Transaction Hash:
Block:
14957161 at Jun-13-2022 05:21:07 PM +UTC
Transaction Fee:
0.002987346816164124 ETH
$5.67
Gas Used:
51,068 Gas / 58.497431193 Gwei
Emitted Events:
211 |
ChefAvatar.Approval( owner=[Sender] 0x05d6f60238fcf75f19ead7be657b00ea83b3a90c, approved=0x00000000...000000000, tokenId=4781 )
|
212 |
ChefAvatar.Transfer( from=[Sender] 0x05d6f60238fcf75f19ead7be657b00ea83b3a90c, to=0x4c1cd907...58E423dcb, tokenId=4781 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x05D6F602...A83B3a90c |
0.492910044999669881 Eth
Nonce: 108
|
0.489922698183505757 Eth
Nonce: 109
| 0.002987346816164124 | ||
0x152Cc0B6...369661B97 | |||||
0x2DaA3596...79C930E5e
Miner
| (Poolin 2) | 2,472.188615752479103775 Eth | 2,472.188671927279103775 Eth | 0.0000561748 |
Execution Trace
ChefAvatar.transferFrom( from=0x05D6F60238fcF75F19EaD7Be657B00EA83B3a90c, to=0x4c1cd907ceaA5919CF7982679FcE88c58E423dcb, tokenId=4781 )
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Trees proofs. * * The proofs can be generated using the JavaScript library * https://github.com/miguelmota/merkletreejs[merkletreejs]. * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled. * * See `test/utils/cryptography/MerkleProof.test.js` for some examples. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merklee tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (computedHash <= proofElement) { // Hash(current computed hash + current element of the proof) computedHash = _efficientHash(computedHash, proofElement); } else { // Hash(current element of the proof + current computed hash) computedHash = _efficientHash(proofElement, computedHash); } } return computedHash; } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/access/Ownable.sol"; import "erc721a/contracts/ERC721A.sol"; import './Sale/ChefSaleManager.sol'; import './Sale/ChefRevealProvider.sol'; contract ChefAvatar is ERC721A, Ownable { using Strings for uint256; event RevealProviderChanged(address newRevealProvider); event SaleManagerChanged(address newSaleManager); ChefRevealProvider public chefRevealProvider; ChefSaleManager public saleManager; uint256 public immutable maxSupply; string private _baseTokenURI; uint256 public revealOffset; // It will be used to shuffle IPFS files as (revealOffset + tokenId) % maxSupply constructor( uint256 _reserved, uint256 _maxSupply, address treasury, string memory name, \t\tstring memory symbol, string memory baseTokenURI ) ERC721A(name, symbol) { require(_reserved <= _maxSupply, "ChefAvatar: reserved must be less than or equal to maxSupply"); maxSupply = _maxSupply; _baseTokenURI = baseTokenURI; if(_reserved > 0) { //not all projects have reserved tokens _mint(treasury, _reserved); } } function setChefRevealProvider(address _chefRevealProvider) external onlyOwner { chefRevealProvider = ChefRevealProvider(_chefRevealProvider); emit RevealProviderChanged(_chefRevealProvider); } function setChefSaleManager(address _chefSaleManager) external onlyOwner { saleManager = ChefSaleManager(_chefSaleManager); emit SaleManagerChanged(_chefSaleManager); } function _baseURI() internal view virtual override returns (string memory) { return _baseTokenURI; } function setBaseTokenURI(string calldata newTokenURI) onlyOwner public { _baseTokenURI = newTokenURI; } function exists(uint256 tokenId) external view returns (bool) { return _exists(tokenId); } function tokenURI(uint256 tokenId) public view override returns (string memory) { require(_exists(tokenId), "nonexistent token"); uint256 offsetId = revealOffset == 0 ? maxSupply // tokenId will always be less than maxSupply : tokenId; return string(abi.encodePacked(_baseTokenURI, offsetId.toString())); } function _mint(address to, uint256 quantity) private { require(totalSupply() + quantity <= maxSupply, "max supply reached"); ERC721A._mint(to, quantity, '', true); } function mint(uint256 quantity, address to) public { require(msg.sender == address(saleManager), "only saleManager can mint"); _mint(to, quantity); } /// @notice Request randomness from a user-provided seed /// @dev Only callable by the Owner. /// @param userProvidedSeed: extra entrpy for the VRF function callReveal(uint256 userProvidedSeed) external onlyOwner { require(revealOffset == 0, "Reveal already called"); chefRevealProvider.getRandomNumber(userProvidedSeed); } function reveal(uint256 randomness) external { require(msg.sender == address(chefRevealProvider), "Only the Chef Reveal Provider can reveal"); require(revealOffset == 0, "Reveal already called"); revealOffset = randomness; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../../Chainlink/VRFConsumerBase.sol"; import "../ChefAvatar.sol"; /// @title A title that should describe the contract/interface /// https://docs.chain.link/docs/vrf-contracts/ /// You can get the keyhash and vrfCoordinator from here https://docs.chain.link/docs/vrf-contracts/ contract ChefRevealProvider is VRFConsumerBase, Ownable { using SafeERC20 for IERC20; uint256 public fee; uint256 public randomNumber; bytes32 public immutable keyHash; bytes32 public requestId; event FeeChanged(uint256 newFee); ChefAvatar public immutable chefAvatar; /// @dev Ctor /// @param VRFCoordinator: address of the VRF coordinator /// @param LINKToken: address of the LINK token constructor( address VRFCoordinator, address LINKToken, bytes32 _keyHash, uint256 _fee, ChefAvatar _chefAvatar ) VRFConsumerBase( \t\t\tVRFCoordinator, // VRF Coordinator \t\t\tLINKToken // LINK Token \t\t) { keyHash = _keyHash; fee = _fee; chefAvatar = _chefAvatar; } /// @notice Change the fee /// @param _fee: new fee (in LINK) function setFee(uint256 _fee) external onlyOwner { fee = _fee; emit FeeChanged(_fee); } /// @notice It allows the admin to withdraw tokens sent to the contract /// @dev Only callable by owner. /// @param token: the address of the token to withdraw /// @param amount: the number of token amount to withdraw function withdrawTokens(address token, uint256 amount) external onlyOwner { IERC20(token).safeTransfer(_msgSender(), amount); } /// @notice Request randomness from a user-provided seed /// @dev Only callable by RevealConsumer. /// @param userProvidedSeed: extra entrpy for the VRF function getRandomNumber(uint256 userProvidedSeed) external { require(msg.sender == address(chefAvatar), "only ChefAvatar"); require(LINK.balanceOf(address(this)) >= fee, "insufficient LINK tokens"); require(requestId == bytes32(0), "request already made"); requestId = requestRandomness(keyHash, fee, userProvidedSeed); } /// @notice Callback function used by ChainLink's VRF Coordinator function fulfillRandomness(bytes32 incomingRequestId, uint256 randomness) internal override { require(incomingRequestId == requestId, "Wrong requestId"); chefAvatar.reveal(randomness); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import '@openzeppelin/contracts/access/Ownable.sol'; import '../ChefAvatar.sol'; /// @title Tickets that exchange to a Chef. Sold during the Big Town Chef sale. /// @author Valerio Leo @valeriohq contract ChefSaleManager is Ownable { \tuint256 public presalePrice; \tuint256 public publicFixedPrice; \tChefAvatar public chefAvatar; \taddress public treasury; \tuint256 public presaleStart = block.timestamp + 180 days; // default to half a year from now \tuint256 public presaleLength = 1 days; // default to 1 day after presaleStart \tuint256 public publicStart = block.timestamp + 180 days; // default to half a year from now \tuint256 public publicSaleMaxPurchaseQuantity = 3; \tbytes32 public merkleRoot; \tevent MerkleRootChanged(bytes32 newMerkleRoot); \tevent TreasuryChanged(address newTreasury); \tevent PricesChanged(uint256 newPresalePrice, uint256 newPublicFixedPrice); \tevent PresaleConfigChanged(uint256 newPresaleStart, uint256 newPresaleLength); \tevent PublicSaleConfigChanged(uint256 newPublicStart); \tevent PublicSaleMaxPurchaseQuantityChanged(uint256 newPublicSaleMaxPurchaseQuantity); \tevent PublicSalePricingModelChanged(PublicSalePricingModel newPublicSalePricingModel); \tevent DutchAuctionConfigurationChanged( \t\tuint256 newDutchStartPrice, \t\tuint256 newDutchEndPrice, \t\tuint256 newDutchPriceStepDrecrease, \t\tuint256 newDutchStartTime, \t\tuint256 newDutchStep \t); \tstruct DutchAuction { \t\tuint256 dutchStartPrice; \t\tuint256 dutchEndPrice; \t\tuint256 dutchPriceStepDrecrease; \t\tuint256 dutchStartTime; \t\tuint256 dutchStep; \t} \tDutchAuction public dutchAuction; \tmapping(address => uint256) public publicSalePurchasesPerAddress; \tmapping(address => uint) public presaleChefs; \tenum SalePhases{ \t\tNO_SALE, \t\tPRESALE, \t\tPUBLIC_SALE \t} \tenum PublicSalePricingModel{ \t\tFIXED_PRICE, \t\tDUTCH_AUCTION \t} \tPublicSalePricingModel public publicSalePricingModel; \tconstructor( \t\tuint256 _presalePrice, \t\tuint256 _publicPrice, \t\tChefAvatar _chefAvatar, \t\taddress _treasury \t) { \t\tpresalePrice = _presalePrice; \t\tpublicFixedPrice = _publicPrice; \t\tchefAvatar = _chefAvatar; \t\ttreasury = _treasury; \t} \t/// @notice It changes the merkleRoot variable. \t/// @dev Only callable by owner. \t/// @param _merkleRoot: the new merkle root \tfunction setMerkleRoot(bytes32 _merkleRoot) external onlyOwner { \t\tmerkleRoot = _merkleRoot; \t\temit MerkleRootChanged(_merkleRoot); \t} \t/// @notice It changes the treasury treasury that receives the payments. \t/// @dev Only callable by owner. \t/// @param _treasury: the new treasury address \tfunction setTreasury(address _treasury) external onlyOwner { \t\ttreasury = _treasury; \t\temit TreasuryChanged(_treasury); \t} \t/// @notice It updates the presale and public sale prices. \t/// @dev Only callable by owner. \t/// @param _presalePrice: the new presale price \t/// @param _publicPrice: the new public sale price \tfunction setPrices(uint256 _presalePrice, uint256 _publicPrice) external onlyOwner { \t\tpresalePrice = _presalePrice; \t\tpublicFixedPrice = _publicPrice; \t\temit