Transaction Hash:
Block:
21092437 at Nov-01-2024 11:16:11 AM +UTC
Transaction Fee:
0.014210507100964376 ETH
$34.38
Gas Used:
2,136,157 Gas / 6.652370168 Gwei
Emitted Events:
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2E956Ed3...4BF84bb54 | |||||
0x35Bdb91A...9CA6f57cc |
0.092607429660317942 Eth
Nonce: 2904
|
0.078396922559353566 Eth
Nonce: 2905
| 0.014210507100964376 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 8.617264108981794907 Eth | 8.619336181271794907 Eth | 0.00207207229 |
Execution Trace
TransferHelper.bulkTransfer( items=, conduitKey=0000007B02230091A7ED01230072F7006A004D60A8D4E71D599B8104250F0000 ) => ( items=, conduitKey= )
Conduit.execute( transfers= ) => ( transfers= )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=37 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=859 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2295 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1653 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2694 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=3154 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1746 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2779 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2624 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1601 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1904 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2915 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2745 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2913 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=588 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2911 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1142 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1986 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1536 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1225 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1598 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2614 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2015 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1584 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1585 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2177 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=1472 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2947 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=2053 )
-
NeonJunkies.transferFrom( from=0x35Bdb91AB447be1B294D876166B5EAF9CA6f57cc, to=0x000000000000000000000000000000000000dEaD, tokenId=3008 )
-
bulkTransfer[TransferHelper (ln:57)]
InvalidConduit[TransferHelper (ln:63)]
_performTransfersWithConduit[TransferHelper (ln:66)]
_checkRecipientIsNotZeroAddress[TransferHelper (ln:132)]
RecipientCannotBeZeroAddress[TransferHelper (ln:292)]
InvalidERC20Identifier[TransferHelper (ln:148)]
_checkERC721Receiver[TransferHelper (ln:157)]
onERC721Received[TransferHelper (ln:252)]
InvalidERC721Recipient[TransferHelper (ln:263)]
ERC721ReceiverErrorRevertBytes[TransferHelper (ln:267)]
ERC721ReceiverErrorRevertString[TransferHelper (ln:275)]
ConduitTransfer[TransferHelper (ln:166)]
execute[TransferHelper (ln:180)]
InvalidConduit[TransferHelper (ln:188)]
ConduitErrorRevertString[TransferHelper (ln:193)]
ConduitErrorRevertBytes[TransferHelper (ln:227)]
File 1 of 3: TransferHelper
File 2 of 3: NeonJunkies
File 3 of 3: Conduit
// SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import { IERC721Receiver } from "../interfaces/IERC721Receiver.sol"; import "./TransferHelperStructs.sol"; import { ConduitInterface } from "../interfaces/ConduitInterface.sol"; import { ConduitControllerInterface } from "../interfaces/ConduitControllerInterface.sol"; import { Conduit } from "../conduit/Conduit.sol"; import { ConduitTransfer } from "../conduit/lib/ConduitStructs.sol"; import { TransferHelperInterface } from "../interfaces/TransferHelperInterface.sol"; import { TransferHelperErrors } from "../interfaces/TransferHelperErrors.sol"; /** * @title TransferHelper * @author stephankmin, stuckinaboot, ryanio * @notice TransferHelper is a utility contract for transferring * ERC20/ERC721/ERC1155 items in bulk to specific recipients. */ contract TransferHelper is TransferHelperInterface, TransferHelperErrors { // Allow for interaction with the conduit controller. ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER; // Set conduit creation code and runtime code hashes as immutable arguments. bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH; bytes32 internal immutable _CONDUIT_RUNTIME_CODE_HASH; /** * @dev Set the supplied conduit controller and retrieve its * conduit creation code hash. * * * @param conduitController A contract that deploys conduits, or proxies * that may optionally be used to transfer approved * ERC20/721/1155 tokens. */ constructor(address conduitController) { // Get the conduit creation code and runtime code hashes from the // supplied conduit controller and set them as an immutable. ConduitControllerInterface controller = ConduitControllerInterface( conduitController ); (_CONDUIT_CREATION_CODE_HASH, _CONDUIT_RUNTIME_CODE_HASH) = controller .getConduitCodeHashes(); // Set the supplied conduit controller as an immutable. _CONDUIT_CONTROLLER = controller; } /** * @notice Transfer multiple ERC20/ERC721/ERC1155 items to * specified recipients. * * @param items The items to transfer to an intended recipient. * @param conduitKey An optional conduit key referring to a conduit through * which the bulk transfer should occur. * * @return magicValue A value indicating that the transfers were successful. */ function bulkTransfer( TransferHelperItemsWithRecipient[] calldata items, bytes32 conduitKey ) external override returns (bytes4 magicValue) { // Ensure that a conduit key has been supplied. if (conduitKey == bytes32(0)) { revert InvalidConduit(conduitKey, address(0)); } // Use conduit derived from supplied conduit key to perform transfers. _performTransfersWithConduit(items, conduitKey); // Return a magic value indicating that the transfers were performed. magicValue = this.bulkTransfer.selector; } /** * @notice Perform multiple transfers to specified recipients via the * conduit derived from the provided conduit key. * * @param transfers The items to transfer. * @param conduitKey The conduit key referring to the conduit through * which the bulk transfer should occur. */ function _performTransfersWithConduit( TransferHelperItemsWithRecipient[] calldata transfers, bytes32 conduitKey ) internal { // Retrieve total number of transfers and place on stack. uint256 numTransfers = transfers.length; // Derive the conduit address from the deployer, conduit key // and creation code hash. address conduit = address( uint160( uint256( keccak256( abi.encodePacked( bytes1(0xff), address(_CONDUIT_CONTROLLER), conduitKey, _CONDUIT_CREATION_CODE_HASH ) ) ) ) ); // Declare a variable to store the sum of all items across transfers. uint256 sumOfItemsAcrossAllTransfers; // Skip overflow checks: all for loops are indexed starting at zero. unchecked { // Iterate over each transfer. for (uint256 i = 0; i < numTransfers; ++i) { // Retrieve the transfer in question. TransferHelperItemsWithRecipient calldata transfer = transfers[ i ]; // Increment totalItems by the number of items in the transfer. sumOfItemsAcrossAllTransfers += transfer.items.length; } } // Declare a new array in memory with length totalItems to populate with // each conduit transfer. ConduitTransfer[] memory conduitTransfers = new ConduitTransfer[]( sumOfItemsAcrossAllTransfers ); // Declare an index for storing ConduitTransfers in conduitTransfers. uint256 itemIndex; // Skip overflow checks: all for loops are indexed starting at zero. unchecked { // Iterate over each transfer. for (uint256 i = 0; i < numTransfers; ++i) { // Retrieve the transfer in question. TransferHelperItemsWithRecipient calldata transfer = transfers[ i ]; // Retrieve the items of the transfer in question. TransferHelperItem[] calldata transferItems = transfer.items; // Ensure recipient is not the zero address. _checkRecipientIsNotZeroAddress(transfer.recipient); // Create a boolean indicating whether validateERC721Receiver // is true and recipient is a contract. bool callERC721Receiver = transfer.validateERC721Receiver && transfer.recipient.code.length != 0; // Retrieve the total number of items in the transfer and // place on stack. uint256 numItemsInTransfer = transferItems.length; // Iterate over each item in the transfer to create a // corresponding ConduitTransfer. for (uint256 j = 0; j < numItemsInTransfer; ++j) { // Retrieve the item from the transfer. TransferHelperItem calldata item = transferItems[j]; if (item.itemType == ConduitItemType.ERC20) { // Ensure that the identifier of an ERC20 token is 0. if (item.identifier != 0) { revert InvalidERC20Identifier(); } } // If the item is an ERC721 token and // callERC721Receiver is true... if (item.itemType == ConduitItemType.ERC721) { if (callERC721Receiver) { // Check if the recipient implements // onERC721Received for the given tokenId. _checkERC721Receiver( conduit, transfer.recipient, item.identifier ); } } // Create a ConduitTransfer corresponding to each // TransferHelperItem. conduitTransfers[itemIndex] = ConduitTransfer( item.itemType, item.token, msg.sender, transfer.recipient, item.identifier, item.amount ); // Increment the index for storing ConduitTransfers. ++itemIndex; } } } // Attempt the external call to transfer tokens via the derived conduit. try ConduitInterface(conduit).execute(conduitTransfers) returns ( bytes4 conduitMagicValue ) { // Check if the value returned from the external call matches // the conduit `execute` selector. if (conduitMagicValue != ConduitInterface.execute.selector) { // If the external call fails, revert with the conduit key // and conduit address. revert InvalidConduit(conduitKey, conduit); } } catch Error(string memory reason) { // Catch reverts with a provided reason string and // revert with the reason, conduit key and conduit address. revert ConduitErrorRevertString(reason, conduitKey, conduit); } catch (bytes memory data) { // Conduits will throw a custom error when attempting to transfer // native token item types or an ERC721 item amount other than 1. // Bubble up these custom errors when encountered. Note that the // conduit itself will bubble up revert reasons from transfers as // well, meaning that these errors are not necessarily indicative of // an issue with the item type or amount in cases where the same // custom error signature is encountered during a conduit transfer. // Set initial value of first four bytes of revert data to the mask. bytes4 customErrorSelector = bytes4(0xffffffff); // Utilize assembly to read first four bytes (if present) directly. assembly { // Combine original mask with first four bytes of revert data. customErrorSelector := and( mload(add(data, 0x20)), // Data begins after length offset. customErrorSelector ) } // Pass through the custom error in question if the revert data is // the correct length and matches an expected custom error selector. if ( data.length == 4 && (customErrorSelector == InvalidItemType.selector || customErrorSelector == InvalidERC721TransferAmount.selector) ) { // "Bubble up" the revert reason. assembly { revert(add(data, 0x20), 0x04) } } // Catch all other reverts from the external call to the conduit and // include the conduit's raw revert reason as a data argument to a // new custom error. revert ConduitErrorRevertBytes(data, conduitKey, conduit); } } /** * @notice An internal function to check if a recipient address implements * onERC721Received for a given tokenId. Note that this check does * not adhere to the safe transfer specification and is only meant * to provide an additional layer of assurance that the recipient * can receive the tokens — any hooks or post-transfer checks will * fail and the caller will be the transfer helper rather than the * ERC721 contract. Note that the conduit is set as the operator, as * it will be the caller once the transfer is performed. * * @param conduit The conduit to provide as the operator when calling * onERC721Received. * @param recipient The ERC721 recipient on which to call onERC721Received. * @param tokenId The ERC721 tokenId of the token being transferred. */ function _checkERC721Receiver( address conduit, address recipient, uint256 tokenId ) internal { // Check if recipient can receive ERC721 tokens. try IERC721Receiver(recipient).onERC721Received( conduit, msg.sender, tokenId, "" ) returns (bytes4 selector) { // Check if onERC721Received selector is valid. if (selector != IERC721Receiver.onERC721Received.selector) { // Revert if recipient cannot accept // ERC721 tokens. revert InvalidERC721Recipient(recipient); } } catch (bytes memory data) { // "Bubble up" recipient's revert reason. revert ERC721ReceiverErrorRevertBytes( data, recipient, msg.sender, tokenId ); } catch Error(string memory reason) { // "Bubble up" recipient's revert reason. revert ERC721ReceiverErrorRevertString( reason, recipient, msg.sender, tokenId ); } } /** * @notice An internal function that reverts if the passed-in recipient * is the zero address. * * @param recipient The recipient on which to perform the check. */ function _checkRecipientIsNotZeroAddress(address recipient) internal pure { // Revert if the recipient is the zero address. if (recipient == address(0x0)) { revert RecipientCannotBeZeroAddress(); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; interface IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol"; /** * @dev A TransferHelperItem specifies the itemType (ERC20/ERC721/ERC1155), * token address, token identifier, and amount of the token to be * transferred via the TransferHelper. For ERC20 tokens, identifier * must be 0. For ERC721 tokens, amount must be 1. */ struct TransferHelperItem { ConduitItemType itemType; address token; uint256 identifier; uint256 amount; } /** * @dev A TransferHelperItemsWithRecipient specifies the tokens to transfer * via the TransferHelper, their intended recipient, and a boolean flag * indicating whether onERC721Received should be called on a recipient * contract. */ struct TransferHelperItemsWithRecipient { TransferHelperItem[] items; address recipient; bool validateERC721Receiver; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import { ConduitTransfer, ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol"; /** * @title ConduitInterface * @author 0age * @notice ConduitInterface contains all external function interfaces, events, * and errors for conduit contracts. */ interface ConduitInterface { /** * @dev Revert with an error when attempting to execute transfers using a * caller that does not have an open channel. */ error ChannelClosed(address channel); /** * @dev Revert with an error when attempting to update a channel to the * current status of that channel. */ error ChannelStatusAlreadySet(address channel, bool isOpen); /** * @dev Revert with an error when attempting to execute a transfer for an * item that does not have an ERC20/721/1155 item type. */ error InvalidItemType(); /** * @dev Revert with an error when attempting to update the status of a * channel from a caller that is not the conduit controller. */ error InvalidController(); /** * @dev Emit an event whenever a channel is opened or closed. * * @param channel The channel that has been updated. * @param open A boolean indicating whether the conduit is open or not. */ event ChannelUpdated(address indexed channel, bool open); /** * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller * with an open channel can call this function. * * @param transfers The ERC20/721/1155 transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function execute(ConduitTransfer[] calldata transfers) external returns (bytes4 magicValue); /** * @notice Execute a sequence of batch 1155 transfers. Only a caller with an * open channel can call this function. * * @param batch1155Transfers The 1155 batch transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function executeBatch1155( ConduitBatch1155Transfer[] calldata batch1155Transfers ) external returns (bytes4 magicValue); /** * @notice Execute a sequence of transfers, both single and batch 1155. Only * a caller with an open channel can call this function. * * @param standardTransfers The ERC20/721/1155 transfers to perform. * @param batch1155Transfers The 1155 batch transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function executeWithBatch1155( ConduitTransfer[] calldata standardTransfers, ConduitBatch1155Transfer[] calldata batch1155Transfers ) external returns (bytes4 magicValue); /** * @notice Open or close a given channel. Only callable by the controller. * * @param channel The channel to open or close. * @param isOpen The status of the channel (either open or closed). */ function updateChannel(address channel, bool isOpen) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; /** * @title ConduitControllerInterface * @author 0age * @notice ConduitControllerInterface contains all external function interfaces, * structs, events, and errors for the conduit controller. */ interface ConduitControllerInterface { /** * @dev Track the conduit key, current owner, new potential owner, and open * channels for each deployed conduit. */ struct ConduitProperties { bytes32 key; address owner; address potentialOwner; address[] channels; mapping(address => uint256) channelIndexesPlusOne; } /** * @dev Emit an event whenever a new conduit is created. * * @param conduit The newly created conduit. * @param conduitKey The conduit key used to create the new conduit. */ event NewConduit(address conduit, bytes32 conduitKey); /** * @dev Emit an event whenever conduit ownership is transferred. * * @param conduit The conduit for which ownership has been * transferred. * @param previousOwner The previous owner of the conduit. * @param newOwner The new owner of the conduit. */ event OwnershipTransferred( address indexed conduit, address indexed previousOwner, address indexed newOwner ); /** * @dev Emit an event whenever a conduit owner registers a new potential * owner for that conduit. * * @param newPotentialOwner The new potential owner of the conduit. */ event PotentialOwnerUpdated(address indexed newPotentialOwner); /** * @dev Revert with an error when attempting to create a new conduit using a * conduit key where the first twenty bytes of the key do not match the * address of the caller. */ error InvalidCreator(); /** * @dev Revert with an error when attempting to create a new conduit when no * initial owner address is supplied. */ error InvalidInitialOwner(); /** * @dev Revert with an error when attempting to set a new potential owner * that is already set. */ error NewPotentialOwnerAlreadySet( address conduit, address newPotentialOwner ); /** * @dev Revert with an error when attempting to cancel ownership transfer * when no new potential owner is currently set. */ error NoPotentialOwnerCurrentlySet(address conduit); /** * @dev Revert with an error when attempting to interact with a conduit that * does not yet exist. */ error NoConduit(); /** * @dev Revert with an error when attempting to create a conduit that * already exists. */ error ConduitAlreadyExists(address conduit); /** * @dev Revert with an error when attempting to update channels or transfer * ownership of a conduit when the caller is not the owner of the * conduit in question. */ error CallerIsNotOwner(address conduit); /** * @dev Revert with an error when attempting to register a new potential * owner and supplying the null address. */ error NewPotentialOwnerIsZeroAddress(address conduit); /** * @dev Revert with an error when attempting to claim ownership of a conduit * with a caller that is not the current potential owner for the * conduit in question. */ error CallerIsNotNewPotentialOwner(address conduit); /** * @dev Revert with an error when attempting to retrieve a channel using an * index that is out of range. */ error ChannelOutOfRange(address conduit); /** * @notice Deploy a new conduit using a supplied conduit key and assigning * an initial owner for the deployed conduit. Note that the first * twenty bytes of the supplied conduit key must match the caller * and that a new conduit cannot be created if one has already been * deployed using the same conduit key. * * @param conduitKey The conduit key used to deploy the conduit. Note that * the first twenty bytes of the conduit key must match * the caller of this contract. * @param initialOwner The initial owner to set for the new conduit. * * @return conduit The address of the newly deployed conduit. */ function createConduit(bytes32 conduitKey, address initialOwner) external returns (address conduit); /** * @notice Open or close a channel on a given conduit, thereby allowing the * specified account to execute transfers against that conduit. * Extreme care must be taken when updating channels, as malicious * or vulnerable channels can transfer any ERC20, ERC721 and ERC1155 * tokens where the token holder has granted the conduit approval. * Only the owner of the conduit in question may call this function. * * @param conduit The conduit for which to open or close the channel. * @param channel The channel to open or close on the conduit. * @param isOpen A boolean indicating whether to open or close the channel. */ function updateChannel( address conduit, address channel, bool isOpen ) external; /** * @notice Initiate conduit ownership transfer by assigning a new potential * owner for the given conduit. Once set, the new potential owner * may call `acceptOwnership` to claim ownership of the conduit. * Only the owner of the conduit in question may call this function. * * @param conduit The conduit for which to initiate ownership transfer. * @param newPotentialOwner The new potential owner of the conduit. */ function transferOwnership(address conduit, address newPotentialOwner) external; /** * @notice Clear the currently set potential owner, if any, from a conduit. * Only the owner of the conduit in question may call this function. * * @param conduit The conduit for which to cancel ownership transfer. */ function cancelOwnershipTransfer(address conduit) external; /** * @notice Accept ownership of a supplied conduit. Only accounts that the * current owner has set as the new potential owner may call this * function. * * @param conduit The conduit for which to accept ownership. */ function acceptOwnership(address conduit) external; /** * @notice Retrieve the current owner of a deployed conduit. * * @param conduit The conduit for which to retrieve the associated owner. * * @return owner The owner of the supplied conduit. */ function ownerOf(address conduit) external view returns (address owner); /** * @notice Retrieve the conduit key for a deployed conduit via reverse * lookup. * * @param conduit The conduit for which to retrieve the associated conduit * key. * * @return conduitKey The conduit key used to deploy the supplied conduit. */ function getKey(address conduit) external view returns (bytes32 conduitKey); /** * @notice Derive the conduit associated with a given conduit key and * determine whether that conduit exists (i.e. whether it has been * deployed). * * @param conduitKey The conduit key used to derive the conduit. * * @return conduit The derived address of the conduit. * @return exists A boolean indicating whether the derived conduit has been * deployed or not. */ function getConduit(bytes32 conduitKey) external view returns (address conduit, bool exists); /** * @notice Retrieve the potential owner, if any, for a given conduit. The * current owner may set a new potential owner via * `transferOwnership` and that owner may then accept ownership of * the conduit in question via `acceptOwnership`. * * @param conduit The conduit for which to retrieve the potential owner. * * @return potentialOwner The potential owner, if any, for the conduit. */ function getPotentialOwner(address conduit) external view returns (address potentialOwner); /** * @notice Retrieve the status (either open or closed) of a given channel on * a conduit. * * @param conduit The conduit for which to retrieve the channel status. * @param channel The channel for which to retrieve the status. * * @return isOpen The status of the channel on the given conduit. */ function getChannelStatus(address conduit, address channel) external view returns (bool isOpen); /** * @notice Retrieve the total number of open channels for a given conduit. * * @param conduit The conduit for which to retrieve the total channel count. * * @return totalChannels The total number of open channels for the conduit. */ function getTotalChannels(address conduit) external view returns (uint256 totalChannels); /** * @notice Retrieve an open channel at a specific index for a given conduit. * Note that the index of a channel can change as a result of other * channels being closed on the conduit. * * @param conduit The conduit for which to retrieve the open channel. * @param channelIndex The index of the channel in question. * * @return channel The open channel, if any, at the specified channel index. */ function getChannel(address conduit, uint256 channelIndex) external view returns (address channel); /** * @notice Retrieve all open channels for a given conduit. Note that calling * this function for a conduit with many channels will revert with * an out-of-gas error. * * @param conduit The conduit for which to retrieve open channels. * * @return channels An array of open channels on the given conduit. */ function getChannels(address conduit) external view returns (address[] memory channels); /** * @dev Retrieve the conduit creation code and runtime code hashes. */ function getConduitCodeHashes() external view returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import { ConduitInterface } from "../interfaces/ConduitInterface.sol"; import { ConduitItemType } from "./lib/ConduitEnums.sol"; import { TokenTransferrer } from "../lib/TokenTransferrer.sol"; import { ConduitTransfer, ConduitBatch1155Transfer } from "./lib/ConduitStructs.sol"; import "./lib/ConduitConstants.sol"; /** * @title Conduit * @author 0age * @notice This contract serves as an originator for "proxied" transfers. Each * conduit is deployed and controlled by a "conduit controller" that can * add and remove "channels" or contracts that can instruct the conduit * to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each * conduit has an owner that can arbitrarily add or remove channels, and * a malicious or negligent owner can add a channel that allows for any * approved ERC20/721/1155 tokens to be taken immediately — be extremely * cautious with what conduits you give token approvals to!* */ contract Conduit is ConduitInterface, TokenTransferrer { // Set deployer as an immutable controller that can update channel statuses. address private immutable _controller; // Track the status of each channel. mapping(address => bool) private _channels; /** * @notice Ensure that the caller is currently registered as an open channel * on the conduit. */ modifier onlyOpenChannel() { // Utilize assembly to access channel storage mapping directly. assembly { // Write the caller to scratch space. mstore(ChannelKey_channel_ptr, caller()) // Write the storage slot for _channels to scratch space. mstore(ChannelKey_slot_ptr, _channels.slot) // Derive the position in storage of _channels[msg.sender] // and check if the stored value is zero. if iszero( sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length)) ) { // The caller is not an open channel; revert with // ChannelClosed(caller). First, set error signature in memory. mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature) // Next, set the caller as the argument. mstore(ChannelClosed_channel_ptr, caller()) // Finally, revert, returning full custom error with argument. revert(ChannelClosed_error_ptr, ChannelClosed_error_length) } } // Continue with function execution. _; } /** * @notice In the constructor, set the deployer as the controller. */ constructor() { // Set the deployer as the controller. _controller = msg.sender; } /** * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller * with an open channel can call this function. Note that channels * are expected to implement reentrancy protection if desired, and * that cross-channel reentrancy may be possible if the conduit has * multiple open channels at once. Also note that channels are * expected to implement checks against transferring any zero-amount * items if that constraint is desired. * * @param transfers The ERC20/721/1155 transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function execute(ConduitTransfer[] calldata transfers) external override onlyOpenChannel returns (bytes4 magicValue) { // Retrieve the total number of transfers and place on the stack. uint256 totalStandardTransfers = transfers.length; // Iterate over each transfer. for (uint256 i = 0; i < totalStandardTransfers; ) { // Retrieve the transfer in question and perform the transfer. _transfer(transfers[i]); // Skip overflow check as for loop is indexed starting at zero. unchecked { ++i; } } // Return a magic value indicating that the transfers were performed. magicValue = this.execute.selector; } /** * @notice Execute a sequence of batch 1155 item transfers. Only a caller * with an open channel can call this function. Note that channels * are expected to implement reentrancy protection if desired, and * that cross-channel reentrancy may be possible if the conduit has * multiple open channels at once. Also note that channels are * expected to implement checks against transferring any zero-amount * items if that constraint is desired. * * @param batchTransfers The 1155 batch item transfers to perform. * * @return magicValue A magic value indicating that the item transfers were * performed successfully. */ function executeBatch1155( ConduitBatch1155Transfer[] calldata batchTransfers ) external override onlyOpenChannel returns (bytes4 magicValue) { // Perform 1155 batch transfers. Note that memory should be considered // entirely corrupted from this point forward. _performERC1155BatchTransfers(batchTransfers); // Return a magic value indicating that the transfers were performed. magicValue = this.executeBatch1155.selector; } /** * @notice Execute a sequence of transfers, both single ERC20/721/1155 item * transfers as well as batch 1155 item transfers. Only a caller * with an open channel can call this function. Note that channels * are expected to implement reentrancy protection if desired, and * that cross-channel reentrancy may be possible if the conduit has * multiple open channels at once. Also note that channels are * expected to implement checks against transferring any zero-amount * items if that constraint is desired. * * @param standardTransfers The ERC20/721/1155 item transfers to perform. * @param batchTransfers The 1155 batch item transfers to perform. * * @return magicValue A magic value indicating that the item transfers were * performed successfully. */ function executeWithBatch1155( ConduitTransfer[] calldata standardTransfers, ConduitBatch1155Transfer[] calldata batchTransfers ) external override onlyOpenChannel returns (bytes4 magicValue) { // Retrieve the total number of transfers and place on the stack. uint256 totalStandardTransfers = standardTransfers.length; // Iterate over each standard transfer. for (uint256 i = 0; i < totalStandardTransfers; ) { // Retrieve the transfer in question and perform the transfer. _transfer(standardTransfers[i]); // Skip overflow check as for loop is indexed starting at zero. unchecked { ++i; } } // Perform 1155 batch transfers. Note that memory should be considered // entirely corrupted from this point forward aside from the free memory // pointer having the default value. _performERC1155BatchTransfers(batchTransfers); // Return a magic value indicating that the transfers were performed. magicValue = this.executeWithBatch1155.selector; } /** * @notice Open or close a given channel. Only callable by the controller. * * @param channel The channel to open or close. * @param isOpen The status of the channel (either open or closed). */ function updateChannel(address channel, bool isOpen) external override { // Ensure that the caller is the controller of this contract. if (msg.sender != _controller) { revert InvalidController(); } // Ensure that the channel does not already have the indicated status. if (_channels[channel] == isOpen) { revert ChannelStatusAlreadySet(channel, isOpen); } // Update the status of the channel. _channels[channel] = isOpen; // Emit a corresponding event. emit ChannelUpdated(channel, isOpen); } /** * @dev Internal function to transfer a given ERC20/721/1155 item. Note that * channels are expected to implement checks against transferring any * zero-amount items if that constraint is desired. * * @param item The ERC20/721/1155 item to transfer. */ function _transfer(ConduitTransfer calldata item) internal { // Determine the transfer method based on the respective item type. if (item.itemType == ConduitItemType.ERC20) { // Transfer ERC20 token. Note that item.identifier is ignored and // therefore ERC20 transfer items are potentially malleable — this // check should be performed by the calling channel if a constraint // on item malleability is desired. _performERC20Transfer(item.token, item.from, item.to, item.amount); } else if (item.itemType == ConduitItemType.ERC721) { // Ensure that exactly one 721 item is being transferred. if (item.amount != 1) { revert InvalidERC721TransferAmount(); } // Transfer ERC721 token. _performERC721Transfer( item.token, item.from, item.to, item.identifier ); } else if (item.itemType == ConduitItemType.ERC1155) { // Transfer ERC1155 token. _performERC1155Transfer( item.token, item.from, item.to, item.identifier, item.amount ); } else { // Throw with an error. revert InvalidItemType(); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import { ConduitItemType } from "./ConduitEnums.sol"; struct ConduitTransfer { ConduitItemType itemType; address token; address from; address to; uint256 identifier; uint256 amount; } struct ConduitBatch1155Transfer { address token; address from; address to; uint256[] ids; uint256[] amounts; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import { TransferHelperItem, TransferHelperItemsWithRecipient } from "../helpers/TransferHelperStructs.sol"; interface TransferHelperInterface { /** * @notice Transfer multiple items to a single recipient. * * @param items The items to transfer. * @param conduitKey The key of the conduit performing the bulk transfer. */ function bulkTransfer( TransferHelperItemsWithRecipient[] calldata items, bytes32 conduitKey ) external returns (bytes4); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; /** * @title TransferHelperErrors */ interface TransferHelperErrors { /** * @dev Revert with an error when attempting to execute transfers with a * NATIVE itemType. */ error InvalidItemType(); /** * @dev Revert with an error when an ERC721 transfer with amount other than * one is attempted. */ error InvalidERC721TransferAmount(); /** * @dev Revert with an error when attempting to execute an ERC721 transfer * to an invalid recipient. */ error InvalidERC721Recipient(address recipient); /** * @dev Revert with an error when a call to a ERC721 receiver reverts with * bytes data. */ error ERC721ReceiverErrorRevertBytes( bytes reason, address receiver, address sender, uint256 identifier ); /** * @dev Revert with an error when a call to a ERC721 receiver reverts with * string reason. */ error ERC721ReceiverErrorRevertString( string reason, address receiver, address sender, uint256 identifier ); /** * @dev Revert with an error when an ERC20 token has an invalid identifier. */ error InvalidERC20Identifier(); /** * @dev Revert with an error if the recipient is the zero address. */ error RecipientCannotBeZeroAddress(); /** * @dev Revert with an error when attempting to fill an order referencing an * invalid conduit (i.e. one that has not been deployed). */ error InvalidConduit(bytes32 conduitKey, address conduit); /** * @dev Revert with an error when a call to a conduit reverts with a * reason string. */ error ConduitErrorRevertString( string reason, bytes32 conduitKey, address conduit ); /** * @dev Revert with an error when a call to a conduit reverts with bytes * data. */ error ConduitErrorRevertBytes( bytes reason, bytes32 conduitKey, address conduit ); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; enum ConduitItemType { NATIVE, // unused ERC20, ERC721, ERC1155 } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; import "./TokenTransferrerConstants.sol"; import { TokenTransferrerErrors } from "../interfaces/TokenTransferrerErrors.sol"; import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol"; /** * @title TokenTransferrer * @author 0age * @custom:coauthor d1ll0n * @custom:coauthor transmissions11 * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721, * ERC1155, and batch ERC1155 transfers, used by both Seaport as well as * by conduits deployed by the ConduitController. Use great caution when * considering these functions for use in other codebases, as there are * significant side effects and edge cases that need to be thoroughly * understood and carefully addressed. */ contract TokenTransferrer is TokenTransferrerErrors { /** * @dev Internal function to transfer ERC20 tokens from a given originator * to a given recipient. Sufficient approvals must be set on the * contract performing the transfer. * * @param token The ERC20 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param amount The amount to transfer. */ function _performERC20Transfer( address token, address from, address to, uint256 amount ) internal { // Utilize assembly to perform an optimized ERC20 token transfer. assembly { // The free memory pointer memory slot will be used when populating // call data for the transfer; read the value and restore it later. let memPointer := mload(FreeMemoryPointerSlot) // Write call data into memory, starting with function selector. mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature) mstore(ERC20_transferFrom_from_ptr, from) mstore(ERC20_transferFrom_to_ptr, to) mstore(ERC20_transferFrom_amount_ptr, amount) // Make call & copy up to 32 bytes of return data to scratch space. // Scratch space does not need to be cleared ahead of time, as the // subsequent check will ensure that either at least a full word of // return data is received (in which case it will be overwritten) or // that no data is received (in which case scratch space will be // ignored) on a successful call to the given token. let callStatus := call( gas(), token, 0, ERC20_transferFrom_sig_ptr, ERC20_transferFrom_length, 0, OneWord ) // Determine whether transfer was successful using status & result. let success := and( // Set success to whether the call reverted, if not check it // either returned exactly 1 (can't just be non-zero data), or // had no return data. or( and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize()) ), callStatus ) // Handle cases where either the transfer failed or no data was // returned. Group these, as most transfers will succeed with data. // Equivalent to `or(iszero(success), iszero(returndatasize()))` // but after it's inverted for JUMPI this expression is cheaper. if iszero(and(success, iszero(iszero(returndatasize())))) { // If the token has no code or the transfer failed: Equivalent // to `or(iszero(success), iszero(extcodesize(token)))` but // after it's inverted for JUMPI this expression is cheaper. if iszero(and(iszero(iszero(extcodesize(token))), success)) { // If the transfer failed: if iszero(success) { // If it was due to a revert: if iszero(callStatus) { // If it returned a message, bubble it up as long as // sufficient gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to // copy returndata while expanding memory where // necessary. Start by computing the word size // of returndata and allocated memory. Round up // to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use the free memory pointer in place of // msize() to work around a Yul warning that // prevents accessing msize directly when the IR // pipeline is activated. let msizeWords := div(memPointer, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub( returnDataWords, msizeWords ), CostPerWord ), div( sub( mul( returnDataWords, returnDataWords ), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to // gas remaining; bubble up the revert data if // enough gas is still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite // existing memory. returndatacopy(0, 0, returndatasize()) // Revert, specifying memory region with // copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. mstore( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_signature ) mstore( TokenTransferGenericFailure_error_token_ptr, token ) mstore( TokenTransferGenericFailure_error_from_ptr, from ) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore(TokenTransferGenericFailure_error_id_ptr, 0) mstore( TokenTransferGenericFailure_error_amount_ptr, amount ) revert( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_length ) } // Otherwise revert with a message about the token // returning false or non-compliant return values. mstore( BadReturnValueFromERC20OnTransfer_error_sig_ptr, BadReturnValueFromERC20OnTransfer_error_signature ) mstore( BadReturnValueFromERC20OnTransfer_error_token_ptr, token ) mstore( BadReturnValueFromERC20OnTransfer_error_from_ptr, from ) mstore( BadReturnValueFromERC20OnTransfer_error_to_ptr, to ) mstore( BadReturnValueFromERC20OnTransfer_error_amount_ptr, amount ) revert( BadReturnValueFromERC20OnTransfer_error_sig_ptr, BadReturnValueFromERC20OnTransfer_error_length ) } // Otherwise, revert with error about token not having code: mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // Otherwise, the token just returned no data despite the call // having succeeded; no need to optimize for this as it's not // technically ERC20 compliant. } // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer an ERC721 token from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer. Note that this function does * not check whether the receiver can accept the ERC721 token (i.e. it * does not use `safeTransferFrom`). * * @param token The ERC721 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. */ function _performERC721Transfer( address token, address from, address to, uint256 identifier ) internal { // Utilize assembly to perform an optimized ERC721 token transfer. assembly { // If the token has no code, revert. if iszero(extcodesize(token)) { mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // The free memory pointer memory slot will be used when populating // call data for the transfer; read the value and restore it later. let memPointer := mload(FreeMemoryPointerSlot) // Write call data to memory starting with function selector. mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature) mstore(ERC721_transferFrom_from_ptr, from) mstore(ERC721_transferFrom_to_ptr, to) mstore(ERC721_transferFrom_id_ptr, identifier) // Perform the call, ignoring return data. let success := call( gas(), token, 0, ERC721_transferFrom_sig_ptr, ERC721_transferFrom_length, 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as sufficient // gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. Start // by computing word size of returndata & allocated memory. // Round up to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use the free memory pointer in place of msize() to // work around a Yul warning that prevents accessing msize // directly when the IR pipeline is activated. let msizeWords := div(memPointer, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), div( sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, giving memory region with copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. mstore( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_signature ) mstore(TokenTransferGenericFailure_error_token_ptr, token) mstore(TokenTransferGenericFailure_error_from_ptr, from) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore(TokenTransferGenericFailure_error_id_ptr, identifier) mstore(TokenTransferGenericFailure_error_amount_ptr, 1) revert( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_length ) } // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer ERC1155 tokens from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer and contract recipients must * implement the ERC1155TokenReceiver interface to indicate that they * are willing to accept the transfer. * * @param token The ERC1155 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The id to transfer. * @param amount The amount to transfer. */ function _performERC1155Transfer( address token, address from, address to, uint256 identifier, uint256 amount ) internal { // Utilize assembly to perform an optimized ERC1155 token transfer. assembly { // If the token has no code, revert. if iszero(extcodesize(token)) { mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // The following memory slots will be used when populating call data // for the transfer; read the values and restore them later. let memPointer := mload(FreeMemoryPointerSlot) let slot0x80 := mload(Slot0x80) let slot0xA0 := mload(Slot0xA0) let slot0xC0 := mload(Slot0xC0) // Write call data into memory, beginning with function selector. mstore( ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_signature ) mstore(ERC1155_safeTransferFrom_from_ptr, from) mstore(ERC1155_safeTransferFrom_to_ptr, to) mstore(ERC1155_safeTransferFrom_id_ptr, identifier) mstore(ERC1155_safeTransferFrom_amount_ptr, amount) mstore( ERC1155_safeTransferFrom_data_offset_ptr, ERC1155_safeTransferFrom_data_length_offset ) mstore(ERC1155_safeTransferFrom_data_length_ptr, 0) // Perform the call, ignoring return data. let success := call( gas(), token, 0, ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_length, 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as sufficient // gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. Start // by computing word size of returndata & allocated memory. // Round up to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use the free memory pointer in place of msize() to // work around a Yul warning that prevents accessing msize // directly when the IR pipeline is activated. let msizeWords := div(memPointer, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), div( sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, giving memory region with copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. mstore( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_signature ) mstore(TokenTransferGenericFailure_error_token_ptr, token) mstore(TokenTransferGenericFailure_error_from_ptr, from) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore(TokenTransferGenericFailure_error_id_ptr, identifier) mstore(TokenTransferGenericFailure_error_amount_ptr, amount) revert( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_length ) } mstore(Slot0x80, slot0x80) // Restore slot 0x80. mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0. mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0. // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer ERC1155 tokens from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer and contract recipients must * implement the ERC1155TokenReceiver interface to indicate that they * are willing to accept the transfer. NOTE: this function is not * memory-safe; it will overwrite existing memory, restore the free * memory pointer to the default value, and overwrite the zero slot. * This function should only be called once memory is no longer * required and when uninitialized arrays are not utilized, and memory * should be considered fully corrupted (aside from the existence of a * default-value free memory pointer) after calling this function. * * @param batchTransfers The group of 1155 batch transfers to perform. */ function _performERC1155BatchTransfers( ConduitBatch1155Transfer[] calldata batchTransfers ) internal { // Utilize assembly to perform optimized batch 1155 transfers. assembly { let len := batchTransfers.length // Pointer to first head in the array, which is offset to the struct // at each index. This gets incremented after each loop to avoid // multiplying by 32 to get the offset for each element. let nextElementHeadPtr := batchTransfers.offset // Pointer to beginning of the head of the array. This is the // reference position each offset references. It's held static to // let each loop calculate the data position for an element. let arrayHeadPtr := nextElementHeadPtr // Write the function selector, which will be reused for each call: // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes) mstore( ConduitBatch1155Transfer_from_offset, ERC1155_safeBatchTransferFrom_signature ) // Iterate over each batch transfer. for { let i := 0 } lt(i, len) { i := add(i, 1) } { // Read the offset to the beginning of the element and add // it to pointer to the beginning of the array head to get // the absolute position of the element in calldata. let elementPtr := add( arrayHeadPtr, calldataload(nextElementHeadPtr) ) // Retrieve the token from calldata. let token := calldataload(elementPtr) // If the token has no code, revert. if iszero(extcodesize(token)) { mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // Get the total number of supplied ids. let idsLength := calldataload( add(elementPtr, ConduitBatch1155Transfer_ids_length_offset) ) // Determine the expected offset for the amounts array. let expectedAmountsOffset := add( ConduitBatch1155Transfer_amounts_length_baseOffset, mul(idsLength, OneWord) ) // Validate struct encoding. let invalidEncoding := iszero( and( // ids.length == amounts.length eq( idsLength, calldataload(add(elementPtr, expectedAmountsOffset)) ), and( // ids_offset == 0xa0 eq( calldataload( add( elementPtr, ConduitBatch1155Transfer_ids_head_offset ) ), ConduitBatch1155Transfer_ids_length_offset ), // amounts_offset == 0xc0 + ids.length*32 eq( calldataload( add( elementPtr, ConduitBatchTransfer_amounts_head_offset ) ), expectedAmountsOffset ) ) ) ) // Revert with an error if the encoding is not valid. if invalidEncoding { mstore( Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_selector ) revert( Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_length ) } // Update the offset position for the next loop nextElementHeadPtr := add(nextElementHeadPtr, OneWord) // Copy the first section of calldata (before dynamic values). calldatacopy( BatchTransfer1155Params_ptr, add(elementPtr, ConduitBatch1155Transfer_from_offset), ConduitBatch1155Transfer_usable_head_size ) // Determine size of calldata required for ids and amounts. Note // that the size includes both lengths as well as the data. let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords)) // Update the offset for the data array in memory. mstore( BatchTransfer1155Params_data_head_ptr, add( BatchTransfer1155Params_ids_length_offset, idsAndAmountsSize ) ) // Set the length of the data array in memory to zero. mstore( add( BatchTransfer1155Params_data_length_basePtr, idsAndAmountsSize ), 0 ) // Determine the total calldata size for the call to transfer. let transferDataSize := add( BatchTransfer1155Params_calldata_baseSize, idsAndAmountsSize ) // Copy second section of calldata (including dynamic values). calldatacopy( BatchTransfer1155Params_ids_length_ptr, add(elementPtr, ConduitBatch1155Transfer_ids_length_offset), idsAndAmountsSize ) // Perform the call to transfer 1155 tokens. let success := call( gas(), token, 0, ConduitBatch1155Transfer_from_offset, // Data portion start. transferDataSize, // Location of the length of callData. 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as // sufficient gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. // Start by computing word size of returndata and // allocated memory. Round up to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use transferDataSize in place of msize() to // work around a Yul warning that prevents accessing // msize directly when the IR pipeline is activated. // The free memory pointer is not used here because // this function does almost all memory management // manually and does not update it, and transferDataSize // should be the largest memory value used (unless a // previous batch was larger). let msizeWords := div(transferDataSize, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), div( sub( mul( returnDataWords, returnDataWords ), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing. returndatacopy(0, 0, returndatasize()) // Revert with memory region containing returndata. revert(0, returndatasize()) } } // Set the error signature. mstore( 0, ERC1155BatchTransferGenericFailure_error_signature ) // Write the token. mstore(ERC1155BatchTransferGenericFailure_token_ptr, token) // Increase the offset to ids by 32. mstore( BatchTransfer1155Params_ids_head_ptr, ERC1155BatchTransferGenericFailure_ids_offset ) // Increase the offset to amounts by 32. mstore( BatchTransfer1155Params_amounts_head_ptr, add( OneWord, mload(BatchTransfer1155Params_amounts_head_ptr) ) ) // Return modified region. The total size stays the same as // `token` uses the same number of bytes as `data.length`. revert(0, transferDataSize) } } // Reset the free memory pointer to the default value; memory must // be assumed to be dirtied and not reused from this point forward. // Also note that the zero slot is not reset to zero, meaning empty // arrays cannot be safely created or utilized until it is restored. mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; // error ChannelClosed(address channel) uint256 constant ChannelClosed_error_signature = ( 0x93daadf200000000000000000000000000000000000000000000000000000000 ); uint256 constant ChannelClosed_error_ptr = 0x00; uint256 constant ChannelClosed_channel_ptr = 0x4; uint256 constant ChannelClosed_error_length = 0x24; // For the mapping: // mapping(address => bool) channels // The position in storage for a particular account is: // keccak256(abi.encode(account, channels.slot)) uint256 constant ChannelKey_channel_ptr = 0x00; uint256 constant ChannelKey_slot_ptr = 0x20; uint256 constant ChannelKey_length = 0x40; // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; /* * -------------------------- Disambiguation & Other Notes --------------------- * - The term "head" is used as it is in the documentation for ABI encoding, * but only in reference to dynamic types, i.e. it always refers to the * offset or pointer to the body of a dynamic type. In calldata, the head * is always an offset (relative to the parent object), while in memory, * the head is always the pointer to the body. More information found here: * https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding * - Note that the length of an array is separate from and precedes the * head of the array. * * - The term "body" is used in place of the term "head" used in the ABI * documentation. It refers to the start of the data for a dynamic type, * e.g. the first word of a struct or the first word of the first element * in an array. * * - The term "pointer" is used to describe the absolute position of a value * and never an offset relative to another value. * - The suffix "_ptr" refers to a memory pointer. * - The suffix "_cdPtr" refers to a calldata pointer. * * - The term "offset" is used to describe the position of a value relative * to some parent value. For example, OrderParameters_conduit_offset is the * offset to the "conduit" value in the OrderParameters struct relative to * the start of the body. * - Note: Offsets are used to derive pointers. * * - Some structs have pointers defined for all of their fields in this file. * Lines which are commented out are fields that are not used in the * codebase but have been left in for readability. */ uint256 constant AlmostOneWord = 0x1f; uint256 constant OneWord = 0x20; uint256 constant TwoWords = 0x40; uint256 constant ThreeWords = 0x60; uint256 constant FreeMemoryPointerSlot = 0x40; uint256 constant ZeroSlot = 0x60; uint256 constant DefaultFreeMemoryPointer = 0x80; uint256 constant Slot0x80 = 0x80; uint256 constant Slot0xA0 = 0xa0; uint256 constant Slot0xC0 = 0xc0; // abi.encodeWithSignature("transferFrom(address,address,uint256)") uint256 constant ERC20_transferFrom_signature = ( 0x23b872dd00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC20_transferFrom_sig_ptr = 0x0; uint256 constant ERC20_transferFrom_from_ptr = 0x04; uint256 constant ERC20_transferFrom_to_ptr = 0x24; uint256 constant ERC20_transferFrom_amount_ptr = 0x44; uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100 // abi.encodeWithSignature( // "safeTransferFrom(address,address,uint256,uint256,bytes)" // ) uint256 constant ERC1155_safeTransferFrom_signature = ( 0xf242432a00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0; uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04; uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24; uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64; uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84; uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4; uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196 uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0; // abi.encodeWithSignature( // "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)" // ) uint256 constant ERC1155_safeBatchTransferFrom_signature = ( 0x2eb2c2d600000000000000000000000000000000000000000000000000000000 ); bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4( bytes32(ERC1155_safeBatchTransferFrom_signature) ); uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature; uint256 constant ERC721_transferFrom_sig_ptr = 0x0; uint256 constant ERC721_transferFrom_from_ptr = 0x04; uint256 constant ERC721_transferFrom_to_ptr = 0x24; uint256 constant ERC721_transferFrom_id_ptr = 0x44; uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100 // abi.encodeWithSignature("NoContract(address)") uint256 constant NoContract_error_signature = ( 0x5f15d67200000000000000000000000000000000000000000000000000000000 ); uint256 constant NoContract_error_sig_ptr = 0x0; uint256 constant NoContract_error_token_ptr = 0x4; uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36 // abi.encodeWithSignature( // "TokenTransferGenericFailure(address,address,address,uint256,uint256)" // ) uint256 constant TokenTransferGenericFailure_error_signature = ( 0xf486bc8700000000000000000000000000000000000000000000000000000000 ); uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0; uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4; uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24; uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44; uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64; uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84; // 4 + 32 * 5 == 164 uint256 constant TokenTransferGenericFailure_error_length = 0xa4; // abi.encodeWithSignature( // "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)" // ) uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = ( 0x9889192300000000000000000000000000000000000000000000000000000000 ); uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0; uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4; uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24; uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44; uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64; // 4 + 32 * 4 == 132 uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84; uint256 constant ExtraGasBuffer = 0x20; uint256 constant CostPerWord = 3; uint256 constant MemoryExpansionCoefficient = 0x200; // Values are offset by 32 bytes in order to write the token to the beginning // in the event of a revert uint256 constant BatchTransfer1155Params_ptr = 0x24; uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64; uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84; uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4; uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4; uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4; uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4; uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0; uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0; uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0; uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80; uint256 constant ConduitBatch1155Transfer_from_offset = 0x20; uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60; uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80; uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0; uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0; uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0; // Note: abbreviated version of above constant to adhere to line length limit. uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80; uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00; uint256 constant Invalid1155BatchTransferEncoding_length = 0x04; uint256 constant Invalid1155BatchTransferEncoding_selector = ( 0xeba2084c00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155BatchTransferGenericFailure_error_signature = ( 0xafc445e200000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04; uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0; // SPDX-License-Identifier: MIT pragma solidity ^0.8.7; /** * @title TokenTransferrerErrors */ interface TokenTransferrerErrors { /** * @dev Revert with an error when an ERC721 transfer with amount other than * one is attempted. */ error InvalidERC721TransferAmount(); /** * @dev Revert with an error when attempting to fulfill an order where an * item has an amount of zero. */ error MissingItemAmount(); /** * @dev Revert with an error when attempting to fulfill an order where an * item has unused parameters. This includes both the token and the * identifier parameters for native transfers as well as the identifier * parameter for ERC20 transfers. Note that the conduit does not * perform this check, leaving it up to the calling channel to enforce * when desired. */ error UnusedItemParameters(); /** * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token * transfer reverts. * * @param token The token for which the transfer was attempted. * @param from The source of the attempted transfer. * @param to The recipient of the attempted transfer. * @param identifier The identifier for the attempted transfer. * @param amount The amount for the attempted transfer. */ error TokenTransferGenericFailure( address token, address from, address to, uint256 identifier, uint256 amount ); /** * @dev Revert with an error when a batch ERC1155 token transfer reverts. * * @param token The token for which the transfer was attempted. * @param from The source of the attempted transfer. * @param to The recipient of the attempted transfer. * @param identifiers The identifiers for the attempted transfer. * @param amounts The amounts for the attempted transfer. */ error ERC1155BatchTransferGenericFailure( address token, address from, address to, uint256[] identifiers, uint256[] amounts ); /** * @dev Revert with an error when an ERC20 token transfer returns a falsey * value. * * @param token The token for which the ERC20 transfer was attempted. * @param from The source of the attempted ERC20 transfer. * @param to The recipient of the attempted ERC20 transfer. * @param amount The amount for the attempted ERC20 transfer. */ error BadReturnValueFromERC20OnTransfer( address token, address from, address to, uint256 amount ); /** * @dev Revert with an error when an account being called as an assumed * contract does not have code and returns no data. * * @param account The account that should contain code. */ error NoContract(address account); /** * @dev Revert with an error when attempting to execute an 1155 batch * transfer using calldata not produced by default ABI encoding or with * different lengths for ids and amounts arrays. */ error Invalid1155BatchTransferEncoding(); }
