Transaction Hash:
Block:
10636767 at Aug-11-2020 05:28:57 AM +UTC
Transaction Fee:
0.005523471 ETH
$10.61
Gas Used:
56,943 Gas / 97 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x52bc44d5...b7d7bE3b5
Miner
| (Nanopool) | 3,199.020516200270768971 Eth | 3,199.026039671270768971 Eth | 0.005523471 | |
0x860bd2db...5F6D78F66 | (MEV Bot: 0x860...F66) | ||||
0xc8db9117...503e5f73a |
0.071004668 Eth
Nonce: 7293
|
0.065481197 Eth
Nonce: 7294
| 0.005523471 |
Execution Trace
MEV Bot: 0x860...F66.c89e4361( )
0x67fd56402147831a32b28b31d887fa0b59e6d0dd.689c49c0( )
Vyper_contract.getEthToTokenInputPrice( eth_sold=1026104252400548696 ) => ( out=684072616319009805960 )
Vyper_contract.getEthToTokenInputPrice( eth_sold=1026104252400548696 ) => ( out=684072616319009805960 )
-
VXV.balanceOf( tokenOwner=0x7b9B5084aFF35D3E9D87Fb1e384853B806120bED ) => ( balance=7191863382288527369085 )
-
-
UniswapV2Pair.STATICCALL( )
-
UniswapV2Pair.STATICCALL( )
File 1 of 4: Vyper_contract
File 2 of 4: Vyper_contract
File 3 of 4: VXV
File 4 of 4: UniswapV2Pair
# @title Uniswap Exchange Interface V1 # @notice Source code found at https://github.com/uniswap # @notice Use at your own risk contract Factory(): def getExchange(token_addr: address) -> address: constant contract Exchange(): def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)}) EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))}) AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256}) Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256}) name: public(bytes32) # Uniswap V1 symbol: public(bytes32) # UNI-V1 decimals: public(uint256) # 18 totalSupply: public(uint256) # total number of UNI in existence balances: uint256[address] # UNI balance of an address allowances: (uint256[address])[address] # UNI allowance of one address on another token: address(ERC20) # address of the ERC20 token traded on this contract factory: Factory # interface for the factory that created this contract # @dev This function acts as a contract constructor which is not currently supported in contracts deployed # using create_with_code_of(). It is called once by the factory during contract creation. @public def setup(token_addr: address): assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS self.factory = msg.sender self.token = token_addr self.name = 0x556e697377617020563100000000000000000000000000000000000000000000 self.symbol = 0x554e492d56310000000000000000000000000000000000000000000000000000 self.decimals = 18 # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens. # @dev min_liquidity does nothing when total UNI supply is 0. # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0. # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of UNI minted. @public @payable def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256: assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0) total_liquidity: uint256 = self.totalSupply if total_liquidity > 0: assert min_liquidity > 0 eth_reserve: uint256(wei) = self.balance - msg.value token_reserve: uint256 = self.token.balanceOf(self) token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1 liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve assert max_tokens >= token_amount and liquidity_minted >= min_liquidity self.balances[msg.sender] += liquidity_minted self.totalSupply = total_liquidity + liquidity_minted assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted) return liquidity_minted else: assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000 assert self.factory.getExchange(self.token) == self token_amount: uint256 = max_tokens initial_liquidity: uint256 = as_unitless_number(self.balance) self.totalSupply = initial_liquidity self.balances[msg.sender] = initial_liquidity assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity) return initial_liquidity # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio. # @param amount Amount of UNI burned. # @param min_eth Minimum ETH withdrawn. # @param min_tokens Minimum Tokens withdrawn. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of ETH and Tokens withdrawn. @public def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256): assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0) total_liquidity: uint256 = self.totalSupply assert total_liquidity > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_amount: uint256(wei) = amount * self.balance / total_liquidity token_amount: uint256 = amount * token_reserve / total_liquidity assert eth_amount >= min_eth and token_amount >= min_tokens self.balances[msg.sender] -= amount self.totalSupply = total_liquidity - amount send(msg.sender, eth_amount) assert self.token.transfer(msg.sender, token_amount) log.RemoveLiquidity(msg.sender, eth_amount, token_amount) log.Transfer(msg.sender, ZERO_ADDRESS, amount) return eth_amount, token_amount # @dev Pricing function for converting between ETH and Tokens. # @param input_amount Amount of ETH or Tokens being sold. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens bought. @private @constant def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 input_amount_with_fee: uint256 = input_amount * 997 numerator: uint256 = input_amount_with_fee * output_reserve denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee return numerator / denominator # @dev Pricing function for converting between ETH and Tokens. # @param output_amount Amount of ETH or Tokens being bought. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens sold. @private @constant def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 numerator: uint256 = input_reserve * output_amount * 1000 denominator: uint256 = (output_reserve - output_amount) * 997 return numerator / denominator + 1 @private def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0) token_reserve: uint256 = self.token.balanceOf(self) tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance - eth_sold), token_reserve) assert tokens_bought >= min_tokens assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, eth_sold, tokens_bought) return tokens_bought # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value). # @dev User cannot specify minimum output or deadline. @public @payable def __default__(): self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender) # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value) and minimum output. # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens bought. @public @payable def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256: return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies exact input (msg.value) and minimum output # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of Tokens bought. @public @payable def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient) @private def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve) # Throws if eth_sold > max_eth eth_refund: uint256(wei) = max_eth - as_wei_value(eth_sold, 'wei') if eth_refund > 0: send(buyer, eth_refund) assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, as_wei_value(eth_sold, 'wei'), tokens_bought) return as_wei_value(eth_sold, 'wei') # @notice Convert ETH to Tokens. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH sold. @public @payable def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei): return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of ETH sold. @public @payable def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient) @private def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth send(recipient, wei_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, wei_bought) return wei_bought # @notice Convert Tokens to ETH. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH bought. @public def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei): return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of ETH bought. @public def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient) @private def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens >= tokens_sold send(recipient, eth_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens to ETH. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens sold. @public def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256: return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of Tokens sold. @public def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient) @private def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought) log.EthPurchase(buyer, tokens_sold, wei_bought) return tokens_bought # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) @private def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought) token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens_sold >= tokens_sold and max_eth_sold >= eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Public price function for ETH to Token trades with an exact input. # @param eth_sold Amount of ETH sold. # @return Amount of Tokens that can be bought with input ETH. @public @constant def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256: assert eth_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve) # @notice Public price function for ETH to Token trades with an exact output. # @param tokens_bought Amount of Tokens bought. # @return Amount of ETH needed to buy output Tokens. @public @constant def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): assert tokens_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve) return as_wei_value(eth_sold, 'wei') # @notice Public price function for Token to ETH trades with an exact input. # @param tokens_sold Amount of Tokens sold. # @return Amount of ETH that can be bought with input Tokens. @public @constant def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei): assert tokens_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) return as_wei_value(eth_bought, 'wei') # @notice Public price function for Token to ETH trades with an exact output. # @param eth_bought Amount of output ETH. # @return Amount of Tokens needed to buy output ETH. @public @constant def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256: assert eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # @return Address of Token that is sold on this exchange. @public @constant def tokenAddress() -> address: return self.token # @return Address of factory that created this exchange. @public @constant def factoryAddress() -> address(Factory): return self.factory # ERC20 compatibility for exchange liquidity modified from # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy @public @constant def balanceOf(_owner : address) -> uint256: return self.balances[_owner] @public def transfer(_to : address, _value : uint256) -> bool: self.balances[msg.sender] -= _value self.balances[_to] += _value log.Transfer(msg.sender, _to, _value) return True @public def transferFrom(_from : address, _to : address, _value : uint256) -> bool: self.balances[_from] -= _value self.balances[_to] += _value self.allowances[_from][msg.sender] -= _value log.Transfer(_from, _to, _value) return True @public def approve(_spender : address, _value : uint256) -> bool: self.allowances[msg.sender][_spender] = _value log.Approval(msg.sender, _spender, _value) return True @public @constant def allowance(_owner : address, _spender : address) -> uint256: return self.allowances[_owner][_spender]
File 2 of 4: Vyper_contract
# @title Uniswap Exchange Interface V1 # @notice Source code found at https://github.com/uniswap # @notice Use at your own risk contract Factory(): def getExchange(token_addr: address) -> address: constant contract Exchange(): def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)}) EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))}) AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)}) Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256}) Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256}) name: public(bytes32) # Uniswap V1 symbol: public(bytes32) # UNI-V1 decimals: public(uint256) # 18 totalSupply: public(uint256) # total number of UNI in existence balances: uint256[address] # UNI balance of an address allowances: (uint256[address])[address] # UNI allowance of one address on another token: address(ERC20) # address of the ERC20 token traded on this contract factory: Factory # interface for the factory that created this contract # @dev This function acts as a contract constructor which is not currently supported in contracts deployed # using create_with_code_of(). It is called once by the factory during contract creation. @public def setup(token_addr: address): assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS self.factory = msg.sender self.token = token_addr self.name = 0x556e697377617020563100000000000000000000000000000000000000000000 self.symbol = 0x554e492d56310000000000000000000000000000000000000000000000000000 self.decimals = 18 # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens. # @dev min_liquidity does nothing when total UNI supply is 0. # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0. # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of UNI minted. @public @payable def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256: assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0) total_liquidity: uint256 = self.totalSupply if total_liquidity > 0: assert min_liquidity > 0 eth_reserve: uint256(wei) = self.balance - msg.value token_reserve: uint256 = self.token.balanceOf(self) token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1 liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve assert max_tokens >= token_amount and liquidity_minted >= min_liquidity self.balances[msg.sender] += liquidity_minted self.totalSupply = total_liquidity + liquidity_minted assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted) return liquidity_minted else: assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000 assert self.factory.getExchange(self.token) == self token_amount: uint256 = max_tokens initial_liquidity: uint256 = as_unitless_number(self.balance) self.totalSupply = initial_liquidity self.balances[msg.sender] = initial_liquidity assert self.token.transferFrom(msg.sender, self, token_amount) log.AddLiquidity(msg.sender, msg.value, token_amount) log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity) return initial_liquidity # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio. # @param amount Amount of UNI burned. # @param min_eth Minimum ETH withdrawn. # @param min_tokens Minimum Tokens withdrawn. # @param deadline Time after which this transaction can no longer be executed. # @return The amount of ETH and Tokens withdrawn. @public def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256): assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0) total_liquidity: uint256 = self.totalSupply assert total_liquidity > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_amount: uint256(wei) = amount * self.balance / total_liquidity token_amount: uint256 = amount * token_reserve / total_liquidity assert eth_amount >= min_eth and token_amount >= min_tokens self.balances[msg.sender] -= amount self.totalSupply = total_liquidity - amount send(msg.sender, eth_amount) assert self.token.transfer(msg.sender, token_amount) log.RemoveLiquidity(msg.sender, eth_amount, token_amount) log.Transfer(msg.sender, ZERO_ADDRESS, amount) return eth_amount, token_amount # @dev Pricing function for converting between ETH and Tokens. # @param input_amount Amount of ETH or Tokens being sold. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens bought. @private @constant def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 input_amount_with_fee: uint256 = input_amount * 997 numerator: uint256 = input_amount_with_fee * output_reserve denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee return numerator / denominator # @dev Pricing function for converting between ETH and Tokens. # @param output_amount Amount of ETH or Tokens being bought. # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves. # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves. # @return Amount of ETH or Tokens sold. @private @constant def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256: assert input_reserve > 0 and output_reserve > 0 numerator: uint256 = input_reserve * output_amount * 1000 denominator: uint256 = (output_reserve - output_amount) * 997 return numerator / denominator + 1 @private def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0) token_reserve: uint256 = self.token.balanceOf(self) tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance - eth_sold), token_reserve) assert tokens_bought >= min_tokens assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, eth_sold, tokens_bought) return tokens_bought # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value). # @dev User cannot specify minimum output or deadline. @public @payable def __default__(): self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender) # @notice Convert ETH to Tokens. # @dev User specifies exact input (msg.value) and minimum output. # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens bought. @public @payable def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256: return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies exact input (msg.value) and minimum output # @param min_tokens Minimum Tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of Tokens bought. @public @payable def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient) @private def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve) # Throws if eth_sold > max_eth eth_refund: uint256(wei) = max_eth - as_wei_value(eth_sold, 'wei') if eth_refund > 0: send(buyer, eth_refund) assert self.token.transfer(recipient, tokens_bought) log.TokenPurchase(buyer, as_wei_value(eth_sold, 'wei'), tokens_bought) return as_wei_value(eth_sold, 'wei') # @notice Convert ETH to Tokens. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH sold. @public @payable def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei): return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender) # @notice Convert ETH to Tokens and transfers Tokens to recipient. # @dev User specifies maximum input (msg.value) and exact output. # @param tokens_bought Amount of tokens bought. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output Tokens. # @return Amount of ETH sold. @public @payable def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient) @private def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei): assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0) token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth send(recipient, wei_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, wei_bought) return wei_bought # @notice Convert Tokens to ETH. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of ETH bought. @public def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei): return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_eth Minimum ETH purchased. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of ETH bought. @public def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei): assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient) @private def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256: assert deadline >= block.timestamp and eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens >= tokens_sold send(recipient, eth_bought) assert self.token.transferFrom(buyer, self, tokens_sold) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens to ETH. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @return Amount of Tokens sold. @public def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256: return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender) # @notice Convert Tokens to ETH and transfers ETH to recipient. # @dev User specifies maximum input and exact output. # @param eth_bought Amount of ETH purchased. # @param max_tokens Maximum Tokens sold. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @return Amount of Tokens sold. @public def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: assert recipient != self and recipient != ZERO_ADDRESS return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient) @private def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei') assert wei_bought >= min_eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought) log.EthPurchase(buyer, tokens_sold, wei_bought) return tokens_bought # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (token_addr) bought. @public def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) @private def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256: assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0) assert exchange_addr != self and exchange_addr != ZERO_ADDRESS eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought) token_reserve: uint256 = self.token.balanceOf(self) tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # tokens sold is always > 0 assert max_tokens_sold >= tokens_sold and max_eth_sold >= eth_bought assert self.token.transferFrom(buyer, self, tokens_sold) eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought) log.EthPurchase(buyer, tokens_sold, eth_bought) return tokens_sold # @notice Convert Tokens (self.token) to Tokens (token_addr). # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers # Tokens (token_addr) to recipient. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256: exchange_addr: address = self.factory.getExchange(token_addr) return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies exact input and minimum output. # @param tokens_sold Amount of Tokens sold. # @param min_tokens_bought Minimum Tokens (token_addr) purchased. # @param min_eth_bought Minimum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (exchange_addr.token) bought. @public def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token). # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param exchange_addr The address of the exchange for the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256: return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr) # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers # Tokens (exchange_addr.token) to recipient. # @dev Allows trades through contracts that were not deployed from the same factory. # @dev User specifies maximum input and exact output. # @param tokens_bought Amount of Tokens (token_addr) bought. # @param max_tokens_sold Maximum Tokens (self.token) sold. # @param max_eth_sold Maximum ETH purchased as intermediary. # @param deadline Time after which this transaction can no longer be executed. # @param recipient The address that receives output ETH. # @param token_addr The address of the token being purchased. # @return Amount of Tokens (self.token) sold. @public def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256: assert recipient != self return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr) # @notice Public price function for ETH to Token trades with an exact input. # @param eth_sold Amount of ETH sold. # @return Amount of Tokens that can be bought with input ETH. @public @constant def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256: assert eth_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve) # @notice Public price function for ETH to Token trades with an exact output. # @param tokens_bought Amount of Tokens bought. # @return Amount of ETH needed to buy output Tokens. @public @constant def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): assert tokens_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve) return as_wei_value(eth_sold, 'wei') # @notice Public price function for Token to ETH trades with an exact input. # @param tokens_sold Amount of Tokens sold. # @return Amount of ETH that can be bought with input Tokens. @public @constant def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei): assert tokens_sold > 0 token_reserve: uint256 = self.token.balanceOf(self) eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance)) return as_wei_value(eth_bought, 'wei') # @notice Public price function for Token to ETH trades with an exact output. # @param eth_bought Amount of output ETH. # @return Amount of Tokens needed to buy output ETH. @public @constant def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256: assert eth_bought > 0 token_reserve: uint256 = self.token.balanceOf(self) return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance)) # @return Address of Token that is sold on this exchange. @public @constant def tokenAddress() -> address: return self.token # @return Address of factory that created this exchange. @public @constant def factoryAddress() -> address(Factory): return self.factory # ERC20 compatibility for exchange liquidity modified from # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy @public @constant def balanceOf(_owner : address) -> uint256: return self.balances[_owner] @public def transfer(_to : address, _value : uint256) -> bool: self.balances[msg.sender] -= _value self.balances[_to] += _value log.Transfer(msg.sender, _to, _value) return True @public def transferFrom(_from : address, _to : address, _value : uint256) -> bool: self.balances[_from] -= _value self.balances[_to] += _value self.allowances[_from][msg.sender] -= _value log.Transfer(_from, _to, _value) return True @public def approve(_spender : address, _value : uint256) -> bool: self.allowances[msg.sender][_spender] = _value log.Approval(msg.sender, _spender, _value) return True @public @constant def allowance(_owner : address, _spender : address) -> uint256: return self.allowances[_owner][_spender]
File 3 of 4: VXV
