, unless you entered into that arrangement,
      or that patent license was granted, prior to 28 March 2007.
      
        Nothing in this License shall be construed as excluding or limiting
      any implied license or other defenses to infringement that may
      otherwise be available to you under applicable patent law.
      
        12. No Surrender of Others' Freedom.
      
        If conditions are imposed on you (whether by court order, agreement or
      otherwise) that contradict the conditions of this License, they do not
      excuse you from the conditions of this License.  If you cannot convey a
      covered work so as to satisfy simultaneously your obligations under this
      License and any other pertinent obligations, then as a consequence you may
      not convey it at all.  For example, if you agree to terms that obligate you
      to collect a royalty for further conveying from those to whom you convey
      the Program, the only way you could satisfy both those terms and this
      License would be to refrain entirely from conveying the Program.
      
        13. Use with the GNU Affero General Public License.
      
        Notwithstanding any other provision of this License, you have
      permission to link or combine any covered work with a work licensed
      under version 3 of the GNU Affero General Public License into a single
      combined work, and to convey the resulting work.  The terms of this
      License will continue to apply to the part which is the covered work,
      but the special requirements of the GNU Affero General Public License,
      section 13, concerning interaction through a network will apply to the
      combination as such.
      
        14. Revised Versions of this License.
      
        The Free Software Foundation may publish revised and/or new versions of
      the GNU General Public License from time to time.  Such new versions will
      be similar in spirit to the present version, but may differ in detail to
      address new problems or concerns.
      
        Each version is given a distinguishing version number.  If the
      Program specifies that a certain numbered version of the GNU General
      Public License "or any later version" applies to it, you have the
      option of following the terms and conditions either of that numbered
      version or of any later version published by the Free Software
      Foundation.  If the Program does not specify a version number of the
      GNU General Public License, you may choose any version ever published
      by the Free Software Foundation.
      
        If the Program specifies that a proxy can decide which future
      versions of the GNU General Public License can be used, that proxy's
      public statement of acceptance of a version permanently authorizes you
      to choose that version for the Program.
      
        Later license versions may give you additional or different
      permissions.  However, no additional obligations are imposed on any
      author or copyright holder as a result of your choosing to follow a
      later version.
      
        15. Disclaimer of Warranty.
      
        THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
      APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
      HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
      OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
      THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
      IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
      ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
      
        16. Limitation of Liability.
      
        IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
      WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
      THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
      GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
      USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
      DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
      PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
      EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
      SUCH DAMAGES.
      
        17. Interpretation of Sections 15 and 16.
      
        If the disclaimer of warranty and limitation of liability provided
      above cannot be given local legal effect according to their terms,
      reviewing courts shall apply local law that most closely approximates
      an absolute waiver of all civil liability in connection with the
      Program, unless a warranty or assumption of liability accompanies a
      copy of the Program in return for a fee.
      
                           END OF TERMS AND CONDITIONS
      
                  How to Apply These Terms to Your New Programs
      
        If you develop a new program, and you want it to be of the greatest
      possible use to the public, the best way to achieve this is to make it
      free software which everyone can redistribute and change under these terms.
      
        To do so, attach the following notices to the program.  It is safest
      to attach them to the start of each source file to most effectively
      state the exclusion of warranty; and each file should have at least
      the "copyright" line and a pointer to where the full notice is found.
      
          <one line to give the program's name and a brief idea of what it does.>
          Copyright (C) <year>  <name of author>
      
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
          the Free Software Foundation, either version 3 of the License, or
          (at your option) any later version.
      
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
          GNU General Public License for more details.
      
          You should have received a copy of the GNU General Public License
          along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      Also add information on how to contact you by electronic and paper mail.
      
        If the program does terminal interaction, make it output a short
      notice like this when it starts in an interactive mode:
      
          <program>  Copyright (C) <year>  <name of author>
          This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
          This is free software, and you are welcome to redistribute it
          under certain conditions; type `show c' for details.
      
      The hypothetical commands `show w' and `show c' should show the appropriate
      parts of the General Public License.  Of course, your program's commands
      might be different; for a GUI interface, you would use an "about box".
      
        You should also get your employer (if you work as a programmer) or school,
      if any, to sign a "copyright disclaimer" for the program, if necessary.
      For more information on this, and how to apply and follow the GNU GPL, see
      <http://www.gnu.org/licenses/>.
      
        The GNU General Public License does not permit incorporating your program
      into proprietary programs.  If your program is a subroutine library, you
      may consider it more useful to permit linking proprietary applications with
      the library.  If this is what you want to do, use the GNU Lesser General
      Public License instead of this License.  But first, please read
      <http://www.gnu.org/philosophy/why-not-lgpl.html>.
      
