ETH Price: $1,755.87 (-2.39%)

Transaction Decoder

Block:
16225793 at Dec-20-2022 12:05:23 PM +UTC
Transaction Fee:
0.001627695688454807 ETH $2.86
Gas Used:
102,937 Gas / 15.812542511 Gwei

Emitted Events:

Account State Difference:

  Address   Before After State Difference Code
0x13d5Ceae...cFdC9717d
0.007801837738861 Eth
Nonce: 60
0.006174142050406193 Eth
Nonce: 61
0.001627695688454807
0x1Ed2e7dE...4F2Ad8dBf
1.893383448697060508 Eth1.893537854197060508 Eth0.0001544055
0xa95ECa95...A5Ff92803

Execution Trace

mammothReroll.claimRewards( claimer=0x13d5Ceae987Dd9f4080F72300E33085cFdC9717d )
  • PrimalBeasts.claimableReward( 0x13d5Ceae987Dd9f4080F72300E33085cFdC9717d ) => ( 0 )
  • PrimalBeasts.calcNewReward( from=0x13d5Ceae987Dd9f4080F72300E33085cFdC9717d ) => ( 1401738368055555555555 )
  • Mammoth.mintMammoth( to=0x13d5Ceae987Dd9f4080F72300E33085cFdC9717d, amount=1401738368055555555555 )
    File 1 of 3: mammothReroll
    // File: @openzeppelin/contracts/security/ReentrancyGuard.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
    
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
    
        uint256 private _status;
    
        constructor() {
            _status = _NOT_ENTERED;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            // On the first call to nonReentrant, _notEntered will be true
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
    
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
    
            _;
    
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: contracts/BeastReroll.sol
    
    
    
    pragma solidity ^0.8.0;
    
    
    
    interface MAMMOTH {
        function burn(address _from, uint256 _amount) external;
        function mintMammoth(address _to, uint256 _amount) external;
        }
    
    interface RWASTE {
        function transferFrom(address sender, address recipient, uint256 amount) external;
        }
    
    interface DMT {
        function transferFrom(address sender, address recipient, uint256 amount) external;
        }
    
    interface PrimalBeasts {
        function ownerOf(uint256 tokenIDofBeast) external returns (address);
        function setReward(address ownerAddress, uint256 newReward) external;
        function calcNewReward(address from) external view returns(uint256);
        function claimableReward(address from) external view returns (uint256);
    
        }
    
    contract mammothReroll is Ownable, ReentrancyGuard {
        
        RWASTE public rwasteHandler = RWASTE(0x5cd2FAc9702D68dde5a94B1af95962bCFb80fC7d);
        DMT public dmtHandler = DMT(0x5b1D655C93185b06B00f7925791106132Cb3ad75);
        MAMMOTH public mammothHandler = MAMMOTH(0xa95ECa953CcF7eBF1a17018db14356DA5Ff92803);
        PrimalBeasts public primalHandler = PrimalBeasts(0xE3c47892E6c71E881eaFF077664E3055A48F8E27);
        
        constructor(){}
        mapping(address => uint256) public claimedReward;
        mapping(address => bool) public approvedAddress;
        bool public mammothEnabled = true;
        bool public mammothBuyingEnabled = true;
    
        function setBuyEnabled(bool newState) public onlyOwner{
            mammothBuyingEnabled = newState;
        }
    
        function setReward(address ownerAddress, uint256 newReward) public {
          require(approvedAddress[msg.sender], "Only controllers can set reward");
          claimedReward[ownerAddress] = newReward;
        }
    
        function buyWithMammoth(address ownerAddress, uint256 price) public {
          require(ownerAddress == msg.sender, "Can't buy with others' money");
          require(mammothBuyingEnabled, "buying turned off");
          if (getFinalReward(msg.sender) > price){
              claimedReward[ownerAddress] += price;
          }
          else{
              mammothHandler.burn(msg.sender, price);
          }
        }
    
        function spendMammoth(address ownerAddress, uint256 newReward) public {
          require(approvedAddress[msg.sender], "Only controllers can set reward");
          claimedReward[ownerAddress] += newReward;
        }
    
        function activateMammoth(bool mammothGo) external onlyOwner{
            mammothEnabled = mammothGo;
        }
    
        function addController(address owner, bool access) external onlyOwner {
            approvedAddress[owner] = access;
        }
    
        function claimRewards(address claimer) public nonReentrant{
            require(mammothEnabled, "Mammoth is paused.");
            require(claimer == msg.sender || approvedAddress[msg.sender], "Can't claim for others");
            uint256 total = ((primalHandler.calcNewReward(claimer) + primalHandler.claimableReward(claimer) - claimedReward[claimer]));
            if (total > 0) {
                mammothHandler.mintMammoth(claimer, total);
            }
            claimedReward[claimer] += total;
        }
    
    
        function getOldReward(address claimer) public view returns (uint256){
            return (primalHandler.claimableReward(claimer) + primalHandler.calcNewReward(claimer));
        }
    
        function getFinalReward(address claimer) public view returns (uint256){
            return (primalHandler.claimableReward(claimer) + primalHandler.calcNewReward(claimer) - claimedReward[claimer]);
        }
    
        function setRWaste(address rWasted) external onlyOwner {
            rwasteHandler = RWASTE(rWasted);
        } 
    
        function setDMT(address DMTer) external onlyOwner {
            dmtHandler = DMT(DMTer);
        } 
    
        function setMammoth(address mammothAdder) external onlyOwner {
            mammothHandler = MAMMOTH(mammothAdder);
        }
    
        function setPB(address PBAddy) external onlyOwner {
            primalHandler = PrimalBeasts(PBAddy);
        } 
    
        event mammothRerollEmit(uint256 beast);
        event rwasteRerollEmit(uint256 beast);
        event dmtRerollEmit(uint256 beast);
        uint256 public rerollCost = 100 ether;
        uint256 public rerollDMTCost = 50 ether;
        uint256 public rerollRWASTECost = 20 ether;
    
        function changeDMTCost(uint256 newCostDMT) public onlyOwner{
            rerollDMTCost = newCostDMT;
        }
        function changeCost(uint256 newCost) public onlyOwner{
            rerollCost = newCost;
        }
        function changeRWASTECost(uint256 newCostRWASTE) public onlyOwner{
            rerollRWASTECost = newCostRWASTE;
        }
    
        address burnWalletDMT = 0xEaf13874Cf4408C71B78c7854Ab9A20ED5Af507d;
        address burnWalletRWASTE = 0xEaf13874Cf4408C71B78c7854Ab9A20ED5Af507d;
        address burnWallet = 0xEaf13874Cf4408C71B78c7854Ab9A20ED5Af507d;
    
        function newBurnWallet(address newBurner) public onlyOwner{
            burnWallet = newBurner;
        }
        function newBurnWalletDMT(address newBurner) public onlyOwner{
            burnWalletDMT = newBurner;
        }
        function newBurnWalletRWASTE(address newBurner) public onlyOwner{
            burnWalletRWASTE = newBurner;
        }
        bool public DMTReady = false;
        bool public RWASTEReady = false;
        bool public MammothReady = true;
    
        function mammothApprove(bool newState) public onlyOwner{
            MammothReady = newState;
        }
        function DMTApprove(bool newState) public onlyOwner{
            DMTReady = newState;
        }
        function RWASTEApprove(bool newState) public onlyOwner{
            RWASTEReady = newState;
        }
    
        function rerollMammoth(uint256 tokenID) public{
            require(primalHandler.ownerOf(tokenID) == msg.sender, "Must own token");
            require(MammothReady, "Rerolls not active");
            if (((primalHandler.calcNewReward(msg.sender) + primalHandler.claimableReward(msg.sender) - claimedReward[msg.sender])) > rerollCost){
                claimedReward[msg.sender] += rerollCost;
            }
            else{
            mammothHandler.burn(msg.sender, rerollCost);
            }
            emit mammothRerollEmit(tokenID);
        }
    
        function rerollDMT(uint256 tokenID) public{
            require(primalHandler.ownerOf(tokenID) == msg.sender, "Must own token");
            require(DMTReady, "Rerolls not active");
            dmtHandler.transferFrom(msg.sender, burnWalletDMT, rerollDMTCost);
            emit dmtRerollEmit(tokenID);
        }
    
        function rerollrwaste(uint256 tokenID) public{
            require(primalHandler.ownerOf(tokenID) == msg.sender, "Must own token");
             require(RWASTEReady, "Rerolls not active");
            rwasteHandler.transferFrom(msg.sender, burnWalletRWASTE, rerollRWASTECost);
            emit rwasteRerollEmit(tokenID);
        }
    }

    File 2 of 3: Mammoth
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    
    // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
    
    
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.0;
    
    
    
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
    
        mapping(address => mapping(address => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address to, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, amount);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) public virtual override returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, amount);
            _transfer(from, to, amount);
            return true;
        }
    
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, _allowances[owner][spender] + addedValue);
            return true;
        }
    
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            address owner = _msgSender();
            uint256 currentAllowance = _allowances[owner][spender];
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(owner, spender, currentAllowance - subtractedValue);
            }
    
            return true;
        }
    
        /**
         * @dev Moves `amount` of tokens from `sender` to `recipient`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `from` must have a balance of at least `amount`.
         */
        function _transfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {
            require(from != address(0), "ERC20: transfer from the zero address");
            require(to != address(0), "ERC20: transfer to the zero address");
    
            _beforeTokenTransfer(from, to, amount);
    
            uint256 fromBalance = _balances[from];
            require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[from] = fromBalance - amount;
            }
            _balances[to] += amount;
    
            emit Transfer(from, to, amount);
    
            _afterTokenTransfer(from, to, amount);
        }
    
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
    
            _beforeTokenTransfer(address(0), account, amount);
    
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
    
            _afterTokenTransfer(address(0), account, amount);
        }
    
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
    
            _beforeTokenTransfer(account, address(0), amount);
    
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
    
            emit Transfer(account, address(0), amount);
    
            _afterTokenTransfer(account, address(0), amount);
        }
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
    
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
    
        /**
         * @dev Spend `amount` form the allowance of `owner` toward `spender`.
         *
         * Does not update the allowance amount in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Might emit an {Approval} event.
         */
        function _spendAllowance(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                require(currentAllowance >= amount, "ERC20: insufficient allowance");
                unchecked {
                    _approve(owner, spender, currentAllowance - amount);
                }
            }
        }
    
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    
    // File: contracts/Mammoth.sol
    
    
    
    
    pragma solidity ^0.8.0;
    
    
    
    contract Mammoth is ERC20, Ownable {
    
      // a mapping from an address to whether or not it can mint / burn
      mapping(address => bool) approvedAddress;
    
      constructor() ERC20("MammothToken", "MAMMOTH") { }
    
      function mintMammoth(address to, uint256 amount) external {
        require(approvedAddress[msg.sender], "Only controllers can mint");
        _mint(to, amount);
      }
    
      function burn(address from, uint256 amount) external {
        require(approvedAddress[msg.sender], "Only controllers can burn");
        _burn(from, amount);
      }
    
      function addController(address owner, bool access) external onlyOwner {
        approvedAddress[owner] = access;
      }
    }

    File 3 of 3: PrimalBeasts
    // File: @openzeppelin/contracts/utils/cryptography/MerkleProof.sol
    
    
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/MerkleProof.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev These functions deal with verification of Merkle Trees proofs.
     *
     * The proofs can be generated using the JavaScript library
     * https://github.com/miguelmota/merkletreejs[merkletreejs].
     * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
     *
     * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
     */
    library MerkleProof {
        /**
         * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
         * defined by `root`. For this, a `proof` must be provided, containing
         * sibling hashes on the branch from the leaf to the root of the tree. Each
         * pair of leaves and each pair of pre-images are assumed to be sorted.
         */
        function verify(
            bytes32[] memory proof,
            bytes32 root,
            bytes32 leaf
        ) internal pure returns (bool) {
            return processProof(proof, leaf) == root;
        }
    
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merklee tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. When processing the proof, the pairs
         * of leafs & pre-images are assumed to be sorted.
         *
         * _Available since v4.4._
         */
        function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
            bytes32 computedHash = leaf;
            for (uint256 i = 0; i < proof.length; i++) {
                bytes32 proofElement = proof[i];
                if (computedHash <= proofElement) {
                    // Hash(current computed hash + current element of the proof)
                    computedHash = _efficientHash(computedHash, proofElement);
                } else {
                    // Hash(current element of the proof + current computed hash)
                    computedHash = _efficientHash(proofElement, computedHash);
                }
            }
            return computedHash;
        }
    
        function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
            assembly {
                mstore(0x00, a)
                mstore(0x20, b)
                value := keccak256(0x00, 0x40)
            }
        }
    }
    
    // File: @openzeppelin/contracts/utils/Strings.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            // Inspired by OraclizeAPI's implementation - MIT licence
            // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
    
            if (value == 0) {
                return "0";
            }
            uint256 temp = value;
            uint256 digits;
            while (temp != 0) {
                digits++;
                temp /= 10;
            }
            bytes memory buffer = new bytes(digits);
            while (value != 0) {
                digits -= 1;
                buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                value /= 10;
            }
            return string(buffer);
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            if (value == 0) {
                return "0x00";
            }
            uint256 temp = value;
            uint256 length = 0;
            while (temp != 0) {
                length++;
                temp >>= 8;
            }
            return toHexString(value, length);
        }
    
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _HEX_SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    
    // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
    
    pragma solidity ^0.8.1;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
    
            return account.code.length > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
    
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
    
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
    
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @title ERC721 token receiver interface
     * @dev Interface for any contract that wants to support safeTransfers
     * from ERC721 asset contracts.
     */
    interface IERC721Receiver {
        /**
         * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
         * by `operator` from `from`, this function is called.
         *
         * It must return its Solidity selector to confirm the token transfer.
         * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
         *
         * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
         */
        function onERC721Received(
            address operator,
            address from,
            uint256 tokenId,
            bytes calldata data
        ) external returns (bytes4);
    }
    
    // File: @openzeppelin/contracts/utils/introspection/IERC165.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    
    // File: @openzeppelin/contracts/utils/introspection/ERC165.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     *
     * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
     */
    abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC721/IERC721.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Required interface of an ERC721 compliant contract.
     */
    interface IERC721 is IERC165 {
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
    
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
    
        /**
         * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
    
        /**
         * @dev Returns the number of tokens in ``owner``'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
    
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
         * are aware of the ERC721 protocol to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
    
        /**
         * @dev Transfers `tokenId` token from `from` to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
    
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external;
    
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
    
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool _approved) external;
    
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
    
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId,
            bytes calldata data
        ) external;
    }
    
