ETH Price: $1,898.28 (-0.95%)

Transaction Decoder

Block:
14957161 at Jun-13-2022 05:21:07 PM +UTC
Transaction Fee:
0.002987346816164124 ETH $5.67
Gas Used:
51,068 Gas / 58.497431193 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x05D6F602...A83B3a90c
0.492910044999669881 Eth
Nonce: 108
0.489922698183505757 Eth
Nonce: 109
0.002987346816164124
0x152Cc0B6...369661B97
(Poolin 2)
2,472.188615752479103775 Eth2,472.188671927279103775 Eth0.0000561748

Execution Trace

ChefAvatar.transferFrom( from=0x05D6F60238fcF75F19EaD7Be657B00EA83B3a90c, to=0x4c1cd907ceaA5919CF7982679FcE88c58E423dcb, tokenId=4781 )
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }
    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }
    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }
    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);
    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);
    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);
    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);
    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);
    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../../../utils/Address.sol";
/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }
    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }
    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }
    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }
    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }
    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.
        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);
    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);
    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;
    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;
    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;
    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);
    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;
    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);
    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);
    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.
        return account.code.length > 0;
    }
    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");
        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }
    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }
    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }
    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
    }
    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0x00";
        }
        uint256 temp = value;
        uint256 length = 0;
        while (temp != 0) {
            length++;
            temp >>= 8;
        }
        return toHexString(value, length);
    }
    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _HEX_SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
 * @dev These functions deal with verification of Merkle Trees proofs.
 *
 * The proofs can be generated using the JavaScript library
 * https://github.com/miguelmota/merkletreejs[merkletreejs].
 * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
 *
 * See `test/utils/cryptography/MerkleProof.test.js` for some examples.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merklee tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            bytes32 proofElement = proof[i];
            if (computedHash <= proofElement) {
                // Hash(current computed hash + current element of the proof)
                computedHash = _efficientHash(computedHash, proofElement);
            } else {
                // Hash(current element of the proof + current computed hash)
                computedHash = _efficientHash(proofElement, computedHash);
            }
        }
        return computedHash;
    }
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "@openzeppelin/contracts/access/Ownable.sol";
import "erc721a/contracts/ERC721A.sol";
import './Sale/ChefSaleManager.sol';
import './Sale/ChefRevealProvider.sol';
contract ChefAvatar is ERC721A, Ownable {
    using Strings for uint256;
    event RevealProviderChanged(address newRevealProvider);
    event SaleManagerChanged(address newSaleManager);
    
    ChefRevealProvider public chefRevealProvider;
    ChefSaleManager public saleManager;
    uint256 public immutable maxSupply;
    string private _baseTokenURI;
    uint256 public revealOffset; // It will be used to shuffle IPFS files as (revealOffset + tokenId) % maxSupply
    constructor(
        uint256 _reserved,
        uint256 _maxSupply,
        address treasury,
        string memory name,
\t\tstring memory symbol,
        string memory baseTokenURI
    )
        ERC721A(name, symbol)
    {
        require(_reserved <= _maxSupply, "ChefAvatar: reserved must be less than or equal to maxSupply");
        maxSupply = _maxSupply;
        _baseTokenURI = baseTokenURI;
        if(_reserved > 0) { //not all projects have reserved tokens
            _mint(treasury, _reserved);
        }
    }
    function setChefRevealProvider(address _chefRevealProvider) external onlyOwner {
        chefRevealProvider = ChefRevealProvider(_chefRevealProvider);
        emit RevealProviderChanged(_chefRevealProvider);
    }
    
    function setChefSaleManager(address _chefSaleManager) external onlyOwner {
        saleManager = ChefSaleManager(_chefSaleManager);
        emit SaleManagerChanged(_chefSaleManager);
    }
    function _baseURI() internal view virtual override returns (string memory) {
        return _baseTokenURI;
    }
    function setBaseTokenURI(string calldata newTokenURI) onlyOwner public {
        _baseTokenURI = newTokenURI;
    }
    function exists(uint256 tokenId) external view returns (bool) {
        return _exists(tokenId);
    }
    function tokenURI(uint256 tokenId) public view override returns (string memory) {
        require(_exists(tokenId), "nonexistent token");
        uint256 offsetId = revealOffset == 0
            ? maxSupply // tokenId will always be less than maxSupply
            : tokenId;
        return string(abi.encodePacked(_baseTokenURI, offsetId.toString()));
    }
    function _mint(address to, uint256 quantity) private {
        require(totalSupply() + quantity <= maxSupply, "max supply reached");
        ERC721A._mint(to, quantity, '', true);
    }
    function mint(uint256 quantity, address to) public {
        require(msg.sender == address(saleManager), "only saleManager can mint");
        _mint(to, quantity);
    }
    /// @notice Request randomness from a user-provided seed
    /// @dev Only callable by the Owner.