      */

      File 3 of 4: UniswapV2Pair
      // File: contracts/interfaces/IUniswapV2Pair.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Pair {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          function MINIMUM_LIQUIDITY() external pure returns (uint);
          function factory() external view returns (address);
          function token0() external view returns (address);
          function token1() external view returns (address);
          function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
          function price0CumulativeLast() external view returns (uint);
          function price1CumulativeLast() external view returns (uint);
          function kLast() external view returns (uint);
      
          function mint(address to) external returns (uint liquidity);
          function burn(address to) external returns (uint amount0, uint amount1);
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
          function skim(address to) external;
          function sync() external;
      
          function initialize(address, address) external;
      }
      
      // File: contracts/interfaces/IUniswapV2ERC20.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2ERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      }
      
      // File: contracts/libraries/SafeMath.sol
      
      pragma solidity =0.5.16;
      
      // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
      
      library SafeMath {
          function add(uint x, uint y) internal pure returns (uint z) {
              require((z = x + y) >= x, 'ds-math-add-overflow');
          }
      
          function sub(uint x, uint y) internal pure returns (uint z) {
              require((z = x - y) <= x, 'ds-math-sub-underflow');
          }
      
          function mul(uint x, uint y) internal pure returns (uint z) {
              require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
          }
      }
      
      // File: contracts/UniswapV2ERC20.sol
      
      pragma solidity =0.5.16;
      
      
      
      contract UniswapV2ERC20 is IUniswapV2ERC20 {
          using SafeMath for uint;
      
          string public constant name = 'Uniswap V2';
          string public constant symbol = 'UNI-V2';
          uint8 public constant decimals = 18;
          uint  public totalSupply;
          mapping(address => uint) public balanceOf;
          mapping(address => mapping(address => uint)) public allowance;
      
          bytes32 public DOMAIN_SEPARATOR;
          // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
          mapping(address => uint) public nonces;
      
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          constructor() public {
              uint chainId;
              assembly {
                  chainId := chainid
              }
              DOMAIN_SEPARATOR = keccak256(
                  abi.encode(
                      keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                      keccak256(bytes(name)),
                      keccak256(bytes('1')),
                      chainId,
                      address(this)
                  )
              );
          }
      
          function _mint(address to, uint value) internal {
              totalSupply = totalSupply.add(value);
              balanceOf[to] = balanceOf[to].add(value);
              emit Transfer(address(0), to, value);
          }
      
          function _burn(address from, uint value) internal {
              balanceOf[from] = balanceOf[from].sub(value);
              totalSupply = totalSupply.sub(value);
              emit Transfer(from, address(0), value);
          }
      
          function _approve(address owner, address spender, uint value) private {
              allowance[owner][spender] = value;
              emit Approval(owner, spender, value);
          }
      
          function _transfer(address from, address to, uint value) private {
              balanceOf[from] = balanceOf[from].sub(value);
              balanceOf[to] = balanceOf[to].add(value);
              emit Transfer(from, to, value);
          }
      
          function approve(address spender, uint value) external returns (bool) {
              _approve(msg.sender, spender, value);
              return true;
          }
      
          function transfer(address to, uint value) external returns (bool) {
              _transfer(msg.sender, to, value);
              return true;
          }
      
          function transferFrom(address from, address to, uint value) external returns (bool) {
              if (allowance[from][msg.sender] != uint(-1)) {
                  allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
              }
              _transfer(from, to, value);
              return true;
          }
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
              require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
              bytes32 digest = keccak256(
                  abi.encodePacked(
                      '\x19\x01',
                      DOMAIN_SEPARATOR,
                      keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                  )
              );
              address recoveredAddress = ecrecover(digest, v, r, s);
              require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
              _approve(owner, spender, value);
          }
      }
      
      // File: contracts/libraries/Math.sol
      
      pragma solidity =0.5.16;
      
      // a library for performing various math operations
      
      library Math {
          function min(uint x, uint y) internal pure returns (uint z) {
              z = x < y ? x : y;
          }
      
          // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
          function sqrt(uint y) internal pure returns (uint z) {
              if (y > 3) {
                  z = y;
                  uint x = y / 2 + 1;
                  while (x < z) {
                      z = x;
                      x = (y / x + x) / 2;
                  }
              } else if (y != 0) {
                  z = 1;
              }
          }
      }
      
      // File: contracts/libraries/UQ112x112.sol
      
      pragma solidity =0.5.16;
      
      // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
      
      // range: [0, 2**112 - 1]
      // resolution: 1 / 2**112
      
      library UQ112x112 {
          uint224 constant Q112 = 2**112;
      
          // encode a uint112 as a UQ112x112
          function encode(uint112 y) internal pure returns (uint224 z) {
              z = uint224(y) * Q112; // never overflows
          }
      
          // divide a UQ112x112 by a uint112, returning a UQ112x112
          function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
              z = x / uint224(y);
          }
      }
      
      // File: contracts/interfaces/IERC20.sol
      
      pragma solidity >=0.5.0;
      
      interface IERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external view returns (string memory);
          function symbol() external view returns (string memory);
          function decimals() external view returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      }
      
      // File: contracts/interfaces/IUniswapV2Factory.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Factory {
          event PairCreated(address indexed token0, address indexed token1, address pair, uint);
      
          function feeTo() external view returns (address);
          function feeToSetter() external view returns (address);
      
          function getPair(address tokenA, address tokenB) external view returns (address pair);
          function allPairs(uint) external view returns (address pair);
          function allPairsLength() external view returns (uint);
      
          function createPair(address tokenA, address tokenB) external returns (address pair);
      
          function setFeeTo(address) external;
          function setFeeToSetter(address) external;
      }
      
