ETH Price: $1,770.35 (-1.94%)
Gas: 0.42 Gwei

Transaction Decoder

Block:
11695617 at Jan-21-2021 12:33:05 AM +UTC
Transaction Fee:
0.009524664 ETH $16.86
Gas Used:
132,287 Gas / 72 Gwei

Emitted Events:

45 WETH9.Deposit( dst=[Receiver] UniswapV2Router02, wad=162232940090852250 )
46 WETH9.Transfer( src=[Receiver] UniswapV2Router02, dst=UniswapV2Pair, wad=162232940090852250 )
47 HEX.Transfer( from=UniswapV2Pair, to=[Sender] 0x52d23e1d19c2c8afee3c2077238c14bf8238f85e, value=2500000000000 )
48 UniswapV2Pair.Sync( reserve0=9765831968943251, reserve1=631996878482745015927 )
49 UniswapV2Pair.Swap( sender=[Receiver] UniswapV2Router02, amount0In=0, amount1In=162232940090852250, amount0Out=2500000000000, amount1Out=0, to=[Sender] 0x52d23e1d19c2c8afee3c2077238c14bf8238f85e )

Account State Difference:

  Address   Before After State Difference Code
0x2b591e99...8c40Eeb39
0x52d23E1D...F8238f85E
13.246735584265377418 Eth
Nonce: 13
13.074977980174525168 Eth
Nonce: 14
0.17175760409085225
0x55D5c232...CD04b4DBa
(F2Pool Old)
4,328.573033837448868724 Eth4,328.582558501448868724 Eth0.009524664
0xC02aaA39...83C756Cc2 5,273,836.961066557703030921 Eth5,273,837.123299497793883171 Eth0.16223294009085225

Execution Trace

ETH 0.164488738779858989 UniswapV2Router02.swapETHForExactTokens( amountOut=2500000000000, path=[0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, 0x2b591e99afE9f32eAA6214f7B7629768c40Eeb39], to=0x52d23E1D19c2C8aFeE3c2077238c14bF8238f85E, deadline=1611190326 ) => ( amounts=[162232940090852250, 2500000000000] )
  • UniswapV2Pair.STATICCALL( )
  • ETH 0.16223294009085225 WETH9.CALL( )
  • WETH9.transfer( dst=0x55D5c232D921B9eAA6b37b5845E439aCD04b4DBa, wad=162232940090852250 ) => ( True )
  • UniswapV2Pair.swap( amount0Out=2500000000000, amount1Out=0, to=0x52d23E1D19c2C8aFeE3c2077238c14bF8238f85E, data=0x )
    • HEX.transfer( recipient=0x52d23E1D19c2C8aFeE3c2077238c14bF8238f85E, amount=2500000000000 ) => ( True )
    • HEX.balanceOf( account=0x55D5c232D921B9eAA6b37b5845E439aCD04b4DBa ) => ( 9765831968943251 )
    • WETH9.balanceOf( 0x55D5c232D921B9eAA6b37b5845E439aCD04b4DBa ) => ( 631996878482745015927 )
    • ETH 0.002255798689006739 0x52d23e1d19c2c8afee3c2077238c14bf8238f85e.CALL( )
      File 1 of 4: UniswapV2Router02
      pragma solidity =0.6.6;
      
      interface IUniswapV2Factory {
          event PairCreated(address indexed token0, address indexed token1, address pair, uint);
      
          function feeTo() external view returns (address);
          function feeToSetter() external view returns (address);
      
          function getPair(address tokenA, address tokenB) external view returns (address pair);
          function allPairs(uint) external view returns (address pair);
          function allPairsLength() external view returns (uint);
      
          function createPair(address tokenA, address tokenB) external returns (address pair);
      
          function setFeeTo(address) external;
          function setFeeToSetter(address) external;
      }
      
      interface IUniswapV2Pair {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          function MINIMUM_LIQUIDITY() external pure returns (uint);
          function factory() external view returns (address);
          function token0() external view returns (address);
          function token1() external view returns (address);
          function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
          function price0CumulativeLast() external view returns (uint);
          function price1CumulativeLast() external view returns (uint);
          function kLast() external view returns (uint);
      
          function mint(address to) external returns (uint liquidity);
          function burn(address to) external returns (uint amount0, uint amount1);
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
          function skim(address to) external;
          function sync() external;
      
          function initialize(address, address) external;
      }
      
      interface IUniswapV2Router01 {
          function factory() external pure returns (address);
          function WETH() external pure returns (address);
      
          function addLiquidity(
              address tokenA,
              address tokenB,
              uint amountADesired,
              uint amountBDesired,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline
          ) external returns (uint amountA, uint amountB, uint liquidity);
          function addLiquidityETH(
              address token,
              uint amountTokenDesired,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
          function removeLiquidity(
              address tokenA,
              address tokenB,
              uint liquidity,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline
          ) external returns (uint amountA, uint amountB);
          function removeLiquidityETH(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external returns (uint amountToken, uint amountETH);
          function removeLiquidityWithPermit(
              address tokenA,
              address tokenB,
              uint liquidity,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external returns (uint amountA, uint amountB);
          function removeLiquidityETHWithPermit(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external returns (uint amountToken, uint amountETH);
          function swapExactTokensForTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external returns (uint[] memory amounts);
          function swapTokensForExactTokens(
              uint amountOut,
              uint amountInMax,
              address[] calldata path,
              address to,
              uint deadline
          ) external returns (uint[] memory amounts);
          function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
              external
              payable
              returns (uint[] memory amounts);
          function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
              external
              returns (uint[] memory amounts);
          function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
              external
              returns (uint[] memory amounts);
          function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
              external
              payable
              returns (uint[] memory amounts);
      
          function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
          function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
          function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
          function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
          function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
      }
      
      interface IUniswapV2Router02 is IUniswapV2Router01 {
          function removeLiquidityETHSupportingFeeOnTransferTokens(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external returns (uint amountETH);
          function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external returns (uint amountETH);
      
          function swapExactTokensForTokensSupportingFeeOnTransferTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external;
          function swapExactETHForTokensSupportingFeeOnTransferTokens(
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external payable;
          function swapExactTokensForETHSupportingFeeOnTransferTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external;
      }
      
      interface IERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external view returns (string memory);
          function symbol() external view returns (string memory);
          function decimals() external view returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      }
      
      interface IWETH {
          function deposit() external payable;
          function transfer(address to, uint value) external returns (bool);
          function withdraw(uint) external;
      }
      
      contract UniswapV2Router02 is IUniswapV2Router02 {
          using SafeMath for uint;
      
          address public immutable override factory;
          address public immutable override WETH;
      
          modifier ensure(uint deadline) {
              require(deadline >= block.timestamp, 'UniswapV2Router: EXPIRED');
              _;
          }
      
          constructor(address _factory, address _WETH) public {
              factory = _factory;
              WETH = _WETH;
          }
      
          receive() external payable {
              assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract
          }
      
          // **** ADD LIQUIDITY ****
          function _addLiquidity(
              address tokenA,
              address tokenB,
              uint amountADesired,
              uint amountBDesired,
              uint amountAMin,
              uint amountBMin
          ) internal virtual returns (uint amountA, uint amountB) {
              // create the pair if it doesn't exist yet
              if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {
                  IUniswapV2Factory(factory).createPair(tokenA, tokenB);
              }
              (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);
              if (reserveA == 0 && reserveB == 0) {
                  (amountA, amountB) = (amountADesired, amountBDesired);
              } else {
                  uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);
                  if (amountBOptimal <= amountBDesired) {
                      require(amountBOptimal >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT');
                      (amountA, amountB) = (amountADesired, amountBOptimal);
                  } else {
                      uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);
                      assert(amountAOptimal <= amountADesired);
                      require(amountAOptimal >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT');
                      (amountA, amountB) = (amountAOptimal, amountBDesired);
                  }
              }
          }
          function addLiquidity(
              address tokenA,
              address tokenB,
              uint amountADesired,
              uint amountBDesired,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline
          ) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {
              (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);
              address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
              TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);
              TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);
              liquidity = IUniswapV2Pair(pair).mint(to);
          }
          function addLiquidityETH(
              address token,
              uint amountTokenDesired,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {
              (amountToken, amountETH) = _addLiquidity(
                  token,
                  WETH,
                  amountTokenDesired,
                  msg.value,
                  amountTokenMin,
                  amountETHMin
              );
              address pair = UniswapV2Library.pairFor(factory, token, WETH);
              TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);
              IWETH(WETH).deposit{value: amountETH}();
              assert(IWETH(WETH).transfer(pair, amountETH));
              liquidity = IUniswapV2Pair(pair).mint(to);
              // refund dust eth, if any
              if (msg.value > amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);
          }
      
          // **** REMOVE LIQUIDITY ****
          function removeLiquidity(
              address tokenA,
              address tokenB,
              uint liquidity,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline
          ) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {
              address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
              IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair
              (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);
              (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);
              (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);
              require(amountA >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT');
              require(amountB >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT');
          }
          function removeLiquidityETH(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {
              (amountToken, amountETH) = removeLiquidity(
                  token,
                  WETH,
                  liquidity,
                  amountTokenMin,
                  amountETHMin,
                  address(this),
                  deadline
              );
              TransferHelper.safeTransfer(token, to, amountToken);
              IWETH(WETH).withdraw(amountETH);
              TransferHelper.safeTransferETH(to, amountETH);
          }
          function removeLiquidityWithPermit(
              address tokenA,
              address tokenB,
              uint liquidity,
              uint amountAMin,
              uint amountBMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external virtual override returns (uint amountA, uint amountB) {
              address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
              uint value = approveMax ? uint(-1) : liquidity;
              IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);
              (amountA, amountB) = removeLiquidity(tokenA, tokenB, liquidity, amountAMin, amountBMin, to, deadline);
          }
          function removeLiquidityETHWithPermit(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external virtual override returns (uint amountToken, uint amountETH) {
              address pair = UniswapV2Library.pairFor(factory, token, WETH);
              uint value = approveMax ? uint(-1) : liquidity;
              IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);
              (amountToken, amountETH) = removeLiquidityETH(token, liquidity, amountTokenMin, amountETHMin, to, deadline);
          }
      
          // **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens) ****
          function removeLiquidityETHSupportingFeeOnTransferTokens(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline
          ) public virtual override ensure(deadline) returns (uint amountETH) {
              (, amountETH) = removeLiquidity(
                  token,
                  WETH,
                  liquidity,
                  amountTokenMin,
                  amountETHMin,
                  address(this),
                  deadline
              );
              TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));
              IWETH(WETH).withdraw(amountETH);
              TransferHelper.safeTransferETH(to, amountETH);
          }
          function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
              address token,
              uint liquidity,
              uint amountTokenMin,
              uint amountETHMin,
              address to,
              uint deadline,
              bool approveMax, uint8 v, bytes32 r, bytes32 s
          ) external virtual override returns (uint amountETH) {
              address pair = UniswapV2Library.pairFor(factory, token, WETH);
              uint value = approveMax ? uint(-1) : liquidity;
              IUniswapV2Pair(pair).permit(msg.sender, address(this), value, deadline, v, r, s);
              amountETH = removeLiquidityETHSupportingFeeOnTransferTokens(
                  token, liquidity, amountTokenMin, amountETHMin, to, deadline
              );
          }
      
          // **** SWAP ****
          // requires the initial amount to have already been sent to the first pair
          function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {
              for (uint i; i < path.length - 1; i++) {
                  (address input, address output) = (path[i], path[i + 1]);
                  (address token0,) = UniswapV2Library.sortTokens(input, output);
                  uint amountOut = amounts[i + 1];
                  (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));
                  address to = i < path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;
                  IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(
                      amount0Out, amount1Out, to, new bytes(0)
                  );
              }
          }
          function swapExactTokensForTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external virtual override ensure(deadline) returns (uint[] memory amounts) {
              amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);
              require(amounts[amounts.length - 1] >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
              TransferHelper.safeTransferFrom(
                  path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
              );
              _swap(amounts, path, to);
          }
          function swapTokensForExactTokens(
              uint amountOut,
              uint amountInMax,
              address[] calldata path,
              address to,
              uint deadline
          ) external virtual override ensure(deadline) returns (uint[] memory amounts) {
              amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);
              require(amounts[0] <= amountInMax, 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT');
              TransferHelper.safeTransferFrom(
                  path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
              );
              _swap(amounts, path, to);
          }
          function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
              external
              virtual
              override
              payable
              ensure(deadline)
              returns (uint[] memory amounts)
          {
              require(path[0] == WETH, 'UniswapV2Router: INVALID_PATH');
              amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);
              require(amounts[amounts.length - 1] >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
              IWETH(WETH).deposit{value: amounts[0]}();
              assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));
              _swap(amounts, path, to);
          }
          function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
              external
              virtual
              override
              ensure(deadline)
              returns (uint[] memory amounts)
          {
              require(path[path.length - 1] == WETH, 'UniswapV2Router: INVALID_PATH');
              amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);
              require(amounts[0] <= amountInMax, 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT');
              TransferHelper.safeTransferFrom(
                  path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
              );
              _swap(amounts, path, address(this));
              IWETH(WETH).withdraw(amounts[amounts.length - 1]);
              TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);
          }
          function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
              external
              virtual
              override
              ensure(deadline)
              returns (uint[] memory amounts)
          {
              require(path[path.length - 1] == WETH, 'UniswapV2Router: INVALID_PATH');
              amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);
              require(amounts[amounts.length - 1] >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
              TransferHelper.safeTransferFrom(
                  path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]
              );
              _swap(amounts, path, address(this));
              IWETH(WETH).withdraw(amounts[amounts.length - 1]);
              TransferHelper.safeTransferETH(to, amounts[amounts.length - 1]);
          }
          function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
              external
              virtual
              override
              payable
              ensure(deadline)
              returns (uint[] memory amounts)
          {
              require(path[0] == WETH, 'UniswapV2Router: INVALID_PATH');
              amounts = UniswapV2Library.getAmountsIn(factory, amountOut, path);
              require(amounts[0] <= msg.value, 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT');
              IWETH(WETH).deposit{value: amounts[0]}();
              assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]));
              _swap(amounts, path, to);
              // refund dust eth, if any
              if (msg.value > amounts[0]) TransferHelper.safeTransferETH(msg.sender, msg.value - amounts[0]);
          }
      
          // **** SWAP (supporting fee-on-transfer tokens) ****
          // requires the initial amount to have already been sent to the first pair
          function _swapSupportingFeeOnTransferTokens(address[] memory path, address _to) internal virtual {
              for (uint i; i < path.length - 1; i++) {
                  (address input, address output) = (path[i], path[i + 1]);
                  (address token0,) = UniswapV2Library.sortTokens(input, output);
                  IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output));
                  uint amountInput;
                  uint amountOutput;
                  { // scope to avoid stack too deep errors
                  (uint reserve0, uint reserve1,) = pair.getReserves();
                  (uint reserveInput, uint reserveOutput) = input == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
                  amountInput = IERC20(input).balanceOf(address(pair)).sub(reserveInput);
                  amountOutput = UniswapV2Library.getAmountOut(amountInput, reserveInput, reserveOutput);
                  }
                  (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOutput) : (amountOutput, uint(0));
                  address to = i < path.length - 2 ? UniswapV2Library.pairFor(factory, output, path[i + 2]) : _to;
                  pair.swap(amount0Out, amount1Out, to, new bytes(0));
              }
          }
          function swapExactTokensForTokensSupportingFeeOnTransferTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          ) external virtual override ensure(deadline) {
              TransferHelper.safeTransferFrom(
                  path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn
              );
              uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);
              _swapSupportingFeeOnTransferTokens(path, to);
              require(
                  IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) >= amountOutMin,
                  'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT'
              );
          }
          function swapExactETHForTokensSupportingFeeOnTransferTokens(
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          )
              external
              virtual
              override
              payable
              ensure(deadline)
          {
              require(path[0] == WETH, 'UniswapV2Router: INVALID_PATH');
              uint amountIn = msg.value;
              IWETH(WETH).deposit{value: amountIn}();
              assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn));
              uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(to);
              _swapSupportingFeeOnTransferTokens(path, to);
              require(
                  IERC20(path[path.length - 1]).balanceOf(to).sub(balanceBefore) >= amountOutMin,
                  'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT'
              );
          }
          function swapExactTokensForETHSupportingFeeOnTransferTokens(
              uint amountIn,
              uint amountOutMin,
              address[] calldata path,
              address to,
              uint deadline
          )
              external
              virtual
              override
              ensure(deadline)
          {
              require(path[path.length - 1] == WETH, 'UniswapV2Router: INVALID_PATH');
              TransferHelper.safeTransferFrom(
                  path[0], msg.sender, UniswapV2Library.pairFor(factory, path[0], path[1]), amountIn
              );
              _swapSupportingFeeOnTransferTokens(path, address(this));
              uint amountOut = IERC20(WETH).balanceOf(address(this));
              require(amountOut >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
              IWETH(WETH).withdraw(amountOut);
              TransferHelper.safeTransferETH(to, amountOut);
          }
      
          // **** LIBRARY FUNCTIONS ****
          function quote(uint amountA, uint reserveA, uint reserveB) public pure virtual override returns (uint amountB) {
              return UniswapV2Library.quote(amountA, reserveA, reserveB);
          }
      
          function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut)
              public
              pure
              virtual
              override
              returns (uint amountOut)
          {
              return UniswapV2Library.getAmountOut(amountIn, reserveIn, reserveOut);
          }
      
          function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut)
              public
              pure
              virtual
              override
              returns (uint amountIn)
          {
              return UniswapV2Library.getAmountIn(amountOut, reserveIn, reserveOut);
          }
      
          function getAmountsOut(uint amountIn, address[] memory path)
              public
              view
              virtual
              override
              returns (uint[] memory amounts)
          {
              return UniswapV2Library.getAmountsOut(factory, amountIn, path);
          }
      
          function getAmountsIn(uint amountOut, address[] memory path)
              public
              view
              virtual
              override
              returns (uint[] memory amounts)
          {
              return UniswapV2Library.getAmountsIn(factory, amountOut, path);
          }
      }
      
      // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
      
      library SafeMath {
          function add(uint x, uint y) internal pure returns (uint z) {
              require((z = x + y) >= x, 'ds-math-add-overflow');
          }
      
          function sub(uint x, uint y) internal pure returns (uint z) {
              require((z = x - y) <= x, 'ds-math-sub-underflow');
          }
      
          function mul(uint x, uint y) internal pure returns (uint z) {
              require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
          }
      }
      
      library UniswapV2Library {
          using SafeMath for uint;
      
          // returns sorted token addresses, used to handle return values from pairs sorted in this order
          function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {
              require(tokenA != tokenB, 'UniswapV2Library: IDENTICAL_ADDRESSES');
              (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
              require(token0 != address(0), 'UniswapV2Library: ZERO_ADDRESS');
          }
      