    // File: @openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol
    
    
    // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    interface IERC721Enumerable is IERC721 {
        /**
         * @dev Returns the total amount of tokens stored by the contract.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
         * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
         */
        function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
    
        /**
         * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
         * Use along with {totalSupply} to enumerate all tokens.
         */
        function tokenByIndex(uint256 index) external view returns (uint256);
    }
    
    // File: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
     * @dev See https://eips.ethereum.org/EIPS/eip-721
     */
    interface IERC721Metadata is IERC721 {
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
    }
    
    // File: @openzeppelin/contracts/security/ReentrancyGuard.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
    
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
    
        uint256 private _status;
    
        constructor() {
            _status = _NOT_ENTERED;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            // On the first call to nonReentrant, _notEntered will be true
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
    
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
    
            _;
    
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
    }
    
    // File: @openzeppelin/contracts/utils/Context.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    
    pragma solidity ^0.8.0;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    
    // File: contracts/ERC721A.sol
    
    
    
    pragma solidity ^0.8.0;
    
    
    
    
    
    
    
    
    
    /**
     * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
     * the Metadata and Enumerable extension. Built to optimize for lower gas during batch mints.
     *
     * Assumes serials are sequentially minted starting at 0 (e.g. 0, 1, 2, 3..).
     *
     * Assumes the number of issuable tokens (collection size) is capped and fits in a uint128.
     *
     * Does not support burning tokens to address(0).
     */
    contract ERC721A is
      Context,
      ERC165,
      IERC721,
      IERC721Metadata,
      IERC721Enumerable
    {
      using Address for address;
      using Strings for uint256;
    
      struct TokenOwnership {
        address addr;
        uint64 startTimestamp;
      }
    
      struct AddressData {
        uint128 balance;
        uint128 numberMinted;
      }
    
      uint256 private currentIndex = 0;
      uint256 internal collectionSize;
      uint256 internal maxBatchSize;
    
      // Token name
      string private _name;
    
      // Token symbol
      string private _symbol;
    
      // Mapping from token ID to ownership details
      // An empty struct value does not necessarily mean the token is unowned. See ownershipOf implementation for details.
      mapping(uint256 => TokenOwnership) private _ownerships;
    
      // Mapping owner address to address data
      mapping(address => AddressData) private _addressData;
    
      // Mapping from token ID to approved address
      mapping(uint256 => address) private _tokenApprovals;
    
      // Mapping from owner to operator approvals
      mapping(address => mapping(address => bool)) private _operatorApprovals;
    
      /**
       * @dev
       * `maxBatchSize` refers to how much a minter can mint at a time.
       * `collectionSize_` refers to how many tokens are in the collection.
       */
      constructor(
        string memory name_,
        string memory symbol_,
        uint256 maxBatchSize_,
        uint256 collectionSize_
      ) {
        require(
          collectionSize_ > 0,
          "ERC721A: collection must have a nonzero supply"
        );
        require(maxBatchSize_ > 0, "ERC721A: max batch size must be nonzero");
        _name = name_;
        _symbol = symbol_;
        maxBatchSize = maxBatchSize_;
        collectionSize = collectionSize_;
      }
    
      function changeCollectionSize(uint256 newCollectionSize) public{
        collectionSize = newCollectionSize;
      }
    
      /**
       * @dev See {IERC721Enumerable-totalSupply}.
       */
      function totalSupply() public view override returns (uint256) {
        return currentIndex;
      }
    
      /**
       * @dev See {IERC721Enumerable-tokenByIndex}.
       */
      function tokenByIndex(uint256 index) public view override returns (uint256) {
        require(index < totalSupply(), "ERC721A: global index out of bounds");
        return index;
      }
    
      /**
       * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
       * This read function is O(collectionSize). If calling from a separate contract, be sure to test gas first.
       * It may also degrade with extremely large collection sizes (e.g >> 10000), test for your use case.
       */
      function tokenOfOwnerByIndex(address owner, uint256 index)
        public
        view
        override
        returns (uint256)
      {
        require(index < balanceOf(owner), "ERC721A: owner index out of bounds");
        uint256 numMintedSoFar = totalSupply();
        uint256 tokenIdsIdx = 0;
        address currOwnershipAddr = address(0);
        for (uint256 i = 0; i < numMintedSoFar; i++) {
          TokenOwnership memory ownership = _ownerships[i];
          if (ownership.addr != address(0)) {
            currOwnershipAddr = ownership.addr;
          }
          if (currOwnershipAddr == owner) {
            if (tokenIdsIdx == index) {
              return i;
            }
            tokenIdsIdx++;
          }
        }
        revert("ERC721A: unable to get token of owner by index");
      }
    
      /**
       * @dev See {IERC165-supportsInterface}.
       */
      function supportsInterface(bytes4 interfaceId)
        public
        view
        virtual
        override(ERC165, IERC165)
        returns (bool)
      {
        return
          interfaceId == type(IERC721).interfaceId ||
          interfaceId == type(IERC721Metadata).interfaceId ||
          interfaceId == type(IERC721Enumerable).interfaceId ||
          super.supportsInterface(interfaceId);
      }
    