    /// @param userProvidedSeed: extra entrpy for the VRF
    function callReveal(uint256 userProvidedSeed) external onlyOwner {
        require(revealOffset == 0, "Reveal already called");
        chefRevealProvider.getRandomNumber(userProvidedSeed);
    }
    
    function reveal(uint256 randomness) external {
        require(msg.sender == address(chefRevealProvider), "Only the Chef Reveal Provider can reveal");
        require(revealOffset == 0, "Reveal already called");
        revealOffset = randomness;
    }
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../../Chainlink/VRFConsumerBase.sol";
import "../ChefAvatar.sol";
/// @title A title that should describe the contract/interface
/// https://docs.chain.link/docs/vrf-contracts/
/// You can get the keyhash and vrfCoordinator from here https://docs.chain.link/docs/vrf-contracts/
contract ChefRevealProvider is VRFConsumerBase, Ownable {
  using SafeERC20 for IERC20;
  uint256 public fee;
  uint256 public randomNumber;
  bytes32 public immutable keyHash;
  bytes32 public requestId;
  event FeeChanged(uint256 newFee);
  ChefAvatar public immutable chefAvatar;
  /// @dev Ctor
  /// @param VRFCoordinator: address of the VRF coordinator
  /// @param LINKToken: address of the LINK token
  constructor(
    address VRFCoordinator,
    address LINKToken,
    bytes32 _keyHash,
    uint256 _fee,
    ChefAvatar _chefAvatar
  )
    VRFConsumerBase(
\t\t\tVRFCoordinator, // VRF Coordinator
\t\t\tLINKToken  // LINK Token
\t\t)
  {
    keyHash = _keyHash;
    fee = _fee;
    chefAvatar = _chefAvatar;
  }
  /// @notice Change the fee
  /// @param _fee: new fee (in LINK)
  function setFee(uint256 _fee) external onlyOwner {
    fee = _fee;
    emit FeeChanged(_fee);
  }
  /// @notice It allows the admin to withdraw tokens sent to the contract
  /// @dev Only callable by owner.
  /// @param token: the address of the token to withdraw
  /// @param amount: the number of token amount to withdraw
  function withdrawTokens(address token, uint256 amount) external onlyOwner {
    IERC20(token).safeTransfer(_msgSender(), amount);
  }
  /// @notice Request randomness from a user-provided seed
  /// @dev Only callable by RevealConsumer.
  /// @param userProvidedSeed: extra entrpy for the VRF
  function getRandomNumber(uint256 userProvidedSeed) external {
    require(msg.sender == address(chefAvatar), "only ChefAvatar");
    require(LINK.balanceOf(address(this)) >= fee, "insufficient LINK tokens");
    require(requestId == bytes32(0), "request already made");
    requestId = requestRandomness(keyHash, fee, userProvidedSeed);
  }
  /// @notice Callback function used by ChainLink's VRF Coordinator
  function fulfillRandomness(bytes32 incomingRequestId, uint256 randomness) internal override {
    require(incomingRequestId == requestId, "Wrong requestId");
    chefAvatar.reveal(randomness);
  }
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import '@openzeppelin/contracts/access/Ownable.sol';
import '../ChefAvatar.sol';
/// @title Tickets that exchange to a Chef. Sold during the Big Town Chef sale.
/// @author Valerio Leo @valeriohq
contract ChefSaleManager is Ownable {
\tuint256 public presalePrice;
\tuint256 public publicFixedPrice;
\tChefAvatar public chefAvatar;
\taddress public treasury;
\tuint256 public presaleStart = block.timestamp + 180 days; // default to half a year from now
\tuint256 public presaleLength = 1 days; // default to 1 day after presaleStart
\tuint256 public publicStart = block.timestamp + 180 days; // default to half a year from now
\tuint256 public publicSaleMaxPurchaseQuantity = 3;
\tbytes32 public merkleRoot;
\tevent MerkleRootChanged(bytes32 newMerkleRoot);
\tevent TreasuryChanged(address newTreasury);
\tevent PricesChanged(uint256 newPresalePrice, uint256 newPublicFixedPrice);
\tevent PresaleConfigChanged(uint256 newPresaleStart, uint256 newPresaleLength);
\tevent PublicSaleConfigChanged(uint256 newPublicStart);
\tevent PublicSaleMaxPurchaseQuantityChanged(uint256 newPublicSaleMaxPurchaseQuantity);
\tevent PublicSalePricingModelChanged(PublicSalePricingModel newPublicSalePricingModel);
\tevent DutchAuctionConfigurationChanged(
\t\tuint256 newDutchStartPrice,
\t\tuint256 newDutchEndPrice,
\t\tuint256 newDutchPriceStepDrecrease,
\t\tuint256 newDutchStartTime,
\t\tuint256 newDutchStep
\t);
\tstruct DutchAuction {
\t\tuint256 dutchStartPrice;
\t\tuint256 dutchEndPrice;
\t\tuint256 dutchPriceStepDrecrease;
\t\tuint256 dutchStartTime;
\t\tuint256 dutchStep;
\t}
\tDutchAuction public dutchAuction;
\tmapping(address => uint256) public publicSalePurchasesPerAddress;
\tmapping(address => uint) public presaleChefs;
\tenum SalePhases{
\t\tNO_SALE,
\t\tPRESALE,
\t\tPUBLIC_SALE
\t}
\tenum PublicSalePricingModel{
\t\tFIXED_PRICE,
\t\tDUTCH_AUCTION
\t}
\tPublicSalePricingModel public publicSalePricingModel;
\tconstructor(
\t\tuint256 _presalePrice,
\t\tuint256 _publicPrice,
\t\tChefAvatar _chefAvatar,
\t\taddress _treasury
\t) {
\t\tpresalePrice = _presalePrice;
\t\tpublicFixedPrice = _publicPrice;
\t\tchefAvatar = _chefAvatar;
\t\ttreasury = _treasury;
\t}
\t/// @notice It changes the merkleRoot variable.
\t/// @dev Only callable by owner.
\t/// @param _merkleRoot: the new merkle root
\tfunction setMerkleRoot(bytes32 _merkleRoot) external onlyOwner {
\t\tmerkleRoot = _merkleRoot;
\t\temit MerkleRootChanged(_merkleRoot);
\t}
\t/// @notice It changes the treasury treasury that receives the payments.
\t/// @dev Only callable by owner.
