Transaction Hash:
Block:
18572562 at Nov-14-2023 08:35:23 PM +UTC
Transaction Fee:
0.003323620623707048 ETH
$8.41
Gas Used:
76,748 Gas / 43.305631726 Gwei
Emitted Events:
128 |
UniswapV2Pair.Approval( owner=[Receiver] ElonMuskGrokStarshipWeb69, spender=0x7a250d56...659F2488D, value=115792089237316195423570985008687907853269984665640564039457584007913129639935 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x1d7457b8...6139E6A3a | |||||
0x388C818C...7ccB19297
Miner
| (Lido: Execution Layer Rewards Vault) | 173.183141472104160975 Eth | 173.183371716104160975 Eth | 0.000230244 | |
0xa18815dD...48F038C07 |
1.975899514930467618 Eth
Nonce: 4
|
1.97257589430676057 Eth
Nonce: 5
| 0.003323620623707048 | ||
0xA7C7e86a...c5d56613b |
Execution Trace
setToken[ElonMuskGrokStarshipWeb69 (ln:93)]
_requireIsOwner[ElonMuskGrokStarshipWeb69 (ln:94)]
approve[ElonMuskGrokStarshipWeb69 (ln:96)]
uniswapV2Pair[ElonMuskGrokStarshipWeb69 (ln:96)]
type[ElonMuskGrokStarshipWeb69 (ln:98)]
File 1 of 3: ElonMuskGrokStarshipWeb69
File 2 of 3: UniswapV2Pair
File 3 of 3: Elon
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import {Owned} from "solmate/auth/Owned.sol"; import {ERC20} from "solmate/tokens/ERC20.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {WETH as IWETH} from "solmate/tokens/WETH.sol"; import {IChad} from "./interfaces/IChad.sol"; import {IUniswapV2Router} from "./interfaces/IUniswapV2Router.sol"; import {ISwapRouter} from "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol"; import {IQuoter} from "@uniswap/v3-periphery/contracts/interfaces/IQuoter.sol"; contract ElonMuskGrokStarshipWeb69 is Owned { using SafeTransferLib for ERC20; enum UniswapVersion { V2, V3 } struct IndexComponent { address token; uint8 weight; uint24 fee; UniswapVersion version; } struct TokenAmount { address token; uint256 amount; } event IndexComponentUpdated(address indexed token, uint8 weight); event TokenPurchased(address indexed token, uint256 amount); event TokenRedeemed(address indexed token, uint256 amount); IUniswapV2Router public immutable uniswapV2Router; ISwapRouter public immutable uniswapV3Router; /// @dev enable perfect granularity uint256 public constant MAX_BPS = 1_000_000_000 * 1e18; uint24 public immutable LOW_FEE = 3_000; uint24 public immutable HIGH_FEE = 10_000; address public constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address public constant GROK = 0x8390a1DA07E376ef7aDd4Be859BA74Fb83aA02D5; address public constant WEB = 0x2b81945875f892afF04AF0A298d35FB2cF848c7b; address public constant STARSHIP = 0x319bcF115e35C18035BF1a405fE3c40c8B24533E; bool public canUpdateWeights = true; address public index; uint256 public lastPurchase; // Current implementation mapping(address => IndexComponent) public components; mapping(address => bool) public hasToken; address[] public tokens; address[] public allTokens; constructor() Owned(msg.sender) { uniswapV2Router = IUniswapV2Router( 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ); uniswapV3Router = ISwapRouter( 0xE592427A0AEce92De3Edee1F18E0157C05861564 ); components[GROK] = IndexComponent({ token: GROK, weight: 50, fee: 0, version: UniswapVersion.V2 }); components[STARSHIP] = IndexComponent({ token: STARSHIP, weight: 25, fee: 0, version: UniswapVersion.V2 }); components[WEB] = IndexComponent({ token: WEB, weight: 25, fee: 0, version: UniswapVersion.V2 }); tokens = [GROK, STARSHIP, WEB]; allTokens = [GROK, STARSHIP, WEB]; hasToken[GROK] = true; hasToken[STARSHIP] = true; hasToken[WEB] = true; ERC20(WETH).approve( 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D, type(uint256).max ); ERC20(WETH).approve( 0xE592427A0AEce92De3Edee1F18E0157C05861564, type(uint256).max ); lastPurchase = block.timestamp; } receive() external payable {} function _requireIsOwner() internal view { require(msg.sender == owner, "!owner"); } function setToken(address newIndex) external { _requireIsOwner(); index = newIndex; ERC20(IChad(index).uniswapV2Pair()).approve( address(uniswapV2Router), type(uint256).max ); } function setCanUpdateWeights(bool _canUpdateWeights) external { _requireIsOwner(); canUpdateWeights = _canUpdateWeights; } function elonBuying() external { _requireIsOwner(); uint256 wethBalance = ERC20(WETH).balanceOf(address(this)); uint256 etherBalance = address(this).balance; uint256 totalBalance = wethBalance + etherBalance; if (totalBalance == 0) { return; } uint256 managementFee = (totalBalance * 2) / 100; uint256 purchaseAmount = (totalBalance * 98) / 100; uint256 etherToWithdraw = managementFee - etherBalance; if (etherToWithdraw > 0) { IWETH(payable(WETH)).withdraw(etherToWithdraw); } (bool success, ) = address(owner).call{value: managementFee}(""); require(success); address token; uint256 ethAmount; IndexComponent memory component; for (uint8 i = 0; i < tokens.length; ) { token = tokens[i]; component = components[token]; ethAmount = (component.weight * purchaseAmount) / 100; if (component.version == UniswapVersion.V2) { _purchaseFromV2(token, ethAmount); } else { _purchaseFromV3(token, ethAmount, component.fee); } unchecked { i++; } } lastPurchase = block.timestamp; } function isERC20(address tokenAddress) internal returns (bool) { bytes memory payload = abi.encodeWithSignature("totalSupply()"); (bool success, bytes memory result) = tokenAddress.call(payload); return success && result.length > 0; } function updateWeights(IndexComponent[] calldata newComponents) external { _requireIsOwner(); uint8 totalWeight; for (uint8 i = 0; i < newComponents.length; ) { totalWeight += newComponents[i].weight; unchecked { i++; } } require(totalWeight == 100, "!valid"); for (uint i = 0; i < allTokens.length; ) { address token = allTokens[i]; delete components[token]; emit IndexComponentUpdated(token, 0); unchecked { i++; } } delete tokens; IndexComponent memory currentComponent; for (uint i = 0; i < newComponents.length; ) { currentComponent = newComponents[i]; require(isERC20(currentComponent.token), "Not ERC20"); components[currentComponent.token] = currentComponent; tokens.push(currentComponent.token); if (!hasToken[currentComponent.token]) { hasToken[currentComponent.token] = true; allTokens.push(currentComponent.token); } emit IndexComponentUpdated( currentComponent.token, currentComponent.weight ); unchecked { i++; } } } function redeem(uint256 amount) external { require(index != address(0)); require(amount > 0, "!tokens"); uint256 share = (amount * MAX_BPS) / ERC20(index).totalSupply(); IChad(index).burn(msg.sender, amount); address token; uint256 allocation; uint256 contractBalance; for (uint8 i = 0; i < allTokens.length; ) { token = allTokens[i]; contractBalance = ERC20(token).balanceOf(address(this)); if (contractBalance > 0) { allocation = (contractBalance * share) / MAX_BPS; ERC20(token).safeTransfer(msg.sender, allocation); emit TokenRedeemed(token, allocation); } unchecked { i++; } } if (lastPurchase != 0 && lastPurchase + 15 days < block.timestamp) { // anti-rug vector, if deployed dies or project stagnates the initial LP can be redeemed + all added liquidity address liquidityAddress = IChad(index).uniswapV2Pair(); uint256 liquidityBalance = ERC20(liquidityAddress).balanceOf( address(this) ); uint256 liquidityAllocation = (liquidityBalance * share) / MAX_BPS; if (liquidityAllocation > 0) { uniswapV2Router.removeLiquidity( WETH, index, liquidityAllocation, 0, 0, address(this), block.timestamp ); } uint256 chadRemoved = ERC20(index).balanceOf(address(this)); IChad(index).burn(address(this), chadRemoved); // anti-rug vector, if deployer dies or never updates the index - can redeem for weth uint256 wethBalance = ERC20(WETH).balanceOf(address(this)); uint256 wethAllocation = (wethBalance * share) / MAX_BPS; if (wethAllocation > 0) { ERC20(WETH).safeTransfer(msg.sender, wethAllocation); } } } function sellToken(address token) external { _requireIsOwner(); IndexComponent memory component = components[token]; uint256 tokenBalance = ERC20(token).balanceOf(address(this)); if (tokenBalance == 0) { return; } if (component.version == UniswapVersion.V2) { _sellToV2(token, tokenBalance); } else { _sellToV3(token, tokenBalance, component.fee); } // Update structures delete components[token]; hasToken[token] = false; _removeTokenFromArray(token); uint8 weightToRemove = component.weight; uint8 remainingTokens = uint8(tokens.length); if (remainingTokens > 0) { uint8 distributeWeight = weightToRemove / remainingTokens; for (uint8 i = 0; i < tokens.length; i++) { components[tokens[i]].weight += distributeWeight; } } } function redemptionAmounts() external view returns (TokenAmount[] memory) { TokenAmount[] memory tokenAmounts = new TokenAmount[](allTokens.length); for (uint8 i = 0; i < allTokens.length; ) { address token = allTokens[i]; tokenAmounts[i].token = token; tokenAmounts[i].amount = ERC20(token).balanceOf(address(this)); unchecked { i++; } } return tokenAmounts; } function currentTokenCount() external view returns (uint256) { return tokens.length; } function totalTokenCount() external view returns (uint256) { return allTokens.length; } function _removeTokenFromArray(address token) private { uint256 indexToRemove; bool found = false; for (uint256 i = 0; i < allTokens.length; i++) { if (allTokens[i] == token) { indexToRemove = i; found = true; break; } } require(found, "Token not found in allTokens"); if (indexToRemove < allTokens.length - 1) { allTokens[indexToRemove] = allTokens[allTokens.length - 1]; } allTokens.pop(); } function _sellToV2(address token, uint256 amount) internal { address[] memory path = new address[](2); path[0] = token; path[1] = WETH; ERC20(token).approve(address(uniswapV2Router), type(uint256).max); uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens( amount, 0, path, address(this), block.timestamp ); } function _sellToV3(address token, uint256 amount, uint24 fee) internal { ERC20(token).approve(address(uniswapV3Router), type(uint256).max); uniswapV3Router.exactInput( ISwapRouter.ExactInputParams({ path: abi.encodePacked(token, fee, WETH), recipient: address(this), deadline: block.timestamp, amountIn: amount, amountOutMinimum: 0 }) ); } function _purchaseFromV2(address token, uint256 amount) internal { address[] memory path = new address[](2); path[0] = WETH; path[1] = token; uint256 balanceBefore = ERC20(token).balanceOf(address(this)); uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens( amount, 0, path, address(this), block.timestamp ); uint256 balanceAfter = ERC20(token).balanceOf(address(this)); emit TokenPurchased(token, balanceAfter - balanceBefore); } function _purchaseFromV3( address token, uint256 amount, uint24 fee ) internal { uint256 balanceBefore = ERC20(token).balanceOf(address(this)); uniswapV3Router.exactInput( ISwapRouter.ExactInputParams({ path: abi.encodePacked(WETH, fee, token), recipient: address(this), deadline: block.timestamp, amountIn: amount, amountOutMinimum: 0 }) ); uint256 balanceAfter = ERC20(token).balanceOf(address(this)); emit TokenPurchased(token, balanceAfter - balanceBefore); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Simple single owner authorization mixin. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol) abstract contract Owned { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OwnershipTransferred(address indexed user, address indexed newOwner); /*////////////////////////////////////////////////////////////// OWNERSHIP STORAGE //////////////////////////////////////////////////////////////*/ address public owner; modifier onlyOwner() virtual { require(msg.sender == owner, "UNAUTHORIZED"); _; } /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _owner) { owner = _owner; emit OwnershipTransferred(address(0), _owner); } /*////////////////////////////////////////////////////////////// OWNERSHIP LOGIC //////////////////////////////////////////////////////////////*/ function transferOwnership(address newOwner) public virtual onlyOwner { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "./ERC20.sol"; import {SafeTransferLib} from "../utils/SafeTransferLib.sol"; /// @notice Minimalist and modern Wrapped Ether implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/WETH.sol) /// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol) contract WETH is ERC20("Wrapped Ether", "WETH", 18) { using SafeTransferLib for address; event Deposit(address indexed from, uint256 amount); event Withdrawal(address indexed to, uint256 amount); function deposit() public payable virtual { _mint(msg.sender, msg.value); emit Deposit(msg.sender, msg.value); } function withdraw(uint256 amount) public virtual { _burn(msg.sender, amount); emit Withdrawal(msg.sender, amount); msg.sender.safeTransferETH(amount); } receive() external payable virtual { deposit(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IChad { function burn(address from, uint256 amount) external; function uniswapV2Pair() external returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IUniswapV2Router { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function addLiquidityETH( address token, uint256 amountTokenDesired, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol'; /// @title Router token swapping functionality /// @notice Functions for swapping tokens via Uniswap V3 interface ISwapRouter is IUniswapV3SwapCallback { struct ExactInputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; uint160 sqrtPriceLimitX96; } /// @notice Swaps `amountIn` of one token for as much as possible of another token /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata /// @return amountOut The amount of the received token function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut); struct ExactInputParams { bytes path; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; } /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata /// @return amountOut The amount of the received token function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut); struct ExactOutputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; uint160 sqrtPriceLimitX96; } /// @notice Swaps as little as possible of one token for `amountOut` of another token /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata /// @return amountIn The amount of the input token function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn); struct ExactOutputParams { bytes path; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; } /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed) /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata /// @return amountIn The amount of the input token function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Quoter Interface /// @notice Supports quoting the calculated amounts from exact input or exact output swaps /// @dev These functions are not marked view because they rely on calling non-view functions and reverting /// to compute the result. They are also not gas efficient and should not be called on-chain. interface IQuoter { /// @notice Returns the amount out received for a given exact input swap without executing the swap /// @param path The path of the swap, i.e. each token pair and the pool fee /// @param amountIn The amount of the first token to swap /// @return amountOut The amount of the last token that would be received function quoteExactInput(bytes memory path, uint256 amountIn) external returns (uint256 amountOut); /// @notice Returns the amount out received for a given exact input but for a swap of a single pool /// @param tokenIn The token being swapped in /// @param tokenOut The token being swapped out /// @param fee The fee of the token pool to consider for the pair /// @param amountIn The desired input amount /// @param sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap /// @return amountOut The amount of `tokenOut` that would be received function quoteExactInputSingle( address tokenIn, address tokenOut, uint24 fee, uint256 amountIn, uint160 sqrtPriceLimitX96 ) external returns (uint256 amountOut); /// @notice Returns the amount in required for a given exact output swap without executing the swap /// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order /// @param amountOut The amount of the last token to receive /// @return amountIn The amount of first token required to be paid function quoteExactOutput(bytes memory path, uint256 amountOut) external returns (uint256 amountIn); /// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool /// @param tokenIn The token being swapped in /// @param tokenOut The token being swapped out /// @param fee The fee of the token pool to consider for the pair /// @param amountOut The desired output amount /// @param sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap /// @return amountIn The amount required as the input for the swap in order to receive `amountOut` function quoteExactOutputSingle( address tokenIn, address tokenOut, uint24 fee, uint256 amountOut, uint160 sqrtPriceLimitX96 ) external returns (uint256 amountIn); } // SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Callback for IUniswapV3PoolActions#swap /// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface interface IUniswapV3SwapCallback { /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap. /// @dev In the implementation you must pay the pool tokens owed for the swap. /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory. /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped. /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token0 to the pool. /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by /// the end of the swap. If positive, the callback must send that amount of token1 to the pool. /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call function uniswapV3SwapCallback( int256 amount0Delta, int256 amount1Delta, bytes calldata data ) external; }
File 2 of 3: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }
File 3 of 3: Elon
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import {ERC20} from "solmate/tokens/ERC20.sol"; import {WETH} from "solmate/tokens/WETH.sol"; import {Owned} from "solmate/auth/Owned.sol"; import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol"; import {IUniswapV2Factory} from "./interfaces/IUniswapV2Factory.sol"; import {IUniswapV2Router} from "./interfaces/IUniswapV2Router.sol"; // Twitter: https://twitter.com/ElonMuskETF // Telegram: https://t.me/GrokElonMuskStarshipWeb69 // Website: https://elon-musk-etf.com/ // Tax: 5/5 // ElonMuskGrokStarshipWeb69 is an ETF that is backed by $GROK, $STARSHIP and $WEB // Taxes from buys and sells are used to buy these tokens // The $ELONETF can be redeemed for the underlying tokens at any time contract Elon is ERC20, Owned { using SafeTransferLib for ERC20; struct User { bool isBlacklisted; bool isAutomatedMarketMaker; bool isExcludedFromFees; bool isExcludedFromMaxTransactionAmount; } struct Fees { uint8 buy; uint8 sell; uint8 liquidity; uint8 index; uint8 development; } struct Settings { bool limitsInEffect; bool swapEnabled; bool blacklistRenounced; bool feeChangeRenounced; bool tradingActive; /// @dev Upon enabling trading, record the end block for bot protection fee /// @dev This fee is a 90% fee that is reduced by 5% every block for 18 blocks. uint216 endBlock; } uint256 public constant MAX_SUPPLY = 1_000_000_000 * 1e18; uint256 public constant MIN_SWAP_AMOUNT = MAX_SUPPLY / 100_000; // 0.001% uint256 public constant MAX_SWAP_AMOUNT = (MAX_SUPPLY * 5) / 1_000; // 0.5% IUniswapV2Router public immutable uniswapV2Router; address public immutable uniswapV2Pair; address public immutable index; address public immutable developmentWallet; uint256 public maxTransactionAmount; uint256 public swapTokensAtAmount; uint256 public maxWallet; uint256 public tokensForBotProtection; Fees public feeAmounts; bool private _swapping; Settings private settings = Settings({ limitsInEffect: true, swapEnabled: true, blacklistRenounced: false, feeChangeRenounced: false, tradingActive: false, endBlock: uint216(0) }); mapping(address => User) private _users; address private wethAddress; event ExcludeFromFees(address indexed account, bool isExcluded); event ExcludeFromMaxTransaction(address indexed account, bool isExcluded); event FailedSwapBackTransfer(address indexed destination, uint256 amount); event MaxTransactionAmountUpdated(uint256 newAmount, uint256 oldAmount); event SetAutomatedMarketMakerPair(address indexed pair, bool value); event SwapAndLiquify(uint256 tokensSwapped, uint256 ethReceived); event SwapTokensAtAmountUpdated(uint256 newAmount, uint256 oldAmount); error Index__BlacklistModificationDisabled(); error Index__BuyAmountGreaterThanMax(); error Index__CannotBlacklistLPPair(); error Index__CannotBlacklistRouter(); error Index__CannotRemovePairFromAMMs(); error Index__CannotTransferFromAddressZero(); error Index__CannotTransferToAddressZero(); error Index__ErrorWithdrawingEth(); error Index__FeeChangeRenounced(); error Index__MaxFeeFivePercent(); error Index__MaxTransactionTooLow(); error Index__MaxWalletAmountExceeded(); error Index__MaxWalletAmountTooLow(); error Index__OnlyOwner(); error Index__ReceiverBlacklisted(); error Index__ReceiverCannotBeAddressZero(); error Index__SellAmountGreaterThanMax(); error Index__SenderBlacklisted(); error Index__StuckEthWithdrawError(); error Index__SwapAmountGreaterThanMaximum(); error Index__SwapAmountLowerThanMinimum(); error Index__TokenAddressCannotBeAddressZero(); error Index__TradingNotActive(); constructor( address indexWallet ) ERC20("ElonMuskGrokStarshipWeb69", "ELONETF", 18) Owned(msg.sender) { // fix addrs index = indexWallet; developmentWallet = msg.sender; IUniswapV2Router _uniswapV2Router = IUniswapV2Router( 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ); uniswapV2Router = _uniswapV2Router; wethAddress = uniswapV2Router.WETH(); uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()) .createPair(address(this), _uniswapV2Router.WETH()); maxTransactionAmount = MAX_SUPPLY / 200; // 0.5% maxWallet = MAX_SUPPLY / 100; // 1% swapTokensAtAmount = (MAX_SUPPLY * 5) / 10_000; // 0.05% feeAmounts = Fees({ buy: 5, sell: 5, liquidity: 10, index: 10, development: 80 }); _users[msg.sender] = User({ isExcludedFromFees: true, isExcludedFromMaxTransactionAmount: true, isAutomatedMarketMaker: false, isBlacklisted: false }); _users[address(this)] = User({ isExcludedFromFees: true, isExcludedFromMaxTransactionAmount: true, isAutomatedMarketMaker: false, isBlacklisted: false }); _users[address(uniswapV2Router)] = User({ isExcludedFromMaxTransactionAmount: true, isAutomatedMarketMaker: false, isExcludedFromFees: false, isBlacklisted: false }); _users[address(uniswapV2Pair)] = User({ isExcludedFromMaxTransactionAmount: true, isAutomatedMarketMaker: true, isExcludedFromFees: false, isBlacklisted: false }); _mint(msg.sender, MAX_SUPPLY); _approve(address(uniswapV2Router), type(uint256).max); } receive() external payable {} function _requireIsOwner() internal view { require(msg.sender == owner, "!owner"); } function burn(address from, uint256 amount) external { require(msg.sender == index, "!index"); _burn(from, amount); } function updateFees(Fees memory newFees) external { _requireIsOwner(); require( newFees.development + newFees.index + newFees.liquidity == 100, "!valid" ); feeAmounts = newFees; } function enableTrading() external { _requireIsOwner(); settings.endBlock = uint216(block.number) + 20; settings.tradingActive = true; } function removeLimits() external { _requireIsOwner(); settings.limitsInEffect = false; } // change the minimum amount of tokens to sell from fees function updateSwapTokensAtAmount(uint256 newAmount) external { _requireIsOwner(); if (newAmount < MIN_SWAP_AMOUNT) { revert Index__SwapAmountLowerThanMinimum(); } if (newAmount > MAX_SWAP_AMOUNT) { revert Index__SwapAmountGreaterThanMaximum(); } uint256 oldSwapAmount = swapTokensAtAmount; swapTokensAtAmount = newAmount; emit SwapTokensAtAmountUpdated(newAmount, oldSwapAmount); } function updateMaxTransactionAmount(uint256 newAmount) external { _requireIsOwner(); if (newAmount < (MAX_SUPPLY * 5) / 1000) { revert Index__MaxTransactionTooLow(); } uint256 oldMaxTransactionAmount = maxTransactionAmount; maxTransactionAmount = newAmount; emit MaxTransactionAmountUpdated(newAmount, oldMaxTransactionAmount); } function excludeFromFees(address account, bool excluded) external { _requireIsOwner(); _users[account].isExcludedFromFees = excluded; emit ExcludeFromFees(account, excluded); } function excludeFromMaxTransaction( address account, bool isExcluded ) external { _requireIsOwner(); _users[account].isExcludedFromMaxTransactionAmount = isExcluded; emit ExcludeFromMaxTransaction(account, isExcluded); } function setAutomatedMarketMakerPair(address pair, bool value) external { _requireIsOwner(); if (pair == uniswapV2Pair) { revert Index__CannotRemovePairFromAMMs(); } _users[pair].isAutomatedMarketMaker = value; emit SetAutomatedMarketMakerPair(pair, value); } function renounceBlacklist() external { _requireIsOwner(); settings.blacklistRenounced = true; } function blacklist(address account) external { _requireIsOwner(); if (settings.blacklistRenounced) { revert Index__BlacklistModificationDisabled(); } if (account == uniswapV2Pair) { revert Index__CannotBlacklistLPPair(); } if (account == address(uniswapV2Router)) { revert Index__CannotBlacklistRouter(); } _users[account].isBlacklisted = true; } // @dev unblacklist address; not affected by blacklistRenounced incase team wants to unblacklist v3 pools down the function unblacklist(address account) external { _requireIsOwner(); _users[account].isBlacklisted = false; } function isExcludedFromFees(address account) external view returns (bool) { return _users[account].isExcludedFromFees; } function isExcludedFromMaxTransactionAmount( address account ) external view returns (bool) { return _users[account].isExcludedFromMaxTransactionAmount; } function isAutomatedMarketMakerPair( address pair ) external view returns (bool) { return _users[pair].isAutomatedMarketMaker; } function isBlacklisted(address account) external view returns (bool) { return _users[account].isBlacklisted; } function isSwapEnabled() external view returns (bool) { return settings.swapEnabled; } function amountOfTokensForBotProtection() external view returns (uint256) { return tokensForBotProtection; } function isBlacklistRenounced() external view returns (bool) { return settings.blacklistRenounced; } function isFeeChangeRenounced() external view returns (bool) { return settings.feeChangeRenounced; } function isTradingActive() external view returns (bool) { return settings.tradingActive; } function isLimitInEffect() external view returns (bool) { return settings.limitsInEffect; } function transfer( address to, uint256 amount ) public override returns (bool) { _transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public override returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) { allowance[from][msg.sender] = allowed - amount; } _transfer(from, to, amount); return true; } function _transfer( address from, address to, uint256 amount ) internal returns (bool) { User memory fromData = _users[from]; User memory toData = _users[to]; Settings memory settingCache = settings; if (!settingCache.tradingActive) { if (!fromData.isExcludedFromFees) { if (!toData.isExcludedFromFees) { revert Index__TradingNotActive(); } } } // Apply blacklist protection if (fromData.isBlacklisted) { revert Index__SenderBlacklisted(); } if (toData.isBlacklisted) { revert Index__ReceiverBlacklisted(); } // If zero amount, continue if (amount == 0) { return true; } bool excludedFromFees = fromData.isExcludedFromFees || toData.isExcludedFromFees; // Cache transaction type for reference. // 1 = Buy // 2 = Sell // 3 = Transfer uint8 txType = 3; if (fromData.isAutomatedMarketMaker) { // Buys originate from the AMM pair txType = 1; } else if (toData.isAutomatedMarketMaker) { // Sells send funds to AMM pair txType = 2; } if (!_swapping) { if (settingCache.limitsInEffect) { //when buy if (txType == 1 && !toData.isExcludedFromMaxTransactionAmount) { if (amount > maxTransactionAmount) { revert Index__BuyAmountGreaterThanMax(); } if (amount + this.balanceOf(to) > maxWallet) { revert Index__MaxWalletAmountExceeded(); } } //when sell else if ( txType == 2 && !fromData.isExcludedFromMaxTransactionAmount ) { if (amount > maxTransactionAmount) { revert Index__SellAmountGreaterThanMax(); } } else if (!toData.isExcludedFromMaxTransactionAmount) { if (amount + this.balanceOf(to) > maxWallet) { revert Index__MaxWalletAmountExceeded(); } } } if (settingCache.swapEnabled) { // Only sells will trigger the fee swap if (txType == 2) { if (this.balanceOf(address(this)) >= swapTokensAtAmount) { _swapping = true; _swapBack(); _swapping = false; } } } } if (txType < 3) { bool takeFee = !_swapping; // if any account belongs to _isExcludedFromFee account then remove the fee if (excludedFromFees) { takeFee = false; } uint256 fees = 0; // only take fees on buys/sells, do not take on wallet transfers if (takeFee) { Fees memory feeCache = feeAmounts; // on sell if (txType == 2) { if (feeCache.sell > 0) { fees = (amount * feeCache.sell) / 100; } } // on buy else if (txType == 1) { if (feeCache.buy > 0) { fees = (amount * feeCache.buy) / 100; } } if (block.number < settingCache.endBlock) { uint256 blocksLeft = settingCache.endBlock - block.number; uint256 botFeeMultiplier = 95; // Apply sniper protection - first 18 blocks have a fee reduced 5% each block. if (blocksLeft < 19) { botFeeMultiplier -= (5 * (19 - blocksLeft)); } uint256 botFee = (amount * botFeeMultiplier) / 100; // send tokens to dev from bot protection _doTransfer(from, developmentWallet, fees); amount -= botFee; tokensForBotProtection += botFee; } amount -= fees; if (fees > 0) { _doTransfer(from, address(this), fees); } } } _doTransfer(from, to, amount); return true; } function _swapTokensForEth(uint256 tokenAmount) internal { address[] memory path = new address[](2); path[0] = address(this); path[1] = uniswapV2Router.WETH(); uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens( tokenAmount, 