      /**
       * @dev See {IERC721-balanceOf}.
       */
      function balanceOf(address owner) public view override returns (uint256) {
        require(owner != address(0), "ERC721A: balance query for the zero address");
        return uint256(_addressData[owner].balance);
      }
    
      function _numberMinted(address owner) internal view returns (uint256) {
        require(
          owner != address(0),
          "ERC721A: number minted query for the zero address"
        );
        return uint256(_addressData[owner].numberMinted);
      }
    
      function ownershipOf(uint256 tokenId)
        internal
        view
        returns (TokenOwnership memory)
      {
        require(_exists(tokenId), "ERC721A: owner query for nonexistent token");
    
        uint256 lowestTokenToCheck;
        if (tokenId >= maxBatchSize) {
          lowestTokenToCheck = tokenId - maxBatchSize + 1;
        }
    
        for (uint256 curr = tokenId; curr >= lowestTokenToCheck; curr--) {
          TokenOwnership memory ownership = _ownerships[curr];
          if (ownership.addr != address(0)) {
            return ownership;
          }
        }
    
        revert("ERC721A: unable to determine the owner of token");
      }
    
      /**
       * @dev See {IERC721-ownerOf}.
       */
      function ownerOf(uint256 tokenId) public view override returns (address) {
        return ownershipOf(tokenId).addr;
      }
    
      /**
       * @dev See {IERC721Metadata-name}.
       */
      function name() public view virtual override returns (string memory) {
        return _name;
      }
    
      /**
       * @dev See {IERC721Metadata-symbol}.
       */
      function symbol() public view virtual override returns (string memory) {
        return _symbol;
      }
    
      /**
       * @dev See {IERC721Metadata-tokenURI}.
       */
      function tokenURI(uint256 tokenId)
        public
        view
        virtual
        override
        returns (string memory)
      {
        require(
          _exists(tokenId),
          "ERC721Metadata: URI query for nonexistent token"
        );
    
        string memory baseURI = _baseURI();
        return
          bytes(baseURI).length > 0
            ? string(abi.encodePacked(baseURI, tokenId.toString()))
            : "";
      }
    
      /**
       * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
       * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
       * by default, can be overriden in child contracts.
       */
      function _baseURI() internal view virtual returns (string memory) {
        return "";
      }
    
      /**
       * @dev See {IERC721-approve}.
       */
      function approve(address to, uint256 tokenId) public override {
        address owner = ERC721A.ownerOf(tokenId);
        require(to != owner, "ERC721A: approval to current owner");
    
        require(
          _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
          "ERC721A: approve caller is not owner nor approved for all"
        );
    
        _approve(to, tokenId, owner);
      }
    
      /**
       * @dev See {IERC721-getApproved}.
       */
      function getApproved(uint256 tokenId) public view override returns (address) {
        require(_exists(tokenId), "ERC721A: approved query for nonexistent token");
    
        return _tokenApprovals[tokenId];
      }
    
      /**
       * @dev See {IERC721-setApprovalForAll}.
       */
      function setApprovalForAll(address operator, bool approved) public override {
        require(operator != _msgSender(), "ERC721A: approve to caller");
    
        _operatorApprovals[_msgSender()][operator] = approved;
        emit ApprovalForAll(_msgSender(), operator, approved);
      }
    
      /**
       * @dev See {IERC721-isApprovedForAll}.
       */
      function isApprovedForAll(address owner, address operator)
        public
        view
        virtual
        override
        returns (bool)
      {
        return _operatorApprovals[owner][operator];
      }
    
      /**
       * @dev See {IERC721-transferFrom}.
       */
      function transferFrom(
        address from,
        address to,
        uint256 tokenId
      ) public virtual override {
        _transfer(from, to, tokenId);
      }
    
      /**
       * @dev See {IERC721-safeTransferFrom}.
       */
      function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
      ) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
      }
    
      /**
       * @dev See {IERC721-safeTransferFrom}.
       */
      function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
      ) public virtual override {
        _transfer(from, to, tokenId);
        require(
          _checkOnERC721Received(from, to, tokenId, _data),
          "ERC721A: transfer to non ERC721Receiver implementer"
        );
      }
    
      /**
       * @dev Returns whether `tokenId` exists.
       *
       * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
       *
       * Tokens start existing when they are minted (`_mint`),
       */
      function _exists(uint256 tokenId) internal view returns (bool) {
        return tokenId < currentIndex;
      }
    
      function _safeMint(address to, uint256 quantity) internal {
        _safeMint(to, quantity, "");
      }
    
      /**
       * @dev Mints `quantity` tokens and transfers them to `to`.
       *
       * Requirements:
       *
       * - there must be `quantity` tokens remaining unminted in the total collection.
       * - `to` cannot be the zero address.
       * - `quantity` cannot be larger than the max batch size.
       *
       * Emits a {Transfer} event.
       */
      function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
      ) internal {
        uint256 startTokenId = currentIndex;
        require(to != address(0), "ERC721A: mint to the zero address");
        // We know if the first token in the batch doesn't exist, the other ones don't as well, because of serial ordering.
        require(!_exists(startTokenId), "ERC721A: token already minted");
        require(quantity <= maxBatchSize, "ERC721A: quantity to mint too high");
    
        _beforeTokenTransfers(address(0), to, startTokenId, quantity);
    
        AddressData memory addressData = _addressData[to];
        _addressData[to] = AddressData(
          addressData.balance + uint128(quantity),
          addressData.numberMinted + uint128(quantity)
        );
        _ownerships[startTokenId] = TokenOwnership(to, uint64(block.timestamp));
    
        uint256 updatedIndex = startTokenId;
    
        for (uint256 i = 0; i < quantity; i++) {
          emit Transfer(address(0), to, updatedIndex);
          require(
            _checkOnERC721Received(address(0), to, updatedIndex, _data),
            "ERC721A: transfer to non ERC721Receiver implementer"
          );
          updatedIndex++;
        }
    
        currentIndex = updatedIndex;
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
      }
    
      /**
       * @dev Transfers `tokenId` from `from` to `to`.
       *
       * Requirements:
       *
       * - `to` cannot be the zero address.
       * - `tokenId` token must be owned by `from`.
       *
       * Emits a {Transfer} event.
       */
      function _transfer(
        address from,
        address to,
        uint256 tokenId
      ) private {
        TokenOwnership memory prevOwnership = ownershipOf(tokenId);
    
        bool isApprovedOrOwner = (_msgSender() == prevOwnership.addr ||
          getApproved(tokenId) == _msgSender() ||
          isApprovedForAll(prevOwnership.addr, _msgSender()));
    
        require(
          isApprovedOrOwner,
          "ERC721A: transfer caller is not owner nor approved"
        );
    
        require(
          prevOwnership.addr == from,
          "ERC721A: transfer from incorrect owner"
        );
        require(to != address(0), "ERC721A: transfer to the zero address");
    
        _beforeTokenTransfers(from, to, tokenId, 1);
    
        // Clear approvals from the previous owner
        _approve(address(0), tokenId, prevOwnership.addr);
    
        _addressData[from].balance -= 1;
        _addressData[to].balance += 1;
        _ownerships[tokenId] = TokenOwnership(to, uint64(block.timestamp));
    
        // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it.
        // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls.
        uint256 nextTokenId = tokenId + 1;
        if (_ownerships[nextTokenId].addr == address(0)) {
          if (_exists(nextTokenId)) {
            _ownerships[nextTokenId] = TokenOwnership(
              prevOwnership.addr,
              prevOwnership.startTimestamp
            );
          }
        }
    
        emit Transfer(from, to, tokenId);
        _afterTokenTransfers(from, to, tokenId, 1);
      }
    
      /**
       * @dev Approve `to` to operate on `tokenId`
       *
       * Emits a {Approval} event.
       */
      function _approve(
        address to,
        uint256 tokenId,
        address owner
      ) private {
        _tokenApprovals[tokenId] = to;
        emit Approval(owner, to, tokenId);
      }
    
      uint256 public nextOwnerToExplicitlySet = 0;
    
      /**
       * @dev Explicitly set `owners` to eliminate loops in future calls of ownerOf().
       */
      function _setOwnersExplicit(uint256 quantity) internal {
        uint256 oldNextOwnerToSet = nextOwnerToExplicitlySet;
        require(quantity > 0, "quantity must be nonzero");
        uint256 endIndex = oldNextOwnerToSet + quantity - 1;
        if (endIndex > collectionSize - 1) {
          endIndex = collectionSize - 1;
        }
        // We know if the last one in the group exists, all in the group exist, due to serial ordering.
        require(_exists(endIndex), "not enough minted yet for this cleanup");
        for (uint256 i = oldNextOwnerToSet; i <= endIndex; i++) {
          if (_ownerships[i].addr == address(0)) {
            TokenOwnership memory ownership = ownershipOf(i);
            _ownerships[i] = TokenOwnership(
              ownership.addr,
              ownership.startTimestamp
            );
          }
        }
        nextOwnerToExplicitlySet = endIndex + 1;
      }
    
      /**
       * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
       * The call is not executed if the target address is not a contract.
       *
       * @param from address representing the previous owner of the given token ID
       * @param to target address that will receive the tokens
       * @param tokenId uint256 ID of the token to be transferred
       * @param _data bytes optional data to send along with the call
       * @return bool whether the call correctly returned the expected magic value
       */
      function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
      ) private returns (bool) {
        if (to.isContract()) {
          try
            IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data)
          returns (bytes4 retval) {
            return retval == IERC721Receiver(to).onERC721Received.selector;
          } catch (bytes memory reason) {
            if (reason.length == 0) {
              revert("ERC721A: transfer to non ERC721Receiver implementer");
            } else {
              assembly {
                revert(add(32, reason), mload(reason))
              }
            }
          }
        } else {
          return true;
        }
      }
    
      /**
       * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting.
       *
       * startTokenId - the first token id to be transferred
       * quantity - the amount to be transferred
       *
       * Calling conditions:
       *
       * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
       * transferred to `to`.
       * - When `from` is zero, `tokenId` will be minted for `to`.
       */
      function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
      ) internal virtual {}
    
      /**
       * @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes
       * minting.
       *
       * startTokenId - the first token id to be transferred
       * quantity - the amount to be transferred
       *
       * Calling conditions:
       *
       * - when `from` and `to` are both non-zero.
       * - `from` and `to` are never both zero.
       */
      function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
      ) internal virtual {}
    }
    // File: @openzeppelin/contracts/access/Ownable.sol
    
    
    // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
    
    pragma solidity ^0.8.0;
    
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
            _;
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    
    // File: contracts/PrimalBeasts.sol
    
    
    
    pragma solidity ^0.8.0;
    
    
    
    
    
    
    interface MAMMOTH {
        function burn(address _from, uint256 _amount) external;
        function mintMammoth(address _to, uint256 _amount) external;
        }
    
    contract PrimalBeasts is Ownable, ERC721A, ReentrancyGuard {
    
      constructor(
        uint256 maxBatchSize_,
        uint256 collectionSize_,
        uint256 amountForAuctionAndDev_,
        uint256 amountForDevs_
      ) ERC721A("PrimalBeasts", "PB", maxBatchSize_, collectionSize_) {
        require(amountForAuctionAndDev_ <= collectionSize_, "larger collection size needed" );
      }
    
    
    
      ///////////// MINT SECTION /////////////
        uint256 public pricePer = 0.0777 ether;
        mapping(address => bool) public minted;
        uint256 maxSupplyGenesis = 1000;
        bool public saleStart = false; 
        bool public publicSaleStart = false;
        bytes32 public MerkleRoot;
        mapping(address => uint256) public balanceGenesis;
    
        function emergencyBalanceGenesis(address to, uint256 balance) public onlyOwner{
          balanceGenesis[to] = balance;
        }
    
        modifier isValidMerkleProof(bytes32[] calldata merkleProof, bytes32 root) {
          require(
            MerkleProof.verify(
              merkleProof,
              root,
              keccak256(abi.encodePacked(msg.sender))
              ),
            "Address does not exist in list"
          );
        _;
        }
    
        function setMerkle (bytes32 merkleRoot) public onlyOwner{ 
          MerkleRoot = merkleRoot;
        }
    
        function setPublicSale(bool start) public onlyOwner{
          publicSaleStart = start;
        }
    
        function setWLSale(bool start) public onlyOwner{
          saleStart = start;
        }
      
        function setPrice(uint256 price) public onlyOwner{
          pricePer = price;
        }
    
        function setGenSupply(uint256 newMax) public onlyOwner{
          maxSupplyGenesis = newMax;
        }
    
        function mintMarketing(address to, uint256 quantity) external onlyOwner {
          require(totalSupply() + quantity <= maxTotalSupply, "Sold out");
          if (totalSupply() < maxSupplyGenesis){
            balanceGenesis[to]++;
            lastClaimed[to] = block.timestamp; 
          }
          _safeMint(to, quantity);
        }
    
        function mint(uint256 quantity) external payable{
          balanceGenesis[msg.sender]++;
          lastClaimed[msg.sender] = block.timestamp; 
    
          require(publicSaleStart, "Sale not started");
          require(quantity == 1, "Cant mint more than 1 at once");
          require(totalSupply() + quantity <= maxSupplyGenesis, "Sold out");
          require(msg.value >= pricePer * quantity, "Not enough Eth");
          _safeMint(msg.sender, quantity);
        }
    
        function mintWL(bytes32[] calldata merkleProof) external payable isValidMerkleProof(merkleProof, MerkleRoot){
          require(saleStart, "Sale not started");
          balanceGenesis[msg.sender]++;
          require(minted[msg.sender] == false, "Cant mint more than 1");
          require(totalSupply() + 1 <= maxSupplyGenesis, "Sold out");
          require(msg.value >= pricePer, "Not enough Eth");
          minted[msg.sender] = true;
          lastClaimed[msg.sender] = block.timestamp; 
          _safeMint(msg.sender, 1);
        }
    
      ///////////// MAMMOTH SECTION /////////////
    
    
        MAMMOTH public MammothContract;
        mapping(address => uint256) public claimableReward;
        mapping(address => uint256) public lastClaimed;
        uint256 public dailyMammoth = 5 ether;
        bool public mammothEnabled = true;
        mapping(address => bool) approvedAddress;
    
        function addController(address owner, bool access) external onlyOwner {
        approvedAddress[owner] = access;
      }
    
        function activateMammoth(bool mammothGo) external onlyOwner{
            mammothEnabled = mammothGo;
        }
    
        function setMammoth(address mammothAddy) external onlyOwner{
            MammothContract = MAMMOTH(mammothAddy);
        }
    
