ETH Price: $2,631.52 (+3.12%)

Transaction Decoder

Block:
21463794 at Dec-23-2024 07:48:35 AM +UTC
Transaction Fee:
0.001464213808904418 ETH $3.85
Gas Used:
280,071 Gas / 5.228009358 Gwei

Emitted Events:

152 Proxy.0x67a6208cfcc0801d50f6cbe764733f4fddf66ac0b04442061a8a8c0cb6b63f62( 0x67a6208cfcc0801d50f6cbe764733f4fddf66ac0b04442061a8a8c0cb6b63f62, 0xcf552a1f495bba371d2ee4f95bb8b11113dfde6e61e47d0ad9111e3a655dcef4, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x00000000000000000000000003d5bc58e7b7e13ba785f67afa2d2fc49cb2bdf3 )

Account State Difference:

  Address   Before After State Difference Code
0x39A90926...58B620edD
0x9BA64bB4...C3F282579
0.02388095975043734 Eth
Nonce: 40
0.022416745941532922 Eth
Nonce: 41
0.001464213808904418
(Fee Recipient: 0xa09f...e59)
33.263678583195378395 Eth33.263950252065378395 Eth0.00027166887

Execution Trace

Proxy.4870496f( )
  • OptimismPortal.proveWithdrawalTransaction( _tx=[{name:nonce, type:uint256, order:1, indexed:false, value:1766847064778384329583297500742918515827483896875618958121606201292622163, valueString:1766847064778384329583297500742918515827483896875618958121606201292622163}, {name:sender, type:address, order:2, indexed:false, value:0x4200000000000000000000000000000000000007, valueString:0x4200000000000000000000000000000000000007}, {name:target, type:address, order:3, indexed:false, value:0x03D5bc58E7b7E13ba785F67AFA2d2fC49cB2BdF3, valueString:0x03D5bc58E7b7E13ba785F67AFA2d2fC49cB2BdF3}, {name:value, type:uint256, order:4, indexed:false, value:0, valueString:0}, {name:gasLimit, type:uint256, order:5, indexed:false, value:288648, valueString:288648}, {name:data, type:bytes, order:6, indexed:false, value:0xD764AD0B000100000000000000000000000000000000000000000000000000000000095300000000000000000000000042000000000000000000000000000000000000100000000000000000000000001ADE86B9CC8A50DB747B7AAC32E8527D42C71FC10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000E40166A07A000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC700000000000000000000000005D032AC25D322DF992303DCA074EE7392C117B90000000000000000000000009BA64BB40DF4589FA218F629FD30F55C3F2825790000000000000000000000009BA64BB40DF4589FA218F629FD30F55C3F28257900000000000000000000000000000000000000000000000000000000B8553FA800000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, valueString:0xD764AD0B000100000000000000000000000000000000000000000000000000000000095300000000000000000000000042000000000000000000000000000000000000100000000000000000000000001ADE86B9CC8A50DB747B7AAC32E8527D42C71FC10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000E40166A07A000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC700000000000000000000000005D032AC25D322DF992303DCA074EE7392C117B90000000000000000000000009BA64BB40DF4589FA218F629FD30F55C3F2825790000000000000000000000009BA64BB40DF4589FA218F629FD30F55C3F28257900000000000000000000000000000000000000000000000000000000B8553FA800000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}], _l2OutputIndex=4293, _outputRootProof=[{name:version, type:bytes32, order:1, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:stateRoot, type:bytes32, order:2, indexed:false, value:AD4DDCDDFBF901C37081BAA80A4571FE294B57D30CF6F1C7B698EA278BC70C19, valueString:AD4DDCDDFBF901C37081BAA80A4571FE294B57D30CF6F1C7B698EA278BC70C19}, {name:messagePasserStorageRoot, type:bytes32, order:3, indexed:false, value:EBC8A76E96BFB2C5587918637D9EC262504866E82A765727D22DA0B443544AAF, valueString:EBC8A76E96BFB2C5587918637D9EC262504866E82A765727D22DA0B443544AAF}, {name:latestBlockhash, type:bytes32, order:4, indexed:false, value:354EA6E7D5F69D1837A6DEB3D2828D3800258377875CFE2B2748DC824374F789, valueString:354EA6E7D5F69D1837A6DEB3D2828D3800258377875CFE2B2748DC824374F789}], _withdrawalProof=[+QIRoCi/mfNIJf0mtZw+d+9cyAurtRvZvBZPvqztkia2IuaVoDXPHotLkpiXlDiNRiD2i/mRr3LvccxTv/ZiG2sEj246oOctWg/Vqc4KMBXiAoSwc9YN8mLqemqMjiA92+nYVcLMoH7SR0oKzBJsjY3yAu1+JvpinvSy+1cvvfP+WUHJwoLYoI7gcLPAi/E0CR25nAYXHnEUQjDKN0PSxsD9rXqNVdrAoNqOSRo7NGQbXJYrE6BzW1L0pjuCvpRChf2/GwClUoAaoEtOyKtp/iztyM+om+Iaqul6e85Mz/2cTc+zAg6Pn71IoDwAcjg+OnC8Byv0jz3Ra9n7ZThbFz0deMOJzkGmDuh+oEoxRy0SEDCAVXSMVBAtFcjbjN1iuGO3bXLmOR6WyTrDoHH3FR4NFRmFt1aj3ldoNE397ar3MEMsftD1xU5tRK5+oAh3/2GRTQAEPaDBz697ZXnRl+UJPkGtD/x3BFN1wxSRoFRRzCegvaCg9hGwRVwTdWShAe+9ZteM8DjBu/2ebTxIoArBFOQvEypARmKYj5UXZe94KgGYoX6cYaE2hCrQXQIkoHnDi2D0fUOrfR6HEZ1bMx0Lvx5CBEM7KCUNJiL+vZxEoPp/eE75v8hLUH8jvponse32yL3N6QnX6m6f/GuuM1quoHBAxLbKB5Ryp1BrW0QBJ7W1/zmILAkWd62FYHAnDKPRgA==, +QIRoFemHpjZixt5wBxaXuoiExOqg6kDCfY9yXJ2MtkOwR/toIM8ZSwXmQsVE4UOIf0Bgg/xJgykRiYqpzliHLU/hdqpoJl6bNpl9VD2PYhL9dgRJoDZM6Ch62GhN93GB61PLCDioBcDHYn0v/yvxur3l67lRYGyx5WDumtBcp5UCtzSt7yVoCUrWMBsTDcqhnY6rRrfozy3JmpTAJWaxnB01ruLvixFoEOic7iXTZsFBM/9bn3GOJHTdsGEQPUpsvza43m5Z7y1oIn9TP3IpLVP4KTtpBtne0P01ZNxB0Jp3yhclN90i634oDGnIIl09joiT6Rha5I5Ol0Q1Xa2vSv7+Ng9UIUqazYcoNfNsbOvM7ZrOV8V/gdEM6P51TtdP0imcDT1chYkzWKCoABEJl9FLD8dhNd16bjOS5beBwBJREv/c+p/by36zgI7oFe8PTLsVhOc0mKTzUzqaPYRXnxQApr3r8sanjMRPB1FoINGYh1PtFHHx29KdeSisv7lpJYTYFi2KDxF9Xe/NE9yoENFrvFrFAusH+dM0SWsO5kBwRSgrT8aZe8lXsFB4NzioFOnWd9213EfilfhBdPot1XfkBdE943mpabRVkP3USvhoKrqN2CIQ9WEtpqFGLnJCNKFYKrytwZKO5M2cbqlNsHRoA/0MR08m53H4nt+2iD++BhvHdfoCylLbcXo0bCP29e6gA==, +QERoH6CLAIAh3wjKFNdsHGDtDqDgb6SAZqwPmheVP7VMT1HgKC3Wx43xNXCsKFVYi5hXc7XJ49mnVjrHTO1B2U/0DoCcKBPM4qVgEGHUOfoW3glugSBn79tx4hErkh3//fKDnoJuqAD4xhlScrPZCg8Wozi+5PIlTgqrmlvdKzNQHzX2IdsU4CAgKCIMJtrlH66WV1uzdoTM9ML1cbF/Ro5PgCJbnAmrzpLFKC6IcS+DPT6xepFypnHEHONyK1pNPiEzbtTIZ0dCPiIXYCgVOBrMrICMFUYrHCMDFUXb8oj7aD8CABRWC0FHKqTlCaAoNkwLaz4e0fG9zolKAY/TM8nl4OH72a6McOM3z2nCV3RgICA, +FGAgICAoKywgxfSu0KRqJPsh8Ab9UbuggqaHarZ2I8j2kmKC/sUgICAgICAgICAoHGpy0YHR/y6G4KJV5DiRcEmsM5hCAtWPpkPX/Yy0Ee/gIA=, 4Z8gIjUyicA2D6dIk/AqM84zGTIgzsg8p+jQSxkrjnaDAQ==] )
    • Proxy.STATICCALL( )
      • SuperchainConfig.DELEGATECALL( )
      • Proxy.a25ae557( )
        • L2OutputOracle.getL2Output( _l2OutputIndex=4293 ) => ( [{name:outputRoot, type:bytes32, order:1, indexed:false, value:13C421C3518FFD1E90BFC17023524433DA2B3C55F6A4767A9F25B2F459746818, valueString:13C421C3518FFD1E90BFC17023524433DA2B3C55F6A4767A9F25B2F459746818}, {name:timestamp, type:uint128, order:2, indexed:false, value:1730793203, valueString:1730793203}, {name:l2BlockNumber, type:uint128, order:3, indexed:false, value:7729200, valueString:7729200}] )
          File 1 of 6: Proxy
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Constants } from "../libraries/Constants.sol";
          /// @title Proxy
          /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
          ///         if the caller is address(0), meaning that the call originated from an off-chain
          ///         simulation.
          contract Proxy {
              /// @notice An event that is emitted each time the implementation is changed. This event is part
              ///         of the EIP-1967 specification.
              /// @param implementation The address of the implementation contract
              event Upgraded(address indexed implementation);
              /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
              ///         EIP-1967 specification.
              /// @param previousAdmin The previous owner of the contract
              /// @param newAdmin      The new owner of the contract
              event AdminChanged(address previousAdmin, address newAdmin);
              /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
              ///         eth_call to interact with this proxy without needing to use low-level storage
              ///         inspection. We assume that nobody is able to trigger calls from address(0) during
              ///         normal EVM execution.
              modifier proxyCallIfNotAdmin() {
                  if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                      _;
                  } else {
                      // This WILL halt the call frame on completion.
                      _doProxyCall();
                  }
              }
              /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
              ///         EIP-1967 admin storage slot so that accidental storage collision with the
              ///         implementation is not possible.
              /// @param _admin Address of the initial contract admin. Admin as the ability to access the
              ///               transparent proxy interface.
              constructor(address _admin) {
                  _changeAdmin(_admin);
              }
              // slither-disable-next-line locked-ether
              receive() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              // slither-disable-next-line locked-ether
              fallback() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              /// @notice Set the implementation contract address. The code at the given address will execute
              ///         when this contract is called.
              /// @param _implementation Address of the implementation contract.
              function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                  _setImplementation(_implementation);
              }
              /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
              ///         atomic execution of initialization-based upgrades.
              /// @param _implementation Address of the implementation contract.
              /// @param _data           Calldata to delegatecall the new implementation with.
              function upgradeToAndCall(
                  address _implementation,
                  bytes calldata _data
              )
                  public
                  payable
                  virtual
                  proxyCallIfNotAdmin
                  returns (bytes memory)
              {
                  _setImplementation(_implementation);
                  (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                  require(success, "Proxy: delegatecall to new implementation contract failed");
                  return returndata;
              }
              /// @notice Changes the owner of the proxy contract. Only callable by the owner.
              /// @param _admin New owner of the proxy contract.
              function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                  _changeAdmin(_admin);
              }
              /// @notice Gets the owner of the proxy contract.
              /// @return Owner address.
              function admin() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getAdmin();
              }
              //// @notice Queries the implementation address.
              /// @return Implementation address.
              function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getImplementation();
              }
              /// @notice Sets the implementation address.
              /// @param _implementation New implementation address.
              function _setImplementation(address _implementation) internal {
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      sstore(proxyImplementation, _implementation)
                  }
                  emit Upgraded(_implementation);
              }
              /// @notice Changes the owner of the proxy contract.
              /// @param _admin New owner of the proxy contract.
              function _changeAdmin(address _admin) internal {
                  address previous = _getAdmin();
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      sstore(proxyOwner, _admin)
                  }
                  emit AdminChanged(previous, _admin);
              }
              /// @notice Performs the proxy call via a delegatecall.
              function _doProxyCall() internal {
                  address impl = _getImplementation();
                  require(impl != address(0), "Proxy: implementation not initialized");
                  assembly {
                      // Copy calldata into memory at 0x0....calldatasize.
                      calldatacopy(0x0, 0x0, calldatasize())
                      // Perform the delegatecall, make sure to pass all available gas.
                      let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                      // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                      // overwrite the calldata that we just copied into memory but that doesn't really
                      // matter because we'll be returning in a second anyway.
                      returndatacopy(0x0, 0x0, returndatasize())
                      // Success == 0 means a revert. We'll revert too and pass the data up.
                      if iszero(success) { revert(0x0, returndatasize()) }
                      // Otherwise we'll just return and pass the data up.
                      return(0x0, returndatasize())
                  }
              }
              /// @notice Queries the implementation address.
              /// @return Implementation address.
              function _getImplementation() internal view returns (address) {
                  address impl;
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      impl := sload(proxyImplementation)
                  }
                  return impl;
              }
              /// @notice Queries the owner of the proxy contract.
              /// @return Owner address.
              function _getAdmin() internal view returns (address) {
                  address owner;
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      owner := sload(proxyOwner)
                  }
                  return owner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { ResourceMetering } from "../L1/ResourceMetering.sol";
          /// @title Constants
          /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
          ///         the stuff used in multiple contracts. Constants that only apply to a single contract
          ///         should be defined in that contract instead.
          library Constants {
              /// @notice Special address to be used as the tx origin for gas estimation calls in the
              ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
              ///         the minimum gas limit specified by the user is not actually enough to execute the
              ///         given message and you're attempting to estimate the actual necessary gas limit. We
              ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
              ///         never have any code on any EVM chain.
              address internal constant ESTIMATION_ADDRESS = address(1);
              /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
              ///         CrossDomainMessenger contracts before an actual sender is set. This value is
              ///         non-zero to reduce the gas cost of message passing transactions.
              address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
              /// @notice The storage slot that holds the address of a proxy implementation.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
              bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                  0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /// @notice The storage slot that holds the address of the owner.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
              bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /// @notice Returns the default values for the ResourceConfig. These are the recommended values
              ///         for a production network.
              function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                  ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                      maxResourceLimit: 20_000_000,
                      elasticityMultiplier: 10,
                      baseFeeMaxChangeDenominator: 8,
                      minimumBaseFee: 1 gwei,
                      systemTxMaxGas: 1_000_000,
                      maximumBaseFee: type(uint128).max
                  });
                  return config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
          import { Burn } from "../libraries/Burn.sol";
          import { Arithmetic } from "../libraries/Arithmetic.sol";
          /// @custom:upgradeable
          /// @title ResourceMetering
          /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
          ///         updates automatically based on current demand.
          abstract contract ResourceMetering is Initializable {
              /// @notice Represents the various parameters that control the way in which resources are
              ///         metered. Corresponds to the EIP-1559 resource metering system.
              /// @custom:field prevBaseFee   Base fee from the previous block(s).
              /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
              /// @custom:field prevBlockNum  Last block number that the base fee was updated.
              struct ResourceParams {
                  uint128 prevBaseFee;
                  uint64 prevBoughtGas;
                  uint64 prevBlockNum;
              }
              /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
              ///         market. These values should be set with care as it is possible to set them in
              ///         a way that breaks the deposit gas market. The target resource limit is defined as
              ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
              ///         single word. There is additional space for additions in the future.
              /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
              ///                                            can be purchased per block.
              /// @custom:field elasticityMultiplier         Determines the target resource limit along with
              ///                                            the resource limit.
              /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
              /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
              ///                                            value.
              /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
              ///                                            transaction. This should be set to the same
              ///                                            number that the op-node sets as the gas limit
              ///                                            for the system transaction.
              /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
              ///                                            value.
              struct ResourceConfig {
                  uint32 maxResourceLimit;
                  uint8 elasticityMultiplier;
                  uint8 baseFeeMaxChangeDenominator;
                  uint32 minimumBaseFee;
                  uint32 systemTxMaxGas;
                  uint128 maximumBaseFee;
              }
              /// @notice EIP-1559 style gas parameters.
              ResourceParams public params;
              /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
              uint256[48] private __gap;
              /// @notice Meters access to a function based an amount of a requested resource.
              /// @param _amount Amount of the resource requested.
              modifier metered(uint64 _amount) {
                  // Record initial gas amount so we can refund for it later.
                  uint256 initialGas = gasleft();
                  // Run the underlying function.
                  _;
                  // Run the metering function.
                  _metered(_amount, initialGas);
              }
              /// @notice An internal function that holds all of the logic for metering a resource.
              /// @param _amount     Amount of the resource requested.
              /// @param _initialGas The amount of gas before any modifier execution.
              function _metered(uint64 _amount, uint256 _initialGas) internal {
                  // Update block number and base fee if necessary.
                  uint256 blockDiff = block.number - params.prevBlockNum;
                  ResourceConfig memory config = _resourceConfig();
                  int256 targetResourceLimit =
                      int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                  if (blockDiff > 0) {
                      // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                      // at which deposits can be created and therefore limit the potential for deposits to
                      // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                      int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                      int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                          / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                      // Update base fee by adding the base fee delta and clamp the resulting value between
                      // min and max.
                      int256 newBaseFee = Arithmetic.clamp({
                          _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                      // If we skipped more than one block, we also need to account for every empty block.
                      // Empty block means there was no demand for deposits in that block, so we should
                      // reflect this lack of demand in the fee.
                      if (blockDiff > 1) {
                          // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                          // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                          // between min and max.
                          newBaseFee = Arithmetic.clamp({
                              _value: Arithmetic.cdexp({
                                  _coefficient: newBaseFee,
                                  _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                  _exponent: int256(blockDiff - 1)
                              }),
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                      }
                      // Update new base fee, reset bought gas, and update block number.
                      params.prevBaseFee = uint128(uint256(newBaseFee));
                      params.prevBoughtGas = 0;
                      params.prevBlockNum = uint64(block.number);
                  }
                  // Make sure we can actually buy the resource amount requested by the user.
                  params.prevBoughtGas += _amount;
                  require(
                      int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                      "ResourceMetering: cannot buy more gas than available gas limit"
                  );
                  // Determine the amount of ETH to be paid.
                  uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                  // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                  // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                  // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                  // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                  // during any 1 day period in the last 5 years, so should be fine.
                  uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                  // Give the user a refund based on the amount of gas they used to do all of the work up to
                  // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                  // effectively like a dynamic stipend (with a minimum value).
                  uint256 usedGas = _initialGas - gasleft();
                  if (gasCost > usedGas) {
                      Burn.gas(gasCost - usedGas);
                  }
              }
              /// @notice Virtual function that returns the resource config.
              ///         Contracts that inherit this contract must implement this function.
              /// @return ResourceConfig
              function _resourceConfig() internal virtual returns (ResourceConfig memory);
              /// @notice Sets initial resource parameter values.
              ///         This function must either be called by the initializer function of an upgradeable
              ///         child contract.
              // solhint-disable-next-line func-name-mixedcase
              function __ResourceMetering_init() internal onlyInitializing {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1);
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator,
                  Rounding rounding
              ) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`.
                  // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                  // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                  // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                  // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1;
                  uint256 x = a;
                  if (x >> 128 > 0) {
                      x >>= 128;
                      result <<= 64;
                  }
                  if (x >> 64 > 0) {
                      x >>= 64;
                      result <<= 32;
                  }
                  if (x >> 32 > 0) {
                      x >>= 32;
                      result <<= 16;
                  }
                  if (x >> 16 > 0) {
                      x >>= 16;
                      result <<= 8;
                  }
                  if (x >> 8 > 0) {
                      x >>= 8;
                      result <<= 4;
                  }
                  if (x >> 4 > 0) {
                      x >>= 4;
                      result <<= 2;
                  }
                  if (x >> 2 > 0) {
                      result <<= 1;
                  }
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = sqrt(a);
                  if (rounding == Rounding.Up && result * result < a) {
                      result += 1;
                  }
                  return result;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          /// @title Burn
          /// @notice Utilities for burning stuff.
          library Burn {
              /// @notice Burns a given amount of ETH.
              /// @param _amount Amount of ETH to burn.
              function eth(uint256 _amount) internal {
                  new Burner{ value: _amount }();
              }
              /// @notice Burns a given amount of gas.
              /// @param _amount Amount of gas to burn.
              function gas(uint256 _amount) internal view {
                  uint256 i = 0;
                  uint256 initialGas = gasleft();
                  while (initialGas - gasleft() < _amount) {
                      ++i;
                  }
              }
          }
          /// @title Burner
          /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
          ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
          ///         from the circulating supply.
          contract Burner {
              constructor() payable {
                  selfdestruct(payable(address(this)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
          import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
          /// @title Arithmetic
          /// @notice Even more math than before.
          library Arithmetic {
              /// @notice Clamps a value between a minimum and maximum.
              /// @param _value The value to clamp.
              /// @param _min   The minimum value.
              /// @param _max   The maximum value.
              /// @return The clamped value.
              function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                  return SignedMath.min(SignedMath.max(_value, _min), _max);
              }
              /// @notice (c)oefficient (d)enominator (exp)onentiation function.
              ///         Returns the result of: c * (1 - 1/d)^exp.
              /// @param _coefficient Coefficient of the function.
              /// @param _denominator Fractional denominator.
              /// @param _exponent    Power function exponent.
              /// @return Result of c * (1 - 1/d)^exp.
              function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                  return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMath {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.8.0;
          /// @notice Arithmetic library with operations for fixed-point numbers.
          /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
          library FixedPointMathLib {
              /*//////////////////////////////////////////////////////////////
                              SIMPLIFIED FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
              function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
              }
              function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
              }
              function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
              }
              function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
              }
              function powWad(int256 x, int256 y) internal pure returns (int256) {
                  // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                  return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
              }
              function expWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      // When the result is < 0.5 we return zero. This happens when
                      // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                      if (x <= -42139678854452767551) return 0;
                      // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                      // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                      if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                      // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                      // for more intermediate precision and a binary basis. This base conversion
                      // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                      x = (x << 78) / 5**18;
                      // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                      // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                      // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                      int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                      x = x - k * 54916777467707473351141471128;
                      // k is in the range [-61, 195].
                      // Evaluate using a (6, 7)-term rational approximation.
                      // p is made monic, we'll multiply by a scale factor later.
                      int256 y = x + 1346386616545796478920950773328;
                      y = ((y * x) >> 96) + 57155421227552351082224309758442;
                      int256 p = y + x - 94201549194550492254356042504812;
                      p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                      p = p * x + (4385272521454847904659076985693276 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      int256 q = x - 2855989394907223263936484059900;
                      q = ((q * x) >> 96) + 50020603652535783019961831881945;
                      q = ((q * x) >> 96) - 533845033583426703283633433725380;
                      q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                      q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                      q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial won't have zeros in the domain as all its roots are complex.
                          // No scaling is necessary because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r should be in the range (0.09, 0.25) * 2**96.
                      // We now need to multiply r by:
                      // * the scale factor s = ~6.031367120.
                      // * the 2**k factor from the range reduction.
                      // * the 1e18 / 2**96 factor for base conversion.
                      // We do this all at once, with an intermediate result in 2**213
                      // basis, so the final right shift is always by a positive amount.
                      r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                  }
              }
              function lnWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      require(x > 0, "UNDEFINED");
                      // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                      // We do this by multiplying by 2**96 / 10**18. But since
                      // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                      // and add ln(2**96 / 10**18) at the end.