0, path, address(this), block.timestamp ); } function _addLiquidity(uint256 tokenAmount, uint256 ethAmount) internal { uniswapV2Router.addLiquidityETH{value: ethAmount}( address(this), tokenAmount, 0, // slippage is unavoidable 0, // slippage is unavoidable owner, block.timestamp ); } function _doTransfer( address from, address to, uint256 amount ) internal returns (bool) { balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } function _swapBack() internal { // Cache values uint256 contractBalance = this.balanceOf(address(this)); Fees memory feeCache = feeAmounts; if (contractBalance == 0) { return; } // Prevent too many tokens from being swapped uint256 maxAmount = swapTokensAtAmount * 20; if (contractBalance > maxAmount) { contractBalance = maxAmount; } uint256 liquidityAmount = (contractBalance * feeCache.liquidity) / 100; // Halve the amount of liquidity tokens uint256 liquidityTokens = liquidityAmount - (liquidityAmount / 2); uint256 initialETHBalance = address(this).balance; _swapTokensForEth(liquidityTokens); uint256 ethForLiquidity = address(this).balance - initialETHBalance; if (liquidityTokens > 0 && ethForLiquidity > 0) { _addLiquidity(liquidityTokens, ethForLiquidity); emit SwapAndLiquify(liquidityTokens, ethForLiquidity); } uint256 amountToSwapForETH = contractBalance - liquidityAmount; _swapTokensForEth(amountToSwapForETH); uint256 contractEthAmount = address(this).balance; uint256 initialTotalEth = contractEthAmount + (ethForLiquidity * 2); uint256 developmentEthAmount = (initialTotalEth * feeCache.development) / 100; (bool success, ) = address(developmentWallet).call{ value: developmentEthAmount }(""); require(success); uint256 indexEthAmount = contractEthAmount - developmentEthAmount; WETH(payable(wethAddress)).deposit{value: indexEthAmount}(); ERC20(wethAddress).safeTransfer(index, indexEthAmount); } function _approve(address spender, uint256 amount) internal onlyOwner { allowance[address(this)][spender] = amount; emit Approval(address(this), spender, amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "./ERC20.sol"; import {SafeTransferLib} from "../utils/SafeTransferLib.sol"; /// @notice Minimalist and modern Wrapped Ether implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/WETH.sol) /// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol) contract WETH is ERC20("Wrapped Ether", "WETH", 18) { using SafeTransferLib for address; event Deposit(address indexed from, uint256 amount); event Withdrawal(address indexed to, uint256 amount); function deposit() public payable virtual { _mint(msg.sender, msg.value); emit Deposit(msg.sender, msg.value); } function withdraw(uint256 amount) public virtual { _burn(msg.sender, amount); emit Withdrawal(msg.sender, amount); msg.sender.safeTransferETH(amount); } receive() external payable virtual { deposit(); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Simple single owner authorization mixin. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol) abstract contract Owned { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event OwnershipTransferred(address indexed user, address indexed newOwner); /*////////////////////////////////////////////////////////////// OWNERSHIP STORAGE //////////////////////////////////////////////////////////////*/ address public owner; modifier onlyOwner() virtual { require(msg.sender == owner, "UNAUTHORIZED"); _; } /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(address _owner) { owner = _owner; emit OwnershipTransferred(address(0), _owner); } /*////////////////////////////////////////////////////////////// OWNERSHIP LOGIC //////////////////////////////////////////////////////////////*/ function transferOwnership(address newOwner) public virtual onlyOwner { owner = newOwner; emit OwnershipTransferred(msg.sender, newOwner); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument. mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IUniswapV2Factory { function createPair( address tokenA, address tokenB ) external returns (address pair); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.13; interface IUniswapV2Router { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function addLiquidityETH( address token, uint256 amountTokenDesired, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; }