pragma solidity ^0.4.24; contract SafeMath { function safeAdd(uint a, uint b) public pure returns (uint c) { c = a + b; require(c >= a); } function safeSub(uint a, uint b) public pure returns (uint c) { require(b <= a); c = a - b; } function safeMul(uint a, uint b) public pure returns (uint c) { c = a * b; require(a == 0 || c / a == b); } function safeDiv(uint a, uint b) public pure returns (uint c) { require(b > 0); c = a / b; } } // ---------------------------------------------------------------------------- // ERC Token Standard #20 Interface // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // ---------------------------------------------------------------------------- contract ERC20Interface { function totalSupply() public view returns (uint); function balanceOf(address tokenOwner) public view returns (uint balance); function allowance(address tokenOwner, address spender) public view returns (uint remaining); function transfer(address to, uint tokens) public returns (bool success); function approve(address spender, uint tokens) public returns (bool success); function transferFrom(address from, address to, uint tokens) public returns (bool success); event Transfer(address indexed from, address indexed to, uint tokens); event Approval(address indexed tokenOwner, address indexed spender, uint tokens); } // ---------------------------------------------------------------------------- // Contract function to receive approval and execute function in one call // // Borrowed from MiniMeToken // ---------------------------------------------------------------------------- contract ApproveAndCallFallBack { function receiveApproval(address from, uint256 tokens, address token, bytes data) public; } contract Owned { address public owner; // address public newOwner; event OwnershipTransferred(address indexed _from, address indexed _to); constructor() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } // function transferOwnership(address _newOwner) public onlyOwner { // newOwner = _newOwner; // } // function acceptOwnership() public { // require(msg.sender == newOwner); // emit OwnershipTransferred(owner, newOwner); // owner = newOwner; // newOwner = address(0); // } } contract VXV is ERC20Interface, Owned, SafeMath { string public symbol; string public name; uint8 public decimals; uint public totalSupply; uint public rate; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; constructor() public { symbol = "VXV"; name = "VectorspaceAI"; decimals = 18; totalSupply = 50000000 * 10 ** uint256(decimals); rate = 203; balances[owner] = totalSupply; emit Transfer(address(0), owner, totalSupply); } function changeRate(uint newRate) public onlyOwner { require(newRate > 0); rate = newRate; } function totalSupply() public view returns (uint) { return totalSupply - balances[address(0)]; } function balanceOf(address tokenOwner) public view returns (uint balance) { return balances[tokenOwner]; } modifier validTo(address to) { require(to != address(0)); require(to != address(this)); _; } function transferInternal(address from, address to, uint tokens) internal { balances[from] = safeSub(balances[from], tokens); balances[to] = safeAdd(balances[to], tokens); emit Transfer(from, to, tokens); } function transfer(address to, uint tokens) public validTo(to) returns (bool success) { transferInternal(msg.sender, to, tokens); return true; } // ------------------------------------------------------------------------ // Transfer `tokens` from the `from` account to the `to` account // // The calling account must already have sufficient tokens approve(...)-d // for spending from the `from` account and // - From account must have sufficient balance to transfer // - Spender must have sufficient allowance to transfer // - 0 value transfers are allowed // ------------------------------------------------------------------------ function transferFrom(address from, address to, uint tokens) public validTo(to) returns (bool success) { allowed[from][msg.sender] = safeSub(allowed[from][msg.sender], tokens); transferInternal(from, to, tokens); return true; } // ------------------------------------------------------------------------ // Token owner can approve for `spender` to transferFrom(...) `tokens` // from the token owner's account // // https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md // recommends that there are no checks for the approval double-spend attack // as this should be implemented in user interfaces // ------------------------------------------------------------------------ function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } function allowance(address tokenOwner, address spender) public view returns (uint remaining) { return allowed[tokenOwner][spender]; } // ------------------------------------------------------------------------ // Token owner can approve for `spender` to transferFrom(...) `tokens` // from the token owner's account. The `spender` contract function // `receiveApproval(...)` is then executed // ------------------------------------------------------------------------ function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { if (approve(spender, tokens)) { ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } } function () public payable { uint tokens; tokens = safeMul(msg.value, rate); balances[owner] = safeSub(balances[owner], tokens); balances[msg.sender] = safeAdd(balances[msg.sender], tokens); emit Transfer(address(0), msg.sender, tokens); owner.transfer(msg.value); } // ------------------------------------------------------------------------ // Owner can transfer out any accidentally sent ERC20 tokens // ------------------------------------------------------------------------ // function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { // return ERC20Interface(tokenAddress).transfer(owner, tokens); // } }
File 4 of 4: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }