Transaction Hash:
Block:
22812673 at Jun-29-2025 09:09:47 PM +UTC
Transaction Fee:
0.000377729187358644 ETH
$1.25
Gas Used:
161,676 Gas / 2.336334319 Gwei
Emitted Events:
| 67 |
FeeCollector.FeesCollected( _token=0x00000000...000000000, _integrator=0x6f6426a9...c1085999b, _integratorFee=33000000000000, _lifiFee=22000000000000 )
|
| 68 |
LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, 69322965b5b0b4b601925a3cee6bff054b626d755e41af834dc6c73ba99879c0, 000000000000000000000000bd6c7b0d2f68c2b7805d88388319cfb6ecb50ea9, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000027147114878000, 0000000000000000000000000000000000000000000000000026e26b65111000, 000000000000000000000000000000000000000000000000000000006861ab9b )
|
| 69 |
RelayReceiver.FundsForwardedWithData( data=0x801C0DFE98EED257F770A2E5F4B2B6F2482EEA6C2BD4DC492DDB7BDA332264E3 )
|
| 70 |
LiFiDiamond.0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1( 0xcba69f43792f9f399347222505213b55af8e0b0b54b893085c2e27ecbe1644f1, 0000000000000000000000000000000000000000000000000000000000000020, 69322965b5b0b4b601925a3cee6bff054b626d755e41af834dc6c73ba99879c0, 0000000000000000000000000000000000000000000000000000000000000140, 0000000000000000000000000000000000000000000000000000000000000180, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000017a156ce1b7fa0829f76d32f44525ba245c415a9, 0000000000000000000000000000000000000000000000000026e26b65111000, 0000000000000000000000000000000000000000000000000000000000000ab5, 0000000000000000000000000000000000000000000000000000000000000001, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000005, 72656c6179000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000f, 61627374726163742d6272696467650000000000000000000000000000000000 )
|
Account State Difference:
| Address | Before | After | State Difference | ||
|---|---|---|---|---|---|
| 0x1231DEB6...7486F4EaE | (LI.FI: LiFi Diamond) | ||||
| 0x8F9FdDF1...FC39CAf97 |
0.013761610319912009 Eth
Nonce: 85
|
0.002383881132553365 Eth
Nonce: 87
| 0.011377729187358644 | ||
|
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 36.552305254993543107 Eth | 36.552628606993543107 Eth | 0.000323352 | |
| 0xbD6C7B0d...6EcB50eA9 | 839.881031989992130907 Eth | 839.881086989992130907 Eth | 0.000055 | ||
| 0xf70da978...8dfA3dbEF | (Relay: Solver) | 308.196216591256733691 Eth | 308.207161591256733691 Eth | 0.010945 |
Execution Trace
0x8f9fddf1d50a8408e95322ef8ca635ffc39caf97.e9ae5c53( )
ETH 0.011
LiFiDiamond.25d374e8( )ETH 0.011
RelayFacet.swapAndStartBridgeTokensViaRelay( _bridgeData=[{name:transactionId, type:bytes32, order:1, indexed:false, value:69322965B5B0B4B601925A3CEE6BFF054B626D755E41AF834DC6C73BA99879C0, valueString:69322965B5B0B4B601925A3CEE6BFF054B626D755E41AF834DC6C73BA99879C0}, {name:bridge, type:string, order:2, indexed:false, value:relay, valueString:relay}, {name:integrator, type:string, order:3, indexed:false, value:abstract-bridge, valueString:abstract-bridge}, {name:referrer, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:sendingAssetId, type:address, order:5, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:receiver, type:address, order:6, indexed:false, value:0x17A156Ce1B7fa0829f76d32F44525BA245C415A9, valueString:0x17A156Ce1B7fa0829f76d32F44525BA245C415A9}, {name:minAmount, type:uint256, order:7, indexed:false, value:10945000000000000, valueString:10945000000000000}, {name:destinationChainId, type:uint256, order:8, indexed:false, value:2741, valueString:2741}, {name:hasSourceSwaps, type:bool, order:9, indexed:false, value:true, valueString:True}, {name:hasDestinationCall, type:bool, order:10, indexed:false, value:false, valueString:False}], _swapData=, _relayData=[{name:requestId, type:bytes32, order:1, indexed:false, value:801C0DFE98EED257F770A2E5F4B2B6F2482EEA6C2BD4DC492DDB7BDA332264E3, valueString:801C0DFE98EED257F770A2E5F4B2B6F2482EEA6C2BD4DC492DDB7BDA332264E3}, {name:nonEVMReceiver, type:bytes32, order:2, indexed:false, value:00000000000000000000000017A156CE1B7FA0829F76D32F44525BA245C415A9, valueString:00000000000000000000000017A156CE1B7FA0829F76D32F44525BA245C415A9}, {name:receivingAssetId, type:bytes32, order:3, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:signature, type:bytes, order:4, indexed:false, value:0x394BE3C8392B109C5BDA0C79DAEB7D2852CA93A11DE4EEE7E076DEE06417663C026B26AC1D5080B4109A28FA3A7B9BF1B83920EAD11AA4F5B52AE3F0D4BFC44D1C, valueString:0x394BE3C8392B109C5BDA0C79DAEB7D2852CA93A11DE4EEE7E076DEE06417663C026B26AC1D5080B4109A28FA3A7B9BF1B83920EAD11AA4F5B52AE3F0D4BFC44D1C}] )-
Null: 0x000...001.56893ce5( ) ETH 0.011
FeeCollector.collectNativeFees( integratorFee=33000000000000, lifiFee=22000000000000, integratorAddress=0x6f6426a9b93a7567fCCcBfE5d0d6F26c1085999b )- ETH 0.010945
LiFiDiamond.CALL( )
- ETH 0.010945
ETH 0.010945
RelayReceiver.801c0dfe( )- ETH 0.010945
Relay: Solver.CALL( )
- ETH 0.010945
-
File 1 of 4: FeeCollector
File 2 of 4: LiFiDiamond
File 3 of 4: RelayReceiver
File 4 of 4: RelayFacet
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;
import { LibAsset } from "../Libraries/LibAsset.sol";
/// @title Fee Collector
/// @author LI.FI (https://li.fi)
/// @notice Provides functionality for collecting integrator fees
contract FeeCollector {
/// State ///
// Integrator -> TokenAddress -> Balance
mapping(address => mapping(address => uint256)) private _balances;
// TokenAddress -> Balance
mapping(address => uint256) private _lifiBalances;
address public owner;
address public pendingOwner;
/// Errors ///
error Unauthorized(address);
error NoNullOwner();
error NewOwnerMustNotBeSelf();
error NoPendingOwnershipTransfer();
error NotPendingOwner();
error TransferFailure();
/// Events ///
event FeesCollected(address indexed _token, address indexed _integrator, uint256 _integratorFee, uint256 _lifiFee);
event FeesWithdrawn(address indexed _token, address indexed _to, uint256 _amount);
event LiFiFeesWithdrawn(address indexed _token, address indexed _to, uint256 _amount);
event OwnershipTransferRequested(address indexed _from, address indexed _to);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/// Constructor ///
constructor(address _owner) {
owner = _owner;
}
/// External Methods ///
/// @notice Collects fees for the integrator
/// @param tokenAddress address of the token to collect fees for
/// @param integratorFee amount of fees to collect going to the integrator
/// @param lifiFee amount of fees to collect going to lifi
/// @param integratorAddress address of the integrator
function collectTokenFees(
address tokenAddress,
uint256 integratorFee,
uint256 lifiFee,
address integratorAddress
) external {
LibAsset.depositAsset(tokenAddress, integratorFee + lifiFee);
_balances[integratorAddress][tokenAddress] += integratorFee;
_lifiBalances[tokenAddress] += lifiFee;
emit FeesCollected(tokenAddress, integratorAddress, integratorFee, lifiFee);
}
/// @notice Collects fees for the integrator in native token
/// @param integratorFee amount of fees to collect going to the integrator
/// @param lifiFee amount of fees to collect going to lifi
/// @param integratorAddress address of the integrator
function collectNativeFees(
uint256 integratorFee,
uint256 lifiFee,
address integratorAddress
) external payable {
_balances[integratorAddress][LibAsset.NULL_ADDRESS] += integratorFee;
_lifiBalances[LibAsset.NULL_ADDRESS] += lifiFee;
uint256 remaining = msg.value - (integratorFee + lifiFee);
// Prevent extra native token from being locked in the contract
if (remaining > 0) {
(bool success, ) = msg.sender.call{ value: remaining }("");
if (!success) {
revert TransferFailure();
}
}
emit FeesCollected(LibAsset.NULL_ADDRESS, integratorAddress, integratorFee, lifiFee);
}
/// @notice Withdraw fees and sends to the integrator
/// @param tokenAddress address of the token to withdraw fees for
function withdrawIntegratorFees(address tokenAddress) external {
uint256 balance = _balances[msg.sender][tokenAddress];
if (balance == 0) {
return;
}
_balances[msg.sender][tokenAddress] = 0;
LibAsset.transferAsset(tokenAddress, payable(msg.sender), balance);
emit FeesWithdrawn(tokenAddress, msg.sender, balance);
}
/// @notice Batch withdraw fees and sends to the integrator
/// @param tokenAddresses addresses of the tokens to withdraw fees for
function batchWithdrawIntegratorFees(address[] memory tokenAddresses) external {
uint256 length = tokenAddresses.length;
uint256 balance;
for (uint256 i = 0; i < length; i++) {
balance = _balances[msg.sender][tokenAddresses[i]];
if (balance == 0) {
continue;
}
_balances[msg.sender][tokenAddresses[i]] = 0;
LibAsset.transferAsset(tokenAddresses[i], payable(msg.sender), balance);
emit FeesWithdrawn(tokenAddresses[i], msg.sender, balance);
}
}
/// @notice Withdraws fees and sends to lifi
/// @param tokenAddress address of the token to withdraw fees for
function withdrawLifiFees(address tokenAddress) external {
_enforceIsContractOwner();
uint256 balance = _lifiBalances[tokenAddress];
if (balance == 0) {
return;
}
_lifiBalances[tokenAddress] = 0;
LibAsset.transferAsset(tokenAddress, payable(owner), balance);
emit LiFiFeesWithdrawn(tokenAddress, msg.sender, balance);
}
/// @notice Batch withdraws fees and sends to lifi
/// @param tokenAddresses addresses of the tokens to withdraw fees for
function batchWithdrawLifiFees(address[] memory tokenAddresses) external {
_enforceIsContractOwner();
uint256 length = tokenAddresses.length;
uint256 balance;
for (uint256 i = 0; i < length; i++) {
balance = _lifiBalances[tokenAddresses[i]];
if (balance == 0) {
continue;
}
_lifiBalances[tokenAddresses[i]] = 0;
LibAsset.transferAsset(tokenAddresses[i], payable(owner), balance);
emit LiFiFeesWithdrawn(tokenAddresses[i], msg.sender, balance);
}
}
/// @notice Returns the balance of the integrator
/// @param integratorAddress address of the integrator
/// @param tokenAddress address of the token to get the balance of
function getTokenBalance(address integratorAddress, address tokenAddress) external view returns (uint256) {
return _balances[integratorAddress][tokenAddress];
}
/// @notice Returns the balance of lifi
/// @param tokenAddress address of the token to get the balance of
function getLifiTokenBalance(address tokenAddress) external view returns (uint256) {
return _lifiBalances[tokenAddress];
}
/// @notice Intitiates transfer of ownership to a new address
/// @param _newOwner the address to transfer ownership to
function transferOwnership(address _newOwner) external {
_enforceIsContractOwner();
if (_newOwner == LibAsset.NULL_ADDRESS) revert NoNullOwner();
if (_newOwner == owner) revert NewOwnerMustNotBeSelf();
pendingOwner = _newOwner;
emit OwnershipTransferRequested(msg.sender, pendingOwner);
}
/// @notice Cancel transfer of ownership
function cancelOnwershipTransfer() external {
_enforceIsContractOwner();
if (pendingOwner == LibAsset.NULL_ADDRESS) revert NoPendingOwnershipTransfer();
pendingOwner = LibAsset.NULL_ADDRESS;
}
/// @notice Confirms transfer of ownership to the calling address (msg.sender)
function confirmOwnershipTransfer() external {
if (msg.sender != pendingOwner) revert NotPendingOwner();
owner = pendingOwner;
pendingOwner = LibAsset.NULL_ADDRESS;
emit OwnershipTransferred(owner, pendingOwner);
}
/// Private Methods ///
/// @notice Ensures that the calling address is the owner of the contract
function _enforceIsContractOwner() private view {
if (msg.sender != owner) {
revert Unauthorized(msg.sender);
}
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.13;
import { NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeValueWithERC, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @title LibAsset
/// @author Connext <[email protected]>
/// @notice This library contains helpers for dealing with onchain transfers
/// of assets, including accounting for the native asset `assetId`
/// conventions and any noncompliant ERC20 transfers
library LibAsset {
uint256 private constant MAX_INT = type(uint256).max;
address internal constant NULL_ADDRESS = 0x0000000000000000000000000000000000000000; //address(0)
/// @dev All native assets use the empty address for their asset id
/// by convention
address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
/// @notice Gets the balance of the inheriting contract for the given asset
/// @param assetId The asset identifier to get the balance of
/// @return Balance held by contracts using this library
function getOwnBalance(address assetId) internal view returns (uint256) {
return assetId == NATIVE_ASSETID ? address(this).balance : IERC20(assetId).balanceOf(address(this));
}
/// @notice Transfers ether from the inheriting contract to a given
/// recipient
/// @param recipient Address to send ether to
/// @param amount Amount to send to given recipient
function transferNativeAsset(address payable recipient, uint256 amount) private {
if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = recipient.call{ value: amount }("");
if (!success) revert NativeAssetTransferFailed();
}
/// @notice Gives MAX approval for another address to spend tokens
/// @param assetId Token address to transfer
/// @param spender Address to give spend approval to
/// @param amount Amount to approve for spending
function maxApproveERC20(
IERC20 assetId,
address spender,
uint256 amount
) internal {
if (address(assetId) == NATIVE_ASSETID) return;
if (spender == NULL_ADDRESS) revert NullAddrIsNotAValidSpender();
uint256 allowance = assetId.allowance(address(this), spender);
if (allowance < amount) SafeERC20.safeApprove(IERC20(assetId), spender, MAX_INT);
}
/// @notice Transfers tokens from the inheriting contract to a given
/// recipient
/// @param assetId Token address to transfer
/// @param recipient Address to send token to
/// @param amount Amount to send to given recipient
function transferERC20(
address assetId,
address recipient,
uint256 amount
) private {
if (isNativeAsset(assetId)) revert NullAddrIsNotAnERC20Token();
SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
}
/// @notice Transfers tokens from a sender to a given recipient
/// @param assetId Token address to transfer
/// @param from Address of sender/owner
/// @param to Address of recipient/spender
/// @param amount Amount to transfer from owner to spender
function transferFromERC20(
address assetId,
address from,
address to,
uint256 amount
) internal {
if (assetId == NATIVE_ASSETID) revert NullAddrIsNotAnERC20Token();
if (to == NULL_ADDRESS) revert NoTransferToNullAddress();
SafeERC20.safeTransferFrom(IERC20(assetId), from, to, amount);
}
/// @notice Deposits an asset into the contract and performs checks to avoid NativeValueWithERC
/// @param tokenId Token to deposit
/// @param amount Amount to deposit
/// @param isNative Wether the token is native or ERC20
function depositAsset(
address tokenId,
uint256 amount,
bool isNative
) internal {
if (amount == 0) revert InvalidAmount();
if (isNative) {
if (msg.value != amount) revert InvalidAmount();
} else {
if (msg.value != 0) revert NativeValueWithERC();
uint256 _fromTokenBalance = LibAsset.getOwnBalance(tokenId);
LibAsset.transferFromERC20(tokenId, msg.sender, address(this), amount);
if (LibAsset.getOwnBalance(tokenId) - _fromTokenBalance != amount) revert InvalidAmount();
}
}
/// @notice Overload for depositAsset(address tokenId, uint256 amount, bool isNative)
/// @param tokenId Token to deposit
/// @param amount Amount to deposit
function depositAsset(address tokenId, uint256 amount) internal {
return depositAsset(tokenId, amount, tokenId == NATIVE_ASSETID);
}
/// @notice Determines whether the given assetId is the native asset
/// @param assetId The asset identifier to evaluate
/// @return Boolean indicating if the asset is the native asset
function isNativeAsset(address assetId) internal pure returns (bool) {
return assetId == NATIVE_ASSETID;
}
/// @notice Wrapper function to transfer a given asset (native or erc20) to
/// some recipient. Should handle all non-compliant return value
/// tokens as well by using the SafeERC20 contract by open zeppelin.
/// @param assetId Asset id for transfer (address(0) for native asset,
/// token address for erc20s)
/// @param recipient Address to send asset to
/// @param amount Amount to send to given recipient
function transferAsset(
address assetId,
address payable recipient,
uint256 amount
) internal {
(assetId == NATIVE_ASSETID)
? transferNativeAsset(recipient, amount)
: transferERC20(assetId, recipient, amount);
}
/// @dev Checks whether the given address is a contract and contains code
function isContract(address _contractAddr) internal view returns (bool) {
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(_contractAddr)
}
return size > 0;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;
error InvalidAmount();
error TokenAddressIsZero();
error CannotBridgeToSameNetwork();
error ZeroPostSwapBalance();
error InvalidBridgeConfigLength();
error NoSwapDataProvided();
error NativeValueWithERC();
error ContractCallNotAllowed();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAnERC20Token();
error NoTransferToNullAddress();
error NativeAssetTransferFailed();
error InvalidContract();
error InvalidConfig();
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
File 2 of 4: LiFiDiamond
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
error TokenAddressIsZero();
error TokenNotSupported();
error CannotBridgeToSameNetwork();
error ZeroPostSwapBalance();
error NoSwapDataProvided();
error NativeValueWithERC();
error ContractCallNotAllowed();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAnERC20Token();
error NoTransferToNullAddress();
error NativeAssetTransferFailed();
error InvalidBridgeConfigLength();
error InvalidAmount();
error InvalidContract();
error InvalidConfig();
error UnsupportedChainId(uint256 chainId);
error InvalidReceiver();
error InvalidDestinationChain();
error InvalidSendingToken();
error InvalidCaller();
error AlreadyInitialized();
error NotInitialized();
error OnlyContractOwner();
error CannotAuthoriseSelf();
error RecoveryAddressCannotBeZero();
error CannotDepositNativeToken();
error InvalidCallData();
error NativeAssetNotSupported();
error UnAuthorized();
error NoSwapFromZeroBalance();
error InvalidFallbackAddress();
error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
error InsufficientBalance(uint256 required, uint256 balance);
error ZeroAmount();
error InvalidFee();
error InformationMismatch();
error NotAContract();
error NotEnoughBalance(uint256 requested, uint256 available);
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
interface IDiamondCut {
enum FacetCutAction {
Add,
Replace,
Remove
}
// Add=0, Replace=1, Remove=2
struct FacetCut {
address facetAddress;
FacetCutAction action;
bytes4[] functionSelectors;
}
/// @notice Add/replace/remove any number of functions and optionally execute
/// a function with delegatecall
/// @param _diamondCut Contains the facet addresses and function selectors
/// @param _init The address of the contract or facet to execute _calldata
/// @param _calldata A function call, including function selector and arguments
/// _calldata is executed with delegatecall on _init
function diamondCut(
FacetCut[] calldata _diamondCut,
address _init,
bytes calldata _calldata
) external;
event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { LibDiamond } from "./Libraries/LibDiamond.sol";
import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
import { LibUtil } from "./Libraries/LibUtil.sol";
contract LiFiDiamond {
constructor(address _contractOwner, address _diamondCutFacet) payable {
LibDiamond.setContractOwner(_contractOwner);
// Add the diamondCut external function from the diamondCutFacet
IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
bytes4[] memory functionSelectors = new bytes4[](1);
functionSelectors[0] = IDiamondCut.diamondCut.selector;
cut[0] = IDiamondCut.FacetCut({
facetAddress: _diamondCutFacet,
action: IDiamondCut.FacetCutAction.Add,
functionSelectors: functionSelectors
});
LibDiamond.diamondCut(cut, address(0), "");
}
// Find facet for function that is called and execute the
// function if a facet is found and return any value.
// solhint-disable-next-line no-complex-fallback
fallback() external payable {
LibDiamond.DiamondStorage storage ds;
bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
// get diamond storage
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
// get facet from function selector
address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
if (facet == address(0)) {
revert LibDiamond.FunctionDoesNotExist();
}
// Execute external function from facet using delegatecall and return any value.
// solhint-disable-next-line no-inline-assembly
assembly {
// copy function selector and any arguments
calldatacopy(0, 0, calldatasize())
// execute function call using the facet
let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
// get any return value
returndatacopy(0, 0, returndatasize())
// return any return value or error back to the caller
switch result
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
// Able to receive ether
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
error UintOutOfBounds();
// -------------------------
function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(
0x40,
and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
)
)
}
return tempBytes;
}
function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(
sc,
add(
and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
and(mload(mc), mask)
)
)
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
if (_bytes.length < _start + 1) {
revert UintOutOfBounds();
}
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
if (_bytes.length < _start + 2) {
revert UintOutOfBounds();
}
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
if (_bytes.length < _start + 4) {
revert UintOutOfBounds();
}
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
if (_bytes.length < _start + 8) {
revert UintOutOfBounds();
}
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
if (_bytes.length < _start + 12) {
revert UintOutOfBounds();
}
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
if (_bytes.length < _start + 16) {
revert UintOutOfBounds();
}
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
// solhint-disable-next-line no-empty-blocks
for {
} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
// Diamond specific errors
error IncorrectFacetCutAction();
error NoSelectorsInFace();
error FunctionAlreadyExists();
error FacetAddressIsZero();
error FacetAddressIsNotZero();
error FacetContainsNoCode();
error FunctionDoesNotExist();
error FunctionIsImmutable();
error InitZeroButCalldataNotEmpty();
error CalldataEmptyButInitNotZero();
error InitReverted();
// ----------------
struct FacetAddressAndPosition {
address facetAddress;
uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
}
struct FacetFunctionSelectors {
bytes4[] functionSelectors;
uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
}
struct DiamondStorage {
// maps function selector to the facet address and
// the position of the selector in the facetFunctionSelectors.selectors array
mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
// maps facet addresses to function selectors
mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
// facet addresses
address[] facetAddresses;
// Used to query if a contract implements an interface.
// Used to implement ERC-165.
mapping(bytes4 => bool) supportedInterfaces;
// owner of the contract
address contractOwner;
}
function diamondStorage() internal pure returns (DiamondStorage storage ds) {
bytes32 position = DIAMOND_STORAGE_POSITION;
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
}
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function setContractOwner(address _newOwner) internal {
DiamondStorage storage ds = diamondStorage();
address previousOwner = ds.contractOwner;
ds.contractOwner = _newOwner;
emit OwnershipTransferred(previousOwner, _newOwner);
}
function contractOwner() internal view returns (address contractOwner_) {
contractOwner_ = diamondStorage().contractOwner;
}
function enforceIsContractOwner() internal view {
if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
}
event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
// Internal function version of diamondCut
function diamondCut(
IDiamondCut.FacetCut[] memory _diamondCut,
address _init,
bytes memory _calldata
) internal {
for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
if (action == IDiamondCut.FacetCutAction.Add) {
addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Replace) {
replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Remove) {
removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else {
revert IncorrectFacetCutAction();
}
unchecked {
++facetIndex;
}
}
emit DiamondCut(_diamondCut, _init, _calldata);
initializeDiamondCut(_init, _calldata);
}
function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (!LibUtil.isZeroAddress(oldFacetAddress)) {
revert FunctionAlreadyExists();
}
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (oldFacetAddress == _facetAddress) {
revert FunctionAlreadyExists();
}
removeFunction(ds, oldFacetAddress, selector);
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
// if function does not exist then do nothing and return
if (!LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsNotZero();
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
removeFunction(ds, oldFacetAddress, selector);
unchecked {
++selectorIndex;
}
}
}
function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
enforceHasContractCode(_facetAddress);
ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
ds.facetAddresses.push(_facetAddress);
}
function addFunction(
DiamondStorage storage ds,
bytes4 _selector,
uint96 _selectorPosition,
address _facetAddress
) internal {
ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
}
function removeFunction(
DiamondStorage storage ds,
address _facetAddress,
bytes4 _selector
) internal {
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FunctionDoesNotExist();
}
// an immutable function is a function defined directly in a diamond
if (_facetAddress == address(this)) {
revert FunctionIsImmutable();
}
// replace selector with last selector, then delete last selector
uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
// if not the same then replace _selector with lastSelector
if (selectorPosition != lastSelectorPosition) {
bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
}
// delete the last selector
ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
delete ds.selectorToFacetAndPosition[_selector];
// if no more selectors for facet address then delete the facet address
if (lastSelectorPosition == 0) {
// replace facet address with last facet address and delete last facet address
uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
if (facetAddressPosition != lastFacetAddressPosition) {
address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
}
ds.facetAddresses.pop();
delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
}
}
function initializeDiamondCut(address _init, bytes memory _calldata) internal {
if (LibUtil.isZeroAddress(_init)) {
if (_calldata.length != 0) {
revert InitZeroButCalldataNotEmpty();
}
} else {
if (_calldata.length == 0) {
revert CalldataEmptyButInitNotZero();
}
if (_init != address(this)) {
enforceHasContractCode(_init);
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory error) = _init.delegatecall(_calldata);
if (!success) {
if (error.length > 0) {
// bubble up the error
revert(string(error));
} else {
revert InitReverted();
}
}
}
}
function enforceHasContractCode(address _contract) internal view {
uint256 contractSize;
// solhint-disable-next-line no-inline-assembly
assembly {
contractSize := extcodesize(_contract)
}
if (contractSize == 0) {
revert FacetContainsNoCode();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import "./LibBytes.sol";
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
// If the _res length is less than 68, then the transaction failed silently (without a revert message)
if (_res.length < 68) return "Transaction reverted silently";
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
}
File 3 of 4: RelayReceiver
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.23;
contract RelayReceiver {
// --- Structs ---
struct Call {
address to;
bytes data;
uint256 value;
}
// --- Errors ---
error CallFailed();
error NativeTransferFailed();
error Unauthorized();
// --- Events ---
event FundsForwardedWithData(bytes data);
// --- Fields ---
address private immutable SOLVER;
// --- Constructor ---
constructor(address solver) {
SOLVER = solver;
}
// --- Public methods ---
fallback() external payable {
send(SOLVER, msg.value);
emit FundsForwardedWithData(msg.data);
}
function forward(bytes calldata data) external payable {
send(SOLVER, msg.value);
emit FundsForwardedWithData(data);
}
// --- Restricted methods ---
function makeCalls(Call[] calldata calls) external payable {
if (msg.sender != SOLVER) {
revert Unauthorized();
}
unchecked {
uint256 length = calls.length;
for (uint256 i; i < length; i++) {
Call memory c = calls[i];
(bool success, ) = c.to.call{value: c.value}(c.data);
if (!success) {
revert CallFailed();
}
}
}
}
// --- Internal methods ---
function send(address to, uint256 value) internal {
bool success;
assembly {
// Save gas by avoiding copying the return data to memory.
// Provide at most 100k gas to the internal call, which is
// more than enough to cover common use-cases of logic for
// receiving native tokens (eg. SCW payable fallbacks).
success := call(100000, to, value, 0, 0, 0, 0)
}
if (!success) {
revert NativeTransferFailed();
}
}
}
File 4 of 4: RelayFacet
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import { ILiFi } from "../Interfaces/ILiFi.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";
import { LibSwap } from "../Libraries/LibSwap.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { ReentrancyGuard } from "../Helpers/ReentrancyGuard.sol";
import { SwapperV2 } from "../Helpers/SwapperV2.sol";
import { Validatable } from "../Helpers/Validatable.sol";
import { ECDSA } from "solady/utils/ECDSA.sol";
/// @title Relay Facet
/// @author LI.FI (https://li.fi)
/// @notice Provides functionality for bridging through Relay Protocol
/// @custom:version 1.0.0
contract RelayFacet is ILiFi, ReentrancyGuard, SwapperV2, Validatable {
// Receiver for native transfers
address public immutable relayReceiver;
// Relayer wallet for ERC20 transfers
address public immutable relaySolver;
/// Storage ///
mapping(bytes32 => bool) public consumedIds;
/// Types ///
/// @dev Relay specific parameters
/// @param requestId Relay API request ID
/// @param nonEVMReceiver set only if bridging to non-EVM chain
/// @params receivingAssetId address of receiving asset
/// @params signature attestation signature provided by the Relay solver
struct RelayData {
bytes32 requestId;
bytes32 nonEVMReceiver;
bytes32 receivingAssetId;
bytes signature;
}
/// Events ///
event BridgeToNonEVMChain(
bytes32 indexed transactionId,
uint256 indexed destinationChainId,
bytes32 receiver
);
/// Errors ///
error InvalidQuote();
/// Modifiers ///
/// @param _bridgeData The core information needed for bridging
/// @param _relayData Data specific to Relay
modifier onlyValidQuote(
ILiFi.BridgeData memory _bridgeData,
RelayData calldata _relayData
) {
// Ensure that the id isn't already consumed
if (consumedIds[_relayData.requestId]) {
revert InvalidQuote();
}
// Ensure nonEVMAddress is not empty
if (
_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS &&
_relayData.nonEVMReceiver == bytes32(0)
) {
revert InvalidQuote();
}
// Verify that the bridging quote has been signed by the Relay solver
// as attested using the attestation API
// API URL: https://api.relay.link/requests/{requestId}/signature/v2
bytes32 message = ECDSA.toEthSignedMessageHash(
keccak256(
abi.encodePacked(
_relayData.requestId,
block.chainid,
bytes32(uint256(uint160(address(this)))),
bytes32(uint256(uint160(_bridgeData.sendingAssetId))),
_getMappedChainId(_bridgeData.destinationChainId),
_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS
? _relayData.nonEVMReceiver
: bytes32(uint256(uint160(_bridgeData.receiver))),
_relayData.receivingAssetId
)
)
);
address signer = ECDSA.recover(message, _relayData.signature);
if (signer != relaySolver) {
revert InvalidQuote();
}
_;
}
/// Constructor ///
/// @param _relayReceiver The receiver for native transfers
/// @param _relaySolver The relayer wallet for ERC20 transfers
constructor(address _relayReceiver, address _relaySolver) {
relayReceiver = _relayReceiver;
relaySolver = _relaySolver;
}
/// External Methods ///
/// @notice Bridges tokens via Relay
/// @param _bridgeData The core information needed for bridging
/// @param _relayData Data specific to Relay
function startBridgeTokensViaRelay(
ILiFi.BridgeData calldata _bridgeData,
RelayData calldata _relayData
)
external
payable
nonReentrant
onlyValidQuote(_bridgeData, _relayData)
refundExcessNative(payable(msg.sender))
validateBridgeData(_bridgeData)
doesNotContainSourceSwaps(_bridgeData)
doesNotContainDestinationCalls(_bridgeData)
{
LibAsset.depositAsset(
_bridgeData.sendingAssetId,
_bridgeData.minAmount
);
_startBridge(_bridgeData, _relayData);
}
/// @notice Performs a swap before bridging via Relay
/// @param _bridgeData The core information needed for bridging
/// @param _swapData An array of swap related data for performing swaps before bridging
/// @param _relayData Data specific to Relay
function swapAndStartBridgeTokensViaRelay(
ILiFi.BridgeData memory _bridgeData,
LibSwap.SwapData[] calldata _swapData,
RelayData calldata _relayData
)
external
payable
nonReentrant
onlyValidQuote(_bridgeData, _relayData)
refundExcessNative(payable(msg.sender))
containsSourceSwaps(_bridgeData)
doesNotContainDestinationCalls(_bridgeData)
validateBridgeData(_bridgeData)
{
_bridgeData.minAmount = _depositAndSwap(
_bridgeData.transactionId,
_bridgeData.minAmount,
_swapData,
payable(msg.sender)
);
_startBridge(_bridgeData, _relayData);
}
/// Internal Methods ///
/// @dev Contains the business logic for the bridge via Relay
/// @param _bridgeData The core information needed for bridging
/// @param _relayData Data specific to Relay
function _startBridge(
ILiFi.BridgeData memory _bridgeData,
RelayData calldata _relayData
) internal {
// check if sendingAsset is native or ERC20
if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
// Native
// Send Native to relayReceiver along with requestId as extra data
(bool success, bytes memory reason) = relayReceiver.call{
value: _bridgeData.minAmount
}(abi.encode(_relayData.requestId));
if (!success) {
revert(LibUtil.getRevertMsg(reason));
}
} else {
// ERC20
// We build the calldata from scratch to ensure that we can only
// send to the solver address
bytes memory transferCallData = bytes.concat(
abi.encodeWithSignature(
"transfer(address,uint256)",
relaySolver,
_bridgeData.minAmount
),
abi.encode(_relayData.requestId)
);
(bool success, bytes memory reason) = address(
_bridgeData.sendingAssetId
).call(transferCallData);
if (!success) {
revert(LibUtil.getRevertMsg(reason));
}
}
consumedIds[_relayData.requestId] = true;
// Emit special event if bridging to non-EVM chain
if (_bridgeData.receiver == LibAsset.NON_EVM_ADDRESS) {
emit BridgeToNonEVMChain(
_bridgeData.transactionId,
_getMappedChainId(_bridgeData.destinationChainId),
_relayData.nonEVMReceiver
);
}
emit LiFiTransferStarted(_bridgeData);
}
/// @notice get Relay specific chain id for non-EVM chains
/// IDs found here https://li.quest/v1/chains?chainTypes=UTXO,SVM
/// @param chainId LIFI specific chain id
function _getMappedChainId(
uint256 chainId
) internal pure returns (uint256) {
// Bitcoin
if (chainId == 20000000000001) {
return 8253038;
}
// Solana
if (chainId == 1151111081099710) {
return 792703809;
}
return chainId;
}
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
interface ILiFi {
/// Structs ///
struct BridgeData {
bytes32 transactionId;
string bridge;
string integrator;
address referrer;
address sendingAssetId;
address receiver;
uint256 minAmount;
uint256 destinationChainId;
bool hasSourceSwaps;
bool hasDestinationCall;
}
/// Events ///
event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
event LiFiTransferCompleted(
bytes32 indexed transactionId,
address receivingAssetId,
address receiver,
uint256 amount,
uint256 timestamp
);
event LiFiTransferRecovered(
bytes32 indexed transactionId,
address receivingAssetId,
address receiver,
uint256 amount,
uint256 timestamp
);
event LiFiGenericSwapCompleted(
bytes32 indexed transactionId,
string integrator,
string referrer,
address receiver,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount
);
// Deprecated but kept here to include in ABI to parse historic events
event LiFiSwappedGeneric(
bytes32 indexed transactionId,
string integrator,
string referrer,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount
);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;
import { InsufficientBalance, NullAddrIsNotAnERC20Token, NullAddrIsNotAValidSpender, NoTransferToNullAddress, InvalidAmount, NativeAssetTransferFailed } from "../Errors/GenericErrors.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { LibSwap } from "./LibSwap.sol";
/// @title LibAsset
/// @custom:version 1.0.1
/// @notice This library contains helpers for dealing with onchain transfers
/// of assets, including accounting for the native asset `assetId`
/// conventions and any noncompliant ERC20 transfers
library LibAsset {
uint256 private constant MAX_UINT = type(uint256).max;
address internal constant NULL_ADDRESS = address(0);
address internal constant NON_EVM_ADDRESS =
0x11f111f111f111F111f111f111F111f111f111F1;
/// @dev All native assets use the empty address for their asset id
/// by convention
address internal constant NATIVE_ASSETID = NULL_ADDRESS; //address(0)
/// @notice Gets the balance of the inheriting contract for the given asset
/// @param assetId The asset identifier to get the balance of
/// @return Balance held by contracts using this library
function getOwnBalance(address assetId) internal view returns (uint256) {
return
isNativeAsset(assetId)
? address(this).balance
: IERC20(assetId).balanceOf(address(this));
}
/// @notice Transfers ether from the inheriting contract to a given
/// recipient
/// @param recipient Address to send ether to
/// @param amount Amount to send to given recipient
function transferNativeAsset(
address payable recipient,
uint256 amount
) private {
if (recipient == NULL_ADDRESS) revert NoTransferToNullAddress();
if (amount > address(this).balance)
revert InsufficientBalance(amount, address(this).balance);
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = recipient.call{ value: amount }("");
if (!success) revert NativeAssetTransferFailed();
}
/// @notice If the current allowance is insufficient, the allowance for a given spender
/// is set to MAX_UINT.
/// @param assetId Token address to transfer
/// @param spender Address to give spend approval to
/// @param amount Amount to approve for spending
function maxApproveERC20(
IERC20 assetId,
address spender,
uint256 amount
) internal {
if (isNativeAsset(address(assetId))) {
return;
}
if (spender == NULL_ADDRESS) {
revert NullAddrIsNotAValidSpender();
}
if (assetId.allowance(address(this), spender) < amount) {
SafeERC20.safeApprove(IERC20(assetId), spender, 0);
SafeERC20.safeApprove(IERC20(assetId), spender, MAX_UINT);
}
}
/// @notice Transfers tokens from the inheriting contract to a given
/// recipient
/// @param assetId Token address to transfer
/// @param recipient Address to send token to
/// @param amount Amount to send to given recipient
function transferERC20(
address assetId,
address recipient,
uint256 amount
) private {
if (isNativeAsset(assetId)) {
revert NullAddrIsNotAnERC20Token();
}
if (recipient == NULL_ADDRESS) {
revert NoTransferToNullAddress();
}
uint256 assetBalance = IERC20(assetId).balanceOf(address(this));
if (amount > assetBalance) {
revert InsufficientBalance(amount, assetBalance);
}
SafeERC20.safeTransfer(IERC20(assetId), recipient, amount);
}
/// @notice Transfers tokens from a sender to a given recipient
/// @param assetId Token address to transfer
/// @param from Address of sender/owner
/// @param to Address of recipient/spender
/// @param amount Amount to transfer from owner to spender
function transferFromERC20(
address assetId,
address from,
address to,
uint256 amount
) internal {
if (isNativeAsset(assetId)) {
revert NullAddrIsNotAnERC20Token();
}
if (to == NULL_ADDRESS) {
revert NoTransferToNullAddress();
}
IERC20 asset = IERC20(assetId);
uint256 prevBalance = asset.balanceOf(to);
SafeERC20.safeTransferFrom(asset, from, to, amount);
if (asset.balanceOf(to) - prevBalance != amount) {
revert InvalidAmount();
}
}
function depositAsset(address assetId, uint256 amount) internal {
if (amount == 0) revert InvalidAmount();
if (isNativeAsset(assetId)) {
if (msg.value < amount) revert InvalidAmount();
} else {
uint256 balance = IERC20(assetId).balanceOf(msg.sender);
if (balance < amount) revert InsufficientBalance(amount, balance);
transferFromERC20(assetId, msg.sender, address(this), amount);
}
}
function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
for (uint256 i = 0; i < swaps.length; ) {
LibSwap.SwapData calldata swap = swaps[i];
if (swap.requiresDeposit) {
depositAsset(swap.sendingAssetId, swap.fromAmount);
}
unchecked {
i++;
}
}
}
/// @notice Determines whether the given assetId is the native asset
/// @param assetId The asset identifier to evaluate
/// @return Boolean indicating if the asset is the native asset
function isNativeAsset(address assetId) internal pure returns (bool) {
return assetId == NATIVE_ASSETID;
}
/// @notice Wrapper function to transfer a given asset (native or erc20) to
/// some recipient. Should handle all non-compliant return value
/// tokens as well by using the SafeERC20 contract by open zeppelin.
/// @param assetId Asset id for transfer (address(0) for native asset,
/// token address for erc20s)
/// @param recipient Address to send asset to
/// @param amount Amount to send to given recipient
function transferAsset(
address assetId,
address payable recipient,
uint256 amount
) internal {
isNativeAsset(assetId)
? transferNativeAsset(recipient, amount)
: transferERC20(assetId, recipient, amount);
}
/// @dev Checks whether the given address is a contract and contains code
function isContract(address _contractAddr) internal view returns (bool) {
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(_contractAddr)
}
return size > 0;
}
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
import { LibAsset } from "./LibAsset.sol";
import { LibUtil } from "./LibUtil.sol";
import { InvalidContract, NoSwapFromZeroBalance, InsufficientBalance } from "../Errors/GenericErrors.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
library LibSwap {
struct SwapData {
address callTo;
address approveTo;
address sendingAssetId;
address receivingAssetId;
uint256 fromAmount;
bytes callData;
bool requiresDeposit;
}
event AssetSwapped(
bytes32 transactionId,
address dex,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount,
uint256 timestamp
);
function swap(bytes32 transactionId, SwapData calldata _swap) internal {
if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
uint256 fromAmount = _swap.fromAmount;
if (fromAmount == 0) revert NoSwapFromZeroBalance();
uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
? _swap.fromAmount
: 0;
uint256 initialSendingAssetBalance = LibAsset.getOwnBalance(
_swap.sendingAssetId
);
uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
_swap.receivingAssetId
);
if (nativeValue == 0) {
LibAsset.maxApproveERC20(
IERC20(_swap.sendingAssetId),
_swap.approveTo,
_swap.fromAmount
);
}
if (initialSendingAssetBalance < _swap.fromAmount) {
revert InsufficientBalance(
_swap.fromAmount,
initialSendingAssetBalance
);
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory res) = _swap.callTo.call{
value: nativeValue
}(_swap.callData);
if (!success) {
LibUtil.revertWith(res);
}
uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
emit AssetSwapped(
transactionId,
_swap.callTo,
_swap.sendingAssetId,
_swap.receivingAssetId,
_swap.fromAmount,
newBalance > initialReceivingAssetBalance
? newBalance - initialReceivingAssetBalance
: newBalance,
block.timestamp
);
}
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
import "./LibBytes.sol";
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(
bytes memory _res
) internal pure returns (string memory) {
// If the _res length is less than 68, then the transaction failed silently (without a revert message)
if (_res.length < 68) return "Transaction reverted silently";
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
function revertWith(bytes memory data) internal pure {
assembly {
let dataSize := mload(data) // Load the size of the data
let dataPtr := add(data, 0x20) // Advance data pointer to the next word
revert(dataPtr, dataSize) // Revert with the given data
}
}
}
// SPDX-License-Identifier: UNLICENSED
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
/// @title Reentrancy Guard
/// @author LI.FI (https://li.fi)
/// @notice Abstract contract to provide protection against reentrancy
abstract contract ReentrancyGuard {
/// Storage ///
bytes32 private constant NAMESPACE = keccak256("com.lifi.reentrancyguard");
/// Types ///
struct ReentrancyStorage {
uint256 status;
}
/// Errors ///
error ReentrancyError();
/// Constants ///
uint256 private constant _NOT_ENTERED = 0;
uint256 private constant _ENTERED = 1;
/// Modifiers ///
modifier nonReentrant() {
ReentrancyStorage storage s = reentrancyStorage();
if (s.status == _ENTERED) revert ReentrancyError();
s.status = _ENTERED;
_;
s.status = _NOT_ENTERED;
}
/// Private Methods ///
/// @dev fetch local storage
function reentrancyStorage()
private
pure
returns (ReentrancyStorage storage data)
{
bytes32 position = NAMESPACE;
// solhint-disable-next-line no-inline-assembly
assembly {
data.slot := position
}
}
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
import { ILiFi } from "../Interfaces/ILiFi.sol";
import { LibSwap } from "../Libraries/LibSwap.sol";
import { LibAsset } from "../Libraries/LibAsset.sol";
import { LibAllowList } from "../Libraries/LibAllowList.sol";
import { ContractCallNotAllowed, NoSwapDataProvided, CumulativeSlippageTooHigh } from "../Errors/GenericErrors.sol";
/// @title Swapper
/// @author LI.FI (https://li.fi)
/// @notice Abstract contract to provide swap functionality
contract SwapperV2 is ILiFi {
/// Types ///
/// @dev only used to get around "Stack Too Deep" errors
struct ReserveData {
bytes32 transactionId;
address payable leftoverReceiver;
uint256 nativeReserve;
}
/// Modifiers ///
/// @dev Sends any leftover balances back to the user
/// @notice Sends any leftover balances to the user
/// @param _swaps Swap data array
/// @param _leftoverReceiver Address to send leftover tokens to
/// @param _initialBalances Array of initial token balances
modifier noLeftovers(
LibSwap.SwapData[] calldata _swaps,
address payable _leftoverReceiver,
uint256[] memory _initialBalances
) {
uint256 numSwaps = _swaps.length;
if (numSwaps != 1) {
address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
uint256 curBalance;
_;
for (uint256 i = 0; i < numSwaps - 1; ) {
address curAsset = _swaps[i].receivingAssetId;
// Handle multi-to-one swaps
if (curAsset != finalAsset) {
curBalance =
LibAsset.getOwnBalance(curAsset) -
_initialBalances[i];
if (curBalance > 0) {
LibAsset.transferAsset(
curAsset,
_leftoverReceiver,
curBalance
);
}
}
unchecked {
++i;
}
}
} else {
_;
}
}
/// @dev Sends any leftover balances back to the user reserving native tokens
/// @notice Sends any leftover balances to the user
/// @param _swaps Swap data array
/// @param _leftoverReceiver Address to send leftover tokens to
/// @param _initialBalances Array of initial token balances
modifier noLeftoversReserve(
LibSwap.SwapData[] calldata _swaps,
address payable _leftoverReceiver,
uint256[] memory _initialBalances,
uint256 _nativeReserve
) {
uint256 numSwaps = _swaps.length;
if (numSwaps != 1) {
address finalAsset = _swaps[numSwaps - 1].receivingAssetId;
uint256 curBalance;
_;
for (uint256 i = 0; i < numSwaps - 1; ) {
address curAsset = _swaps[i].receivingAssetId;
// Handle multi-to-one swaps
if (curAsset != finalAsset) {
curBalance =
LibAsset.getOwnBalance(curAsset) -
_initialBalances[i];
uint256 reserve = LibAsset.isNativeAsset(curAsset)
? _nativeReserve
: 0;
if (curBalance > 0) {
LibAsset.transferAsset(
curAsset,
_leftoverReceiver,
curBalance - reserve
);
}
}
unchecked {
++i;
}
}
} else {
_;
}
}
/// @dev Refunds any excess native asset sent to the contract after the main function
/// @notice Refunds any excess native asset sent to the contract after the main function
/// @param _refundReceiver Address to send refunds to
modifier refundExcessNative(address payable _refundReceiver) {
uint256 initialBalance = address(this).balance - msg.value;
_;
uint256 finalBalance = address(this).balance;
if (finalBalance > initialBalance) {
LibAsset.transferAsset(
LibAsset.NATIVE_ASSETID,
_refundReceiver,
finalBalance - initialBalance
);
}
}
/// Internal Methods ///
/// @dev Deposits value, executes swaps, and performs minimum amount check
/// @param _transactionId the transaction id associated with the operation
/// @param _minAmount the minimum amount of the final asset to receive
/// @param _swaps Array of data used to execute swaps
/// @param _leftoverReceiver The address to send leftover funds to
/// @return uint256 result of the swap
function _depositAndSwap(
bytes32 _transactionId,
uint256 _minAmount,
LibSwap.SwapData[] calldata _swaps,
address payable _leftoverReceiver
) internal returns (uint256) {
uint256 numSwaps = _swaps.length;
if (numSwaps == 0) {
revert NoSwapDataProvided();
}
address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
if (LibAsset.isNativeAsset(finalTokenId)) {
initialBalance -= msg.value;
}
uint256[] memory initialBalances = _fetchBalances(_swaps);
LibAsset.depositAssets(_swaps);
_executeSwaps(
_transactionId,
_swaps,
_leftoverReceiver,
initialBalances
);
uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
initialBalance;
if (newBalance < _minAmount) {
revert CumulativeSlippageTooHigh(_minAmount, newBalance);
}
return newBalance;
}
/// @dev Deposits value, executes swaps, and performs minimum amount check and reserves native token for fees
/// @param _transactionId the transaction id associated with the operation
/// @param _minAmount the minimum amount of the final asset to receive
/// @param _swaps Array of data used to execute swaps
/// @param _leftoverReceiver The address to send leftover funds to
/// @param _nativeReserve Amount of native token to prevent from being swept back to the caller
function _depositAndSwap(
bytes32 _transactionId,
uint256 _minAmount,
LibSwap.SwapData[] calldata _swaps,
address payable _leftoverReceiver,
uint256 _nativeReserve
) internal returns (uint256) {
uint256 numSwaps = _swaps.length;
if (numSwaps == 0) {
revert NoSwapDataProvided();
}
address finalTokenId = _swaps[numSwaps - 1].receivingAssetId;
uint256 initialBalance = LibAsset.getOwnBalance(finalTokenId);
if (LibAsset.isNativeAsset(finalTokenId)) {
initialBalance -= msg.value;
}
uint256[] memory initialBalances = _fetchBalances(_swaps);
LibAsset.depositAssets(_swaps);
ReserveData memory rd = ReserveData(
_transactionId,
_leftoverReceiver,
_nativeReserve
);
_executeSwaps(rd, _swaps, initialBalances);
uint256 newBalance = LibAsset.getOwnBalance(finalTokenId) -
initialBalance;
if (LibAsset.isNativeAsset(finalTokenId)) {
newBalance -= _nativeReserve;
}
if (newBalance < _minAmount) {
revert CumulativeSlippageTooHigh(_minAmount, newBalance);
}
return newBalance;
}
/// Private Methods ///
/// @dev Executes swaps and checks that DEXs used are in the allowList
/// @param _transactionId the transaction id associated with the operation
/// @param _swaps Array of data used to execute swaps
/// @param _leftoverReceiver Address to send leftover tokens to
/// @param _initialBalances Array of initial balances
function _executeSwaps(
bytes32 _transactionId,
LibSwap.SwapData[] calldata _swaps,
address payable _leftoverReceiver,
uint256[] memory _initialBalances
) internal noLeftovers(_swaps, _leftoverReceiver, _initialBalances) {
uint256 numSwaps = _swaps.length;
for (uint256 i = 0; i < numSwaps; ) {
LibSwap.SwapData calldata currentSwap = _swaps[i];
if (
!((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
LibAllowList.contractIsAllowed(currentSwap.callTo) &&
LibAllowList.selectorIsAllowed(
bytes4(currentSwap.callData[:4])
))
) revert ContractCallNotAllowed();
LibSwap.swap(_transactionId, currentSwap);
unchecked {
++i;
}
}
}
/// @dev Executes swaps and checks that DEXs used are in the allowList
/// @param _reserveData Data passed used to reserve native tokens
/// @param _swaps Array of data used to execute swaps
function _executeSwaps(
ReserveData memory _reserveData,
LibSwap.SwapData[] calldata _swaps,
uint256[] memory _initialBalances
)
internal
noLeftoversReserve(
_swaps,
_reserveData.leftoverReceiver,
_initialBalances,
_reserveData.nativeReserve
)
{
uint256 numSwaps = _swaps.length;
for (uint256 i = 0; i < numSwaps; ) {
LibSwap.SwapData calldata currentSwap = _swaps[i];
if (
!((LibAsset.isNativeAsset(currentSwap.sendingAssetId) ||
LibAllowList.contractIsAllowed(currentSwap.approveTo)) &&
LibAllowList.contractIsAllowed(currentSwap.callTo) &&
LibAllowList.selectorIsAllowed(
bytes4(currentSwap.callData[:4])
))
) revert ContractCallNotAllowed();
LibSwap.swap(_reserveData.transactionId, currentSwap);
unchecked {
++i;
}
}
}
/// @dev Fetches balances of tokens to be swapped before swapping.
/// @param _swaps Array of data used to execute swaps
/// @return uint256[] Array of token balances.
function _fetchBalances(
LibSwap.SwapData[] calldata _swaps
) private view returns (uint256[] memory) {
uint256 numSwaps = _swaps.length;
uint256[] memory balances = new uint256[](numSwaps);
address asset;
for (uint256 i = 0; i < numSwaps; ) {
asset = _swaps[i].receivingAssetId;
balances[i] = LibAsset.getOwnBalance(asset);
if (LibAsset.isNativeAsset(asset)) {
balances[i] -= msg.value;
}
unchecked {
++i;
}
}
return balances;
}
}
// SPDX-License-Identifier: UNLICENSED
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
import { LibAsset } from "../Libraries/LibAsset.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { InvalidReceiver, InformationMismatch, InvalidSendingToken, InvalidAmount, NativeAssetNotSupported, InvalidDestinationChain, CannotBridgeToSameNetwork } from "../Errors/GenericErrors.sol";
import { ILiFi } from "../Interfaces/ILiFi.sol";
import { LibSwap } from "../Libraries/LibSwap.sol";
contract Validatable {
modifier validateBridgeData(ILiFi.BridgeData memory _bridgeData) {
if (LibUtil.isZeroAddress(_bridgeData.receiver)) {
revert InvalidReceiver();
}
if (_bridgeData.minAmount == 0) {
revert InvalidAmount();
}
if (_bridgeData.destinationChainId == block.chainid) {
revert CannotBridgeToSameNetwork();
}
_;
}
modifier noNativeAsset(ILiFi.BridgeData memory _bridgeData) {
if (LibAsset.isNativeAsset(_bridgeData.sendingAssetId)) {
revert NativeAssetNotSupported();
}
_;
}
modifier onlyAllowSourceToken(
ILiFi.BridgeData memory _bridgeData,
address _token
) {
if (_bridgeData.sendingAssetId != _token) {
revert InvalidSendingToken();
}
_;
}
modifier onlyAllowDestinationChain(
ILiFi.BridgeData memory _bridgeData,
uint256 _chainId
) {
if (_bridgeData.destinationChainId != _chainId) {
revert InvalidDestinationChain();
}
_;
}
modifier containsSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
if (!_bridgeData.hasSourceSwaps) {
revert InformationMismatch();
}
_;
}
modifier doesNotContainSourceSwaps(ILiFi.BridgeData memory _bridgeData) {
if (_bridgeData.hasSourceSwaps) {
revert InformationMismatch();
}
_;
}
modifier doesNotContainDestinationCalls(
ILiFi.BridgeData memory _bridgeData
) {
if (_bridgeData.hasDestinationCall) {
revert InformationMismatch();
}
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
///
/// @dev Note:
/// - The recovery functions use the ecrecover precompile (0x1).
/// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
/// This is for more safety by default.
/// Use the `tryRecover` variants if you need to get the zero address back
/// upon recovery failure instead.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
/// regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
/// This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT use signatures as unique identifiers:
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
/// EIP-712 also enables readable signing of typed data for better user safety.
/// This implementation does NOT check if a signature is non-malleable.
library ECDSA {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The signature is invalid.
error InvalidSignature();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RECOVERY OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
for {} 1 {} {
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
if eq(mload(signature), 64) {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(mload(signature), 65) {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
break
}
result := 0
break
}
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function recoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
for {} 1 {} {
if eq(signature.length, 64) {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(signature.length, 65) {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
break
}
result := 0
break
}
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
result :=
mload(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x01, // Start of output.
0x20 // Size of output.
)
)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TRY-RECOVER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// WARNING!
// These functions will NOT revert upon recovery failure.
// Instead, they will return the zero address upon recovery failure.
// It is critical that the returned address is NEVER compared against
// a zero address (e.g. an uninitialized address variable).
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecover(bytes32 hash, bytes memory signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
for {} 1 {} {
mstore(0x00, hash)
mstore(0x40, mload(add(signature, 0x20))) // `r`.
if eq(mload(signature), 64) {
let vs := mload(add(signature, 0x40))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(mload(signature), 65) {
mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
mstore(0x60, mload(add(signature, 0x40))) // `s`.
break
}
result := 0
break
}
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
for {} 1 {} {
if eq(signature.length, 64) {
let vs := calldataload(add(signature.offset, 0x20))
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, calldataload(signature.offset)) // `r`.
mstore(0x60, shr(1, shl(1, vs))) // `s`.
break
}
if eq(signature.length, 65) {
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
break
}
result := 0
break
}
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
result, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, add(shr(255, vs), 27)) // `v`.
mstore(0x40, r)
mstore(0x60, shr(1, shl(1, vs))) // `s`.
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
1, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
mstore(0x60, 0) // Restore the zero slot.
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
mstore(0x40, m) // Restore the free memory pointer.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an Ethereum Signed Message, created from a `hash`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, hash) // Store into scratch space for keccak256.
mstore(0x00, "\\x00\\x00\\x00\\x00\\x19Ethereum Signed Message:\
32") // 28 bytes.
result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
}
}
/// @dev Returns an Ethereum Signed Message, created from `s`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
/// JSON-RPC method as part of EIP-191.
/// Note: Supports lengths of `s` up to 999999 bytes.
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let sLength := mload(s)
let o := 0x20
mstore(o, "\\x19Ethereum Signed Message:\
") // 26 bytes, zero-right-padded.
mstore(0x00, 0x00)
// Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
for { let temp := sLength } 1 {} {
o := sub(o, 1)
mstore8(o, add(48, mod(temp, 10)))
temp := div(temp, 10)
if iszero(temp) { break }
}
let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
// Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
mstore(s, sLength) // Restore the length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes.
function emptySignature() internal pure returns (bytes calldata signature) {
/// @solidity memory-safe-assembly
assembly {
signature.length := 0
}
}
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
error AlreadyInitialized();
error CannotAuthoriseSelf();
error CannotBridgeToSameNetwork();
error ContractCallNotAllowed();
error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
error DiamondIsPaused();
error ExternalCallFailed();
error FunctionDoesNotExist();
error InformationMismatch();
error InsufficientBalance(uint256 required, uint256 balance);
error InvalidAmount();
error InvalidCallData();
error InvalidConfig();
error InvalidContract();
error InvalidDestinationChain();
error InvalidFallbackAddress();
error InvalidReceiver();
error InvalidSendingToken();
error NativeAssetNotSupported();
error NativeAssetTransferFailed();
error NoSwapDataProvided();
error NoSwapFromZeroBalance();
error NotAContract();
error NotInitialized();
error NoTransferToNullAddress();
error NullAddrIsNotAnERC20Token();
error NullAddrIsNotAValidSpender();
error OnlyContractOwner();
error RecoveryAddressCannotBeZero();
error ReentrancyError();
error TokenNotSupported();
error UnAuthorized();
error UnsupportedChainId(uint256 chainId);
error WithdrawFailed();
error ZeroAmount();
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
bytes16 private constant _SYMBOLS = "0123456789abcdef";
// -------------------------
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(
add(tempBytes, lengthmod),
mul(0x20, iszero(lengthmod))
)
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(
add(
add(_bytes, lengthmod),
mul(0x20, iszero(lengthmod))
),
_start
)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(
bytes memory _bytes,
uint256 _start
) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(
mload(add(add(_bytes, 0x20), _start)),
0x1000000000000000000000000
)
}
return tempAddress;
}
/// Copied from OpenZeppelin's `Strings.sol` utility library.
/// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
function toHexString(
uint256 value,
uint256 length
) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
// SPDX-License-Identifier: MIT
/// @custom:version 1.0.0
pragma solidity ^0.8.17;
import { InvalidContract } from "../Errors/GenericErrors.sol";
/// @title Lib Allow List
/// @author LI.FI (https://li.fi)
/// @notice Library for managing and accessing the conract address allow list
library LibAllowList {
/// Storage ///
bytes32 internal constant NAMESPACE =
keccak256("com.lifi.library.allow.list");
struct AllowListStorage {
mapping(address => bool) allowlist;
mapping(bytes4 => bool) selectorAllowList;
address[] contracts;
}
/// @dev Adds a contract address to the allow list
/// @param _contract the contract address to add
function addAllowedContract(address _contract) internal {
_checkAddress(_contract);
AllowListStorage storage als = _getStorage();
if (als.allowlist[_contract]) return;
als.allowlist[_contract] = true;
als.contracts.push(_contract);
}
/// @dev Checks whether a contract address has been added to the allow list
/// @param _contract the contract address to check
function contractIsAllowed(
address _contract
) internal view returns (bool) {
return _getStorage().allowlist[_contract];
}
/// @dev Remove a contract address from the allow list
/// @param _contract the contract address to remove
function removeAllowedContract(address _contract) internal {
AllowListStorage storage als = _getStorage();
if (!als.allowlist[_contract]) {
return;
}
als.allowlist[_contract] = false;
uint256 length = als.contracts.length;
// Find the contract in the list
for (uint256 i = 0; i < length; i++) {
if (als.contracts[i] == _contract) {
// Move the last element into the place to delete
als.contracts[i] = als.contracts[length - 1];
// Remove the last element
als.contracts.pop();
break;
}
}
}
/// @dev Fetch contract addresses from the allow list
function getAllowedContracts() internal view returns (address[] memory) {
return _getStorage().contracts;
}
/// @dev Add a selector to the allow list
/// @param _selector the selector to add
function addAllowedSelector(bytes4 _selector) internal {
_getStorage().selectorAllowList[_selector] = true;
}
/// @dev Removes a selector from the allow list
/// @param _selector the selector to remove
function removeAllowedSelector(bytes4 _selector) internal {
_getStorage().selectorAllowList[_selector] = false;
}
/// @dev Returns if selector has been added to the allow list
/// @param _selector the selector to check
function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
return _getStorage().selectorAllowList[_selector];
}
/// @dev Fetch local storage struct
function _getStorage()
internal
pure
returns (AllowListStorage storage als)
{
bytes32 position = NAMESPACE;
// solhint-disable-next-line no-inline-assembly
assembly {
als.slot := position
}
}
/// @dev Contains business logic for validating a contract address.
/// @param _contract address of the dex to check
function _checkAddress(address _contract) private view {
if (_contract == address(0)) revert InvalidContract();
if (_contract.code.length == 0) revert InvalidContract();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}