          // calculates the CREATE2 address for a pair without making any external calls
          function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) {
              (address token0, address token1) = sortTokens(tokenA, tokenB);
              pair = address(uint(keccak256(abi.encodePacked(
                      hex'ff',
                      factory,
                      keccak256(abi.encodePacked(token0, token1)),
                      hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' // init code hash
                  ))));
          }
      
          // fetches and sorts the reserves for a pair
          function getReserves(address factory, address tokenA, address tokenB) internal view returns (uint reserveA, uint reserveB) {
              (address token0,) = sortTokens(tokenA, tokenB);
              (uint reserve0, uint reserve1,) = IUniswapV2Pair(pairFor(factory, tokenA, tokenB)).getReserves();
              (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
          }
      
          // given some amount of an asset and pair reserves, returns an equivalent amount of the other asset
          function quote(uint amountA, uint reserveA, uint reserveB) internal pure returns (uint amountB) {
              require(amountA > 0, 'UniswapV2Library: INSUFFICIENT_AMOUNT');
              require(reserveA > 0 && reserveB > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
              amountB = amountA.mul(reserveB) / reserveA;
          }
      
          // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
          function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) {
              require(amountIn > 0, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT');
              require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
              uint amountInWithFee = amountIn.mul(997);
              uint numerator = amountInWithFee.mul(reserveOut);
              uint denominator = reserveIn.mul(1000).add(amountInWithFee);
              amountOut = numerator / denominator;
          }
      
          // given an output amount of an asset and pair reserves, returns a required input amount of the other asset
          function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) internal pure returns (uint amountIn) {
              require(amountOut > 0, 'UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT');
              require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
              uint numerator = reserveIn.mul(amountOut).mul(1000);
              uint denominator = reserveOut.sub(amountOut).mul(997);
              amountIn = (numerator / denominator).add(1);
          }
      
          // performs chained getAmountOut calculations on any number of pairs
          function getAmountsOut(address factory, uint amountIn, address[] memory path) internal view returns (uint[] memory amounts) {
              require(path.length >= 2, 'UniswapV2Library: INVALID_PATH');
              amounts = new uint[](path.length);
              amounts[0] = amountIn;
              for (uint i; i < path.length - 1; i++) {
                  (uint reserveIn, uint reserveOut) = getReserves(factory, path[i], path[i + 1]);
                  amounts[i + 1] = getAmountOut(amounts[i], reserveIn, reserveOut);
              }
          }
      
          // performs chained getAmountIn calculations on any number of pairs
          function getAmountsIn(address factory, uint amountOut, address[] memory path) internal view returns (uint[] memory amounts) {
              require(path.length >= 2, 'UniswapV2Library: INVALID_PATH');
              amounts = new uint[](path.length);
              amounts[amounts.length - 1] = amountOut;
              for (uint i = path.length - 1; i > 0; i--) {
                  (uint reserveIn, uint reserveOut) = getReserves(factory, path[i - 1], path[i]);
                  amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut);
              }
          }
      }
      
      // helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false
      library TransferHelper {
          function safeApprove(address token, address to, uint value) internal {
              // bytes4(keccak256(bytes('approve(address,uint256)')));
              (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
              require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: APPROVE_FAILED');
          }
      
          function safeTransfer(address token, address to, uint value) internal {
              // bytes4(keccak256(bytes('transfer(address,uint256)')));
              (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
              require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FAILED');
          }
      
          function safeTransferFrom(address token, address from, address to, uint value) internal {
              // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
              (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
              require(success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper: TRANSFER_FROM_FAILED');
          }
      
          function safeTransferETH(address to, uint value) internal {
              (bool success,) = to.call{value:value}(new bytes(0));
              require(success, 'TransferHelper: ETH_TRANSFER_FAILED');
          }
      }

      File 2 of 4: WETH9
      // Copyright (C) 2015, 2016, 2017 Dapphub
      
      // This program is free software: you can redistribute it and/or modify
      // it under the terms of the GNU General Public License as published by
      // the Free Software Foundation, either version 3 of the License, or
      // (at your option) any later version.
      
      // This program is distributed in the hope that it will be useful,
      // but WITHOUT ANY WARRANTY; without even the implied warranty of
      // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      // GNU General Public License for more details.
      
      // You should have received a copy of the GNU General Public License
      // along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      pragma solidity ^0.4.18;
      
      contract WETH9 {
          string public name     = "Wrapped Ether";
          string public symbol   = "WETH";
          uint8  public decimals = 18;
      
          event  Approval(address indexed src, address indexed guy, uint wad);
          event  Transfer(address indexed src, address indexed dst, uint wad);
          event  Deposit(address indexed dst, uint wad);
          event  Withdrawal(address indexed src, uint wad);
      
          mapping (address => uint)                       public  balanceOf;
          mapping (address => mapping (address => uint))  public  allowance;
      
          function() public payable {
              deposit();
          }
          function deposit() public payable {
              balanceOf[msg.sender] += msg.value;
              Deposit(msg.sender, msg.value);
          }
          function withdraw(uint wad) public {
              require(balanceOf[msg.sender] >= wad);
              balanceOf[msg.sender] -= wad;
              msg.sender.transfer(wad);
              Withdrawal(msg.sender, wad);
          }
      
          function totalSupply() public view returns (uint) {
              return this.balance;
          }
      
          function approve(address guy, uint wad) public returns (bool) {
              allowance[msg.sender][guy] = wad;
              Approval(msg.sender, guy, wad);
              return true;
          }
      
          function transfer(address dst, uint wad) public returns (bool) {
              return transferFrom(msg.sender, dst, wad);
          }
      
          function transferFrom(address src, address dst, uint wad)
              public
              returns (bool)
          {
              require(balanceOf[src] >= wad);
      
              if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
                  require(allowance[src][msg.sender] >= wad);
                  allowance[src][msg.sender] -= wad;
              }
      
              balanceOf[src] -= wad;
              balanceOf[dst] += wad;
      
              Transfer(src, dst, wad);
      
              return true;
          }
      }
      
      
      /*
                          GNU GENERAL PUBLIC LICENSE
                             Version 3, 29 June 2007
      
       Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
       Everyone is permitted to copy and distribute verbatim copies
       of this license document, but changing it is not allowed.
      
                                  Preamble
      
        The GNU General Public License is a free, copyleft license for
      software and other kinds of works.
      
        The licenses for most software and other practical works are designed
      to take away your freedom to share and change the works.  By contrast,
      the GNU General Public License is intended to guarantee your freedom to
      share and change all versions of a program--to make sure it remains free
      software for all its users.  We, the Free Software Foundation, use the
      GNU General Public License for most of our software; it applies also to
      any other work released this way by its authors.  You can apply it to
      your programs, too.
      
        When we speak of free software, we are referring to freedom, not
      price.  Our General Public Licenses are designed to make sure that you
      have the freedom to distribute copies of free software (and charge for
      them if you wish), that you receive source code or can get it if you
      want it, that you can change the software or use pieces of it in new
      free programs, and that you know you can do these things.
      
        To protect your rights, we need to prevent others from denying you
      these rights or asking you to surrender the rights.  Therefore, you have
      certain responsibilities if you distribute copies of the software, or if
      you modify it: responsibilities to respect the freedom of others.
      
        For example, if you distribute copies of such a program, whether
      gratis or for a fee, you must pass on to the recipients the same
      freedoms that you received.  You must make sure that they, too, receive
      or can get the source code.  And you must show them these terms so they
      know their rights.
      
        Developers that use the GNU GPL protect your rights with two steps:
      (1) assert copyright on the software, and (2) offer you this License
      giving you legal permission to copy, distribute and/or modify it.
      
        For the developers' and authors' protection, the GPL clearly explains
      that there is no warranty for this free software.  For both users' and
      authors' sake, the GPL requires that modified versions be marked as
      changed, so that their problems will not be attributed erroneously to
      authors of previous versions.
      
        Some devices are designed to deny users access to install or run
      modified versions of the software inside them, although the manufacturer
      can do so.  This is fundamentally incompatible with the aim of
      protecting users' freedom to change the software.  The systematic
      pattern of such abuse occurs in the area of products for individuals to
      use, which is precisely where it is most unacceptable.  Therefore, we
      have designed this version of the GPL to prohibit the practice for those
      products.  If such problems arise substantially in other domains, we
      stand ready to extend this provision to those domains in future versions
      of the GPL, as needed to protect the freedom of users.
      
        Finally, every program is threatened constantly by software patents.
      States should not allow patents to restrict development and use of
      software on general-purpose computers, but in those that do, we wish to
      avoid the special danger that patents applied to a free program could
      make it effectively proprietary.  To prevent this, the GPL assures that
      patents cannot be used to render the program non-free.
      
        The precise terms and conditions for copying, distribution and
      modification follow.
      
                             TERMS AND CONDITIONS
      
        0. Definitions.
      
        "This License" refers to version 3 of the GNU General Public License.
      
        "Copyright" also means copyright-like laws that apply to other kinds of
      works, such as semiconductor masks.
      
        "The Program" refers to any copyrightable work licensed under this
      License.  Each licensee is addressed as "you".  "Licensees" and
      "recipients" may be individuals or organizations.
      
        To "modify" a work means to copy from or adapt all or part of the work
      in a fashion requiring copyright permission, other than the making of an
      exact copy.  The resulting work is called a "modified version" of the
      earlier work or a work "based on" the earlier work.
      
        A "covered work" means either the unmodified Program or a work based
      on the Program.
      
        To "propagate" a work means to do anything with it that, without
      permission, would make you directly or secondarily liable for
      infringement under applicable copyright law, except executing it on a
      computer or modifying a private copy.  Propagation includes copying,
      distribution (with or without modification), making available to the
      public, and in some countries other activities as well.
      
        To "convey" a work means any kind of propagation that enables other
      parties to make or receive copies.  Mere interaction with a user through
      a computer network, with no transfer of a copy, is not conveying.
      
        An interactive user interface displays "Appropriate Legal Notices"
      to the extent that it includes a convenient and prominently visible
      feature that (1) displays an appropriate copyright notice, and (2)
      tells the user that there is no warranty for the work (except to the
      extent that warranties are provided), that licensees may convey the
      work under this License, and how to view a copy of this License.  If
      the interface presents a list of user commands or options, such as a
      menu, a prominent item in the list meets this criterion.
      
        1. Source Code.
      
        The "source code" for a work means the preferred form of the work
      for making modifications to it.  "Object code" means any non-source
      form of a work.
      
        A "Standard Interface" means an interface that either is an official
      standard defined by a recognized standards body, or, in the case of
      interfaces specified for a particular programming language, one that
      is widely used among developers working in that language.
      
        The "System Libraries" of an executable work include anything, other
      than the work as a whole, that (a) is included in the normal form of
      packaging a Major Component, but which is not part of that Major
      Component, and (b) serves only to enable use of the work with that
      Major Component, or to implement a Standard Interface for which an
      implementation is available to the public in source code form.  A
      "Major Component", in this context, means a major essential component
      (kernel, window system, and so on) of the specific operating system
      (if any) on which the executable work runs, or a compiler used to
      produce the work, or an object code interpreter used to run it.
      
        The "Corresponding Source" for a work in object code form means all
      the source code needed to generate, install, and (for an executable
      work) run the object code and to modify the work, including scripts to
      control those activities.  However, it does not include the work's
      System Libraries, or general-purpose tools or generally available free
      programs which are used unmodified in performing those activities but
      which are not part of the work.  For example, Corresponding Source
      includes interface definition files associated with source files for
      the work, and the source code for shared libraries and dynamically
      linked subprograms that the work is specifically designed to require,
      such as by intimate data communication or control flow between those
      subprograms and other parts of the work.
      
        The Corresponding Source need not include anything that users
      can regenerate automatically from other parts of the Corresponding
      Source.
      
        The Corresponding Source for a work in source code form is that
      same work.
      
        2. Basic Permissions.
      
        All rights granted under this License are granted for the term of
      copyright on the Program, and are irrevocable provided the stated
      conditions are met.  This License explicitly affirms your unlimited
      permission to run the unmodified Program.  The output from running a
      covered work is covered by this License only if the output, given its
      content, constitutes a covered work.  This License acknowledges your
      rights of fair use or other equivalent, as provided by copyright law.
      
        You may make, run and propagate covered works that you do not
      convey, without conditions so long as your license otherwise remains
      in force.  You may convey covered works to others for the sole purpose
      of having them make modifications exclusively for you, or provide you
      with facilities for running those works, provided that you comply with
      the terms of this License in conveying all material for which you do
      not control copyright.  Those thus making or running the covered works
      for you must do so exclusively on your behalf, under your direction
      and control, on terms that prohibit them from making any copies of
      your copyrighted material outside their relationship with you.
      
        Conveying under any other circumstances is permitted solely under
      the conditions stated below.  Sublicensing is not allowed; section 10
      makes it unnecessary.
      
        3. Protecting Users' Legal Rights From Anti-Circumvention Law.
      
        No covered work shall be deemed part of an effective technological
      measure under any applicable law fulfilling obligations under article
      11 of the WIPO copyright treaty adopted on 20 December 1996, or
      similar laws prohibiting or restricting circumvention of such
      measures.
      
        When you convey a covered work, you waive any legal power to forbid
      circumvention of technological measures to the extent such circumvention
      is effected by exercising rights under this License with respect to
      the covered work, and you disclaim any intention to limit operation or
      modification of the work as a means of enforcing, against the work's
      users, your or third parties' legal rights to forbid circumvention of
      technological measures.
      
        4. Conveying Verbatim Copies.
      
        You may convey verbatim copies of the Program's source code as you
      receive it, in any medium, provided that you conspicuously and
      appropriately publish on each copy an appropriate copyright notice;
      keep intact all notices stating that this License and any
      non-permissive terms added in accord with section 7 apply to the code;
      keep intact all notices of the absence of any warranty; and give all
      recipients a copy of this License along with the Program.
      
        You may charge any price or no price for each copy that you convey,
      and you may offer support or warranty protection for a fee.
      
        5. Conveying Modified Source Versions.
      
        You may convey a work based on the Program, or the modifications to
      produce it from the Program, in the form of source code under the
      terms of section 4, provided that you also meet all of these conditions:
      
          a) The work must carry prominent notices stating that you modified
          it, and giving a relevant date.
      
          b) The work must carry prominent notices stating that it is
          released under this License and any conditions added under section
          7.  This requirement modifies the requirement in section 4 to
          "keep intact all notices".
      
          c) You must license the entire work, as a whole, under this
          License to anyone who comes into possession of a copy.  This
          License will therefore apply, along with any applicable section 7
          additional terms, to the whole of the work, and all its parts,
          regardless of how they are packaged.  This License gives no
          permission to license the work in any other way, but it does not
          invalidate such permission if you have separately received it.
      
          d) If the work has interactive user interfaces, each must display
          Appropriate Legal Notices; however, if the Program has interactive
          interfaces that do not display Appropriate Legal Notices, your
          work need not make them do so.
      
        A compilation of a covered work with other separate and independent
      works, which are not by their nature extensions of the covered work,
      and which are not combined with it such as to form a larger program,
      in or on a volume of a storage or distribution medium, is called an
      "aggregate" if the compilation and its resulting copyright are not
      used to limit the access or legal rights of the compilation's users
      beyond what the individual works permit.  Inclusion of a covered work
      in an aggregate does not cause this License to apply to the other
      parts of the aggregate.
      
        6. Conveying Non-Source Forms.
      
        You may convey a covered work in object code form under the terms
      of sections 4 and 5, provided that you also convey the
      machine-readable Corresponding Source under the terms of this License,
      in one of these ways:
      
          a) Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by the
          Corresponding Source fixed on a durable physical medium
          customarily used for software interchange.
      
          b) Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by a
          written offer, valid for at least three years and valid for as
          long as you offer spare parts or customer support for that product
          model, to give anyone who possesses the object code either (1) a
          copy of the Corresponding Source for all the software in the
          product that is covered by this License, on a durable physical
          medium customarily used for software interchange, for a price no
          more than your reasonable cost of physically performing this
          conveying of source, or (2) access to copy the
          Corresponding Source from a network server at no charge.
      
          c) Convey individual copies of the object code with a copy of the
          written offer to provide the Corresponding Source.  This
          alternative is allowed only occasionally and noncommercially, and
          only if you received the object code with such an offer, in accord
          with subsection 6b.
      
          d) Convey the object code by offering access from a designated
          place (gratis or for a charge), and offer equivalent access to the
          Corresponding Source in the same way through the same place at no
          further charge.  You need not require recipients to copy the
          Corresponding Source along with the object code.  If the place to
          copy the object code is a network server, the Corresponding Source
          may be on a different server (operated by you or a third party)
          that supports equivalent copying facilities, provided you maintain
          clear directions next to the object code saying where to find the
          Corresponding Source.  Regardless of what server hosts the
          Corresponding Source, you remain obligated to ensure that it is
          available for as long as needed to satisfy these requirements.
      
          e) Convey the object code using peer-to-peer transmission, provided
          you inform other peers where the object code and Corresponding
          Source of the work are being offered to the general public at no
          charge under subsection 6d.
      
        A separable portion of the object code, whose source code is excluded
      from the Corresponding Source as a System Library, need not be
      included in conveying the object code work.
      
        A "User Product" is either (1) a "consumer product", which means any
      tangible personal property which is normally used for personal, family,
      or household purposes, or (2) anything designed or sold for incorporation
      into a dwelling.  In determining whether a product is a consumer product,
      doubtful cases shall be resolved in favor of coverage.  For a particular
      product received by a particular user, "normally used" refers to a
      typical or common use of that class of product, regardless of the status
      of the particular user or of the way in which the particular user
      actually uses, or expects or is expected to use, the product.  A product
      is a consumer product regardless of whether the product has substantial
      commercial, industrial or non-consumer uses, unless such uses represent
      the only significant mode of use of the product.
      
        "Installation Information" for a User Product means any methods,
      procedures, authorization keys, or other information required to install
      and execute modified versions of a covered work in that User Product from
      a modified version of its Corresponding Source.  The information must
      suffice to ensure that the continued functioning of the modified object
      code is in no case prevented or interfered with solely because
      modification has been made.
      
        If you convey an object code work under this section in, or with, or
      specifically for use in, a User Product, and the conveying occurs as
      part of a transaction in which the right of possession and use of the
      User Product is transferred to the recipient in perpetuity or for a
      fixed term (regardless of how the transaction is characterized), the
      Corresponding Source conveyed under this section must be accompanied
      by the Installation Information.  But this requirement does not apply
      if neither you nor any third party retains the ability to install
      modified object code on the User Product (for example, the work has
      been installed in ROM).
      
        The requirement to provide Installation Information does not include a
      requirement to continue to provide support service, warranty, or updates
      for a work that has been modified or installed by the recipient, or for
      the User Product in which it has been modified or installed.  Access to a
      network may be denied when the modification itself materially and
      adversely affects the operation of the network or violates the rules and
      protocols for communication across the network.
      