\t/// @param _treasury: the new treasury address
\tfunction setTreasury(address _treasury) external onlyOwner {
\t\ttreasury = _treasury;
\t\temit TreasuryChanged(_treasury);
\t}
\t/// @notice It updates the presale and public sale prices.
\t/// @dev Only callable by owner.
\t/// @param _presalePrice: the new presale price
\t/// @param _publicPrice: the new public sale price
\tfunction setPrices(uint256 _presalePrice, uint256 _publicPrice) external onlyOwner {
\t\tpresalePrice = _presalePrice;
\t\tpublicFixedPrice = _publicPrice;
\t\temit PricesChanged(_presalePrice, _publicPrice);
\t}
\t/// @notice It updates the start time and length of the presale
\t/// @dev Only callable by owner.
\t/// @param _presaleStart: the new presale start timestamp
\t/// @param _presaleLength: the new presale length in seconds
\tfunction setPresaleConfig(uint256 _presaleStart, uint256 _presaleLength) external onlyOwner {
\t\tpresaleStart = _presaleStart;
\t\tpresaleLength = _presaleLength;
\t\temit PresaleConfigChanged(_presaleStart, _presaleLength);
\t}
\t/// @notice It updates the start time of the public sale
\t/// @dev Only callable by owner.
\t/// @param _publicStart: the new public sale start timestamp
\tfunction setPublicConfig(uint256 _publicStart) external onlyOwner {
\t\tpublicStart = _publicStart;
\t\temit PublicSaleConfigChanged(_publicStart);
\t}
\t
\t/// @notice It updates the max purchase quantity of the public sale
\t/// @dev Only callable by owner.
\t/// @param newAmount: the new max amount users can mint during public sale
\tfunction setPublicSaleMaxPurchaseQuantity(uint256 newAmount) external onlyOwner {
\t\tpublicSaleMaxPurchaseQuantity = newAmount;
\t\temit PublicSaleMaxPurchaseQuantityChanged(newAmount);
\t}
\t/// @notice It updates the pricing model of the public sale.
\t/// @dev Only callable by owner. Parameter can be one of 0 or 1. 0 for fixed price, 1 for dutch auction.
\t/// @param pricingModel: the new pricing model of the public sale
\tfunction setPublicSalePricingModel(PublicSalePricingModel pricingModel) external onlyOwner {
\t\tpublicSalePricingModel = pricingModel;
\t\temit PublicSalePricingModelChanged(pricingModel);
\t}
\t/// @notice It updates the dutch auction settings.
\t/// @dev Only callable by owner.
\t/// @param _dutchStartPrice: the new start price
\t/// @param _dutchEndPrice: the new end price
\t/// @param _dutchPriceStepDrecrease: the new price decrease step
\t/// @param _dutchStartTime: the new start timestamp in seconds
\t/// @param _dutchStep: the new step in seconds for the price decrease
\tfunction configureDutch(
\t\tuint256 _dutchStartPrice,
\t\tuint256 _dutchEndPrice,
\t\tuint256 _dutchPriceStepDrecrease,
\t\tuint256 _dutchStartTime,
\t\tuint256 _dutchStep
\t) external onlyOwner {
\t\trequire(_dutchStartPrice > _dutchEndPrice, "ChefSaleManager: dutchStartPrice must be greater than dutchEndPrice");
\t\trequire(_dutchPriceStepDrecrease > 0, "ChefSaleManager: dutchPriceStepDrecrease must be greater than 0");
\t\trequire(_dutchStartTime >= block.timestamp, "ChefSaleManager: dutchStartTime must be greater than or equal to block.timestamp");
\t\trequire(_dutchStep > 0, "ChefSaleManager: dutchStep must be greater than 0");
\t\trequire(_dutchStartTime > _dutchStep, "ChefSaleManager: dutchStartTime must be greater than dutchStep");
\t\tdutchAuction.dutchStartPrice = _dutchStartPrice;
\t\tdutchAuction.dutchEndPrice = _dutchEndPrice;
\t\tdutchAuction.dutchPriceStepDrecrease = _dutchPriceStepDrecrease;
\t\tdutchAuction.dutchStartTime = _dutchStartTime;
\t\tdutchAuction.dutchStep = _dutchStep;
\t\temit DutchAuctionConfigurationChanged(
\t\t\t_dutchStartPrice,
\t\t\t_dutchEndPrice,
\t\t\t_dutchPriceStepDrecrease,
\t\t\t_dutchStartTime,
\t\t\t_dutchStep
\t\t);
\t}
\tfunction _getDutchAuctionPrice() internal view returns (uint256) {
\t\tuint256 elapsed = block.timestamp - dutchAuction.dutchStartTime;
\t\tuint256 stepsElapsed = elapsed / dutchAuction.dutchStep;
\t\tuint256 priceDecrease = stepsElapsed * dutchAuction.dutchPriceStepDrecrease;
\t\tif(priceDecrease > dutchAuction.dutchStartPrice) {
\t\t\treturn dutchAuction.dutchEndPrice;
\t\t}
\t\tuint256 currPrice = dutchAuction.dutchStartPrice - priceDecrease;
\t\treturn currPrice >= dutchAuction.dutchEndPrice ? currPrice : dutchAuction.dutchEndPrice;
\t}
\t/// @notice It returns the current price per-nft taking into account the currect sale phase and pricing model
\tfunction getCurrentPrice() public view returns (uint256) {
\t\tSalePhases phase = getSalePhase();
\t\tif(phase == SalePhases.PRESALE) {
\t\t\treturn presalePrice;
\t\t}
\t\tif(phase == SalePhases.PUBLIC_SALE && publicSalePricingModel == PublicSalePricingModel.DUTCH_AUCTION) {
\t\t\treturn _getDutchAuctionPrice();
\t\t}
\t\tif(phase == SalePhases.PUBLIC_SALE && publicSalePricingModel == PublicSalePricingModel.FIXED_PRICE) {
\t\t\treturn publicFixedPrice;
\t\t}
\t\trequire(false, "Invalid phase"); // stop execution if reach here
\t}
\tfunction _transferFunds(uint256 totalCost) private {
\t\trequire(msg.value == totalCost, "wrong amount");
