Transaction Hash:
Block:
14653941 at Apr-25-2022 01:01:11 PM +UTC
Transaction Fee:
0.005504937618000462 ETH
$13.81
Gas Used:
147,669 Gas / 37.278898198 Gwei
Emitted Events:
56 |
LEAG.Transfer( from=CommunityVault, to=[Receiver] Rewards, value=46490079365079360000000 )
|
57 |
LEAG.Approval( owner=CommunityVault, spender=[Receiver] Rewards, value=43714215277777817400000000 )
|
58 |
LEAG.Transfer( from=[Receiver] Rewards, to=[Sender] 0x06df6fbebc2866403036878990ee52faf50a8f87, value=60569022163421187886459 )
|
59 |
Rewards.Claim( user=[Sender] 0x06df6fbebc2866403036878990ee52faf50a8f87, amount=60569022163421187886459 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x06df6FbE...Af50a8F87 |
7.835074779469693098 Eth
Nonce: 112
|
7.829569841851692636 Eth
Nonce: 113
| 0.005504937618000462 | ||
0x1aD91ee0...dA6B45836
Miner
| (Hiveon Pool) | 13,214.16466630550140618 Eth | 13,214.16479173336598167 Eth | 0.00012542786457549 | |
0x53986D9a...A94e4B04b | |||||
0x7b39917f...1375D505D |
Execution Trace
Rewards.CALL( )
-
LEAG.transferFrom( sender=0x0f8039283F1E02bF65D174493FF3d173C7D82e8F, recipient=0x53986D9ab11E53d491840007B3935d8A94e4B04b, amount=46490079365079360000000 ) => ( True )
-
LEAG.balanceOf( account=0x53986D9ab11E53d491840007B3935d8A94e4B04b ) => ( 4903461153351733182814443 )
Kernel.STATICCALL( )
-
KernelFacet.DELEGATECALL( )
-
Kernel.70a08231( )
-
KernelFacet.balanceOf( user=0x06df6FbEbC2866403036878990Ee52FAf50a8F87 ) => ( 11760923216675328416920134 )
-
-
LEAG.transfer( recipient=0x06df6FbEbC2866403036878990Ee52FAf50a8F87, amount=60569022163421187886459 ) => ( True )
-
LEAG.balanceOf( account=0x53986D9ab11E53d491840007B3935d8A94e4B04b ) => ( 4842892131188311994927984 )
File 1 of 5: Rewards
File 2 of 5: CommunityVault
File 3 of 5: LEAG
File 4 of 5: Kernel
File 5 of 5: KernelFacet
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./interfaces/IKernel.sol"; contract Rewards is Ownable { using SafeMath for uint256; uint256 constant decimals = 10 ** 18; struct Pull { address source; uint256 startTs; uint256 endTs; uint256 totalDuration; uint256 totalAmount; } Pull public pullFeature; bool public disabled; uint256 public lastPullTs; uint256 public balanceBefore; uint256 public currentMultiplier; mapping(address => uint256) public userMultiplier; mapping(address => uint256) public owed; IKernel public kernel; IERC20 public rewardToken; event Claim(address indexed user, uint256 amount); constructor(address _owner, address _token, address _kernel) { require(_token != address(0), "reward token must not be 0x0"); require(_kernel != address(0), "kernel address must not be 0x0"); transferOwnership(_owner); rewardToken = IERC20(_token); kernel = IKernel(_kernel); } // registerUserAction is called by the Kernel every time the user does a deposit or withdrawal in order to // account for the changes in reward that the user should get // it updates the amount owed to the user without transferring the funds function registerUserAction(address user) public { require(msg.sender == address(kernel), 'only callable by kernel'); _calculateOwed(user); } // claim calculates the currently owed reward and transfers the funds to the user function claim() public returns (uint256){ _calculateOwed(msg.sender); uint256 amount = owed[msg.sender]; require(amount > 0, "nothing to claim"); owed[msg.sender] = 0; rewardToken.transfer(msg.sender, amount); // acknowledge the amount that was transferred to the user ackFunds(); emit Claim(msg.sender, amount); return amount; } // ackFunds checks the difference between the last known balance of `token` and the current one // if it goes up, the multiplier is re-calculated // if it goes down, it only updates the known balance function ackFunds() public { uint256 balanceNow = rewardToken.balanceOf(address(this)); if (balanceNow == 0 || balanceNow <= balanceBefore) { balanceBefore = balanceNow; return; } uint256 totalStakedLeag = kernel.leagStaked(); // if there's no leag staked, it doesn't make sense to ackFunds because there's nobody to distribute them to // and the calculation would fail anyways due to division by 0 if (totalStakedLeag == 0) { return; } uint256 diff = balanceNow.sub(balanceBefore); uint256 multiplier = currentMultiplier.add(diff.mul(decimals).div(totalStakedLeag)); balanceBefore = balanceNow; currentMultiplier = multiplier; } // setupPullToken is used to setup the rewards system; only callable by contract owner // set source to address(0) to disable the functionality function setupPullToken(address source, uint256 startTs, uint256 endTs, uint256 amount) public { require(msg.sender == owner(), "!owner"); require(!disabled, "contract is disabled"); if (pullFeature.source != address(0)) { require(source == address(0), "contract is already set up, source must be 0x0"); disabled = true; } else { require(source != address(0), "contract is not setup, source must be != 0x0"); } if (source == address(0)) { require(startTs == 0, "disable contract: startTs must be 0"); require(endTs == 0, "disable contract: endTs must be 0"); require(amount == 0, "disable contract: amount must be 0"); } else { require(endTs > startTs, "setup contract: endTs must be greater than startTs"); require(amount > 0, "setup contract: amount must be greater than 0"); } pullFeature.source = source; pullFeature.startTs = startTs; pullFeature.endTs = endTs; pullFeature.totalDuration = endTs.sub(startTs); pullFeature.totalAmount = amount; if (lastPullTs < startTs) { lastPullTs = startTs; } } // setKernel sets the address of the LeagueDao Kernel into the state variable function setKernel(address _kernel) public { require(_kernel != address(0), 'kernel address must not be 0x0'); require(msg.sender == owner(), '!owner'); kernel = IKernel(_kernel); } // _pullToken calculates the amount based on the time passed since the last pull relative // to the total amount of time that the pull functionality is active and executes a transferFrom from the // address supplied as `pullTokenFrom`, if enabled function _pullToken() internal { if ( pullFeature.source == address(0) || block.timestamp < pullFeature.startTs ) { return; } uint256 timestampCap = pullFeature.endTs; if (block.timestamp < pullFeature.endTs) { timestampCap = block.timestamp; } if (lastPullTs >= timestampCap) { return; } uint256 timeSinceLastPull = timestampCap.sub(lastPullTs); uint256 shareToPull = timeSinceLastPull.mul(decimals).div(pullFeature.totalDuration); uint256 amountToPull = pullFeature.totalAmount.mul(shareToPull).div(decimals); lastPullTs = block.timestamp; rewardToken.transferFrom(pullFeature.source, address(this), amountToPull); } // _calculateOwed calculates and updates the total amount that is owed to an user and updates the user's multiplier // to the current value // it automatically attempts to pull the token from the source and acknowledge the funds function _calculateOwed(address user) internal { _pullToken(); ackFunds(); uint256 reward = _userPendingReward(user); owed[user] = owed[user].add(reward); userMultiplier[user] = currentMultiplier; } // _userPendingReward calculates the reward that should be based on the current multiplier / anything that's not included in the `owed[user]` value // it does not represent the entire reward that's due to the user unless added on top of `owed[user]` function _userPendingReward(address user) internal view returns (uint256) { uint256 multiplier = currentMultiplier.sub(userMultiplier[user]); return kernel.balanceOf(user).mul(multiplier).div(decimals); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../libraries/LibKernelStorage.sol"; interface IKernel { // deposit allows a user to add more leag to his staked balance function deposit(uint256 amount) external; // withdraw allows a user to withdraw funds if the balance is not locked function withdraw(uint256 amount) external; // lock a user's currently staked balance until timestamp & add the bonus to his voting power function lock(uint256 timestamp) external; // delegate allows a user to delegate his voting power to another user function delegate(address to) external; // stopDelegate allows a user to take back the delegated voting power function stopDelegate() external; // lock the balance of a proposal creator until the voting ends; only callable by DAO function lockCreatorBalance(address user, uint256 timestamp) external; // balanceOf returns the current LEAG balance of a user (bonus not included) function balanceOf(address user) external view returns (uint256); // balanceAtTs returns the amount of LEAG that the user currently staked (bonus NOT included) function balanceAtTs(address user, uint256 timestamp) external view returns (uint256); // stakeAtTs returns the Stake object of the user that was valid at `timestamp` function stakeAtTs(address user, uint256 timestamp) external view returns (LibKernelStorage.Stake memory); // votingPower returns the voting power (bonus included) + delegated voting power for a user at the current block function votingPower(address user) external view returns (uint256); // votingPowerAtTs returns the voting power (bonus included) + delegated voting power for a user at a point in time function votingPowerAtTs(address user, uint256 timestamp) external view returns (uint256); // leagStaked returns the total raw amount of LEAG staked at the current block function leagStaked() external view returns (uint256); // leagStakedAtTs returns the total raw amount of LEAG users have deposited into the contract // it does not include any bonus function leagStakedAtTs(uint256 timestamp) external view returns (uint256); // delegatedPower returns the total voting power that a user received from other users function delegatedPower(address user) external view returns (uint256); // delegatedPowerAtTs returns the total voting power that a user received from other users at a point in time function delegatedPowerAtTs(address user, uint256 timestamp) external view returns (uint256); // multiplierAtTs calculates the multiplier at a given timestamp based on the user's stake a the given timestamp // it includes the decay mechanism function multiplierAtTs(address user, uint256 timestamp) external view returns (uint256); // userLockedUntil returns the timestamp until the user's balance is locked function userLockedUntil(address user) external view returns (uint256); // userDidDelegate returns the address to which a user delegated their voting power; address(0) if not delegated function userDelegatedTo(address user) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../interfaces/IRewards.sol"; library LibKernelStorage { bytes32 constant STORAGE_POSITION = keccak256("com.enterdao.kernel.storage"); struct Checkpoint { uint256 timestamp; uint256 amount; } struct Stake { uint256 timestamp; uint256 amount; uint256 expiryTimestamp; address delegatedTo; } struct Storage { bool initialized; // mapping of user address to history of Stake objects // every user action creates a new object in the history mapping(address => Stake[]) userStakeHistory; // array of leag staked Checkpoint // deposits/withdrawals create a new object in the history (max one per block) Checkpoint[] leagStakedHistory; // mapping of user address to history of delegated power // every delegate/stopDelegate call create a new checkpoint (max one per block) mapping(address => Checkpoint[]) delegatedPowerHistory; IERC20 leag; IRewards rewards; } function kernelStorage() internal pure returns (Storage storage ds) { bytes32 position = STORAGE_POSITION; assembly { ds.slot := position } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IRewards { function registerUserAction(address user) external; }
File 2 of 5: CommunityVault
pragma solidity ^0.6.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; contract CommunityVault is Ownable { IERC20 private _entr; constructor (address entr) public { _entr = IERC20(entr); } event SetAllowance(address indexed caller, address indexed spender, uint256 amount); function setAllowance(address spender, uint amount) public onlyOwner { _entr.approve(spender, amount); emit SetAllowance(msg.sender, spender, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
File 3 of 5: LEAG
//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/draft-ERC20Permit.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; contract LEAG is ERC20Burnable, ERC20Permit, Ownable { uint256 private constant SUPPLY = 1_000_000_000 * 10**18; constructor() ERC20("LeagueDAO Governance Token", "LEAG") ERC20Permit("LEAG") { _mint(msg.sender, SUPPLY); } function mint(address to, uint256 amount) public virtual onlyOwner { _mint(to, amount); } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC20.sol"; import "../../../utils/Context.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 currentAllowance = allowance(account, _msgSender()); require(currentAllowance >= amount, "ERC20: burn amount exceeds allowance"); unchecked { _approve(account, _msgSender(), currentAllowance - amount); } _burn(account, amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./draft-IERC20Permit.sol"; import "../ERC20.sol"; import "../../../utils/cryptography/draft-EIP712.sol"; import "../../../utils/cryptography/ECDSA.sol"; import "../../../utils/Counters.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { using Counters for Counters.Counter; mapping(address => Counters.Counter) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { require(block.timestamp <= deadline, "ERC20Permit: expired deadline"); bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); require(signer == owner, "ERC20Permit: invalid signature"); _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view virtual override returns (uint256) { return _nonces[owner].current(); } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } /** * @dev "Consume a nonce": return the current value and increment. * * _Available since v4.1._ */ function _useNonce(address owner) internal virtual returns (uint256 current) { Counters.Counter storage nonce = _nonces[owner]; current = nonce.current(); nonce.increment(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); _afterTokenTransfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./ECDSA.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); bytes32 typeHash = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion); _TYPE_HASH = typeHash; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (block.chainid == _CACHED_CHAIN_ID) { return _CACHED_DOMAIN_SEPARATOR; } else { return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION); } } function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } else if (error == RecoverError.InvalidSignatureV) { revert("ECDSA: invalid signature 'v' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { // Check the signature length // - case 65: r,s,v signature (standard) // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._ if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else if (signature.length == 64) { bytes32 r; bytes32 vs; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly { r := mload(add(signature, 0x20)) vs := mload(add(signature, 0x40)) } return tryRecover(hash, r, vs); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s; uint8 v; assembly { s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) v := add(shr(255, vs), 27) } return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignatureV); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ 32", hash)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash)); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids. * * Include with `using Counters for Counters.Counter;` */ library Counters { struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } }
File 4 of 5: Kernel
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "./interfaces/IDiamondCut.sol"; import "./interfaces/IDiamondLoupe.sol"; import "./libraries/LibDiamond.sol"; import "./libraries/LibOwnership.sol"; import "./libraries/LibDiamondStorage.sol"; import "./interfaces/IERC165.sol"; import "./interfaces/IERC173.sol"; contract Kernel { constructor(IDiamondCut.FacetCut[] memory _diamondCut, address _owner) payable { require(_owner != address(0), "owner must not be 0x0"); LibDiamond.diamondCut(_diamondCut, address(0), new bytes(0)); LibOwnership.setContractOwner(_owner); LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); // adding ERC165 data ds.supportedInterfaces[type(IERC165).interfaceId] = true; ds.supportedInterfaces[type(IDiamondCut).interfaceId] = true; ds.supportedInterfaces[type(IDiamondLoupe).interfaceId] = true; ds.supportedInterfaces[type(IERC173).interfaceId] = true; } // Find facet for function that is called and execute the // function if a facet is found and return any value. fallback() external payable { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); address facet = address(bytes20(ds.facets[msg.sig].facetAddress)); require(facet != address(0), "Diamond: Function does not exist"); assembly { calldatacopy(0, 0, calldatasize()) let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) switch result case 0 { revert(0, returndatasize()) } default { return (0, returndatasize()) } } } receive() external payable {} } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IDiamondCut { enum FacetCutAction {Add, Replace, Remove} // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; // A loupe is a small magnifying glass used to look at diamonds. // These functions look at diamonds interface IDiamondLoupe { /// These functions are expected to be called frequently /// by tools. struct Facet { address facetAddress; bytes4[] functionSelectors; } /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() external view returns (Facet[] memory facets_); /// @notice Gets all the function selectors supported by a specific facet. /// @param _facet The facet address. /// @return facetFunctionSelectors_ function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_); /// @notice Get all the facet addresses used by a diamond. /// @return facetAddresses_ function facetAddresses() external view returns (address[] memory facetAddresses_); /// @notice Gets the facet that supports the given selector. /// @dev If facet is not found return address(0). /// @param _functionSelector The function selector. /// @return facetAddress_ The facet address. function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../interfaces/IDiamondCut.sol"; import "./LibDiamondStorage.sol"; library LibDiamond { event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); // Internal function version of diamondCut // This code is almost the same as the external diamondCut, // except it is using 'Facet[] memory _diamondCut' instead of // 'Facet[] calldata _diamondCut'. // The code is duplicated to prevent copying calldata to memory which // causes an error for a two dimensional array. function diamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { uint256 selectorCount = LibDiamondStorage.diamondStorage().selectors.length; for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) { selectorCount = executeDiamondCut(selectorCount, _diamondCut[facetIndex]); } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } // executeDiamondCut takes one single FacetCut action and executes it // if FacetCutAction can't be identified, it reverts function executeDiamondCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { require(cut.functionSelectors.length > 0, "LibDiamond: No selectors in facet to cut"); if (cut.action == IDiamondCut.FacetCutAction.Add) { require(cut.facetAddress != address(0), "LibDiamond: add facet address can't be address(0)"); enforceHasContractCode(cut.facetAddress, "LibDiamond: add facet must have code"); return _handleAddCut(selectorCount, cut); } if (cut.action == IDiamondCut.FacetCutAction.Replace) { require(cut.facetAddress != address(0), "LibDiamond: remove facet address can't be address(0)"); enforceHasContractCode(cut.facetAddress, "LibDiamond: remove facet must have code"); return _handleReplaceCut(selectorCount, cut); } if (cut.action == IDiamondCut.FacetCutAction.Remove) { require(cut.facetAddress == address(0), "LibDiamond: remove facet address must be address(0)"); return _handleRemoveCut(selectorCount, cut); } revert("LibDiamondCut: Incorrect FacetCutAction"); } // _handleAddCut executes a cut with the type Add // it reverts if the selector already exists function _handleAddCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) { bytes4 selector = cut.functionSelectors[selectorIndex]; address oldFacetAddress = ds.facets[selector].facetAddress; require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists"); ds.facets[selector] = LibDiamondStorage.Facet( cut.facetAddress, uint16(selectorCount) ); ds.selectors.push(selector); selectorCount++; } return selectorCount; } // _handleReplaceCut executes a cut with the type Replace // it does not allow replacing immutable functions // it does not allow replacing with the same function // it does not allow replacing a function that does not exist function _handleReplaceCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) { bytes4 selector = cut.functionSelectors[selectorIndex]; address oldFacetAddress = ds.facets[selector].facetAddress; // only useful if immutable functions exist require(oldFacetAddress != address(this), "LibDiamondCut: Can't replace immutable function"); require(oldFacetAddress != cut.facetAddress, "LibDiamondCut: Can't replace function with same function"); require(oldFacetAddress != address(0), "LibDiamondCut: Can't replace function that doesn't exist"); // replace old facet address ds.facets[selector].facetAddress = cut.facetAddress; } return selectorCount; } // _handleRemoveCut executes a cut with the type Remove // for efficiency, the selector to be deleted is replaced with the last one and then the last one is popped // it reverts if the function doesn't exist or it's immutable function _handleRemoveCut(uint256 selectorCount, IDiamondCut.FacetCut memory cut) internal returns (uint256) { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); for (uint256 selectorIndex; selectorIndex < cut.functionSelectors.length; selectorIndex++) { bytes4 selector = cut.functionSelectors[selectorIndex]; LibDiamondStorage.Facet memory oldFacet = ds.facets[selector]; require(oldFacet.facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist"); require(oldFacet.facetAddress != address(this), "LibDiamondCut: Can't remove immutable function."); // replace selector with last selector if (oldFacet.selectorPosition != selectorCount - 1) { bytes4 lastSelector = ds.selectors[selectorCount - 1]; ds.selectors[oldFacet.selectorPosition] = lastSelector; ds.facets[lastSelector].selectorPosition = oldFacet.selectorPosition; } // delete last selector ds.selectors.pop(); delete ds.facets[selector]; selectorCount--; } return selectorCount; } function initializeDiamondCut(address _init, bytes memory _calldata) internal { if (_init == address(0)) { require(_calldata.length == 0, "LibDiamondCut: _init is address(0) but _calldata is not empty"); return; } require(_calldata.length > 0, "LibDiamondCut: _calldata is empty but _init is not address(0)"); if (_init != address(this)) { enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); } (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length > 0) { // bubble up the error revert(string(error)); } else { revert("LibDiamondCut: _init function reverted"); } } } function enforceHasContractCode(address _contract, string memory _errorMessage) internal view { uint256 contractSize; assembly { contractSize := extcodesize(_contract) } require(contractSize > 0, _errorMessage); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "./LibDiamondStorage.sol"; library LibOwnership { event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); address previousOwner = ds.contractOwner; require(previousOwner != _newOwner, "Previous owner and new owner must be different"); ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = LibDiamondStorage.diamondStorage().contractOwner; } function enforceIsContractOwner() view internal { require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner"); } modifier onlyOwner { require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner"); _; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; library LibDiamondStorage { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct Facet { address facetAddress; uint16 selectorPosition; } struct DiamondStorage { // function selector => facet address and selector position in selectors array mapping(bytes4 => Facet) facets; bytes4[] selectors; // ERC165 mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IERC165 { /// @notice Query if a contract implements an interface /// @param interfaceId The interface identifier, as specified in ERC-165 /// @dev Interface identification is specified in ERC-165. This function /// uses less than 30,000 gas. /// @return `true` if the contract implements `interfaceID` and /// `interfaceID` is not 0xffffffff, `false` otherwise function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; /// @title ERC-173 Contract Ownership Standard /// Note: the ERC-165 identifier for this interface is 0x7f5828d0 /* is ERC165 */ interface IERC173 { /// @dev This emits when ownership of a contract changes. event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /// @notice Get the address of the owner /// @return owner_ The address of the owner. function owner() external view returns (address owner_); /// @notice Set the address of the new owner of the contract /// @dev Set _newOwner to address(0) to renounce any ownership. /// @param _newOwner The address of the new owner of the contract function transferOwnership(address _newOwner) external; }
File 5 of 5: KernelFacet
// SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../interfaces/IKernel.sol"; import "../libraries/LibKernelStorage.sol"; import "../libraries/LibOwnership.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; contract KernelFacet { using SafeMath for uint256; uint256 constant public MAX_LOCK = 365 days; uint256 constant BASE_MULTIPLIER = 1e18; event Deposit(address indexed user, uint256 amount, uint256 newBalance); event Withdraw(address indexed user, uint256 amountWithdrew, uint256 amountLeft); event Lock(address indexed user, uint256 timestamp); event Delegate(address indexed from, address indexed to); event DelegatedPowerIncreased(address indexed from, address indexed to, uint256 amount, uint256 to_newDelegatedPower); event DelegatedPowerDecreased(address indexed from, address indexed to, uint256 amount, uint256 to_newDelegatedPower); function initKernel(address _leag, address _rewards) public { require(_leag != address(0), "LEAG address must not be 0x0"); LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); require(!ds.initialized, "Kernel: already initialized"); LibOwnership.enforceIsContractOwner(); ds.initialized = true; ds.leag = IERC20(_leag); ds.rewards = IRewards(_rewards); } // deposit allows a user to add more leag to his staked balance function deposit(uint256 amount) public { require(amount > 0, "Amount must be greater than 0"); LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); uint256 allowance = ds.leag.allowance(msg.sender, address(this)); require(allowance >= amount, "Token allowance too small"); // this must be called before the user's balance is updated so the rewards contract can calculate // the amount owed correctly if (address(ds.rewards) != address(0)) { ds.rewards.registerUserAction(msg.sender); } uint256 newBalance = balanceOf(msg.sender).add(amount); _updateUserBalance(ds.userStakeHistory[msg.sender], newBalance); _updateLockedLeag(leagStakedAtTs(block.timestamp).add(amount)); address delegatedTo = userDelegatedTo(msg.sender); if (delegatedTo != address(0)) { uint256 newDelegatedPower = delegatedPower(delegatedTo).add(amount); _updateDelegatedPower(ds.delegatedPowerHistory[delegatedTo], newDelegatedPower); emit DelegatedPowerIncreased(msg.sender, delegatedTo, amount, newDelegatedPower); } ds.leag.transferFrom(msg.sender, address(this), amount); emit Deposit(msg.sender, amount, newBalance); } // withdraw allows a user to withdraw funds if the balance is not locked function withdraw(uint256 amount) public { require(amount > 0, "Amount must be greater than 0"); require(userLockedUntil(msg.sender) <= block.timestamp, "User balance is locked"); uint256 balance = balanceOf(msg.sender); require(balance >= amount, "Insufficient balance"); LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); // this must be called before the user's balance is updated so the rewards contract can calculate // the amount owed correctly if (address(ds.rewards) != address(0)) { ds.rewards.registerUserAction(msg.sender); } _updateUserBalance(ds.userStakeHistory[msg.sender], balance.sub(amount)); _updateLockedLeag(leagStakedAtTs(block.timestamp).sub(amount)); address delegatedTo = userDelegatedTo(msg.sender); if (delegatedTo != address(0)) { uint256 newDelegatedPower = delegatedPower(delegatedTo).sub(amount); _updateDelegatedPower(ds.delegatedPowerHistory[delegatedTo], newDelegatedPower); emit DelegatedPowerDecreased(msg.sender, delegatedTo, amount, newDelegatedPower); } ds.leag.transfer(msg.sender, amount); emit Withdraw(msg.sender, amount, balance.sub(amount)); } // lock a user's currently staked balance until timestamp & add the bonus to his voting power function lock(uint256 timestamp) public { require(timestamp > block.timestamp, "Timestamp must be in the future"); require(timestamp <= block.timestamp + MAX_LOCK, "Timestamp too big"); require(balanceOf(msg.sender) > 0, "Sender has no balance"); LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); LibKernelStorage.Stake[] storage checkpoints = ds.userStakeHistory[msg.sender]; LibKernelStorage.Stake storage currentStake = checkpoints[checkpoints.length - 1]; require(timestamp > currentStake.expiryTimestamp, "New timestamp lower than current lock timestamp"); _updateUserLock(checkpoints, timestamp); emit Lock(msg.sender, timestamp); } function depositAndLock(uint256 amount, uint256 timestamp) public { deposit(amount); lock(timestamp); } // delegate allows a user to delegate his voting power to another user function delegate(address to) public { require(msg.sender != to, "Can't delegate to self"); uint256 senderBalance = balanceOf(msg.sender); require(senderBalance > 0, "No balance to delegate"); LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); emit Delegate(msg.sender, to); address delegatedTo = userDelegatedTo(msg.sender); if (delegatedTo != address(0)) { uint256 newDelegatedPower = delegatedPower(delegatedTo).sub(senderBalance); _updateDelegatedPower(ds.delegatedPowerHistory[delegatedTo], newDelegatedPower); emit DelegatedPowerDecreased(msg.sender, delegatedTo, senderBalance, newDelegatedPower); } if (to != address(0)) { uint256 newDelegatedPower = delegatedPower(to).add(senderBalance); _updateDelegatedPower(ds.delegatedPowerHistory[to], newDelegatedPower); emit DelegatedPowerIncreased(msg.sender, to, senderBalance, newDelegatedPower); } _updateUserDelegatedTo(ds.userStakeHistory[msg.sender], to); } // stopDelegate allows a user to take back the delegated voting power function stopDelegate() public { return delegate(address(0)); } // balanceOf returns the current LEAG balance of a user (bonus not included) function balanceOf(address user) public view returns (uint256) { return balanceAtTs(user, block.timestamp); } // balanceAtTs returns the amount of LEAG that the user currently staked (bonus NOT included) function balanceAtTs(address user, uint256 timestamp) public view returns (uint256) { LibKernelStorage.Stake memory stake = stakeAtTs(user, timestamp); return stake.amount; } // stakeAtTs returns the Stake object of the user that was valid at `timestamp` function stakeAtTs(address user, uint256 timestamp) public view returns (LibKernelStorage.Stake memory) { LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); LibKernelStorage.Stake[] storage stakeHistory = ds.userStakeHistory[user]; if (stakeHistory.length == 0 || timestamp < stakeHistory[0].timestamp) { return LibKernelStorage.Stake(block.timestamp, 0, block.timestamp, address(0)); } uint256 min = 0; uint256 max = stakeHistory.length - 1; if (timestamp >= stakeHistory[max].timestamp) { return stakeHistory[max]; } // binary search of the value in the array while (max > min) { uint256 mid = (max + min + 1) / 2; if (stakeHistory[mid].timestamp <= timestamp) { min = mid; } else { max = mid - 1; } } return stakeHistory[min]; } // votingPower returns the voting power (bonus included) + delegated voting power for a user at the current block function votingPower(address user) public view returns (uint256) { return votingPowerAtTs(user, block.timestamp); } // votingPowerAtTs returns the voting power (bonus included) + delegated voting power for a user at a point in time function votingPowerAtTs(address user, uint256 timestamp) public view returns (uint256) { LibKernelStorage.Stake memory stake = stakeAtTs(user, timestamp); uint256 ownVotingPower; // if the user delegated his voting power to another user, then he doesn't have any voting power left if (stake.delegatedTo != address(0)) { ownVotingPower = 0; } else { uint256 balance = stake.amount; uint256 multiplier = _stakeMultiplier(stake, timestamp); ownVotingPower = balance.mul(multiplier).div(BASE_MULTIPLIER); } uint256 delegatedVotingPower = delegatedPowerAtTs(user, timestamp); return ownVotingPower.add(delegatedVotingPower); } // leagStaked returns the total raw amount of LEAG staked at the current block function leagStaked() public view returns (uint256) { return leagStakedAtTs(block.timestamp); } // leagStakedAtTs returns the total raw amount of LEAG users have deposited into the contract // it does not include any bonus function leagStakedAtTs(uint256 timestamp) public view returns (uint256) { return _checkpointsBinarySearch(LibKernelStorage.kernelStorage().leagStakedHistory, timestamp); } // delegatedPower returns the total voting power that a user received from other users function delegatedPower(address user) public view returns (uint256) { return delegatedPowerAtTs(user, block.timestamp); } // delegatedPowerAtTs returns the total voting power that a user received from other users at a point in time function delegatedPowerAtTs(address user, uint256 timestamp) public view returns (uint256) { return _checkpointsBinarySearch(LibKernelStorage.kernelStorage().delegatedPowerHistory[user], timestamp); } // same as multiplierAtTs but for the current block timestamp function multiplierOf(address user) public view returns (uint256) { return multiplierAtTs(user, block.timestamp); } // multiplierAtTs calculates the multiplier at a given timestamp based on the user's stake a the given timestamp // it includes the decay mechanism function multiplierAtTs(address user, uint256 timestamp) public view returns (uint256) { LibKernelStorage.Stake memory stake = stakeAtTs(user, timestamp); return _stakeMultiplier(stake, timestamp); } // userLockedUntil returns the timestamp until the user's balance is locked function userLockedUntil(address user) public view returns (uint256) { LibKernelStorage.Stake memory c = stakeAtTs(user, block.timestamp); return c.expiryTimestamp; } // userDelegatedTo returns the address to which a user delegated their voting power; address(0) if not delegated function userDelegatedTo(address user) public view returns (address) { LibKernelStorage.Stake memory c = stakeAtTs(user, block.timestamp); return c.delegatedTo; } // _checkpointsBinarySearch executes a binary search on a list of checkpoints that's sorted chronologically // looking for the closest checkpoint that matches the specified timestamp function _checkpointsBinarySearch(LibKernelStorage.Checkpoint[] storage checkpoints, uint256 timestamp) internal view returns (uint256) { if (checkpoints.length == 0 || timestamp < checkpoints[0].timestamp) { return 0; } uint256 min = 0; uint256 max = checkpoints.length - 1; if (timestamp >= checkpoints[max].timestamp) { return checkpoints[max].amount; } // binary search of the value in the array while (max > min) { uint256 mid = (max + min + 1) / 2; if (checkpoints[mid].timestamp <= timestamp) { min = mid; } else { max = mid - 1; } } return checkpoints[min].amount; } // _stakeMultiplier calculates the multiplier for the given stake at the given timestamp function _stakeMultiplier(LibKernelStorage.Stake memory stake, uint256 timestamp) internal view returns (uint256) { if (timestamp >= stake.expiryTimestamp) { return BASE_MULTIPLIER; } uint256 diff = stake.expiryTimestamp - timestamp; if (diff >= MAX_LOCK) { return BASE_MULTIPLIER.mul(2); } return BASE_MULTIPLIER.add(diff.mul(BASE_MULTIPLIER).div(MAX_LOCK)); } // _updateUserBalance manages an array of checkpoints // if there's already a checkpoint for the same timestamp, the amount is updated // otherwise, a new checkpoint is inserted function _updateUserBalance(LibKernelStorage.Stake[] storage checkpoints, uint256 amount) internal { if (checkpoints.length == 0) { checkpoints.push(LibKernelStorage.Stake(block.timestamp, amount, block.timestamp, address(0))); } else { LibKernelStorage.Stake storage old = checkpoints[checkpoints.length - 1]; if (old.timestamp == block.timestamp) { old.amount = amount; } else { checkpoints.push(LibKernelStorage.Stake(block.timestamp, amount, old.expiryTimestamp, old.delegatedTo)); } } } // _updateUserLock updates the expiry timestamp on the user's stake // it assumes that if the user already has a balance, which is checked for in the lock function // then there must be at least 1 checkpoint function _updateUserLock(LibKernelStorage.Stake[] storage checkpoints, uint256 expiryTimestamp) internal { LibKernelStorage.Stake storage old = checkpoints[checkpoints.length - 1]; if (old.timestamp < block.timestamp) { checkpoints.push(LibKernelStorage.Stake(block.timestamp, old.amount, expiryTimestamp, old.delegatedTo)); } else { old.expiryTimestamp = expiryTimestamp; } } // _updateUserDelegatedTo updates the delegateTo property on the user's stake // it assumes that if the user already has a balance, which is checked for in the delegate function // then there must be at least 1 checkpoint function _updateUserDelegatedTo(LibKernelStorage.Stake[] storage checkpoints, address to) internal { LibKernelStorage.Stake storage old = checkpoints[checkpoints.length - 1]; if (old.timestamp < block.timestamp) { checkpoints.push(LibKernelStorage.Stake(block.timestamp, old.amount, old.expiryTimestamp, to)); } else { old.delegatedTo = to; } } // _updateDelegatedPower updates the power delegated TO the user in the checkpoints history function _updateDelegatedPower(LibKernelStorage.Checkpoint[] storage checkpoints, uint256 amount) internal { if (checkpoints.length == 0 || checkpoints[checkpoints.length - 1].timestamp < block.timestamp) { checkpoints.push(LibKernelStorage.Checkpoint(block.timestamp, amount)); } else { LibKernelStorage.Checkpoint storage old = checkpoints[checkpoints.length - 1]; old.amount = amount; } } // _updateLockedLeag stores the new `amount` into the LEAG locked history function _updateLockedLeag(uint256 amount) internal { LibKernelStorage.Storage storage ds = LibKernelStorage.kernelStorage(); if (ds.leagStakedHistory.length == 0 || ds.leagStakedHistory[ds.leagStakedHistory.length - 1].timestamp < block.timestamp) { ds.leagStakedHistory.push(LibKernelStorage.Checkpoint(block.timestamp, amount)); } else { LibKernelStorage.Checkpoint storage old = ds.leagStakedHistory[ds.leagStakedHistory.length - 1]; old.amount = amount; } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "../libraries/LibKernelStorage.sol"; interface IKernel { // deposit allows a user to add more leag to his staked balance function deposit(uint256 amount) external; // withdraw allows a user to withdraw funds if the balance is not locked function withdraw(uint256 amount) external; // lock a user's currently staked balance until timestamp & add the bonus to his voting power function lock(uint256 timestamp) external; // delegate allows a user to delegate his voting power to another user function delegate(address to) external; // stopDelegate allows a user to take back the delegated voting power function stopDelegate() external; // lock the balance of a proposal creator until the voting ends; only callable by DAO function lockCreatorBalance(address user, uint256 timestamp) external; // balanceOf returns the current LEAG balance of a user (bonus not included) function balanceOf(address user) external view returns (uint256); // balanceAtTs returns the amount of LEAG that the user currently staked (bonus NOT included) function balanceAtTs(address user, uint256 timestamp) external view returns (uint256); // stakeAtTs returns the Stake object of the user that was valid at `timestamp` function stakeAtTs(address user, uint256 timestamp) external view returns (LibKernelStorage.Stake memory); // votingPower returns the voting power (bonus included) + delegated voting power for a user at the current block function votingPower(address user) external view returns (uint256); // votingPowerAtTs returns the voting power (bonus included) + delegated voting power for a user at a point in time function votingPowerAtTs(address user, uint256 timestamp) external view returns (uint256); // leagStaked returns the total raw amount of LEAG staked at the current block function leagStaked() external view returns (uint256); // leagStakedAtTs returns the total raw amount of LEAG users have deposited into the contract // it does not include any bonus function leagStakedAtTs(uint256 timestamp) external view returns (uint256); // delegatedPower returns the total voting power that a user received from other users function delegatedPower(address user) external view returns (uint256); // delegatedPowerAtTs returns the total voting power that a user received from other users at a point in time function delegatedPowerAtTs(address user, uint256 timestamp) external view returns (uint256); // multiplierAtTs calculates the multiplier at a given timestamp based on the user's stake a the given timestamp // it includes the decay mechanism function multiplierAtTs(address user, uint256 timestamp) external view returns (uint256); // userLockedUntil returns the timestamp until the user's balance is locked function userLockedUntil(address user) external view returns (uint256); // userDidDelegate returns the address to which a user delegated their voting power; address(0) if not delegated function userDelegatedTo(address user) external view returns (address); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../interfaces/IRewards.sol"; library LibKernelStorage { bytes32 constant STORAGE_POSITION = keccak256("com.enterdao.kernel.storage"); struct Checkpoint { uint256 timestamp; uint256 amount; } struct Stake { uint256 timestamp; uint256 amount; uint256 expiryTimestamp; address delegatedTo; } struct Storage { bool initialized; // mapping of user address to history of Stake objects // every user action creates a new object in the history mapping(address => Stake[]) userStakeHistory; // array of leag staked Checkpoint // deposits/withdrawals create a new object in the history (max one per block) Checkpoint[] leagStakedHistory; // mapping of user address to history of delegated power // every delegate/stopDelegate call create a new checkpoint (max one per block) mapping(address => Checkpoint[]) delegatedPowerHistory; IERC20 leag; IRewards rewards; } function kernelStorage() internal pure returns (Storage storage ds) { bytes32 position = STORAGE_POSITION; assembly { ds.slot := position } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import "./LibDiamondStorage.sol"; library LibOwnership { event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setContractOwner(address _newOwner) internal { LibDiamondStorage.DiamondStorage storage ds = LibDiamondStorage.diamondStorage(); address previousOwner = ds.contractOwner; require(previousOwner != _newOwner, "Previous owner and new owner must be different"); ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = LibDiamondStorage.diamondStorage().contractOwner; } function enforceIsContractOwner() view internal { require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner"); } modifier onlyOwner { require(msg.sender == LibDiamondStorage.diamondStorage().contractOwner, "Must be contract owner"); _; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; interface IRewards { function registerUserAction(address user) external; } // SPDX-License-Identifier: Apache-2.0 pragma solidity 0.7.6; pragma experimental ABIEncoderV2; library LibDiamondStorage { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct Facet { address facetAddress; uint16 selectorPosition; } struct DiamondStorage { // function selector => facet address and selector position in selectors array mapping(bytes4 => Facet) facets; bytes4[] selectors; // ERC165 mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } }