ETH Price: $2,562.17 (-2.12%)

Transaction Decoder

Block:
11791438 at Feb-04-2021 06:34:20 PM +UTC
Transaction Fee:
0.00913583 ETH $23.41
Gas Used:
72,220 Gas / 126.5 Gwei

Emitted Events:

125 Erc20SwapAsset.Transfer( from=[Sender] 0x20d6cf7075ccbe840f2acfa07a7b98536684a1ed, to=0xcc4461636684868AaB71037b29a11cC643E64500, value=644372350794138077 )
126 Erc20SwapAsset.Approval( owner=[Sender] 0x20d6cf7075ccbe840f2acfa07a7b98536684a1ed, spender=[Receiver] Vyper_contract, value=115792089237316195423570985008687907853269984665640564039456939635562335501858 )
127 Erc20SwapAsset.Transfer( from=[Sender] 0x20d6cf7075ccbe840f2acfa07a7b98536684a1ed, to=[Receiver] Vyper_contract, value=643727978443343938178 )
128 Erc20SwapAsset.Approval( owner=[Sender] 0x20d6cf7075ccbe840f2acfa07a7b98536684a1ed, spender=[Receiver] Vyper_contract, value=115792089237316195423570985008687907853269984665640564038813211657118991563680 )
129 Vyper_contract.EthPurchase( buyer=[Sender] 0x20d6cf7075ccbe840f2acfa07a7b98536684a1ed, tokens_sold=644372350794138076255, eth_bought=462573323503235266 )

Account State Difference:

  Address   Before After State Difference Code
(zhizhu.top)
4,350.81915817347724201 Eth4,350.82829400347724201 Eth0.00913583
0x20D6CF70...36684A1ED
0.138238058405008319 Eth
Nonce: 80
0.591675551908243585 Eth
Nonce: 81
0.453437493503235266
0xd1D0C2f4...701a3fa2C 90.553326603804978575 Eth90.090753280301743309 Eth0.462573323503235266
0xf99d58e4...91861b4D6

Execution Trace

Vyper_contract.tokenToEthSwapInput( tokens_sold=644372350794138076255, min_eth=440702087180229947, deadline=1612464480 ) => ( out=462573323503235266 )
  • Vyper_contract.tokenToEthSwapInput( tokens_sold=644372350794138076255, min_eth=440702087180229947, deadline=1612464480 ) => ( out=462573323503235266 )
    • Erc20SwapAsset.balanceOf( account=0xd1D0C2f4291F7002E1591d2a87975f0701a3fa2C ) => ( 124996305952575324853363 )
    • ETH 0.462573323503235266 0x20d6cf7075ccbe840f2acfa07a7b98536684a1ed.CALL( )
    • Erc20SwapAsset.transferFrom( sender=0x20D6CF7075CcbE840f2AcFa07A7B98536684A1ED, recipient=0xcc4461636684868AaB71037b29a11cC643E64500, amount=644372350794138077 ) => ( True )
    • Erc20SwapAsset.transferFrom( sender=0x20D6CF7075CcbE840f2AcFa07A7B98536684A1ED, recipient=0xd1D0C2f4291F7002E1591d2a87975f0701a3fa2C, amount=643727978443343938178 ) => ( True )
      File 1 of 3: Vyper_contract
      # @title Uniswap Exchange Interface V1
      # @notice Source code found at https://github.com/uniswap
      # @notice Use at your own risk
      
      contract Factory():
          def getExchange(token_addr: address) -> address: constant
      
      contract Exchange():
          def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant
          def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying
          def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying
      
      TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)})
      EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))})
      AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)})
      RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)})
      Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256})
      Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256})
      
      name: public(bytes32)                             # Uniswap V1
      symbol: public(bytes32)                           # UNI-V1
      decimals: public(uint256)                         # 18
      totalSupply: public(uint256)                      # total number of UNI in existence
      balances: uint256[address]                        # UNI balance of an address
      allowances: (uint256[address])[address]           # UNI allowance of one address on another
      token: address(ERC20)                             # address of the ERC20 token traded on this contract
      factory: Factory                                  # interface for the factory that created this contract
      issuer: public(address)
      
      # @dev This function acts as a contract constructor which is not currently supported in contracts deployed
      #      using create_with_code_of(). It is called once by the factory during contract creation.
      @public
      def setup(token_addr: address):
          assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS
          self.factory = msg.sender
          self.token = token_addr
          self.name = 0x416e797377617000000000000000000000000000000000000000000000000000
          self.symbol = 0x5357415000000000000000000000000000000000000000000000000000000000
          self.decimals = 18
          self.issuer = 0xcc4461636684868AaB71037b29a11cC643E64500
      
      # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens.
      # @dev min_liquidity does nothing when total UNI supply is 0.
      # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0.
      # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return The amount of UNI minted.
      @public
      @payable
      def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256:
          assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0)
          total_liquidity: uint256 = self.totalSupply
          if total_liquidity > 0:
              assert min_liquidity > 0
              eth_reserve: uint256(wei) = self.balance - msg.value
              token_reserve: uint256 = self.token.balanceOf(self)
              token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1
              liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve
              assert max_tokens >= token_amount and liquidity_minted >= min_liquidity
              self.balances[msg.sender] += liquidity_minted
              self.totalSupply = total_liquidity + liquidity_minted
              assert self.token.transferFrom(msg.sender, self, token_amount)
              log.AddLiquidity(msg.sender, msg.value, token_amount)
              log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted)
              return liquidity_minted
          else:
              assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000
              assert self.factory.getExchange(self.token) == self
              token_amount: uint256 = max_tokens
              initial_liquidity: uint256 = as_unitless_number(self.balance)
              self.totalSupply = initial_liquidity
              self.balances[msg.sender] = initial_liquidity
              assert self.token.transferFrom(msg.sender, self, token_amount)
              log.AddLiquidity(msg.sender, msg.value, token_amount)
              log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity)
              return initial_liquidity
      
      # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio.
      # @param amount Amount of UNI burned.
      # @param min_eth Minimum ETH withdrawn.
      # @param min_tokens Minimum Tokens withdrawn.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return The amount of ETH and Tokens withdrawn.
      @public
      def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256):
          assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0)
          total_liquidity: uint256 = self.totalSupply
          assert total_liquidity > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_amount: uint256(wei) = amount * self.balance / total_liquidity
          token_amount: uint256 = amount * token_reserve / total_liquidity
          assert eth_amount >= min_eth and token_amount >= min_tokens
          self.balances[msg.sender] -= amount
          self.totalSupply = total_liquidity - amount
          send(msg.sender, eth_amount)
          assert self.token.transfer(msg.sender, token_amount)
          log.RemoveLiquidity(msg.sender, eth_amount, token_amount)
          log.Transfer(msg.sender, ZERO_ADDRESS, amount)
          return eth_amount, token_amount
      
      # @dev Pricing function for converting between ETH and Tokens.
      # @param input_amount Amount of ETH or Tokens being sold.
      # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves.
      # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves.
      # @return Amount of ETH or Tokens bought.
      @private
      @constant
      def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256:
          assert input_reserve > 0 and output_reserve > 0
          input_amount_with_fee: uint256 = input_amount * 997
          numerator: uint256 = input_amount_with_fee * output_reserve
          denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee
          return numerator / denominator
      
      # @dev Pricing function for converting between ETH and Tokens.
      # @param output_amount Amount of ETH or Tokens being bought.
      # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves.
      # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves.
      # @return Amount of ETH or Tokens sold.
      @private
      @constant
      def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256:
          assert input_reserve > 0 and output_reserve > 0
          numerator: uint256 = input_reserve * output_amount * 1000
          denominator: uint256 = (output_reserve - output_amount) * 997
          return numerator / denominator + 1
      
      @private
      def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256:
          assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0)
          eth_fee: uint256(wei) = (eth_sold + 999) / 1000
          eth_sold2: uint256(wei) = eth_sold - eth_fee
          token_reserve: uint256 = self.token.balanceOf(self)
          tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold2), as_unitless_number(self.balance - eth_sold2), token_reserve)
          assert tokens_bought >= min_tokens
          send(self.issuer, eth_fee)
          assert self.token.transfer(recipient, tokens_bought)
          log.TokenPurchase(buyer, eth_sold, tokens_bought)
          return tokens_bought
      
      # @notice Convert ETH to Tokens.
      # @dev User specifies exact input (msg.value).
      # @dev User cannot specify minimum output or deadline.
      @public
      @payable
      def __default__():
          self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender)
      
      # @notice Convert ETH to Tokens.
      # @dev User specifies exact input (msg.value) and minimum output.
      # @param min_tokens Minimum Tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of Tokens bought.
      @public
      @payable
      def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256:
          return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender)
      
      # @notice Convert ETH to Tokens and transfers Tokens to recipient.
      # @dev User specifies exact input (msg.value) and minimum output
      # @param min_tokens Minimum Tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output Tokens.
      # @return Amount of Tokens bought.
      @public
      @payable
      def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256:
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient)
      
      @private
      def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei):
          assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0)
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve)
          eth_fee: uint256 = (eth_sold + 999) / 1000
          eth_sold2: uint256(wei) = as_wei_value(eth_sold + eth_fee, 'wei')
          # Throws if eth_sold > max_eth
          eth_refund: uint256(wei) = max_eth - eth_sold2
          if eth_refund > 0:
              send(buyer, eth_refund)
          send(self.issuer, as_wei_value(eth_fee, 'wei'))
          assert self.token.transfer(recipient, tokens_bought)
          log.TokenPurchase(buyer, eth_sold2, tokens_bought)
          return eth_sold2
      
      # @notice Convert ETH to Tokens.
      # @dev User specifies maximum input (msg.value) and exact output.
      # @param tokens_bought Amount of tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of ETH sold.
      @public
      @payable
      def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei):
          return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender)
      
      # @notice Convert ETH to Tokens and transfers Tokens to recipient.
      # @dev User specifies maximum input (msg.value) and exact output.
      # @param tokens_bought Amount of tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output Tokens.
      # @return Amount of ETH sold.
      @public
      @payable
      def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei):
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient)
      
      @private
      def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei):
          assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0)
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold - tokens_fee
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_bought: uint256 = self.getInputPrice(tokens_sold2, token_reserve, as_unitless_number(self.balance))
          wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei')
          assert wei_bought >= min_eth
          send(recipient, wei_bought)
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold2)
          log.EthPurchase(buyer, tokens_sold, wei_bought)
          return wei_bought
      
      
      # @notice Convert Tokens to ETH.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_eth Minimum ETH purchased.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of ETH bought.
      @public
      def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei):
          return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender)
      
      # @notice Convert Tokens to ETH and transfers ETH to recipient.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_eth Minimum ETH purchased.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @return Amount of ETH bought.
      @public
      def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei):
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient)
      
      @private
      def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256:
          assert deadline >= block.timestamp and eth_bought > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance))
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold + tokens_fee
          # tokens sold is always > 0
          assert max_tokens >= tokens_sold2
          send(recipient, eth_bought)
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold)
          log.EthPurchase(buyer, tokens_sold2, eth_bought)
          return tokens_sold2
      
      # @notice Convert Tokens to ETH.
      # @dev User specifies maximum input and exact output.
      # @param eth_bought Amount of ETH purchased.
      # @param max_tokens Maximum Tokens sold.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of Tokens sold.
      @public
      def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256:
          return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender)
      
      # @notice Convert Tokens to ETH and transfers ETH to recipient.
      # @dev User specifies maximum input and exact output.
      # @param eth_bought Amount of ETH purchased.
      # @param max_tokens Maximum Tokens sold.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @return Amount of Tokens sold.
      @public
      def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256:
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient)
      
      @private
      def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256:
          assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0)
          assert exchange_addr != self and exchange_addr != ZERO_ADDRESS
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold - tokens_fee
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_bought: uint256 = self.getInputPrice(tokens_sold2, token_reserve, as_unitless_number(self.balance))
          wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei')
          assert wei_bought >= min_eth_bought
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold2)
          tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought)
          log.EthPurchase(buyer, tokens_sold, wei_bought)
          return tokens_bought
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr).
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (token_addr) bought.
      @public
      def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers
      #         Tokens (token_addr) to recipient.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (token_addr) bought.
      @public
      def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr)
      
      @private
      def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256:
          assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0)
          assert exchange_addr != self and exchange_addr != ZERO_ADDRESS
          eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought)
          eth_bought2:uint256(wei) = eth_bought * 1000 / 998 + 1
          token_reserve: uint256 = self.token.balanceOf(self)
          tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought2), token_reserve, as_unitless_number(self.balance))
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold + tokens_fee
          # tokens sold is always > 0
          assert max_tokens_sold >= tokens_sold2 and max_eth_sold >= eth_bought2
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold)
          eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought2)
          log.EthPurchase(buyer, tokens_sold2, eth_bought2)
          return tokens_sold2
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr).
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers
      #         Tokens (token_addr) to recipient.
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token).
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param exchange_addr The address of the exchange for the token being purchased.
      # @return Amount of Tokens (exchange_addr.token) bought.
      @public
      def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256:
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers
      #         Tokens (exchange_addr.token) to recipient.
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param exchange_addr The address of the exchange for the token being purchased.
      # @return Amount of Tokens (exchange_addr.token) bought.
      @public
      def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256:
          assert recipient != self
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token).
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param exchange_addr The address of the exchange for the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256:
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers
      #         Tokens (exchange_addr.token) to recipient.
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256:
          assert recipient != self
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr)
      
      # @notice Public price function for ETH to Token trades with an exact input.
      # @param eth_sold Amount of ETH sold.
      # @return Amount of Tokens that can be bought with input ETH.
      @public
      @constant
      def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256:
          assert eth_sold > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve)
      
      # @notice Public price function for ETH to Token trades with an exact output.
      # @param tokens_bought Amount of Tokens bought.
      # @return Amount of ETH needed to buy output Tokens.
      @public
      @constant
      def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei):
          assert tokens_bought > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve)
          return as_wei_value(eth_sold, 'wei')
      
      # @notice Public price function for Token to ETH trades with an exact input.
      # @param tokens_sold Amount of Tokens sold.
      # @return Amount of ETH that can be bought with input Tokens.
      @public
      @constant
      def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei):
          assert tokens_sold > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance))
          return as_wei_value(eth_bought, 'wei')
      
      # @notice Public price function for Token to ETH trades with an exact output.
      # @param eth_bought Amount of output ETH.
      # @return Amount of Tokens needed to buy output ETH.
      @public
      @constant
      def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256:
          assert eth_bought > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance))
      
      # @return Address of Token that is sold on this exchange.
      @public
      @constant
      def tokenAddress() -> address:
          return self.token
      
      # @return Address of factory that created this exchange.
      @public
      @constant
      def factoryAddress() -> address(Factory):
          return self.factory
      
      # ERC20 compatibility for exchange liquidity modified from
      # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy
      @public
      @constant
      def balanceOf(_owner : address) -> uint256:
          return self.balances[_owner]
      
      @public
      def transfer(_to : address, _value : uint256) -> bool:
          self.balances[msg.sender] -= _value
          self.balances[_to] += _value
          log.Transfer(msg.sender, _to, _value)
          return True
      
      @public
      def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
          self.balances[_from] -= _value
          self.balances[_to] += _value
          self.allowances[_from][msg.sender] -= _value
          log.Transfer(_from, _to, _value)
          return True
      
      @public
      def approve(_spender : address, _value : uint256) -> bool:
          self.allowances[msg.sender][_spender] = _value
          log.Approval(msg.sender, _spender, _value)
          return True
      
      @public
      @constant
      def allowance(_owner : address, _spender : address) -> uint256:
          return self.allowances[_owner][_spender]

      File 2 of 3: Erc20SwapAsset
      // SPDX-License-Identifier: MIT
      
      // File: @openzeppelin/contracts/GSN/Context.sol
      
      pragma solidity ^0.5.0;
      
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with GSN meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      contract Context {
          // Empty internal constructor, to prevent people from mistakenly deploying
          // an instance of this contract, which should be used via inheritance.
          constructor () internal { }
          // solhint-disable-previous-line no-empty-blocks
      
          function _msgSender() internal view returns (address payable) {
              return msg.sender;
          }
      
          function _msgData() internal view returns (bytes memory) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      
      // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
      
      pragma solidity ^0.5.0;
      
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
       * the optional functions; to access them see {ERC20Detailed}.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      
      // File: @openzeppelin/contracts/math/SafeMath.sol
      
      pragma solidity ^0.5.0;
      
      /**
       * @dev Wrappers over Solidity's arithmetic operations with added overflow
       * checks.
       *
       * Arithmetic operations in Solidity wrap on overflow. This can easily result
       * in bugs, because programmers usually assume that an overflow raises an
       * error, which is the standard behavior in high level programming languages.
       * `SafeMath` restores this intuition by reverting the transaction when an
       * operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeMath {
          /**
           * @dev Returns the addition of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `+` operator.
           *
           * Requirements:
           * - Addition cannot overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a, "SafeMath: addition overflow");
      
              return c;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              return sub(a, b, "SafeMath: subtraction overflow");
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           * - Subtraction cannot overflow.
           *
           * _Available since v2.4.0._
           */
          function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b <= a, errorMessage);
              uint256 c = a - b;
      
              return c;
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `*` operator.
           *
           * Requirements:
           * - Multiplication cannot overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
              if (a == 0) {
                  return 0;
              }
      
              uint256 c = a * b;
              require(c / a == b, "SafeMath: multiplication overflow");
      
              return c;
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(a, b, "SafeMath: division by zero");
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           *
           * _Available since v2.4.0._
           */
          function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              // Solidity only automatically asserts when dividing by 0
              require(b > 0, errorMessage);
              uint256 c = a / b;
              // assert(a == b * c + a % b); // There is no case in which this doesn't hold
      
              return c;
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              return mod(a, b, "SafeMath: modulo by zero");
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts with custom message when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           *
           * _Available since v2.4.0._
           */
          function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b != 0, errorMessage);
              return a % b;
          }
      }
      
      // File: @openzeppelin/contracts/token/ERC20/ERC20.sol
      
      pragma solidity ^0.5.0;
      
      
      
      
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20Mintable}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin guidelines: functions revert instead
       * of returning `false` on failure. This behavior is nonetheless conventional
       * and does not conflict with the expectations of ERC20 applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20 {
          using SafeMath for uint256;
      
          mapping (address => uint256) private _balances;
      
          mapping (address => mapping (address => uint256)) private _allowances;
      
          uint256 private _totalSupply;
      
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view returns (uint256) {
              return _totalSupply;
          }
      
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view returns (uint256) {
              return _balances[account];
          }
      
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address recipient, uint256 amount) public returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view returns (uint256) {
              return _allowances[owner][spender];
          }
      
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20};
           *
           * Requirements:
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for `sender`'s tokens of at least
           * `amount`.
           */
          function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
              _transfer(sender, recipient, amount);
              _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
              return true;
          }
      
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
              return true;
          }
      
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
              return true;
          }
      
          /**
           * @dev Moves tokens `amount` from `sender` to `recipient`.
           *
           * This is internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(address sender, address recipient, uint256 amount) internal {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
      
              _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
              _balances[recipient] = _balances[recipient].add(amount);
              emit Transfer(sender, recipient, amount);
          }
      
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements
           *
           * - `to` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal {
              require(account != address(0), "ERC20: mint to the zero address");
      
              _totalSupply = _totalSupply.add(amount);
              _balances[account] = _balances[account].add(amount);
              emit Transfer(address(0), account, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal {
              require(account != address(0), "ERC20: burn from the zero address");
      
              _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
              _totalSupply = _totalSupply.sub(amount);
              emit Transfer(account, address(0), amount);
          }
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
           *
           * This is internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(address owner, address spender, uint256 amount) internal {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
      
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
           * from the caller's allowance.
           *
           * See {_burn} and {_approve}.
           */
          function _burnFrom(address account, uint256 amount) internal {
              _burn(account, amount);
              _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
          }
      }
      
      // File: @openzeppelin/contracts/token/ERC20/ERC20Detailed.sol
      
      pragma solidity ^0.5.0;
      
      
      /**
       * @dev Optional functions from the ERC20 standard.
       */
      contract ERC20Detailed is IERC20 {
          string private _name;
          string private _symbol;
          uint8 private _decimals;
      
          /**
           * @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
           * these values are immutable: they can only be set once during
           * construction.
           */
          constructor (string memory name, string memory symbol, uint8 decimals) public {
              _name = name;
              _symbol = symbol;
              _decimals = decimals;
          }
      
          /**
           * @dev Returns the name of the token.
           */
          function name() public view returns (string memory) {
              return _name;
          }
      
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view returns (string memory) {
              return _symbol;
          }
      
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5,05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view returns (uint8) {
              return _decimals;
          }
      }
      
      // File: internal/Erc20SwapAsset.sol
      
      pragma solidity ^0.5.0;
      
      
      
      contract Erc20SwapAsset is ERC20, ERC20Detailed {
          event LogChangeDCRMOwner(address indexed oldOwner, address indexed newOwner, uint indexed effectiveHeight);
          event LogSwapin(bytes32 indexed txhash, address indexed account, uint amount);
          event LogSwapout(address indexed account, address indexed bindaddr, uint amount);
      
          address private _oldOwner;
          address private _newOwner;
          uint256 private _newOwnerEffectiveHeight;
      
          modifier onlyOwner() {
              require(msg.sender == owner(), "only owner");
              _;
          }
      
          constructor(string memory name, string memory symbol, uint8 decimals) public ERC20Detailed(name, symbol, decimals) {
              _newOwner = msg.sender;
              _newOwnerEffectiveHeight = block.number;
          }
      
          function owner() public view returns (address) {
              if (block.number >= _newOwnerEffectiveHeight) {
                  return _newOwner;
              }
              return _oldOwner;
          }
      
          function changeDCRMOwner(address newOwner) public onlyOwner returns (bool) {
              require(newOwner != address(0), "new owner is the zero address");
              _oldOwner = owner();
              _newOwner = newOwner;
              _newOwnerEffectiveHeight = block.number + 13300;
              emit LogChangeDCRMOwner(_oldOwner, _newOwner, _newOwnerEffectiveHeight);
              return true;
          }
      
          function Swapin(bytes32 txhash, address account, uint256 amount) public onlyOwner returns (bool) {
              _mint(account, amount);
              emit LogSwapin(txhash, account, amount);
              return true;
          }
      
          function Swapout(uint256 amount, address bindaddr) public returns (bool) {
              require(bindaddr != address(0), "bind address is the zero address");
              _burn(_msgSender(), amount);
              emit LogSwapout(_msgSender(), bindaddr, amount);
              return true;
          }
      }

      File 3 of 3: Vyper_contract
      # @title Uniswap Exchange Interface V1
      # @notice Source code found at https://github.com/uniswap
      # @notice Use at your own risk
      
      contract Factory():
          def getExchange(token_addr: address) -> address: constant
      
      contract Exchange():
          def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei): constant
          def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256: modifying
          def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei): modifying
      
      TokenPurchase: event({buyer: indexed(address), eth_sold: indexed(uint256(wei)), tokens_bought: indexed(uint256)})
      EthPurchase: event({buyer: indexed(address), tokens_sold: indexed(uint256), eth_bought: indexed(uint256(wei))})
      AddLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)})
      RemoveLiquidity: event({provider: indexed(address), eth_amount: indexed(uint256(wei)), token_amount: indexed(uint256)})
      Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256})
      Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256})
      
      name: public(bytes32)                             # Uniswap V1
      symbol: public(bytes32)                           # UNI-V1
      decimals: public(uint256)                         # 18
      totalSupply: public(uint256)                      # total number of UNI in existence
      balances: uint256[address]                        # UNI balance of an address
      allowances: (uint256[address])[address]           # UNI allowance of one address on another
      token: address(ERC20)                             # address of the ERC20 token traded on this contract
      factory: Factory                                  # interface for the factory that created this contract
      issuer: public(address)
      
      # @dev This function acts as a contract constructor which is not currently supported in contracts deployed
      #      using create_with_code_of(). It is called once by the factory during contract creation.
      @public
      def setup(token_addr: address):
          assert (self.factory == ZERO_ADDRESS and self.token == ZERO_ADDRESS) and token_addr != ZERO_ADDRESS
          self.factory = msg.sender
          self.token = token_addr
          self.name = 0x416e797377617000000000000000000000000000000000000000000000000000
          self.symbol = 0x5357415000000000000000000000000000000000000000000000000000000000
          self.decimals = 18
          self.issuer = 0xcc4461636684868AaB71037b29a11cC643E64500
      
      # @notice Deposit ETH and Tokens (self.token) at current ratio to mint UNI tokens.
      # @dev min_liquidity does nothing when total UNI supply is 0.
      # @param min_liquidity Minimum number of UNI sender will mint if total UNI supply is greater than 0.
      # @param max_tokens Maximum number of tokens deposited. Deposits max amount if total UNI supply is 0.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return The amount of UNI minted.
      @public
      @payable
      def addLiquidity(min_liquidity: uint256, max_tokens: uint256, deadline: timestamp) -> uint256:
          assert deadline > block.timestamp and (max_tokens > 0 and msg.value > 0)
          total_liquidity: uint256 = self.totalSupply
          if total_liquidity > 0:
              assert min_liquidity > 0
              eth_reserve: uint256(wei) = self.balance - msg.value
              token_reserve: uint256 = self.token.balanceOf(self)
              token_amount: uint256 = msg.value * token_reserve / eth_reserve + 1
              liquidity_minted: uint256 = msg.value * total_liquidity / eth_reserve
              assert max_tokens >= token_amount and liquidity_minted >= min_liquidity
              self.balances[msg.sender] += liquidity_minted
              self.totalSupply = total_liquidity + liquidity_minted
              assert self.token.transferFrom(msg.sender, self, token_amount)
              log.AddLiquidity(msg.sender, msg.value, token_amount)
              log.Transfer(ZERO_ADDRESS, msg.sender, liquidity_minted)
              return liquidity_minted
          else:
              assert (self.factory != ZERO_ADDRESS and self.token != ZERO_ADDRESS) and msg.value >= 1000000000
              assert self.factory.getExchange(self.token) == self
              token_amount: uint256 = max_tokens
              initial_liquidity: uint256 = as_unitless_number(self.balance)
              self.totalSupply = initial_liquidity
              self.balances[msg.sender] = initial_liquidity
              assert self.token.transferFrom(msg.sender, self, token_amount)
              log.AddLiquidity(msg.sender, msg.value, token_amount)
              log.Transfer(ZERO_ADDRESS, msg.sender, initial_liquidity)
              return initial_liquidity
      
      # @dev Burn UNI tokens to withdraw ETH and Tokens at current ratio.
      # @param amount Amount of UNI burned.
      # @param min_eth Minimum ETH withdrawn.
      # @param min_tokens Minimum Tokens withdrawn.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return The amount of ETH and Tokens withdrawn.
      @public
      def removeLiquidity(amount: uint256, min_eth: uint256(wei), min_tokens: uint256, deadline: timestamp) -> (uint256(wei), uint256):
          assert (amount > 0 and deadline > block.timestamp) and (min_eth > 0 and min_tokens > 0)
          total_liquidity: uint256 = self.totalSupply
          assert total_liquidity > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_amount: uint256(wei) = amount * self.balance / total_liquidity
          token_amount: uint256 = amount * token_reserve / total_liquidity
          assert eth_amount >= min_eth and token_amount >= min_tokens
          self.balances[msg.sender] -= amount
          self.totalSupply = total_liquidity - amount
          send(msg.sender, eth_amount)
          assert self.token.transfer(msg.sender, token_amount)
          log.RemoveLiquidity(msg.sender, eth_amount, token_amount)
          log.Transfer(msg.sender, ZERO_ADDRESS, amount)
          return eth_amount, token_amount
      
      # @dev Pricing function for converting between ETH and Tokens.
      # @param input_amount Amount of ETH or Tokens being sold.
      # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves.
      # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves.
      # @return Amount of ETH or Tokens bought.
      @private
      @constant
      def getInputPrice(input_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256:
          assert input_reserve > 0 and output_reserve > 0
          input_amount_with_fee: uint256 = input_amount * 997
          numerator: uint256 = input_amount_with_fee * output_reserve
          denominator: uint256 = (input_reserve * 1000) + input_amount_with_fee
          return numerator / denominator
      
      # @dev Pricing function for converting between ETH and Tokens.
      # @param output_amount Amount of ETH or Tokens being bought.
      # @param input_reserve Amount of ETH or Tokens (input type) in exchange reserves.
      # @param output_reserve Amount of ETH or Tokens (output type) in exchange reserves.
      # @return Amount of ETH or Tokens sold.
      @private
      @constant
      def getOutputPrice(output_amount: uint256, input_reserve: uint256, output_reserve: uint256) -> uint256:
          assert input_reserve > 0 and output_reserve > 0
          numerator: uint256 = input_reserve * output_amount * 1000
          denominator: uint256 = (output_reserve - output_amount) * 997
          return numerator / denominator + 1
      
      @private
      def ethToTokenInput(eth_sold: uint256(wei), min_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256:
          assert deadline >= block.timestamp and (eth_sold > 0 and min_tokens > 0)
          eth_fee: uint256(wei) = (eth_sold + 999) / 1000
          eth_sold2: uint256(wei) = eth_sold - eth_fee
          token_reserve: uint256 = self.token.balanceOf(self)
          tokens_bought: uint256 = self.getInputPrice(as_unitless_number(eth_sold2), as_unitless_number(self.balance - eth_sold2), token_reserve)
          assert tokens_bought >= min_tokens
          send(self.issuer, eth_fee)
          assert self.token.transfer(recipient, tokens_bought)
          log.TokenPurchase(buyer, eth_sold, tokens_bought)
          return tokens_bought
      
      # @notice Convert ETH to Tokens.
      # @dev User specifies exact input (msg.value).
      # @dev User cannot specify minimum output or deadline.
      @public
      @payable
      def __default__():
          self.ethToTokenInput(msg.value, 1, block.timestamp, msg.sender, msg.sender)
      
      # @notice Convert ETH to Tokens.
      # @dev User specifies exact input (msg.value) and minimum output.
      # @param min_tokens Minimum Tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of Tokens bought.
      @public
      @payable
      def ethToTokenSwapInput(min_tokens: uint256, deadline: timestamp) -> uint256:
          return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, msg.sender)
      
      # @notice Convert ETH to Tokens and transfers Tokens to recipient.
      # @dev User specifies exact input (msg.value) and minimum output
      # @param min_tokens Minimum Tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output Tokens.
      # @return Amount of Tokens bought.
      @public
      @payable
      def ethToTokenTransferInput(min_tokens: uint256, deadline: timestamp, recipient: address) -> uint256:
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.ethToTokenInput(msg.value, min_tokens, deadline, msg.sender, recipient)
      
      @private
      def ethToTokenOutput(tokens_bought: uint256, max_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei):
          assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth > 0)
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance - max_eth), token_reserve)
          eth_fee: uint256 = (eth_sold + 999) / 1000
          eth_sold2: uint256(wei) = as_wei_value(eth_sold + eth_fee, 'wei')
          # Throws if eth_sold > max_eth
          eth_refund: uint256(wei) = max_eth - eth_sold2
          if eth_refund > 0:
              send(buyer, eth_refund)
          send(self.issuer, as_wei_value(eth_fee, 'wei'))
          assert self.token.transfer(recipient, tokens_bought)
          log.TokenPurchase(buyer, eth_sold2, tokens_bought)
          return eth_sold2
      
      # @notice Convert ETH to Tokens.
      # @dev User specifies maximum input (msg.value) and exact output.
      # @param tokens_bought Amount of tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of ETH sold.
      @public
      @payable
      def ethToTokenSwapOutput(tokens_bought: uint256, deadline: timestamp) -> uint256(wei):
          return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, msg.sender)
      
      # @notice Convert ETH to Tokens and transfers Tokens to recipient.
      # @dev User specifies maximum input (msg.value) and exact output.
      # @param tokens_bought Amount of tokens bought.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output Tokens.
      # @return Amount of ETH sold.
      @public
      @payable
      def ethToTokenTransferOutput(tokens_bought: uint256, deadline: timestamp, recipient: address) -> uint256(wei):
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.ethToTokenOutput(tokens_bought, msg.value, deadline, msg.sender, recipient)
      
      @private
      def tokenToEthInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, buyer: address, recipient: address) -> uint256(wei):
          assert deadline >= block.timestamp and (tokens_sold > 0 and min_eth > 0)
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold - tokens_fee
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_bought: uint256 = self.getInputPrice(tokens_sold2, token_reserve, as_unitless_number(self.balance))
          wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei')
          assert wei_bought >= min_eth
          send(recipient, wei_bought)
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold2)
          log.EthPurchase(buyer, tokens_sold, wei_bought)
          return wei_bought
      
      
      # @notice Convert Tokens to ETH.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_eth Minimum ETH purchased.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of ETH bought.
      @public
      def tokenToEthSwapInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp) -> uint256(wei):
          return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, msg.sender)
      
      # @notice Convert Tokens to ETH and transfers ETH to recipient.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_eth Minimum ETH purchased.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @return Amount of ETH bought.
      @public
      def tokenToEthTransferInput(tokens_sold: uint256, min_eth: uint256(wei), deadline: timestamp, recipient: address) -> uint256(wei):
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.tokenToEthInput(tokens_sold, min_eth, deadline, msg.sender, recipient)
      
      @private
      def tokenToEthOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, buyer: address, recipient: address) -> uint256:
          assert deadline >= block.timestamp and eth_bought > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance))
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold + tokens_fee
          # tokens sold is always > 0
          assert max_tokens >= tokens_sold2
          send(recipient, eth_bought)
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold)
          log.EthPurchase(buyer, tokens_sold2, eth_bought)
          return tokens_sold2
      
      # @notice Convert Tokens to ETH.
      # @dev User specifies maximum input and exact output.
      # @param eth_bought Amount of ETH purchased.
      # @param max_tokens Maximum Tokens sold.
      # @param deadline Time after which this transaction can no longer be executed.
      # @return Amount of Tokens sold.
      @public
      def tokenToEthSwapOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp) -> uint256:
          return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, msg.sender)
      
      # @notice Convert Tokens to ETH and transfers ETH to recipient.
      # @dev User specifies maximum input and exact output.
      # @param eth_bought Amount of ETH purchased.
      # @param max_tokens Maximum Tokens sold.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @return Amount of Tokens sold.
      @public
      def tokenToEthTransferOutput(eth_bought: uint256(wei), max_tokens: uint256, deadline: timestamp, recipient: address) -> uint256:
          assert recipient != self and recipient != ZERO_ADDRESS
          return self.tokenToEthOutput(eth_bought, max_tokens, deadline, msg.sender, recipient)
      
      @private
      def tokenToTokenInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256:
          assert (deadline >= block.timestamp and tokens_sold > 0) and (min_tokens_bought > 0 and min_eth_bought > 0)
          assert exchange_addr != self and exchange_addr != ZERO_ADDRESS
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold - tokens_fee
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_bought: uint256 = self.getInputPrice(tokens_sold2, token_reserve, as_unitless_number(self.balance))
          wei_bought: uint256(wei) = as_wei_value(eth_bought, 'wei')
          assert wei_bought >= min_eth_bought
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold2)
          tokens_bought: uint256 = Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient, value=wei_bought)
          log.EthPurchase(buyer, tokens_sold, wei_bought)
          return tokens_bought
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr).
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (token_addr) bought.
      @public
      def tokenToTokenSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers
      #         Tokens (token_addr) to recipient.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (token_addr) bought.
      @public
      def tokenToTokenTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr)
      
      @private
      def tokenToTokenOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, buyer: address, recipient: address, exchange_addr: address) -> uint256:
          assert deadline >= block.timestamp and (tokens_bought > 0 and max_eth_sold > 0)
          assert exchange_addr != self and exchange_addr != ZERO_ADDRESS
          eth_bought: uint256(wei) = Exchange(exchange_addr).getEthToTokenOutputPrice(tokens_bought)
          eth_bought2:uint256(wei) = eth_bought * 1000 / 998 + 1
          token_reserve: uint256 = self.token.balanceOf(self)
          tokens_sold: uint256 = self.getOutputPrice(as_unitless_number(eth_bought2), token_reserve, as_unitless_number(self.balance))
          tokens_fee: uint256 = (tokens_sold + 999) / 1000
          tokens_sold2: uint256 = tokens_sold + tokens_fee
          # tokens sold is always > 0
          assert max_tokens_sold >= tokens_sold2 and max_eth_sold >= eth_bought2
          assert self.token.transferFrom(buyer, self.issuer, tokens_fee)
          assert self.token.transferFrom(buyer, self, tokens_sold)
          eth_sold: uint256(wei) = Exchange(exchange_addr).ethToTokenTransferOutput(tokens_bought, deadline, recipient, value=eth_bought2)
          log.EthPurchase(buyer, tokens_sold2, eth_bought2)
          return tokens_sold2
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr).
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToTokenSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (token_addr) and transfers
      #         Tokens (token_addr) to recipient.
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToTokenTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, token_addr: address) -> uint256:
          exchange_addr: address = self.factory.getExchange(token_addr)
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token).
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param exchange_addr The address of the exchange for the token being purchased.
      # @return Amount of Tokens (exchange_addr.token) bought.
      @public
      def tokenToExchangeSwapInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256:
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers
      #         Tokens (exchange_addr.token) to recipient.
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies exact input and minimum output.
      # @param tokens_sold Amount of Tokens sold.
      # @param min_tokens_bought Minimum Tokens (token_addr) purchased.
      # @param min_eth_bought Minimum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param exchange_addr The address of the exchange for the token being purchased.
      # @return Amount of Tokens (exchange_addr.token) bought.
      @public
      def tokenToExchangeTransferInput(tokens_sold: uint256, min_tokens_bought: uint256, min_eth_bought: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256:
          assert recipient != self
          return self.tokenToTokenInput(tokens_sold, min_tokens_bought, min_eth_bought, deadline, msg.sender, recipient, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token).
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param exchange_addr The address of the exchange for the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToExchangeSwapOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, exchange_addr: address) -> uint256:
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, msg.sender, exchange_addr)
      
      # @notice Convert Tokens (self.token) to Tokens (exchange_addr.token) and transfers
      #         Tokens (exchange_addr.token) to recipient.
      # @dev Allows trades through contracts that were not deployed from the same factory.
      # @dev User specifies maximum input and exact output.
      # @param tokens_bought Amount of Tokens (token_addr) bought.
      # @param max_tokens_sold Maximum Tokens (self.token) sold.
      # @param max_eth_sold Maximum ETH purchased as intermediary.
      # @param deadline Time after which this transaction can no longer be executed.
      # @param recipient The address that receives output ETH.
      # @param token_addr The address of the token being purchased.
      # @return Amount of Tokens (self.token) sold.
      @public
      def tokenToExchangeTransferOutput(tokens_bought: uint256, max_tokens_sold: uint256, max_eth_sold: uint256(wei), deadline: timestamp, recipient: address, exchange_addr: address) -> uint256:
          assert recipient != self
          return self.tokenToTokenOutput(tokens_bought, max_tokens_sold, max_eth_sold, deadline, msg.sender, recipient, exchange_addr)
      
      # @notice Public price function for ETH to Token trades with an exact input.
      # @param eth_sold Amount of ETH sold.
      # @return Amount of Tokens that can be bought with input ETH.
      @public
      @constant
      def getEthToTokenInputPrice(eth_sold: uint256(wei)) -> uint256:
          assert eth_sold > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          return self.getInputPrice(as_unitless_number(eth_sold), as_unitless_number(self.balance), token_reserve)
      
      # @notice Public price function for ETH to Token trades with an exact output.
      # @param tokens_bought Amount of Tokens bought.
      # @return Amount of ETH needed to buy output Tokens.
      @public
      @constant
      def getEthToTokenOutputPrice(tokens_bought: uint256) -> uint256(wei):
          assert tokens_bought > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_sold: uint256 = self.getOutputPrice(tokens_bought, as_unitless_number(self.balance), token_reserve)
          return as_wei_value(eth_sold, 'wei')
      
      # @notice Public price function for Token to ETH trades with an exact input.
      # @param tokens_sold Amount of Tokens sold.
      # @return Amount of ETH that can be bought with input Tokens.
      @public
      @constant
      def getTokenToEthInputPrice(tokens_sold: uint256) -> uint256(wei):
          assert tokens_sold > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          eth_bought: uint256 = self.getInputPrice(tokens_sold, token_reserve, as_unitless_number(self.balance))
          return as_wei_value(eth_bought, 'wei')
      
      # @notice Public price function for Token to ETH trades with an exact output.
      # @param eth_bought Amount of output ETH.
      # @return Amount of Tokens needed to buy output ETH.
      @public
      @constant
      def getTokenToEthOutputPrice(eth_bought: uint256(wei)) -> uint256:
          assert eth_bought > 0
          token_reserve: uint256 = self.token.balanceOf(self)
          return self.getOutputPrice(as_unitless_number(eth_bought), token_reserve, as_unitless_number(self.balance))
      
      # @return Address of Token that is sold on this exchange.
      @public
      @constant
      def tokenAddress() -> address:
          return self.token
      
      # @return Address of factory that created this exchange.
      @public
      @constant
      def factoryAddress() -> address(Factory):
          return self.factory
      
      # ERC20 compatibility for exchange liquidity modified from
      # https://github.com/ethereum/vyper/blob/master/examples/tokens/ERC20.vy
      @public
      @constant
      def balanceOf(_owner : address) -> uint256:
          return self.balances[_owner]
      
      @public
      def transfer(_to : address, _value : uint256) -> bool:
          self.balances[msg.sender] -= _value
          self.balances[_to] += _value
          log.Transfer(msg.sender, _to, _value)
          return True
      
      @public
      def transferFrom(_from : address, _to : address, _value : uint256) -> bool:
          self.balances[_from] -= _value
          self.balances[_to] += _value
          self.allowances[_from][msg.sender] -= _value
          log.Transfer(_from, _to, _value)
          return True
      
      @public
      def approve(_spender : address, _value : uint256) -> bool:
          self.allowances[msg.sender][_spender] = _value
          log.Approval(msg.sender, _spender, _value)
          return True
      
      @public
      @constant
      def allowance(_owner : address, _spender : address) -> uint256:
          return self.allowances[_owner][_spender]