ETH Price: $2,647.19 (+5.71%)

Transaction Decoder

Block:
18087520 at Sep-07-2023 10:26:23 PM +UTC
Transaction Fee:
0.001220306465671828 ETH $3.23
Gas Used:
49,316 Gas / 24.744635933 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x192e29C7...f8Fe654BB
0.039657410336226366 Eth
Nonce: 278
0.038437103870554538 Eth
Nonce: 279
0.001220306465671828
(Coinbase: MEV Builder)
143.698010137309769088 Eth143.698015068909769088 Eth0.0000049316

Execution Trace

ERC1967Proxy.58aa46e8( )
  • 0xb8b19bce94300d31138b5cb6d194934088e66166.58aa46e8( )
    • SanctionsList.isSanctioned( addr=0x192e29C7E4333F98373cD3e3679625Cf8Fe654BB ) => ( False )
      File 1 of 2: ERC1967Proxy
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.0;
      
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              // solhint-disable-next-line no-inline-assembly
              assembly {
              // Copy msg.data. We take full control of memory in this inline assembly
              // block because it will not return to Solidity code. We overwrite the
              // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
      
              // Call the implementation.
              // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
      
              // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
      
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 { revert(0, returndatasize()) }
                  default { return(0, returndatasize()) }
              }
          }
      
          /**
           * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
      
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
      
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback () external payable virtual {
              _fallback();
          }
      
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive () external payable virtual {
              _fallback();
          }
      
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overriden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {
          }
      }
      
      
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       *
       */
      abstract contract ERC1967Upgrade {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
      
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
      
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
      
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
      
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
      
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
      
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
      
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
              address oldImplementation = _getImplementation();
      
              // Initial upgrade and setup call
              _setImplementation(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
      
              // Perform rollback test if not already in progress
              StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
              if (!rollbackTesting.value) {
                  // Trigger rollback using upgradeTo from the new implementation
                  rollbackTesting.value = true;
                  Address.functionDelegateCall(
                      newImplementation,
                      abi.encodeWithSignature(
                          "upgradeTo(address)",
                          oldImplementation
                      )
                  );
                  rollbackTesting.value = false;
                  // Check rollback was effective
                  require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                  // Finally reset to the new implementation and log the upgrade
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
          }
      
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
      
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
      
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
      
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
      
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
      
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
      
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
      
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
      
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
      
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(
                  Address.isContract(newBeacon),
                  "ERC1967: new beacon is not a contract"
              );
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
      }
      
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize, which returns 0 for contracts in
              // construction, since the code is only stored at the end of the
              // constructor execution.
      
              uint256 size;
              // solhint-disable-next-line no-inline-assembly
              assembly { size := extcodesize(account) }
              return size > 0;
          }
      
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
      
              // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
              (bool success, ) = recipient.call{ value: amount }("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
      
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain`call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
      
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.call{ value: value }(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
      
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.staticcall(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
      
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
      
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return _verifyCallResult(success, returndata, errorMessage);
          }
      
          function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
      
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
      
          struct BooleanSlot {
              bool value;
          }
      
          struct Bytes32Slot {
              bytes32 value;
          }
      
          struct Uint256Slot {
              uint256 value;
          }
      
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      }
      
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes calldata) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
      
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
      
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor () {
              address msgSender = _msgSender();
              _owner = msgSender;
              emit OwnershipTransferred(address(0), msgSender);
          }
      
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
      
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
              _;
          }
      
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              emit OwnershipTransferred(_owner, address(0));
              _owner = address(0);
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              emit OwnershipTransferred(_owner, newOwner);
              _owner = newOwner;
          }
      }
      
      /**
       * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
       * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
       */
      contract ProxyAdmin is Ownable {
      
          /**
           * @dev Returns the current implementation of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("implementation()")) == 0x5c60da1b
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
              require(success);
              return abi.decode(returndata, (address));
          }
      
          /**
           * @dev Returns the current admin of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("admin()")) == 0xf851a440
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
              require(success);
              return abi.decode(returndata, (address));
          }
      
          /**
           * @dev Changes the admin of `proxy` to `newAdmin`.
           *
           * Requirements:
           *
           * - This contract must be the current admin of `proxy`.
           */
          function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
              proxy.changeAdmin(newAdmin);
          }
      
          /**
           * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
              proxy.upgradeTo(implementation);
          }
      
          /**
           * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
           * {TransparentUpgradeableProxy-upgradeToAndCall}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
              proxy.upgradeToAndCall{value: msg.value}(implementation, data);
          }
      }
      
      
      /**
       * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
       * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
       * continuation of the upgradability.
       *
       * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
       *
       * _Available since v4.1._
       */
      abstract contract UUPSUpgradeable is ERC1967Upgrade {
          function upgradeTo(address newImplementation) external virtual {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallSecure(newImplementation, bytes(""), false);
          }
      
          function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
              _authorizeUpgrade(newImplementation);
              _upgradeToAndCallSecure(newImplementation, data, true);
          }
      
          function _authorizeUpgrade(address newImplementation) internal virtual;
      }
      
      
      abstract contract Proxiable is UUPSUpgradeable {
          function _authorizeUpgrade(address newImplementation) internal override {
              _beforeUpgrade(newImplementation);
          }
      
          function _beforeUpgrade(address newImplementation) internal virtual;
      }
      
      contract ChildOfProxiable is Proxiable {
          function _beforeUpgrade(address newImplementation) internal virtual override {}
      }
      
      
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializating the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
              _upgradeToAndCall(_logic, _data, false);
          }
      
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       *
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       *
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
           */
          constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
              assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
              _changeAdmin(admin_);
          }
      
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           */
          modifier ifAdmin() {
              if (msg.sender == _getAdmin()) {
                  _;
              } else {
                  _fallback();
              }
          }
      
          /**
           * @dev Returns the current admin.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function admin() external ifAdmin returns (address admin_) {
              admin_ = _getAdmin();
          }
      
          /**
           * @dev Returns the current implementation.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function implementation() external ifAdmin returns (address implementation_) {
              implementation_ = _implementation();
          }
      
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
           */
          function changeAdmin(address newAdmin) external virtual ifAdmin {
              _changeAdmin(newAdmin);
          }
      
          /**
           * @dev Upgrade the implementation of the proxy.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
           */
          function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeToAndCall(newImplementation, bytes(""), false);
          }
      
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
           */
          function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
              _upgradeToAndCall(newImplementation, data, true);
          }
      
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view virtual returns (address) {
              return _getAdmin();
          }
      
          /**
           * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
           */
          function _beforeFallback() internal virtual override {
              require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
              super._beforeFallback();
          }
      }
      
      
      // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
      contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
          constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
      }

      File 2 of 2: SanctionsList
      // File: @openzeppelin/contracts/utils/Context.sol
      
      
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      
      pragma solidity ^0.8.0;
      
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      
      // File: @openzeppelin/contracts/access/Ownable.sol
      
      
      // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
      
      pragma solidity ^0.8.0;
      
      
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
      
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
      
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
      
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
      
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
              _;
          }
      
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
      
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      
      // File: contracts/SanctionsList.sol
      
      
      pragma solidity >=0.4.22 <0.9.0;
      
      
      contract SanctionsList is Ownable {
      
        constructor() {}
      
        mapping(address => bool) private sanctionedAddresses;
      
        event SanctionedAddress(address indexed addr);
        event NonSanctionedAddress(address indexed addr);
        event SanctionedAddressesAdded(address[] addrs);
        event SanctionedAddressesRemoved(address[] addrs);
      
        function name() external pure returns (string memory) {
          return "Chainalysis sanctions oracle";
        }
      
        function addToSanctionsList(address[] memory newSanctions) public onlyOwner {
          for (uint256 i = 0; i < newSanctions.length; i++) {
            sanctionedAddresses[newSanctions[i]] = true;  
          }
          emit SanctionedAddressesAdded(newSanctions);
        }
      
        function removeFromSanctionsList(address[] memory removeSanctions) public onlyOwner {
          for (uint256 i = 0; i < removeSanctions.length; i++) {
            sanctionedAddresses[removeSanctions[i]] = false;  
          }
          emit SanctionedAddressesRemoved(removeSanctions);
        }
      
        function isSanctioned(address addr) public view returns (bool) {
          return sanctionedAddresses[addr] == true ;
        }
      
        function isSanctionedVerbose(address addr) public returns (bool) {
          if (isSanctioned(addr)) {
            emit SanctionedAddress(addr);
            return true;
          } else {
            emit NonSanctionedAddress(addr);
            return false;
          }
        }
      
      }