                      // Reduce range of x to (1, 2) * 2**96
                      // ln(2^k * x) = k * ln(2) + ln(x)
                      int256 k = int256(log2(uint256(x))) - 96;
                      x <<= uint256(159 - k);
                      x = int256(uint256(x) >> 159);
                      // Evaluate using a (8, 8)-term rational approximation.
                      // p is made monic, we will multiply by a scale factor later.
                      int256 p = x + 3273285459638523848632254066296;
                      p = ((p * x) >> 96) + 24828157081833163892658089445524;
                      p = ((p * x) >> 96) + 43456485725739037958740375743393;
                      p = ((p * x) >> 96) - 11111509109440967052023855526967;
                      p = ((p * x) >> 96) - 45023709667254063763336534515857;
                      p = ((p * x) >> 96) - 14706773417378608786704636184526;
                      p = p * x - (795164235651350426258249787498 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      // q is monic by convention.
                      int256 q = x + 5573035233440673466300451813936;
                      q = ((q * x) >> 96) + 71694874799317883764090561454958;
                      q = ((q * x) >> 96) + 283447036172924575727196451306956;
                      q = ((q * x) >> 96) + 401686690394027663651624208769553;
                      q = ((q * x) >> 96) + 204048457590392012362485061816622;
                      q = ((q * x) >> 96) + 31853899698501571402653359427138;
                      q = ((q * x) >> 96) + 909429971244387300277376558375;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial is known not to have zeros in the domain.
                          // No scaling required because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r is in the range (0, 0.125) * 2**96
                      // Finalization, we need to:
                      // * multiply by the scale factor s = 5.549…
                      // * add ln(2**96 / 10**18)
                      // * add k * ln(2)
                      // * multiply by 10**18 / 2**96 = 5**18 >> 78
                      // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                      r *= 1677202110996718588342820967067443963516166;
                      // add ln(2) * k * 5e18 * 2**192
                      r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                      // add ln(2**96 / 10**18) * 5e18 * 2**192
                      r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                      // base conversion: mul 2**18 / 2**192
                      r >>= 174;
                  }
              }
              /*//////////////////////////////////////////////////////////////
                              LOW LEVEL FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              function mulDivDown(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // Divide z by the denominator.
                      z := div(z, denominator)
                  }
              }
              function mulDivUp(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // First, divide z - 1 by the denominator and add 1.
                      // We allow z - 1 to underflow if z is 0, because we multiply the
                      // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                      z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                  }
              }
              function rpow(
                  uint256 x,
                  uint256 n,
                  uint256 scalar
              ) internal pure returns (uint256 z) {
                  assembly {
                      switch x
                      case 0 {
                          switch n
                          case 0 {
                              // 0 ** 0 = 1
                              z := scalar
                          }
                          default {
                              // 0 ** n = 0
                              z := 0
                          }
                      }
                      default {
                          switch mod(n, 2)
                          case 0 {
                              // If n is even, store scalar in z for now.
                              z := scalar
                          }
                          default {
                              // If n is odd, store x in z for now.
                              z := x
                          }
                          // Shifting right by 1 is like dividing by 2.
                          let half := shr(1, scalar)
                          for {
                              // Shift n right by 1 before looping to halve it.
                              n := shr(1, n)
                          } n {
                              // Shift n right by 1 each iteration to halve it.
                              n := shr(1, n)
                          } {
                              // Revert immediately if x ** 2 would overflow.
                              // Equivalent to iszero(eq(div(xx, x), x)) here.
                              if shr(128, x) {
                                  revert(0, 0)
                              }
                              // Store x squared.
                              let xx := mul(x, x)
                              // Round to the nearest number.
                              let xxRound := add(xx, half)
                              // Revert if xx + half overflowed.
                              if lt(xxRound, xx) {
                                  revert(0, 0)
                              }
                              // Set x to scaled xxRound.
                              x := div(xxRound, scalar)
                              // If n is even:
                              if mod(n, 2) {
                                  // Compute z * x.
                                  let zx := mul(z, x)
                                  // If z * x overflowed:
                                  if iszero(eq(div(zx, x), z)) {
                                      // Revert if x is non-zero.
                                      if iszero(iszero(x)) {
                                          revert(0, 0)
                                      }
                                  }
                                  // Round to the nearest number.
                                  let zxRound := add(zx, half)
                                  // Revert if zx + half overflowed.
                                  if lt(zxRound, zx) {
                                      revert(0, 0)
                                  }
                                  // Return properly scaled zxRound.
                                  z := div(zxRound, scalar)
                              }
                          }
                      }
                  }
              }
              /*//////////////////////////////////////////////////////////////
                                  GENERAL NUMBER UTILITIES
              //////////////////////////////////////////////////////////////*/
              function sqrt(uint256 x) internal pure returns (uint256 z) {
                  assembly {
                      let y := x // We start y at x, which will help us make our initial estimate.
                      z := 181 // The "correct" value is 1, but this saves a multiplication later.
                      // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                      // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                      // We check y >= 2^(k + 8) but shift right by k bits
                      // each branch to ensure that if x >= 256, then y >= 256.
                      if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                          y := shr(128, y)
                          z := shl(64, z)
                      }
                      if iszero(lt(y, 0x1000000000000000000)) {
                          y := shr(64, y)
                          z := shl(32, z)
                      }
                      if iszero(lt(y, 0x10000000000)) {
                          y := shr(32, y)
                          z := shl(16, z)
                      }
                      if iszero(lt(y, 0x1000000)) {
                          y := shr(16, y)
                          z := shl(8, z)
                      }
                      // Goal was to get z*z*y within a small factor of x. More iterations could
                      // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                      // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                      // That's not possible if x < 256 but we can just verify those cases exhaustively.
                      // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                      // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                      // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                      // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                      // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                      // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                      // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                      // There is no overflow risk here since y < 2^136 after the first branch above.
                      z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                      // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      // If x+1 is a perfect square, the Babylonian method cycles between
                      // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                      // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                      // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                      // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                      z := sub(z, lt(div(x, z), z))
                  }
              }
              function log2(uint256 x) internal pure returns (uint256 r) {
                  require(x > 0, "UNDEFINED");
                  assembly {
                      r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                      r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                      r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                      r := or(r, shl(4, lt(0xffff, shr(r, x))))
                      r := or(r, shl(3, lt(0xff, shr(r, x))))
                      r := or(r, shl(2, lt(0xf, shr(r, x))))
                      r := or(r, shl(1, lt(0x3, shr(r, x))))
                      r := or(r, lt(0x1, shr(r, x)))
                  }
              }
          }
          

          File 2 of 6: OptimismPortal
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { SafeCall } from "src/libraries/SafeCall.sol";
          import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
          import { SystemConfig } from "src/L1/SystemConfig.sol";
          import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
          import { Constants } from "src/libraries/Constants.sol";
          import { Types } from "src/libraries/Types.sol";
          import { Hashing } from "src/libraries/Hashing.sol";
          import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
          import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
          import { ResourceMetering } from "src/L1/ResourceMetering.sol";
          import { ISemver } from "src/universal/ISemver.sol";
          import { Constants } from "src/libraries/Constants.sol";
          /// @custom:proxied
          /// @title OptimismPortal
          /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
          ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
          ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
          contract OptimismPortal is Initializable, ResourceMetering, ISemver {
              /// @notice Represents a proven withdrawal.
              /// @custom:field outputRoot    Root of the L2 output this was proven against.
              /// @custom:field timestamp     Timestamp at whcih the withdrawal was proven.
              /// @custom:field l2OutputIndex Index of the output this was proven against.
              struct ProvenWithdrawal {
                  bytes32 outputRoot;
                  uint128 timestamp;
                  uint128 l2OutputIndex;
              }
              /// @notice Version of the deposit event.
              uint256 internal constant DEPOSIT_VERSION = 0;
              /// @notice The L2 gas limit set when eth is deposited using the receive() function.
              uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
              /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
              ///         If the of this variable is the default L2 sender address, then we are NOT inside of
              ///         a call to finalizeWithdrawalTransaction.
              address public l2Sender;
              /// @notice A list of withdrawal hashes which have been successfully finalized.
              mapping(bytes32 => bool) public finalizedWithdrawals;
              /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
              mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
              /// @custom:legacy
              /// @custom:spacer paused
              /// @notice Spacer for backwards compatibility.
              bool private spacer_53_0_1;
              /// @notice Contract of the Superchain Config.
              SuperchainConfig public superchainConfig;
              /// @notice Contract of the L2OutputOracle.
              /// @custom:network-specific
              L2OutputOracle public l2Oracle;
              /// @notice Contract of the SystemConfig.
              /// @custom:network-specific
              SystemConfig public systemConfig;
              /// @notice Emitted when a transaction is deposited from L1 to L2.
              ///         The parameters of this event are read by the rollup node and used to derive deposit
              ///         transactions on L2.
              /// @param from       Address that triggered the deposit transaction.
              /// @param to         Address that the deposit transaction is directed to.
              /// @param version    Version of this deposit transaction event.
              /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
              event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
              /// @notice Emitted when a withdrawal transaction is proven.
              /// @param withdrawalHash Hash of the withdrawal transaction.
              /// @param from           Address that triggered the withdrawal transaction.
              /// @param to             Address that the withdrawal transaction is directed to.
              event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
              /// @notice Emitted when a withdrawal transaction is finalized.
              /// @param withdrawalHash Hash of the withdrawal transaction.
              /// @param success        Whether the withdrawal transaction was successful.
              event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
              /// @notice Reverts when paused.
              modifier whenNotPaused() {
                  require(paused() == false, "OptimismPortal: paused");
                  _;
              }
              /// @notice Semantic version.
              /// @custom:semver 2.5.0
              string public constant version = "2.5.0";
              /// @notice Constructs the OptimismPortal contract.
              constructor() {
                  initialize({
                      _l2Oracle: L2OutputOracle(address(0)),
                      _systemConfig: SystemConfig(address(0)),
                      _superchainConfig: SuperchainConfig(address(0))
                  });
              }
              /// @notice Initializer.
              /// @param _l2Oracle Contract of the L2OutputOracle.
              /// @param _systemConfig Contract of the SystemConfig.
              /// @param _superchainConfig Contract of the SuperchainConfig.
              function initialize(
                  L2OutputOracle _l2Oracle,
                  SystemConfig _systemConfig,
                  SuperchainConfig _superchainConfig
              )
                  public
                  initializer
              {
                  l2Oracle = _l2Oracle;
                  systemConfig = _systemConfig;
                  superchainConfig = _superchainConfig;
                  if (l2Sender == address(0)) {
                      l2Sender = Constants.DEFAULT_L2_SENDER;
                  }
                  __ResourceMetering_init();
              }
              /// @notice Getter function for the contract of the L2OutputOracle on this chain.
              ///         Public getter is legacy and will be removed in the future. Use `l2Oracle()` instead.
              /// @return Contract of the L2OutputOracle on this chain.
              /// @custom:legacy
              function L2_ORACLE() external view returns (L2OutputOracle) {
                  return l2Oracle;
              }
              /// @notice Getter function for the contract of the SystemConfig on this chain.
              ///         Public getter is legacy and will be removed in the future. Use `systemConfig()` instead.
              /// @return Contract of the SystemConfig on this chain.
              /// @custom:legacy
              function SYSTEM_CONFIG() external view returns (SystemConfig) {
                  return systemConfig;
              }
              /// @notice Getter function for the address of the guardian.
              ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
              /// @return Address of the guardian.
              /// @custom:legacy
              function GUARDIAN() external view returns (address) {
                  return guardian();
              }
              /// @notice Getter function for the address of the guardian.
              ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
              /// @return Address of the guardian.
              /// @custom:legacy
              function guardian() public view returns (address) {
                  return superchainConfig.guardian();
              }
              /// @notice Getter for the current paused status.
              /// @return paused_ Whether or not the contract is paused.
              function paused() public view returns (bool paused_) {
                  paused_ = superchainConfig.paused();
              }
              /// @notice Computes the minimum gas limit for a deposit.
              ///         The minimum gas limit linearly increases based on the size of the calldata.
              ///         This is to prevent users from creating L2 resource usage without paying for it.
              ///         This function can be used when interacting with the portal to ensure forwards
              ///         compatibility.
              /// @param _byteCount Number of bytes in the calldata.
              /// @return The minimum gas limit for a deposit.
              function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                  return _byteCount * 16 + 21000;
              }
              /// @notice Accepts value so that users can send ETH directly to this contract and have the
              ///         funds be deposited to their address on L2. This is intended as a convenience
              ///         function for EOAs. Contracts should call the depositTransaction() function directly
              ///         otherwise any deposited funds will be lost due to address aliasing.
              // solhint-disable-next-line ordering
              receive() external payable {
                  depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
              }
              /// @notice Accepts ETH value without triggering a deposit to L2.
              ///         This function mainly exists for the sake of the migration between the legacy
              ///         Optimism system and Bedrock.
              function donateETH() external payable {
                  // Intentionally empty.
              }
              /// @notice Getter for the resource config.
              ///         Used internally by the ResourceMetering contract.
              ///         The SystemConfig is the source of truth for the resource config.
              /// @return ResourceMetering ResourceConfig
              function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
                  return systemConfig.resourceConfig();
              }
              /// @notice Proves a withdrawal transaction.
              /// @param _tx              Withdrawal transaction to finalize.
              /// @param _l2OutputIndex   L2 output index to prove against.
              /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
              /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
              function proveWithdrawalTransaction(
                  Types.WithdrawalTransaction memory _tx,
                  uint256 _l2OutputIndex,
                  Types.OutputRootProof calldata _outputRootProof,
                  bytes[] calldata _withdrawalProof
              )
                  external
                  whenNotPaused
              {
                  // Prevent users from creating a deposit transaction where this address is the message
                  // sender on L2. Because this is checked here, we do not need to check again in
                  // `finalizeWithdrawalTransaction`.
                  require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
                  // Get the output root and load onto the stack to prevent multiple mloads. This will
                  // revert if there is no output root for the given block number.
                  bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
                  // Verify that the output root can be generated with the elements in the proof.
                  require(
                      outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
                  );
                  // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                  bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                  ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                  // We generally want to prevent users from proving the same withdrawal multiple times
                  // because each successive proof will update the timestamp. A malicious user can take
                  // advantage of this to prevent other users from finalizing their withdrawal. However,
                  // since withdrawals are proven before an output root is finalized, we need to allow users
                  // to re-prove their withdrawal only in the case that the output root for their specified
                  // output index has been updated.
                  require(
                      provenWithdrawal.timestamp == 0
                          || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                      "OptimismPortal: withdrawal hash has already been proven"
                  );
                  // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                  // Refer to the Solidity documentation for more information on how storage layouts are
                  // computed for mappings.
                  bytes32 storageKey = keccak256(
                      abi.encode(
                          withdrawalHash,
                          uint256(0) // The withdrawals mapping is at the first slot in the layout.
                      )
                  );
                  // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                  // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                  // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                  // be relayed on L1.
                  require(
                      SecureMerkleTrie.verifyInclusionProof(
                          abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
                      ),
                      "OptimismPortal: invalid withdrawal inclusion proof"
                  );
                  // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
                  // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
                  // proven once unless it is submitted again with a different outputRoot.
                  provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                      outputRoot: outputRoot,
                      timestamp: uint128(block.timestamp),
                      l2OutputIndex: uint128(_l2OutputIndex)
                  });
                  // Emit a `WithdrawalProven` event.
                  emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
              }
              /// @notice Finalizes a withdrawal transaction.
              /// @param _tx Withdrawal transaction to finalize.
              function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                  // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                  // than the default value when a withdrawal transaction is being finalized. This check is
                  // a defacto reentrancy guard.
                  require(
                      l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
                  );
                  // Grab the proven withdrawal from the `provenWithdrawals` map.
                  bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                  ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                  // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                  // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                  // a timestamp of zero.
                  require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
                  // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                  // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
                  // safety against weird bugs in the proving step.
                  require(
                      provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                      "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
                  );
                  // A proven withdrawal must wait at least the finalization period before it can be
                  // finalized. This waiting period can elapse in parallel with the waiting period for the
                  // output the withdrawal was proven against. In effect, this means that the minimum
                  // withdrawal time is proposal submission time + finalization period.
                  require(
                      _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                      "OptimismPortal: proven withdrawal finalization period has not elapsed"
                  );
                  // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
                  // corresponds to the given index has not been proposed yet.
                  Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
                  // Check that the output root that was used to prove the withdrawal is the same as the
                  // current output root for the given output index. An output root may change if it is
                  // deleted by the challenger address and then re-proposed.
                  require(
                      proposal.outputRoot == provenWithdrawal.outputRoot,
                      "OptimismPortal: output root proven is not the same as current output root"
                  );
                  // Check that the output proposal has also been finalized.
                  require(
                      _isFinalizationPeriodElapsed(proposal.timestamp),
                      "OptimismPortal: output proposal finalization period has not elapsed"
                  );
                  // Check that this withdrawal has not already been finalized, this is replay protection.
                  require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
                  // Mark the withdrawal as finalized so it can't be replayed.
                  finalizedWithdrawals[withdrawalHash] = true;
                  // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                  l2Sender = _tx.sender;
                  // Trigger the call to the target contract. We use a custom low level method
                  // SafeCall.callWithMinGas to ensure two key properties
                  //   1. Target contracts cannot force this call to run out of gas by returning a very large
                  //      amount of data (and this is OK because we don't care about the returndata here).
                  //   2. The amount of gas provided to the execution context of the target is at least the
                  //      gas limit specified by the user. If there is not enough gas in the current context
                  //      to accomplish this, `callWithMinGas` will revert.
                  bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                  // Reset the l2Sender back to the default value.
                  l2Sender = Constants.DEFAULT_L2_SENDER;
                  // All withdrawals are immediately finalized. Replayability can
                  // be achieved through contracts built on top of this contract
                  emit WithdrawalFinalized(withdrawalHash, success);
                  // Reverting here is useful for determining the exact gas cost to successfully execute the
                  // sub call to the target contract if the minimum gas limit specified by the user would not
                  // be sufficient to execute the sub call.
                  if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                      revert("OptimismPortal: withdrawal failed");
                  }
              }
              /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
              ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
              ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
              ///         using the CrossDomainMessenger contracts for a simpler developer experience.
              /// @param _to         Target address on L2.
              /// @param _value      ETH value to send to the recipient.
              /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
              /// @param _isCreation Whether or not the transaction is a contract creation.
              /// @param _data       Data to trigger the recipient with.
              function depositTransaction(
                  address _to,
                  uint256 _value,
                  uint64 _gasLimit,
                  bool _isCreation,
                  bytes memory _data
              )
                  public
                  payable
                  metered(_gasLimit)
              {
                  // Just to be safe, make sure that people specify address(0) as the target when doing
                  // contract creations.
                  if (_isCreation) {
                      require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
                  }
                  // Prevent depositing transactions that have too small of a gas limit. Users should pay
                  // more for more resource usage.
                  require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
                  // Prevent the creation of deposit transactions that have too much calldata. This gives an
                  // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                  // that the transaction can fit into the p2p network policy of 128kb even though deposit
                  // transactions are not gossipped over the p2p network.
                  require(_data.length <= 120_000, "OptimismPortal: data too large");
                  // Transform the from-address to its alias if the caller is a contract.
                  address from = msg.sender;
                  if (msg.sender != tx.origin) {
                      from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                  }
                  // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                  // We use opaque data so that we can update the TransactionDeposited event in the future
                  // without breaking the current interface.
                  bytes memory opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                  // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                  // transaction for this deposit.
                  emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
              }
              /// @notice Determine if a given output is finalized.
              ///         Reverts if the call to l2Oracle.getL2Output reverts.
              ///         Returns a boolean otherwise.
              /// @param _l2OutputIndex Index of the L2 output to check.
              /// @return Whether or not the output is finalized.
              function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
                  return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
              }
              /// @notice Determines whether the finalization period has elapsed with respect to
              ///         the provided block timestamp.
              /// @param _timestamp Timestamp to check.
              /// @return Whether or not the finalization period has elapsed.
              function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
                  return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          /// @title SafeCall
          /// @notice Perform low level safe calls
          library SafeCall {
              /// @notice Performs a low level call without copying any returndata.
              /// @dev Passes no calldata to the call context.
              /// @param _target   Address to call
              /// @param _gas      Amount of gas to pass to the call
              /// @param _value    Amount of value to pass to the call
              function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
                  bool _success;
                  assembly {
                      _success :=
                          call(
                              _gas, // gas
                              _target, // recipient
                              _value, // ether value
                              0, // inloc
                              0, // inlen
                              0, // outloc
                              0 // outlen
                          )
                  }
                  return _success;
              }
              /// @notice Perform a low level call without copying any returndata
              /// @param _target   Address to call
              /// @param _gas      Amount of gas to pass to the call
              /// @param _value    Amount of value to pass to the call
              /// @param _calldata Calldata to pass to the call
              function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
                  bool _success;
                  assembly {
                      _success :=
                          call(
                              _gas, // gas
                              _target, // recipient
                              _value, // ether value
                              add(_calldata, 32), // inloc
                              mload(_calldata), // inlen
                              0, // outloc
                              0 // outlen
                          )
                  }
                  return _success;
              }
              /// @notice Helper function to determine if there is sufficient gas remaining within the context
              ///         to guarantee that the minimum gas requirement for a call will be met as well as
              ///         optionally reserving a specified amount of gas for after the call has concluded.
              /// @param _minGas      The minimum amount of gas that may be passed to the target context.
              /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
              ///                     of the target context.
              /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
              ///         context as well as reserve `_reservedGas` for the caller after the execution of
              ///         the target context.
              /// @dev !!!!! FOOTGUN ALERT !!!!!
              ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
              ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
              ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
              ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
              ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
              ///          factors of the dynamic cost of the `CALL` opcode.
              ///      2.) This function should *directly* precede the external call if possible. There is an
              ///          added buffer to account for gas consumed between this check and the call, but it
              ///          is only 5,700 gas.
              ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
              ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
              ///          truncated.
              ///      4.) Use wisely. This function is not a silver bullet.
              function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                  bool _hasMinGas;
                  assembly {
                      // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                      _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                  }
                  return _hasMinGas;
              }
              /// @notice Perform a low level call without copying any returndata. This function
              ///         will revert if the call cannot be performed with the specified minimum
              ///         gas.
              /// @param _target   Address to call
              /// @param _minGas   The minimum amount of gas that may be passed to the call
              /// @param _value    Amount of value to pass to the call
              /// @param _calldata Calldata to pass to the call
              function callWithMinGas(
                  address _target,
                  uint256 _minGas,
                  uint256 _value,
                  bytes memory _calldata
              )
                  internal
                  returns (bool)
              {
                  bool _success;
                  bool _hasMinGas = hasMinGas(_minGas, 0);
                  assembly {
                      // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                      if iszero(_hasMinGas) {
                          // Store the "Error(string)" selector in scratch space.
                          mstore(0, 0x08c379a0)
                          // Store the pointer to the string length in scratch space.
                          mstore(32, 32)
                          // Store the string.
                          //
                          // SAFETY:
                          // - We pad the beginning of the string with two zero bytes as well as the
                          // length (24) to ensure that we override the free memory pointer at offset
                          // 0x40. This is necessary because the free memory pointer is likely to
                          // be greater than 1 byte when this function is called, but it is incredibly
                          // unlikely that it will be greater than 3 bytes. As for the data within
                          // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                          // - It's fine to clobber the free memory pointer, we're reverting.
                          mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                          // Revert with 'Error("SafeCall: Not enough gas")'
                          revert(28, 100)
                      }
                      // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                      // above assertion. This ensures that, in all circumstances (except for when the
                      // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                      // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                      // the minimum amount of gas specified.
                      _success :=
                          call(
                              gas(), // gas
                              _target, // recipient
                              _value, // ether value
                              add(_calldata, 32), // inloc
                              mload(_calldata), // inlen
                              0x00, // outloc
                              0x00 // outlen
                          )
                  }
                  return _success;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { ISemver } from "src/universal/ISemver.sol";
          import { Types } from "src/libraries/Types.sol";
          import { Constants } from "src/libraries/Constants.sol";
          /// @custom:proxied
          /// @title L2OutputOracle
          /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
          ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
          ///         these outputs to verify information about the state of L2.
          contract L2OutputOracle is Initializable, ISemver {
              /// @notice The number of the first L2 block recorded in this contract.
              uint256 public startingBlockNumber;
              /// @notice The timestamp of the first L2 block recorded in this contract.
              uint256 public startingTimestamp;
              /// @notice An array of L2 output proposals.
              Types.OutputProposal[] internal l2Outputs;
              /// @notice The interval in L2 blocks at which checkpoints must be submitted.
              /// @custom:network-specific
              uint256 public submissionInterval;
              /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
              /// @custom:network-specific
              uint256 public l2BlockTime;
              /// @notice The address of the challenger. Can be updated via upgrade.
              /// @custom:network-specific
              address public challenger;
              /// @notice The address of the proposer. Can be updated via upgrade.
              /// @custom:network-specific
              address public proposer;
              /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
              /// @custom:network-specific
              uint256 public finalizationPeriodSeconds;
              /// @notice Emitted when an output is proposed.
              /// @param outputRoot    The output root.
              /// @param l2OutputIndex The index of the output in the l2Outputs array.
              /// @param l2BlockNumber The L2 block number of the output root.
              /// @param l1Timestamp   The L1 timestamp when proposed.
              event OutputProposed(
                  bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
              );
              /// @notice Emitted when outputs are deleted.
              /// @param prevNextOutputIndex Next L2 output index before the deletion.
              /// @param newNextOutputIndex  Next L2 output index after the deletion.
              event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
              /// @notice Semantic version.
              /// @custom:semver 1.8.0
              string public constant version = "1.8.0";
              /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
              ///         in the getting-started config.
              constructor() {
                  initialize({
                      _submissionInterval: 1,
                      _l2BlockTime: 1,
                      _startingBlockNumber: 0,
                      _startingTimestamp: 0,
                      _proposer: address(0),
                      _challenger: address(0),
                      _finalizationPeriodSeconds: 0
                  });
              }
              /// @notice Initializer.
              /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
              /// @param _l2BlockTime         The time per L2 block, in seconds.
              /// @param _startingBlockNumber The number of the first L2 block.
              /// @param _startingTimestamp   The timestamp of the first L2 block.
              /// @param _proposer            The address of the proposer.
              /// @param _challenger          The address of the challenger.
              /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
              ///                                   can be finalized.
              function initialize(
                  uint256 _submissionInterval,
                  uint256 _l2BlockTime,
                  uint256 _startingBlockNumber,
                  uint256 _startingTimestamp,
                  address _proposer,
                  address _challenger,
                  uint256 _finalizationPeriodSeconds
              )
                  public
                  initializer
              {
                  require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                  require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                  require(
                      _startingTimestamp <= block.timestamp,
                      "L2OutputOracle: starting L2 timestamp must be less than current time"
                  );
                  submissionInterval = _submissionInterval;
                  l2BlockTime = _l2BlockTime;
                  startingBlockNumber = _startingBlockNumber;
                  startingTimestamp = _startingTimestamp;
                  proposer = _proposer;
                  challenger = _challenger;
                  finalizationPeriodSeconds = _finalizationPeriodSeconds;
              }
              /// @notice Getter for the submissionInterval.
              ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
              /// @return Submission interval.
              /// @custom:legacy
              function SUBMISSION_INTERVAL() external view returns (uint256) {
                  return submissionInterval;
              }
              /// @notice Getter for the l2BlockTime.
              ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
              /// @return L2 block time.
              /// @custom:legacy
              function L2_BLOCK_TIME() external view returns (uint256) {
                  return l2BlockTime;
              }
              /// @notice Getter for the challenger address.
              ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
              /// @return Address of the challenger.
              /// @custom:legacy
              function CHALLENGER() external view returns (address) {
                  return challenger;
              }
              /// @notice Getter for the proposer address.
              ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
              /// @return Address of the proposer.
              /// @custom:legacy
              function PROPOSER() external view returns (address) {
                  return proposer;
              }
              /// @notice Getter for the finalizationPeriodSeconds.
              ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
              /// @return Finalization period in seconds.
              /// @custom:legacy
              function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
                  return finalizationPeriodSeconds;
              }
              /// @notice Deletes all output proposals after and including the proposal that corresponds to
              ///         the given output index. Only the challenger address can delete outputs.
              /// @param _l2OutputIndex Index of the first L2 output to be deleted.
              ///                       All outputs after this output will also be deleted.
              // solhint-disable-next-line ordering
              function deleteL2Outputs(uint256 _l2OutputIndex) external {
                  require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                  // Make sure we're not *increasing* the length of the array.
                  require(
                      _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                  );
                  // Do not allow deleting any outputs that have already been finalized.
                  require(
                      block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
                      "L2OutputOracle: cannot delete outputs that have already been finalized"
                  );
                  uint256 prevNextL2OutputIndex = nextOutputIndex();
                  // Use assembly to delete the array elements because Solidity doesn't allow it.
                  assembly {
                      sstore(l2Outputs.slot, _l2OutputIndex)
                  }
                  emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
              }
              /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
              ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
              ///         order to be accepted. This function may only be called by the Proposer.
              /// @param _outputRoot    The L2 output of the checkpoint block.
              /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
              /// @param _l1BlockHash   A block hash which must be included in the current chain.
              /// @param _l1BlockNumber The block number with the specified block hash.
              function proposeL2Output(
                  bytes32 _outputRoot,
                  uint256 _l2BlockNumber,
                  bytes32 _l1BlockHash,
                  uint256 _l1BlockNumber
              )
                  external
                  payable
              {
                  require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                  require(
                      _l2BlockNumber == nextBlockNumber(),
                      "L2OutputOracle: block number must be equal to next expected block number"
                  );
                  require(
                      computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                      "L2OutputOracle: cannot propose L2 output in the future"
                  );
                  require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                  if (_l1BlockHash != bytes32(0)) {
                      // This check allows the proposer to propose an output based on a given L1 block,
                      // without fear that it will be reorged out.
                      // It will also revert if the blockheight provided is more than 256 blocks behind the
                      // chain tip (as the hash will return as zero). This does open the door to a griefing
                      // attack in which the proposer's submission is censored until the block is no longer
                      // retrievable, if the proposer is experiencing this attack it can simply leave out the
                      // blockhash value, and delay submission until it is confident that the L1 block is
                      // finalized.
                      require(
                          blockhash(_l1BlockNumber) == _l1BlockHash,
                          "L2OutputOracle: block hash does not match the hash at the expected height"
                      );
                  }
                  emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                  l2Outputs.push(
                      Types.OutputProposal({
                          outputRoot: _outputRoot,
                          timestamp: uint128(block.timestamp),
                          l2BlockNumber: uint128(_l2BlockNumber)
                      })
                  );
              }
              /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
              /// @param _l2OutputIndex Index of the output to return.
              /// @return The output at the given index.
              function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                  return l2Outputs[_l2OutputIndex];
              }
              /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
              ///         Uses a binary search to find the first output greater than or equal to the given
              ///         block.
              /// @param _l2BlockNumber L2 block number to find a checkpoint for.
              /// @return Index of the first checkpoint that commits to the given L2 block number.
              function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                  // Make sure an output for this block number has actually been proposed.
                  require(
                      _l2BlockNumber <= latestBlockNumber(),
                      "L2OutputOracle: cannot get output for a block that has not been proposed"
                  );
                  // Make sure there's at least one output proposed.
                  require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                  // Find the output via binary search, guaranteed to exist.
                  uint256 lo = 0;
                  uint256 hi = l2Outputs.length;
                  while (lo < hi) {
                      uint256 mid = (lo + hi) / 2;
                      if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                          lo = mid + 1;
                      } else {
                          hi = mid;
                      }
                  }
                  return lo;
              }
              /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
              ///         Uses a binary search to find the first output greater than or equal to the given
              ///         block.
              /// @param _l2BlockNumber L2 block number to find a checkpoint for.
              /// @return First checkpoint that commits to the given L2 block number.
              function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                  return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
              }
              /// @notice Returns the number of outputs that have been proposed.
              ///         Will revert if no outputs have been proposed yet.
              /// @return The number of outputs that have been proposed.
              function latestOutputIndex() external view returns (uint256) {
                  return l2Outputs.length - 1;
              }
              /// @notice Returns the index of the next output to be proposed.
              /// @return The index of the next output to be proposed.
              function nextOutputIndex() public view returns (uint256) {
                  return l2Outputs.length;
              }
              /// @notice Returns the block number of the latest submitted L2 output proposal.
              ///         If no proposals been submitted yet then this function will return the starting
              ///         block number.
              /// @return Latest submitted L2 block number.
              function latestBlockNumber() public view returns (uint256) {
                  return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
              }
              /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
              /// @return Next L2 block number.
              function nextBlockNumber() public view returns (uint256) {
                  return latestBlockNumber() + submissionInterval;
              }
              /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
              /// @param _l2BlockNumber The L2 block number of the target block.
              /// @return L2 timestamp of the given block.
              function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                  return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
          import { ISemver } from "src/universal/ISemver.sol";
          import { ResourceMetering } from "src/L1/ResourceMetering.sol";
          import { Storage } from "src/libraries/Storage.sol";
          import { Constants } from "src/libraries/Constants.sol";
          /// @title SystemConfig
          /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
          ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
          ///         the L2 chain.
          contract SystemConfig is OwnableUpgradeable, ISemver {
              /// @notice Enum representing different types of updates.
              /// @custom:value BATCHER              Represents an update to the batcher hash.
              /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
              /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
              /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
              ///                                    block distrubution.
              enum UpdateType {
                  BATCHER,
                  GAS_CONFIG,
                  GAS_LIMIT,
                  UNSAFE_BLOCK_SIGNER
              }
              /// @notice Struct representing the addresses of L1 system contracts. These should be the
              ///         proxies and are network specific.
              struct Addresses {
                  address l1CrossDomainMessenger;
                  address l1ERC721Bridge;
                  address l1StandardBridge;
                  address l2OutputOracle;
                  address optimismPortal;
                  address optimismMintableERC20Factory;
              }
              /// @notice Version identifier, used for upgrades.
              uint256 public constant VERSION = 0;
              /// @notice Storage slot that the unsafe block signer is stored at.
              ///         Storing it at this deterministic storage slot allows for decoupling the storage
              ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
              ///         proof to fetch this value.
              /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
              ///         User input should not be placed in storage in this contract until this migration
              ///         happens. It is unlikely that keccak second preimage resistance will be broken,
              ///         but it is better to be safe than sorry.
              bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
              /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
              bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                  bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
              /// @notice Storage slot that the L1ERC721Bridge address is stored at.
              bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
              /// @notice Storage slot that the L1StandardBridge address is stored at.
              bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
              /// @notice Storage slot that the L2OutputOracle address is stored at.
              bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
              /// @notice Storage slot that the OptimismPortal address is stored at.
              bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
              /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
              bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                  bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
              /// @notice Storage slot that the batch inbox address is stored at.
              bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
              /// @notice Storage slot for block at which the op-node can start searching for logs from.
              bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
              /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
              uint256 public overhead;
              /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
              uint256 public scalar;
              /// @notice Identifier for the batcher.
              ///         For version 1 of this configuration, this is represented as an address left-padded
              ///         with zeros to 32 bytes.
              bytes32 public batcherHash;
              /// @notice L2 block gas limit.
              uint64 public gasLimit;
              /// @notice The configuration for the deposit fee market.
              ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
              ///         Set as internal with a getter so that the struct is returned instead of a tuple.
              ResourceMetering.ResourceConfig internal _resourceConfig;
              /// @notice Emitted when configuration is updated.
              /// @param version    SystemConfig version.
              /// @param updateType Type of update.
              /// @param data       Encoded update data.
              event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
              /// @notice Semantic version.
              /// @custom:semver 1.12.0
              string public constant version = "1.12.0";
              /// @notice Constructs the SystemConfig contract. Cannot set
              ///         the owner to `address(0)` due to the Ownable contract's
              ///         implementation, so set it to `address(0xdEaD)`
              /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
              ///         in the singleton and is skipped by initialize when setting the start block.
              constructor() {
                  Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                  initialize({
                      _owner: address(0xdEaD),
                      _overhead: 0,
                      _scalar: 0,
                      _batcherHash: bytes32(0),
                      _gasLimit: 1,
                      _unsafeBlockSigner: address(0),
                      _config: ResourceMetering.ResourceConfig({
                          maxResourceLimit: 1,
                          elasticityMultiplier: 1,
                          baseFeeMaxChangeDenominator: 2,
                          minimumBaseFee: 0,
                          systemTxMaxGas: 0,
                          maximumBaseFee: 0
                      }),
                      _batchInbox: address(0),
                      _addresses: SystemConfig.Addresses({
                          l1CrossDomainMessenger: address(0),
                          l1ERC721Bridge: address(0),
                          l1StandardBridge: address(0),
                          l2OutputOracle: address(0),
                          optimismPortal: address(0),
                          optimismMintableERC20Factory: address(0)
                      })
                  });
              }
              /// @notice Initializer.
              ///         The resource config must be set before the require check.
              /// @param _owner             Initial owner of the contract.
              /// @param _overhead          Initial overhead value.
              /// @param _scalar            Initial scalar value.
              /// @param _batcherHash       Initial batcher hash.
              /// @param _gasLimit          Initial gas limit.
              /// @param _unsafeBlockSigner Initial unsafe block signer address.
              /// @param _config            Initial ResourceConfig.
              /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
              ///                           canonical data.
              /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
              function initialize(
                  address _owner,
                  uint256 _overhead,
                  uint256 _scalar,
                  bytes32 _batcherHash,
                  uint64 _gasLimit,
                  address _unsafeBlockSigner,
                  ResourceMetering.ResourceConfig memory _config,
                  address _batchInbox,
                  SystemConfig.Addresses memory _addresses
              )
                  public
                  initializer
              {
                  __Ownable_init();
                  transferOwnership(_owner);
                  // These are set in ascending order of their UpdateTypes.
                  _setBatcherHash(_batcherHash);
                  _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
                  _setGasLimit(_gasLimit);
                  Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                  Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                  Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                  Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                  Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                  Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
                  Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                  Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                  _setStartBlock();
                  _setResourceConfig(_config);
                  require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
              }
              /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
              ///         operate. The L2 gas limit must be larger than or equal to the amount of
              ///         gas that is allocated for deposits per block plus the amount of gas that
              ///         is allocated for the system transaction.
              ///         This function is used to determine if changes to parameters are safe.
              /// @return uint64 Minimum gas limit.
              function minimumGasLimit() public view returns (uint64) {
                  return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
              }
              /// @notice High level getter for the unsafe block signer address.
              ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
              ///         key corresponding to this address.
              /// @return addr_ Address of the unsafe block signer.
              // solhint-disable-next-line ordering
              function unsafeBlockSigner() public view returns (address addr_) {
                  addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
              }
              /// @notice Getter for the L1CrossDomainMessenger address.
              function l1CrossDomainMessenger() external view returns (address addr_) {
                  addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
              }
              /// @notice Getter for the L1ERC721Bridge address.
              function l1ERC721Bridge() external view returns (address addr_) {
                  addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
              }
              /// @notice Getter for the L1StandardBridge address.
              function l1StandardBridge() external view returns (address addr_) {
                  addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
              }
              /// @notice Getter for the L2OutputOracle address.
              function l2OutputOracle() external view returns (address addr_) {
                  addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
              }
              /// @notice Getter for the OptimismPortal address.
              function optimismPortal() external view returns (address addr_) {
                  addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
              }
              /// @notice Getter for the OptimismMintableERC20Factory address.
              function optimismMintableERC20Factory() external view returns (address addr_) {
                  addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
              }
              /// @notice Getter for the BatchInbox address.
              function batchInbox() external view returns (address addr_) {
                  addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
              }
              /// @notice Getter for the StartBlock number.
              function startBlock() external view returns (uint256 startBlock_) {
                  startBlock_ = Storage.getUint(START_BLOCK_SLOT);
              }
              /// @notice Updates the unsafe block signer address. Can only be called by the owner.
              /// @param _unsafeBlockSigner New unsafe block signer address.
              function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                  _setUnsafeBlockSigner(_unsafeBlockSigner);
              }
              /// @notice Updates the unsafe block signer address.
              /// @param _unsafeBlockSigner New unsafe block signer address.
              function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                  Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                  bytes memory data = abi.encode(_unsafeBlockSigner);
                  emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
              }
              /// @notice Updates the batcher hash. Can only be called by the owner.
              /// @param _batcherHash New batcher hash.
              function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                  _setBatcherHash(_batcherHash);
              }
              /// @notice Internal function for updating the batcher hash.
              /// @param _batcherHash New batcher hash.
              function _setBatcherHash(bytes32 _batcherHash) internal {
                  batcherHash = _batcherHash;
                  bytes memory data = abi.encode(_batcherHash);
                  emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
              }
              /// @notice Updates gas config. Can only be called by the owner.
              /// @param _overhead New overhead value.
              /// @param _scalar   New scalar value.
              function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                  _setGasConfig(_overhead, _scalar);
              }
              /// @notice Internal function for updating the gas config.
              /// @param _overhead New overhead value.
              /// @param _scalar   New scalar value.
              function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                  overhead = _overhead;
                  scalar = _scalar;
                  bytes memory data = abi.encode(_overhead, _scalar);
                  emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
              }
              /// @notice Updates the L2 gas limit. Can only be called by the owner.
              /// @param _gasLimit New gas limit.
              function setGasLimit(uint64 _gasLimit) external onlyOwner {
                  _setGasLimit(_gasLimit);
              }
              /// @notice Internal function for updating the L2 gas limit.
              /// @param _gasLimit New gas limit.
              function _setGasLimit(uint64 _gasLimit) internal {
                  require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                  gasLimit = _gasLimit;
                  bytes memory data = abi.encode(_gasLimit);
                  emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
              }
              /// @notice Sets the start block in a backwards compatible way. Proxies
              ///         that were initialized before the startBlock existed in storage
              ///         can have their start block set by a user provided override.
              ///         A start block of 0 indicates that there is no override and the
              ///         start block will be set by `block.number`.
              /// @dev    This logic is used to patch legacy deployments with new storage values.
              ///         Use the override if it is provided as a non zero value and the value
              ///         has not already been set in storage. Use `block.number` if the value
              ///         has already been set in storage
              function _setStartBlock() internal {
                  if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                      Storage.setUint(START_BLOCK_SLOT, block.number);
                  }
              }
              /// @notice A getter for the resource config.
              ///         Ensures that the struct is returned instead of a tuple.
              /// @return ResourceConfig
              function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                  return _resourceConfig;
              }
              /// @notice An external setter for the resource config.
              ///         In the future, this method may emit an event that the `op-node` picks up
              ///         for when the resource config is changed.
              /// @param _config The new resource config values.
              function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                  _setResourceConfig(_config);
              }
              /// @notice An internal setter for the resource config.
              ///         Ensures that the config is sane before storing it by checking for invariants.
              /// @param _config The new resource config.
              function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                  // Min base fee must be less than or equal to max base fee.
                  require(
                      _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                  );
                  // Base fee change denominator must be greater than 1.
                  require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                  // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                  // The gas limit must be increased before these values can be increased.
                  require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                  // Elasticity multiplier must be greater than 0.
                  require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                  // No precision loss when computing target resource limit.
                  require(
                      ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                          == _config.maxResourceLimit,
                      "SystemConfig: precision loss with target resource limit"
                  );
                  _resourceConfig = _config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { ISemver } from "src/universal/ISemver.sol";
          import { Storage } from "src/libraries/Storage.sol";
          /// @custom:audit none This contracts is not yet audited.
          /// @title SuperchainConfig
          /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
          contract SuperchainConfig is Initializable, ISemver {
              /// @notice Enum representing different types of updates.
              /// @custom:value GUARDIAN            Represents an update to the guardian.
              enum UpdateType {
                  GUARDIAN
              }
              /// @notice Whether or not the Superchain is paused.
              bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
              /// @notice The address of the guardian, which can pause withdrawals from the System.
              ///         It can only be modified by an upgrade.
              bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
              /// @notice Emitted when the pause is triggered.
              /// @param identifier A string helping to identify provenance of the pause transaction.
              event Paused(string identifier);
              /// @notice Emitted when the pause is lifted.
              event Unpaused();
              /// @notice Emitted when configuration is updated.
              /// @param updateType Type of update.
              /// @param data       Encoded update data.
              event ConfigUpdate(UpdateType indexed updateType, bytes data);
              /// @notice Semantic version.
              /// @custom:semver 1.1.0
              string public constant version = "1.1.0";
              /// @notice Constructs the SuperchainConfig contract.
              constructor() {
                  initialize({ _guardian: address(0), _paused: false });
              }
              /// @notice Initializer.
              /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
              /// @param _paused      Initial paused status.
              function initialize(address _guardian, bool _paused) public initializer {
                  _setGuardian(_guardian);
                  if (_paused) {
                      _pause("Initializer paused");
                  }
              }
              /// @notice Getter for the guardian address.
              function guardian() public view returns (address guardian_) {
                  guardian_ = Storage.getAddress(GUARDIAN_SLOT);
              }
              /// @notice Getter for the current paused status.
              function paused() public view returns (bool paused_) {
                  paused_ = Storage.getBool(PAUSED_SLOT);
              }
              /// @notice Pauses withdrawals.
              /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
              function pause(string memory _identifier) external {
                  require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                  _pause(_identifier);
              }
              /// @notice Pauses withdrawals.
              /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
              function _pause(string memory _identifier) internal {
                  Storage.setBool(PAUSED_SLOT, true);
                  emit Paused(_identifier);
              }
              /// @notice Unpauses withdrawals.
              function unpause() external {
                  require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                  Storage.setBool(PAUSED_SLOT, false);
                  emit Unpaused();
              }
              /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
              ///         will be required to change the guardian.
              /// @param _guardian The new guardian address.
              function _setGuardian(address _guardian) internal {
                  Storage.setAddress(GUARDIAN_SLOT, _guardian);
                  emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { ResourceMetering } from "src/L1/ResourceMetering.sol";
          /// @title Constants
          /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
          ///         the stuff used in multiple contracts. Constants that only apply to a single contract
          ///         should be defined in that contract instead.
          library Constants {
              /// @notice Special address to be used as the tx origin for gas estimation calls in the
              ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
              ///         the minimum gas limit specified by the user is not actually enough to execute the
              ///         given message and you're attempting to estimate the actual necessary gas limit. We
              ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
              ///         never have any code on any EVM chain.
              address internal constant ESTIMATION_ADDRESS = address(1);
              /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
              ///         CrossDomainMessenger contracts before an actual sender is set. This value is
              ///         non-zero to reduce the gas cost of message passing transactions.
              address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
              /// @notice The storage slot that holds the address of a proxy implementation.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
              bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                  0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /// @notice The storage slot that holds the address of the owner.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
              bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /// @notice Returns the default values for the ResourceConfig. These are the recommended values
              ///         for a production network.
              function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                  ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                      maxResourceLimit: 20_000_000,
                      elasticityMultiplier: 10,
                      baseFeeMaxChangeDenominator: 8,
                      minimumBaseFee: 1 gwei,
                      systemTxMaxGas: 1_000_000,
                      maximumBaseFee: type(uint128).max
                  });
                  return config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title Types
          /// @notice Contains various types used throughout the Optimism contract system.
          library Types {
              /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
              ///         timestamp that the output root is posted. This timestamp is used to verify that the
              ///         finalization period has passed since the output root was submitted.
              /// @custom:field outputRoot    Hash of the L2 output.
              /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
              /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
              struct OutputProposal {
                  bytes32 outputRoot;
                  uint128 timestamp;
                  uint128 l2BlockNumber;
              }
              /// @notice Struct representing the elements that are hashed together to generate an output root
              ///         which itself represents a snapshot of the L2 state.
              /// @custom:field version                  Version of the output root.
              /// @custom:field stateRoot                Root of the state trie at the block of this output.
              /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
              /// @custom:field latestBlockhash          Hash of the block this output was generated from.
              struct OutputRootProof {
                  bytes32 version;
                  bytes32 stateRoot;
                  bytes32 messagePasserStorageRoot;
                  bytes32 latestBlockhash;
              }
              /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
              ///         user (as opposed to a system deposit transaction generated by the system).
              /// @custom:field from        Address of the sender of the transaction.
              /// @custom:field to          Address of the recipient of the transaction.
              /// @custom:field isCreation  True if the transaction is a contract creation.
              /// @custom:field value       Value to send to the recipient.
              /// @custom:field mint        Amount of ETH to mint.
              /// @custom:field gasLimit    Gas limit of the transaction.
              /// @custom:field data        Data of the transaction.
              /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
              /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
              struct UserDepositTransaction {
                  address from;
                  address to;
                  bool isCreation;
                  uint256 value;
                  uint256 mint;
                  uint64 gasLimit;
                  bytes data;
                  bytes32 l1BlockHash;
                  uint256 logIndex;
              }
              /// @notice Struct representing a withdrawal transaction.
              /// @custom:field nonce    Nonce of the withdrawal transaction
              /// @custom:field sender   Address of the sender of the transaction.
              /// @custom:field target   Address of the recipient of the transaction.
              /// @custom:field value    Value to send to the recipient.
              /// @custom:field gasLimit Gas limit of the transaction.
              /// @custom:field data     Data of the transaction.
              struct WithdrawalTransaction {
                  uint256 nonce;
                  address sender;
                  address target;
                  uint256 value;
                  uint256 gasLimit;
                  bytes data;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { Types } from "src/libraries/Types.sol";
          import { Encoding } from "src/libraries/Encoding.sol";
          /// @title Hashing
          /// @notice Hashing handles Optimism's various different hashing schemes.
          library Hashing {
              /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
              ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
              ///         system.
              /// @param _tx User deposit transaction to hash.
              /// @return Hash of the RLP encoded L2 deposit transaction.
              function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                  return keccak256(Encoding.encodeDepositTransaction(_tx));
              }
              /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
              ///         of the L2 transaction that corresponds to a deposit is unique and is
              ///         deterministically generated from L1 transaction data.
              /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
              /// @param _logIndex    The index of the log that created the deposit transaction.
              /// @return Hash of the deposit transaction's "source hash".
              function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                  bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                  return keccak256(abi.encode(bytes32(0), depositId));
              }
              /// @notice Hashes the cross domain message based on the version that is encoded into the
              ///         message nonce.
              /// @param _nonce    Message nonce with version encoded into the first two bytes.
              /// @param _sender   Address of the sender of the message.
              /// @param _target   Address of the target of the message.
              /// @param _value    ETH value to send to the target.
              /// @param _gasLimit Gas limit to use for the message.
              /// @param _data     Data to send with the message.
              /// @return Hashed cross domain message.
              function hashCrossDomainMessage(
                  uint256 _nonce,
                  address _sender,
                  address _target,
                  uint256 _value,
                  uint256 _gasLimit,
                  bytes memory _data
              )
                  internal
                  pure
                  returns (bytes32)
              {
                  (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                  if (version == 0) {
                      return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                  } else if (version == 1) {
                      return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                  } else {
                      revert("Hashing: unknown cross domain message version");
                  }
              }
              /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
              /// @param _target Address of the target of the message.
              /// @param _sender Address of the sender of the message.
              /// @param _data   Data to send with the message.
              /// @param _nonce  Message nonce.
              /// @return Hashed cross domain message.
              function hashCrossDomainMessageV0(
                  address _target,
                  address _sender,
                  bytes memory _data,
                  uint256 _nonce
              )
                  internal
                  pure
                  returns (bytes32)
              {
                  return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
              }
              /// @notice Hashes a cross domain message based on the V1 (current) encoding.
              /// @param _nonce    Message nonce.
              /// @param _sender   Address of the sender of the message.
              /// @param _target   Address of the target of the message.
              /// @param _value    ETH value to send to the target.
              /// @param _gasLimit Gas limit to use for the message.
              /// @param _data     Data to send with the message.
              /// @return Hashed cross domain message.
              function hashCrossDomainMessageV1(
                  uint256 _nonce,
                  address _sender,
                  address _target,
                  uint256 _value,
                  uint256 _gasLimit,
                  bytes memory _data
              )
                  internal
                  pure
                  returns (bytes32)
              {
                  return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
              }
              /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
              /// @param _tx Withdrawal transaction to hash.
              /// @return Hashed withdrawal transaction.
              function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                  return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
              }
              /// @notice Hashes the various elements of an output root proof into an output root hash which
              ///         can be used to check if the proof is valid.
              /// @param _outputRootProof Output root proof which should hash to an output root.
              /// @return Hashed output root proof.
              function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                  return keccak256(
                      abi.encode(
                          _outputRootProof.version,
                          _outputRootProof.stateRoot,
                          _outputRootProof.messagePasserStorageRoot,
                          _outputRootProof.latestBlockhash
                      )
                  );
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { MerkleTrie } from "./MerkleTrie.sol";
          /// @title SecureMerkleTrie
          /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
          ///         keys. Ethereum's state trie hashes input keys before storing them.
          library SecureMerkleTrie {
              /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
              /// @param _key   Key of the node to search for, as a hex string.
              /// @param _value Value of the node to search for, as a hex string.
              /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
              ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
              ///               nodes that make a path down to the target node.
              /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
              ///               correctly constructed.
              /// @return valid_ Whether or not the proof is valid.
              function verifyInclusionProof(
                  bytes memory _key,
                  bytes memory _value,
                  bytes[] memory _proof,
                  bytes32 _root
              )
                  internal
                  pure
                  returns (bool valid_)
              {
                  bytes memory key = _getSecureKey(_key);
                  valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
              }
              /// @notice Retrieves the value associated with a given key.
              /// @param _key   Key to search for, as hex bytes.
              /// @param _proof Merkle trie inclusion proof for the key.
              /// @param _root  Known root of the Merkle trie.
              /// @return value_ Value of the key if it exists.
              function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                  bytes memory key = _getSecureKey(_key);
                  value_ = MerkleTrie.get(key, _proof, _root);
              }
              /// @notice Computes the hashed version of the input key.
              /// @param _key Key to hash.
              /// @return hash_ Hashed version of the key.
              function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                  hash_ = abi.encodePacked(keccak256(_key));
              }
          }
          // SPDX-License-Identifier: Apache-2.0
          /*
           * Copyright 2019-2021, Offchain Labs, Inc.
           *
           * Licensed under the Apache License, Version 2.0 (the "License");
           * you may not use this file except in compliance with the License.
           * You may obtain a copy of the License at
           *
           *    http://www.apache.org/licenses/LICENSE-2.0
           *
           * Unless required by applicable law or agreed to in writing, software
           * distributed under the License is distributed on an "AS IS" BASIS,
           * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
           * See the License for the specific language governing permissions and
           * limitations under the License.
           */
          pragma solidity ^0.8.0;
          library AddressAliasHelper {
              uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
              /// @notice Utility function that converts the address in the L1 that submitted a tx to
              /// the inbox to the msg.sender viewed in the L2
              /// @param l1Address the address in the L1 that triggered the tx to L2
              /// @return l2Address L2 address as viewed in msg.sender
              function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                  unchecked {
                      l2Address = address(uint160(l1Address) + offset);
                  }
              }
              /// @notice Utility function that converts the msg.sender viewed in the L2 to the
              /// address in the L1 that submitted a tx to the inbox
              /// @param l2Address L2 address as viewed in msg.sender
              /// @return l1Address the address in the L1 that triggered the tx to L2
              function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                  unchecked {
                      l1Address = address(uint160(l2Address) - offset);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
          import { Burn } from "src/libraries/Burn.sol";
          import { Arithmetic } from "src/libraries/Arithmetic.sol";
          /// @custom:upgradeable
          /// @title ResourceMetering
          /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
          ///         updates automatically based on current demand.
          abstract contract ResourceMetering is Initializable {
              /// @notice Represents the various parameters that control the way in which resources are
              ///         metered. Corresponds to the EIP-1559 resource metering system.
              /// @custom:field prevBaseFee   Base fee from the previous block(s).
              /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
              /// @custom:field prevBlockNum  Last block number that the base fee was updated.
              struct ResourceParams {
                  uint128 prevBaseFee;
                  uint64 prevBoughtGas;
                  uint64 prevBlockNum;
              }
              /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
              ///         market. These values should be set with care as it is possible to set them in
              ///         a way that breaks the deposit gas market. The target resource limit is defined as
              ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
              ///         single word. There is additional space for additions in the future.
              /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
              ///                                            can be purchased per block.
              /// @custom:field elasticityMultiplier         Determines the target resource limit along with
              ///                                            the resource limit.
              /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
              /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
              ///                                            value.
              /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
              ///                                            transaction. This should be set to the same
              ///                                            number that the op-node sets as the gas limit
              ///                                            for the system transaction.
              /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
              ///                                            value.
              struct ResourceConfig {
                  uint32 maxResourceLimit;
                  uint8 elasticityMultiplier;
                  uint8 baseFeeMaxChangeDenominator;
                  uint32 minimumBaseFee;
                  uint32 systemTxMaxGas;
                  uint128 maximumBaseFee;
              }
              /// @notice EIP-1559 style gas parameters.
              ResourceParams public params;
              /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
              uint256[48] private __gap;
              /// @notice Meters access to a function based an amount of a requested resource.
              /// @param _amount Amount of the resource requested.
              modifier metered(uint64 _amount) {
                  // Record initial gas amount so we can refund for it later.
                  uint256 initialGas = gasleft();
                  // Run the underlying function.
                  _;
                  // Run the metering function.
                  _metered(_amount, initialGas);
              }
              /// @notice An internal function that holds all of the logic for metering a resource.
              /// @param _amount     Amount of the resource requested.
              /// @param _initialGas The amount of gas before any modifier execution.
              function _metered(uint64 _amount, uint256 _initialGas) internal {
                  // Update block number and base fee if necessary.
                  uint256 blockDiff = block.number - params.prevBlockNum;
                  ResourceConfig memory config = _resourceConfig();
                  int256 targetResourceLimit =
                      int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                  if (blockDiff > 0) {
                      // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                      // at which deposits can be created and therefore limit the potential for deposits to
                      // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                      int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                      int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                          / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                      // Update base fee by adding the base fee delta and clamp the resulting value between
                      // min and max.
                      int256 newBaseFee = Arithmetic.clamp({
                          _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                      // If we skipped more than one block, we also need to account for every empty block.
                      // Empty block means there was no demand for deposits in that block, so we should
                      // reflect this lack of demand in the fee.
                      if (blockDiff > 1) {
                          // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                          // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                          // between min and max.
                          newBaseFee = Arithmetic.clamp({
                              _value: Arithmetic.cdexp({
                                  _coefficient: newBaseFee,
                                  _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                  _exponent: int256(blockDiff - 1)
                              }),
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                      }
                      // Update new base fee, reset bought gas, and update block number.
                      params.prevBaseFee = uint128(uint256(newBaseFee));
                      params.prevBoughtGas = 0;
                      params.prevBlockNum = uint64(block.number);
                  }
                  // Make sure we can actually buy the resource amount requested by the user.
                  params.prevBoughtGas += _amount;
                  require(
                      int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                      "ResourceMetering: cannot buy more gas than available gas limit"
                  );
                  // Determine the amount of ETH to be paid.
                  uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                  // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                  // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                  // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                  // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                  // during any 1 day period in the last 5 years, so should be fine.
                  uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                  // Give the user a refund based on the amount of gas they used to do all of the work up to
                  // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                  // effectively like a dynamic stipend (with a minimum value).
                  uint256 usedGas = _initialGas - gasleft();
                  if (gasCost > usedGas) {
                      Burn.gas(gasCost - usedGas);
                  }
              }
              /// @notice Virtual function that returns the resource config.
              ///         Contracts that inherit this contract must implement this function.
              /// @return ResourceConfig
              function _resourceConfig() internal virtual returns (ResourceConfig memory);
              /// @notice Sets initial resource parameter values.
              ///         This function must either be called by the initializer function of an upgradeable
              ///         child contract.
              // solhint-disable-next-line func-name-mixedcase
              function __ResourceMetering_init() internal onlyInitializing {
                  if (params.prevBlockNum == 0) {
                      params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title ISemver
          /// @notice ISemver is a simple contract for ensuring that contracts are
          ///         versioned using semantic versioning.
          interface ISemver {
              /// @notice Getter for the semantic version of the contract. This is not
              ///         meant to be used onchain but instead meant to be used by offchain
              ///         tooling.
              /// @return Semver contract version as a string.
              function version() external view returns (string memory);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
          pragma solidity ^0.8.0;
          import "../utils/ContextUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              function __Ownable_init() internal onlyInitializing {
                  __Ownable_init_unchained();
              }
              function __Ownable_init_unchained() internal onlyInitializing {
                  _transferOwnership(_msgSender());
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  _checkOwner();
                  _;
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if the sender is not the owner.
               */
              function _checkOwner() internal view virtual {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _transferOwnership(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _transferOwnership(newOwner);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Internal function without access restriction.
               */
              function _transferOwnership(address newOwner) internal virtual {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title Storage
          /// @notice Storage handles reading and writing to arbitary storage locations
          library Storage {
              /// @notice Returns an address stored in an arbitrary storage slot.
              ///         These storage slots decouple the storage layout from
              ///         solc's automation.
              /// @param _slot The storage slot to retrieve the address from.
              function getAddress(bytes32 _slot) internal view returns (address addr_) {
                  assembly {
                      addr_ := sload(_slot)
                  }
              }
              /// @notice Stores an address in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the address in.
              /// @param _address The protocol version to store
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
              ///      in arbitrary storage slots.
              function setAddress(bytes32 _slot, address _address) internal {
                  assembly {
                      sstore(_slot, _address)
                  }
              }
              /// @notice Returns a uint256 stored in an arbitrary storage slot.
              ///         These storage slots decouple the storage layout from
              ///         solc's automation.
              /// @param _slot The storage slot to retrieve the address from.
              function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                  assembly {
                      value_ := sload(_slot)
                  }
              }
              /// @notice Stores a value in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the address in.
              /// @param _value The protocol version to store
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
              ///      in arbitrary storage slots.
              function setUint(bytes32 _slot, uint256 _value) internal {
                  assembly {
                      sstore(_slot, _value)
                  }
              }
              /// @notice Returns a bytes32 stored in an arbitrary storage slot.
              ///         These storage slots decouple the storage layout from
              ///         solc's automation.
              /// @param _slot The storage slot to retrieve the address from.
              function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                  assembly {
                      value_ := sload(_slot)
                  }
              }
              /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the address in.
              /// @param _value The bytes32 value to store.
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
              ///      in arbitrary storage slots.
              function setBytes32(bytes32 _slot, bytes32 _value) internal {
                  assembly {
                      sstore(_slot, _value)
                  }
              }
              /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the bool in.
              /// @param _value The bool value to store
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
              ///      in arbitrary storage slots.
              function setBool(bytes32 _slot, bool _value) internal {
                  assembly {
                      sstore(_slot, _value)
                  }
              }
              /// @notice Returns a bool stored in an arbitrary storage slot.
              /// @param _slot The storage slot to retrieve the bool from.
              function getBool(bytes32 _slot) internal view returns (bool value_) {
                  assembly {
                      value_ := sload(_slot)
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { Types } from "src/libraries/Types.sol";
          import { Hashing } from "src/libraries/Hashing.sol";
          import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
          /// @title Encoding
          /// @notice Encoding handles Optimism's various different encoding schemes.
          library Encoding {
              /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
              ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
              ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
              /// @param _tx User deposit transaction to encode.
              /// @return RLP encoded L2 deposit transaction.
              function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                  bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                  bytes[] memory raw = new bytes[](8);
                  raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                  raw[1] = RLPWriter.writeAddress(_tx.from);
                  raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                  raw[3] = RLPWriter.writeUint(_tx.mint);
                  raw[4] = RLPWriter.writeUint(_tx.value);
                  raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                  raw[6] = RLPWriter.writeBool(false);
                  raw[7] = RLPWriter.writeBytes(_tx.data);
                  return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
              }
              /// @notice Encodes the cross domain message based on the version that is encoded into the
              ///         message nonce.
              /// @param _nonce    Message nonce with version encoded into the first two bytes.
              /// @param _sender   Address of the sender of the message.
              /// @param _target   Address of the target of the message.
              /// @param _value    ETH value to send to the target.
              /// @param _gasLimit Gas limit to use for the message.
              /// @param _data     Data to send with the message.
              /// @return Encoded cross domain message.
              function encodeCrossDomainMessage(
                  uint256 _nonce,
                  address _sender,
                  address _target,
                  uint256 _value,
                  uint256 _gasLimit,
                  bytes memory _data
              )
                  internal
                  pure
                  returns (bytes memory)
              {
                  (, uint16 version) = decodeVersionedNonce(_nonce);
                  if (version == 0) {
                      return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                  } else if (version == 1) {
                      return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                  } else {
                      revert("Encoding: unknown cross domain message version");
                  }
              }
              /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
              /// @param _target Address of the target of the message.
              /// @param _sender Address of the sender of the message.
              /// @param _data   Data to send with the message.
              /// @param _nonce  Message nonce.
              /// @return Encoded cross domain message.
              function encodeCrossDomainMessageV0(
                  address _target,
                  address _sender,
                  bytes memory _data,
                  uint256 _nonce
              )
                  internal
                  pure
                  returns (bytes memory)
              {
                  return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
              }
              /// @notice Encodes a cross domain message based on the V1 (current) encoding.
              /// @param _nonce    Message nonce.
              /// @param _sender   Address of the sender of the message.
              /// @param _target   Address of the target of the message.
              /// @param _value    ETH value to send to the target.
              /// @param _gasLimit Gas limit to use for the message.
              /// @param _data     Data to send with the message.
              /// @return Encoded cross domain message.
              function encodeCrossDomainMessageV1(
                  uint256 _nonce,
                  address _sender,
                  address _target,
                  uint256 _value,
                  uint256 _gasLimit,
                  bytes memory _data
              )
                  internal
                  pure
                  returns (bytes memory)
              {
                  return abi.encodeWithSignature(
                      "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                      _nonce,
                      _sender,
                      _target,
                      _value,
                      _gasLimit,
                      _data
                  );
              }
              /// @notice Adds a version number into the first two bytes of a message nonce.
              /// @param _nonce   Message nonce to encode into.
              /// @param _version Version number to encode into the message nonce.
              /// @return Message nonce with version encoded into the first two bytes.
              function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                  uint256 nonce;
                  assembly {
                      nonce := or(shl(240, _version), _nonce)
                  }
                  return nonce;
              }
              /// @notice Pulls the version out of a version-encoded nonce.
              /// @param _nonce Message nonce with version encoded into the first two bytes.
              /// @return Nonce without encoded version.
              /// @return Version of the message.
              function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                  uint240 nonce;
                  uint16 version;
                  assembly {
                      nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                      version := shr(240, _nonce)
                  }
                  return (nonce, version);
              }
              /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
              /// @param baseFeeScalar       L1 base fee Scalar
              /// @param blobBaseFeeScalar   L1 blob base fee Scalar
              /// @param sequenceNumber      Number of L2 blocks since epoch start.
              /// @param timestamp           L1 timestamp.
              /// @param number              L1 blocknumber.
              /// @param baseFee             L1 base fee.
              /// @param blobBaseFee         L1 blob base fee.
              /// @param hash                L1 blockhash.
              /// @param batcherHash         Versioned hash to authenticate batcher by.
              function encodeSetL1BlockValuesEcotone(
                  uint32 baseFeeScalar,
                  uint32 blobBaseFeeScalar,
                  uint64 sequenceNumber,
                  uint64 timestamp,
                  uint64 number,
                  uint256 baseFee,
                  uint256 blobBaseFee,
                  bytes32 hash,
                  bytes32 batcherHash
              )
                  internal
                  pure
                  returns (bytes memory)
              {
                  bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                  return abi.encodePacked(
                      functionSignature,
                      baseFeeScalar,
                      blobBaseFeeScalar,
                      sequenceNumber,
                      timestamp,
                      number,
                      baseFee,
                      blobBaseFee,
                      hash,
                      batcherHash
                  );
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { Bytes } from "../Bytes.sol";
          import { RLPReader } from "../rlp/RLPReader.sol";
          /// @title MerkleTrie
          /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
          ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
          ///         trie radix constant to support other trie radixes.
          library MerkleTrie {
              /// @notice Struct representing a node in the trie.
              /// @custom:field encoded The RLP-encoded node.
              /// @custom:field decoded The RLP-decoded node.
              struct TrieNode {
                  bytes encoded;
                  RLPReader.RLPItem[] decoded;
              }
              /// @notice Determines the number of elements per branch node.
              uint256 internal constant TREE_RADIX = 16;
              /// @notice Branch nodes have TREE_RADIX elements and one value element.
              uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
              /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
              uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
              /// @notice Prefix for even-nibbled extension node paths.
              uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
              /// @notice Prefix for odd-nibbled extension node paths.
              uint8 internal constant PREFIX_EXTENSION_ODD = 1;
              /// @notice Prefix for even-nibbled leaf node paths.
              uint8 internal constant PREFIX_LEAF_EVEN = 2;
              /// @notice Prefix for odd-nibbled leaf node paths.
              uint8 internal constant PREFIX_LEAF_ODD = 3;
              /// @notice Verifies a proof that a given key/value pair is present in the trie.
              /// @param _key   Key of the node to search for, as a hex string.
              /// @param _value Value of the node to search for, as a hex string.
              /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
              ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
              ///               nodes that make a path down to the target node.
              /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
              ///               correctly constructed.
              /// @return valid_ Whether or not the proof is valid.
              function verifyInclusionProof(
                  bytes memory _key,
                  bytes memory _value,
                  bytes[] memory _proof,
                  bytes32 _root
              )
                  internal
                  pure
                  returns (bool valid_)
              {
                  valid_ = Bytes.equal(_value, get(_key, _proof, _root));
              }
              /// @notice Retrieves the value associated with a given key.
              /// @param _key   Key to search for, as hex bytes.
              /// @param _proof Merkle trie inclusion proof for the key.
              /// @param _root  Known root of the Merkle trie.
              /// @return value_ Value of the key if it exists.
              function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                  require(_key.length > 0, "MerkleTrie: empty key");
                  TrieNode[] memory proof = _parseProof(_proof);
                  bytes memory key = Bytes.toNibbles(_key);
                  bytes memory currentNodeID = abi.encodePacked(_root);
                  uint256 currentKeyIndex = 0;
                  // Proof is top-down, so we start at the first element (root).
                  for (uint256 i = 0; i < proof.length; i++) {
                      TrieNode memory currentNode = proof[i];
                      // Key index should never exceed total key length or we'll be out of bounds.
                      require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                      if (currentKeyIndex == 0) {
                          // First proof element is always the root node.
                          require(
                              Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                              "MerkleTrie: invalid root hash"
                          );
                      } else if (currentNode.encoded.length >= 32) {
                          // Nodes 32 bytes or larger are hashed inside branch nodes.
                          require(
                              Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                              "MerkleTrie: invalid large internal hash"
                          );
                      } else {
                          // Nodes smaller than 32 bytes aren't hashed.