      // File: contracts/interfaces/IUniswapV2Callee.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Callee {
          function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
      }
      
      // File: contracts/UniswapV2Pair.sol
      
      pragma solidity =0.5.16;
      
      
      
      
      
      
      
      
      contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
          using SafeMath  for uint;
          using UQ112x112 for uint224;
      
          uint public constant MINIMUM_LIQUIDITY = 10**3;
          bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
      
          address public factory;
          address public token0;
          address public token1;
      
          uint112 private reserve0;           // uses single storage slot, accessible via getReserves
          uint112 private reserve1;           // uses single storage slot, accessible via getReserves
          uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
      
          uint public price0CumulativeLast;
          uint public price1CumulativeLast;
          uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
      
          uint private unlocked = 1;
          modifier lock() {
              require(unlocked == 1, 'UniswapV2: LOCKED');
              unlocked = 0;
              _;
              unlocked = 1;
          }
      
          function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
              _reserve0 = reserve0;
              _reserve1 = reserve1;
              _blockTimestampLast = blockTimestampLast;
          }
      
          function _safeTransfer(address token, address to, uint value) private {
              (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
              require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
          }
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          constructor() public {
              factory = msg.sender;
          }
      
          // called once by the factory at time of deployment
          function initialize(address _token0, address _token1) external {
              require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
              token0 = _token0;
              token1 = _token1;
          }
      
          // update reserves and, on the first call per block, price accumulators
          function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
              require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
              uint32 blockTimestamp = uint32(block.timestamp % 2**32);
              uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
              if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                  // * never overflows, and + overflow is desired
                  price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                  price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
              }
              reserve0 = uint112(balance0);
              reserve1 = uint112(balance1);
              blockTimestampLast = blockTimestamp;
              emit Sync(reserve0, reserve1);
          }
      
          // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
          function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
              address feeTo = IUniswapV2Factory(factory).feeTo();
              feeOn = feeTo != address(0);
              uint _kLast = kLast; // gas savings
              if (feeOn) {
                  if (_kLast != 0) {
                      uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                      uint rootKLast = Math.sqrt(_kLast);
                      if (rootK > rootKLast) {
                          uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                          uint denominator = rootK.mul(5).add(rootKLast);
                          uint liquidity = numerator / denominator;
                          if (liquidity > 0) _mint(feeTo, liquidity);
                      }
                  }
              } else if (_kLast != 0) {
                  kLast = 0;
              }
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function mint(address to) external lock returns (uint liquidity) {
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              uint balance0 = IERC20(token0).balanceOf(address(this));
              uint balance1 = IERC20(token1).balanceOf(address(this));
              uint amount0 = balance0.sub(_reserve0);
              uint amount1 = balance1.sub(_reserve1);
      
              bool feeOn = _mintFee(_reserve0, _reserve1);
              uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
              if (_totalSupply == 0) {
                  liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                 _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
              } else {
                  liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
              }
              require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
              _mint(to, liquidity);
      
              _update(balance0, balance1, _reserve0, _reserve1);
              if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
              emit Mint(msg.sender, amount0, amount1);
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function burn(address to) external lock returns (uint amount0, uint amount1) {
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              address _token0 = token0;                                // gas savings
              address _token1 = token1;                                // gas savings
              uint balance0 = IERC20(_token0).balanceOf(address(this));
              uint balance1 = IERC20(_token1).balanceOf(address(this));
              uint liquidity = balanceOf[address(this)];
      
              bool feeOn = _mintFee(_reserve0, _reserve1);
              uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
              amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
              amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
              require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
              _burn(address(this), liquidity);
              _safeTransfer(_token0, to, amount0);
              _safeTransfer(_token1, to, amount1);
              balance0 = IERC20(_token0).balanceOf(address(this));
              balance1 = IERC20(_token1).balanceOf(address(this));
      
              _update(balance0, balance1, _reserve0, _reserve1);
              if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
              emit Burn(msg.sender, amount0, amount1, to);
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
              require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
      
              uint balance0;
              uint balance1;
              { // scope for _token{0,1}, avoids stack too deep errors
              address _token0 = token0;
              address _token1 = token1;
              require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
              if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
              if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
              if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
              balance0 = IERC20(_token0).balanceOf(address(this));
              balance1 = IERC20(_token1).balanceOf(address(this));
              }
              uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
              uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
              require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
              { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
              uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
              uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
              require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
              }
      
              _update(balance0, balance1, _reserve0, _reserve1);
              emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
          }
      
          // force balances to match reserves
          function skim(address to) external lock {
              address _token0 = token0; // gas savings
              address _token1 = token1; // gas savings
              _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
              _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
          }
      
          // force reserves to match balances
          function sync() external lock {
              _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
          }
      }

      File 4 of 4: Gasspas
      /*
       * SPDX-License-Identifier: MIT
       * https://gasspas.com/
       * https://t.me/GasspasCat
       * https://x.com/GasspasCat
       */
      
      pragma solidity 0.8.19;
      
      library SafeMath {
          /**
           * @dev Returns the addition of two unsigned integers, with an overflow flag.
           *
           * _Available since v3.4._
           */
          function tryAdd(
              uint256 a,
              uint256 b
          ) internal pure returns (bool, uint256) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
      
          /**
           * @dev Returns the substraction of two unsigned integers, with an overflow flag.
           *
           * _Available since v3.4._
           */
          function trySub(
              uint256 a,
              uint256 b
          ) internal pure returns (bool, uint256) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
           *
           * _Available since v3.4._
           */
          function tryMul(
              uint256 a,
              uint256 b
          ) internal pure returns (bool, uint256) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
      
          /**
           * @dev Returns the division of two unsigned integers, with a division by zero flag.
           *
           * _Available since v3.4._
           */
          function tryDiv(
              uint256 a,
              uint256 b
          ) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
           *
           * _Available since v3.4._
           */
          function tryMod(
              uint256 a,
              uint256 b
          ) internal pure returns (bool, uint256) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
      
          /**
           * @dev Returns the addition of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `+` operator.
           *
           * Requirements:
           *
           * - Addition cannot overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              return a + b;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              return a - b;
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `*` operator.
           *
           * Requirements:
           *
           * - Multiplication cannot overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              return a * b;
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers, reverting on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator.
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              return a / b;
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * reverting when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              return a % b;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
           * overflow (when the result is negative).
           *
           * CAUTION: This function is deprecated because it requires allocating memory for the error
           * message unnecessarily. For custom revert reasons use {trySub}.
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              unchecked {
                  require(b <= a, errorMessage);
                  return a - b;
              }
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers, reverting with custom message on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              unchecked {
                  require(b > 0, errorMessage);
                  return a / b;
              }
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * reverting with custom message when dividing by zero.
           *
           * CAUTION: This function is deprecated because it requires allocating memory for the error
           * message unnecessarily. For custom revert reasons use {tryMod}.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              unchecked {
                  require(b > 0, errorMessage);
                  return a % b;
              }
          }
      }
      
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(
              address recipient,
              uint256 amount
          ) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(
              address owner,
              address spender
          ) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address sender,
              address recipient,
              uint256 amount
          ) external returns (bool);
      
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(
              address indexed owner,
              address indexed spender,
              uint256 value
          );
      }
      
      interface IERC20Metadata is IERC20 {
          /**
           * @dev Returns the name of the token.
           */
          function name() external view returns (string memory);
      
          /**
           * @dev Returns the symbol of the token.
           */
          function symbol() external view returns (string memory);
      
          /**
           * @dev Returns the decimals places of the token.
           */
          function decimals() external view returns (uint8);
      }
      
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      
      contract ERC20 is Context, IERC20, IERC20Metadata {
          mapping(address => uint256) private _balances;
      
          mapping(address => mapping(address => uint256)) private _allowances;
      
          uint256 private _totalSupply;
      
          string private _name;
          string private _symbol;
      
          /**
           * @dev Sets the values for {name} and {symbol}.
           *
           * The default value of {decimals} is 18. To select a different value for
           * {decimals} you should overload it.
           *
           * All two of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
      
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual override returns (string memory) {
              return _name;
          }
      
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual override returns (string memory) {
              return _symbol;
          }
      
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5.05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless this function is
           * overridden;
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual override returns (uint8) {
              return 18;
          }
      
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
      
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(
              address account
          ) public view virtual override returns (uint256) {
              return _balances[account];
          }
      
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(
              address recipient,
              uint256 amount
          ) public virtual override returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(
              address owner,
              address spender
          ) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
      
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(
              address spender,
              uint256 amount
          ) public virtual override returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the upd allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * Requirements:
           *
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for ``sender``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address sender,
              address recipient,
              uint256 amount
          ) public virtual override returns (bool) {
              _transfer(sender, recipient, amount);
      
              uint256 currentAllowance = _allowances[sender][_msgSender()];
              require(
                  currentAllowance >= amount,
                  "ERC20: transfer amount exceeds allowance"
              );
              unchecked {
                  _approve(sender, _msgSender(), currentAllowance - amount);
              }
      
              return true;
          }
      
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the upd allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(
              address spender,
              uint256 addedValue
          ) public virtual returns (bool) {
              _approve(
                  _msgSender(),
                  spender,
                  _allowances[_msgSender()][spender] + addedValue
              );
              return true;
          }
      
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the upd allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(
              address spender,
              uint256 subtractedValue
          ) public virtual returns (bool) {
              uint256 currentAllowance = _allowances[_msgSender()][spender];
              require(
                  currentAllowance >= subtractedValue,
                  "ERC20: decreased allowance below zero"
              );
              unchecked {
                  _approve(_msgSender(), spender, currentAllowance - subtractedValue);
              }
      
              return true;
          }
      
          /**
           * @dev Moves `amount` of tokens from `sender` to `recipient`.
           *
           * This internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(
              address sender,
              address recipient,
              uint256 amount
          ) internal virtual {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
      