        Corresponding Source conveyed, and Installation Information provided,
      in accord with this section must be in a format that is publicly
      documented (and with an implementation available to the public in
      source code form), and must require no special password or key for
      unpacking, reading or copying.
      
        7. Additional Terms.
      
        "Additional permissions" are terms that supplement the terms of this
      License by making exceptions from one or more of its conditions.
      Additional permissions that are applicable to the entire Program shall
      be treated as though they were included in this License, to the extent
      that they are valid under applicable law.  If additional permissions
      apply only to part of the Program, that part may be used separately
      under those permissions, but the entire Program remains governed by
      this License without regard to the additional permissions.
      
        When you convey a copy of a covered work, you may at your option
      remove any additional permissions from that copy, or from any part of
      it.  (Additional permissions may be written to require their own
      removal in certain cases when you modify the work.)  You may place
      additional permissions on material, added by you to a covered work,
      for which you have or can give appropriate copyright permission.
      
        Notwithstanding any other provision of this License, for material you
      add to a covered work, you may (if authorized by the copyright holders of
      that material) supplement the terms of this License with terms:
      
          a) Disclaiming warranty or limiting liability differently from the
          terms of sections 15 and 16 of this License; or
      
          b) Requiring preservation of specified reasonable legal notices or
          author attributions in that material or in the Appropriate Legal
          Notices displayed by works containing it; or
      
          c) Prohibiting misrepresentation of the origin of that material, or
          requiring that modified versions of such material be marked in
          reasonable ways as different from the original version; or
      
          d) Limiting the use for publicity purposes of names of licensors or
          authors of the material; or
      
          e) Declining to grant rights under trademark law for use of some
          trade names, trademarks, or service marks; or
      
          f) Requiring indemnification of licensors and authors of that
          material by anyone who conveys the material (or modified versions of
          it) with contractual assumptions of liability to the recipient, for
          any liability that these contractual assumptions directly impose on
          those licensors and authors.
      
        All other non-permissive additional terms are considered "further
      restrictions" within the meaning of section 10.  If the Program as you
      received it, or any part of it, contains a notice stating that it is
      governed by this License along with a term that is a further
      restriction, you may remove that term.  If a license document contains
      a further restriction but permits relicensing or conveying under this
      License, you may add to a covered work material governed by the terms
      of that license document, provided that the further restriction does
      not survive such relicensing or conveying.
      
        If you add terms to a covered work in accord with this section, you
      must place, in the relevant source files, a statement of the
      additional terms that apply to those files, or a notice indicating
      where to find the applicable terms.
      
        Additional terms, permissive or non-permissive, may be stated in the
      form of a separately written license, or stated as exceptions;
      the above requirements apply either way.
      
        8. Termination.
      
        You may not propagate or modify a covered work except as expressly
      provided under this License.  Any attempt otherwise to propagate or
      modify it is void, and will automatically terminate your rights under
      this License (including any patent licenses granted under the third
      paragraph of section 11).
      
        However, if you cease all violation of this License, then your
      license from a particular copyright holder is reinstated (a)
      provisionally, unless and until the copyright holder explicitly and
      finally terminates your license, and (b) permanently, if the copyright
      holder fails to notify you of the violation by some reasonable means
      prior to 60 days after the cessation.
      
        Moreover, your license from a particular copyright holder is
      reinstated permanently if the copyright holder notifies you of the
      violation by some reasonable means, this is the first time you have
      received notice of violation of this License (for any work) from that
      copyright holder, and you cure the violation prior to 30 days after
      your receipt of the notice.
      
        Termination of your rights under this section does not terminate the
      licenses of parties who have received copies or rights from you under
      this License.  If your rights have been terminated and not permanently
      reinstated, you do not qualify to receive new licenses for the same
      material under section 10.
      
        9. Acceptance Not Required for Having Copies.
      
        You are not required to accept this License in order to receive or
      run a copy of the Program.  Ancillary propagation of a covered work
      occurring solely as a consequence of using peer-to-peer transmission
      to receive a copy likewise does not require acceptance.  However,
      nothing other than this License grants you permission to propagate or
      modify any covered work.  These actions infringe copyright if you do
      not accept this License.  Therefore, by modifying or propagating a
      covered work, you indicate your acceptance of this License to do so.
      
        10. Automatic Licensing of Downstream Recipients.
      
        Each time you convey a covered work, the recipient automatically
      receives a license from the original licensors, to run, modify and
      propagate that work, subject to this License.  You are not responsible
      for enforcing compliance by third parties with this License.
      
        An "entity transaction" is a transaction transferring control of an
      organization, or substantially all assets of one, or subdividing an
      organization, or merging organizations.  If propagation of a covered
      work results from an entity transaction, each party to that
      transaction who receives a copy of the work also receives whatever
      licenses to the work the party's predecessor in interest had or could
      give under the previous paragraph, plus a right to possession of the
      Corresponding Source of the work from the predecessor in interest, if
      the predecessor has it or can get it with reasonable efforts.
      
        You may not impose any further restrictions on the exercise of the
      rights granted or affirmed under this License.  For example, you may
      not impose a license fee, royalty, or other charge for exercise of
      rights granted under this License, and you may not initiate litigation
      (including a cross-claim or counterclaim in a lawsuit) alleging that
      any patent claim is infringed by making, using, selling, offering for
      sale, or importing the Program or any portion of it.
      
        11. Patents.
      
        A "contributor" is a copyright holder who authorizes use under this
      License of the Program or a work on which the Program is based.  The
      work thus licensed is called the contributor's "contributor version".
      
        A contributor's "essential patent claims" are all patent claims
      owned or controlled by the contributor, whether already acquired or
      hereafter acquired, that would be infringed by some manner, permitted
      by this License, of making, using, or selling its contributor version,
      but do not include claims that would be infringed only as a
      consequence of further modification of the contributor version.  For
      purposes of this definition, "control" includes the right to grant
      patent sublicenses in a manner consistent with the requirements of
      this License.
      
        Each contributor grants you a non-exclusive, worldwide, royalty-free
      patent license under the contributor's essential patent claims, to
      make, use, sell, offer for sale, import and otherwise run, modify and
      propagate the contents of its contributor version.
      
        In the following three paragraphs, a "patent license" is any express
      agreement or commitment, however denominated, not to enforce a patent
      (such as an express permission to practice a patent or covenant not to
      sue for patent infringement).  To "grant" such a patent license to a
      party means to make such an agreement or commitment not to enforce a
      patent against the party.
      
        If you convey a covered work, knowingly relying on a patent license,
      and the Corresponding Source of the work is not available for anyone
      to copy, free of charge and under the terms of this License, through a
      publicly available network server or other readily accessible means,
      then you must either (1) cause the Corresponding Source to be so
      available, or (2) arrange to deprive yourself of the benefit of the
      patent license for this particular work, or (3) arrange, in a manner
      consistent with the requirements of this License, to extend the patent
      license to downstream recipients.  "Knowingly relying" means you have
      actual knowledge that, but for the patent license, your conveying the
      covered work in a country, or your recipient's use of the covered work
      in a country, would infringe one or more identifiable patents in that
      country that you have reason to believe are valid.
      
        If, pursuant to or in connection with a single transaction or
      arrangement, you convey, or propagate by procuring conveyance of, a
      covered work, and grant a patent license to some of the parties
      receiving the covered work authorizing them to use, propagate, modify
      or convey a specific copy of the covered work, then the patent license
      you grant is automatically extended to all recipients of the covered
      work and works based on it.
      
        A patent license is "discriminatory" if it does not include within
      the scope of its coverage, prohibits the exercise of, or is
      conditioned on the non-exercise of one or more of the rights that are
      specifically granted under this License.  You may not convey a covered
      work if you are a party to an arrangement with a third party that is
      in the business of distributing software, under which you make payment
      to the third party based on the extent of your activity of conveying
      the work, and under which the third party grants, to any of the
      parties who would receive the covered work from you, a discriminatory
      patent license (a) in connection with copies of the covered work
      conveyed by you (or copies made from those copies), or (b) primarily
      for and in connection with specific products or compilations that
      contain the covered work, unless you entered into that arrangement,
      or that patent license was granted, prior to 28 March 2007.
      
        Nothing in this License shall be construed as excluding or limiting
      any implied license or other defenses to infringement that may
      otherwise be available to you under applicable patent law.
      
        12. No Surrender of Others' Freedom.
      
        If conditions are imposed on you (whether by court order, agreement or
      otherwise) that contradict the conditions of this License, they do not
      excuse you from the conditions of this License.  If you cannot convey a
      covered work so as to satisfy simultaneously your obligations under this
      License and any other pertinent obligations, then as a consequence you may
      not convey it at all.  For example, if you agree to terms that obligate you
      to collect a royalty for further conveying from those to whom you convey
      the Program, the only way you could satisfy both those terms and this
      License would be to refrain entirely from conveying the Program.
      
        13. Use with the GNU Affero General Public License.
      
        Notwithstanding any other provision of this License, you have
      permission to link or combine any covered work with a work licensed
      under version 3 of the GNU Affero General Public License into a single
      combined work, and to convey the resulting work.  The terms of this
      License will continue to apply to the part which is the covered work,
      but the special requirements of the GNU Affero General Public License,
      section 13, concerning interaction through a network will apply to the
      combination as such.
      
        14. Revised Versions of this License.
      
        The Free Software Foundation may publish revised and/or new versions of
      the GNU General Public License from time to time.  Such new versions will
      be similar in spirit to the present version, but may differ in detail to
      address new problems or concerns.
      
        Each version is given a distinguishing version number.  If the
      Program specifies that a certain numbered version of the GNU General
      Public License "or any later version" applies to it, you have the
      option of following the terms and conditions either of that numbered
      version or of any later version published by the Free Software
      Foundation.  If the Program does not specify a version number of the
      GNU General Public License, you may choose any version ever published
      by the Free Software Foundation.
      
        If the Program specifies that a proxy can decide which future
      versions of the GNU General Public License can be used, that proxy's
      public statement of acceptance of a version permanently authorizes you
      to choose that version for the Program.
      
        Later license versions may give you additional or different
      permissions.  However, no additional obligations are imposed on any
      author or copyright holder as a result of your choosing to follow a
      later version.
      
        15. Disclaimer of Warranty.
      
        THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
      APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
      HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
      OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
      THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
      IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
      ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
      
        16. Limitation of Liability.
      
        IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
      WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
      THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
      GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
      USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
      DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
      PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
      EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
      SUCH DAMAGES.
      
        17. Interpretation of Sections 15 and 16.
      
        If the disclaimer of warranty and limitation of liability provided
      above cannot be given local legal effect according to their terms,
      reviewing courts shall apply local law that most closely approximates
      an absolute waiver of all civil liability in connection with the
      Program, unless a warranty or assumption of liability accompanies a
      copy of the Program in return for a fee.
      
                           END OF TERMS AND CONDITIONS
      
                  How to Apply These Terms to Your New Programs
      
        If you develop a new program, and you want it to be of the greatest
      possible use to the public, the best way to achieve this is to make it
      free software which everyone can redistribute and change under these terms.
      
        To do so, attach the following notices to the program.  It is safest
      to attach them to the start of each source file to most effectively
      state the exclusion of warranty; and each file should have at least
      the "copyright" line and a pointer to where the full notice is found.
      
          <one line to give the program's name and a brief idea of what it does.>
          Copyright (C) <year>  <name of author>
      
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
          the Free Software Foundation, either version 3 of the License, or
          (at your option) any later version.
      
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
          GNU General Public License for more details.
      
          You should have received a copy of the GNU General Public License
          along with this program.  If not, see <http://www.gnu.org/licenses/>.
      
      Also add information on how to contact you by electronic and paper mail.
      
        If the program does terminal interaction, make it output a short
      notice like this when it starts in an interactive mode:
      
          <program>  Copyright (C) <year>  <name of author>
          This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
          This is free software, and you are welcome to redistribute it
          under certain conditions; type `show c' for details.
      
      The hypothetical commands `show w' and `show c' should show the appropriate
      parts of the General Public License.  Of course, your program's commands
      might be different; for a GUI interface, you would use an "about box".
      
        You should also get your employer (if you work as a programmer) or school,
      if any, to sign a "copyright disclaimer" for the program, if necessary.
      For more information on this, and how to apply and follow the GNU GPL, see
      <http://www.gnu.org/licenses/>.
      
        The GNU General Public License does not permit incorporating your program
      into proprietary programs.  If your program is a subroutine library, you
      may consider it more useful to permit linking proprietary applications with
      the library.  If this is what you want to do, use the GNU Lesser General
      Public License instead of this License.  But first, please read
      <http://www.gnu.org/philosophy/why-not-lgpl.html>.
      
      */

      File 3 of 4: UniswapV2Pair
      // File: contracts/interfaces/IUniswapV2Pair.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Pair {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          function MINIMUM_LIQUIDITY() external pure returns (uint);
          function factory() external view returns (address);
          function token0() external view returns (address);
          function token1() external view returns (address);
          function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
          function price0CumulativeLast() external view returns (uint);
          function price1CumulativeLast() external view returns (uint);
          function kLast() external view returns (uint);
      
          function mint(address to) external returns (uint liquidity);
          function burn(address to) external returns (uint amount0, uint amount1);
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
          function skim(address to) external;
          function sync() external;
      
          function initialize(address, address) external;
      }
      
      // File: contracts/interfaces/IUniswapV2ERC20.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2ERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external pure returns (string memory);
          function symbol() external pure returns (string memory);
          function decimals() external pure returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      
          function DOMAIN_SEPARATOR() external view returns (bytes32);
          function PERMIT_TYPEHASH() external pure returns (bytes32);
          function nonces(address owner) external view returns (uint);
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
      }
      
      // File: contracts/libraries/SafeMath.sol
      
      pragma solidity =0.5.16;
      
      // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
      
      library SafeMath {
          function add(uint x, uint y) internal pure returns (uint z) {
              require((z = x + y) >= x, 'ds-math-add-overflow');
          }
      
          function sub(uint x, uint y) internal pure returns (uint z) {
              require((z = x - y) <= x, 'ds-math-sub-underflow');
          }
      
          function mul(uint x, uint y) internal pure returns (uint z) {
              require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
          }
      }
      
      // File: contracts/UniswapV2ERC20.sol
      
      pragma solidity =0.5.16;
      
      
      
      contract UniswapV2ERC20 is IUniswapV2ERC20 {
          using SafeMath for uint;
      
          string public constant name = 'Uniswap V2';
          string public constant symbol = 'UNI-V2';
          uint8 public constant decimals = 18;
          uint  public totalSupply;
          mapping(address => uint) public balanceOf;
          mapping(address => mapping(address => uint)) public allowance;
      
          bytes32 public DOMAIN_SEPARATOR;
          // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
          bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
          mapping(address => uint) public nonces;
      
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          constructor() public {
              uint chainId;
              assembly {
                  chainId := chainid
              }
              DOMAIN_SEPARATOR = keccak256(
                  abi.encode(
                      keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
                      keccak256(bytes(name)),
                      keccak256(bytes('1')),
                      chainId,
                      address(this)
                  )
              );
          }
      
          function _mint(address to, uint value) internal {
              totalSupply = totalSupply.add(value);
              balanceOf[to] = balanceOf[to].add(value);
              emit Transfer(address(0), to, value);
          }
      
          function _burn(address from, uint value) internal {
              balanceOf[from] = balanceOf[from].sub(value);
              totalSupply = totalSupply.sub(value);
              emit Transfer(from, address(0), value);
          }
      
          function _approve(address owner, address spender, uint value) private {
              allowance[owner][spender] = value;
              emit Approval(owner, spender, value);
          }
      
          function _transfer(address from, address to, uint value) private {
              balanceOf[from] = balanceOf[from].sub(value);
              balanceOf[to] = balanceOf[to].add(value);
              emit Transfer(from, to, value);
          }
      
          function approve(address spender, uint value) external returns (bool) {
              _approve(msg.sender, spender, value);
              return true;
          }
      
          function transfer(address to, uint value) external returns (bool) {
              _transfer(msg.sender, to, value);
              return true;
          }
      
          function transferFrom(address from, address to, uint value) external returns (bool) {
              if (allowance[from][msg.sender] != uint(-1)) {
                  allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
              }
              _transfer(from, to, value);
              return true;
          }
      
          function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
              require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
              bytes32 digest = keccak256(
                  abi.encodePacked(
                      '\x19\x01',
                      DOMAIN_SEPARATOR,
                      keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                  )
              );
              address recoveredAddress = ecrecover(digest, v, r, s);
              require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
              _approve(owner, spender, value);
          }
      }
      
      // File: contracts/libraries/Math.sol
      
      pragma solidity =0.5.16;
      
      // a library for performing various math operations
      
      library Math {
          function min(uint x, uint y) internal pure returns (uint z) {
              z = x < y ? x : y;
          }
      
          // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
          function sqrt(uint y) internal pure returns (uint z) {
              if (y > 3) {
                  z = y;
                  uint x = y / 2 + 1;
                  while (x < z) {
                      z = x;
                      x = (y / x + x) / 2;
                  }
              } else if (y != 0) {
                  z = 1;
              }
          }
      }
      
      // File: contracts/libraries/UQ112x112.sol
      
      pragma solidity =0.5.16;
      
      // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
      
      // range: [0, 2**112 - 1]
      // resolution: 1 / 2**112
      
      library UQ112x112 {
          uint224 constant Q112 = 2**112;
      
          // encode a uint112 as a UQ112x112
          function encode(uint112 y) internal pure returns (uint224 z) {
              z = uint224(y) * Q112; // never overflows
          }
      
          // divide a UQ112x112 by a uint112, returning a UQ112x112
          function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
              z = x / uint224(y);
          }
      }
      
      // File: contracts/interfaces/IERC20.sol
      
      pragma solidity >=0.5.0;
      
      interface IERC20 {
          event Approval(address indexed owner, address indexed spender, uint value);
          event Transfer(address indexed from, address indexed to, uint value);
      
          function name() external view returns (string memory);
          function symbol() external view returns (string memory);
          function decimals() external view returns (uint8);
          function totalSupply() external view returns (uint);
          function balanceOf(address owner) external view returns (uint);
          function allowance(address owner, address spender) external view returns (uint);
      
          function approve(address spender, uint value) external returns (bool);
          function transfer(address to, uint value) external returns (bool);
          function transferFrom(address from, address to, uint value) external returns (bool);
      }
      
      // File: contracts/interfaces/IUniswapV2Factory.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Factory {
          event PairCreated(address indexed token0, address indexed token1, address pair, uint);
      
          function feeTo() external view returns (address);
          function feeToSetter() external view returns (address);
      
          function getPair(address tokenA, address tokenB) external view returns (address pair);
          function allPairs(uint) external view returns (address pair);
          function allPairsLength() external view returns (uint);
      
          function createPair(address tokenA, address tokenB) external returns (address pair);
      
          function setFeeTo(address) external;
          function setFeeToSetter(address) external;
      }
      