        function calcNewReward(address from) public view returns(uint256){
          return (balanceGenesis[from] * (block.timestamp - lastClaimed[from]) * dailyMammoth / 86400);
        }
    
        function setReward(address ownerAddress, uint256 newReward) public {
          require(approvedAddress[msg.sender], "Only controllers can set reward");
          claimableReward[ownerAddress] = newReward;
        }
    
        function claimRewards(address claimer) public nonReentrant{
            require(mammothEnabled, "Mammoth is paused.");
            require(claimer == msg.sender, "Can't claim for others");
            claimableReward[claimer] += calcNewReward(claimer);
            lastClaimed[claimer] = block.timestamp;
            if (claimableReward[claimer] > 0) {
                MammothContract.mintMammoth(claimer, claimableReward[claimer]);
            }
            claimableReward[claimer] = 0;
        }
    
    ///////////// BABY SECTION /////////////
        event babyMade(uint256 mom, uint256 dad, uint256 tokenIDBaby);
        uint256 maxTotalSupply = 3000;
        function setTotalSupply(uint256 newMax) public onlyOwner{
          maxTotalSupply = newMax;
        }
        uint256 babyCost = 600 ether; 
        function babyCostChange(uint256 newCost) public onlyOwner{
          babyCost = newCost;
        }
        bool public babyTime = false;
        bool public migrateCurrency = false;
        function setbabyTime(bool breedingReady) public onlyOwner{
          babyTime = breedingReady;
        }
        function setmigrateCurrency(bool abandonShip) public onlyOwner{
          migrateCurrency = abandonShip;
        }
    
      function breed(uint256 dad, uint256 mom) external {
            require(babyTime, "Babies not ready!");
            require(ownerOf(dad) == msg.sender && ownerOf(mom) == msg.sender, "Must own parents" );
            require(totalSupply() + 1 < maxTotalSupply, "Max Supply Reached");
            require(dad < maxSupplyGenesis && mom < maxSupplyGenesis, "Baby Beast can't breed.");
            require(dad != mom, "Parents are the same");
            claimableReward[msg.sender] += calcNewReward(msg.sender);
            lastClaimed[msg.sender] = block.timestamp;
            if (claimableReward[msg.sender] < babyCost || migrateCurrency){
              MammothContract.burn(msg.sender, babyCost);
            }
            else{
              claimableReward[msg.sender] -= babyCost;
            }
            _safeMint(msg.sender, 1);
            emit babyMade(mom, dad, totalSupply());
        }
    
    
        function transferFrom(address from, address to, uint256 tokenId) public override {
            if (tokenId < maxSupplyGenesis) {
              claimableReward[to] += calcNewReward(to);
              lastClaimed[to] = block.timestamp;
              claimableReward[from] += calcNewReward(from);
              lastClaimed[from] = block.timestamp;
              balanceGenesis[from]--;
              balanceGenesis[to]++;
            }
            ERC721A.transferFrom(from, to, tokenId);
        }
    
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public override {
            if (tokenId < maxSupplyGenesis) {
              claimableReward[to] += calcNewReward(to);
              lastClaimed[to] = block.timestamp;
              claimableReward[from] += calcNewReward(from);
              lastClaimed[from] = block.timestamp;
              balanceGenesis[from]--;
              balanceGenesis[to]++;
            }
            ERC721A.safeTransferFrom(from, to, tokenId, data);
        }
    
      
    
      // // metadata URI
      string private _baseTokenURI = "ipfs://QmQ1J49dpXCA2xudbjfCFbmz89wvoK7fCFFb3fpYR3RSpb/";
      string private unrevealedURI = "ipfs://QmW7WDfsYmtLyPnyDq7nGY38RUMB5ZCcLE1PrHMwuLSz7j";
    
      function setUnrevealedURI(string memory unrevealedURI_) public onlyOwner{
        unrevealedURI = unrevealedURI_;
      }
    
      function order66() public onlyOwner{
        delete unrevealedURI;
      }
    
      function tokenURI(uint256 tokenId_)
        public
        view
        override
        returns (string memory)
      {
        if ((bytes(unrevealedURI).length > 0) && tokenId_ > 4) return unrevealedURI;
        return
          string(abi.encodePacked(_baseTokenURI, Strings.toString(tokenId_)));
      }
    
      function _baseURI() internal view virtual override returns (string memory) {
        return _baseTokenURI;
      }
    
      function setBaseURI(string calldata baseURI) external onlyOwner {
        _baseTokenURI = baseURI;
      }
    
      function withdrawMoney() external onlyOwner nonReentrant {
        (bool success, ) = msg.sender.call{value: address(this).balance}("");
        require(success, "Transfer failed.");
      }
    
      function setOwnersExplicit(uint256 quantity) external onlyOwner nonReentrant {
        _setOwnersExplicit(quantity);
      }
    
      function numberMinted(address owner) public view returns (uint256) {
        return _numberMinted(owner);
      }
    
      function getOwnershipData(uint256 tokenId)
        external
        view
        returns (TokenOwnership memory)
      {
        return ownershipOf(tokenId);
      }
    }