              _beforeTokenTransfer(sender, recipient, amount);
      
              uint256 senderBalance = _balances[sender];
              require(
                  senderBalance >= amount,
                  "ERC20: transfer amount exceeds balance"
              );
              unchecked {
                  _balances[sender] = senderBalance - amount;
              }
              _balances[recipient] += amount;
      
              emit Transfer(sender, recipient, amount);
      
              _afterTokenTransfer(sender, recipient, amount);
          }
      
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
      
              _beforeTokenTransfer(address(0), account, amount);
      
              _totalSupply += amount;
              _balances[account] += amount;
              emit Transfer(address(0), account, amount);
      
              _afterTokenTransfer(address(0), account, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
      
              _beforeTokenTransfer(account, address(0), amount);
      
              uint256 accountBalance = _balances[account];
              require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
              unchecked {
                  _balances[account] = accountBalance - amount;
              }
              _totalSupply -= amount;
      
              emit Transfer(account, address(0), amount);
      
              _afterTokenTransfer(account, address(0), amount);
          }
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
      
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
      
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      
          /**
           * @dev Hook that is called after any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * has been transferred to `to`.
           * - when `from` is zero, `amount` tokens have been minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _afterTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      }
      
      abstract contract Ownable is Context {
          address private _owner;
      
          event OwnershipTransferred(
              address indexed previousOwner,
              address indexed newOwner
          );
      
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
      
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
      
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
              _;
          }
      
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(
                  newOwner != address(0),
                  "Ownable: new owner is the zero address"
              );
              _transferOwnership(newOwner);
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      
      interface IDexFactory {
          event PairCreated(
              address indexed token0,
              address indexed token1,
              address pair,
              uint256
          );
      
          function feeTo() external view returns (address);
      
          function feeToSetter() external view returns (address);
      
          function getPair(
              address tokenA,
              address tokenB
          ) external view returns (address pair);
      
          function allPairs(uint256) external view returns (address pair);
      
          function allPairsLength() external view returns (uint256);
      
          function createPair(
              address tokenA,
              address tokenB
          ) external returns (address pair);
      
          function setFeeTo(address) external;
      
          function setFeeToSetter(address) external;
      }
      
      interface IDexRouter {
          function factory() external pure returns (address);
      
          function WETH() external pure returns (address);
      
          function addLiquidity(
              address tokenA,
              address tokenB,
              uint256 amountADesired,
              uint256 amountBDesired,
              uint256 amountAMin,
              uint256 amountBMin,
              address to,
              uint256 deadline
          ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
      
          function addLiquidityETH(
              address token,
              uint256 amountTokenDesired,
              uint256 amountTokenMin,
              uint256 amountETHMin,
              address to,
              uint256 deadline
          )
              external
              payable
              returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
      
          function swapExactTokensForTokensSupportingFeeOnTransferTokens(
              uint256 amountIn,
              uint256 amountOutMin,
              address[] calldata path,
              address to,
              uint256 deadline
          ) external;
      
          function swapExactETHForTokensSupportingFeeOnTransferTokens(
              uint256 amountOutMin,
              address[] calldata path,
              address to,
              uint256 deadline
          ) external payable;
      
          function swapExactTokensForETHSupportingFeeOnTransferTokens(
              uint256 amountIn,
              uint256 amountOutMin,
              address[] calldata path,
              address to,
              uint256 deadline
          ) external;
      }
      
      contract Gasspas is ERC20, Ownable {
          using SafeMath for uint256;
      
          IDexRouter private immutable dexRouter;
          address private immutable dexPair;
      
          // Swapback
          bool private onSwapback;
      
          bool private isSwapbackEnabled = false;
          uint256 private minSwapback;
          uint256 private maxSwapback;
          uint256 private lastSwapback;
      
      
          //Anti-whale
          bool private limitsOn = true;
          uint256 private walletLimit;
          uint256 private maxTx;
          mapping(address => uint256) private _holderLastTransferTimestamp; // to hold last Transfers temporarily during launch
      
          bool private tradingEnabled = false;
      
          // Fees
          address private marketingWallet;
      
          uint256 private buyTaxTotal;
      
          uint256 private sellTaxTotal;
      
          uint256 private transferTaxTotal;
          /******************/
      
          // exclude from fees and max transaction amount
          mapping(address => bool) private transferTaxExempt;
          mapping(address => bool) private transferLimitExempt;
          mapping(address => bool) private automatedMarketMakerPairs;
      