PricesChanged(_presalePrice, _publicPrice); \t} \t/// @notice It updates the start time and length of the presale \t/// @dev Only callable by owner. \t/// @param _presaleStart: the new presale start timestamp \t/// @param _presaleLength: the new presale length in seconds \tfunction setPresaleConfig(uint256 _presaleStart, uint256 _presaleLength) external onlyOwner { \t\tpresaleStart = _presaleStart; \t\tpresaleLength = _presaleLength; \t\temit PresaleConfigChanged(_presaleStart, _presaleLength); \t} \t/// @notice It updates the start time of the public sale \t/// @dev Only callable by owner. \t/// @param _publicStart: the new public sale start timestamp \tfunction setPublicConfig(uint256 _publicStart) external onlyOwner { \t\tpublicStart = _publicStart; \t\temit PublicSaleConfigChanged(_publicStart); \t} \t \t/// @notice It updates the max purchase quantity of the public sale \t/// @dev Only callable by owner. \t/// @param newAmount: the new max amount users can mint during public sale \tfunction setPublicSaleMaxPurchaseQuantity(uint256 newAmount) external onlyOwner { \t\tpublicSaleMaxPurchaseQuantity = newAmount; \t\temit PublicSaleMaxPurchaseQuantityChanged(newAmount); \t} \t/// @notice It updates the pricing model of the public sale. \t/// @dev Only callable by owner. Parameter can be one of 0 or 1. 0 for fixed price, 1 for dutch auction. \t/// @param pricingModel: the new pricing model of the public sale \tfunction setPublicSalePricingModel(PublicSalePricingModel pricingModel) external onlyOwner { \t\tpublicSalePricingModel = pricingModel; \t\temit PublicSalePricingModelChanged(pricingModel); \t} \t/// @notice It updates the dutch auction settings. \t/// @dev Only callable by owner. \t/// @param _dutchStartPrice: the new start price \t/// @param _dutchEndPrice: the new end price \t/// @param _dutchPriceStepDrecrease: the new price decrease step \t/// @param _dutchStartTime: the new start timestamp in seconds \t/// @param _dutchStep: the new step in seconds for the price decrease \tfunction configureDutch( \t\tuint256 _dutchStartPrice, \t\tuint256 _dutchEndPrice, \t\tuint256 _dutchPriceStepDrecrease, \t\tuint256 _dutchStartTime, \t\tuint256 _dutchStep \t) external onlyOwner { \t\trequire(_dutchStartPrice > _dutchEndPrice, "ChefSaleManager: dutchStartPrice must be greater than dutchEndPrice"); \t\trequire(_dutchPriceStepDrecrease > 0, "ChefSaleManager: dutchPriceStepDrecrease must be greater than 0"); \t\trequire(_dutchStartTime >= block.timestamp, "ChefSaleManager: dutchStartTime must be greater than or equal to block.timestamp"); \t\trequire(_dutchStep > 0, "ChefSaleManager: dutchStep must be greater than 0"); \t\trequire(_dutchStartTime > _dutchStep, "ChefSaleManager: dutchStartTime must be greater than dutchStep"); \t\tdutchAuction.dutchStartPrice = _dutchStartPrice; \t\tdutchAuction.dutchEndPrice = _dutchEndPrice; \t\tdutchAuction.dutchPriceStepDrecrease = _dutchPriceStepDrecrease; \t\tdutchAuction.dutchStartTime = _dutchStartTime; \t\tdutchAuction.dutchStep = _dutchStep; \t\temit DutchAuctionConfigurationChanged( \t\t\t_dutchStartPrice, \t\t\t_dutchEndPrice, \t\t\t_dutchPriceStepDrecrease, \t\t\t_dutchStartTime, \t\t\t_dutchStep \t\t); \t} \tfunction _getDutchAuctionPrice() internal view returns (uint256) { \t\tuint256 elapsed = block.timestamp - dutchAuction.dutchStartTime; \t\tuint256 stepsElapsed = elapsed / dutchAuction.dutchStep; \t\tuint256 priceDecrease = stepsElapsed * dutchAuction.dutchPriceStepDrecrease; \t\tif(priceDecrease > dutchAuction.dutchStartPrice) { \t\t\treturn dutchAuction.dutchEndPrice; \t\t} \t\tuint256 currPrice = dutchAuction.dutchStartPrice - priceDecrease; \t\treturn currPrice >= dutchAuction.dutchEndPrice ? currPrice : dutchAuction.dutchEndPrice; \t} \t/// @notice It returns the current price per-nft taking into account the currect sale phase and pricing model \tfunction getCurrentPrice() public view returns (uint256) { \t\tSalePhases phase = getSalePhase(); \t\tif(phase == SalePhases.PRESALE) { \t\t\treturn presalePrice; \t\t} \t\tif(phase == SalePhases.PUBLIC_SALE && publicSalePricingModel == PublicSalePricingModel.DUTCH_AUCTION) { \t\t\treturn _getDutchAuctionPrice(); \t\t} \t\tif(phase == SalePhases.PUBLIC_SALE && publicSalePricingModel == PublicSalePricingModel.FIXED_PRICE) { \t\t\treturn publicFixedPrice; \t\t} \t\trequire(false, "Invalid phase"); // stop execution if reach here \t} \tfunction _transferFunds(uint256 totalCost) private { \t\trequire(msg.value == totalCost, "wrong amount"); \t\t(bool success, ) = payable(treasury).call{value: totalCost}(""); \t\trequire(success, "transfer failed"); \t} \tfunction admitPresaleUser(uint256 quantity, uint256 maxQuantity, bytes32[] calldata proofs) internal returns (bool) { \t\tbool isProofValid = MerkleProof.verify( \t\t\tproofs, \t\t\tmerkleRoot, \t\t\tkeccak256( \t\t\t\tabi.encodePacked( \t\t\t\t\tkeccak256(abi.encodePacked(msg.sender, maxQuantity)) \t\t\t\t) \t\t\t) \t\t); \t\tpresaleChefs[msg.sender] += quantity; \t\treturn presaleChefs[msg.sender] <= maxQuantity && isProofValid; \t} \t \tfunction admitPublicUser(uint256 quantity) internal returns (bool) { \t\tpublicSalePurchasesPerAddress[msg.sender] += quantity; \t\treturn publicSalePurchasesPerAddress[msg.sender] <= publicSaleMaxPurchaseQuantity; \t} \t/// @notice It returns the current sale phase \tfunction getSalePhase() view public returns (SalePhases) { \t\tif (block.timestamp < presaleStart) { \t\t\treturn SalePhases.NO_SALE; \t\t} \t\tif (block.timestamp < presaleStart + presaleLength) { \t\t\treturn SalePhases.PRESALE; \t\t} \t\tif(block.timestamp >= publicStart) { \t\t\treturn SalePhases.PUBLIC_SALE; \t\t} \t\treturn SalePhases.NO_SALE; \t} \t/// @notice It will purchase the given amount of tokens for the user during the presale phase \t/// @dev Only callable by during the presale phase. The correct amount of ETH should be sent based on the current price or the call will revert` \t/// @param quantity: the amount of tokens to purchase \t/// @param maxQuantity: the maximum amount of tokens this user can purchase during presale \t/// @param proofs: the merkle proofs for the current user \tfunction presaleBuy(uint256 quantity, uint256 maxQuantity, bytes32[] calldata proofs) external payable { \t\tSalePhases salePhase = getSalePhase(); \t\trequire(salePhase == SalePhases.PRESALE, "presale not active"); \t\tuint256 totalCost = getCurrentPrice() * quantity; \t\trequire(msg.value == totalCost, "Wrong amount sent"); \t\t \t\tbool admitUser = admitPresaleUser(quantity, maxQuantity, proofs); \t\trequire(admitUser, "User not admitted"); \t\t_transferFunds(totalCost); \t\tchefAvatar.mint(quantity, msg.sender); \t} \t/// @notice It will purchase the given amount of tokens for the user during the public sale phase \t/// @dev Only callable by during the public sale phase. The correct amount of ETH should be sent based on the current price or the call will revert \t/// @param quantity: the amount of tokens to purchase \tfunction publicBuy(uint256 quantity) external payable { \t\tSalePhases salePhase = getSalePhase(); \t\trequire(salePhase == SalePhases.PUBLIC_SALE, "public sale not active"); \t\tuint256 totalCost = getCurrentPrice() * quantity; \t\trequire(msg.value == totalCost, "Wrong amount sent"); \t\t \t\tbool admitUser = admitPublicUser(quantity); \t\trequire(admitUser, "User not admitted"); \t\t_transferFunds(totalCost); \t\tchefAvatar.mint(quantity, msg.sender); \t} }// SPDX-License-Identifier: MIT pragma solidity 0.8.10; import "./interfaces/ILinkToken.sol"; import "./VRFRequestIDBase.sol"; /** **************************************************************************** * @notice Interface for contracts using VRF randomness * ***************************************************************************** * @dev PURPOSE * * @dev Reggie the Random Oracle (not his real job) wants to provide randomness * @dev to Vera the verifier in such a way that Vera can be sure he's not * @dev making his output up to suit himself. Reggie provides Vera a public key * @dev to which he knows the secret key. Each time Vera provides a seed to * @dev Reggie, he gives back a value which is computed completely * @dev deterministically from the seed and the secret key. * * @dev Reggie provides a proof by which Vera can verify that the output was * @dev correctly computed once Reggie tells it to her, but without that proof, * @dev the output is indistinguishable to her from a uniform random sample * @dev from the output space. * * @dev The purpose of this contract is to make it easy for unrelated contracts * @dev to talk to Vera the verifier about the work Reggie is doing, to provide * @dev simple access to a verifiable source of randomness. * ***************************************************************************** * @dev USAGE * * @dev Calling contracts must inherit from VRFConsumerBase, and can * @dev initialize VRFConsumerBase's attributes in their constructor as * @dev shown: * * @dev contract VRFConsumer { * @dev constuctor(<other arguments>, address _vrfCoordinator, address _link) * @dev VRFConsumerBase(_vrfCoordinator, _link) public { * @dev <initialization with other arguments goes here> * @dev } * @dev } * * @dev The oracle will have given you an ID for the VRF keypair they have * @dev committed to (let's call it keyHash), and have told you the minimum LINK * @dev price for VRF service. Make sure your contract has sufficient LINK, and * @dev call requestRandomness(keyHash, fee, seed), where seed is the input you * @dev want to generate randomness from. * * @dev Once the VRFCoordinator has received and validated the oracle's response * @dev to your request, it will call your contract's fulfillRandomness method. * * @dev The randomness argument to fulfillRandomness is the actual random value * @dev generated from your seed. * * @dev The requestId argument is generated from the keyHash and the seed by * @dev makeRequestId(keyHash, seed). If your contract could have concurrent * @dev requests open, you can use the requestId to track which seed is * @dev associated with which randomness. See VRFRequestIDBase.sol for more * @dev details. (See "SECURITY CONSIDERATIONS" for principles to keep in mind, * @dev if your contract could have multiple requests in flight simultaneously.) * * @dev Colliding `requestId`s are cryptographically impossible as long as seeds * @dev differ. (Which is critical to making unpredictable randomness! See the * @dev next section.) * * ***************************************************************************** * @dev SECURITY CONSIDERATIONS * * @dev A method with the ability to call your fulfillRandomness method directly * @dev could spoof a VRF response with any random value, so it's critical that * @dev it cannot be directly called by anything other than this base contract * @dev (specifically, by the VRFConsumerBase.rawFulfillRandomness method). * * @dev For your users to trust that your contract's random behavior is free * @dev from malicious interference, it's best if you can write it so that all * @dev behaviors implied by a VRF response are executed *during* your * @dev fulfillRandomness method. If your contract must store the response (or * @dev anything derived from it) and use it later, you must ensure that any * @dev user-significant behavior which depends on that stored value cannot be * @dev manipulated by a subsequent VRF request. * * @dev Similarly, both miners and the VRF oracle itself have some influence * @dev over the order in which VRF responses appear on the blockchain, so if * @dev your contract could have multiple VRF requests in flight simultaneously, * @dev you must ensure that the order in which the VRF responses arrive cannot * @dev be used to manipulate your contract's user-significant behavior. * * @dev Since the ultimate input to the VRF is mixed with the block hash of the * @dev block in which the request is made, user-provided seeds have no impact * @dev on its economic security properties. They are only included for API * @dev compatability with previous versions of this contract. * * @dev Since the block hash of the block which contains the requestRandomness * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful * @dev miner could, in principle, fork the blockchain to evict the block * @dev containing the request, forcing the request to be included in a * @dev different block with a different hash, and therefore a different input * @dev to the VRF. However, such an attack would incur a substantial economic * @dev cost. This cost scales with the number of blocks the VRF oracle waits * @dev until it calls responds to a request. */ abstract contract VRFConsumerBase is VRFRequestIDBase { \tevent RandomnessRequested(bytes32 requestId); \t/** \t * @notice fulfillRandomness handles the VRF response. Your contract must \t * @notice implement it. See "SECURITY CONSIDERATIONS" above for important \t * @notice principles to keep in mind when implementing your fulfillRandomness \t * @notice method. \t * \t * @dev VRFConsumerBase expects its subcontracts to have a method with this \t * @dev signature, and will call it once it has verified the proof \t * @dev associated with the randomness. (It is triggered via a call to \t * @dev rawFulfillRandomness, below.) \t * \t * @param requestId The Id initially returned by requestRandomness \t * @param randomness the VRF output \t */ \tfunction fulfillRandomness(bytes32 requestId, uint256 randomness) \t\tinternal virtual; \t/** \t * @notice requestRandomness initiates a request for VRF output given _seed \t * \t * @dev The fulfillRandomness method receives the output, once it's provided \t * @dev by the Oracle, and verified by the vrfCoordinator. \t * \t * @dev The _keyHash must already be registered with the VRFCoordinator, and \t * @dev the _fee must exceed the fee specified during registration of the \t * @dev _keyHash. \t * \t * @dev The _seed parameter is vestigial, and is kept only for API \t * @dev compatibility with older versions. It can't *hurt* to mix in some of \t * @dev your own randomness, here, but it's not necessary because the VRF \t * @dev oracle will mix the hash of the block containing your request into the \t * @dev VRF seed it ultimately uses. \t * \t * @param _keyHash ID of public key against which randomness is generated \t * @param _fee The amount of LINK to send with the request \t * @param _seed seed mixed into the input of the VRF. \t * \t * @return requestId unique ID for this request \t * \t * @dev The returned requestId can be used to distinguish responses to \t * @dev concurrent requests. It is passed as the first argument to \t * @dev fulfillRandomness. \t */ \tfunction requestRandomness(bytes32 _keyHash, uint256 _fee, uint256 _seed) \t\tinternal returns (bytes32 requestId) \t{ \t\tLINK.transferAndCall(vrfCoordinator, _fee, abi.encode(_keyHash, _seed)); \t\t// This is the seed passed to VRFCoordinator. The oracle will mix this with \t\t// the hash of the block containing this request to obtain the seed/input \t\t// which is finally passed to the VRF cryptographic machinery. \t\tuint256 vRFSeed = makeVRFInputSeed(_keyHash, _seed, address(this), nonces[_keyHash]); \t\t// nonces[_keyHash] must stay in sync with \t\t// VRFCoordinator.nonces[_keyHash][this], which was incremented by the above \t\t// successful LINK.transferAndCall (in VRFCoordinator.randomnessRequest). \t\t// This provides protection against the user repeating their input seed, \t\t// which would result in a predictable/duplicate output, if multiple such \t\t// requests appeared in the same block. \t\tnonces[_keyHash] = nonces[_keyHash] + 1; \t\tbytes32 requestId = makeRequestId(_keyHash, vRFSeed); \t\temit RandomnessRequested(requestId); \t\treturn requestId; \t} \tILinkToken immutable internal LINK; \taddress immutable private vrfCoordinator; \t// Nonces for each VRF key from which randomness has been requested. \t// \t// Must stay in sync with VRFCoordinator[_keyHash][this] \tmapping(bytes32 /* keyHash */ => uint256 /* nonce */) private nonces; \t/** \t * @param _vrfCoordinator address of VRFCoordinator contract \t * @param _link address of LINK token contract \t * \t * @dev https://docs.chain.link/docs/link-token-contracts \t */ \tconstructor(address _vrfCoordinator, address _link) { \t\tvrfCoordinator = _vrfCoordinator; \t\tLINK = ILinkToken(_link); \t} \t// rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF \t// proof. rawFulfillRandomness then calls fulfillRandomness, after validating \t// the origin of the call \tfunction rawFulfillRandomness(bytes32 requestId, uint256 randomness) external { \t\trequire(msg.sender == vrfCoordinator, "Only VRFCoordinator can fulfill"); \t\tfulfillRandomness(requestId, randomness); \t} }// SPDX-License-Identifier: MIT pragma solidity 0.8.10; contract VRFRequestIDBase { \t/** \t * @notice returns the seed which is actually input to the VRF coordinator \t * \t * @dev To prevent repetition of VRF output due to repetition of the \t * @dev user-supplied seed, that seed is combined in a hash with the \t * @dev user-specific nonce, and the address of the consuming contract. The \t * @dev risk of repetition is mostly mitigated by inclusion of a blockhash in \t * @dev the final seed, but the nonce does protect against repetition in \t * @dev requests which are included in a single block. \t * \t * @param _userSeed VRF seed input provided by user \t * @param _requester Address of the requesting contract \t * @param _nonce User-specific nonce at the time of the request \t */ \tfunction makeVRFInputSeed(bytes32 _keyHash, uint256 _userSeed, \t\taddress _requester, uint256 _nonce) \t\tinternal pure returns (uint256) \t{ \t\treturn uint256(keccak256(abi.encode(_keyHash, _userSeed, _requester, _nonce))); \t} \t/** \t * @notice Returns the id for this request \t * @param _keyHash The serviceAgreement ID to be used for this request \t * @param _vRFInputSeed The seed to be passed directly to the VRF \t * @return The id for this request \t * \t * @dev Note that _vRFInputSeed is not the seed passed by the consuming \t * @dev contract, but the one generated by makeVRFInputSeed \t */ \tfunction makeRequestId( \t\tbytes32 _keyHash, uint256 _vRFInputSeed) internal pure returns (bytes32) { \t\treturn keccak256(abi.encodePacked(_keyHash, _vRFInputSeed)); \t} }// SPDX-License-Identifier: MIT pragma solidity 0.8.10; interface ILinkToken { \tfunction allowance(address owner, address spender) external view returns (uint256 remaining); \tfunction approve(address spender, uint256 value) external returns (bool success); \tfunction balanceOf(address owner) external view returns (uint256 balance); \tfunction decimals() external view returns (uint8 decimalPlaces); \tfunction decreaseApproval(address spender, uint256 addedValue) external returns (bool success); \tfunction increaseApproval(address spender, uint256 subtractedValue) external; \tfunction name() external view returns (string memory tokenName); \tfunction symbol() external view returns (string memory tokenSymbol); \tfunction totalSupply() external view returns (uint256 totalTokensIssued); \tfunction transfer(address to, uint256 value) external returns (bool success); \tfunction transferAndCall(address to, uint256 value, bytes memory data) external returns (bool success); \tfunction transferFrom(address from, address to, uint256 value) external returns (bool success); }// SPDX-License-Identifier: MIT // Creator: Chiru Labs pragma solidity ^0.8.4; import '@openzeppelin/contracts/token/ERC721/IERC721.sol'; import '@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol'; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol'; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol'; import '@openzeppelin/contracts/utils/Address.sol'; import '@openzeppelin/contracts/utils/Context.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; import '@openzeppelin/contracts/utils/introspection/ERC165.sol'; error ApprovalCallerNotOwnerNorApproved(); error ApprovalQueryForNonexistentToken(); error ApproveToCaller(); error ApprovalToCurrentOwner(); error BalanceQueryForZeroAddress(); error MintedQueryForZeroAddress(); error BurnedQueryForZeroAddress(); error AuxQueryForZeroAddress(); error MintToZeroAddress(); error MintZeroQuantity(); error OwnerIndexOutOfBounds(); error OwnerQueryForNonexistentToken(); error TokenIndexOutOfBounds(); error TransferCallerNotOwnerNorApproved(); error TransferFromIncorrectOwner(); error TransferToNonERC721ReceiverImplementer(); error TransferToZeroAddress(); error URIQueryForNonexistentToken(); /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension. Built to optimize for lower gas during batch mints. * * Assumes serials are sequentially minted starting at _startTokenId() (defaults to 0, e.g. 0, 1, 2, 3..). * * Assumes that an owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * * Assumes that the maximum token id cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Compiler will pack this into a single 256bit word. struct TokenOwnership { // The address of the owner. address addr; // Keeps track of the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; } // Compiler will pack this into a single 256bit word. struct AddressData { // Realistically, 2**64-1 is more than enough. uint64 balance; // Keeps track of mint count with minimal overhead for tokenomics. uint64 numberMinted; // Keeps track of burn count with minimal overhead for tokenomics. uint64 numberBurned; // For miscellaneous variable(s) pertaining to the address // (e.g. number of whitelist mint slots used). // If there are multiple variables, please pack them into a uint64. uint64 aux; } // The tokenId of the next token to be minted. uint256 internal _currentIndex; // The number of tokens burned. uint256 internal _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. See ownershipOf implementation for details. mapping(uint256 => TokenOwnership) internal _ownerships; // Mapping owner address to address data mapping(address => AddressData) private _addressData; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); } /** * To change the starting tokenId, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev See {IERC721Enumerable-totalSupply}. * @dev Burned tokens are calculated here, use _totalMinted() if you want to count just minted tokens. */ function totalSupply() public view returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than _currentIndex - _startTokenId() times unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view returns (uint256) { // Counter underflow is impossible as _currentIndex does not decrement, // and it is initialized to _startTokenId() unchecked { return _currentIndex - _startTokenId(); } } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return uint256(_addressData[owner].balance); } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { if (owner == address(0)) revert MintedQueryForZeroAddress(); return uint256(_addressData[owner].numberMinted); } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { if (owner == address(0)) revert BurnedQueryForZeroAddress(); return uint256(_addressData[owner].numberBurned); } /** * Returns the auxillary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { if (owner == address(0)) revert AuxQueryForZeroAddress(); return _addressData[owner].aux; } /** * Sets the auxillary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal { if (owner == address(0)) revert AuxQueryForZeroAddress(); _addressData[owner].aux = aux; } /** * Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around in the collection over time. */ function ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr && curr < _currentIndex) { TokenOwnership memory ownership = _ownerships[curr]; if (!ownership.burned) { if (ownership.addr != address(0)) { return ownership; } // Invariant: // There will always be an ownership that has an address and is not burned // before an ownership that does not have an address and is not burned. // Hence, curr will not underflow. while (true) { curr--; ownership = _ownerships[curr]; if (ownership.addr != address(0)) { return ownership; } } } } } revert OwnerQueryForNonexistentToken(); } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view override returns (address) { return ownershipOf(tokenId).addr; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overriden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public override { address owner = ERC721A.ownerOf(tokenId); if (to == owner) revert ApprovalToCurrentOwner(); if (_msgSender() != owner && !isApprovedForAll(owner, _msgSender())) { revert ApprovalCallerNotOwnerNorApproved(); } _approve(to, tokenId, owner); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public override { if (operator == _msgSender()) revert ApproveToCaller(); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public virtual override { _transfer(from, to, tokenId); if (to.isContract() && !