                          require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                      }
                      if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                          if (currentKeyIndex == key.length) {
                              // Value is the last element of the decoded list (for branch nodes). There's
                              // some ambiguity in the Merkle trie specification because bytes(0) is a
                              // valid value to place into the trie, but for branch nodes bytes(0) can exist
                              // even when the value wasn't explicitly placed there. Geth treats a value of
                              // bytes(0) as "key does not exist" and so we do the same.
                              value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                              require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                              // Extra proof elements are not allowed.
                              require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                              return value_;
                          } else {
                              // We're not at the end of the key yet.
                              // Figure out what the next node ID should be and continue.
                              uint8 branchKey = uint8(key[currentKeyIndex]);
                              RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                              currentNodeID = _getNodeID(nextNode);
                              currentKeyIndex += 1;
                          }
                      } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                          bytes memory path = _getNodePath(currentNode);
                          uint8 prefix = uint8(path[0]);
                          uint8 offset = 2 - (prefix % 2);
                          bytes memory pathRemainder = Bytes.slice(path, offset);
                          bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                          uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                          // Whether this is a leaf node or an extension node, the path remainder MUST be a
                          // prefix of the key remainder (or be equal to the key remainder) or the proof is
                          // considered invalid.
                          require(
                              pathRemainder.length == sharedNibbleLength,
                              "MerkleTrie: path remainder must share all nibbles with key"
                          );
                          if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                              // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                              // the key remainder must be exactly equal to the path remainder. We already
                              // did the necessary byte comparison, so it's more efficient here to check that
                              // the key remainder length equals the shared nibble length, which implies
                              // equality with the path remainder (since we already did the same check with
                              // the path remainder and the shared nibble length).
                              require(
                                  keyRemainder.length == sharedNibbleLength,
                                  "MerkleTrie: key remainder must be identical to path remainder"
                              );
                              // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                              // state trie. Empty values are not allowed in the state trie, so we can safely
                              // say that if the value is empty, the key should not exist and the proof is
                              // invalid.
                              value_ = RLPReader.readBytes(currentNode.decoded[1]);
                              require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                              // Extra proof elements are not allowed.
                              require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                              return value_;
                          } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                              // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                              // in the proof and increment the key index by the length of the path remainder
                              // which is equal to the shared nibble length.
                              currentNodeID = _getNodeID(currentNode.decoded[1]);
                              currentKeyIndex += sharedNibbleLength;
                          } else {
                              revert("MerkleTrie: received a node with an unknown prefix");
                          }
                      } else {
                          revert("MerkleTrie: received an unparseable node");
                      }
                  }
                  revert("MerkleTrie: ran out of proof elements");
              }
              /// @notice Parses an array of proof elements into a new array that contains both the original
              ///         encoded element and the RLP-decoded element.
              /// @param _proof Array of proof elements to parse.
              /// @return proof_ Proof parsed into easily accessible structs.
              function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                  uint256 length = _proof.length;
                  proof_ = new TrieNode[](length);
                  for (uint256 i = 0; i < length;) {
                      proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                      unchecked {
                          ++i;
                      }
                  }
              }
              /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
              ///         specification, but nodes < 32 bytes are not actually hashed.
              /// @param _node Node to pull an ID for.
              /// @return id_ ID for the node, depending on the size of its contents.
              function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                  id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
              }
              /// @notice Gets the path for a leaf or extension node.
              /// @param _node Node to get a path for.
              /// @return nibbles_ Node path, converted to an array of nibbles.
              function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                  nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
              }
              /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
              /// @param _a First nibble array.
              /// @param _b Second nibble array.
              /// @return shared_ Number of shared nibbles.
              function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                  uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                  for (; shared_ < max && _a[shared_] == _b[shared_];) {
                      unchecked {
                          ++shared_;
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1);
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator,
                  Rounding rounding
              ) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`.
                  // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                  // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                  // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                  // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1;
                  uint256 x = a;
                  if (x >> 128 > 0) {
                      x >>= 128;
                      result <<= 64;
                  }
                  if (x >> 64 > 0) {
                      x >>= 64;
                      result <<= 32;
                  }
                  if (x >> 32 > 0) {
                      x >>= 32;
                      result <<= 16;
                  }
                  if (x >> 16 > 0) {
                      x >>= 16;
                      result <<= 8;
                  }
                  if (x >> 8 > 0) {
                      x >>= 8;
                      result <<= 4;
                  }
                  if (x >> 4 > 0) {
                      x >>= 4;
                      result <<= 2;
                  }
                  if (x >> 2 > 0) {
                      result <<= 1;
                  }
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = sqrt(a);
                  if (rounding == Rounding.Up && result * result < a) {
                      result += 1;
                  }
                  return result;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          /// @title Burn
          /// @notice Utilities for burning stuff.
          library Burn {
              /// @notice Burns a given amount of ETH.
              /// @param _amount Amount of ETH to burn.
              function eth(uint256 _amount) internal {
                  new Burner{ value: _amount }();
              }
              /// @notice Burns a given amount of gas.
              /// @param _amount Amount of gas to burn.
              function gas(uint256 _amount) internal view {
                  uint256 i = 0;
                  uint256 initialGas = gasleft();
                  while (initialGas - gasleft() < _amount) {
                      ++i;
                  }
              }
          }
          /// @title Burner
          /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
          ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
          ///         from the circulating supply.
          contract Burner {
              constructor() payable {
                  selfdestruct(payable(address(this)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
          import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
          /// @title Arithmetic
          /// @notice Even more math than before.
          library Arithmetic {
              /// @notice Clamps a value between a minimum and maximum.
              /// @param _value The value to clamp.
              /// @param _min   The minimum value.
              /// @param _max   The maximum value.
              /// @return The clamped value.
              function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                  return SignedMath.min(SignedMath.max(_value, _min), _max);
              }
              /// @notice (c)oefficient (d)enominator (exp)onentiation function.
              ///         Returns the result of: c * (1 - 1/d)^exp.
              /// @param _coefficient Coefficient of the function.
              /// @param _denominator Fractional denominator.
              /// @param _exponent    Power function exponent.
              /// @return Result of c * (1 - 1/d)^exp.
              function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                  return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract ContextUpgradeable is Initializable {
              function __Context_init() internal onlyInitializing {
              }
              function __Context_init_unchained() internal onlyInitializing {
              }
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/AddressUpgradeable.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
          /// @title RLPWriter
          /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
          ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
          ///         modifications to improve legibility.
          library RLPWriter {
              /// @notice RLP encodes a byte string.
              /// @param _in The byte string to encode.
              /// @return out_ The RLP encoded string in bytes.
              function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                  if (_in.length == 1 && uint8(_in[0]) < 128) {
                      out_ = _in;
                  } else {
                      out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                  }
              }
              /// @notice RLP encodes a list of RLP encoded byte byte strings.
              /// @param _in The list of RLP encoded byte strings.
              /// @return list_ The RLP encoded list of items in bytes.
              function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                  list_ = _flatten(_in);
                  list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
              }
              /// @notice RLP encodes a string.
              /// @param _in The string to encode.
              /// @return out_ The RLP encoded string in bytes.
              function writeString(string memory _in) internal pure returns (bytes memory out_) {
                  out_ = writeBytes(bytes(_in));
              }
              /// @notice RLP encodes an address.
              /// @param _in The address to encode.
              /// @return out_ The RLP encoded address in bytes.
              function writeAddress(address _in) internal pure returns (bytes memory out_) {
                  out_ = writeBytes(abi.encodePacked(_in));
              }
              /// @notice RLP encodes a uint.
              /// @param _in The uint256 to encode.
              /// @return out_ The RLP encoded uint256 in bytes.
              function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                  out_ = writeBytes(_toBinary(_in));
              }
              /// @notice RLP encodes a bool.
              /// @param _in The bool to encode.
              /// @return out_ The RLP encoded bool in bytes.
              function writeBool(bool _in) internal pure returns (bytes memory out_) {
                  out_ = new bytes(1);
                  out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
              }
              /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
              /// @param _len    The length of the string or the payload.
              /// @param _offset 128 if item is string, 192 if item is list.
              /// @return out_ RLP encoded bytes.
              function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                  if (_len < 56) {
                      out_ = new bytes(1);
                      out_[0] = bytes1(uint8(_len) + uint8(_offset));
                  } else {
                      uint256 lenLen;
                      uint256 i = 1;
                      while (_len / i != 0) {
                          lenLen++;
                          i *= 256;
                      }
                      out_ = new bytes(lenLen + 1);
                      out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                      for (i = 1; i <= lenLen; i++) {
                          out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                      }
                  }
              }
              /// @notice Encode integer in big endian binary form with no leading zeroes.
              /// @param _x The integer to encode.
              /// @return out_ RLP encoded bytes.
              function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                  bytes memory b = abi.encodePacked(_x);
                  uint256 i = 0;
                  for (; i < 32; i++) {
                      if (b[i] != 0) {
                          break;
                      }
                  }
                  out_ = new bytes(32 - i);
                  for (uint256 j = 0; j < out_.length; j++) {
                      out_[j] = b[i++];
                  }
              }
              /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
              /// @notice Copies a piece of memory to another location.
              /// @param _dest Destination location.
              /// @param _src  Source location.
              /// @param _len  Length of memory to copy.
              function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                  uint256 dest = _dest;
                  uint256 src = _src;
                  uint256 len = _len;
                  for (; len >= 32; len -= 32) {
                      assembly {
                          mstore(dest, mload(src))
                      }
                      dest += 32;
                      src += 32;
                  }
                  uint256 mask;
                  unchecked {
                      mask = 256 ** (32 - len) - 1;
                  }
                  assembly {
                      let srcpart := and(mload(src), not(mask))
                      let destpart := and(mload(dest), mask)
                      mstore(dest, or(destpart, srcpart))
                  }
              }
              /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
              /// @notice Flattens a list of byte strings into one byte string.
              /// @param _list List of byte strings to flatten.
              /// @return out_ The flattened byte string.
              function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                  if (_list.length == 0) {
                      return new bytes(0);
                  }
                  uint256 len;
                  uint256 i = 0;
                  for (; i < _list.length; i++) {
                      len += _list[i].length;
                  }
                  out_ = new bytes(len);
                  uint256 flattenedPtr;
                  assembly {
                      flattenedPtr := add(out_, 0x20)
                  }
                  for (i = 0; i < _list.length; i++) {
                      bytes memory item = _list[i];
                      uint256 listPtr;
                      assembly {
                          listPtr := add(item, 0x20)
                      }
                      _memcpy(flattenedPtr, listPtr, item.length);
                      flattenedPtr += _list[i].length;
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title Bytes
          /// @notice Bytes is a library for manipulating byte arrays.
          library Bytes {
              /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
              /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
              ///         as opposed to a pointer to the original array. Will throw if trying to slice more
              ///         bytes than exist in the array.
              /// @param _bytes Byte array to slice.
              /// @param _start Starting index of the slice.
              /// @param _length Length of the slice.
              /// @return Slice of the input byte array.
              function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                  unchecked {
                      require(_length + 31 >= _length, "slice_overflow");
                      require(_start + _length >= _start, "slice_overflow");
                      require(_bytes.length >= _start + _length, "slice_outOfBounds");
                  }
                  bytes memory tempBytes;
                  assembly {
                      switch iszero(_length)
                      case 0 {
                          // Get a location of some free memory and store it in tempBytes as
                          // Solidity does for memory variables.
                          tempBytes := mload(0x40)
                          // The first word of the slice result is potentially a partial
                          // word read from the original array. To read it, we calculate
                          // the length of that partial word and start copying that many
                          // bytes into the array. The first word we copy will start with
                          // data we don't care about, but the last `lengthmod` bytes will
                          // land at the beginning of the contents of the new array. When
                          // we're done copying, we overwrite the full first word with
                          // the actual length of the slice.
                          let lengthmod := and(_length, 31)
                          // The multiplication in the next line is necessary
                          // because when slicing multiples of 32 bytes (lengthmod == 0)
                          // the following copy loop was copying the origin's length
                          // and then ending prematurely not copying everything it should.
                          let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                          let end := add(mc, _length)
                          for {
                              // The multiplication in the next line has the same exact purpose
                              // as the one above.
                              let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                          } lt(mc, end) {
                              mc := add(mc, 0x20)
                              cc := add(cc, 0x20)
                          } { mstore(mc, mload(cc)) }
                          mstore(tempBytes, _length)
                          //update free-memory pointer
                          //allocating the array padded to 32 bytes like the compiler does now
                          mstore(0x40, and(add(mc, 31), not(31)))
                      }
                      //if we want a zero-length slice let's just return a zero-length array
                      default {
                          tempBytes := mload(0x40)
                          //zero out the 32 bytes slice we are about to return
                          //we need to do it because Solidity does not garbage collect
                          mstore(tempBytes, 0)
                          mstore(0x40, add(tempBytes, 0x20))
                      }
                  }
                  return tempBytes;
              }
              /// @notice Slices a byte array with a given starting index up to the end of the original byte
              ///         array. Returns a new array rathern than a pointer to the original.
              /// @param _bytes Byte array to slice.
              /// @param _start Starting index of the slice.
              /// @return Slice of the input byte array.
              function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                  if (_start >= _bytes.length) {
                      return bytes("");
                  }
                  return slice(_bytes, _start, _bytes.length - _start);
              }
              /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
              ///         Resulting nibble array will be exactly twice as long as the input byte array.
              /// @param _bytes Input byte array to convert.
              /// @return Resulting nibble array.
              function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                  bytes memory _nibbles;
                  assembly {
                      // Grab a free memory offset for the new array
                      _nibbles := mload(0x40)
                      // Load the length of the passed bytes array from memory
                      let bytesLength := mload(_bytes)
                      // Calculate the length of the new nibble array
                      // This is the length of the input array times 2
                      let nibblesLength := shl(0x01, bytesLength)
                      // Update the free memory pointer to allocate memory for the new array.
                      // To do this, we add the length of the new array + 32 bytes for the array length
                      // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                      mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                      // Store the length of the new array in memory
                      mstore(_nibbles, nibblesLength)
                      // Store the memory offset of the _bytes array's contents on the stack
                      let bytesStart := add(_bytes, 0x20)
                      // Store the memory offset of the nibbles array's contents on the stack
                      let nibblesStart := add(_nibbles, 0x20)
                      // Loop through each byte in the input array
                      for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                          // Get the starting offset of the next 2 bytes in the nibbles array
                          let offset := add(nibblesStart, shl(0x01, i))
                          // Load the byte at the current index within the `_bytes` array
                          let b := byte(0x00, mload(add(bytesStart, i)))
                          // Pull out the first nibble and store it in the new array
                          mstore8(offset, shr(0x04, b))
                          // Pull out the second nibble and store it in the new array
                          mstore8(add(offset, 0x01), and(b, 0x0F))
                      }
                  }
                  return _nibbles;
              }
              /// @notice Compares two byte arrays by comparing their keccak256 hashes.
              /// @param _bytes First byte array to compare.
              /// @param _other Second byte array to compare.
              /// @return True if the two byte arrays are equal, false otherwise.
              function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                  return keccak256(_bytes) == keccak256(_other);
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.8;
          /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
          /// @title RLPReader
          /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
          ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
          ///         various tweaks to improve readability.
          library RLPReader {
              /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
              type MemoryPointer is uint256;
              /// @notice RLP item types.
              /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
              /// @custom:value LIST_ITEM Represents an RLP list item.
              enum RLPItemType {
                  DATA_ITEM,
                  LIST_ITEM
              }
              /// @notice Struct representing an RLP item.
              /// @custom:field length Length of the RLP item.
              /// @custom:field ptr    Pointer to the RLP item in memory.
              struct RLPItem {
                  uint256 length;
                  MemoryPointer ptr;
              }
              /// @notice Max list length that this library will accept.
              uint256 internal constant MAX_LIST_LENGTH = 32;
              /// @notice Converts bytes to a reference to memory position and length.
              /// @param _in Input bytes to convert.
              /// @return out_ Output memory reference.
              function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                  // Empty arrays are not RLP items.
                  require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                  MemoryPointer ptr;
                  assembly {
                      ptr := add(_in, 32)
                  }
                  out_ = RLPItem({ length: _in.length, ptr: ptr });
              }
              /// @notice Reads an RLP list value into a list of RLP items.
              /// @param _in RLP list value.
              /// @return out_ Decoded RLP list items.
              function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                  (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
                  require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
                  // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                  // writing to the length. Since we can't know the number of RLP items without looping over
                  // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                  // simply set a reasonable maximum list length and decrease the size before we finish.
                  out_ = new RLPItem[](MAX_LIST_LENGTH);
                  uint256 itemCount = 0;
                  uint256 offset = listOffset;
                  while (offset < _in.length) {
                      (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                          RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                      );
                      // We don't need to check itemCount < out.length explicitly because Solidity already
                      // handles this check on our behalf, we'd just be wasting gas.
                      out_[itemCount] = RLPItem({
                          length: itemLength + itemOffset,
                          ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                      });
                      itemCount += 1;
                      offset += itemOffset + itemLength;
                  }
                  // Decrease the array size to match the actual item count.
                  assembly {
                      mstore(out_, itemCount)
                  }
              }
              /// @notice Reads an RLP list value into a list of RLP items.
              /// @param _in RLP list value.
              /// @return out_ Decoded RLP list items.
              function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                  out_ = readList(toRLPItem(_in));
              }
              /// @notice Reads an RLP bytes value into bytes.
              /// @param _in RLP bytes value.
              /// @return out_ Decoded bytes.
              function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                  (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                  require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
                  require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
                  out_ = _copy(_in.ptr, itemOffset, itemLength);
              }
              /// @notice Reads an RLP bytes value into bytes.
              /// @param _in RLP bytes value.
              /// @return out_ Decoded bytes.
              function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                  out_ = readBytes(toRLPItem(_in));
              }
              /// @notice Reads the raw bytes of an RLP item.
              /// @param _in RLP item to read.
              /// @return out_ Raw RLP bytes.
              function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                  out_ = _copy(_in.ptr, 0, _in.length);
              }
              /// @notice Decodes the length of an RLP item.
              /// @param _in RLP item to decode.
              /// @return offset_ Offset of the encoded data.
              /// @return length_ Length of the encoded data.
              /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
              function _decodeLength(RLPItem memory _in)
                  private
                  pure
                  returns (uint256 offset_, uint256 length_, RLPItemType type_)
              {
                  // Short-circuit if there's nothing to decode, note that we perform this check when
                  // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                  // that function and create an RLP item directly. So we need to check this anyway.
                  require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                  MemoryPointer ptr = _in.ptr;
                  uint256 prefix;
                  assembly {
                      prefix := byte(0, mload(ptr))
                  }
                  if (prefix <= 0x7f) {
                      // Single byte.
                      return (0, 1, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xb7) {
                      // Short string.
                      // slither-disable-next-line variable-scope
                      uint256 strLen = prefix - 0x80;
                      require(
                          _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
                      );
                      bytes1 firstByteOfContent;
                      assembly {
                          firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                      }
                      require(
                          strLen != 1 || firstByteOfContent >= 0x80,
                          "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                      );
                      return (1, strLen, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xbf) {
                      // Long string.
                      uint256 lenOfStrLen = prefix - 0xb7;
                      require(
                          _in.length > lenOfStrLen,
                          "RLPReader: length of content must be > than length of string length (long string)"
                      );
                      bytes1 firstByteOfContent;
                      assembly {
                          firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                      }
                      require(
                          firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
                      );
                      uint256 strLen;
                      assembly {
                          strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                      }
                      require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
                      require(
                          _in.length > lenOfStrLen + strLen,
                          "RLPReader: length of content must be greater than total length (long string)"
                      );
                      return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                  } else if (prefix <= 0xf7) {
                      // Short list.
                      // slither-disable-next-line variable-scope
                      uint256 listLen = prefix - 0xc0;
                      require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
                      return (1, listLen, RLPItemType.LIST_ITEM);
                  } else {
                      // Long list.
                      uint256 lenOfListLen = prefix - 0xf7;
                      require(
                          _in.length > lenOfListLen,
                          "RLPReader: length of content must be > than length of list length (long list)"
                      );
                      bytes1 firstByteOfContent;
                      assembly {
                          firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                      }
                      require(
                          firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
                      );
                      uint256 listLen;
                      assembly {
                          listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                      }
                      require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
                      require(
                          _in.length > lenOfListLen + listLen,
                          "RLPReader: length of content must be greater than total length (long list)"
                      );
                      return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                  }
              }
              /// @notice Copies the bytes from a memory location.
              /// @param _src    Pointer to the location to read from.
              /// @param _offset Offset to start reading from.
              /// @param _length Number of bytes to read.
              /// @return out_ Copied bytes.
              function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                  out_ = new bytes(_length);
                  if (_length == 0) {
                      return out_;
                  }
                  // Mostly based on Solidity's copy_memory_to_memory:
                  // solhint-disable max-line-length
                  // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                  uint256 src = MemoryPointer.unwrap(_src) + _offset;
                  assembly {
                      let dest := add(out_, 32)
                      let i := 0
                      for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                      if gt(i, _length) { mstore(add(dest, _length), 0) }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMath {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.8.0;
          /// @notice Arithmetic library with operations for fixed-point numbers.
          /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
          library FixedPointMathLib {
              /*//////////////////////////////////////////////////////////////
                              SIMPLIFIED FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
              function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
              }
              function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
              }
              function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
              }
              function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
              }
              function powWad(int256 x, int256 y) internal pure returns (int256) {
                  // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                  return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
              }
              function expWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      // When the result is < 0.5 we return zero. This happens when
                      // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                      if (x <= -42139678854452767551) return 0;
                      // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                      // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                      if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                      // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                      // for more intermediate precision and a binary basis. This base conversion
                      // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                      x = (x << 78) / 5**18;
                      // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                      // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                      // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                      int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                      x = x - k * 54916777467707473351141471128;
                      // k is in the range [-61, 195].
                      // Evaluate using a (6, 7)-term rational approximation.
                      // p is made monic, we'll multiply by a scale factor later.
                      int256 y = x + 1346386616545796478920950773328;
                      y = ((y * x) >> 96) + 57155421227552351082224309758442;
                      int256 p = y + x - 94201549194550492254356042504812;
                      p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                      p = p * x + (4385272521454847904659076985693276 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      int256 q = x - 2855989394907223263936484059900;
                      q = ((q * x) >> 96) + 50020603652535783019961831881945;
                      q = ((q * x) >> 96) - 533845033583426703283633433725380;
                      q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                      q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                      q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial won't have zeros in the domain as all its roots are complex.
                          // No scaling is necessary because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r should be in the range (0.09, 0.25) * 2**96.
                      // We now need to multiply r by:
                      // * the scale factor s = ~6.031367120.
                      // * the 2**k factor from the range reduction.
                      // * the 1e18 / 2**96 factor for base conversion.
                      // We do this all at once, with an intermediate result in 2**213
                      // basis, so the final right shift is always by a positive amount.
                      r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                  }
              }
              function lnWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      require(x > 0, "UNDEFINED");
                      // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                      // We do this by multiplying by 2**96 / 10**18. But since
                      // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                      // and add ln(2**96 / 10**18) at the end.
                      // Reduce range of x to (1, 2) * 2**96
                      // ln(2^k * x) = k * ln(2) + ln(x)
                      int256 k = int256(log2(uint256(x))) - 96;
                      x <<= uint256(159 - k);
                      x = int256(uint256(x) >> 159);
                      // Evaluate using a (8, 8)-term rational approximation.