          // store addresses that a automatic market maker pairs. Any transfer *to* these addresses
          // could be subject to a maximum transfer amount
      
          event UpdateUniswapV2Router(
              address indexed newAddress,
              address indexed oldAddress
          );
      
          event ExcludeFromFees(address indexed account, bool isExcluded);
          event ExcludeFromLimits(address indexed account, bool isExcluded);
          event SetPairLPool(address indexed pair, bool indexed value);
          event TradingEnabled(uint256 indexed timestamp);
          event LimitsRemoved(uint256 indexed timestamp);
          event DisabledTransferDelay(uint256 indexed timestamp);
      
          event SwapbackSettingsUpdated(
              bool enabled,
              uint256 minSwapback,
              uint256 maxSwapback
          );
          event MaxTxUpdated(uint256 maxTx);
          event MaxWalletUpdated(uint256 walletLimit);
      
          event MarketingWalletUpdated(
              address indexed newWallet,
              address indexed oldWallet
          );
      
          event BuyFeeUpdated(
              uint256 buyTaxTotal,
              uint256 buyMarketingTax,
              uint256 buyProjectTax
          );
      
          event SellFeeUpdated(
              uint256 sellTaxTotal,
              uint256 sellMarketingTax,
              uint256 sellProjectTax
          );
      
          constructor() ERC20("Gasspas", "GASS") {
              IDexRouter _dexRouter = IDexRouter(
                  0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
              );
      
              wlMaxLimits(address(_dexRouter), true);
              dexRouter = _dexRouter;
      
              dexPair = IDexFactory(_dexRouter.factory()).createPair(
                  address(this),
                  _dexRouter.WETH()
              );
              wlMaxLimits(address(dexPair), true);
              _setAsPair(address(dexPair), true);
      
              uint256 _totalSupply = 420_690_000_000_000 * 10 ** decimals();
      
              lastSwapback = block.timestamp;
      
              maxTx = (_totalSupply * 10) / 1000;
              walletLimit = (_totalSupply * 10) / 1000;
      
              minSwapback = (_totalSupply * 1) / 1000;
              maxSwapback = (_totalSupply * 2) / 100;
      
              buyTaxTotal = 30;
      
              sellTaxTotal = 30;
      
              transferTaxTotal = 0;
      
              marketingWallet = address(0x15948b2Bce4439dF788C47bd1335218F53207D1E);
      
              // exclude from paying fees or having max transaction amount
              wlFromFees(msg.sender, true);
              wlFromFees(address(this), true);
              wlFromFees(address(0xdead), true);
              wlFromFees(marketingWallet, true);
      
              wlMaxLimits(msg.sender, true);
              wlMaxLimits(address(this), true);
              wlMaxLimits(address(0xdead), true);
              wlMaxLimits(marketingWallet, true);
      
              transferOwnership(msg.sender);
      
              /*
                  _mint is an internal function in ERC20.sol that is only called here,
                  and CANNOT be called ever again
              */
              _mint(msg.sender, _totalSupply);
          }
      
          receive() external payable {}
      
          /**
           * @notice  Opens public trading for the token
           * @dev     onlyOwner.
           */
          function openTrading() external onlyOwner {
              tradingEnabled = true;
              isSwapbackEnabled = true;
              emit TradingEnabled(block.timestamp);
          }
      
          /**
           * @notice Removes the max wallet and max transaction limits
           * @dev onlyOwner.
           * Emits an {LimitsRemoved} event
           */
          function disableLimits() external onlyOwner {
              limitsOn = false;
              transferTaxTotal = 0;
              emit LimitsRemoved(block.timestamp);
          }
      
          /**
           * @notice sets if swapback is enabled and sets the minimum and maximum amounts
           * @dev onlyOwner.
           * Emits an {SwapbackSettingsUpdated} event
           * @param _caSBcEnabled If swapback is enabled
           * @param _caSBcTrigger The minimum amount of tokens the contract must have before swapping tokens for ETH. Base 10000, so 1% = 100.
           * @param _caSBcLimit The maximum amount of tokens the contract can swap for ETH. Base 10000, so 1% = 100.
           */
          function setSB(
              bool _caSBcEnabled,
              uint256 _caSBcTrigger,
              uint256 _caSBcLimit
          ) external onlyOwner {
              require(
                  _caSBcTrigger >= 1,
                  "Swap amount cannot be lower than 0.01% total supply."
              );
              require(
                  _caSBcLimit >= _caSBcTrigger,
                  "maximum amount cant be higher than minimum"
              );
      
              isSwapbackEnabled = _caSBcEnabled;
              minSwapback = (totalSupply() * _caSBcTrigger) / 10000;
              maxSwapback = (totalSupply() * _caSBcLimit) / 10000;
              emit SwapbackSettingsUpdated(_caSBcEnabled, _caSBcTrigger, _caSBcLimit);
          }
      
          /**
           * @notice Changes the maximum amount of tokens that can be bought or sold in a single transaction
           * @dev onlyOwner.
           * Emits an {MaxTxUpdated} event
           * @param _maxTx Base 1000, so 1% = 10
           */
          function setLimitTx(uint256 _maxTx) external onlyOwner {
              require(_maxTx >= 2, "Cannot set maxTx lower than 0.2%");
              maxTx = (_maxTx * totalSupply()) / 1000;
              emit MaxTxUpdated(maxTx);
          }
      