\t\t(bool success, ) = payable(treasury).call{value: totalCost}("");
\t\trequire(success, "transfer failed");
\t}
\tfunction admitPresaleUser(uint256 quantity, uint256 maxQuantity, bytes32[] calldata proofs) internal returns (bool) {
\t\tbool isProofValid = MerkleProof.verify(
\t\t\tproofs,
\t\t\tmerkleRoot,
\t\t\tkeccak256(
\t\t\t\tabi.encodePacked(
\t\t\t\t\tkeccak256(abi.encodePacked(msg.sender, maxQuantity))
\t\t\t\t)
\t\t\t)
\t\t);
\t\tpresaleChefs[msg.sender] += quantity;
\t\treturn presaleChefs[msg.sender] <= maxQuantity && isProofValid;
\t}
\t
\tfunction admitPublicUser(uint256 quantity) internal returns (bool) {
\t\tpublicSalePurchasesPerAddress[msg.sender] += quantity;
\t\treturn publicSalePurchasesPerAddress[msg.sender] <= publicSaleMaxPurchaseQuantity;
\t}
\t/// @notice It returns the current sale phase
\tfunction getSalePhase() view public returns (SalePhases) {
\t\tif (block.timestamp < presaleStart) {
\t\t\treturn SalePhases.NO_SALE;
\t\t}
\t\tif (block.timestamp < presaleStart + presaleLength) {
\t\t\treturn SalePhases.PRESALE;
\t\t}
\t\tif(block.timestamp >= publicStart) {
\t\t\treturn SalePhases.PUBLIC_SALE;
\t\t}
\t\treturn SalePhases.NO_SALE;
\t}
\t/// @notice It will purchase the given amount of tokens for the user during the presale phase
\t/// @dev Only callable by during the presale phase. The correct amount of ETH should be sent based on the current price or the call will revert`
\t/// @param quantity: the amount of tokens to purchase
\t/// @param maxQuantity: the maximum amount of tokens this user can purchase during presale
\t/// @param proofs: the merkle proofs for the current user
\tfunction presaleBuy(uint256 quantity, uint256 maxQuantity, bytes32[] calldata proofs) external payable {
\t\tSalePhases salePhase = getSalePhase();
\t\trequire(salePhase == SalePhases.PRESALE, "presale not active");
\t\tuint256 totalCost = getCurrentPrice() * quantity;
\t\trequire(msg.value == totalCost, "Wrong amount sent");
\t\t
\t\tbool admitUser = admitPresaleUser(quantity, maxQuantity, proofs);
\t\trequire(admitUser, "User not admitted");
\t\t_transferFunds(totalCost);
\t\tchefAvatar.mint(quantity, msg.sender);
\t}
\t/// @notice It will purchase the given amount of tokens for the user during the public sale phase
\t/// @dev Only callable by during the public sale phase. The correct amount of ETH should be sent based on the current price or the call will revert
\t/// @param quantity: the amount of tokens to purchase
\tfunction publicBuy(uint256 quantity) external payable {
\t\tSalePhases salePhase = getSalePhase();
\t\trequire(salePhase == SalePhases.PUBLIC_SALE, "public sale not active");
\t\tuint256 totalCost = getCurrentPrice() * quantity;
\t\trequire(msg.value == totalCost, "Wrong amount sent");
\t\t
\t\tbool admitUser = admitPublicUser(quantity);
\t\trequire(admitUser, "User not admitted");
\t\t_transferFunds(totalCost);
\t\tchefAvatar.mint(quantity, msg.sender);
\t}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.10;
import "./interfaces/ILinkToken.sol";
import "./VRFRequestIDBase.sol";
/** ****************************************************************************
 * @notice Interface for contracts using VRF randomness
 * *****************************************************************************
 * @dev PURPOSE
 *
 * @dev Reggie the Random Oracle (not his real job) wants to provide randomness
 * @dev to Vera the verifier in such a way that Vera can be sure he's not
 * @dev making his output up to suit himself. Reggie provides Vera a public key
 * @dev to which he knows the secret key. Each time Vera provides a seed to
 * @dev Reggie, he gives back a value which is computed completely
 * @dev deterministically from the seed and the secret key.
 *
 * @dev Reggie provides a proof by which Vera can verify that the output was
 * @dev correctly computed once Reggie tells it to her, but without that proof,
 * @dev the output is indistinguishable to her from a uniform random sample
 * @dev from the output space.
 *
 * @dev The purpose of this contract is to make it easy for unrelated contracts
 * @dev to talk to Vera the verifier about the work Reggie is doing, to provide
 * @dev simple access to a verifiable source of randomness.
 * *****************************************************************************
 * @dev USAGE
 *
 * @dev Calling contracts must inherit from VRFConsumerBase, and can
 * @dev initialize VRFConsumerBase's attributes in their constructor as
 * @dev shown:
 *
 * @dev   contract VRFConsumer {
 * @dev     constuctor(<other arguments>, address _vrfCoordinator, address _link)
 * @dev       VRFConsumerBase(_vrfCoordinator, _link) public {
 * @dev         <initialization with other arguments goes here>
 * @dev       }
 * @dev   }
 *
 * @dev The oracle will have given you an ID for the VRF keypair they have
 * @dev committed to (let's call it keyHash), and have told you the minimum LINK
 * @dev price for VRF service. Make sure your contract has sufficient LINK, and
 * @dev call requestRandomness(keyHash, fee, seed), where seed is the input you
 * @dev want to generate randomness from.
 *
 * @dev Once the VRFCoordinator has received and validated the oracle's response
 * @dev to your request, it will call your contract's fulfillRandomness method.
 *
 * @dev The randomness argument to fulfillRandomness is the actual random value
 * @dev generated from your seed.
 *
 * @dev The requestId argument is generated from the keyHash and the seed by
 * @dev makeRequestId(keyHash, seed). If your contract could have concurrent
 * @dev requests open, you can use the requestId to track which seed is
 * @dev associated with which randomness. See VRFRequestIDBase.sol for more
 * @dev details. (See "SECURITY CONSIDERATIONS" for principles to keep in mind,
 * @dev if your contract could have multiple requests in flight simultaneously.)
 *
 * @dev Colliding `requestId`s are cryptographically impossible as long as seeds
 * @dev differ. (Which is critical to making unpredictable randomness! See the
 * @dev next section.)
 *
 * *****************************************************************************
 * @dev SECURITY CONSIDERATIONS
 *
 * @dev A method with the ability to call your fulfillRandomness method directly
 * @dev could spoof a VRF response with any random value, so it's critical that
 * @dev it cannot be directly called by anything other than this base contract
 * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method).
 *
 * @dev For your users to trust that your contract's random behavior is free
 * @dev from malicious interference, it's best if you can write it so that all
 * @dev behaviors implied by a VRF response are executed *during* your
 * @dev fulfillRandomness method. If your contract must store the response (or
 * @dev anything derived from it) and use it later, you must ensure that any
 * @dev user-significant behavior which depends on that stored value cannot be
 * @dev manipulated by a subsequent VRF request.
 *
 * @dev Similarly, both miners and the VRF oracle itself have some influence
 * @dev over the order in which VRF responses appear on the blockchain, so if
 * @dev your contract could have multiple VRF requests in flight simultaneously,
 * @dev you must ensure that the order in which the VRF responses arrive cannot
 * @dev be used to manipulate your contract's user-significant behavior.
 *
 * @dev Since the ultimate input to the VRF is mixed with the block hash of the
 * @dev block in which the request is made, user-provided seeds have no impact
 * @dev on its economic security properties. They are only included for API
 * @dev compatability with previous versions of this contract.
 *
 * @dev Since the block hash of the block which contains the requestRandomness
 * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful
 * @dev miner could, in principle, fork the blockchain to evict the block
 * @dev containing the request, forcing the request to be included in a
 * @dev different block with a different hash, and therefore a different input
 * @dev to the VRF. However, such an attack would incur a substantial economic
 * @dev cost. This cost scales with the number of blocks the VRF oracle waits
 * @dev until it calls responds to a request.
 */
abstract contract VRFConsumerBase is VRFRequestIDBase {
\tevent RandomnessRequested(bytes32 requestId);
\t/**
\t * @notice fulfillRandomness handles the VRF response. Your contract must
\t * @notice implement it. See "SECURITY CONSIDERATIONS" above for important
\t * @notice principles to keep in mind when implementing your fulfillRandomness
\t * @notice method.
\t *
\t * @dev VRFConsumerBase expects its subcontracts to have a method with this
\t * @dev signature, and will call it once it has verified the proof
\t * @dev associated with the randomness. (It is triggered via a call to
\t * @dev rawFulfillRandomness, below.)
\t *
\t * @param requestId The Id initially returned by requestRandomness
\t * @param randomness the VRF output
\t */
\tfunction fulfillRandomness(bytes32 requestId, uint256 randomness)
\t\tinternal virtual;
\t/**
\t * @notice requestRandomness initiates a request for VRF output given _seed
\t *
\t * @dev The fulfillRandomness method receives the output, once it's provided
\t * @dev by the Oracle, and verified by the vrfCoordinator.
\t *
\t * @dev The _keyHash must already be registered with the VRFCoordinator, and
\t * @dev the _fee must exceed the fee specified during registration of the
\t * @dev _keyHash.
\t *
\t * @dev The _seed parameter is vestigial, and is kept only for API
\t * @dev compatibility with older versions. It can't *hurt* to mix in some of
\t * @dev your own randomness, here, but it's not necessary because the VRF
\t * @dev oracle will mix the hash of the block containing your request into the
\t * @dev VRF seed it ultimately uses.
\t *
\t * @param _keyHash ID of public key against which randomness is generated
\t * @param _fee The amount of LINK to send with the request
\t * @param _seed seed mixed into the input of the VRF.
\t *
\t * @return requestId unique ID for this request
\t *
\t * @dev The returned requestId can be used to distinguish responses to
\t * @dev concurrent requests. It is passed as the first argument to
\t * @dev fulfillRandomness.
\t */
\tfunction requestRandomness(bytes32 _keyHash, uint256 _fee, uint256 _seed)
\t\tinternal returns (bytes32 requestId)
\t{
\t\tLINK.transferAndCall(vrfCoordinator, _fee, abi.encode(_keyHash, _seed));
\t\t// This is the seed passed to VRFCoordinator. The oracle will mix this with
\t\t// the hash of the block containing this request to obtain the seed/input
\t\t// which is finally passed to the VRF cryptographic machinery.
\t\tuint256 vRFSeed  = makeVRFInputSeed(_keyHash, _seed, address(this), nonces[_keyHash]);
\t\t// nonces[_keyHash] must stay in sync with
\t\t// VRFCoordinator.nonces[_keyHash][this], which was incremented by the above
\t\t// successful LINK.transferAndCall (in VRFCoordinator.randomnessRequest).
\t\t// This provides protection against the user repeating their input seed,
\t\t// which would result in a predictable/duplicate output, if multiple such
\t\t// requests appeared in the same block.
\t\tnonces[_keyHash] = nonces[_keyHash] + 1;
\t\tbytes32 requestId = makeRequestId(_keyHash, vRFSeed);
\t\temit RandomnessRequested(requestId);
\t\treturn requestId;
\t}
\tILinkToken immutable internal LINK;
\taddress immutable private vrfCoordinator;
\t// Nonces for each VRF key from which randomness has been requested.
\t//
\t// Must stay in sync with VRFCoordinator[_keyHash][this]
\tmapping(bytes32 /* keyHash */ => uint256 /* nonce */) private nonces;
\t/**
\t * @param _vrfCoordinator address of VRFCoordinator contract
\t * @param _link address of LINK token contract
\t *
\t * @dev https://docs.chain.link/docs/link-token-contracts
\t */
\tconstructor(address _vrfCoordinator, address _link) {
\t\tvrfCoordinator = _vrfCoordinator;
\t\tLINK = ILinkToken(_link);
\t}
\t// rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF
\t// proof. rawFulfillRandomness then calls fulfillRandomness, after validating
\t// the origin of the call
\tfunction rawFulfillRandomness(bytes32 requestId, uint256 randomness) external {
\t\trequire(msg.sender == vrfCoordinator, "Only VRFCoordinator can fulfill");
\t\tfulfillRandomness(requestId, randomness);
\t}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.10;
contract VRFRequestIDBase {
\t/**
\t * @notice returns the seed which is actually input to the VRF coordinator
\t *
\t * @dev To prevent repetition of VRF output due to repetition of the
\t * @dev user-supplied seed, that seed is combined in a hash with the
\t * @dev user-specific nonce, and the address of the consuming contract. The
\t * @dev risk of repetition is mostly mitigated by inclusion of a blockhash in
\t * @dev the final seed, but the nonce does protect against repetition in
\t * @dev requests which are included in a single block.
\t *
\t * @param _userSeed VRF seed input provided by user
\t * @param _requester Address of the requesting contract
\t * @param _nonce User-specific nonce at the time of the request
\t */
\tfunction makeVRFInputSeed(bytes32 _keyHash, uint256 _userSeed,
\t\taddress _requester, uint256 _nonce)
\t\tinternal pure returns (uint256)
\t{
\t\treturn  uint256(keccak256(abi.encode(_keyHash, _userSeed, _requester, _nonce)));
\t}
\t/**
\t * @notice Returns the id for this request
\t * @param _keyHash The serviceAgreement ID to be used for this request
\t * @param _vRFInputSeed The seed to be passed directly to the VRF
\t * @return The id for this request
\t *
\t * @dev Note that _vRFInputSeed is not the seed passed by the consuming
\t * @dev contract, but the one generated by makeVRFInputSeed
\t */
\tfunction makeRequestId(
\t\tbytes32 _keyHash, uint256 _vRFInputSeed) internal pure returns (bytes32) {
\t\treturn keccak256(abi.encodePacked(_keyHash, _vRFInputSeed));
\t}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.10;
interface ILinkToken {
\tfunction allowance(address owner, address spender) external view returns (uint256 remaining);
\tfunction approve(address spender, uint256 value) external returns (bool success);
\tfunction balanceOf(address owner) external view returns (uint256 balance);
\tfunction decimals() external view returns (uint8 decimalPlaces);
\tfunction decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
\tfunction increaseApproval(address spender, uint256 subtractedValue) external;
\tfunction name() external view returns (string memory tokenName);
\tfunction symbol() external view returns (string memory tokenSymbol);
\tfunction totalSupply() external view returns (uint256 totalTokensIssued);
\tfunction transfer(address to, uint256 value) external returns (bool success);
\tfunction transferAndCall(address to, uint256 value, bytes memory data) external returns (bool success);
\tfunction transferFrom(address from, address to, uint256 value) external returns (bool success);
}// SPDX-License-Identifier: MIT
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
import '@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol';
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';
import '@openzeppelin/contracts/utils/Address.sol';
import '@openzeppelin/contracts/utils/Context.sol';
import '@openzeppelin/contracts/utils/Strings.sol';
import '@openzeppelin/contracts/utils/introspection/ERC165.sol';
error ApprovalCallerNotOwnerNorApproved();
error ApprovalQueryForNonexistentToken();
error ApproveToCaller();
error ApprovalToCurrentOwner();
error BalanceQueryForZeroAddress();
error MintedQueryForZeroAddress();
error BurnedQueryForZeroAddress();
error AuxQueryForZeroAddress();
error MintToZeroAddress();
error MintZeroQuantity();
error OwnerIndexOutOfBounds();
error OwnerQueryForNonexistentToken();
error TokenIndexOutOfBounds();
error TransferCallerNotOwnerNorApproved();
error TransferFromIncorrectOwner();
error TransferToNonERC721ReceiverImplementer();
error TransferToZeroAddress();
error URIQueryForNonexistentToken();
/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension. Built to optimize for lower gas during batch mints.
 *
 * Assumes serials are sequentially minted starting at _startTokenId() (defaults to 0, e.g. 0, 1, 2, 3..).
 *
 * Assumes that an owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 *
 * Assumes that the maximum token id cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721A is Context, ERC165, IERC721, IERC721Metadata {
    using Address for address;
    using Strings for uint256;
    // Compiler will pack this into a single 256bit word.