                      // p is made monic, we will multiply by a scale factor later.
                      int256 p = x + 3273285459638523848632254066296;
                      p = ((p * x) >> 96) + 24828157081833163892658089445524;
                      p = ((p * x) >> 96) + 43456485725739037958740375743393;
                      p = ((p * x) >> 96) - 11111509109440967052023855526967;
                      p = ((p * x) >> 96) - 45023709667254063763336534515857;
                      p = ((p * x) >> 96) - 14706773417378608786704636184526;
                      p = p * x - (795164235651350426258249787498 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      // q is monic by convention.
                      int256 q = x + 5573035233440673466300451813936;
                      q = ((q * x) >> 96) + 71694874799317883764090561454958;
                      q = ((q * x) >> 96) + 283447036172924575727196451306956;
                      q = ((q * x) >> 96) + 401686690394027663651624208769553;
                      q = ((q * x) >> 96) + 204048457590392012362485061816622;
                      q = ((q * x) >> 96) + 31853899698501571402653359427138;
                      q = ((q * x) >> 96) + 909429971244387300277376558375;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial is known not to have zeros in the domain.
                          // No scaling required because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r is in the range (0, 0.125) * 2**96
                      // Finalization, we need to:
                      // * multiply by the scale factor s = 5.549…
                      // * add ln(2**96 / 10**18)
                      // * add k * ln(2)
                      // * multiply by 10**18 / 2**96 = 5**18 >> 78
                      // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                      r *= 1677202110996718588342820967067443963516166;
                      // add ln(2) * k * 5e18 * 2**192
                      r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                      // add ln(2**96 / 10**18) * 5e18 * 2**192
                      r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                      // base conversion: mul 2**18 / 2**192
                      r >>= 174;
                  }
              }
              /*//////////////////////////////////////////////////////////////
                              LOW LEVEL FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              function mulDivDown(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // Divide z by the denominator.
                      z := div(z, denominator)
                  }
              }
              function mulDivUp(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // First, divide z - 1 by the denominator and add 1.
                      // We allow z - 1 to underflow if z is 0, because we multiply the
                      // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                      z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                  }
              }
              function rpow(
                  uint256 x,
                  uint256 n,
                  uint256 scalar
              ) internal pure returns (uint256 z) {
                  assembly {
                      switch x
                      case 0 {
                          switch n
                          case 0 {
                              // 0 ** 0 = 1
                              z := scalar
                          }
                          default {
                              // 0 ** n = 0
                              z := 0
                          }
                      }
                      default {
                          switch mod(n, 2)
                          case 0 {
                              // If n is even, store scalar in z for now.
                              z := scalar
                          }
                          default {
                              // If n is odd, store x in z for now.
                              z := x
                          }
                          // Shifting right by 1 is like dividing by 2.
                          let half := shr(1, scalar)
                          for {
                              // Shift n right by 1 before looping to halve it.
                              n := shr(1, n)
                          } n {
                              // Shift n right by 1 each iteration to halve it.
                              n := shr(1, n)
                          } {
                              // Revert immediately if x ** 2 would overflow.
                              // Equivalent to iszero(eq(div(xx, x), x)) here.
                              if shr(128, x) {
                                  revert(0, 0)
                              }
                              // Store x squared.
                              let xx := mul(x, x)
                              // Round to the nearest number.
                              let xxRound := add(xx, half)
                              // Revert if xx + half overflowed.
                              if lt(xxRound, xx) {
                                  revert(0, 0)
                              }
                              // Set x to scaled xxRound.
                              x := div(xxRound, scalar)
                              // If n is even:
                              if mod(n, 2) {
                                  // Compute z * x.
                                  let zx := mul(z, x)
                                  // If z * x overflowed:
                                  if iszero(eq(div(zx, x), z)) {
                                      // Revert if x is non-zero.
                                      if iszero(iszero(x)) {
                                          revert(0, 0)
                                      }
                                  }
                                  // Round to the nearest number.
                                  let zxRound := add(zx, half)
                                  // Revert if zx + half overflowed.
                                  if lt(zxRound, zx) {
                                      revert(0, 0)
                                  }
                                  // Return properly scaled zxRound.
                                  z := div(zxRound, scalar)
                              }
                          }
                      }
                  }
              }
              /*//////////////////////////////////////////////////////////////
                                  GENERAL NUMBER UTILITIES
              //////////////////////////////////////////////////////////////*/
              function sqrt(uint256 x) internal pure returns (uint256 z) {
                  assembly {
                      let y := x // We start y at x, which will help us make our initial estimate.
                      z := 181 // The "correct" value is 1, but this saves a multiplication later.
                      // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                      // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                      // We check y >= 2^(k + 8) but shift right by k bits
                      // each branch to ensure that if x >= 256, then y >= 256.
                      if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                          y := shr(128, y)
                          z := shl(64, z)
                      }
                      if iszero(lt(y, 0x1000000000000000000)) {
                          y := shr(64, y)
                          z := shl(32, z)
                      }
                      if iszero(lt(y, 0x10000000000)) {
                          y := shr(32, y)
                          z := shl(16, z)
                      }
                      if iszero(lt(y, 0x1000000)) {
                          y := shr(16, y)
                          z := shl(8, z)
                      }
                      // Goal was to get z*z*y within a small factor of x. More iterations could
                      // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                      // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                      // That's not possible if x < 256 but we can just verify those cases exhaustively.
                      // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                      // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                      // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                      // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                      // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                      // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                      // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                      // There is no overflow risk here since y < 2^136 after the first branch above.
                      z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                      // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      // If x+1 is a perfect square, the Babylonian method cycles between
                      // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                      // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                      // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                      // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                      z := sub(z, lt(div(x, z), z))
                  }
              }
              function log2(uint256 x) internal pure returns (uint256 r) {
                  require(x > 0, "UNDEFINED");
                  assembly {
                      r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                      r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                      r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                      r := or(r, shl(4, lt(0xffff, shr(r, x))))
                      r := or(r, shl(3, lt(0xff, shr(r, x))))
                      r := or(r, shl(2, lt(0xf, shr(r, x))))
                      r := or(r, shl(1, lt(0x3, shr(r, x))))
                      r := or(r, lt(0x1, shr(r, x)))
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library AddressUpgradeable {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          

          File 3 of 6: Proxy
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Constants } from "../libraries/Constants.sol";
          /// @title Proxy
          /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
          ///         if the caller is address(0), meaning that the call originated from an off-chain
          ///         simulation.
          contract Proxy {
              /// @notice An event that is emitted each time the implementation is changed. This event is part
              ///         of the EIP-1967 specification.
              /// @param implementation The address of the implementation contract
              event Upgraded(address indexed implementation);
              /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
              ///         EIP-1967 specification.
              /// @param previousAdmin The previous owner of the contract
              /// @param newAdmin      The new owner of the contract
              event AdminChanged(address previousAdmin, address newAdmin);
              /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
              ///         eth_call to interact with this proxy without needing to use low-level storage
              ///         inspection. We assume that nobody is able to trigger calls from address(0) during
              ///         normal EVM execution.
              modifier proxyCallIfNotAdmin() {
                  if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                      _;
                  } else {
                      // This WILL halt the call frame on completion.
                      _doProxyCall();
                  }
              }
              /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
              ///         EIP-1967 admin storage slot so that accidental storage collision with the
              ///         implementation is not possible.
              /// @param _admin Address of the initial contract admin. Admin as the ability to access the
              ///               transparent proxy interface.
              constructor(address _admin) {
                  _changeAdmin(_admin);
              }
              // slither-disable-next-line locked-ether
              receive() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              // slither-disable-next-line locked-ether
              fallback() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              /// @notice Set the implementation contract address. The code at the given address will execute
              ///         when this contract is called.
              /// @param _implementation Address of the implementation contract.
              function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                  _setImplementation(_implementation);
              }
              /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
              ///         atomic execution of initialization-based upgrades.
              /// @param _implementation Address of the implementation contract.
              /// @param _data           Calldata to delegatecall the new implementation with.
              function upgradeToAndCall(
                  address _implementation,
                  bytes calldata _data
              )
                  public
                  payable
                  virtual
                  proxyCallIfNotAdmin
                  returns (bytes memory)
              {
                  _setImplementation(_implementation);
                  (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                  require(success, "Proxy: delegatecall to new implementation contract failed");
                  return returndata;
              }
              /// @notice Changes the owner of the proxy contract. Only callable by the owner.
              /// @param _admin New owner of the proxy contract.
              function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                  _changeAdmin(_admin);
              }
              /// @notice Gets the owner of the proxy contract.
              /// @return Owner address.
              function admin() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getAdmin();
              }
              //// @notice Queries the implementation address.
              /// @return Implementation address.
              function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getImplementation();
              }
              /// @notice Sets the implementation address.
              /// @param _implementation New implementation address.
              function _setImplementation(address _implementation) internal {
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      sstore(proxyImplementation, _implementation)
                  }
                  emit Upgraded(_implementation);
              }
              /// @notice Changes the owner of the proxy contract.
              /// @param _admin New owner of the proxy contract.
              function _changeAdmin(address _admin) internal {
                  address previous = _getAdmin();
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      sstore(proxyOwner, _admin)
                  }
                  emit AdminChanged(previous, _admin);
              }
              /// @notice Performs the proxy call via a delegatecall.
              function _doProxyCall() internal {
                  address impl = _getImplementation();
                  require(impl != address(0), "Proxy: implementation not initialized");
                  assembly {
                      // Copy calldata into memory at 0x0....calldatasize.
                      calldatacopy(0x0, 0x0, calldatasize())
                      // Perform the delegatecall, make sure to pass all available gas.
                      let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                      // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                      // overwrite the calldata that we just copied into memory but that doesn't really
                      // matter because we'll be returning in a second anyway.
                      returndatacopy(0x0, 0x0, returndatasize())
                      // Success == 0 means a revert. We'll revert too and pass the data up.
                      if iszero(success) { revert(0x0, returndatasize()) }
                      // Otherwise we'll just return and pass the data up.
                      return(0x0, returndatasize())
                  }
              }
              /// @notice Queries the implementation address.
              /// @return Implementation address.
              function _getImplementation() internal view returns (address) {
                  address impl;
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      impl := sload(proxyImplementation)
                  }
                  return impl;
              }
              /// @notice Queries the owner of the proxy contract.
              /// @return Owner address.
              function _getAdmin() internal view returns (address) {
                  address owner;
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      owner := sload(proxyOwner)
                  }
                  return owner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { ResourceMetering } from "../L1/ResourceMetering.sol";
          /// @title Constants
          /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
          ///         the stuff used in multiple contracts. Constants that only apply to a single contract
          ///         should be defined in that contract instead.
          library Constants {
              /// @notice Special address to be used as the tx origin for gas estimation calls in the
              ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
              ///         the minimum gas limit specified by the user is not actually enough to execute the
              ///         given message and you're attempting to estimate the actual necessary gas limit. We
              ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
              ///         never have any code on any EVM chain.
              address internal constant ESTIMATION_ADDRESS = address(1);
              /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
              ///         CrossDomainMessenger contracts before an actual sender is set. This value is
              ///         non-zero to reduce the gas cost of message passing transactions.
              address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
              /// @notice The storage slot that holds the address of a proxy implementation.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
              bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                  0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /// @notice The storage slot that holds the address of the owner.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
              bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /// @notice Returns the default values for the ResourceConfig. These are the recommended values
              ///         for a production network.
              function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                  ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                      maxResourceLimit: 20_000_000,
                      elasticityMultiplier: 10,
                      baseFeeMaxChangeDenominator: 8,
                      minimumBaseFee: 1 gwei,
                      systemTxMaxGas: 1_000_000,
                      maximumBaseFee: type(uint128).max
                  });
                  return config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
          import { Burn } from "../libraries/Burn.sol";
          import { Arithmetic } from "../libraries/Arithmetic.sol";
          /// @custom:upgradeable
          /// @title ResourceMetering
          /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
          ///         updates automatically based on current demand.
          abstract contract ResourceMetering is Initializable {
              /// @notice Represents the various parameters that control the way in which resources are
              ///         metered. Corresponds to the EIP-1559 resource metering system.
              /// @custom:field prevBaseFee   Base fee from the previous block(s).
              /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
              /// @custom:field prevBlockNum  Last block number that the base fee was updated.
              struct ResourceParams {
                  uint128 prevBaseFee;
                  uint64 prevBoughtGas;
                  uint64 prevBlockNum;
              }
              /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
              ///         market. These values should be set with care as it is possible to set them in
              ///         a way that breaks the deposit gas market. The target resource limit is defined as
              ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
              ///         single word. There is additional space for additions in the future.
              /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
              ///                                            can be purchased per block.
              /// @custom:field elasticityMultiplier         Determines the target resource limit along with
              ///                                            the resource limit.
              /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
              /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
              ///                                            value.
              /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
              ///                                            transaction. This should be set to the same
              ///                                            number that the op-node sets as the gas limit
              ///                                            for the system transaction.
              /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
              ///                                            value.
              struct ResourceConfig {
                  uint32 maxResourceLimit;
                  uint8 elasticityMultiplier;
                  uint8 baseFeeMaxChangeDenominator;
                  uint32 minimumBaseFee;
                  uint32 systemTxMaxGas;
                  uint128 maximumBaseFee;
              }
              /// @notice EIP-1559 style gas parameters.
              ResourceParams public params;
              /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
              uint256[48] private __gap;
              /// @notice Meters access to a function based an amount of a requested resource.
              /// @param _amount Amount of the resource requested.
              modifier metered(uint64 _amount) {
                  // Record initial gas amount so we can refund for it later.
                  uint256 initialGas = gasleft();
                  // Run the underlying function.
                  _;
                  // Run the metering function.
                  _metered(_amount, initialGas);
              }
              /// @notice An internal function that holds all of the logic for metering a resource.
              /// @param _amount     Amount of the resource requested.
              /// @param _initialGas The amount of gas before any modifier execution.
              function _metered(uint64 _amount, uint256 _initialGas) internal {
                  // Update block number and base fee if necessary.
                  uint256 blockDiff = block.number - params.prevBlockNum;
                  ResourceConfig memory config = _resourceConfig();
                  int256 targetResourceLimit =
                      int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                  if (blockDiff > 0) {
                      // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                      // at which deposits can be created and therefore limit the potential for deposits to
                      // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                      int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                      int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                          / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                      // Update base fee by adding the base fee delta and clamp the resulting value between
                      // min and max.
                      int256 newBaseFee = Arithmetic.clamp({
                          _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                      // If we skipped more than one block, we also need to account for every empty block.
                      // Empty block means there was no demand for deposits in that block, so we should
                      // reflect this lack of demand in the fee.
                      if (blockDiff > 1) {
                          // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                          // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                          // between min and max.
                          newBaseFee = Arithmetic.clamp({
                              _value: Arithmetic.cdexp({
                                  _coefficient: newBaseFee,
                                  _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                  _exponent: int256(blockDiff - 1)
                              }),
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                      }
                      // Update new base fee, reset bought gas, and update block number.
                      params.prevBaseFee = uint128(uint256(newBaseFee));
                      params.prevBoughtGas = 0;
                      params.prevBlockNum = uint64(block.number);
                  }
                  // Make sure we can actually buy the resource amount requested by the user.
                  params.prevBoughtGas += _amount;
                  require(
                      int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                      "ResourceMetering: cannot buy more gas than available gas limit"
                  );
                  // Determine the amount of ETH to be paid.
                  uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                  // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                  // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                  // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                  // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                  // during any 1 day period in the last 5 years, so should be fine.
                  uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                  // Give the user a refund based on the amount of gas they used to do all of the work up to
                  // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                  // effectively like a dynamic stipend (with a minimum value).
                  uint256 usedGas = _initialGas - gasleft();
                  if (gasCost > usedGas) {
                      Burn.gas(gasCost - usedGas);
                  }
              }
              /// @notice Virtual function that returns the resource config.
              ///         Contracts that inherit this contract must implement this function.
              /// @return ResourceConfig
              function _resourceConfig() internal virtual returns (ResourceConfig memory);
              /// @notice Sets initial resource parameter values.
              ///         This function must either be called by the initializer function of an upgradeable
              ///         child contract.
              // solhint-disable-next-line func-name-mixedcase
              function __ResourceMetering_init() internal onlyInitializing {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1);
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator,
                  Rounding rounding
              ) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`.
                  // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                  // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                  // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                  // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1;
                  uint256 x = a;
                  if (x >> 128 > 0) {
                      x >>= 128;
                      result <<= 64;
                  }
                  if (x >> 64 > 0) {
                      x >>= 64;
                      result <<= 32;
                  }
                  if (x >> 32 > 0) {
                      x >>= 32;
                      result <<= 16;
                  }
                  if (x >> 16 > 0) {
                      x >>= 16;
                      result <<= 8;
                  }
                  if (x >> 8 > 0) {
                      x >>= 8;
                      result <<= 4;
                  }
                  if (x >> 4 > 0) {
                      x >>= 4;
                      result <<= 2;
                  }
                  if (x >> 2 > 0) {
                      result <<= 1;
                  }
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = sqrt(a);
                  if (rounding == Rounding.Up && result * result < a) {
                      result += 1;
                  }
                  return result;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          /// @title Burn
          /// @notice Utilities for burning stuff.
          library Burn {
              /// @notice Burns a given amount of ETH.
              /// @param _amount Amount of ETH to burn.
              function eth(uint256 _amount) internal {
                  new Burner{ value: _amount }();
              }
              /// @notice Burns a given amount of gas.
              /// @param _amount Amount of gas to burn.
              function gas(uint256 _amount) internal view {
                  uint256 i = 0;
                  uint256 initialGas = gasleft();
                  while (initialGas - gasleft() < _amount) {
                      ++i;
                  }
              }
          }
          /// @title Burner
          /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
          ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
          ///         from the circulating supply.
          contract Burner {
              constructor() payable {
                  selfdestruct(payable(address(this)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
          import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
          /// @title Arithmetic
          /// @notice Even more math than before.
          library Arithmetic {
              /// @notice Clamps a value between a minimum and maximum.
              /// @param _value The value to clamp.
              /// @param _min   The minimum value.
              /// @param _max   The maximum value.
              /// @return The clamped value.
              function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                  return SignedMath.min(SignedMath.max(_value, _min), _max);
              }
              /// @notice (c)oefficient (d)enominator (exp)onentiation function.
              ///         Returns the result of: c * (1 - 1/d)^exp.
              /// @param _coefficient Coefficient of the function.
              /// @param _denominator Fractional denominator.
              /// @param _exponent    Power function exponent.
              /// @return Result of c * (1 - 1/d)^exp.
              function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                  return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMath {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.8.0;
          /// @notice Arithmetic library with operations for fixed-point numbers.
          /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
          library FixedPointMathLib {
              /*//////////////////////////////////////////////////////////////
                              SIMPLIFIED FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
              function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
              }
              function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
              }
              function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
              }
              function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
              }
              function powWad(int256 x, int256 y) internal pure returns (int256) {
                  // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                  return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
              }
              function expWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      // When the result is < 0.5 we return zero. This happens when
                      // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                      if (x <= -42139678854452767551) return 0;
                      // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                      // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                      if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                      // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                      // for more intermediate precision and a binary basis. This base conversion
                      // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                      x = (x << 78) / 5**18;
                      // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                      // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                      // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                      int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                      x = x - k * 54916777467707473351141471128;
                      // k is in the range [-61, 195].
                      // Evaluate using a (6, 7)-term rational approximation.
                      // p is made monic, we'll multiply by a scale factor later.
                      int256 y = x + 1346386616545796478920950773328;
                      y = ((y * x) >> 96) + 57155421227552351082224309758442;
                      int256 p = y + x - 94201549194550492254356042504812;
                      p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                      p = p * x + (4385272521454847904659076985693276 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      int256 q = x - 2855989394907223263936484059900;
                      q = ((q * x) >> 96) + 50020603652535783019961831881945;
                      q = ((q * x) >> 96) - 533845033583426703283633433725380;
                      q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                      q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                      q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial won't have zeros in the domain as all its roots are complex.
                          // No scaling is necessary because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r should be in the range (0.09, 0.25) * 2**96.
                      // We now need to multiply r by:
                      // * the scale factor s = ~6.031367120.
                      // * the 2**k factor from the range reduction.
                      // * the 1e18 / 2**96 factor for base conversion.
                      // We do this all at once, with an intermediate result in 2**213
                      // basis, so the final right shift is always by a positive amount.
                      r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                  }
              }
              function lnWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      require(x > 0, "UNDEFINED");
                      // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                      // We do this by multiplying by 2**96 / 10**18. But since
                      // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                      // and add ln(2**96 / 10**18) at the end.
                      // Reduce range of x to (1, 2) * 2**96
                      // ln(2^k * x) = k * ln(2) + ln(x)
                      int256 k = int256(log2(uint256(x))) - 96;
                      x <<= uint256(159 - k);
                      x = int256(uint256(x) >> 159);
                      // Evaluate using a (8, 8)-term rational approximation.
                      // p is made monic, we will multiply by a scale factor later.
                      int256 p = x + 3273285459638523848632254066296;
                      p = ((p * x) >> 96) + 24828157081833163892658089445524;
                      p = ((p * x) >> 96) + 43456485725739037958740375743393;
                      p = ((p * x) >> 96) - 11111509109440967052023855526967;
                      p = ((p * x) >> 96) - 45023709667254063763336534515857;
                      p = ((p * x) >> 96) - 14706773417378608786704636184526;
                      p = p * x - (795164235651350426258249787498 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      // q is monic by convention.
                      int256 q = x + 5573035233440673466300451813936;
                      q = ((q * x) >> 96) + 71694874799317883764090561454958;
                      q = ((q * x) >> 96) + 283447036172924575727196451306956;
                      q = ((q * x) >> 96) + 401686690394027663651624208769553;
                      q = ((q * x) >> 96) + 204048457590392012362485061816622;
                      q = ((q * x) >> 96) + 31853899698501571402653359427138;
                      q = ((q * x) >> 96) + 909429971244387300277376558375;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial is known not to have zeros in the domain.
                          // No scaling required because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r is in the range (0, 0.125) * 2**96
                      // Finalization, we need to:
                      // * multiply by the scale factor s = 5.549…
                      // * add ln(2**96 / 10**18)
                      // * add k * ln(2)
                      // * multiply by 10**18 / 2**96 = 5**18 >> 78
                      // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                      r *= 1677202110996718588342820967067443963516166;
                      // add ln(2) * k * 5e18 * 2**192
                      r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                      // add ln(2**96 / 10**18) * 5e18 * 2**192
                      r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                      // base conversion: mul 2**18 / 2**192
                      r >>= 174;
                  }
              }
              /*//////////////////////////////////////////////////////////////
                              LOW LEVEL FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              function mulDivDown(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // Divide z by the denominator.
                      z := div(z, denominator)
                  }
              }
              function mulDivUp(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // First, divide z - 1 by the denominator and add 1.
                      // We allow z - 1 to underflow if z is 0, because we multiply the
                      // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                      z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                  }
              }
              function rpow(
                  uint256 x,
                  uint256 n,
                  uint256 scalar
              ) internal pure returns (uint256 z) {
                  assembly {
                      switch x
                      case 0 {
                          switch n
                          case 0 {
                              // 0 ** 0 = 1
                              z := scalar
                          }
                          default {
                              // 0 ** n = 0
                              z := 0
                          }
                      }
                      default {
                          switch mod(n, 2)
                          case 0 {
                              // If n is even, store scalar in z for now.
                              z := scalar
                          }
                          default {
                              // If n is odd, store x in z for now.
                              z := x
                          }
                          // Shifting right by 1 is like dividing by 2.
                          let half := shr(1, scalar)
                          for {
                              // Shift n right by 1 before looping to halve it.
                              n := shr(1, n)
                          } n {
                              // Shift n right by 1 each iteration to halve it.
                              n := shr(1, n)
                          } {
                              // Revert immediately if x ** 2 would overflow.
                              // Equivalent to iszero(eq(div(xx, x), x)) here.
                              if shr(128, x) {
                                  revert(0, 0)
                              }
                              // Store x squared.
                              let xx := mul(x, x)
                              // Round to the nearest number.
                              let xxRound := add(xx, half)
                              // Revert if xx + half overflowed.
                              if lt(xxRound, xx) {
                                  revert(0, 0)
                              }
                              // Set x to scaled xxRound.
                              x := div(xxRound, scalar)
                              // If n is even:
                              if mod(n, 2) {
                                  // Compute z * x.
                                  let zx := mul(z, x)
                                  // If z * x overflowed:
                                  if iszero(eq(div(zx, x), z)) {
                                      // Revert if x is non-zero.
                                      if iszero(iszero(x)) {
                                          revert(0, 0)
                                      }
                                  }
                                  // Round to the nearest number.
                                  let zxRound := add(zx, half)
                                  // Revert if zx + half overflowed.
                                  if lt(zxRound, zx) {
                                      revert(0, 0)
                                  }
                                  // Return properly scaled zxRound.
                                  z := div(zxRound, scalar)
                              }
                          }
                      }
                  }
              }
              /*//////////////////////////////////////////////////////////////
                                  GENERAL NUMBER UTILITIES
              //////////////////////////////////////////////////////////////*/
              function sqrt(uint256 x) internal pure returns (uint256 z) {
                  assembly {
                      let y := x // We start y at x, which will help us make our initial estimate.
                      z := 181 // The "correct" value is 1, but this saves a multiplication later.
                      // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                      // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                      // We check y >= 2^(k + 8) but shift right by k bits
                      // each branch to ensure that if x >= 256, then y >= 256.
                      if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                          y := shr(128, y)
                          z := shl(64, z)
                      }
                      if iszero(lt(y, 0x1000000000000000000)) {
                          y := shr(64, y)
                          z := shl(32, z)
                      }
                      if iszero(lt(y, 0x10000000000)) {
                          y := shr(32, y)
                          z := shl(16, z)
                      }
                      if iszero(lt(y, 0x1000000)) {
                          y := shr(16, y)
                          z := shl(8, z)
                      }
                      // Goal was to get z*z*y within a small factor of x. More iterations could
                      // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                      // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                      // That's not possible if x < 256 but we can just verify those cases exhaustively.
                      // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                      // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                      // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                      // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                      // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                      // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                      // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                      // There is no overflow risk here since y < 2^136 after the first branch above.
                      z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                      // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      // If x+1 is a perfect square, the Babylonian method cycles between
                      // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                      // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                      // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                      // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                      z := sub(z, lt(div(x, z), z))
                  }
              }
              function log2(uint256 x) internal pure returns (uint256 r) {
                  require(x > 0, "UNDEFINED");
                  assembly {
                      r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                      r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                      r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                      r := or(r, shl(4, lt(0xffff, shr(r, x))))
                      r := or(r, shl(3, lt(0xff, shr(r, x))))
                      r := or(r, shl(2, lt(0xf, shr(r, x))))
                      r := or(r, shl(1, lt(0x3, shr(r, x))))
                      r := or(r, lt(0x1, shr(r, x)))
                  }
              }
          }
          

          File 4 of 6: SuperchainConfig
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { ISemver } from "src/universal/ISemver.sol";
          import { Storage } from "src/libraries/Storage.sol";
          /// @custom:audit none This contracts is not yet audited.
          /// @title SuperchainConfig
          /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
          contract SuperchainConfig is Initializable, ISemver {
              /// @notice Enum representing different types of updates.
              /// @custom:value GUARDIAN            Represents an update to the guardian.
              enum UpdateType {
                  GUARDIAN
              }
              /// @notice Whether or not the Superchain is paused.
              bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
              /// @notice The address of the guardian, which can pause withdrawals from the System.
              ///         It can only be modified by an upgrade.
              bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
              /// @notice Emitted when the pause is triggered.
              /// @param identifier A string helping to identify provenance of the pause transaction.
              event Paused(string identifier);
              /// @notice Emitted when the pause is lifted.
              event Unpaused();
              /// @notice Emitted when configuration is updated.
              /// @param updateType Type of update.
              /// @param data       Encoded update data.
              event ConfigUpdate(UpdateType indexed updateType, bytes data);
              /// @notice Semantic version.
              /// @custom:semver 1.1.0
              string public constant version = "1.1.0";
              /// @notice Constructs the SuperchainConfig contract.
              constructor() {
                  initialize({ _guardian: address(0), _paused: false });
              }
              /// @notice Initializer.
              /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
              /// @param _paused      Initial paused status.
              function initialize(address _guardian, bool _paused) public initializer {
                  _setGuardian(_guardian);
                  if (_paused) {
                      _pause("Initializer paused");
                  }
              }
              /// @notice Getter for the guardian address.
              function guardian() public view returns (address guardian_) {
                  guardian_ = Storage.getAddress(GUARDIAN_SLOT);
              }
              /// @notice Getter for the current paused status.
              function paused() public view returns (bool paused_) {
                  paused_ = Storage.getBool(PAUSED_SLOT);
              }
              /// @notice Pauses withdrawals.
              /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
              function pause(string memory _identifier) external {
                  require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                  _pause(_identifier);
              }
              /// @notice Pauses withdrawals.
              /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
              function _pause(string memory _identifier) internal {
                  Storage.setBool(PAUSED_SLOT, true);
                  emit Paused(_identifier);
              }
              /// @notice Unpauses withdrawals.
              function unpause() external {
                  require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                  Storage.setBool(PAUSED_SLOT, false);
                  emit Unpaused();
              }
              /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
              ///         will be required to change the guardian.
              /// @param _guardian The new guardian address.
              function _setGuardian(address _guardian) internal {
                  Storage.setAddress(GUARDIAN_SLOT, _guardian);
                  emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title ISemver
          /// @notice ISemver is a simple contract for ensuring that contracts are
          ///         versioned using semantic versioning.
          interface ISemver {
              /// @notice Getter for the semantic version of the contract. This is not
              ///         meant to be used onchain but instead meant to be used by offchain
              ///         tooling.
              /// @return Semver contract version as a string.
              function version() external view returns (string memory);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title Storage
          /// @notice Storage handles reading and writing to arbitary storage locations
          library Storage {
              /// @notice Returns an address stored in an arbitrary storage slot.
              ///         These storage slots decouple the storage layout from
              ///         solc's automation.
              /// @param _slot The storage slot to retrieve the address from.
              function getAddress(bytes32 _slot) internal view returns (address addr_) {
                  assembly {
                      addr_ := sload(_slot)
                  }
              }
              /// @notice Stores an address in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the address in.
              /// @param _address The protocol version to store
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
              ///      in arbitrary storage slots.
              function setAddress(bytes32 _slot, address _address) internal {
                  assembly {
                      sstore(_slot, _address)
                  }
              }
              /// @notice Returns a uint256 stored in an arbitrary storage slot.
              ///         These storage slots decouple the storage layout from
              ///         solc's automation.
              /// @param _slot The storage slot to retrieve the address from.
              function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                  assembly {
                      value_ := sload(_slot)
                  }
              }
              /// @notice Stores a value in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the address in.
              /// @param _value The protocol version to store
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
              ///      in arbitrary storage slots.
              function setUint(bytes32 _slot, uint256 _value) internal {
                  assembly {
                      sstore(_slot, _value)
                  }
              }
              /// @notice Returns a bytes32 stored in an arbitrary storage slot.
              ///         These storage slots decouple the storage layout from
              ///         solc's automation.
              /// @param _slot The storage slot to retrieve the address from.
              function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                  assembly {
                      value_ := sload(_slot)
                  }
              }
              /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the address in.
              /// @param _value The bytes32 value to store.
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
              ///      in arbitrary storage slots.
              function setBytes32(bytes32 _slot, bytes32 _value) internal {
                  assembly {
                      sstore(_slot, _value)
                  }
              }
              /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
              /// @param _slot The storage slot to store the bool in.
              /// @param _value The bool value to store
              /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
              ///      in arbitrary storage slots.
              function setBool(bytes32 _slot, bool _value) internal {
                  assembly {
                      sstore(_slot, _value)
                  }
              }
              /// @notice Returns a bool stored in an arbitrary storage slot.
              /// @param _slot The storage slot to retrieve the bool from.
              function getBool(bytes32 _slot) internal view returns (bool value_) {
                  assembly {
                      value_ := sload(_slot)
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          

          File 5 of 6: Proxy
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Constants } from "../libraries/Constants.sol";
          /// @title Proxy
          /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
          ///         if the caller is address(0), meaning that the call originated from an off-chain
          ///         simulation.
          contract Proxy {
              /// @notice An event that is emitted each time the implementation is changed. This event is part
              ///         of the EIP-1967 specification.
              /// @param implementation The address of the implementation contract
              event Upgraded(address indexed implementation);
              /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
              ///         EIP-1967 specification.
              /// @param previousAdmin The previous owner of the contract
              /// @param newAdmin      The new owner of the contract
              event AdminChanged(address previousAdmin, address newAdmin);
              /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
              ///         eth_call to interact with this proxy without needing to use low-level storage
              ///         inspection. We assume that nobody is able to trigger calls from address(0) during
              ///         normal EVM execution.
              modifier proxyCallIfNotAdmin() {
                  if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                      _;
                  } else {
                      // This WILL halt the call frame on completion.
                      _doProxyCall();
                  }
              }
              /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
              ///         EIP-1967 admin storage slot so that accidental storage collision with the
              ///         implementation is not possible.
              /// @param _admin Address of the initial contract admin. Admin as the ability to access the
              ///               transparent proxy interface.
              constructor(address _admin) {
                  _changeAdmin(_admin);
              }
              // slither-disable-next-line locked-ether
              receive() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              // slither-disable-next-line locked-ether
              fallback() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              /// @notice Set the implementation contract address. The code at the given address will execute
              ///         when this contract is called.
              /// @param _implementation Address of the implementation contract.
              function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                  _setImplementation(_implementation);
              }
              /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
              ///         atomic execution of initialization-based upgrades.
              /// @param _implementation Address of the implementation contract.
              /// @param _data           Calldata to delegatecall the new implementation with.
              function upgradeToAndCall(
                  address _implementation,
                  bytes calldata _data
              )
                  public
                  payable
                  virtual
                  proxyCallIfNotAdmin
                  returns (bytes memory)
              {
                  _setImplementation(_implementation);
                  (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                  require(success, "Proxy: delegatecall to new implementation contract failed");
                  return returndata;
              }
              /// @notice Changes the owner of the proxy contract. Only callable by the owner.
              /// @param _admin New owner of the proxy contract.
              function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                  _changeAdmin(_admin);
              }
              /// @notice Gets the owner of the proxy contract.
              /// @return Owner address.
              function admin() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getAdmin();
              }
              //// @notice Queries the implementation address.
              /// @return Implementation address.
              function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getImplementation();
              }
              /// @notice Sets the implementation address.
              /// @param _implementation New implementation address.
              function _setImplementation(address _implementation) internal {
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      sstore(proxyImplementation, _implementation)
                  }
                  emit Upgraded(_implementation);
              }
              /// @notice Changes the owner of the proxy contract.
              /// @param _admin New owner of the proxy contract.
              function _changeAdmin(address _admin) internal {
                  address previous = _getAdmin();
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      sstore(proxyOwner, _admin)
                  }
                  emit AdminChanged(previous, _admin);
              }
              /// @notice Performs the proxy call via a delegatecall.
              function _doProxyCall() internal {
                  address impl = _getImplementation();
                  require(impl != address(0), "Proxy: implementation not initialized");
                  assembly {
                      // Copy calldata into memory at 0x0....calldatasize.
                      calldatacopy(0x0, 0x0, calldatasize())
                      // Perform the delegatecall, make sure to pass all available gas.
                      let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                      // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                      // overwrite the calldata that we just copied into memory but that doesn't really
                      // matter because we'll be returning in a second anyway.
                      returndatacopy(0x0, 0x0, returndatasize())
                      // Success == 0 means a revert. We'll revert too and pass the data up.
                      if iszero(success) { revert(0x0, returndatasize()) }
                      // Otherwise we'll just return and pass the data up.
                      return(0x0, returndatasize())
                  }
              }
              /// @notice Queries the implementation address.
              /// @return Implementation address.
              function _getImplementation() internal view returns (address) {
                  address impl;
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      impl := sload(proxyImplementation)
                  }
                  return impl;
              }
              /// @notice Queries the owner of the proxy contract.
              /// @return Owner address.
              function _getAdmin() internal view returns (address) {
                  address owner;
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      owner := sload(proxyOwner)
                  }
                  return owner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { ResourceMetering } from "../L1/ResourceMetering.sol";
          /// @title Constants
          /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
          ///         the stuff used in multiple contracts. Constants that only apply to a single contract
          ///         should be defined in that contract instead.
          library Constants {
              /// @notice Special address to be used as the tx origin for gas estimation calls in the
              ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
              ///         the minimum gas limit specified by the user is not actually enough to execute the
              ///         given message and you're attempting to estimate the actual necessary gas limit. We
              ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
              ///         never have any code on any EVM chain.
              address internal constant ESTIMATION_ADDRESS = address(1);
              /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
              ///         CrossDomainMessenger contracts before an actual sender is set. This value is
              ///         non-zero to reduce the gas cost of message passing transactions.
              address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
              /// @notice The storage slot that holds the address of a proxy implementation.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
              bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                  0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /// @notice The storage slot that holds the address of the owner.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
              bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /// @notice Returns the default values for the ResourceConfig. These are the recommended values
              ///         for a production network.
              function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                  ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                      maxResourceLimit: 20_000_000,
                      elasticityMultiplier: 10,
                      baseFeeMaxChangeDenominator: 8,
                      minimumBaseFee: 1 gwei,
                      systemTxMaxGas: 1_000_000,
                      maximumBaseFee: type(uint128).max
                  });
                  return config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
          import { Burn } from "../libraries/Burn.sol";
          import { Arithmetic } from "../libraries/Arithmetic.sol";
          /// @custom:upgradeable
          /// @title ResourceMetering
          /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
          ///         updates automatically based on current demand.
          abstract contract ResourceMetering is Initializable {
              /// @notice Represents the various parameters that control the way in which resources are
              ///         metered. Corresponds to the EIP-1559 resource metering system.
              /// @custom:field prevBaseFee   Base fee from the previous block(s).
              /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
              /// @custom:field prevBlockNum  Last block number that the base fee was updated.
              struct ResourceParams {
                  uint128 prevBaseFee;
                  uint64 prevBoughtGas;
                  uint64 prevBlockNum;
              }
              /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
              ///         market. These values should be set with care as it is possible to set them in
              ///         a way that breaks the deposit gas market. The target resource limit is defined as
              ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
              ///         single word. There is additional space for additions in the future.
              /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
              ///                                            can be purchased per block.
              /// @custom:field elasticityMultiplier         Determines the target resource limit along with
              ///                                            the resource limit.
              /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
              /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
              ///                                            value.
              /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
              ///                                            transaction. This should be set to the same
              ///                                            number that the op-node sets as the gas limit
              ///                                            for the system transaction.
              /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
              ///                                            value.
              struct ResourceConfig {
                  uint32 maxResourceLimit;
                  uint8 elasticityMultiplier;
                  uint8 baseFeeMaxChangeDenominator;
                  uint32 minimumBaseFee;
                  uint32 systemTxMaxGas;
                  uint128 maximumBaseFee;
              }
              /// @notice EIP-1559 style gas parameters.
              ResourceParams public params;
              /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
              uint256[48] private __gap;
              /// @notice Meters access to a function based an amount of a requested resource.
              /// @param _amount Amount of the resource requested.
              modifier metered(uint64 _amount) {
                  // Record initial gas amount so we can refund for it later.
                  uint256 initialGas = gasleft();
                  // Run the underlying function.
                  _;
                  // Run the metering function.
                  _metered(_amount, initialGas);
              }
              /// @notice An internal function that holds all of the logic for metering a resource.
              /// @param _amount     Amount of the resource requested.
              /// @param _initialGas The amount of gas before any modifier execution.
              function _metered(uint64 _amount, uint256 _initialGas) internal {
                  // Update block number and base fee if necessary.
                  uint256 blockDiff = block.number - params.prevBlockNum;
                  ResourceConfig memory config = _resourceConfig();
                  int256 targetResourceLimit =
                      int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                  if (blockDiff > 0) {
                      // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                      // at which deposits can be created and therefore limit the potential for deposits to
                      // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                      int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                      int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                          / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                      // Update base fee by adding the base fee delta and clamp the resulting value between
                      // min and max.
                      int256 newBaseFee = Arithmetic.clamp({
                          _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                      // If we skipped more than one block, we also need to account for every empty block.
                      // Empty block means there was no demand for deposits in that block, so we should
                      // reflect this lack of demand in the fee.
                      if (blockDiff > 1) {
                          // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                          // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                          // between min and max.
                          newBaseFee = Arithmetic.clamp({
                              _value: Arithmetic.cdexp({
                                  _coefficient: newBaseFee,
                                  _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                  _exponent: int256(blockDiff - 1)
                              }),
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                      }
                      // Update new base fee, reset bought gas, and update block number.
                      params.prevBaseFee = uint128(uint256(newBaseFee));
                      params.prevBoughtGas = 0;
                      params.prevBlockNum = uint64(block.number);
                  }
                  // Make sure we can actually buy the resource amount requested by the user.
                  params.prevBoughtGas += _amount;
                  require(
                      int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                      "ResourceMetering: cannot buy more gas than available gas limit"
                  );
                  // Determine the amount of ETH to be paid.
                  uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                  // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                  // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                  // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                  // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                  // during any 1 day period in the last 5 years, so should be fine.
                  uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                  // Give the user a refund based on the amount of gas they used to do all of the work up to
                  // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                  // effectively like a dynamic stipend (with a minimum value).
                  uint256 usedGas = _initialGas - gasleft();
                  if (gasCost > usedGas) {
                      Burn.gas(gasCost - usedGas);
                  }
              }
              /// @notice Virtual function that returns the resource config.
              ///         Contracts that inherit this contract must implement this function.
              /// @return ResourceConfig
              function _resourceConfig() internal virtual returns (ResourceConfig memory);
              /// @notice Sets initial resource parameter values.
              ///         This function must either be called by the initializer function of an upgradeable
              ///         child contract.
              // solhint-disable-next-line func-name-mixedcase
              function __ResourceMetering_init() internal onlyInitializing {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1);
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator,
                  Rounding rounding
              ) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`.
                  // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                  // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                  // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                  // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1;
                  uint256 x = a;
                  if (x >> 128 > 0) {
                      x >>= 128;
                      result <<= 64;
                  }
                  if (x >> 64 > 0) {
                      x >>= 64;
                      result <<= 32;
                  }
                  if (x >> 32 > 0) {
                      x >>= 32;
                      result <<= 16;
                  }
                  if (x >> 16 > 0) {
                      x >>= 16;
                      result <<= 8;
                  }
                  if (x >> 8 > 0) {
                      x >>= 8;
                      result <<= 4;
                  }
                  if (x >> 4 > 0) {
                      x >>= 4;
                      result <<= 2;
                  }
                  if (x >> 2 > 0) {
                      result <<= 1;
                  }
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = sqrt(a);
                  if (rounding == Rounding.Up && result * result < a) {
                      result += 1;
                  }
                  return result;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          /// @title Burn
          /// @notice Utilities for burning stuff.
          library Burn {
              /// @notice Burns a given amount of ETH.
              /// @param _amount Amount of ETH to burn.
              function eth(uint256 _amount) internal {
                  new Burner{ value: _amount }();
              }
              /// @notice Burns a given amount of gas.
              /// @param _amount Amount of gas to burn.
              function gas(uint256 _amount) internal view {
                  uint256 i = 0;
                  uint256 initialGas = gasleft();
                  while (initialGas - gasleft() < _amount) {
                      ++i;
                  }
              }
          }
          /// @title Burner
          /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
          ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
          ///         from the circulating supply.
          contract Burner {
              constructor() payable {
                  selfdestruct(payable(address(this)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
          import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
          /// @title Arithmetic
          /// @notice Even more math than before.
          library Arithmetic {
              /// @notice Clamps a value between a minimum and maximum.
              /// @param _value The value to clamp.
              /// @param _min   The minimum value.
              /// @param _max   The maximum value.
              /// @return The clamped value.
              function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                  return SignedMath.min(SignedMath.max(_value, _min), _max);
              }
              /// @notice (c)oefficient (d)enominator (exp)onentiation function.
              ///         Returns the result of: c * (1 - 1/d)^exp.
              /// @param _coefficient Coefficient of the function.
              /// @param _denominator Fractional denominator.
              /// @param _exponent    Power function exponent.
              /// @return Result of c * (1 - 1/d)^exp.
              function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                  return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMath {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.8.0;
          /// @notice Arithmetic library with operations for fixed-point numbers.
          /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
          library FixedPointMathLib {
              /*//////////////////////////////////////////////////////////////
                              SIMPLIFIED FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
              function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
              }
              function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
              }
              function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
              }
              function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
              }
              function powWad(int256 x, int256 y) internal pure returns (int256) {
                  // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                  return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
              }
              function expWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      // When the result is < 0.5 we return zero. This happens when
                      // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                      if (x <= -42139678854452767551) return 0;
                      // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                      // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                      if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                      // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                      // for more intermediate precision and a binary basis. This base conversion
                      // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                      x = (x << 78) / 5**18;
                      // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                      // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                      // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                      int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                      x = x - k * 54916777467707473351141471128;
                      // k is in the range [-61, 195].
                      // Evaluate using a (6, 7)-term rational approximation.
                      // p is made monic, we'll multiply by a scale factor later.
                      int256 y = x + 1346386616545796478920950773328;
                      y = ((y * x) >> 96) + 57155421227552351082224309758442;
                      int256 p = y + x - 94201549194550492254356042504812;
                      p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                      p = p * x + (4385272521454847904659076985693276 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      int256 q = x - 2855989394907223263936484059900;
                      q = ((q * x) >> 96) + 50020603652535783019961831881945;
                      q = ((q * x) >> 96) - 533845033583426703283633433725380;
                      q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                      q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                      q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial won't have zeros in the domain as all its roots are complex.
                          // No scaling is necessary because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r should be in the range (0.09, 0.25) * 2**96.
                      // We now need to multiply r by:
                      // * the scale factor s = ~6.031367120.
                      // * the 2**k factor from the range reduction.
                      // * the 1e18 / 2**96 factor for base conversion.
                      // We do this all at once, with an intermediate result in 2**213
                      // basis, so the final right shift is always by a positive amount.
                      r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                  }
              }
              function lnWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      require(x > 0, "UNDEFINED");
                      // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                      // We do this by multiplying by 2**96 / 10**18. But since
                      // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                      // and add ln(2**96 / 10**18) at the end.
                      // Reduce range of x to (1, 2) * 2**96
                      // ln(2^k * x) = k * ln(2) + ln(x)
                      int256 k = int256(log2(uint256(x))) - 96;
                      x <<= uint256(159 - k);
                      x = int256(uint256(x) >> 159);
                      // Evaluate using a (8, 8)-term rational approximation.
                      // p is made monic, we will multiply by a scale factor later.
                      int256 p = x + 3273285459638523848632254066296;
                      p = ((p * x) >> 96) + 24828157081833163892658089445524;
                      p = ((p * x) >> 96) + 43456485725739037958740375743393;
                      p = ((p * x) >> 96) - 11111509109440967052023855526967;
                      p = ((p * x) >> 96) - 45023709667254063763336534515857;
                      p = ((p * x) >> 96) - 14706773417378608786704636184526;
                      p = p * x - (795164235651350426258249787498 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      // q is monic by convention.
                      int256 q = x + 5573035233440673466300451813936;
                      q = ((q * x) >> 96) + 71694874799317883764090561454958;
                      q = ((q * x) >> 96) + 283447036172924575727196451306956;
                      q = ((q * x) >> 96) + 401686690394027663651624208769553;
                      q = ((q * x) >> 96) + 204048457590392012362485061816622;
                      q = ((q * x) >> 96) + 31853899698501571402653359427138;
                      q = ((q * x) >> 96) + 909429971244387300277376558375;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial is known not to have zeros in the domain.