          /**
           * @notice Changes the maximum amount of tokens a wallet can hold
           * @dev onlyOwner.
           * Emits an {MaxWalletUpdated} event
           * @param _walletLimit Base 1000, so 1% = 10
           */
          function setLimitWalet(
              uint256 _walletLimit
          ) external onlyOwner {
              require(_walletLimit >= 5, "Cannot set walletLimit lower than 0.5%");
              walletLimit = (_walletLimit * totalSupply()) / 1000;
              emit MaxWalletUpdated(walletLimit);
          }
      
          /**
           * @notice Sets if a wallet is excluded from the max wallet and tx limits
           * @dev onlyOwner.
           * Emits an {ExcludeFromLimits} event
           * @param _add The wallet to update
           * @param _excluded If the wallet is excluded or not
           */
          function wlMaxLimits(
              address _add,
              bool _excluded
          ) public onlyOwner {
              transferLimitExempt[_add] = _excluded;
              emit ExcludeFromLimits(_add, _excluded);
          }
      
          /**
           * @notice Sets the fees for buys
           * @dev onlyOwner.
           * Emits a {BuyFeeUpdated} event
           * All fees added up must be less than 100
           * @param _value The fee for the marketing wallet
           */
          function feeBuySet(uint256 _value) external onlyOwner {
              buyTaxTotal = _value;
              require(buyTaxTotal <= 100, "Total buy fee cannot be higher than 100%");
              emit BuyFeeUpdated(buyTaxTotal, buyTaxTotal, buyTaxTotal);
          }
      
          /**
           * @notice Sets the fees for sells
           * @dev onlyOwner.
           * Emits a {SellFeeUpdated} event
           * All fees added up must be less than 100
           * @param _value The fee for the marketing wallet
           */
          function feeSellSet(uint256 _value) external onlyOwner {
              sellTaxTotal = _value;
              require(
                  sellTaxTotal <= 100,
                  "Total sell fee cannot be higher than 100%"
              );
              emit SellFeeUpdated(sellTaxTotal, sellTaxTotal, sellTaxTotal);
          }
      
          function feeTransferSet(uint256 _value) external onlyOwner {
              transferTaxTotal = _value;
              require(
                  transferTaxTotal <= 100,
                  "Total transfer fee cannot be higher than 100%"
              );
          }
      
          /**
           * @notice Sets if an address is excluded from fees
           * @dev onlyOwner.
           * Emits an {ExcludeFromFees} event
           * @param _add The wallet to update
           * @param _excluded If the wallet is excluded or not
           */
          function wlFromFees(
              address _add,
              bool _excluded
          ) public onlyOwner {
              transferTaxExempt[_add] = _excluded;
              emit ExcludeFromFees(_add, _excluded);
          }
      
          function _setAsPair(address pair, bool value) private {
              automatedMarketMakerPairs[pair] = value;
      
              emit SetPairLPool(pair, value);
          }
      
          /**
           * @notice Sets the marketing wallet
           * @dev onlyOwner.
           * Emits an {MarketingWalletUpdated} event
           * @param _marketing The new marketing wallet
           */
          function setFeeReceiver(address _marketing) external onlyOwner {
              emit MarketingWalletUpdated(_marketing, marketingWallet);
              marketingWallet = _marketing;
          }
      
      
      
          /**
           * @notice  Information about the swapback settings
           * @return  _isSwapbackEnabled  if swapback is enabled
           * @return  _caSBcackValueMin  the minimum amount of tokens in the contract balance to trigger swapback
           * @return  _caSBcackValueMax  the maximum amount of tokens in the contract balance to trigger swapback
           */
          function sbiV()
              external
              view
              returns (
                  bool _isSwapbackEnabled,
                  uint256 _caSBcackValueMin,
                  uint256 _caSBcackValueMax
              )
          {
              _isSwapbackEnabled = isSwapbackEnabled;
              _caSBcackValueMin = minSwapback;
              _caSBcackValueMax = maxSwapback;
          }
      
          /**
           * @notice  Information about the anti whale parameters
           * @return  _limitsOn  if the wallet limits are in effect
           * @return  _walletLimit  The maximum amount of tokens that can be held by a wallet
           * @return  _maxTx  The maximum amount of tokens that can be bought or sold in a single transaction
           */
          function lmIV()
              external
              view
              returns (bool _limitsOn, uint256 _walletLimit, uint256 _maxTx)
          {
              _limitsOn = limitsOn;
              _walletLimit = walletLimit;
              _maxTx = maxTx;
          }
      
          /**
           * @notice The wallets that receive the collected fees
           * @return _marketingWallet The wallet that receives the marketing fees
           */
          function rcvVR()
              external
              view
              returns (address _marketingWallet)
          {
              return (marketingWallet);
          }
      
          /**
           * @notice Fees for buys, sells, and transfers
           * @return _buyTaxTotal The total fee for buys
           * @return _sellTaxTotal The total fee for sells
           * @return _transferTaxTotal The total fee for transfers
           */
          function txsIv()
              external
              view
              returns (
                  uint256 _buyTaxTotal,
                  uint256 _sellTaxTotal,
                  uint256 _transferTaxTotal
              )
          {
              _buyTaxTotal = buyTaxTotal;
              _sellTaxTotal = sellTaxTotal;
              _transferTaxTotal = transferTaxTotal;
          }
      