      // File: contracts/interfaces/IUniswapV2Callee.sol
      
      pragma solidity >=0.5.0;
      
      interface IUniswapV2Callee {
          function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
      }
      
      // File: contracts/UniswapV2Pair.sol
      
      pragma solidity =0.5.16;
      
      
      
      
      
      
      
      
      contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
          using SafeMath  for uint;
          using UQ112x112 for uint224;
      
          uint public constant MINIMUM_LIQUIDITY = 10**3;
          bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
      
          address public factory;
          address public token0;
          address public token1;
      
          uint112 private reserve0;           // uses single storage slot, accessible via getReserves
          uint112 private reserve1;           // uses single storage slot, accessible via getReserves
          uint32  private blockTimestampLast; // uses single storage slot, accessible via getReserves
      
          uint public price0CumulativeLast;
          uint public price1CumulativeLast;
          uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
      
          uint private unlocked = 1;
          modifier lock() {
              require(unlocked == 1, 'UniswapV2: LOCKED');
              unlocked = 0;
              _;
              unlocked = 1;
          }
      
          function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
              _reserve0 = reserve0;
              _reserve1 = reserve1;
              _blockTimestampLast = blockTimestampLast;
          }
      
          function _safeTransfer(address token, address to, uint value) private {
              (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
              require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
          }
      
          event Mint(address indexed sender, uint amount0, uint amount1);
          event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
          event Swap(
              address indexed sender,
              uint amount0In,
              uint amount1In,
              uint amount0Out,
              uint amount1Out,
              address indexed to
          );
          event Sync(uint112 reserve0, uint112 reserve1);
      
          constructor() public {
              factory = msg.sender;
          }
      
          // called once by the factory at time of deployment
          function initialize(address _token0, address _token1) external {
              require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
              token0 = _token0;
              token1 = _token1;
          }
      
          // update reserves and, on the first call per block, price accumulators
          function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
              require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
              uint32 blockTimestamp = uint32(block.timestamp % 2**32);
              uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
              if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                  // * never overflows, and + overflow is desired
                  price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
                  price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
              }
              reserve0 = uint112(balance0);
              reserve1 = uint112(balance1);
              blockTimestampLast = blockTimestamp;
              emit Sync(reserve0, reserve1);
          }
      
          // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
          function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
              address feeTo = IUniswapV2Factory(factory).feeTo();
              feeOn = feeTo != address(0);
              uint _kLast = kLast; // gas savings
              if (feeOn) {
                  if (_kLast != 0) {
                      uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
                      uint rootKLast = Math.sqrt(_kLast);
                      if (rootK > rootKLast) {
                          uint numerator = totalSupply.mul(rootK.sub(rootKLast));
                          uint denominator = rootK.mul(5).add(rootKLast);
                          uint liquidity = numerator / denominator;
                          if (liquidity > 0) _mint(feeTo, liquidity);
                      }
                  }
              } else if (_kLast != 0) {
                  kLast = 0;
              }
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function mint(address to) external lock returns (uint liquidity) {
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              uint balance0 = IERC20(token0).balanceOf(address(this));
              uint balance1 = IERC20(token1).balanceOf(address(this));
              uint amount0 = balance0.sub(_reserve0);
              uint amount1 = balance1.sub(_reserve1);
      
              bool feeOn = _mintFee(_reserve0, _reserve1);
              uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
              if (_totalSupply == 0) {
                  liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
                 _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
              } else {
                  liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
              }
              require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
              _mint(to, liquidity);
      
              _update(balance0, balance1, _reserve0, _reserve1);
              if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
              emit Mint(msg.sender, amount0, amount1);
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function burn(address to) external lock returns (uint amount0, uint amount1) {
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              address _token0 = token0;                                // gas savings
              address _token1 = token1;                                // gas savings
              uint balance0 = IERC20(_token0).balanceOf(address(this));
              uint balance1 = IERC20(_token1).balanceOf(address(this));
              uint liquidity = balanceOf[address(this)];
      
              bool feeOn = _mintFee(_reserve0, _reserve1);
              uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
              amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
              amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
              require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
              _burn(address(this), liquidity);
              _safeTransfer(_token0, to, amount0);
              _safeTransfer(_token1, to, amount1);
              balance0 = IERC20(_token0).balanceOf(address(this));
              balance1 = IERC20(_token1).balanceOf(address(this));
      
              _update(balance0, balance1, _reserve0, _reserve1);
              if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
              emit Burn(msg.sender, amount0, amount1, to);
          }
      
          // this low-level function should be called from a contract which performs important safety checks
          function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
              require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
              (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
              require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
      
              uint balance0;
              uint balance1;
              { // scope for _token{0,1}, avoids stack too deep errors
              address _token0 = token0;
              address _token1 = token1;
              require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
              if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
              if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
              if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
              balance0 = IERC20(_token0).balanceOf(address(this));
              balance1 = IERC20(_token1).balanceOf(address(this));
              }
              uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
              uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
              require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
              { // scope for reserve{0,1}Adjusted, avoids stack too deep errors
              uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
              uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
              require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
              }
      
              _update(balance0, balance1, _reserve0, _reserve1);
              emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
          }
      
          // force balances to match reserves
          function skim(address to) external lock {
              address _token0 = token0; // gas savings
              address _token1 = token1; // gas savings
              _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
              _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
          }
      
          // force reserves to match balances
          function sync() external lock {
              _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
          }
      }

      File 4 of 4: HEX
      pragma solidity 0.5.13;
      
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with GSN meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      contract Context {
          // Empty internal constructor, to prevent people from mistakenly deploying
          // an instance of this contract, which should be used via inheritance.
          constructor () internal { }
          // solhint-disable-previous-line no-empty-blocks
      
          function _msgSender() internal view returns (address payable) {
              return msg.sender;
          }
      
          function _msgData() internal view returns (bytes memory) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP. Does not include
       * the optional functions; to access them see {ERC20Detailed}.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      
      /**
       * @dev Wrappers over Solidity's arithmetic operations with added overflow
       * checks.
       *
       * Arithmetic operations in Solidity wrap on overflow. This can easily result
       * in bugs, because programmers usually assume that an overflow raises an
       * error, which is the standard behavior in high level programming languages.
       * `SafeMath` restores this intuition by reverting the transaction when an
       * operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeMath {
          /**
           * @dev Returns the addition of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `+` operator.
           *
           * Requirements:
           * - Addition cannot overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a, "SafeMath: addition overflow");
      
              return c;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              return sub(a, b, "SafeMath: subtraction overflow");
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           * - Subtraction cannot overflow.
           *
           * _Available since v2.4.0._
           */
          function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b <= a, errorMessage);
              uint256 c = a - b;
      
              return c;
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `*` operator.
           *
           * Requirements:
           * - Multiplication cannot overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
              if (a == 0) {
                  return 0;
              }
      
              uint256 c = a * b;
              require(c / a == b, "SafeMath: multiplication overflow");
      
              return c;
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(a, b, "SafeMath: division by zero");
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           *
           * _Available since v2.4.0._
           */
          function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              // Solidity only automatically asserts when dividing by 0
              require(b > 0, errorMessage);
              uint256 c = a / b;
              // assert(a == b * c + a % b); // There is no case in which this doesn't hold
      
              return c;
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              return mod(a, b, "SafeMath: modulo by zero");
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts with custom message when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           * - The divisor cannot be zero.
           *
           * _Available since v2.4.0._
           */
          function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b != 0, errorMessage);
              return a % b;
          }
      }
      
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20Mintable}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin guidelines: functions revert instead
       * of returning `false` on failure. This behavior is nonetheless conventional
       * and does not conflict with the expectations of ERC20 applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20 {
          using SafeMath for uint256;
      
          mapping (address => uint256) private _balances;
      
          mapping (address => mapping (address => uint256)) private _allowances;
      
          uint256 private _totalSupply;
      
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view returns (uint256) {
              return _totalSupply;
          }
      
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view returns (uint256) {
              return _balances[account];
          }
      
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address recipient, uint256 amount) public returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view returns (uint256) {
              return _allowances[owner][spender];
          }
      
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20};
           *
           * Requirements:
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for `sender`'s tokens of at least
           * `amount`.
           */
          function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
              _transfer(sender, recipient, amount);
              _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
              return true;
          }
      
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
              return true;
          }
      
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
              return true;
          }
      
          /**
           * @dev Moves tokens `amount` from `sender` to `recipient`.
           *
           * This is internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(address sender, address recipient, uint256 amount) internal {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
      
              _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
              _balances[recipient] = _balances[recipient].add(amount);
              emit Transfer(sender, recipient, amount);
          }
      
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements
           *
           * - `to` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal {
              require(account != address(0), "ERC20: mint to the zero address");
      
              _totalSupply = _totalSupply.add(amount);
              _balances[account] = _balances[account].add(amount);
              emit Transfer(address(0), account, amount);
          }
      
           /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal {
              require(account != address(0), "ERC20: burn from the zero address");
      
              _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
              _totalSupply = _totalSupply.sub(amount);
              emit Transfer(account, address(0), amount);
          }
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
           *
           * This is internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(address owner, address spender, uint256 amount) internal {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
      
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`.`amount` is then deducted
           * from the caller's allowance.
           *
           * See {_burn} and {_approve}.
           */
          function _burnFrom(address account, uint256 amount) internal {
              _burn(account, amount);
              _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance"));
          }
      }
      
      contract GlobalsAndUtility is ERC20 {
          /*  XfLobbyEnter      (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              address  indexed  memberAddr
              uint256  indexed  entryId
              uint96            rawAmount       -->  data0 [135: 40]
              address  indexed  referrerAddr
          */
          event XfLobbyEnter(
              uint256 data0,
              address indexed memberAddr,
              uint256 indexed entryId,
              address indexed referrerAddr
          );
      
          /*  XfLobbyExit       (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              address  indexed  memberAddr
              uint256  indexed  entryId
              uint72            xfAmount        -->  data0 [111: 40]
              address  indexed  referrerAddr
          */
          event XfLobbyExit(
              uint256 data0,
              address indexed memberAddr,
              uint256 indexed entryId,
              address indexed referrerAddr
          );
      
          /*  DailyDataUpdate   (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              uint16            beginDay        -->  data0 [ 55: 40]
              uint16            endDay          -->  data0 [ 71: 56]
              bool              isAutoUpdate    -->  data0 [ 79: 72]
              address  indexed  updaterAddr
          */
          event DailyDataUpdate(
              uint256 data0,
              address indexed updaterAddr
          );
      
          /*  Claim             (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              bytes20  indexed  btcAddr
              uint56            rawSatoshis     -->  data0 [ 95: 40]
              uint56            adjSatoshis     -->  data0 [151: 96]
              address  indexed  claimToAddr
              uint8             claimFlags      -->  data0 [159:152]
              uint72            claimedHearts   -->  data0 [231:160]
              address  indexed  referrerAddr
              address           senderAddr      -->  data1 [159:  0]
          */
          event Claim(
              uint256 data0,
              uint256 data1,
              bytes20 indexed btcAddr,
              address indexed claimToAddr,
              address indexed referrerAddr
          );
      
          /*  ClaimAssist       (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              bytes20           btcAddr         -->  data0 [199: 40]
              uint56            rawSatoshis     -->  data0 [255:200]
              uint56            adjSatoshis     -->  data1 [ 55:  0]
              address           claimToAddr     -->  data1 [215: 56]
              uint8             claimFlags      -->  data1 [223:216]
              uint72            claimedHearts   -->  data2 [ 71:  0]
              address           referrerAddr    -->  data2 [231: 72]
              address  indexed  senderAddr
          */
          event ClaimAssist(
              uint256 data0,
              uint256 data1,
              uint256 data2,
              address indexed senderAddr
          );
      
          /*  StakeStart        (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              address  indexed  stakerAddr
              uint40   indexed  stakeId
              uint72            stakedHearts    -->  data0 [111: 40]
              uint72            stakeShares     -->  data0 [183:112]
              uint16            stakedDays      -->  data0 [199:184]
              bool              isAutoStake     -->  data0 [207:200]
          */
          event StakeStart(
              uint256 data0,
              address indexed stakerAddr,
              uint40 indexed stakeId
          );
      
          /*  StakeGoodAccounting(auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              address  indexed  stakerAddr
              uint40   indexed  stakeId
              uint72            stakedHearts    -->  data0 [111: 40]
              uint72            stakeShares     -->  data0 [183:112]
              uint72            payout          -->  data0 [255:184]
              uint72            penalty         -->  data1 [ 71:  0]
              address  indexed  senderAddr
          */
          event StakeGoodAccounting(
              uint256 data0,
              uint256 data1,
              address indexed stakerAddr,
              uint40 indexed stakeId,
              address indexed senderAddr
          );
      
          /*  StakeEnd          (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              address  indexed  stakerAddr
              uint40   indexed  stakeId
              uint72            stakedHearts    -->  data0 [111: 40]
              uint72            stakeShares     -->  data0 [183:112]
              uint72            payout          -->  data0 [255:184]
              uint72            penalty         -->  data1 [ 71:  0]
              uint16            servedDays      -->  data1 [ 87: 72]
              bool              prevUnlocked    -->  data1 [ 95: 88]
          */
          event StakeEnd(
              uint256 data0,
              uint256 data1,
              address indexed stakerAddr,
              uint40 indexed stakeId
          );
      
          /*  ShareRateChange   (auto-generated event)
      
              uint40            timestamp       -->  data0 [ 39:  0]
              uint40            shareRate       -->  data0 [ 79: 40]
              uint40   indexed  stakeId
          */
          event ShareRateChange(
              uint256 data0,
              uint40 indexed stakeId
          );
      
          /* Origin address */
          address internal constant ORIGIN_ADDR = 0x9A6a414D6F3497c05E3b1De90520765fA1E07c03;
      
          /* Flush address */
          address payable internal constant FLUSH_ADDR = 0xDEC9f2793e3c17cd26eeFb21C4762fA5128E0399;
      
          /* ERC20 constants */
          string public constant name = "HEX";
          string public constant symbol = "HEX";
          uint8 public constant decimals = 8;
      
          /* Hearts per Satoshi = 10,000 * 1e8 / 1e8 = 1e4 */
          uint256 private constant HEARTS_PER_HEX = 10 ** uint256(decimals); // 1e8
          uint256 private constant HEX_PER_BTC = 1e4;
          uint256 private constant SATOSHIS_PER_BTC = 1e8;
          uint256 internal constant HEARTS_PER_SATOSHI = HEARTS_PER_HEX / SATOSHIS_PER_BTC * HEX_PER_BTC;
      
          /* Time of contract launch (2019-12-03T00:00:00Z) */
          uint256 internal constant LAUNCH_TIME = 1575331200;
      
          /* Size of a Hearts or Shares uint */
          uint256 internal constant HEART_UINT_SIZE = 72;
      
          /* Size of a transform lobby entry index uint */
          uint256 internal constant XF_LOBBY_ENTRY_INDEX_SIZE = 40;
          uint256 internal constant XF_LOBBY_ENTRY_INDEX_MASK = (1 << XF_LOBBY_ENTRY_INDEX_SIZE) - 1;
      
          /* Seed for WAAS Lobby */
          uint256 internal constant WAAS_LOBBY_SEED_HEX = 1e9;
          uint256 internal constant WAAS_LOBBY_SEED_HEARTS = WAAS_LOBBY_SEED_HEX * HEARTS_PER_HEX;
      
          /* Start of claim phase */
          uint256 internal constant PRE_CLAIM_DAYS = 1;
          uint256 internal constant CLAIM_PHASE_START_DAY = PRE_CLAIM_DAYS;
      
          /* Length of claim phase */
          uint256 private constant CLAIM_PHASE_WEEKS = 50;
          uint256 internal constant CLAIM_PHASE_DAYS = CLAIM_PHASE_WEEKS * 7;
      
          /* End of claim phase */
          uint256 internal constant CLAIM_PHASE_END_DAY = CLAIM_PHASE_START_DAY + CLAIM_PHASE_DAYS;
      
          /* Number of words to hold 1 bit for each transform lobby day */
          uint256 internal constant XF_LOBBY_DAY_WORDS = (CLAIM_PHASE_END_DAY + 255) >> 8;
      
          /* BigPayDay */
          uint256 internal constant BIG_PAY_DAY = CLAIM_PHASE_END_DAY + 1;
      
          /* Root hash of the UTXO Merkle tree */
          bytes32 internal constant MERKLE_TREE_ROOT = 0x4e831acb4223b66de3b3d2e54a2edeefb0de3d7916e2886a4b134d9764d41bec;
      
          /* Size of a Satoshi claim uint in a Merkle leaf */
          uint256 internal constant MERKLE_LEAF_SATOSHI_SIZE = 45;
      
          /* Zero-fill between BTC address and Satoshis in a Merkle leaf */
          uint256 internal constant MERKLE_LEAF_FILL_SIZE = 256 - 160 - MERKLE_LEAF_SATOSHI_SIZE;
          uint256 internal constant MERKLE_LEAF_FILL_BASE = (1 << MERKLE_LEAF_FILL_SIZE) - 1;
          uint256 internal constant MERKLE_LEAF_FILL_MASK = MERKLE_LEAF_FILL_BASE << MERKLE_LEAF_SATOSHI_SIZE;
      
          /* Size of a Satoshi total uint */
          uint256 internal constant SATOSHI_UINT_SIZE = 51;
          uint256 internal constant SATOSHI_UINT_MASK = (1 << SATOSHI_UINT_SIZE) - 1;
      
          /* Total Satoshis from all BTC addresses in UTXO snapshot */
          uint256 internal constant FULL_SATOSHIS_TOTAL = 1807766732160668;
      
          /* Total Satoshis from supported BTC addresses in UTXO snapshot after applying Silly Whale */
          uint256 internal constant CLAIMABLE_SATOSHIS_TOTAL = 910087996911001;
      
          /* Number of claimable BTC addresses in UTXO snapshot */
          uint256 internal constant CLAIMABLE_BTC_ADDR_COUNT = 27997742;
      
          /* Largest BTC address Satoshis balance in UTXO snapshot (sanity check) */
          uint256 internal constant MAX_BTC_ADDR_BALANCE_SATOSHIS = 25550214098481;
      
          /* Percentage of total claimed Hearts that will be auto-staked from a claim */
          uint256 internal constant AUTO_STAKE_CLAIM_PERCENT = 90;
      
          /* Stake timing parameters */
          uint256 internal constant MIN_STAKE_DAYS = 1;
          uint256 internal constant MIN_AUTO_STAKE_DAYS = 350;
      
          uint256 internal constant MAX_STAKE_DAYS = 5555; // Approx 15 years
      
          uint256 internal constant EARLY_PENALTY_MIN_DAYS = 90;
      
          uint256 private constant LATE_PENALTY_GRACE_WEEKS = 2;
          uint256 internal constant LATE_PENALTY_GRACE_DAYS = LATE_PENALTY_GRACE_WEEKS * 7;
      
          uint256 private constant LATE_PENALTY_SCALE_WEEKS = 100;
          uint256 internal constant LATE_PENALTY_SCALE_DAYS = LATE_PENALTY_SCALE_WEEKS * 7;
      