_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), */ function _exists(uint256 tokenId) internal view returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && !_ownerships[tokenId].burned; } function _safeMint(address to, uint256 quantity) internal { _safeMint(to, quantity, ''); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * Emits a {Transfer} event. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal { _mint(to, quantity, _data, true); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event. */ function _mint( address to, uint256 quantity, bytes memory _data, bool safe ) internal { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // balance or numberMinted overflow if current value of either + quantity > 1.8e19 (2**64) - 1 // updatedIndex overflows if _currentIndex + quantity > 1.2e77 (2**256) - 1 unchecked { _addressData[to].balance += uint64(quantity); _addressData[to].numberMinted += uint64(quantity); _ownerships[startTokenId].addr = to; _ownerships[startTokenId].startTimestamp = uint64(block.timestamp); uint256 updatedIndex = startTokenId; uint256 end = updatedIndex + quantity; if (safe && to.isContract()) { do { emit Transfer(address(0), to, updatedIndex); if (!_checkContractOnERC721Received(address(0), to, updatedIndex++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (updatedIndex != end); // Reentrancy protection if (_currentIndex != startTokenId) revert(); } else { do { emit Transfer(address(0), to, updatedIndex++); } while (updatedIndex != end); } _currentIndex = updatedIndex; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) private { TokenOwnership memory prevOwnership = ownershipOf(tokenId); bool isApprovedOrOwner = (_msgSender() == prevOwnership.addr || isApprovedForAll(prevOwnership.addr, _msgSender()) || getApproved(tokenId) == _msgSender()); if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved(); if (prevOwnership.addr != from) revert TransferFromIncorrectOwner(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner _approve(address(0), tokenId, prevOwnership.addr); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256. unchecked { _addressData[from].balance -= 1; _addressData[to].balance += 1; _ownerships[tokenId].addr = to; _ownerships[tokenId].startTimestamp = uint64(block.timestamp); // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it. // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. uint256 nextTokenId = tokenId + 1; if (_ownerships[nextTokenId].addr == address(0)) { // This will suffice for checking _exists(nextTokenId), // as a burned slot cannot contain the zero address. if (nextTokenId < _currentIndex) { _ownerships[nextTokenId].addr = prevOwnership.addr; _ownerships[nextTokenId].startTimestamp = prevOwnership.startTimestamp; } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { TokenOwnership memory prevOwnership = ownershipOf(tokenId); _beforeTokenTransfers(prevOwnership.addr, address(0), tokenId, 1); // Clear approvals from the previous owner _approve(address(0), tokenId, prevOwnership.addr); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256. unchecked { _addressData[prevOwnership.addr].balance -= 1; _addressData[prevOwnership.addr].numberBurned += 1; // Keep track of who burned the token, and the timestamp of burning. _ownerships[tokenId].addr = prevOwnership.addr; _ownerships[tokenId].startTimestamp = uint64(block.timestamp); _ownerships[tokenId].burned = true; // If the ownership slot of tokenId+1 is not explicitly set, that means the burn initiator owns it. // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. uint256 nextTokenId = tokenId + 1; if (_ownerships[nextTokenId].addr == address(0)) { // This will suffice for checking _exists(nextTokenId), // as a burned slot cannot contain the zero address. if (nextTokenId < _currentIndex) { _ownerships[nextTokenId].addr = prevOwnership.addr; _ownerships[nextTokenId].startTimestamp = prevOwnership.startTimestamp; } } } emit Transfer(prevOwnership.addr, address(0), tokenId); _afterTokenTransfers(prevOwnership.addr, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } /** * @dev Approve `to` to operate on `tokenId` * * Emits a {Approval} event. */ function _approve( address to, uint256 tokenId, address owner ) private { _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) { return retval == IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } /** * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting. * And also called before burning one token. * * startTokenId - the first token id to be transferred * quantity - the amount to be transferred * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes * minting. * And also called after one token has been burned. * * startTokenId - the first token id to be transferred * quantity - the amount to be transferred * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} }