          /**
           * @notice  If the wallet is excluded from fees and max transaction amount and if the wallet is a automated market maker pair
           * @param   _target  The wallet to check
           * @return  _transferTaxExempt  If the wallet is excluded from fees
           * @return  _transferLimitExempt  If the wallet is excluded from max transaction amount
           * @return  _automatedMarketMakerPairs If the wallet is a automated market maker pair
           */
          function adsVI(
              address _target
          )
              external
              view
              returns (
                  bool _transferTaxExempt,
                  bool _transferLimitExempt,
                  bool _automatedMarketMakerPairs
              )
          {
              _transferTaxExempt = transferTaxExempt[_target];
              _transferLimitExempt = transferLimitExempt[_target];
              _automatedMarketMakerPairs = automatedMarketMakerPairs[_target];
          }
      
          function _transfer(
              address from,
              address to,
              uint256 amount
          ) internal override {
              require(from != address(0), "ERC20: transfer from the zero address");
              require(to != address(0), "ERC20: transfer to the zero address");
      
              if (amount == 0) {
                  super._transfer(from, to, 0);
                  return;
              }
      
              if (limitsOn) {
                  if (
                      from != owner() &&
                      to != owner() &&
                      to != address(0) &&
                      to != address(0xdead) &&
                      !onSwapback
                  ) {
                      if (!tradingEnabled) {
                          require(
                              transferTaxExempt[from] || transferTaxExempt[to],
                              "_transfer:: Trading is not active."
                          );
                      }
      
                      //when buy
                      if (
                          automatedMarketMakerPairs[from] && !transferLimitExempt[to]
                      ) {
                          require(
                              amount <= maxTx,
                              "Buy transfer amount exceeds the maxTx."
                          );
                          require(
                              amount + balanceOf(to) <= walletLimit,
                              "Max wallet exceeded"
                          );
                      }
                      //when sell
                      else if (
                          automatedMarketMakerPairs[to] && !transferLimitExempt[from]
                      ) {
                          require(
                              amount <= maxTx,
                              "Sell transfer amount exceeds the maxTx."
                          );
                      } else if (!transferLimitExempt[to]) {
                          require(
                              amount + balanceOf(to) <= walletLimit,
                              "Max wallet exceeded"
                          );
                      }
                  }
              }
      
              uint256 contractTokenBalance = balanceOf(address(this));
      
              bool canSwap = contractTokenBalance >= minSwapback;
      
              if (
                  canSwap &&
                  isSwapbackEnabled &&
                  !onSwapback &&
                  !automatedMarketMakerPairs[from] &&
                  !transferTaxExempt[from] &&
                  !transferTaxExempt[to] &&
                  lastSwapback != block.timestamp
              ) {
                  onSwapback = true;
      
                  swapBack(amount);
      
                  lastSwapback = block.timestamp;
      
                  onSwapback = false;
              }
      
              bool takeFee = !onSwapback;
      
              // if any account belongs to _isExcludedFromFee account then remove the fee
              if (transferTaxExempt[from] || transferTaxExempt[to]) {
                  takeFee = false;
              }
      
              uint256 fees = 0;
              // only take fees on buys/sells, do not take on wallet transfers
              if (takeFee) {
                  // on sell
                  if (automatedMarketMakerPairs[to] && sellTaxTotal > 0) {
                      fees = amount.mul(sellTaxTotal).div(100);
                  }
                  // on buy
                  else if (automatedMarketMakerPairs[from] && buyTaxTotal > 0) {
                      fees = amount.mul(buyTaxTotal).div(100);
                  }
                  // on transfers
                  else if (
                      transferTaxTotal > 0 &&
                      !automatedMarketMakerPairs[from] &&
                      !automatedMarketMakerPairs[to]
                  ) {
                      fees = amount.mul(transferTaxTotal).div(100);
                  }
      
                  if (fees > 0) {
                      super._transfer(from, address(this), fees);
                  }
      
                  amount -= fees;
              }
      
              super._transfer(from, to, amount);
          }
      
          function internalSwapback(uint256 tokenAmount) private {
              // generate the uniswap pair path of token -> weth
              address[] memory path = new address[](2);
              path[0] = address(this);
              path[1] = dexRouter.WETH();
      
              _approve(address(this), address(dexRouter), tokenAmount);
      
              // make the swap
              dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(
                  tokenAmount,
                  0, // accept any amount of ETH
                  path,
                  address(this),
                  block.timestamp
              );
          }
      
          function swapBack(uint256 amount) private {
              uint256 contractBalance = balanceOf(address(this));
              bool success;
      
              if (contractBalance == 0) {
                  return;
              }
      
              if (contractBalance > maxSwapback) {
                  contractBalance = maxSwapback;
              }
      
              if (contractBalance > amount * 15) {
                  contractBalance = amount * 15;
              }
      
              uint256 amountToSwapForETH = contractBalance;
      
              internalSwapback(amountToSwapForETH);
      
              (success, ) = address(marketingWallet).call{
                  value: address(this).balance
              }("");
          }
      }