                          // No scaling required because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r is in the range (0, 0.125) * 2**96
                      // Finalization, we need to:
                      // * multiply by the scale factor s = 5.549…
                      // * add ln(2**96 / 10**18)
                      // * add k * ln(2)
                      // * multiply by 10**18 / 2**96 = 5**18 >> 78
                      // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                      r *= 1677202110996718588342820967067443963516166;
                      // add ln(2) * k * 5e18 * 2**192
                      r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                      // add ln(2**96 / 10**18) * 5e18 * 2**192
                      r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                      // base conversion: mul 2**18 / 2**192
                      r >>= 174;
                  }
              }
              /*//////////////////////////////////////////////////////////////
                              LOW LEVEL FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              function mulDivDown(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // Divide z by the denominator.
                      z := div(z, denominator)
                  }
              }
              function mulDivUp(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // First, divide z - 1 by the denominator and add 1.
                      // We allow z - 1 to underflow if z is 0, because we multiply the
                      // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                      z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                  }
              }
              function rpow(
                  uint256 x,
                  uint256 n,
                  uint256 scalar
              ) internal pure returns (uint256 z) {
                  assembly {
                      switch x
                      case 0 {
                          switch n
                          case 0 {
                              // 0 ** 0 = 1
                              z := scalar
                          }
                          default {
                              // 0 ** n = 0
                              z := 0
                          }
                      }
                      default {
                          switch mod(n, 2)
                          case 0 {
                              // If n is even, store scalar in z for now.
                              z := scalar
                          }
                          default {
                              // If n is odd, store x in z for now.
                              z := x
                          }
                          // Shifting right by 1 is like dividing by 2.
                          let half := shr(1, scalar)
                          for {
                              // Shift n right by 1 before looping to halve it.
                              n := shr(1, n)
                          } n {
                              // Shift n right by 1 each iteration to halve it.
                              n := shr(1, n)
                          } {
                              // Revert immediately if x ** 2 would overflow.
                              // Equivalent to iszero(eq(div(xx, x), x)) here.
                              if shr(128, x) {
                                  revert(0, 0)
                              }
                              // Store x squared.
                              let xx := mul(x, x)
                              // Round to the nearest number.
                              let xxRound := add(xx, half)
                              // Revert if xx + half overflowed.
                              if lt(xxRound, xx) {
                                  revert(0, 0)
                              }
                              // Set x to scaled xxRound.
                              x := div(xxRound, scalar)
                              // If n is even:
                              if mod(n, 2) {
                                  // Compute z * x.
                                  let zx := mul(z, x)
                                  // If z * x overflowed:
                                  if iszero(eq(div(zx, x), z)) {
                                      // Revert if x is non-zero.
                                      if iszero(iszero(x)) {
                                          revert(0, 0)
                                      }
                                  }
                                  // Round to the nearest number.
                                  let zxRound := add(zx, half)
                                  // Revert if zx + half overflowed.
                                  if lt(zxRound, zx) {
                                      revert(0, 0)
                                  }
                                  // Return properly scaled zxRound.
                                  z := div(zxRound, scalar)
                              }
                          }
                      }
                  }
              }
              /*//////////////////////////////////////////////////////////////
                                  GENERAL NUMBER UTILITIES
              //////////////////////////////////////////////////////////////*/
              function sqrt(uint256 x) internal pure returns (uint256 z) {
                  assembly {
                      let y := x // We start y at x, which will help us make our initial estimate.
                      z := 181 // The "correct" value is 1, but this saves a multiplication later.
                      // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                      // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                      // We check y >= 2^(k + 8) but shift right by k bits
                      // each branch to ensure that if x >= 256, then y >= 256.
                      if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                          y := shr(128, y)
                          z := shl(64, z)
                      }
                      if iszero(lt(y, 0x1000000000000000000)) {
                          y := shr(64, y)
                          z := shl(32, z)
                      }
                      if iszero(lt(y, 0x10000000000)) {
                          y := shr(32, y)
                          z := shl(16, z)
                      }
                      if iszero(lt(y, 0x1000000)) {
                          y := shr(16, y)
                          z := shl(8, z)
                      }
                      // Goal was to get z*z*y within a small factor of x. More iterations could
                      // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                      // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                      // That's not possible if x < 256 but we can just verify those cases exhaustively.
                      // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                      // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                      // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                      // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                      // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                      // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                      // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                      // There is no overflow risk here since y < 2^136 after the first branch above.
                      z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                      // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      // If x+1 is a perfect square, the Babylonian method cycles between
                      // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                      // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                      // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                      // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                      z := sub(z, lt(div(x, z), z))
                  }
              }
              function log2(uint256 x) internal pure returns (uint256 r) {
                  require(x > 0, "UNDEFINED");
                  assembly {
                      r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                      r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                      r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                      r := or(r, shl(4, lt(0xffff, shr(r, x))))
                      r := or(r, shl(3, lt(0xff, shr(r, x))))
                      r := or(r, shl(2, lt(0xf, shr(r, x))))
                      r := or(r, shl(1, lt(0x3, shr(r, x))))
                      r := or(r, lt(0x1, shr(r, x)))
                  }
              }
          }
          

          File 6 of 6: L2OutputOracle
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          // Contracts
          import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          // Libraries
          import {Types} from "src/libraries/Types.sol";
          // Interfaces
          import {ISemver} from "src/universal/interfaces/ISemver.sol";
          import {Constants} from "src/libraries/Constants.sol";
          import {IProxyAdmin} from "src/universal/interfaces/IProxyAdmin.sol";
          /// @custom:proxied true
          /// @title L2OutputOracle
          /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
          ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
          ///         these outputs to verify information about the state of L2.
          contract L2OutputOracle is Initializable, ISemver {
              /// @notice The number of the first L2 block recorded in this contract.
              uint256 public startingBlockNumber;
              /// @notice The timestamp of the first L2 block recorded in this contract.
              uint256 public startingTimestamp;
              /// @notice An array of L2 output proposals.
              Types.OutputProposal[] internal l2Outputs;
              /// @notice The interval in L2 blocks at which checkpoints must be submitted.
              /// @custom:network-specific
              uint256 public submissionInterval;
              /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
              /// @custom:network-specific
              uint256 public l2BlockTime;
              /// @notice The address of the challenger. Can be updated via upgrade.
              /// @custom:network-specific
              address public challenger;
              /// @notice The address of the proposer. Can be updated via upgrade.
              /// @custom:network-specific
              address public proposer;
              /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
              /// @custom:network-specific
              uint256 public finalizationPeriodSeconds;
              /// @notice Emitted when an output is proposed.
              /// @param outputRoot    The output root.
              /// @param l2OutputIndex The index of the output in the l2Outputs array.
              /// @param l2BlockNumber The L2 block number of the output root.
              /// @param l1Timestamp   The L1 timestamp when proposed.
              event OutputProposed(
                  bytes32 indexed outputRoot,
                  uint256 indexed l2OutputIndex,
                  uint256 indexed l2BlockNumber,
                  uint256 l1Timestamp
              );
              /// @notice Emitted when outputs are deleted.
              /// @param prevNextOutputIndex Next L2 output index before the deletion.
              /// @param newNextOutputIndex  Next L2 output index after the deletion.
              event OutputsDeleted(
                  uint256 indexed prevNextOutputIndex,
                  uint256 indexed newNextOutputIndex
              );
              /// @notice Semantic version.
              /// @custom:semver 1.8.1-beta.2
              string public constant version = "1.8.1-beta.2";
              /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
              ///         in the getting-started config.
              constructor() {
                  initialize({
                      _submissionInterval: 1,
                      _l2BlockTime: 1,
                      _startingBlockNumber: 0,
                      _startingTimestamp: 0,
                      _proposer: address(0),
                      _challenger: address(0),
                      _finalizationPeriodSeconds: 0
                  });
              }
              /// @notice Initializer.
              /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
              /// @param _l2BlockTime         The time per L2 block, in seconds.
              /// @param _startingBlockNumber The number of the first L2 block.
              /// @param _startingTimestamp   The timestamp of the first L2 block.
              /// @param _proposer            The address of the proposer.
              /// @param _challenger          The address of the challenger.
              /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
              ///                                   can be finalized.
              function initialize(
                  uint256 _submissionInterval,
                  uint256 _l2BlockTime,
                  uint256 _startingBlockNumber,
                  uint256 _startingTimestamp,
                  address _proposer,
                  address _challenger,
                  uint256 _finalizationPeriodSeconds
              ) public initializer {
                  require(
                      _submissionInterval > 0,
                      "L2OutputOracle: submission interval must be greater than 0"
                  );
                  require(
                      _l2BlockTime > 0,
                      "L2OutputOracle: L2 block time must be greater than 0"
                  );
                  require(
                      _startingTimestamp <= block.timestamp,
                      "L2OutputOracle: starting L2 timestamp must be less than current time"
                  );
                  submissionInterval = _submissionInterval;
                  l2BlockTime = _l2BlockTime;
                  startingBlockNumber = _startingBlockNumber;
                  startingTimestamp = _startingTimestamp;
                  proposer = _proposer;
                  challenger = _challenger;
                  finalizationPeriodSeconds = _finalizationPeriodSeconds;
              }
              /// @notice Getter for the submissionInterval.
              ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
              /// @return Submission interval.
              /// @custom:legacy
              function SUBMISSION_INTERVAL() external view returns (uint256) {
                  return submissionInterval;
              }
              /// @notice Getter for the l2BlockTime.
              ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
              /// @return L2 block time.
              /// @custom:legacy
              function L2_BLOCK_TIME() external view returns (uint256) {
                  return l2BlockTime;
              }
              /// @notice Getter for the challenger address.
              ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
              /// @return Address of the challenger.
              /// @custom:legacy
              function CHALLENGER() external view returns (address) {
                  return challenger;
              }
              /// @notice Getter for the proposer address.
              ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
              /// @return Address of the proposer.
              /// @custom:legacy
              function PROPOSER() external view returns (address) {
                  return proposer;
              }
              /// @notice Getter for the finalizationPeriodSeconds.
              ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
              /// @return Finalization period in seconds.
              /// @custom:legacy
              function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
                  return finalizationPeriodSeconds;
              }
              /// @notice Deletes all output proposals after and including the proposal that corresponds to
              ///         the given output index. Only the challenger address can delete outputs.
              /// @param _l2OutputIndex Index of the first L2 output to be deleted.
              ///                       All outputs after this output will also be deleted.
              function deleteL2Outputs(uint256 _l2OutputIndex) external {
                  require(
                      msg.sender == challenger,
                      "L2OutputOracle: only the challenger address can delete outputs"
                  );
                  // Make sure we're not *increasing* the length of the array.
                  require(
                      _l2OutputIndex < l2Outputs.length,
                      "L2OutputOracle: cannot delete outputs after the latest output index"
                  );
                  // Do not allow deleting any outputs that have already been finalized.
                  require(
                      block.timestamp - l2Outputs[_l2OutputIndex].timestamp <
                          finalizationPeriodSeconds,
                      "L2OutputOracle: cannot delete outputs that have already been finalized"
                  );
                  uint256 prevNextL2OutputIndex = nextOutputIndex();
                  // Use assembly to delete the array elements because Solidity doesn't allow it.
                  assembly {
                      sstore(l2Outputs.slot, _l2OutputIndex)
                  }
                  emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
              }
              /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
              ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
              ///         order to be accepted. This function may only be called by the Proposer.
              /// @param _outputRoot    The L2 output of the checkpoint block.
              /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
              /// @param _l1BlockHash   A block hash which must be included in the current chain.
              /// @param _l1BlockNumber The block number with the specified block hash.
              function proposeL2Output(
                  bytes32 _outputRoot,
                  uint256 _l2BlockNumber,
                  bytes32 _l1BlockHash,
                  uint256 _l1BlockNumber
              ) external payable {
                  require(
                      msg.sender == proposer,
                      "L2OutputOracle: only the proposer address can propose new outputs"
                  );
                  require(
                      _l2BlockNumber == nextBlockNumber(),
                      "L2OutputOracle: block number must be equal to next expected block number"
                  );
                  require(
                      computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                      "L2OutputOracle: cannot propose L2 output in the future"
                  );
                  require(
                      _outputRoot != bytes32(0),
                      "L2OutputOracle: L2 output proposal cannot be the zero hash"
                  );
                  if (_l1BlockHash != bytes32(0)) {
                      // This check allows the proposer to propose an output based on a given L1 block,
                      // without fear that it will be reorged out.
                      // It will also revert if the blockheight provided is more than 256 blocks behind the
                      // chain tip (as the hash will return as zero). This does open the door to a griefing
                      // attack in which the proposer's submission is censored until the block is no longer
                      // retrievable, if the proposer is experiencing this attack it can simply leave out the
                      // blockhash value, and delay submission until it is confident that the L1 block is
                      // finalized.
                      require(
                          blockhash(_l1BlockNumber) == _l1BlockHash,
                          "L2OutputOracle: block hash does not match the hash at the expected height"
                      );
                  }
                  emit OutputProposed(
                      _outputRoot,
                      nextOutputIndex(),
                      _l2BlockNumber,
                      block.timestamp
                  );
                  l2Outputs.push(
                      Types.OutputProposal({
                          outputRoot: _outputRoot,
                          timestamp: uint128(block.timestamp),
                          l2BlockNumber: uint128(_l2BlockNumber)
                      })
                  );
              }
              /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
              /// @param _l2OutputIndex Index of the output to return.
              /// @return The output at the given index.
              function getL2Output(
                  uint256 _l2OutputIndex
              ) external view returns (Types.OutputProposal memory) {
                  return l2Outputs[_l2OutputIndex];
              }
              /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
              ///         Uses a binary search to find the first output greater than or equal to the given
              ///         block.
              /// @param _l2BlockNumber L2 block number to find a checkpoint for.
              /// @return Index of the first checkpoint that commits to the given L2 block number.
              function getL2OutputIndexAfter(
                  uint256 _l2BlockNumber
              ) public view returns (uint256) {
                  // Make sure an output for this block number has actually been proposed.
                  require(
                      _l2BlockNumber <= latestBlockNumber(),
                      "L2OutputOracle: cannot get output for a block that has not been proposed"
                  );
                  // Make sure there's at least one output proposed.
                  require(
                      l2Outputs.length > 0,
                      "L2OutputOracle: cannot get output as no outputs have been proposed yet"
                  );
                  // Find the output via binary search, guaranteed to exist.
                  uint256 lo = 0;
                  uint256 hi = l2Outputs.length;
                  while (lo < hi) {
                      uint256 mid = (lo + hi) / 2;
                      if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                          lo = mid + 1;
                      } else {
                          hi = mid;
                      }
                  }
                  return lo;
              }
              function updateSubmissionInterval(uint256 _submissionInterval) external {
                  require(
                      msg.sender == IProxyAdmin(_getAdmin()).owner(),
                      "L2OutputOracle: sender is not allowed"
                  );
                  submissionInterval = _submissionInterval;
              }
              function _getAdmin() internal view returns (address) {
                  address owner;
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      owner := sload(proxyOwner)
                  }
                  return owner;
              }
              /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
              ///         Uses a binary search to find the first output greater than or equal to the given
              ///         block.
              /// @param _l2BlockNumber L2 block number to find a checkpoint for.
              /// @return First checkpoint that commits to the given L2 block number.
              function getL2OutputAfter(
                  uint256 _l2BlockNumber
              ) external view returns (Types.OutputProposal memory) {
                  return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
              }
              /// @notice Returns the number of outputs that have been proposed.
              ///         Will revert if no outputs have been proposed yet.
              /// @return The number of outputs that have been proposed.
              function latestOutputIndex() external view returns (uint256) {
                  return l2Outputs.length - 1;
              }
              /// @notice Returns the index of the next output to be proposed.
              /// @return The index of the next output to be proposed.
              function nextOutputIndex() public view returns (uint256) {
                  return l2Outputs.length;
              }
              /// @notice Returns the block number of the latest submitted L2 output proposal.
              ///         If no proposals been submitted yet then this function will return the starting
              ///         block number.
              /// @return Latest submitted L2 block number.
              function latestBlockNumber() public view returns (uint256) {
                  return
                      l2Outputs.length == 0
                          ? startingBlockNumber
                          : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
              }
              /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
              /// @return Next L2 block number.
              function nextBlockNumber() public view returns (uint256) {
                  return latestBlockNumber() + submissionInterval;
              }
              /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
              /// @param _l2BlockNumber The L2 block number of the target block.
              /// @return L2 timestamp of the given block.
              function computeL2Timestamp(
                  uint256 _l2BlockNumber
              ) public view returns (uint256) {
                  return
                      startingTimestamp +
                      ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title Types
          /// @notice Contains various types used throughout the Optimism contract system.
          library Types {
              /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
              ///         timestamp that the output root is posted. This timestamp is used to verify that the
              ///         finalization period has passed since the output root was submitted.
              /// @custom:field outputRoot    Hash of the L2 output.
              /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
              /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
              struct OutputProposal {
                  bytes32 outputRoot;
                  uint128 timestamp;
                  uint128 l2BlockNumber;
              }
              /// @notice Struct representing the elements that are hashed together to generate an output root
              ///         which itself represents a snapshot of the L2 state.
              /// @custom:field version                  Version of the output root.
              /// @custom:field stateRoot                Root of the state trie at the block of this output.
              /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
              /// @custom:field latestBlockhash          Hash of the block this output was generated from.
              struct OutputRootProof {
                  bytes32 version;
                  bytes32 stateRoot;
                  bytes32 messagePasserStorageRoot;
                  bytes32 latestBlockhash;
              }
              /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
              ///         user (as opposed to a system deposit transaction generated by the system).
              /// @custom:field from        Address of the sender of the transaction.
              /// @custom:field to          Address of the recipient of the transaction.
              /// @custom:field isCreation  True if the transaction is a contract creation.
              /// @custom:field value       Value to send to the recipient.
              /// @custom:field mint        Amount of ETH to mint.
              /// @custom:field gasLimit    Gas limit of the transaction.
              /// @custom:field data        Data of the transaction.
              /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
              /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
              struct UserDepositTransaction {
                  address from;
                  address to;
                  bool isCreation;
                  uint256 value;
                  uint256 mint;
                  uint64 gasLimit;
                  bytes data;
                  bytes32 l1BlockHash;
                  uint256 logIndex;
              }
              /// @notice Struct representing a withdrawal transaction.
              /// @custom:field nonce    Nonce of the withdrawal transaction
              /// @custom:field sender   Address of the sender of the transaction.
              /// @custom:field target   Address of the recipient of the transaction.
              /// @custom:field value    Value to send to the recipient.
              /// @custom:field gasLimit Gas limit of the transaction.
              /// @custom:field data     Data of the transaction.
              struct WithdrawalTransaction {
                  uint256 nonce;
                  address sender;
                  address target;
                  uint256 value;
                  uint256 gasLimit;
                  bytes data;
              }
              /// @notice Enum representing where the FeeVault withdraws funds to.
              /// @custom:value L1 FeeVault withdraws funds to L1.
              /// @custom:value L2 FeeVault withdraws funds to L2.
              enum WithdrawalNetwork {
                  L1,
                  L2
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title ISemver
          /// @notice ISemver is a simple contract for ensuring that contracts are
          ///         versioned using semantic versioning.
          interface ISemver {
              /// @notice Getter for the semantic version of the contract. This is not
              ///         meant to be used onchain but instead meant to be used by offchain
              ///         tooling.
              /// @return Semver contract version as a string.
              function version() external view returns (string memory);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { IResourceMetering } from "src/L1/interfaces/IResourceMetering.sol";
          /// @title Constants
          /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
          ///         the stuff used in multiple contracts. Constants that only apply to a single contract
          ///         should be defined in that contract instead.
          library Constants {
              /// @notice Special address to be used as the tx origin for gas estimation calls in the
              ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
              ///         the minimum gas limit specified by the user is not actually enough to execute the
              ///         given message and you're attempting to estimate the actual necessary gas limit. We
              ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
              ///         never have any code on any EVM chain.
              address internal constant ESTIMATION_ADDRESS = address(1);
              /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
              ///         CrossDomainMessenger contracts before an actual sender is set. This value is
              ///         non-zero to reduce the gas cost of message passing transactions.
              address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
              /// @notice The storage slot that holds the address of a proxy implementation.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
              bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                  0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /// @notice The storage slot that holds the address of the owner.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
              bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /// @notice The address that represents ether when dealing with ERC20 token addresses.
              address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
              /// @notice The address that represents the system caller responsible for L1 attributes
              ///         transactions.
              address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
              /// @notice Returns the default values for the ResourceConfig. These are the recommended values
              ///         for a production network.
              function DEFAULT_RESOURCE_CONFIG() internal pure returns (IResourceMetering.ResourceConfig memory) {
                  IResourceMetering.ResourceConfig memory config = IResourceMetering.ResourceConfig({
                      maxResourceLimit: 20_000_000,
                      elasticityMultiplier: 10,
                      baseFeeMaxChangeDenominator: 8,
                      minimumBaseFee: 1 gwei,
                      systemTxMaxGas: 1_000_000,
                      maximumBaseFee: type(uint128).max
                  });
                  return config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { IAddressManager } from "src/legacy/interfaces/IAddressManager.sol";
          interface IProxyAdmin {
              enum ProxyType {
                  ERC1967,
                  CHUGSPLASH,
                  RESOLVED
              }
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              function addressManager() external view returns (IAddressManager);
              function changeProxyAdmin(address payable _proxy, address _newAdmin) external;
              function getProxyAdmin(address payable _proxy) external view returns (address);
              function getProxyImplementation(address _proxy) external view returns (address);
              function implementationName(address) external view returns (string memory);
              function isUpgrading() external view returns (bool);
              function owner() external view returns (address);
              function proxyType(address) external view returns (ProxyType);
              function renounceOwnership() external;
              function setAddress(string memory _name, address _address) external;
              function setAddressManager(IAddressManager _address) external;
              function setImplementationName(address _address, string memory _name) external;
              function setProxyType(address _address, ProxyType _type) external;
              function setUpgrading(bool _upgrading) external;
              function transferOwnership(address newOwner) external; // nosemgrep
              function upgrade(address payable _proxy, address _implementation) external;
              function upgradeAndCall(address payable _proxy, address _implementation, bytes memory _data) external payable;
              function __constructor__(address _owner) external;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          interface IResourceMetering {
              struct ResourceParams {
                  uint128 prevBaseFee;
                  uint64 prevBoughtGas;
                  uint64 prevBlockNum;
              }
              struct ResourceConfig {
                  uint32 maxResourceLimit;
                  uint8 elasticityMultiplier;
                  uint8 baseFeeMaxChangeDenominator;
                  uint32 minimumBaseFee;
                  uint32 systemTxMaxGas;
                  uint128 maximumBaseFee;
              }
              error OutOfGas();
              event Initialized(uint8 version);
              function params() external view returns (uint128 prevBaseFee, uint64 prevBoughtGas, uint64 prevBlockNum); // nosemgrep
              function __constructor__() external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { IOwnable } from "src/universal/interfaces/IOwnable.sol";
          /// @title IAddressManager
          /// @notice Interface for the AddressManager contract.
          interface IAddressManager is IOwnable {
              event AddressSet(string indexed name, address newAddress, address oldAddress);
              function getAddress(string memory _name) external view returns (address);
              function setAddress(string memory _name, address _address) external;
              function __constructor__() external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title IOwnable
          /// @notice Interface for Ownable.
          interface IOwnable {
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              function owner() external view returns (address);
              function renounceOwnership() external;
              function transferOwnership(address newOwner) external; // nosemgrep
              function __constructor__() external;
          }