          /* Stake shares Longer Pays Better bonus constants used by _stakeStartBonusHearts() */
          uint256 private constant LPB_BONUS_PERCENT = 20;
          uint256 private constant LPB_BONUS_MAX_PERCENT = 200;
          uint256 internal constant LPB = 364 * 100 / LPB_BONUS_PERCENT;
          uint256 internal constant LPB_MAX_DAYS = LPB * LPB_BONUS_MAX_PERCENT / 100;
      
          /* Stake shares Bigger Pays Better bonus constants used by _stakeStartBonusHearts() */
          uint256 private constant BPB_BONUS_PERCENT = 10;
          uint256 private constant BPB_MAX_HEX = 150 * 1e6;
          uint256 internal constant BPB_MAX_HEARTS = BPB_MAX_HEX * HEARTS_PER_HEX;
          uint256 internal constant BPB = BPB_MAX_HEARTS * 100 / BPB_BONUS_PERCENT;
      
          /* Share rate is scaled to increase precision */
          uint256 internal constant SHARE_RATE_SCALE = 1e5;
      
          /* Share rate max (after scaling) */
          uint256 internal constant SHARE_RATE_UINT_SIZE = 40;
          uint256 internal constant SHARE_RATE_MAX = (1 << SHARE_RATE_UINT_SIZE) - 1;
      
          /* Constants for preparing the claim message text */
          uint8 internal constant ETH_ADDRESS_BYTE_LEN = 20;
          uint8 internal constant ETH_ADDRESS_HEX_LEN = ETH_ADDRESS_BYTE_LEN * 2;
      
          uint8 internal constant CLAIM_PARAM_HASH_BYTE_LEN = 12;
          uint8 internal constant CLAIM_PARAM_HASH_HEX_LEN = CLAIM_PARAM_HASH_BYTE_LEN * 2;
      
          uint8 internal constant BITCOIN_SIG_PREFIX_LEN = 24;
          bytes24 internal constant BITCOIN_SIG_PREFIX_STR = "Bitcoin Signed Message:\n";
      
          bytes internal constant STD_CLAIM_PREFIX_STR = "Claim_HEX_to_0x";
          bytes internal constant OLD_CLAIM_PREFIX_STR = "Claim_BitcoinHEX_to_0x";
      
          bytes16 internal constant HEX_DIGITS = "0123456789abcdef";
      
          /* Claim flags passed to btcAddressClaim()  */
          uint8 internal constant CLAIM_FLAG_MSG_PREFIX_OLD = 1 << 0;
          uint8 internal constant CLAIM_FLAG_BTC_ADDR_COMPRESSED = 1 << 1;
          uint8 internal constant CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH = 1 << 2;
          uint8 internal constant CLAIM_FLAG_BTC_ADDR_BECH32 = 1 << 3;
          uint8 internal constant CLAIM_FLAG_ETH_ADDR_LOWERCASE = 1 << 4;
      
          /* Globals expanded for memory (except _latestStakeId) and compact for storage */
          struct GlobalsCache {
              // 1
              uint256 _lockedHeartsTotal;
              uint256 _nextStakeSharesTotal;
              uint256 _shareRate;
              uint256 _stakePenaltyTotal;
              // 2
              uint256 _dailyDataCount;
              uint256 _stakeSharesTotal;
              uint40 _latestStakeId;
              uint256 _unclaimedSatoshisTotal;
              uint256 _claimedSatoshisTotal;
              uint256 _claimedBtcAddrCount;
              //
              uint256 _currentDay;
          }
      
          struct GlobalsStore {
              // 1
              uint72 lockedHeartsTotal;
              uint72 nextStakeSharesTotal;
              uint40 shareRate;
              uint72 stakePenaltyTotal;
              // 2
              uint16 dailyDataCount;
              uint72 stakeSharesTotal;
              uint40 latestStakeId;
              uint128 claimStats;
          }
      
          GlobalsStore public globals;
      
          /* Claimed BTC addresses */
          mapping(bytes20 => bool) public btcAddressClaims;
      
          /* Daily data */
          struct DailyDataStore {
              uint72 dayPayoutTotal;
              uint72 dayStakeSharesTotal;
              uint56 dayUnclaimedSatoshisTotal;
          }
      
          mapping(uint256 => DailyDataStore) public dailyData;
      
          /* Stake expanded for memory (except _stakeId) and compact for storage */
          struct StakeCache {
              uint40 _stakeId;
              uint256 _stakedHearts;
              uint256 _stakeShares;
              uint256 _lockedDay;
              uint256 _stakedDays;
              uint256 _unlockedDay;
              bool _isAutoStake;
          }
      
          struct StakeStore {
              uint40 stakeId;
              uint72 stakedHearts;
              uint72 stakeShares;
              uint16 lockedDay;
              uint16 stakedDays;
              uint16 unlockedDay;
              bool isAutoStake;
          }
      
          mapping(address => StakeStore[]) public stakeLists;
      
          /* Temporary state for calculating daily rounds */
          struct DailyRoundState {
              uint256 _allocSupplyCached;
              uint256 _mintOriginBatch;
              uint256 _payoutTotal;
          }
      
          struct XfLobbyEntryStore {
              uint96 rawAmount;
              address referrerAddr;
          }
      
          struct XfLobbyQueueStore {
              uint40 headIndex;
              uint40 tailIndex;
              mapping(uint256 => XfLobbyEntryStore) entries;
          }
      
          mapping(uint256 => uint256) public xfLobby;
          mapping(uint256 => mapping(address => XfLobbyQueueStore)) public xfLobbyMembers;
      
          /**
           * @dev PUBLIC FACING: Optionally update daily data for a smaller
           * range to reduce gas cost for a subsequent operation
           * @param beforeDay Only update days before this day number (optional; 0 for current day)
           */
          function dailyDataUpdate(uint256 beforeDay)
              external
          {
              GlobalsCache memory g;
              GlobalsCache memory gSnapshot;
              _globalsLoad(g, gSnapshot);
      
              /* Skip pre-claim period */
              require(g._currentDay > CLAIM_PHASE_START_DAY, "HEX: Too early");
      
              if (beforeDay != 0) {
                  require(beforeDay <= g._currentDay, "HEX: beforeDay cannot be in the future");
      
                  _dailyDataUpdate(g, beforeDay, false);
              } else {
                  /* Default to updating before current day */
                  _dailyDataUpdate(g, g._currentDay, false);
              }
      
              _globalsSync(g, gSnapshot);
          }
      
          /**
           * @dev PUBLIC FACING: External helper to return multiple values of daily data with
           * a single call. Ugly implementation due to limitations of the standard ABI encoder.
           * @param beginDay First day of data range
           * @param endDay Last day (non-inclusive) of data range
           * @return Fixed array of packed values
           */
          function dailyDataRange(uint256 beginDay, uint256 endDay)
              external
              view
              returns (uint256[] memory list)
          {
              require(beginDay < endDay && endDay <= globals.dailyDataCount, "HEX: range invalid");
      
              list = new uint256[](endDay - beginDay);
      
              uint256 src = beginDay;
              uint256 dst = 0;
              uint256 v;
              do {
                  v = uint256(dailyData[src].dayUnclaimedSatoshisTotal) << (HEART_UINT_SIZE * 2);
                  v |= uint256(dailyData[src].dayStakeSharesTotal) << HEART_UINT_SIZE;
                  v |= uint256(dailyData[src].dayPayoutTotal);
      
                  list[dst++] = v;
              } while (++src < endDay);
      
              return list;
          }
      
          /**
           * @dev PUBLIC FACING: External helper to return most global info with a single call.
           * Ugly implementation due to limitations of the standard ABI encoder.
           * @return Fixed array of values
           */
          function globalInfo()
              external
              view
              returns (uint256[13] memory)
          {
              uint256 _claimedBtcAddrCount;
              uint256 _claimedSatoshisTotal;
              uint256 _unclaimedSatoshisTotal;
      
              (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal) = _claimStatsDecode(
                  globals.claimStats
              );
      
              return [
                  // 1
                  globals.lockedHeartsTotal,
                  globals.nextStakeSharesTotal,
                  globals.shareRate,
                  globals.stakePenaltyTotal,
                  // 2
                  globals.dailyDataCount,
                  globals.stakeSharesTotal,
                  globals.latestStakeId,
                  _unclaimedSatoshisTotal,
                  _claimedSatoshisTotal,
                  _claimedBtcAddrCount,
                  //
                  block.timestamp,
                  totalSupply(),
                  xfLobby[_currentDay()]
              ];
          }
      
          /**
           * @dev PUBLIC FACING: ERC20 totalSupply() is the circulating supply and does not include any
           * staked Hearts. allocatedSupply() includes both.
           * @return Allocated Supply in Hearts
           */
          function allocatedSupply()
              external
              view
              returns (uint256)
          {
              return totalSupply() + globals.lockedHeartsTotal;
          }
      
          /**
           * @dev PUBLIC FACING: External helper for the current day number since launch time
           * @return Current day number (zero-based)
           */
          function currentDay()
              external
              view
              returns (uint256)
          {
              return _currentDay();
          }
      
          function _currentDay()
              internal
              view
              returns (uint256)
          {
              return (block.timestamp - LAUNCH_TIME) / 1 days;
          }
      
          function _dailyDataUpdateAuto(GlobalsCache memory g)
              internal
          {
              _dailyDataUpdate(g, g._currentDay, true);
          }
      
          function _globalsLoad(GlobalsCache memory g, GlobalsCache memory gSnapshot)
              internal
              view
          {
              // 1
              g._lockedHeartsTotal = globals.lockedHeartsTotal;
              g._nextStakeSharesTotal = globals.nextStakeSharesTotal;
              g._shareRate = globals.shareRate;
              g._stakePenaltyTotal = globals.stakePenaltyTotal;
              // 2
              g._dailyDataCount = globals.dailyDataCount;
              g._stakeSharesTotal = globals.stakeSharesTotal;
              g._latestStakeId = globals.latestStakeId;
              (g._claimedBtcAddrCount, g._claimedSatoshisTotal, g._unclaimedSatoshisTotal) = _claimStatsDecode(
                  globals.claimStats
              );
              //
              g._currentDay = _currentDay();
      
              _globalsCacheSnapshot(g, gSnapshot);
          }
      
          function _globalsCacheSnapshot(GlobalsCache memory g, GlobalsCache memory gSnapshot)
              internal
              pure
          {
              // 1
              gSnapshot._lockedHeartsTotal = g._lockedHeartsTotal;
              gSnapshot._nextStakeSharesTotal = g._nextStakeSharesTotal;
              gSnapshot._shareRate = g._shareRate;
              gSnapshot._stakePenaltyTotal = g._stakePenaltyTotal;
              // 2
              gSnapshot._dailyDataCount = g._dailyDataCount;
              gSnapshot._stakeSharesTotal = g._stakeSharesTotal;
              gSnapshot._latestStakeId = g._latestStakeId;
              gSnapshot._unclaimedSatoshisTotal = g._unclaimedSatoshisTotal;
              gSnapshot._claimedSatoshisTotal = g._claimedSatoshisTotal;
              gSnapshot._claimedBtcAddrCount = g._claimedBtcAddrCount;
          }
      
          function _globalsSync(GlobalsCache memory g, GlobalsCache memory gSnapshot)
              internal
          {
              if (g._lockedHeartsTotal != gSnapshot._lockedHeartsTotal
                  || g._nextStakeSharesTotal != gSnapshot._nextStakeSharesTotal
                  || g._shareRate != gSnapshot._shareRate
                  || g._stakePenaltyTotal != gSnapshot._stakePenaltyTotal) {
                  // 1
                  globals.lockedHeartsTotal = uint72(g._lockedHeartsTotal);
                  globals.nextStakeSharesTotal = uint72(g._nextStakeSharesTotal);
                  globals.shareRate = uint40(g._shareRate);
                  globals.stakePenaltyTotal = uint72(g._stakePenaltyTotal);
              }
              if (g._dailyDataCount != gSnapshot._dailyDataCount
                  || g._stakeSharesTotal != gSnapshot._stakeSharesTotal
                  || g._latestStakeId != gSnapshot._latestStakeId
                  || g._unclaimedSatoshisTotal != gSnapshot._unclaimedSatoshisTotal
                  || g._claimedSatoshisTotal != gSnapshot._claimedSatoshisTotal
                  || g._claimedBtcAddrCount != gSnapshot._claimedBtcAddrCount) {
                  // 2
                  globals.dailyDataCount = uint16(g._dailyDataCount);
                  globals.stakeSharesTotal = uint72(g._stakeSharesTotal);
                  globals.latestStakeId = g._latestStakeId;
                  globals.claimStats = _claimStatsEncode(
                      g._claimedBtcAddrCount,
                      g._claimedSatoshisTotal,
                      g._unclaimedSatoshisTotal
                  );
              }
          }
      
          function _stakeLoad(StakeStore storage stRef, uint40 stakeIdParam, StakeCache memory st)
              internal
              view
          {
              /* Ensure caller's stakeIndex is still current */
              require(stakeIdParam == stRef.stakeId, "HEX: stakeIdParam not in stake");
      
              st._stakeId = stRef.stakeId;
              st._stakedHearts = stRef.stakedHearts;
              st._stakeShares = stRef.stakeShares;
              st._lockedDay = stRef.lockedDay;
              st._stakedDays = stRef.stakedDays;
              st._unlockedDay = stRef.unlockedDay;
              st._isAutoStake = stRef.isAutoStake;
          }
      
          function _stakeUpdate(StakeStore storage stRef, StakeCache memory st)
              internal
          {
              stRef.stakeId = st._stakeId;
              stRef.stakedHearts = uint72(st._stakedHearts);
              stRef.stakeShares = uint72(st._stakeShares);
              stRef.lockedDay = uint16(st._lockedDay);
              stRef.stakedDays = uint16(st._stakedDays);
              stRef.unlockedDay = uint16(st._unlockedDay);
              stRef.isAutoStake = st._isAutoStake;
          }
      
          function _stakeAdd(
              StakeStore[] storage stakeListRef,
              uint40 newStakeId,
              uint256 newStakedHearts,
              uint256 newStakeShares,
              uint256 newLockedDay,
              uint256 newStakedDays,
              bool newAutoStake
          )
              internal
          {
              stakeListRef.push(
                  StakeStore(
                      newStakeId,
                      uint72(newStakedHearts),
                      uint72(newStakeShares),
                      uint16(newLockedDay),
                      uint16(newStakedDays),
                      uint16(0), // unlockedDay
                      newAutoStake
                  )
              );
          }
      
          /**
           * @dev Efficiently delete from an unordered array by moving the last element
           * to the "hole" and reducing the array length. Can change the order of the list
           * and invalidate previously held indexes.
           * @notice stakeListRef length and stakeIndex are already ensured valid in stakeEnd()
           * @param stakeListRef Reference to stakeLists[stakerAddr] array in storage
           * @param stakeIndex Index of the element to delete
           */
          function _stakeRemove(StakeStore[] storage stakeListRef, uint256 stakeIndex)
              internal
          {
              uint256 lastIndex = stakeListRef.length - 1;
      
              /* Skip the copy if element to be removed is already the last element */
              if (stakeIndex != lastIndex) {
                  /* Copy last element to the requested element's "hole" */
                  stakeListRef[stakeIndex] = stakeListRef[lastIndex];
              }
      
              /*
                  Reduce the array length now that the array is contiguous.
                  Surprisingly, 'pop()' uses less gas than 'stakeListRef.length = lastIndex'
              */
              stakeListRef.pop();
          }
      
          function _claimStatsEncode(
              uint256 _claimedBtcAddrCount,
              uint256 _claimedSatoshisTotal,
              uint256 _unclaimedSatoshisTotal
          )
              internal
              pure
              returns (uint128)
          {
              uint256 v = _claimedBtcAddrCount << (SATOSHI_UINT_SIZE * 2);
              v |= _claimedSatoshisTotal << SATOSHI_UINT_SIZE;
              v |= _unclaimedSatoshisTotal;
      
              return uint128(v);
          }
      
          function _claimStatsDecode(uint128 v)
              internal
              pure
              returns (uint256 _claimedBtcAddrCount, uint256 _claimedSatoshisTotal, uint256 _unclaimedSatoshisTotal)
          {
              _claimedBtcAddrCount = v >> (SATOSHI_UINT_SIZE * 2);
              _claimedSatoshisTotal = (v >> SATOSHI_UINT_SIZE) & SATOSHI_UINT_MASK;
              _unclaimedSatoshisTotal = v & SATOSHI_UINT_MASK;
      
              return (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal);
          }
      
          /**
           * @dev Estimate the stake payout for an incomplete day
           * @param g Cache of stored globals
           * @param stakeSharesParam Param from stake to calculate bonuses for
           * @param day Day to calculate bonuses for
           * @return Payout in Hearts
           */
          function _estimatePayoutRewardsDay(GlobalsCache memory g, uint256 stakeSharesParam, uint256 day)
              internal
              view
              returns (uint256 payout)
          {
              /* Prevent updating state for this estimation */
              GlobalsCache memory gTmp;
              _globalsCacheSnapshot(g, gTmp);
      
              DailyRoundState memory rs;
              rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal;
      
              _dailyRoundCalc(gTmp, rs, day);
      
              /* Stake is no longer locked so it must be added to total as if it were */
              gTmp._stakeSharesTotal += stakeSharesParam;
      
              payout = rs._payoutTotal * stakeSharesParam / gTmp._stakeSharesTotal;
      
              if (day == BIG_PAY_DAY) {
                  uint256 bigPaySlice = gTmp._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam
                      / gTmp._stakeSharesTotal;
                  payout += bigPaySlice + _calcAdoptionBonus(gTmp, bigPaySlice);
              }
      
              return payout;
          }
      
          function _calcAdoptionBonus(GlobalsCache memory g, uint256 payout)
              internal
              pure
              returns (uint256)
          {
              /*
                  VIRAL REWARDS: Add adoption percentage bonus to payout
      
                  viral = payout * (claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT)
              */
              uint256 viral = payout * g._claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT;
      
              /*
                  CRIT MASS REWARDS: Add adoption percentage bonus to payout
      
                  crit  = payout * (claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL)
              */
              uint256 crit = payout * g._claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL;
      
              return viral + crit;
          }
      
          function _dailyRoundCalc(GlobalsCache memory g, DailyRoundState memory rs, uint256 day)
              private
              pure
          {
              /*
                  Calculate payout round
      