File 2 of 3: NeonJunkies
// File: @openzeppelin/contracts/utils/Context.sol // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: @openzeppelin/contracts/introspection/IERC165.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: @openzeppelin/contracts/token/ERC721/IERC721.sol pragma solidity >=0.6.2 <0.8.0; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; } // File: @openzeppelin/contracts/token/ERC721/IERC721Metadata.sol pragma solidity >=0.6.2 <0.8.0; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // File: @openzeppelin/contracts/token/ERC721/IERC721Enumerable.sol pragma solidity >=0.6.2 <0.8.0; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); } // File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol pragma solidity >=0.6.0 <0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. */ function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4); } // File: @openzeppelin/contracts/introspection/ERC165.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Implementation of the {IERC165} interface. * * Contracts may inherit from this and call {_registerInterface} to declare * their support of an interface. */ abstract contract ERC165 is IERC165 { /* * bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7 */ bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /** * @dev Mapping of interface ids to whether or not it's supported. */ mapping(bytes4 => bool) private _supportedInterfaces; constructor () internal { // Derived contracts need only register support for their own interfaces, // we register support for ERC165 itself here _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev See {IERC165-supportsInterface}. * * Time complexity O(1), guaranteed to always use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev Registers the contract as an implementer of the interface defined by * `interfaceId`. Support of the actual ERC165 interface is automatic and * registering its interface id is not required. * * See {IERC165-supportsInterface}. * * Requirements: * * - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`). */ function _registerInterface(bytes4 interfaceId) internal virtual { require(interfaceId != 0xffffffff, "ERC165: invalid interface id"); _supportedInterfaces[interfaceId] = true; } } // File: @openzeppelin/contracts/math/SafeMath.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // File: @openzeppelin/contracts/utils/Address.sol pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/utils/EnumerableSet.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } } // File: @openzeppelin/contracts/utils/EnumerableMap.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Library for managing an enumerable variant of Solidity's * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`] * type. * * Maps have the following properties: * * - Entries are added, removed, and checked for existence in constant time * (O(1)). * - Entries are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableMap for EnumerableMap.UintToAddressMap; * * // Declare a set state variable * EnumerableMap.UintToAddressMap private myMap; * } * ``` * * As of v3.0.0, only maps of type `uint256 -> address` (`UintToAddressMap`) are * supported. */ library EnumerableMap { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Map type with // bytes32 keys and values. // The Map implementation uses private functions, and user-facing // implementations (such as Uint256ToAddressMap) are just wrappers around // the underlying Map. // This means that we can only create new EnumerableMaps for types that fit // in bytes32. struct MapEntry { bytes32 _key; bytes32 _value; } struct Map { // Storage of map keys and values MapEntry[] _entries; // Position of the entry defined by a key in the `entries` array, plus 1 // because index 0 means a key is not in the map. mapping (bytes32 => uint256) _indexes; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function _set(Map storage map, bytes32 key, bytes32 value) private returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; if (keyIndex == 0) { // Equivalent to !contains(map, key) map._entries.push(MapEntry({ _key: key, _value: value })); // The entry is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value map._indexes[key] = map._entries.length; return true; } else { map._entries[keyIndex - 1]._value = value; return false; } } /** * @dev Removes a key-value pair from a map. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function _remove(Map storage map, bytes32 key) private returns (bool) { // We read and store the key's index to prevent multiple reads from the same storage slot uint256 keyIndex = map._indexes[key]; if (keyIndex != 0) { // Equivalent to contains(map, key) // To delete a key-value pair from the _entries array in O(1), we swap the entry to delete with the last one // in the array, and then remove the last entry (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = keyIndex - 1; uint256 lastIndex = map._entries.length - 1; // When the entry to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. MapEntry storage lastEntry = map._entries[lastIndex]; // Move the last entry to the index where the entry to delete is map._entries[toDeleteIndex] = lastEntry; // Update the index for the moved entry map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved entry was stored map._entries.pop(); // Delete the index for the deleted slot delete map._indexes[key]; return true; } else { return false; } } /** * @dev Returns true if the key is in the map. O(1). */ function _contains(Map storage map, bytes32 key) private view returns (bool) { return map._indexes[key] != 0; } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function _length(Map storage map) private view returns (uint256) { return map._entries.length; } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Map storage map, uint256 index) private view returns (bytes32, bytes32) { require(map._entries.length > index, "EnumerableMap: index out of bounds"); MapEntry storage entry = map._entries[index]; return (entry._key, entry._value); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function _tryGet(Map storage map, bytes32 key) private view returns (bool, bytes32) { uint256 keyIndex = map._indexes[key]; if (keyIndex == 0) return (false, 0); // Equivalent to contains(map, key) return (true, map._entries[keyIndex - 1]._value); // All indexes are 1-based } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function _get(Map storage map, bytes32 key) private view returns (bytes32) { uint256 keyIndex = map._indexes[key]; require(keyIndex != 0, "EnumerableMap: nonexistent key"); // Equivalent to contains(map, key) return map._entries[keyIndex - 1]._value; // All indexes are 1-based } /** * @dev Same as {_get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {_tryGet}. */ function _get(Map storage map, bytes32 key, string memory errorMessage) private view returns (bytes32) { uint256 keyIndex = map._indexes[key]; require(keyIndex != 0, errorMessage); // Equivalent to contains(map, key) return map._entries[keyIndex - 1]._value; // All indexes are 1-based } // UintToAddressMap struct UintToAddressMap { Map _inner; } /** * @dev Adds a key-value pair to a map, or updates the value for an existing * key. O(1). * * Returns true if the key was added to the map, that is if it was not * already present. */ function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) { return _set(map._inner, bytes32(key), bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the key was removed from the map, that is if it was present. */ function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) { return _remove(map._inner, bytes32(key)); } /** * @dev Returns true if the key is in the map. O(1). */ function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) { return _contains(map._inner, bytes32(key)); } /** * @dev Returns the number of elements in the map. O(1). */ function length(UintToAddressMap storage map) internal view returns (uint256) { return _length(map._inner); } /** * @dev Returns the element stored at position `index` in the set. O(1). * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) { (bytes32 key, bytes32 value) = _at(map._inner, index); return (uint256(key), address(uint160(uint256(value)))); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. * * _Available since v3.4._ */ function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) { (bool success, bytes32 value) = _tryGet(map._inner, bytes32(key)); return (success, address(uint160(uint256(value)))); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get(UintToAddressMap storage map, uint256 key) internal view returns (address) { return address(uint160(uint256(_get(map._inner, bytes32(key))))); } /** * @dev Same as {get}, with a custom error message when `key` is not in the map. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryGet}. */ function get(UintToAddressMap storage map, uint256 key, string memory errorMessage) internal view returns (address) { return address(uint160(uint256(_get(map._inner, bytes32(key), errorMessage)))); } } // File: @openzeppelin/contracts/utils/Strings.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev String operations. */ library Strings { /** * @dev Converts a `uint256` to its ASCII `string` representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); uint256 index = digits - 1; temp = value; while (temp != 0) { buffer[index--] = bytes1(uint8(48 + temp % 10)); temp /= 10; } return string(buffer); } } // File: @openzeppelin/contracts/token/ERC721/ERC721.sol pragma solidity >=0.6.0 <0.8.0; /** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Enumerable { using SafeMath for uint256; using Address for address; using EnumerableSet for EnumerableSet.UintSet; using EnumerableMap for EnumerableMap.UintToAddressMap; using Strings for uint256; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from holder address to their (enumerable) set of owned tokens mapping (address => EnumerableSet.UintSet) private _holderTokens; // Enumerable mapping from token ids to their owners EnumerableMap.UintToAddressMap private _tokenOwners; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; // Token name string private _name; // Token symbol string private _symbol; // Optional mapping for token URIs mapping (uint256 => string) private _tokenURIs; // Base URI string private _baseURI; /* * bytes4(keccak256('balanceOf(address)')) == 0x70a08231 * bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e * bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3 * bytes4(keccak256('getApproved(uint256)')) == 0x081812fc * bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465 * bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5 * bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde * * => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^ * 0xa22cb465 ^ 0xe985e9c5 ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd */ bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * bytes4(keccak256('name()')) == 0x06fdde03 * bytes4(keccak256('symbol()')) == 0x95d89b41 * bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd * * => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f */ bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f; /* * bytes4(keccak256('totalSupply()')) == 0x18160ddd * bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59 * bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7 * * => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63 */ bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); _registerInterface(_INTERFACE_ID_ERC721_METADATA); _registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _holderTokens[owner].length(); } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return _tokenOwners.get(tokenId, "ERC721: owner query for nonexistent token"); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token"); string memory _tokenURI = _tokenURIs[tokenId]; string memory base = baseURI(); // If there is no base URI, return the token URI. if (bytes(base).length == 0) { return _tokenURI; } // If both are set, concatenate the baseURI and tokenURI (via abi.encodePacked). if (bytes(_tokenURI).length > 0) { return string(abi.encodePacked(base, _tokenURI)); } // If there is a baseURI but no tokenURI, concatenate the tokenID to the baseURI. return string(abi.encodePacked(base, tokenId.toString())); } /** * @dev Returns the base URI set via {_setBaseURI}. This will be * automatically added as a prefix in {tokenURI} to each token's URI, or * to the token ID if no specific URI is set for that token ID. */ function baseURI() public view virtual returns (string memory) { return _baseURI; } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) { return _holderTokens[owner].at(index); } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { // _tokenOwners are indexed by tokenIds, so .length() returns the number of tokenIds return _tokenOwners.length(); } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual override returns (uint256) { (uint256 tokenId, ) = _tokenOwners.at(index); return tokenId; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require(_msgSender() == owner || ERC721.isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { require(operator != _msgSender(), "ERC721: approve to caller"); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransfer(from, to, tokenId, _data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `_data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _tokenOwners.contains(tokenId); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ERC721.ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || ERC721.isApprovedForAll(owner, spender)); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: d* * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual { _mint(to, tokenId); require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId); _holderTokens[to].add(tokenId); _tokenOwners.set(tokenId, to); emit Transfer(address(0), to, tokenId); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); // internal owner _beforeTokenTransfer(owner, address(0), tokenId); // Clear approvals _approve(address(0), tokenId); // Clear metadata (if any) if (bytes(_tokenURIs[tokenId]).length != 0) { delete _tokenURIs[tokenId]; } _holderTokens[owner].remove(tokenId); _tokenOwners.remove(tokenId); emit Transfer(owner, address(0), tokenId); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); // internal owner require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId); // Clear approvals from the previous owner _approve(address(0), tokenId); _holderTokens[from].remove(tokenId); _holderTokens[to].add(tokenId); _tokenOwners.set(tokenId, to); emit Transfer(from, to, tokenId); } /** * @dev Sets `_tokenURI` as the tokenURI of `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual { require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token"); _tokenURIs[tokenId] = _tokenURI; } /** * @dev Internal function to set the base URI for all token IDs. It is * automatically added as a prefix to the value returned in {tokenURI}, * or to the token ID if {tokenURI} is empty. */ function _setBaseURI(string memory baseURI_) internal virtual { _baseURI = baseURI_; } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) private returns (bool) { if (!to.isContract()) { return true; } bytes memory returndata = to.functionCall(abi.encodeWithSelector( IERC721Receiver(to).onERC721Received.selector, _msgSender(), from, tokenId, _data ), "ERC721: transfer to non ERC721Receiver implementer"); bytes4 retval = abi.decode(returndata, (bytes4)); return (retval == _ERC721_RECEIVED); } /** * @dev Approve `to` to operate on `tokenId` * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); // internal owner } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` cannot be the zero address. * - `to` cannot be the zero address. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { } } // File: @openzeppelin/contracts/access/Ownable.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/NeonJunkies.sol pragma solidity ^0.7.0; abstract contract CIPHER { function tokenOfOwnerByIndex(address owner, uint256 index) public virtual view returns (uint256); function balanceOf(address owner) external virtual view returns (uint256 balance); } /** * @title Neon Junkies contract * @dev Extends ERC721 Non-Fungible Token Standard basic implementation */ contract NeonJunkies is ERC721, Ownable { using SafeMath for uint256; CIPHER private cipher = CIPHER(0x2252D401Ec9D16065069529B053B105Fe42E0176); uint256 public nftPrice = 40000000000000000; //0.04 ETH uint256 public maxNFTPurchase = 10; uint256 public MAX_CLAIM = 3623; uint256 public MAX_BUY = 6377; uint256 public BUY_START_TIMESTAMP = 1630620000; bool public saleIsActive = false; uint256 public soldAmount = 0; address payable private constant _tFirst = payable(0x31ED6272EE42493E0D898a595D15e9FB55196F32); address payable private constant _tSecond = payable(0xBE97e949A89a45F7c141A4d686864dA501cD0664); constructor() ERC721("Neon Junkies", "JUNKIES") {} function withdraw() external onlyOwner { uint256 total = address(this).balance; uint256 amount = total.div(3); _tFirst.transfer(amount); _tSecond.transfer(total.sub(amount)); } function isMinted(uint256 tokenId) public view returns (bool) { require(tokenId < MAX_CLAIM + MAX_BUY, "tokenId outside collection bounds"); return _exists(tokenId); } /** * Set maximum nft supply */ function setMaxBuy(uint256 _maxValue) external onlyOwner { require(_maxValue > MAX_BUY, "Invalid new max value"); MAX_BUY = _maxValue; } /** * Set maximum count to mint per once. */ function setMaxToMint(uint256 _maxValue) external onlyOwner { maxNFTPurchase = _maxValue; } /** * Mint NFTs by owner */ function reserveNFTs(address _to, uint256 _numberOfTokens) external onlyOwner { require(_to != address(0), "Invalid address to reserve."); uint256 supply = MAX_CLAIM.add(soldAmount); uint256 i; for (i = 0; i < _numberOfTokens; i++) { _safeMint(_to, supply + i); } soldAmount = soldAmount.add(_numberOfTokens); } function setBaseURI(string memory baseURI) public onlyOwner { _setBaseURI(baseURI); } /* * Pause sale if active, make active if paused */ function flipSaleState() public onlyOwner { saleIsActive = !saleIsActive; } /** * Get the array of token for owner. */ function tokensOfOwner(address _owner) external view returns(uint256[] memory) { uint256 tokenCount = balanceOf(_owner); if (tokenCount == 0) { return new uint256[](0); } else { uint256[] memory result = new uint256[](tokenCount); for (uint256 index; index < tokenCount; index++) { result[index] = tokenOfOwnerByIndex(_owner, index); } return result; } } function numberOfClaimableTokens(address user) view public returns (uint256) { uint256 claimableTokens = 0; for (uint256 i = 0; i < cipher.balanceOf(user); i++) { uint256 tokenId = cipher.tokenOfOwnerByIndex(user, i); if (!isMinted(tokenId)) claimableTokens++; } return claimableTokens; } /** * Claim NFTs */ function claimJunkies(uint256 numberOfTokens) public { require(saleIsActive, "Claim has not started yet"); require(numberOfTokens > 0, "Must claim at least one junkie"); require(numberOfTokens <= maxNFTPurchase, "You can't claim more than 10 junkies in one transaction"); uint256 balance = cipher.balanceOf(msg.sender); require(balance > 0, "Must hold at least one Ciphersquare to claim a junkie"); require(balance >= numberOfTokens, "Must hold at least as many Ciphersquares as the number of Neon Junkies you intend to mint"); uint256 j = 0; for (uint256 i = 0; i < balance; i++) { uint256 tokenId = cipher.tokenOfOwnerByIndex(msg.sender, i); if (!isMinted(tokenId)) { _safeMint(msg.sender, tokenId); j++; } if (j == numberOfTokens) { break; } } } /** * Buy NFTs */ function buyJunkies(uint numberOfTokens) public payable { require(block.timestamp >= BUY_START_TIMESTAMP, "Sale has not started yet"); require(saleIsActive, "Sale must be active to mint"); require(numberOfTokens > 0, "Must buy at least one junkie"); require(numberOfTokens <= maxNFTPurchase, "You can't buy more than 10 junkies in one transaction"); require(soldAmount.add(numberOfTokens) <= MAX_BUY, "Purchase would exceed max supply of NFTs"); require(nftPrice.mul(numberOfTokens) <= msg.value, "Ether value sent is not correct"); for(uint i = 0; i < numberOfTokens; i++) { if (soldAmount < MAX_BUY) { _safeMint(msg.sender, MAX_CLAIM.add(soldAmount)); soldAmount++; } } } }
File 3 of 3: Conduit
// SPDX-License-Identifier: MIT pragma solidity >=0.8.7; import { ConduitInterface } from "../interfaces/ConduitInterface.sol"; import { ConduitItemType } from "./lib/ConduitEnums.sol"; import { TokenTransferrer } from "../lib/TokenTransferrer.sol"; // prettier-ignore import { ConduitTransfer, ConduitBatch1155Transfer } from "./lib/ConduitStructs.sol"; import "./lib/ConduitConstants.sol"; /** * @title Conduit * @author 0age * @notice This contract serves as an originator for "proxied" transfers. Each * conduit is deployed and controlled by a "conduit controller" that can * add and remove "channels" or contracts that can instruct the conduit * to transfer approved ERC20/721/1155 tokens. *IMPORTANT NOTE: each * conduit has an owner that can arbitrarily add or remove channels, and * a malicious or negligent owner can add a channel that allows for any * approved ERC20/721/1155 tokens to be taken immediately — be extremely * cautious with what conduits you give token approvals to!* */ contract Conduit is ConduitInterface, TokenTransferrer { // Set deployer as an immutable controller that can update channel statuses. address private immutable _controller; // Track the status of each channel. mapping(address => bool) private _channels; /** * @notice Ensure that the caller is currently registered as an open channel * on the conduit. */ modifier onlyOpenChannel() { // Utilize assembly to access channel storage mapping directly. assembly { // Write the caller to scratch space. mstore(ChannelKey_channel_ptr, caller()) // Write the storage slot for _channels to scratch space. mstore(ChannelKey_slot_ptr, _channels.slot) // Derive the position in storage of _channels[msg.sender] // and check if the stored value is zero. if iszero( sload(keccak256(ChannelKey_channel_ptr, ChannelKey_length)) ) { // The caller is not an open channel; revert with // ChannelClosed(caller). First, set error signature in memory. mstore(ChannelClosed_error_ptr, ChannelClosed_error_signature) // Next, set the caller as the argument. mstore(ChannelClosed_channel_ptr, caller()) // Finally, revert, returning full custom error with argument. revert(ChannelClosed_error_ptr, ChannelClosed_error_length) } } // Continue with function execution. _; } /** * @notice In the constructor, set the deployer as the controller. */ constructor() { // Set the deployer as the controller. _controller = msg.sender; } /** * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller * with an open channel can call this function. Note that channels * are expected to implement reentrancy protection if desired, and * that cross-channel reentrancy may be possible if the conduit has * multiple open channels at once. Also note that channels are * expected to implement checks against transferring any zero-amount * items if that constraint is desired. * * @param transfers The ERC20/721/1155 transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function execute(ConduitTransfer[] calldata transfers) external override onlyOpenChannel returns (bytes4 magicValue) { // Retrieve the total number of transfers and place on the stack. uint256 totalStandardTransfers = transfers.length; // Iterate over each transfer. for (uint256 i = 0; i < totalStandardTransfers; ) { // Retrieve the transfer in question and perform the transfer. _transfer(transfers[i]); // Skip overflow check as for loop is indexed starting at zero. unchecked { ++i; } } // Return a magic value indicating that the transfers were performed. magicValue = this.execute.selector; } /** * @notice Execute a sequence of batch 1155 item transfers. Only a caller * with an open channel can call this function. Note that channels * are expected to implement reentrancy protection if desired, and * that cross-channel reentrancy may be possible if the conduit has * multiple open channels at once. Also note that channels are * expected to implement checks against transferring any zero-amount * items if that constraint is desired. * * @param batchTransfers The 1155 batch item transfers to perform. * * @return magicValue A magic value indicating that the item transfers were * performed successfully. */ function executeBatch1155( ConduitBatch1155Transfer[] calldata batchTransfers ) external override onlyOpenChannel returns (bytes4 magicValue) { // Perform 1155 batch transfers. Note that memory should be considered // entirely corrupted from this point forward. _performERC1155BatchTransfers(batchTransfers); // Return a magic value indicating that the transfers were performed. magicValue = this.executeBatch1155.selector; } /** * @notice Execute a sequence of transfers, both single ERC20/721/1155 item * transfers as well as batch 1155 item transfers. Only a caller * with an open channel can call this function. Note that channels * are expected to implement reentrancy protection if desired, and * that cross-channel reentrancy may be possible if the conduit has * multiple open channels at once. Also note that channels are * expected to implement checks against transferring any zero-amount * items if that constraint is desired. * * @param standardTransfers The ERC20/721/1155 item transfers to perform. * @param batchTransfers The 1155 batch item transfers to perform. * * @return magicValue A magic value indicating that the item transfers were * performed successfully. */ function executeWithBatch1155( ConduitTransfer[] calldata standardTransfers, ConduitBatch1155Transfer[] calldata batchTransfers ) external override onlyOpenChannel returns (bytes4 magicValue) { // Retrieve the total number of transfers and place on the stack. uint256 totalStandardTransfers = standardTransfers.length; // Iterate over each standard transfer. for (uint256 i = 0; i < totalStandardTransfers; ) { // Retrieve the transfer in question and perform the transfer. _transfer(standardTransfers[i]); // Skip overflow check as for loop is indexed starting at zero. unchecked { ++i; } } // Perform 1155 batch transfers. Note that memory should be considered // entirely corrupted from this point forward aside from the free memory // pointer having the default value. _performERC1155BatchTransfers(batchTransfers); // Return a magic value indicating that the transfers were performed. magicValue = this.executeWithBatch1155.selector; } /** * @notice Open or close a given channel. Only callable by the controller. * * @param channel The channel to open or close. * @param isOpen The status of the channel (either open or closed). */ function updateChannel(address channel, bool isOpen) external override { // Ensure that the caller is the controller of this contract. if (msg.sender != _controller) { revert InvalidController(); } // Ensure that the channel does not already have the indicated status. if (_channels[channel] == isOpen) { revert ChannelStatusAlreadySet(channel, isOpen); } // Update the status of the channel. _channels[channel] = isOpen; // Emit a corresponding event. emit ChannelUpdated(channel, isOpen); } /** * @dev Internal function to transfer a given ERC20/721/1155 item. Note that * channels are expected to implement checks against transferring any * zero-amount items if that constraint is desired. * * @param item The ERC20/721/1155 item to transfer. */ function _transfer(ConduitTransfer calldata item) internal { // Determine the transfer method based on the respective item type. if (item.itemType == ConduitItemType.ERC20) { // Transfer ERC20 token. Note that item.identifier is ignored and // therefore ERC20 transfer items are potentially malleable — this // check should be performed by the calling channel if a constraint // on item malleability is desired. _performERC20Transfer(item.token, item.from, item.to, item.amount); } else if (item.itemType == ConduitItemType.ERC721) { // Ensure that exactly one 721 item is being transferred. if (item.amount != 1) { revert InvalidERC721TransferAmount(); } // Transfer ERC721 token. _performERC721Transfer( item.token, item.from, item.to, item.identifier ); } else if (item.itemType == ConduitItemType.ERC1155) { // Transfer ERC1155 token. _performERC1155Transfer( item.token, item.from, item.to, item.identifier, item.amount ); } else { // Throw with an error. revert InvalidItemType(); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; // prettier-ignore import { ConduitTransfer, ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol"; /** * @title ConduitInterface * @author 0age * @notice ConduitInterface contains all external function interfaces, events, * and errors for conduit contracts. */ interface ConduitInterface { /** * @dev Revert with an error when attempting to execute transfers using a * caller that does not have an open channel. */ error ChannelClosed(address channel); /** * @dev Revert with an error when attempting to update a channel to the * current status of that channel. */ error ChannelStatusAlreadySet(address channel, bool isOpen); /** * @dev Revert with an error when attempting to execute a transfer for an * item that does not have an ERC20/721/1155 item type. */ error InvalidItemType(); /** * @dev Revert with an error when attempting to update the status of a * channel from a caller that is not the conduit controller. */ error InvalidController(); /** * @dev Emit an event whenever a channel is opened or closed. * * @param channel The channel that has been updated. * @param open A boolean indicating whether the conduit is open or not. */ event ChannelUpdated(address indexed channel, bool open); /** * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller * with an open channel can call this function. * * @param transfers The ERC20/721/1155 transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function execute(ConduitTransfer[] calldata transfers) external returns (bytes4 magicValue); /** * @notice Execute a sequence of batch 1155 transfers. Only a caller with an * open channel can call this function. * * @param batch1155Transfers The 1155 batch transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function executeBatch1155( ConduitBatch1155Transfer[] calldata batch1155Transfers ) external returns (bytes4 magicValue); /** * @notice Execute a sequence of transfers, both single and batch 1155. Only * a caller with an open channel can call this function. * * @param standardTransfers The ERC20/721/1155 transfers to perform. * @param batch1155Transfers The 1155 batch transfers to perform. * * @return magicValue A magic value indicating that the transfers were * performed successfully. */ function executeWithBatch1155( ConduitTransfer[] calldata standardTransfers, ConduitBatch1155Transfer[] calldata batch1155Transfers ) external returns (bytes4 magicValue); /** * @notice Open or close a given channel. Only callable by the controller. * * @param channel The channel to open or close. * @param isOpen The status of the channel (either open or closed). */ function updateChannel(address channel, bool isOpen) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; enum ConduitItemType { NATIVE, // unused ERC20, ERC721, ERC1155 } // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; import "./TokenTransferrerConstants.sol"; // prettier-ignore import { TokenTransferrerErrors } from "../interfaces/TokenTransferrerErrors.sol"; import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol"; /** * @title TokenTransferrer * @author 0age * @custom:coauthor d1ll0n * @custom:coauthor transmissions11 * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721, * ERC1155, and batch ERC1155 transfers, used by both Seaport as well as * by conduits deployed by the ConduitController. Use great caution when * considering these functions for use in other codebases, as there are * significant side effects and edge cases that need to be thoroughly * understood and carefully addressed. */ contract TokenTransferrer is TokenTransferrerErrors { /** * @dev Internal function to transfer ERC20 tokens from a given originator * to a given recipient. Sufficient approvals must be set on the * contract performing the transfer. * * @param token The ERC20 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param amount The amount to transfer. */ function _performERC20Transfer( address token, address from, address to, uint256 amount ) internal { // Utilize assembly to perform an optimized ERC20 token transfer. assembly { // The free memory pointer memory slot will be used when populating // call data for the transfer; read the value and restore it later. let memPointer := mload(FreeMemoryPointerSlot) // Write call data into memory, starting with function selector. mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature) mstore(ERC20_transferFrom_from_ptr, from) mstore(ERC20_transferFrom_to_ptr, to) mstore(ERC20_transferFrom_amount_ptr, amount) // Make call & copy up to 32 bytes of return data to scratch space. // Scratch space does not need to be cleared ahead of time, as the // subsequent check will ensure that either at least a full word of // return data is received (in which case it will be overwritten) or // that no data is received (in which case scratch space will be // ignored) on a successful call to the given token. let callStatus := call( gas(), token, 0, ERC20_transferFrom_sig_ptr, ERC20_transferFrom_length, 0, OneWord ) // Determine whether transfer was successful using status & result. let success := and( // Set success to whether the call reverted, if not check it // either returned exactly 1 (can't just be non-zero data), or // had no return data. or( and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize()) ), callStatus ) // Handle cases where either the transfer failed or no data was // returned. Group these, as most transfers will succeed with data. // Equivalent to `or(iszero(success), iszero(returndatasize()))` // but after it's inverted for JUMPI this expression is cheaper. if iszero(and(success, iszero(iszero(returndatasize())))) { // If the token has no code or the transfer failed: Equivalent // to `or(iszero(success), iszero(extcodesize(token)))` but // after it's inverted for JUMPI this expression is cheaper. if iszero(and(iszero(iszero(extcodesize(token))), success)) { // If the transfer failed: if iszero(success) { // If it was due to a revert: if iszero(callStatus) { // If it returned a message, bubble it up as long as // sufficient gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to // copy returndata while expanding memory where // necessary. Start by computing the word size // of returndata and allocated memory. Round up // to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use the free memory pointer in place of // msize() to work around a Yul warning that // prevents accessing msize directly when the IR // pipeline is activated. let msizeWords := div(memPointer, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub( returnDataWords, msizeWords ), CostPerWord ), div( sub( mul( returnDataWords, returnDataWords ), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to // gas remaining; bubble up the revert data if // enough gas is still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite // existing memory. returndatacopy(0, 0, returndatasize()) // Revert, specifying memory region with // copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. mstore( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_signature ) mstore( TokenTransferGenericFailure_error_token_ptr, token ) mstore( TokenTransferGenericFailure_error_from_ptr, from ) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore(TokenTransferGenericFailure_error_id_ptr, 0) mstore( TokenTransferGenericFailure_error_amount_ptr, amount ) revert( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_length ) } // Otherwise revert with a message about the token // returning false or non-compliant return values. mstore( BadReturnValueFromERC20OnTransfer_error_sig_ptr, BadReturnValueFromERC20OnTransfer_error_signature ) mstore( BadReturnValueFromERC20OnTransfer_error_token_ptr, token ) mstore( BadReturnValueFromERC20OnTransfer_error_from_ptr, from ) mstore( BadReturnValueFromERC20OnTransfer_error_to_ptr, to ) mstore( BadReturnValueFromERC20OnTransfer_error_amount_ptr, amount ) revert( BadReturnValueFromERC20OnTransfer_error_sig_ptr, BadReturnValueFromERC20OnTransfer_error_length ) } // Otherwise, revert with error about token not having code: mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // Otherwise, the token just returned no data despite the call // having succeeded; no need to optimize for this as it's not // technically ERC20 compliant. } // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer an ERC721 token from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer. Note that this function does * not check whether the receiver can accept the ERC721 token (i.e. it * does not use `safeTransferFrom`). * * @param token The ERC721 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The tokenId to transfer. */ function _performERC721Transfer( address token, address from, address to, uint256 identifier ) internal { // Utilize assembly to perform an optimized ERC721 token transfer. assembly { // If the token has no code, revert. if iszero(extcodesize(token)) { mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // The free memory pointer memory slot will be used when populating // call data for the transfer; read the value and restore it later. let memPointer := mload(FreeMemoryPointerSlot) // Write call data to memory starting with function selector. mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature) mstore(ERC721_transferFrom_from_ptr, from) mstore(ERC721_transferFrom_to_ptr, to) mstore(ERC721_transferFrom_id_ptr, identifier) // Perform the call, ignoring return data. let success := call( gas(), token, 0, ERC721_transferFrom_sig_ptr, ERC721_transferFrom_length, 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as sufficient // gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. Start // by computing word size of returndata & allocated memory. // Round up to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use the free memory pointer in place of msize() to // work around a Yul warning that prevents accessing msize // directly when the IR pipeline is activated. let msizeWords := div(memPointer, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), div( sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, giving memory region with copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. mstore( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_signature ) mstore(TokenTransferGenericFailure_error_token_ptr, token) mstore(TokenTransferGenericFailure_error_from_ptr, from) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore(TokenTransferGenericFailure_error_id_ptr, identifier) mstore(TokenTransferGenericFailure_error_amount_ptr, 1) revert( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_length ) } // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer ERC1155 tokens from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer and contract recipients must * implement the ERC1155TokenReceiver interface to indicate that they * are willing to accept the transfer. * * @param token The ERC1155 token to transfer. * @param from The originator of the transfer. * @param to The recipient of the transfer. * @param identifier The id to transfer. * @param amount The amount to transfer. */ function _performERC1155Transfer( address token, address from, address to, uint256 identifier, uint256 amount ) internal { // Utilize assembly to perform an optimized ERC1155 token transfer. assembly { // If the token has no code, revert. if iszero(extcodesize(token)) { mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // The following memory slots will be used when populating call data // for the transfer; read the values and restore them later. let memPointer := mload(FreeMemoryPointerSlot) let slot0x80 := mload(Slot0x80) let slot0xA0 := mload(Slot0xA0) let slot0xC0 := mload(Slot0xC0) // Write call data into memory, beginning with function selector. mstore( ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_signature ) mstore(ERC1155_safeTransferFrom_from_ptr, from) mstore(ERC1155_safeTransferFrom_to_ptr, to) mstore(ERC1155_safeTransferFrom_id_ptr, identifier) mstore(ERC1155_safeTransferFrom_amount_ptr, amount) mstore( ERC1155_safeTransferFrom_data_offset_ptr, ERC1155_safeTransferFrom_data_length_offset ) mstore(ERC1155_safeTransferFrom_data_length_ptr, 0) // Perform the call, ignoring return data. let success := call( gas(), token, 0, ERC1155_safeTransferFrom_sig_ptr, ERC1155_safeTransferFrom_length, 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as sufficient // gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. Start // by computing word size of returndata & allocated memory. // Round up to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use the free memory pointer in place of msize() to // work around a Yul warning that prevents accessing msize // directly when the IR pipeline is activated. let msizeWords := div(memPointer, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), div( sub( mul(returnDataWords, returnDataWords), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing memory. returndatacopy(0, 0, returndatasize()) // Revert, giving memory region with copied returndata. revert(0, returndatasize()) } } // Otherwise revert with a generic error message. mstore( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_signature ) mstore(TokenTransferGenericFailure_error_token_ptr, token) mstore(TokenTransferGenericFailure_error_from_ptr, from) mstore(TokenTransferGenericFailure_error_to_ptr, to) mstore(TokenTransferGenericFailure_error_id_ptr, identifier) mstore(TokenTransferGenericFailure_error_amount_ptr, amount) revert( TokenTransferGenericFailure_error_sig_ptr, TokenTransferGenericFailure_error_length ) } mstore(Slot0x80, slot0x80) // Restore slot 0x80. mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0. mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0. // Restore the original free memory pointer. mstore(FreeMemoryPointerSlot, memPointer) // Restore the zero slot to zero. mstore(ZeroSlot, 0) } } /** * @dev Internal function to transfer ERC1155 tokens from a given * originator to a given recipient. Sufficient approvals must be set on * the contract performing the transfer and contract recipients must * implement the ERC1155TokenReceiver interface to indicate that they * are willing to accept the transfer. NOTE: this function is not * memory-safe; it will overwrite existing memory, restore the free * memory pointer to the default value, and overwrite the zero slot. * This function should only be called once memory is no longer * required and when uninitialized arrays are not utilized, and memory * should be considered fully corrupted (aside from the existence of a * default-value free memory pointer) after calling this function. * * @param batchTransfers The group of 1155 batch transfers to perform. */ function _performERC1155BatchTransfers( ConduitBatch1155Transfer[] calldata batchTransfers ) internal { // Utilize assembly to perform optimized batch 1155 transfers. assembly { let len := batchTransfers.length // Pointer to first head in the array, which is offset to the struct // at each index. This gets incremented after each loop to avoid // multiplying by 32 to get the offset for each element. let nextElementHeadPtr := batchTransfers.offset // Pointer to beginning of the head of the array. This is the // reference position each offset references. It's held static to // let each loop calculate the data position for an element. let arrayHeadPtr := nextElementHeadPtr // Write the function selector, which will be reused for each call: // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes) mstore( ConduitBatch1155Transfer_from_offset, ERC1155_safeBatchTransferFrom_signature ) // Iterate over each batch transfer. for { let i := 0 } lt(i, len) { i := add(i, 1) } { // Read the offset to the beginning of the element and add // it to pointer to the beginning of the array head to get // the absolute position of the element in calldata. let elementPtr := add( arrayHeadPtr, calldataload(nextElementHeadPtr) ) // Retrieve the token from calldata. let token := calldataload(elementPtr) // If the token has no code, revert. if iszero(extcodesize(token)) { mstore(NoContract_error_sig_ptr, NoContract_error_signature) mstore(NoContract_error_token_ptr, token) revert(NoContract_error_sig_ptr, NoContract_error_length) } // Get the total number of supplied ids. let idsLength := calldataload( add(elementPtr, ConduitBatch1155Transfer_ids_length_offset) ) // Determine the expected offset for the amounts array. let expectedAmountsOffset := add( ConduitBatch1155Transfer_amounts_length_baseOffset, mul(idsLength, OneWord) ) // Validate struct encoding. let invalidEncoding := iszero( and( // ids.length == amounts.length eq( idsLength, calldataload(add(elementPtr, expectedAmountsOffset)) ), and( // ids_offset == 0xa0 eq( calldataload( add( elementPtr, ConduitBatch1155Transfer_ids_head_offset ) ), ConduitBatch1155Transfer_ids_length_offset ), // amounts_offset == 0xc0 + ids.length*32 eq( calldataload( add( elementPtr, ConduitBatchTransfer_amounts_head_offset ) ), expectedAmountsOffset ) ) ) ) // Revert with an error if the encoding is not valid. if invalidEncoding { mstore( Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_selector ) revert( Invalid1155BatchTransferEncoding_ptr, Invalid1155BatchTransferEncoding_length ) } // Update the offset position for the next loop nextElementHeadPtr := add(nextElementHeadPtr, OneWord) // Copy the first section of calldata (before dynamic values). calldatacopy( BatchTransfer1155Params_ptr, add(elementPtr, ConduitBatch1155Transfer_from_offset), ConduitBatch1155Transfer_usable_head_size ) // Determine size of calldata required for ids and amounts. Note // that the size includes both lengths as well as the data. let idsAndAmountsSize := add(TwoWords, mul(idsLength, TwoWords)) // Update the offset for the data array in memory. mstore( BatchTransfer1155Params_data_head_ptr, add( BatchTransfer1155Params_ids_length_offset, idsAndAmountsSize ) ) // Set the length of the data array in memory to zero. mstore( add( BatchTransfer1155Params_data_length_basePtr, idsAndAmountsSize ), 0 ) // Determine the total calldata size for the call to transfer. let transferDataSize := add( BatchTransfer1155Params_calldata_baseSize, idsAndAmountsSize ) // Copy second section of calldata (including dynamic values). calldatacopy( BatchTransfer1155Params_ids_length_ptr, add(elementPtr, ConduitBatch1155Transfer_ids_length_offset), idsAndAmountsSize ) // Perform the call to transfer 1155 tokens. let success := call( gas(), token, 0, ConduitBatch1155Transfer_from_offset, // Data portion start. transferDataSize, // Location of the length of callData. 0, 0 ) // If the transfer reverted: if iszero(success) { // If it returned a message, bubble it up as long as // sufficient gas remains to do so: if returndatasize() { // Ensure that sufficient gas is available to copy // returndata while expanding memory where necessary. // Start by computing word size of returndata and // allocated memory. Round up to the nearest full word. let returnDataWords := div( add(returndatasize(), AlmostOneWord), OneWord ) // Note: use transferDataSize in place of msize() to // work around a Yul warning that prevents accessing // msize directly when the IR pipeline is activated. // The free memory pointer is not used here because // this function does almost all memory management // manually and does not update it, and transferDataSize // should be the largest memory value used (unless a // previous batch was larger). let msizeWords := div(transferDataSize, OneWord) // Next, compute the cost of the returndatacopy. let cost := mul(CostPerWord, returnDataWords) // Then, compute cost of new memory allocation. if gt(returnDataWords, msizeWords) { cost := add( cost, add( mul( sub(returnDataWords, msizeWords), CostPerWord ), div( sub( mul( returnDataWords, returnDataWords ), mul(msizeWords, msizeWords) ), MemoryExpansionCoefficient ) ) ) } // Finally, add a small constant and compare to gas // remaining; bubble up the revert data if enough gas is // still available. if lt(add(cost, ExtraGasBuffer), gas()) { // Copy returndata to memory; overwrite existing. returndatacopy(0, 0, returndatasize()) // Revert with memory region containing returndata. revert(0, returndatasize()) } } // Set the error signature. mstore( 0, ERC1155BatchTransferGenericFailure_error_signature ) // Write the token. mstore(ERC1155BatchTransferGenericFailure_token_ptr, token) // Increase the offset to ids by 32. mstore( BatchTransfer1155Params_ids_head_ptr, ERC1155BatchTransferGenericFailure_ids_offset ) // Increase the offset to amounts by 32. mstore( BatchTransfer1155Params_amounts_head_ptr, add( OneWord, mload(BatchTransfer1155Params_amounts_head_ptr) ) ) // Return modified region. The total size stays the same as // `token` uses the same number of bytes as `data.length`. revert(0, transferDataSize) } } // Reset the free memory pointer to the default value; memory must // be assumed to be dirtied and not reused from this point forward. // Also note that the zero slot is not reset to zero, meaning empty // arrays cannot be safely created or utilized until it is restored. mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer) } } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; import { ConduitItemType } from "./ConduitEnums.sol"; struct ConduitTransfer { ConduitItemType itemType; address token; address from; address to; uint256 identifier; uint256 amount; } struct ConduitBatch1155Transfer { address token; address from; address to; uint256[] ids; uint256[] amounts; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; // error ChannelClosed(address channel) uint256 constant ChannelClosed_error_signature = ( 0x93daadf200000000000000000000000000000000000000000000000000000000 ); uint256 constant ChannelClosed_error_ptr = 0x00; uint256 constant ChannelClosed_channel_ptr = 0x4; uint256 constant ChannelClosed_error_length = 0x24; // For the mapping: // mapping(address => bool) channels // The position in storage for a particular account is: // keccak256(abi.encode(account, channels.slot)) uint256 constant ChannelKey_channel_ptr = 0x00; uint256 constant ChannelKey_slot_ptr = 0x20; uint256 constant ChannelKey_length = 0x40; // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; /* * -------------------------- Disambiguation & Other Notes --------------------- * - The term "head" is used as it is in the documentation for ABI encoding, * but only in reference to dynamic types, i.e. it always refers to the * offset or pointer to the body of a dynamic type. In calldata, the head * is always an offset (relative to the parent object), while in memory, * the head is always the pointer to the body. More information found here: * https://docs.soliditylang.org/en/v0.8.14/abi-spec.html#argument-encoding * - Note that the length of an array is separate from and precedes the * head of the array. * * - The term "body" is used in place of the term "head" used in the ABI * documentation. It refers to the start of the data for a dynamic type, * e.g. the first word of a struct or the first word of the first element * in an array. * * - The term "pointer" is used to describe the absolute position of a value * and never an offset relative to another value. * - The suffix "_ptr" refers to a memory pointer. * - The suffix "_cdPtr" refers to a calldata pointer. * * - The term "offset" is used to describe the position of a value relative * to some parent value. For example, OrderParameters_conduit_offset is the * offset to the "conduit" value in the OrderParameters struct relative to * the start of the body. * - Note: Offsets are used to derive pointers. * * - Some structs have pointers defined for all of their fields in this file. * Lines which are commented out are fields that are not used in the * codebase but have been left in for readability. */ uint256 constant AlmostOneWord = 0x1f; uint256 constant OneWord = 0x20; uint256 constant TwoWords = 0x40; uint256 constant ThreeWords = 0x60; uint256 constant FreeMemoryPointerSlot = 0x40; uint256 constant ZeroSlot = 0x60; uint256 constant DefaultFreeMemoryPointer = 0x80; uint256 constant Slot0x80 = 0x80; uint256 constant Slot0xA0 = 0xa0; uint256 constant Slot0xC0 = 0xc0; // abi.encodeWithSignature("transferFrom(address,address,uint256)") uint256 constant ERC20_transferFrom_signature = ( 0x23b872dd00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC20_transferFrom_sig_ptr = 0x0; uint256 constant ERC20_transferFrom_from_ptr = 0x04; uint256 constant ERC20_transferFrom_to_ptr = 0x24; uint256 constant ERC20_transferFrom_amount_ptr = 0x44; uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100 // abi.encodeWithSignature( // "safeTransferFrom(address,address,uint256,uint256,bytes)" // ) uint256 constant ERC1155_safeTransferFrom_signature = ( 0xf242432a00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0; uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04; uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24; uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44; uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64; uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84; uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4; uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196 uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0; // abi.encodeWithSignature( // "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)" // ) uint256 constant ERC1155_safeBatchTransferFrom_signature = ( 0x2eb2c2d600000000000000000000000000000000000000000000000000000000 ); bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4( bytes32(ERC1155_safeBatchTransferFrom_signature) ); uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature; uint256 constant ERC721_transferFrom_sig_ptr = 0x0; uint256 constant ERC721_transferFrom_from_ptr = 0x04; uint256 constant ERC721_transferFrom_to_ptr = 0x24; uint256 constant ERC721_transferFrom_id_ptr = 0x44; uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100 // abi.encodeWithSignature("NoContract(address)") uint256 constant NoContract_error_signature = ( 0x5f15d67200000000000000000000000000000000000000000000000000000000 ); uint256 constant NoContract_error_sig_ptr = 0x0; uint256 constant NoContract_error_token_ptr = 0x4; uint256 constant NoContract_error_length = 0x24; // 4 + 32 == 36 // abi.encodeWithSignature( // "TokenTransferGenericFailure(address,address,address,uint256,uint256)" // ) uint256 constant TokenTransferGenericFailure_error_signature = ( 0xf486bc8700000000000000000000000000000000000000000000000000000000 ); uint256 constant TokenTransferGenericFailure_error_sig_ptr = 0x0; uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x4; uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x24; uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x44; uint256 constant TokenTransferGenericFailure_error_id_ptr = 0x64; uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0x84; // 4 + 32 * 5 == 164 uint256 constant TokenTransferGenericFailure_error_length = 0xa4; // abi.encodeWithSignature( // "BadReturnValueFromERC20OnTransfer(address,address,address,uint256)" // ) uint256 constant BadReturnValueFromERC20OnTransfer_error_signature = ( 0x9889192300000000000000000000000000000000000000000000000000000000 ); uint256 constant BadReturnValueFromERC20OnTransfer_error_sig_ptr = 0x0; uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x4; uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x24; uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x44; uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x64; // 4 + 32 * 4 == 132 uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84; uint256 constant ExtraGasBuffer = 0x20; uint256 constant CostPerWord = 3; uint256 constant MemoryExpansionCoefficient = 0x200; // Values are offset by 32 bytes in order to write the token to the beginning // in the event of a revert uint256 constant BatchTransfer1155Params_ptr = 0x24; uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64; uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84; uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4; uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4; uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4; uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4; uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0; uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0; uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0; uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80; uint256 constant ConduitBatch1155Transfer_from_offset = 0x20; uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60; uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80; uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0; uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0; uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0; // Note: abbreviated version of above constant to adhere to line length limit. uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80; uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00; uint256 constant Invalid1155BatchTransferEncoding_length = 0x04; uint256 constant Invalid1155BatchTransferEncoding_selector = ( 0xeba2084c00000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155BatchTransferGenericFailure_error_signature = ( 0xafc445e200000000000000000000000000000000000000000000000000000000 ); uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04; uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0; // SPDX-License-Identifier: MIT pragma solidity >=0.8.7; /** * @title TokenTransferrerErrors */ interface TokenTransferrerErrors { /** * @dev Revert with an error when an ERC721 transfer with amount other than * one is attempted. */ error InvalidERC721TransferAmount(); /** * @dev Revert with an error when attempting to fulfill an order where an * item has an amount of zero. */ error MissingItemAmount(); /** * @dev Revert with an error when attempting to fulfill an order where an * item has unused parameters. This includes both the token and the * identifier parameters for native transfers as well as the identifier * parameter for ERC20 transfers. Note that the conduit does not * perform this check, leaving it up to the calling channel to enforce * when desired. */ error UnusedItemParameters(); /** * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token * transfer reverts. * * @param token The token for which the transfer was attempted. * @param from The source of the attempted transfer. * @param to The recipient of the attempted transfer. * @param identifier The identifier for the attempted transfer. * @param amount The amount for the attempted transfer. */ error TokenTransferGenericFailure( address token, address from, address to, uint256 identifier, uint256 amount ); /** * @dev Revert with an error when a batch ERC1155 token transfer reverts. * * @param token The token for which the transfer was attempted. * @param from The source of the attempted transfer. * @param to The recipient of the attempted transfer. * @param identifiers The identifiers for the attempted transfer. * @param amounts The amounts for the attempted transfer. */ error ERC1155BatchTransferGenericFailure( address token, address from, address to, uint256[] identifiers, uint256[] amounts ); /** * @dev Revert with an error when an ERC20 token transfer returns a falsey * value. * * @param token The token for which the ERC20 transfer was attempted. * @param from The source of the attempted ERC20 transfer. * @param to The recipient of the attempted ERC20 transfer. * @param amount The amount for the attempted ERC20 transfer. */ error BadReturnValueFromERC20OnTransfer( address token, address from, address to, uint256 amount ); /** * @dev Revert with an error when an account being called as an assumed * contract does not have code and returns no data. * * @param account The account that should contain code. */ error NoContract(address account); /** * @dev Revert with an error when attempting to execute an 1155 batch * transfer using calldata not produced by default ABI encoding or with * different lengths for ids and amounts arrays. */ error Invalid1155BatchTransferEncoding(); }