    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Keeps track of the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
    }
    // Compiler will pack this into a single 256bit word.
    struct AddressData {
        // Realistically, 2**64-1 is more than enough.
        uint64 balance;
        // Keeps track of mint count with minimal overhead for tokenomics.
        uint64 numberMinted;
        // Keeps track of burn count with minimal overhead for tokenomics.
        uint64 numberBurned;
        // For miscellaneous variable(s) pertaining to the address
        // (e.g. number of whitelist mint slots used).
        // If there are multiple variables, please pack them into a uint64.
        uint64 aux;
    }
    // The tokenId of the next token to be minted.
    uint256 internal _currentIndex;
    // The number of tokens burned.
    uint256 internal _burnCounter;
    // Token name
    string private _name;
    // Token symbol
    string private _symbol;
    // Mapping from token ID to ownership details
    // An empty struct value does not necessarily mean the token is unowned. See ownershipOf implementation for details.
    mapping(uint256 => TokenOwnership) internal _ownerships;
    // Mapping owner address to address data
    mapping(address => AddressData) private _addressData;
    // Mapping from token ID to approved address
    mapping(uint256 => address) private _tokenApprovals;
    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _currentIndex = _startTokenId();
    }
    /**
     * To change the starting tokenId, please override this function.
     */
    function _startTokenId() internal view virtual returns (uint256) {
        return 0;
    }
    /**
     * @dev See {IERC721Enumerable-totalSupply}.
     * @dev Burned tokens are calculated here, use _totalMinted() if you want to count just minted tokens.
     */
    function totalSupply() public view returns (uint256) {
        // Counter underflow is impossible as _burnCounter cannot be incremented
        // more than _currentIndex - _startTokenId() times
        unchecked {
            return _currentIndex - _burnCounter - _startTokenId();
        }
    }
    /**
     * Returns the total amount of tokens minted in the contract.
     */
    function _totalMinted() internal view returns (uint256) {
        // Counter underflow is impossible as _currentIndex does not decrement,
        // and it is initialized to _startTokenId()
        unchecked {
            return _currentIndex - _startTokenId();
        }
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }
    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view override returns (uint256) {
        if (owner == address(0)) revert BalanceQueryForZeroAddress();
        return uint256(_addressData[owner].balance);
    }
    /**
     * Returns the number of tokens minted by `owner`.
     */
    function _numberMinted(address owner) internal view returns (uint256) {
        if (owner == address(0)) revert MintedQueryForZeroAddress();
        return uint256(_addressData[owner].numberMinted);
    }
    /**
     * Returns the number of tokens burned by or on behalf of `owner`.
     */
    function _numberBurned(address owner) internal view returns (uint256) {
        if (owner == address(0)) revert BurnedQueryForZeroAddress();
        return uint256(_addressData[owner].numberBurned);
    }
    /**
     * Returns the auxillary data for `owner`. (e.g. number of whitelist mint slots used).
     */
    function _getAux(address owner) internal view returns (uint64) {
        if (owner == address(0)) revert AuxQueryForZeroAddress();
        return _addressData[owner].aux;
    }
    /**
     * Sets the auxillary data for `owner`. (e.g. number of whitelist mint slots used).
     * If there are multiple variables, please pack them into a uint64.
     */
    function _setAux(address owner, uint64 aux) internal {
        if (owner == address(0)) revert AuxQueryForZeroAddress();
        _addressData[owner].aux = aux;
    }
    /**
     * Gas spent here starts off proportional to the maximum mint batch size.
     * It gradually moves to O(1) as tokens get transferred around in the collection over time.
     */
    function ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) {
        uint256 curr = tokenId;
        unchecked {
            if (_startTokenId() <= curr && curr < _currentIndex) {
                TokenOwnership memory ownership = _ownerships[curr];
                if (!ownership.burned) {
                    if (ownership.addr != address(0)) {
                        return ownership;
                    }
                    // Invariant:
                    // There will always be an ownership that has an address and is not burned
                    // before an ownership that does not have an address and is not burned.
                    // Hence, curr will not underflow.
                    while (true) {
                        curr--;
                        ownership = _ownerships[curr];
                        if (ownership.addr != address(0)) {
                            return ownership;
                        }
                    }
                }
            }
        }
        revert OwnerQueryForNonexistentToken();
    }
    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view override returns (address) {
        return ownershipOf(tokenId).addr;
    }
    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }
    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }
    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        if (!_exists(tokenId)) revert URIQueryForNonexistentToken();
        string memory baseURI = _baseURI();
        return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : '';
    }
    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overriden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return '';
    }
    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public override {
        address owner = ERC721A.ownerOf(tokenId);
        if (to == owner) revert ApprovalToCurrentOwner();
        if (_msgSender() != owner && !isApprovedForAll(owner, _msgSender())) {
            revert ApprovalCallerNotOwnerNorApproved();
        }
        _approve(to, tokenId, owner);
    }
    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view override returns (address) {
        if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();
        return _tokenApprovals[tokenId];
    }
    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public override {
        if (operator == _msgSender()) revert ApproveToCaller();
        _operatorApprovals[_msgSender()][operator] = approved;
        emit ApprovalForAll(_msgSender(), operator, approved);
    }
    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }
    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        _transfer(from, to, tokenId);
    }
    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public virtual override {
        safeTransferFrom(from, to, tokenId, '');
    }
    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) public virtual override {
        _transfer(from, to, tokenId);
        if (to.isContract() && !_checkContractOnERC721Received(from, to, tokenId, _data)) {
            revert TransferToNonERC721ReceiverImplementer();
        }
    }
    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     */
    function _exists(uint256 tokenId) internal view returns (bool) {
        return _startTokenId() <= tokenId && tokenId < _currentIndex &&
            !_ownerships[tokenId].burned;
    }
    function _safeMint(address to, uint256 quantity) internal {
        _safeMint(to, quantity, '');
    }
    /**
     * @dev Safely mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
    ) internal {
        _mint(to, quantity, _data, true);
    }
    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event.
     */
    function _mint(
        address to,
        uint256 quantity,
        bytes memory _data,
        bool safe
    ) internal {
        uint256 startTokenId = _currentIndex;
        if (to == address(0)) revert MintToZeroAddress();
        if (quantity == 0) revert MintZeroQuantity();
        _beforeTokenTransfers(address(0), to, startTokenId, quantity);
        // Overflows are incredibly unrealistic.
        // balance or numberMinted overflow if current value of either + quantity > 1.8e19 (2**64) - 1
        // updatedIndex overflows if _currentIndex + quantity > 1.2e77 (2**256) - 1
        unchecked {
            _addressData[to].balance += uint64(quantity);
            _addressData[to].numberMinted += uint64(quantity);
            _ownerships[startTokenId].addr = to;
            _ownerships[startTokenId].startTimestamp = uint64(block.timestamp);
            uint256 updatedIndex = startTokenId;
            uint256 end = updatedIndex + quantity;
            if (safe && to.isContract()) {
                do {
                    emit Transfer(address(0), to, updatedIndex);
                    if (!_checkContractOnERC721Received(address(0), to, updatedIndex++, _data)) {
                        revert TransferToNonERC721ReceiverImplementer();
                    }
                } while (updatedIndex != end);
                // Reentrancy protection
                if (_currentIndex != startTokenId) revert();
            } else {
                do {
                    emit Transfer(address(0), to, updatedIndex++);
                } while (updatedIndex != end);
            }
            _currentIndex = updatedIndex;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }
    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(
        address from,
        address to,
        uint256 tokenId
    ) private {
        TokenOwnership memory prevOwnership = ownershipOf(tokenId);
        bool isApprovedOrOwner = (_msgSender() == prevOwnership.addr ||
            isApprovedForAll(prevOwnership.addr, _msgSender()) ||
            getApproved(tokenId) == _msgSender());
        if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved();
        if (prevOwnership.addr != from) revert TransferFromIncorrectOwner();
        if (to == address(0)) revert TransferToZeroAddress();
        _beforeTokenTransfers(from, to, tokenId, 1);
        // Clear approvals from the previous owner
        _approve(address(0), tokenId, prevOwnership.addr);
        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256.
        unchecked {
            _addressData[from].balance -= 1;
            _addressData[to].balance += 1;
            _ownerships[tokenId].addr = to;
            _ownerships[tokenId].startTimestamp = uint64(block.timestamp);
            // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it.
            // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls.
            uint256 nextTokenId = tokenId + 1;
            if (_ownerships[nextTokenId].addr == address(0)) {
                // This will suffice for checking _exists(nextTokenId),
                // as a burned slot cannot contain the zero address.
                if (nextTokenId < _currentIndex) {
                    _ownerships[nextTokenId].addr = prevOwnership.addr;
                    _ownerships[nextTokenId].startTimestamp = prevOwnership.startTimestamp;
                }
            }
        }
        emit Transfer(from, to, tokenId);
        _afterTokenTransfers(from, to, tokenId, 1);
    }
    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        TokenOwnership memory prevOwnership = ownershipOf(tokenId);
        _beforeTokenTransfers(prevOwnership.addr, address(0), tokenId, 1);
        // Clear approvals from the previous owner
        _approve(address(0), tokenId, prevOwnership.addr);
        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256.
        unchecked {
            _addressData[prevOwnership.addr].balance -= 1;
            _addressData[prevOwnership.addr].numberBurned += 1;
            // Keep track of who burned the token, and the timestamp of burning.
            _ownerships[tokenId].addr = prevOwnership.addr;
            _ownerships[tokenId].startTimestamp = uint64(block.timestamp);
            _ownerships[tokenId].burned = true;
            // If the ownership slot of tokenId+1 is not explicitly set, that means the burn initiator owns it.
            // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls.
            uint256 nextTokenId = tokenId + 1;
            if (_ownerships[nextTokenId].addr == address(0)) {
                // This will suffice for checking _exists(nextTokenId),
                // as a burned slot cannot contain the zero address.
                if (nextTokenId < _currentIndex) {
                    _ownerships[nextTokenId].addr = prevOwnership.addr;
                    _ownerships[nextTokenId].startTimestamp = prevOwnership.startTimestamp;
                }
            }
        }
        emit Transfer(prevOwnership.addr, address(0), tokenId);
        _afterTokenTransfers(prevOwnership.addr, address(0), tokenId, 1);
        // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
        unchecked {
            _burnCounter++;
        }
    }
    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits a {Approval} event.
     */
    function _approve(
        address to,
        uint256 tokenId,
        address owner
    ) private {
        _tokenApprovals[tokenId] = to;
        emit Approval(owner, to, tokenId);
    }
    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param _data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkContractOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) private returns (bool) {
        try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) {
            return retval == IERC721Receiver(to).onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                revert TransferToNonERC721ReceiverImplementer();
            } else {
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
    }
    /**
     * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting.
     * And also called before burning one token.
     *
     * startTokenId - the first token id to be transferred
     * quantity - the amount to be transferred
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}
    /**
     * @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes
     * minting.
     * And also called after one token has been burned.
     *
     * startTokenId - the first token id to be transferred
     * quantity - the amount to be transferred
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
     * transferred to `to`.
     * - When `from` is zero, `tokenId` has been minted for `to`.
     * - When `to` is zero, `tokenId` has been burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}
}