                  Inflation of 3.69% inflation per 364 days             (approx 1 year)
                  dailyInterestRate   = exp(log(1 + 3.69%)  / 364) - 1
                                      = exp(log(1 + 0.0369) / 364) - 1
                                      = exp(log(1.0369) / 364) - 1
                                      = 0.000099553011616349            (approx)
      
                  payout  = allocSupply * dailyInterestRate
                          = allocSupply / (1 / dailyInterestRate)
                          = allocSupply / (1 / 0.000099553011616349)
                          = allocSupply / 10044.899534066692            (approx)
                          = allocSupply * 10000 / 100448995             (* 10000/10000 for int precision)
              */
              rs._payoutTotal = rs._allocSupplyCached * 10000 / 100448995;
      
              if (day < CLAIM_PHASE_END_DAY) {
                  uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS;
      
                  uint256 originBonus = bigPaySlice + _calcAdoptionBonus(g, rs._payoutTotal + bigPaySlice);
                  rs._mintOriginBatch += originBonus;
                  rs._allocSupplyCached += originBonus;
      
                  rs._payoutTotal += _calcAdoptionBonus(g, rs._payoutTotal);
              }
      
              if (g._stakePenaltyTotal != 0) {
                  rs._payoutTotal += g._stakePenaltyTotal;
                  g._stakePenaltyTotal = 0;
              }
          }
      
          function _dailyRoundCalcAndStore(GlobalsCache memory g, DailyRoundState memory rs, uint256 day)
              private
          {
              _dailyRoundCalc(g, rs, day);
      
              dailyData[day].dayPayoutTotal = uint72(rs._payoutTotal);
              dailyData[day].dayStakeSharesTotal = uint72(g._stakeSharesTotal);
              dailyData[day].dayUnclaimedSatoshisTotal = uint56(g._unclaimedSatoshisTotal);
          }
      
          function _dailyDataUpdate(GlobalsCache memory g, uint256 beforeDay, bool isAutoUpdate)
              private
          {
              if (g._dailyDataCount >= beforeDay) {
                  /* Already up-to-date */
                  return;
              }
      
              DailyRoundState memory rs;
              rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal;
      
              uint256 day = g._dailyDataCount;
      
              _dailyRoundCalcAndStore(g, rs, day);
      
              /* Stakes started during this day are added to the total the next day */
              if (g._nextStakeSharesTotal != 0) {
                  g._stakeSharesTotal += g._nextStakeSharesTotal;
                  g._nextStakeSharesTotal = 0;
              }
      
              while (++day < beforeDay) {
                  _dailyRoundCalcAndStore(g, rs, day);
              }
      
              _emitDailyDataUpdate(g._dailyDataCount, day, isAutoUpdate);
              g._dailyDataCount = day;
      
              if (rs._mintOriginBatch != 0) {
                  _mint(ORIGIN_ADDR, rs._mintOriginBatch);
              }
          }
      
          function _emitDailyDataUpdate(uint256 beginDay, uint256 endDay, bool isAutoUpdate)
              private
          {
              emit DailyDataUpdate( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint16(beginDay)) << 40)
                      | (uint256(uint16(endDay)) << 56)
                      | (isAutoUpdate ? (1 << 72) : 0),
                  msg.sender
              );
          }
      }
      
      contract StakeableToken is GlobalsAndUtility {
          /**
           * @dev PUBLIC FACING: Open a stake.
           * @param newStakedHearts Number of Hearts to stake
           * @param newStakedDays Number of days to stake
           */
          function stakeStart(uint256 newStakedHearts, uint256 newStakedDays)
              external
          {
              GlobalsCache memory g;
              GlobalsCache memory gSnapshot;
              _globalsLoad(g, gSnapshot);
      
              /* Enforce the minimum stake time */
              require(newStakedDays >= MIN_STAKE_DAYS, "HEX: newStakedDays lower than minimum");
      
              /* Check if log data needs to be updated */
              _dailyDataUpdateAuto(g);
      
              _stakeStart(g, newStakedHearts, newStakedDays, false);
      
              /* Remove staked Hearts from balance of staker */
              _burn(msg.sender, newStakedHearts);
      
              _globalsSync(g, gSnapshot);
          }
      
          /**
           * @dev PUBLIC FACING: Unlocks a completed stake, distributing the proceeds of any penalty
           * immediately. The staker must still call stakeEnd() to retrieve their stake return (if any).
           * @param stakerAddr Address of staker
           * @param stakeIndex Index of stake within stake list
           * @param stakeIdParam The stake's id
           */
          function stakeGoodAccounting(address stakerAddr, uint256 stakeIndex, uint40 stakeIdParam)
              external
          {
              GlobalsCache memory g;
              GlobalsCache memory gSnapshot;
              _globalsLoad(g, gSnapshot);
      
              /* require() is more informative than the default assert() */
              require(stakeLists[stakerAddr].length != 0, "HEX: Empty stake list");
              require(stakeIndex < stakeLists[stakerAddr].length, "HEX: stakeIndex invalid");
      
              StakeStore storage stRef = stakeLists[stakerAddr][stakeIndex];
      
              /* Get stake copy */
              StakeCache memory st;
              _stakeLoad(stRef, stakeIdParam, st);
      
              /* Stake must have served full term */
              require(g._currentDay >= st._lockedDay + st._stakedDays, "HEX: Stake not fully served");
      
              /* Stake must still be locked */
              require(st._unlockedDay == 0, "HEX: Stake already unlocked");
      
              /* Check if log data needs to be updated */
              _dailyDataUpdateAuto(g);
      
              /* Unlock the completed stake */
              _stakeUnlock(g, st);
      
              /* stakeReturn value is unused here */
              (, uint256 payout, uint256 penalty, uint256 cappedPenalty) = _stakePerformance(
                  g,
                  st,
                  st._stakedDays
              );
      
              _emitStakeGoodAccounting(
                  stakerAddr,
                  stakeIdParam,
                  st._stakedHearts,
                  st._stakeShares,
                  payout,
                  penalty
              );
      
              if (cappedPenalty != 0) {
                  _splitPenaltyProceeds(g, cappedPenalty);
              }
      
              /* st._unlockedDay has changed */
              _stakeUpdate(stRef, st);
      
              _globalsSync(g, gSnapshot);
          }
      
          /**
           * @dev PUBLIC FACING: Closes a stake. The order of the stake list can change so
           * a stake id is used to reject stale indexes.
           * @param stakeIndex Index of stake within stake list
           * @param stakeIdParam The stake's id
           */
          function stakeEnd(uint256 stakeIndex, uint40 stakeIdParam)
              external
          {
              GlobalsCache memory g;
              GlobalsCache memory gSnapshot;
              _globalsLoad(g, gSnapshot);
      
              StakeStore[] storage stakeListRef = stakeLists[msg.sender];
      
              /* require() is more informative than the default assert() */
              require(stakeListRef.length != 0, "HEX: Empty stake list");
              require(stakeIndex < stakeListRef.length, "HEX: stakeIndex invalid");
      
              /* Get stake copy */
              StakeCache memory st;
              _stakeLoad(stakeListRef[stakeIndex], stakeIdParam, st);
      
              /* Check if log data needs to be updated */
              _dailyDataUpdateAuto(g);
      
              uint256 servedDays = 0;
      
              bool prevUnlocked = (st._unlockedDay != 0);
              uint256 stakeReturn;
              uint256 payout = 0;
              uint256 penalty = 0;
              uint256 cappedPenalty = 0;
      
              if (g._currentDay >= st._lockedDay) {
                  if (prevUnlocked) {
                      /* Previously unlocked in stakeGoodAccounting(), so must have served full term */
                      servedDays = st._stakedDays;
                  } else {
                      _stakeUnlock(g, st);
      
                      servedDays = g._currentDay - st._lockedDay;
                      if (servedDays > st._stakedDays) {
                          servedDays = st._stakedDays;
                      } else {
                          /* Deny early-unstake before an auto-stake minimum has been served */
                          if (servedDays < MIN_AUTO_STAKE_DAYS) {
                              require(!st._isAutoStake, "HEX: Auto-stake still locked");
                          }
                      }
                  }
      
                  (stakeReturn, payout, penalty, cappedPenalty) = _stakePerformance(g, st, servedDays);
              } else {
                  /* Deny early-unstake before an auto-stake minimum has been served */
                  require(!st._isAutoStake, "HEX: Auto-stake still locked");
      
                  /* Stake hasn't been added to the total yet, so no penalties or rewards apply */
                  g._nextStakeSharesTotal -= st._stakeShares;
      
                  stakeReturn = st._stakedHearts;
              }
      
              _emitStakeEnd(
                  stakeIdParam,
                  st._stakedHearts,
                  st._stakeShares,
                  payout,
                  penalty,
                  servedDays,
                  prevUnlocked
              );
      
              if (cappedPenalty != 0 && !prevUnlocked) {
                  /* Split penalty proceeds only if not previously unlocked by stakeGoodAccounting() */
                  _splitPenaltyProceeds(g, cappedPenalty);
              }
      
              /* Pay the stake return, if any, to the staker */
              if (stakeReturn != 0) {
                  _mint(msg.sender, stakeReturn);
      
                  /* Update the share rate if necessary */
                  _shareRateUpdate(g, st, stakeReturn);
              }
              g._lockedHeartsTotal -= st._stakedHearts;
      
              _stakeRemove(stakeListRef, stakeIndex);
      
              _globalsSync(g, gSnapshot);
          }
      
          /**
           * @dev PUBLIC FACING: Return the current stake count for a staker address
           * @param stakerAddr Address of staker
           */
          function stakeCount(address stakerAddr)
              external
              view
              returns (uint256)
          {
              return stakeLists[stakerAddr].length;
          }
      
          /**
           * @dev Open a stake.
           * @param g Cache of stored globals
           * @param newStakedHearts Number of Hearts to stake
           * @param newStakedDays Number of days to stake
           * @param newAutoStake Stake is automatic directly from a new claim
           */
          function _stakeStart(
              GlobalsCache memory g,
              uint256 newStakedHearts,
              uint256 newStakedDays,
              bool newAutoStake
          )
              internal
          {
              /* Enforce the maximum stake time */
              require(newStakedDays <= MAX_STAKE_DAYS, "HEX: newStakedDays higher than maximum");
      
              uint256 bonusHearts = _stakeStartBonusHearts(newStakedHearts, newStakedDays);
              uint256 newStakeShares = (newStakedHearts + bonusHearts) * SHARE_RATE_SCALE / g._shareRate;
      
              /* Ensure newStakedHearts is enough for at least one stake share */
              require(newStakeShares != 0, "HEX: newStakedHearts must be at least minimum shareRate");
      
              /*
                  The stakeStart timestamp will always be part-way through the current
                  day, so it needs to be rounded-up to the next day to ensure all
                  stakes align with the same fixed calendar days. The current day is
                  already rounded-down, so rounded-up is current day + 1.
              */
              uint256 newLockedDay = g._currentDay < CLAIM_PHASE_START_DAY
                  ? CLAIM_PHASE_START_DAY + 1
                  : g._currentDay + 1;
      
              /* Create Stake */
              uint40 newStakeId = ++g._latestStakeId;
              _stakeAdd(
                  stakeLists[msg.sender],
                  newStakeId,
                  newStakedHearts,
                  newStakeShares,
                  newLockedDay,
                  newStakedDays,
                  newAutoStake
              );
      
              _emitStakeStart(newStakeId, newStakedHearts, newStakeShares, newStakedDays, newAutoStake);
      
              /* Stake is added to total in the next round, not the current round */
              g._nextStakeSharesTotal += newStakeShares;
      
              /* Track total staked Hearts for inflation calculations */
              g._lockedHeartsTotal += newStakedHearts;
          }
      
          /**
           * @dev Calculates total stake payout including rewards for a multi-day range
           * @param g Cache of stored globals
           * @param stakeSharesParam Param from stake to calculate bonuses for
           * @param beginDay First day to calculate bonuses for
           * @param endDay Last day (non-inclusive) of range to calculate bonuses for
           * @return Payout in Hearts
           */
          function _calcPayoutRewards(
              GlobalsCache memory g,
              uint256 stakeSharesParam,
              uint256 beginDay,
              uint256 endDay
          )
              private
              view
              returns (uint256 payout)
          {
              for (uint256 day = beginDay; day < endDay; day++) {
                  payout += dailyData[day].dayPayoutTotal * stakeSharesParam
                      / dailyData[day].dayStakeSharesTotal;
              }
      
              /* Less expensive to re-read storage than to have the condition inside the loop */
              if (beginDay <= BIG_PAY_DAY && endDay > BIG_PAY_DAY) {
                  uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam
                      / dailyData[BIG_PAY_DAY].dayStakeSharesTotal;
      
                  payout += bigPaySlice + _calcAdoptionBonus(g, bigPaySlice);
              }
              return payout;
          }
      
          /**
           * @dev Calculate bonus Hearts for a new stake, if any
           * @param newStakedHearts Number of Hearts to stake
           * @param newStakedDays Number of days to stake
           */
          function _stakeStartBonusHearts(uint256 newStakedHearts, uint256 newStakedDays)
              private
              pure
              returns (uint256 bonusHearts)
          {
              /*
                  LONGER PAYS BETTER:
      
                  If longer than 1 day stake is committed to, each extra day
                  gives bonus shares of approximately 0.0548%, which is approximately 20%
                  extra per year of increased stake length committed to, but capped to a
                  maximum of 200% extra.
      
                  extraDays       =  stakedDays - 1
      
                  longerBonus%    = (extraDays / 364) * 20%
                                  = (extraDays / 364) / 5
                                  =  extraDays / 1820
                                  =  extraDays / LPB
      
                  extraDays       =  longerBonus% * 1820
                  extraDaysMax    =  longerBonusMax% * 1820
                                  =  200% * 1820
                                  =  3640
                                  =  LPB_MAX_DAYS
      
                  BIGGER PAYS BETTER:
      
                  Bonus percentage scaled 0% to 10% for the first 150M HEX of stake.
      
                  biggerBonus%    = (cappedHearts /  BPB_MAX_HEARTS) * 10%
                                  = (cappedHearts /  BPB_MAX_HEARTS) / 10
                                  =  cappedHearts / (BPB_MAX_HEARTS * 10)
                                  =  cappedHearts /  BPB
      
                  COMBINED:
      
                  combinedBonus%  =            longerBonus%  +  biggerBonus%
      
                                            cappedExtraDays     cappedHearts
                                  =         ---------------  +  ------------
                                                  LPB               BPB
      
                                      cappedExtraDays * BPB     cappedHearts * LPB
                                  =   ---------------------  +  ------------------
                                            LPB * BPB               LPB * BPB
      
                                      cappedExtraDays * BPB  +  cappedHearts * LPB
                                  =   --------------------------------------------
                                                        LPB  *  BPB
      
                  bonusHearts     = hearts * combinedBonus%
                                  = hearts * (cappedExtraDays * BPB  +  cappedHearts * LPB) / (LPB * BPB)
              */
              uint256 cappedExtraDays = 0;
      
              /* Must be more than 1 day for Longer-Pays-Better */
              if (newStakedDays > 1) {
                  cappedExtraDays = newStakedDays <= LPB_MAX_DAYS ? newStakedDays - 1 : LPB_MAX_DAYS;
              }
      
              uint256 cappedStakedHearts = newStakedHearts <= BPB_MAX_HEARTS
                  ? newStakedHearts
                  : BPB_MAX_HEARTS;
      
              bonusHearts = cappedExtraDays * BPB + cappedStakedHearts * LPB;
              bonusHearts = newStakedHearts * bonusHearts / (LPB * BPB);
      
              return bonusHearts;
          }
      
          function _stakeUnlock(GlobalsCache memory g, StakeCache memory st)
              private
              pure
          {
              g._stakeSharesTotal -= st._stakeShares;
              st._unlockedDay = g._currentDay;
          }
      
          function _stakePerformance(GlobalsCache memory g, StakeCache memory st, uint256 servedDays)
              private
              view
              returns (uint256 stakeReturn, uint256 payout, uint256 penalty, uint256 cappedPenalty)
          {
              if (servedDays < st._stakedDays) {
                  (payout, penalty) = _calcPayoutAndEarlyPenalty(
                      g,
                      st._lockedDay,
                      st._stakedDays,
                      servedDays,
                      st._stakeShares
                  );
                  stakeReturn = st._stakedHearts + payout;
              } else {
                  // servedDays must == stakedDays here
                  payout = _calcPayoutRewards(
                      g,
                      st._stakeShares,
                      st._lockedDay,
                      st._lockedDay + servedDays
                  );
                  stakeReturn = st._stakedHearts + payout;
      
                  penalty = _calcLatePenalty(st._lockedDay, st._stakedDays, st._unlockedDay, stakeReturn);
              }
              if (penalty != 0) {
                  if (penalty > stakeReturn) {
                      /* Cannot have a negative stake return */
                      cappedPenalty = stakeReturn;
                      stakeReturn = 0;
                  } else {
                      /* Remove penalty from the stake return */
                      cappedPenalty = penalty;
                      stakeReturn -= cappedPenalty;
                  }
              }
              return (stakeReturn, payout, penalty, cappedPenalty);
          }
      
          function _calcPayoutAndEarlyPenalty(
              GlobalsCache memory g,
              uint256 lockedDayParam,
              uint256 stakedDaysParam,
              uint256 servedDays,
              uint256 stakeSharesParam
          )
              private
              view
              returns (uint256 payout, uint256 penalty)
          {
              uint256 servedEndDay = lockedDayParam + servedDays;
      
              /* 50% of stakedDays (rounded up) with a minimum applied */
              uint256 penaltyDays = (stakedDaysParam + 1) / 2;
              if (penaltyDays < EARLY_PENALTY_MIN_DAYS) {
                  penaltyDays = EARLY_PENALTY_MIN_DAYS;
              }
      
              if (servedDays == 0) {
                  /* Fill penalty days with the estimated average payout */
                  uint256 expected = _estimatePayoutRewardsDay(g, stakeSharesParam, lockedDayParam);
                  penalty = expected * penaltyDays;
                  return (payout, penalty); // Actual payout was 0
              }
      
              if (penaltyDays < servedDays) {
                  /*
                      Simplified explanation of intervals where end-day is non-inclusive:
      
                      penalty:    [lockedDay  ...  penaltyEndDay)
                      delta:                      [penaltyEndDay  ...  servedEndDay)
                      payout:     [lockedDay  .......................  servedEndDay)
                  */
                  uint256 penaltyEndDay = lockedDayParam + penaltyDays;
                  penalty = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, penaltyEndDay);
      
                  uint256 delta = _calcPayoutRewards(g, stakeSharesParam, penaltyEndDay, servedEndDay);
                  payout = penalty + delta;
                  return (payout, penalty);
              }
      
              /* penaltyDays >= servedDays  */
              payout = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, servedEndDay);
      
              if (penaltyDays == servedDays) {
                  penalty = payout;
              } else {
                  /*
                      (penaltyDays > servedDays) means not enough days served, so fill the
                      penalty days with the average payout from only the days that were served.
                  */
                  penalty = payout * penaltyDays / servedDays;
              }
              return (payout, penalty);
          }
      
          function _calcLatePenalty(
              uint256 lockedDayParam,
              uint256 stakedDaysParam,
              uint256 unlockedDayParam,
              uint256 rawStakeReturn
          )
              private
              pure
              returns (uint256)
          {
              /* Allow grace time before penalties accrue */
              uint256 maxUnlockedDay = lockedDayParam + stakedDaysParam + LATE_PENALTY_GRACE_DAYS;
              if (unlockedDayParam <= maxUnlockedDay) {
                  return 0;
              }
      
              /* Calculate penalty as a percentage of stake return based on time */
              return rawStakeReturn * (unlockedDayParam - maxUnlockedDay) / LATE_PENALTY_SCALE_DAYS;
          }
      
          function _splitPenaltyProceeds(GlobalsCache memory g, uint256 penalty)
              private
          {
              /* Split a penalty 50:50 between Origin and stakePenaltyTotal */
              uint256 splitPenalty = penalty / 2;
      
              if (splitPenalty != 0) {
                  _mint(ORIGIN_ADDR, splitPenalty);
              }
      
              /* Use the other half of the penalty to account for an odd-numbered penalty */
              splitPenalty = penalty - splitPenalty;
              g._stakePenaltyTotal += splitPenalty;
          }
      
          function _shareRateUpdate(GlobalsCache memory g, StakeCache memory st, uint256 stakeReturn)
              private
          {
              if (stakeReturn > st._stakedHearts) {
                  /*
                      Calculate the new shareRate that would yield the same number of shares if
                      the user re-staked this stakeReturn, factoring in any bonuses they would
                      receive in stakeStart().
                  */
                  uint256 bonusHearts = _stakeStartBonusHearts(stakeReturn, st._stakedDays);
                  uint256 newShareRate = (stakeReturn + bonusHearts) * SHARE_RATE_SCALE / st._stakeShares;
      
                  if (newShareRate > SHARE_RATE_MAX) {
                      /*
                          Realistically this can't happen, but there are contrived theoretical
                          scenarios that can lead to extreme values of newShareRate, so it is
                          capped to prevent them anyway.
                      */
                      newShareRate = SHARE_RATE_MAX;
                  }
      
                  if (newShareRate > g._shareRate) {
                      g._shareRate = newShareRate;
      
                      _emitShareRateChange(newShareRate, st._stakeId);
                  }
              }
          }
      
          function _emitStakeStart(
              uint40 stakeId,
              uint256 stakedHearts,
              uint256 stakeShares,
              uint256 stakedDays,
              bool isAutoStake
          )
              private
          {
              emit StakeStart( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint72(stakedHearts)) << 40)
                      | (uint256(uint72(stakeShares)) << 112)
                      | (uint256(uint16(stakedDays)) << 184)
                      | (isAutoStake ? (1 << 200) : 0),
                  msg.sender,
                  stakeId
              );
          }
      
          function _emitStakeGoodAccounting(
              address stakerAddr,
              uint40 stakeId,
              uint256 stakedHearts,
              uint256 stakeShares,
              uint256 payout,
              uint256 penalty
          )
              private
          {
              emit StakeGoodAccounting( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint72(stakedHearts)) << 40)
                      | (uint256(uint72(stakeShares)) << 112)
                      | (uint256(uint72(payout)) << 184),
                  uint256(uint72(penalty)),
                  stakerAddr,
                  stakeId,
                  msg.sender
              );
          }
      
          function _emitStakeEnd(
              uint40 stakeId,
              uint256 stakedHearts,
              uint256 stakeShares,
              uint256 payout,
              uint256 penalty,
              uint256 servedDays,
              bool prevUnlocked
          )
              private
          {
              emit StakeEnd( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint72(stakedHearts)) << 40)
                      | (uint256(uint72(stakeShares)) << 112)
                      | (uint256(uint72(payout)) << 184),
                  uint256(uint72(penalty))
                      | (uint256(uint16(servedDays)) << 72)
                      | (prevUnlocked ? (1 << 88) : 0),
                  msg.sender,
                  stakeId
              );
          }
      
          function _emitShareRateChange(uint256 shareRate, uint40 stakeId)
              private
          {
              emit ShareRateChange( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint40(shareRate)) << 40),
                  stakeId
              );
          }
      }
      
      /**
       * @dev These functions deal with verification of Merkle trees (hash trees),
       */
      library MerkleProof {
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           */
          function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              bytes32 computedHash = leaf;
      
              for (uint256 i = 0; i < proof.length; i++) {
                  bytes32 proofElement = proof[i];
      
                  if (computedHash < proofElement) {
                      // Hash(current computed hash + current element of the proof)
                      computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
                  } else {
                      // Hash(current element of the proof + current computed hash)
                      computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
                  }
              }
      
              // Check if the computed hash (root) is equal to the provided root
              return computedHash == root;
          }
      }
      
      contract UTXOClaimValidation is StakeableToken {
          /**
           * @dev PUBLIC FACING: Verify a BTC address and balance are unclaimed and part of the Merkle tree
           * @param btcAddr Bitcoin address (binary; no base58-check encoding)
           * @param rawSatoshis Raw BTC address balance in Satoshis
           * @param proof Merkle tree proof
           * @return True if can be claimed
           */
          function btcAddressIsClaimable(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof)
              external
              view
              returns (bool)
          {
              uint256 day = _currentDay();
      
              require(day >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started");
              require(day < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended");
      
              /* Don't need to check Merkle proof if UTXO BTC address has already been claimed    */
              if (btcAddressClaims[btcAddr]) {
                  return false;
              }
      
              /* Verify the Merkle tree proof */
              return _btcAddressIsValid(btcAddr, rawSatoshis, proof);
          }
      
          /**
           * @dev PUBLIC FACING: Verify a BTC address and balance are part of the Merkle tree
           * @param btcAddr Bitcoin address (binary; no base58-check encoding)
           * @param rawSatoshis Raw BTC address balance in Satoshis
           * @param proof Merkle tree proof
           * @return True if valid
           */
          function btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof)
              external
              pure
              returns (bool)
          {
              return _btcAddressIsValid(btcAddr, rawSatoshis, proof);
          }
      
          /**
           * @dev PUBLIC FACING: Verify a Merkle proof using the UTXO Merkle tree
           * @param merkleLeaf Leaf asserted to be present in the Merkle tree
           * @param proof Generated Merkle tree proof
           * @return True if valid
           */
          function merkleProofIsValid(bytes32 merkleLeaf, bytes32[] calldata proof)
              external
              pure
              returns (bool)
          {
              return _merkleProofIsValid(merkleLeaf, proof);
          }
      
          /**
           * @dev PUBLIC FACING: Verify that a Bitcoin signature matches the claim message containing
           * the Ethereum address and claim param hash
           * @param claimToAddr Eth address within the signed claim message
           * @param claimParamHash Param hash within the signed claim message
           * @param pubKeyX First  half of uncompressed ECDSA public key
           * @param pubKeyY Second half of uncompressed ECDSA public key
           * @param claimFlags Claim flags specifying address and message formats
           * @param v v parameter of ECDSA signature
           * @param r r parameter of ECDSA signature
           * @param s s parameter of ECDSA signature
           * @return True if matching
           */
          function claimMessageMatchesSignature(
              address claimToAddr,
              bytes32 claimParamHash,
              bytes32 pubKeyX,
              bytes32 pubKeyY,
              uint8 claimFlags,
              uint8 v,
              bytes32 r,
              bytes32 s
          )
              public
              pure
              returns (bool)
          {
              require(v >= 27 && v <= 30, "HEX: v invalid");
      
              /*
                  ecrecover() returns an Eth address rather than a public key, so
                  we must do the same to compare.
              */
              address pubKeyEthAddr = pubKeyToEthAddress(pubKeyX, pubKeyY);
      
              /* Create and hash the claim message text */
              bytes32 messageHash = _hash256(
                  _claimMessageCreate(claimToAddr, claimParamHash, claimFlags)
              );
      
              /* Verify the public key */
              return ecrecover(messageHash, v, r, s) == pubKeyEthAddr;
          }
      
          /**
           * @dev PUBLIC FACING: Derive an Ethereum address from an ECDSA public key
           * @param pubKeyX First  half of uncompressed ECDSA public key
           * @param pubKeyY Second half of uncompressed ECDSA public key
           * @return Derived Eth address
           */
          function pubKeyToEthAddress(bytes32 pubKeyX, bytes32 pubKeyY)
              public
              pure
              returns (address)
          {
              return address(uint160(uint256(keccak256(abi.encodePacked(pubKeyX, pubKeyY)))));
          }
      
          /**
           * @dev PUBLIC FACING: Derive a Bitcoin address from an ECDSA public key
           * @param pubKeyX First  half of uncompressed ECDSA public key
           * @param pubKeyY Second half of uncompressed ECDSA public key
           * @param claimFlags Claim flags specifying address and message formats
           * @return Derived Bitcoin address (binary; no base58-check encoding)
           */
          function pubKeyToBtcAddress(bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags)
              public
              pure
              returns (bytes20)
          {
              /*
                  Helpful references:
                   - https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
                   - https://github.com/cryptocoinjs/ecurve/blob/master/lib/point.js
              */
              uint8 startingByte;
              bytes memory pubKey;
              bool compressed = (claimFlags & CLAIM_FLAG_BTC_ADDR_COMPRESSED) != 0;
              bool nested = (claimFlags & CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH) != 0;
              bool bech32 = (claimFlags & CLAIM_FLAG_BTC_ADDR_BECH32) != 0;
      
              if (compressed) {
                  /* Compressed public key format */
                  require(!(nested && bech32), "HEX: claimFlags invalid");
      
                  startingByte = (pubKeyY[31] & 0x01) == 0 ? 0x02 : 0x03;
                  pubKey = abi.encodePacked(startingByte, pubKeyX);
              } else {
                  /* Uncompressed public key format */
                  require(!nested && !bech32, "HEX: claimFlags invalid");
      
                  startingByte = 0x04;
                  pubKey = abi.encodePacked(startingByte, pubKeyX, pubKeyY);
              }
      
              bytes20 pubKeyHash = _hash160(pubKey);
              if (nested) {
                  return _hash160(abi.encodePacked(hex"0014", pubKeyHash));
              }
              return pubKeyHash;
          }
      
          /**
           * @dev Verify a BTC address and balance are part of the Merkle tree
           * @param btcAddr Bitcoin address (binary; no base58-check encoding)
           * @param rawSatoshis Raw BTC address balance in Satoshis
           * @param proof Merkle tree proof
           * @return True if valid
           */
          function _btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] memory proof)
              internal
              pure
              returns (bool)
          {
              /*
                  Ensure the proof does not attempt to treat a Merkle leaf as if it were an
                  internal Merkle tree node. A leaf will always have the zero-fill. An
                  internal node will never have the zero-fill, as guaranteed by HEX's Merkle
                  tree construction.
      
                  The first element, proof[0], will always be a leaf because it is the pair
                  of the leaf being validated. The rest of the elements, proof[1..length-1],
                  must be internal nodes.
      
                  The number of leaves (CLAIMABLE_BTC_ADDR_COUNT) is even, as guaranteed by
                  HEX's Merkle tree construction, which eliminates the only edge-case where
                  this validation would not apply.
              */
              require((uint256(proof[0]) & MERKLE_LEAF_FILL_MASK) == 0, "HEX: proof invalid");
              for (uint256 i = 1; i < proof.length; i++) {
                  require((uint256(proof[i]) & MERKLE_LEAF_FILL_MASK) != 0, "HEX: proof invalid");
              }
      
              /*
                  Calculate the 32 byte Merkle leaf associated with this BTC address and balance
                      160 bits: BTC address
                       52 bits: Zero-fill
                       45 bits: Satoshis (limited by MAX_BTC_ADDR_BALANCE_SATOSHIS)
              */
              bytes32 merkleLeaf = bytes32(btcAddr) | bytes32(rawSatoshis);
      
              /* Verify the Merkle tree proof */
              return _merkleProofIsValid(merkleLeaf, proof);
          }
      
          /**
           * @dev Verify a Merkle proof using the UTXO Merkle tree
           * @param merkleLeaf Leaf asserted to be present in the Merkle tree
           * @param proof Generated Merkle tree proof
           * @return True if valid
           */
          function _merkleProofIsValid(bytes32 merkleLeaf, bytes32[] memory proof)
              private
              pure
              returns (bool)
          {
              return MerkleProof.verify(proof, MERKLE_TREE_ROOT, merkleLeaf);
          }
      
          function _claimMessageCreate(address claimToAddr, bytes32 claimParamHash, uint8 claimFlags)
              private
              pure
              returns (bytes memory)
          {
              bytes memory prefixStr = (claimFlags & CLAIM_FLAG_MSG_PREFIX_OLD) != 0
                  ? OLD_CLAIM_PREFIX_STR
                  : STD_CLAIM_PREFIX_STR;
      
              bool includeAddrChecksum = (claimFlags & CLAIM_FLAG_ETH_ADDR_LOWERCASE) == 0;
      
              bytes memory addrStr = _addressStringCreate(claimToAddr, includeAddrChecksum);
      
              if (claimParamHash == 0) {
                  return abi.encodePacked(
                      BITCOIN_SIG_PREFIX_LEN,
                      BITCOIN_SIG_PREFIX_STR,
                      uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN,
                      prefixStr,
                      addrStr
                  );
              }
      
              bytes memory claimParamHashStr = new bytes(CLAIM_PARAM_HASH_HEX_LEN);
      
              _hexStringFromData(claimParamHashStr, claimParamHash, CLAIM_PARAM_HASH_BYTE_LEN);
      
              return abi.encodePacked(
                  BITCOIN_SIG_PREFIX_LEN,
                  BITCOIN_SIG_PREFIX_STR,
                  uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN + 1 + CLAIM_PARAM_HASH_HEX_LEN,
                  prefixStr,
                  addrStr,
                  "_",
                  claimParamHashStr
              );
          }
      
          function _addressStringCreate(address addr, bool includeAddrChecksum)
              private
              pure
              returns (bytes memory addrStr)
          {
              addrStr = new bytes(ETH_ADDRESS_HEX_LEN);
              _hexStringFromData(addrStr, bytes32(bytes20(addr)), ETH_ADDRESS_BYTE_LEN);
      
              if (includeAddrChecksum) {
                  bytes32 addrStrHash = keccak256(addrStr);
      
                  uint256 offset = 0;
      
                  for (uint256 i = 0; i < ETH_ADDRESS_BYTE_LEN; i++) {
                      uint8 b = uint8(addrStrHash[i]);
      
                      _addressStringChecksumChar(addrStr, offset++, b >> 4);
                      _addressStringChecksumChar(addrStr, offset++, b & 0x0f);
                  }
              }
      
              return addrStr;
          }
      
          function _addressStringChecksumChar(bytes memory addrStr, uint256 offset, uint8 hashNybble)
              private
              pure
          {
              bytes1 ch = addrStr[offset];
      
              if (ch >= "a" && hashNybble >= 8) {
                  addrStr[offset] = ch ^ 0x20;
              }
          }
      
          function _hexStringFromData(bytes memory hexStr, bytes32 data, uint256 dataLen)
              private
              pure
          {
              uint256 offset = 0;
      
              for (uint256 i = 0; i < dataLen; i++) {
                  uint8 b = uint8(data[i]);
      
                  hexStr[offset++] = HEX_DIGITS[b >> 4];
                  hexStr[offset++] = HEX_DIGITS[b & 0x0f];
              }
          }
      
          /**
           * @dev sha256(sha256(data))
           * @param data Data to be hashed
           * @return 32-byte hash
           */
          function _hash256(bytes memory data)
              private
              pure
              returns (bytes32)
          {
              return sha256(abi.encodePacked(sha256(data)));
          }
      
          /**
           * @dev ripemd160(sha256(data))
           * @param data Data to be hashed
           * @return 20-byte hash
           */
          function _hash160(bytes memory data)
              private
              pure
              returns (bytes20)
          {
              return ripemd160(abi.encodePacked(sha256(data)));
          }
      }
      
      contract UTXORedeemableToken is UTXOClaimValidation {
          /**
           * @dev PUBLIC FACING: Claim a BTC address and its Satoshi balance in Hearts
           * crediting the appropriate amount to a specified Eth address. Bitcoin ECDSA
           * signature must be from that BTC address and must match the claim message
           * for the Eth address.
           * @param rawSatoshis Raw BTC address balance in Satoshis
           * @param proof Merkle tree proof
           * @param claimToAddr Destination Eth address to credit Hearts to
           * @param pubKeyX First  half of uncompressed ECDSA public key for the BTC address
           * @param pubKeyY Second half of uncompressed ECDSA public key for the BTC address
           * @param claimFlags Claim flags specifying address and message formats
           * @param v v parameter of ECDSA signature
           * @param r r parameter of ECDSA signature
           * @param s s parameter of ECDSA signature
           * @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days
           * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer)
           * @return Total number of Hearts credited, if successful
           */
          function btcAddressClaim(
              uint256 rawSatoshis,
              bytes32[] calldata proof,
              address claimToAddr,
              bytes32 pubKeyX,
              bytes32 pubKeyY,
              uint8 claimFlags,
              uint8 v,
              bytes32 r,
              bytes32 s,
              uint256 autoStakeDays,
              address referrerAddr
          )
              external
              returns (uint256)
          {
              /* Sanity check */
              require(rawSatoshis <= MAX_BTC_ADDR_BALANCE_SATOSHIS, "HEX: CHK: rawSatoshis");
      
              /* Enforce the minimum stake time for the auto-stake from this claim */
              require(autoStakeDays >= MIN_AUTO_STAKE_DAYS, "HEX: autoStakeDays lower than minimum");
      
              /* Ensure signature matches the claim message containing the Eth address and claimParamHash */
              {
                  bytes32 claimParamHash = 0;
      
                  if (claimToAddr != msg.sender) {
                      /* Claimer did not send this, so claim params must be signed */
                      claimParamHash = keccak256(
                          abi.encodePacked(MERKLE_TREE_ROOT, autoStakeDays, referrerAddr)
                      );
                  }
      
                  require(
                      claimMessageMatchesSignature(
                          claimToAddr,
                          claimParamHash,
                          pubKeyX,
                          pubKeyY,
                          claimFlags,
                          v,
                          r,
                          s
                      ),
                      "HEX: Signature mismatch"
                  );
              }
      
              /* Derive BTC address from public key */
              bytes20 btcAddr = pubKeyToBtcAddress(pubKeyX, pubKeyY, claimFlags);
      
              /* Ensure BTC address has not yet been claimed */
              require(!btcAddressClaims[btcAddr], "HEX: BTC address balance already claimed");
      
              /* Ensure BTC address is part of the Merkle tree */
              require(
                  _btcAddressIsValid(btcAddr, rawSatoshis, proof),
                  "HEX: BTC address or balance unknown"
              );
      
              /* Mark BTC address as claimed */
              btcAddressClaims[btcAddr] = true;
      
              return _satoshisClaimSync(
                  rawSatoshis,
                  claimToAddr,
                  btcAddr,
                  claimFlags,
                  autoStakeDays,
                  referrerAddr
              );
          }
      
          function _satoshisClaimSync(
              uint256 rawSatoshis,
              address claimToAddr,
              bytes20 btcAddr,
              uint8 claimFlags,
              uint256 autoStakeDays,
              address referrerAddr
          )
              private
              returns (uint256 totalClaimedHearts)
          {
              GlobalsCache memory g;
              GlobalsCache memory gSnapshot;
              _globalsLoad(g, gSnapshot);
      
              totalClaimedHearts = _satoshisClaim(
                  g,
                  rawSatoshis,
                  claimToAddr,
                  btcAddr,
                  claimFlags,
                  autoStakeDays,
                  referrerAddr
              );
      
              _globalsSync(g, gSnapshot);
      
              return totalClaimedHearts;
          }
      
          /**
           * @dev Credit an Eth address with the Hearts value of a raw Satoshis balance
           * @param g Cache of stored globals
           * @param rawSatoshis Raw BTC address balance in Satoshis
           * @param claimToAddr Destination Eth address for the claimed Hearts to be sent
           * @param btcAddr Bitcoin address (binary; no base58-check encoding)
           * @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days
           * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer)
           * @return Total number of Hearts credited, if successful
           */
          function _satoshisClaim(
              GlobalsCache memory g,
              uint256 rawSatoshis,
              address claimToAddr,
              bytes20 btcAddr,
              uint8 claimFlags,
              uint256 autoStakeDays,
              address referrerAddr
          )
              private
              returns (uint256 totalClaimedHearts)
          {
              /* Allowed only during the claim phase */
              require(g._currentDay >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started");
              require(g._currentDay < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended");
      
              /* Check if log data needs to be updated */
              _dailyDataUpdateAuto(g);
      
              /* Sanity check */
              require(
                  g._claimedBtcAddrCount < CLAIMABLE_BTC_ADDR_COUNT,
                  "HEX: CHK: _claimedBtcAddrCount"
              );
      
              (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts) = _calcClaimValues(
                  g,
                  rawSatoshis
              );
      
              /* Increment claim count to track viral rewards */
              g._claimedBtcAddrCount++;
      
              totalClaimedHearts = _remitBonuses(
                  claimToAddr,
                  btcAddr,
                  claimFlags,
                  rawSatoshis,
                  adjSatoshis,
                  claimedHearts,
                  claimBonusHearts,
                  referrerAddr
              );
      
              /* Auto-stake a percentage of the successful claim */
              uint256 autoStakeHearts = totalClaimedHearts * AUTO_STAKE_CLAIM_PERCENT / 100;
              _stakeStart(g, autoStakeHearts, autoStakeDays, true);
      
              /* Mint remaining claimed Hearts to claim address */
              _mint(claimToAddr, totalClaimedHearts - autoStakeHearts);
      
              return totalClaimedHearts;
          }
      
          function _remitBonuses(
              address claimToAddr,
              bytes20 btcAddr,
              uint8 claimFlags,
              uint256 rawSatoshis,
              uint256 adjSatoshis,
              uint256 claimedHearts,
              uint256 claimBonusHearts,
              address referrerAddr
          )
              private
              returns (uint256 totalClaimedHearts)
          {
              totalClaimedHearts = claimedHearts + claimBonusHearts;
      
              uint256 originBonusHearts = claimBonusHearts;
      
              if (referrerAddr == address(0)) {
                  /* No referrer */
                  _emitClaim(
                      claimToAddr,
                      btcAddr,
                      claimFlags,
                      rawSatoshis,
                      adjSatoshis,
                      totalClaimedHearts,
                      referrerAddr
                  );
              } else {
                  /* Referral bonus of 10% of total claimed Hearts to claimer */
                  uint256 referralBonusHearts = totalClaimedHearts / 10;
      
                  totalClaimedHearts += referralBonusHearts;
      
                  /* Then a cumulative referrer bonus of 20% to referrer */
                  uint256 referrerBonusHearts = totalClaimedHearts / 5;
      
                  originBonusHearts += referralBonusHearts + referrerBonusHearts;
      
                  if (referrerAddr == claimToAddr) {
                      /* Self-referred */
                      totalClaimedHearts += referrerBonusHearts;
                      _emitClaim(
                          claimToAddr,
                          btcAddr,
                          claimFlags,
                          rawSatoshis,
                          adjSatoshis,
                          totalClaimedHearts,
                          referrerAddr
                      );
                  } else {
                      /* Referred by different address */
                      _emitClaim(
                          claimToAddr,
                          btcAddr,
                          claimFlags,
                          rawSatoshis,
                          adjSatoshis,
                          totalClaimedHearts,
                          referrerAddr
                      );
                      _mint(referrerAddr, referrerBonusHearts);
                  }
              }
      
              _mint(ORIGIN_ADDR, originBonusHearts);
      
              return totalClaimedHearts;
          }
      
          function _emitClaim(
              address claimToAddr,
              bytes20 btcAddr,
              uint8 claimFlags,
              uint256 rawSatoshis,
              uint256 adjSatoshis,
              uint256 claimedHearts,
              address referrerAddr
          )
              private
          {
              emit Claim( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint56(rawSatoshis)) << 40)
                      | (uint256(uint56(adjSatoshis)) << 96)
                      | (uint256(claimFlags) << 152)
                      | (uint256(uint72(claimedHearts)) << 160),
                  uint256(uint160(msg.sender)),
                  btcAddr,
                  claimToAddr,
                  referrerAddr
              );
      
              if (claimToAddr == msg.sender) {
                  return;
              }
      
              emit ClaimAssist( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint160(btcAddr)) << 40)
                      | (uint256(uint56(rawSatoshis)) << 200),
                  uint256(uint56(adjSatoshis))
                      | (uint256(uint160(claimToAddr)) << 56)
                      | (uint256(claimFlags) << 216),
                  uint256(uint72(claimedHearts))
                      | (uint256(uint160(referrerAddr)) << 72),
                  msg.sender
              );
          }
      
          function _calcClaimValues(GlobalsCache memory g, uint256 rawSatoshis)
              private
              pure
              returns (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts)
          {
              /* Apply Silly Whale reduction */
              adjSatoshis = _adjustSillyWhale(rawSatoshis);
              require(
                  g._claimedSatoshisTotal + adjSatoshis <= CLAIMABLE_SATOSHIS_TOTAL,
                  "HEX: CHK: _claimedSatoshisTotal"
              );
              g._claimedSatoshisTotal += adjSatoshis;
      
              uint256 daysRemaining = CLAIM_PHASE_END_DAY - g._currentDay;
      
              /* Apply late-claim reduction */
              adjSatoshis = _adjustLateClaim(adjSatoshis, daysRemaining);
              g._unclaimedSatoshisTotal -= adjSatoshis;
      
              /* Convert to Hearts and calculate speed bonus */
              claimedHearts = adjSatoshis * HEARTS_PER_SATOSHI;
              claimBonusHearts = _calcSpeedBonus(claimedHearts, daysRemaining);
      
              return (adjSatoshis, claimedHearts, claimBonusHearts);
          }
      
          /**
           * @dev Apply Silly Whale adjustment
           * @param rawSatoshis Raw BTC address balance in Satoshis
           * @return Adjusted BTC address balance in Satoshis
           */
          function _adjustSillyWhale(uint256 rawSatoshis)
              private
              pure
              returns (uint256)
          {
              if (rawSatoshis < 1000e8) {
                  /* For < 1,000 BTC: no penalty */
                  return rawSatoshis;
              }
              if (rawSatoshis >= 10000e8) {
                  /* For >= 10,000 BTC: penalty is 75%, leaving 25% */
                  return rawSatoshis / 4;
              }
              /*
                  For 1,000 <= BTC < 10,000: penalty scales linearly from 50% to 75%
      
                  penaltyPercent  = (btc - 1000) / (10000 - 1000) * (75 - 50) + 50
                                  = (btc - 1000) / 9000 * 25 + 50
                                  = (btc - 1000) / 360 + 50
      
                  appliedPercent  = 100 - penaltyPercent
                                  = 100 - ((btc - 1000) / 360 + 50)
                                  = 100 - (btc - 1000) / 360 - 50
                                  = 50 - (btc - 1000) / 360
                                  = (18000 - (btc - 1000)) / 360
                                  = (18000 - btc + 1000) / 360
                                  = (19000 - btc) / 360
      
                  adjustedBtc     = btc * appliedPercent / 100
                                  = btc * ((19000 - btc) / 360) / 100
                                  = btc * (19000 - btc) / 36000
      
                  adjustedSat     = 1e8 * adjustedBtc
                                  = 1e8 * (btc * (19000 - btc) / 36000)
                                  = 1e8 * ((sat / 1e8) * (19000 - (sat / 1e8)) / 36000)
                                  = 1e8 * (sat / 1e8) * (19000 - (sat / 1e8)) / 36000
                                  = (sat / 1e8) * 1e8 * (19000 - (sat / 1e8)) / 36000
                                  = (sat / 1e8) * (19000e8 - sat) / 36000
                                  = sat * (19000e8 - sat) / 36000e8
              */
              return rawSatoshis * (19000e8 - rawSatoshis) / 36000e8;
          }
      
          /**
           * @dev Apply late-claim adjustment to scale claim to zero by end of claim phase
           * @param adjSatoshis Adjusted BTC address balance in Satoshis (after Silly Whale)
           * @param daysRemaining Number of reward days remaining in claim phase
           * @return Adjusted BTC address balance in Satoshis (after Silly Whale and Late-Claim)
           */
          function _adjustLateClaim(uint256 adjSatoshis, uint256 daysRemaining)
              private
              pure
              returns (uint256)
          {
              /*
                  Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time.
      
                  adjustedSat = sat * (daysRemaining / CLAIM_PHASE_DAYS) * 100%
                              = sat *  daysRemaining / CLAIM_PHASE_DAYS
              */
              return adjSatoshis * daysRemaining / CLAIM_PHASE_DAYS;
          }
      
          /**
           * @dev Calculates speed bonus for claiming earlier in the claim phase
           * @param claimedHearts Hearts claimed from adjusted BTC address balance Satoshis
           * @param daysRemaining Number of claim days remaining in claim phase
           * @return Speed bonus in Hearts
           */
          function _calcSpeedBonus(uint256 claimedHearts, uint256 daysRemaining)
              private
              pure
              returns (uint256)
          {
              /*
                  Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time.
                  Speed bonus is 20% ... 0% inclusive.
      
                  bonusHearts = claimedHearts  * ((daysRemaining - 1)  /  (CLAIM_PHASE_DAYS - 1)) * 20%
                              = claimedHearts  * ((daysRemaining - 1)  /  (CLAIM_PHASE_DAYS - 1)) * 20/100
                              = claimedHearts  * ((daysRemaining - 1)  /  (CLAIM_PHASE_DAYS - 1)) / 5
                              = claimedHearts  *  (daysRemaining - 1)  / ((CLAIM_PHASE_DAYS - 1)  * 5)
              */
              return claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5);
          }
      }
      
      contract TransformableToken is UTXORedeemableToken {
          /**
           * @dev PUBLIC FACING: Enter the tranform lobby for the current round
           * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer)
           */
          function xfLobbyEnter(address referrerAddr)
              external
              payable
          {
              uint256 enterDay = _currentDay();
              require(enterDay < CLAIM_PHASE_END_DAY, "HEX: Lobbies have ended");
      
              uint256 rawAmount = msg.value;
              require(rawAmount != 0, "HEX: Amount required");
      
              XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender];
      
              uint256 entryIndex = qRef.tailIndex++;
      
              qRef.entries[entryIndex] = XfLobbyEntryStore(uint96(rawAmount), referrerAddr);
      
              xfLobby[enterDay] += rawAmount;
      
              _emitXfLobbyEnter(enterDay, entryIndex, rawAmount, referrerAddr);
          }
      
          /**
           * @dev PUBLIC FACING: Leave the transform lobby after the round is complete
           * @param enterDay Day number when the member entered
           * @param count Number of queued-enters to exit (optional; 0 for all)
           */
          function xfLobbyExit(uint256 enterDay, uint256 count)
              external
          {
              require(enterDay < _currentDay(), "HEX: Round is not complete");
      
              XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender];
      
              uint256 headIndex = qRef.headIndex;
              uint256 endIndex;
      
              if (count != 0) {
                  require(count <= qRef.tailIndex - headIndex, "HEX: count invalid");
                  endIndex = headIndex + count;
              } else {
                  endIndex = qRef.tailIndex;
                  require(headIndex < endIndex, "HEX: count invalid");
              }
      
              uint256 waasLobby = _waasLobby(enterDay);
              uint256 _xfLobby = xfLobby[enterDay];
              uint256 totalXfAmount = 0;
              uint256 originBonusHearts = 0;
      
              do {
                  uint256 rawAmount = qRef.entries[headIndex].rawAmount;
                  address referrerAddr = qRef.entries[headIndex].referrerAddr;
      
                  delete qRef.entries[headIndex];
      
                  uint256 xfAmount = waasLobby * rawAmount / _xfLobby;
      
                  if (referrerAddr == address(0)) {
                      /* No referrer */
                      _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr);
                  } else {
                      /* Referral bonus of 10% of xfAmount to member */
                      uint256 referralBonusHearts = xfAmount / 10;
      
                      xfAmount += referralBonusHearts;
      
                      /* Then a cumulative referrer bonus of 20% to referrer */
                      uint256 referrerBonusHearts = xfAmount / 5;
      
                      if (referrerAddr == msg.sender) {
                          /* Self-referred */
                          xfAmount += referrerBonusHearts;
                          _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr);
                      } else {
                          /* Referred by different address */
                          _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr);
                          _mint(referrerAddr, referrerBonusHearts);
                      }
                      originBonusHearts += referralBonusHearts + referrerBonusHearts;
                  }
      
                  totalXfAmount += xfAmount;
              } while (++headIndex < endIndex);
      
              qRef.headIndex = uint40(headIndex);
      
              if (originBonusHearts != 0) {
                  _mint(ORIGIN_ADDR, originBonusHearts);
              }
              if (totalXfAmount != 0) {
                  _mint(msg.sender, totalXfAmount);
              }
          }
      
          /**
           * @dev PUBLIC FACING: Release any value that has been sent to the contract
           */
          function xfLobbyFlush()
              external
          {
              require(address(this).balance != 0, "HEX: No value");
      
              FLUSH_ADDR.transfer(address(this).balance);
          }
      
          /**
           * @dev PUBLIC FACING: External helper to return multiple values of xfLobby[] with
           * a single call
           * @param beginDay First day of data range
           * @param endDay Last day (non-inclusive) of data range
           * @return Fixed array of values
           */
          function xfLobbyRange(uint256 beginDay, uint256 endDay)
              external
              view
              returns (uint256[] memory list)
          {
              require(
                  beginDay < endDay && endDay <= CLAIM_PHASE_END_DAY && endDay <= _currentDay(),
                  "HEX: invalid range"
              );
      
              list = new uint256[](endDay - beginDay);
      
              uint256 src = beginDay;
              uint256 dst = 0;
              do {
                  list[dst++] = uint256(xfLobby[src++]);
              } while (src < endDay);
      
              return list;
          }
      
          /**
           * @dev PUBLIC FACING: Return a current lobby member queue entry.
           * Only needed due to limitations of the standard ABI encoder.
           * @param memberAddr Eth address of the lobby member
           * @param entryId 49 bit compound value. Top 9 bits: enterDay, Bottom 40 bits: entryIndex
           * @return 1: Raw amount that was entered with; 2: Referring Eth addr (optional; 0x0 for no referrer)
           */
          function xfLobbyEntry(address memberAddr, uint256 entryId)
              external
              view
              returns (uint256 rawAmount, address referrerAddr)
          {
              uint256 enterDay = entryId >> XF_LOBBY_ENTRY_INDEX_SIZE;
              uint256 entryIndex = entryId & XF_LOBBY_ENTRY_INDEX_MASK;
      
              XfLobbyEntryStore storage entry = xfLobbyMembers[enterDay][memberAddr].entries[entryIndex];
      
              require(entry.rawAmount != 0, "HEX: Param invalid");
      
              return (entry.rawAmount, entry.referrerAddr);
          }
      
          /**
           * @dev PUBLIC FACING: Return the lobby days that a user is in with a single call
           * @param memberAddr Eth address of the user
           * @return Bit vector of lobby day numbers
           */
          function xfLobbyPendingDays(address memberAddr)
              external
              view
              returns (uint256[XF_LOBBY_DAY_WORDS] memory words)
          {
              uint256 day = _currentDay() + 1;
      
              if (day > CLAIM_PHASE_END_DAY) {
                  day = CLAIM_PHASE_END_DAY;
              }
      
              while (day-- != 0) {
                  if (xfLobbyMembers[day][memberAddr].tailIndex > xfLobbyMembers[day][memberAddr].headIndex) {
                      words[day >> 8] |= 1 << (day & 255);
                  }
              }
      
              return words;
          }
      
          function _waasLobby(uint256 enterDay)
              private
              returns (uint256 waasLobby)
          {
              if (enterDay >= CLAIM_PHASE_START_DAY) {
                  GlobalsCache memory g;
                  GlobalsCache memory gSnapshot;
                  _globalsLoad(g, gSnapshot);
      
                  _dailyDataUpdateAuto(g);
      
                  uint256 unclaimed = dailyData[enterDay].dayUnclaimedSatoshisTotal;
                  waasLobby = unclaimed * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS;
      
                  _globalsSync(g, gSnapshot);
              } else {
                  waasLobby = WAAS_LOBBY_SEED_HEARTS;
              }
              return waasLobby;
          }
      
          function _emitXfLobbyEnter(
              uint256 enterDay,
              uint256 entryIndex,
              uint256 rawAmount,
              address referrerAddr
          )
              private
          {
              emit XfLobbyEnter( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint96(rawAmount)) << 40),
                  msg.sender,
                  (enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex,
                  referrerAddr
              );
          }
      
          function _emitXfLobbyExit(
              uint256 enterDay,
              uint256 entryIndex,
              uint256 xfAmount,
              address referrerAddr
          )
              private
          {
              emit XfLobbyExit( // (auto-generated event)
                  uint256(uint40(block.timestamp))
                      | (uint256(uint72(xfAmount)) << 40),
                  msg.sender,
                  (enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex,
                  referrerAddr
              );
          }
      }
      
      contract HEX is TransformableToken {
          constructor()
              public
          {
              /* Initialize global shareRate to 1 */
              globals.shareRate = uint40(1 * SHARE_RATE_SCALE);
      
              /* Initialize dailyDataCount to skip pre-claim period */
              globals.dailyDataCount = uint16(PRE_CLAIM_DAYS);
      
              /* Add all Satoshis from UTXO snapshot to contract */
              globals.claimStats = _claimStatsEncode(
                  0, // _claimedBtcAddrCount
                  0, // _claimedSatoshisTotal
                  FULL_SATOSHIS_TOTAL // _unclaimedSatoshisTotal
              );
          }
      
          function() external payable {}
      }