ETH Price: $2,942.91 (-1.54%)

Transaction Decoder

Block:
24018898 at Dec-15-2025 03:28:35 PM +UTC
Transaction Fee:
0.000101082673559925 ETH $0.30
Gas Used:
73,925 Gas / 1.367367921 Gwei

Emitted Events:

1181 TransparentUpgradeableProxy.0xfe89805cf5299ef9fbd1d1ddefb8dcc3fa9408064d2ea31e3fca6565768f5217( 0xfe89805cf5299ef9fbd1d1ddefb8dcc3fa9408064d2ea31e3fca6565768f5217, 00000000000000000000000000000000000000000000000052d5a7e1f0ddac00 )

Account State Difference:

  Address   Before After State Difference Code
0x38fDF7b4...4483FDcf9
(Mantle: Unstake Requests Manager)
9,690.357872857106688979 Eth9,696.326734327106688979 Eth5.96886147
0xC62cE6fD...c464e1447
3.606343030252487893 Eth
Nonce: 13450
3.606241947578927968 Eth
Nonce: 13451
0.000101082673559925
(BuilderNet)
103.340591526118026411 Eth103.340591526118469961 Eth0.00000000000044355
0xe3cBd06D...CD1489E8f
(Mantle: LSP Staking)
5.96886147 Eth0 Eth5.96886147

Execution Trace

TransparentUpgradeableProxy.ec96e93c( )
  • 0x01a360392c74b5b8bf4973f438ff3983507a06a2.ec96e93c( )
    • TransparentUpgradeableProxy.STATICCALL( )
      • 0x52b5e5c0e18a3566332f05246e78b9043e41bdd1.DELEGATECALL( )
      • ETH 5.96886147 TransparentUpgradeableProxy.CALL( )
        • ETH 5.96886147 UnstakeRequestsManager.DELEGATECALL( )
          File 1 of 4: TransparentUpgradeableProxy
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
          pragma solidity ^0.8.0;
          import "../ERC1967/ERC1967Proxy.sol";
          /**
           * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
           * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
           * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
           * include them in the ABI so this interface must be used to interact with it.
           */
          interface ITransparentUpgradeableProxy is IERC1967 {
              function admin() external view returns (address);
              function implementation() external view returns (address);
              function changeAdmin(address) external;
              function upgradeTo(address) external;
              function upgradeToAndCall(address, bytes memory) external payable;
          }
          /**
           * @dev This contract implements a proxy that is upgradeable by an admin.
           *
           * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
           * clashing], which can potentially be used in an attack, this contract uses the
           * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
           * things that go hand in hand:
           *
           * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
           * that call matches one of the admin functions exposed by the proxy itself.
           * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
           * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
           * "admin cannot fallback to proxy target".
           *
           * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
           * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
           * to sudden errors when trying to call a function from the proxy implementation.
           *
           * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
           * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
           *
           * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
           * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
           * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
           * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
           * implementation.
           *
           * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
           * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
           * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
           * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
           */
          contract TransparentUpgradeableProxy is ERC1967Proxy {
              /**
               * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
               * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
               */
              constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                  _changeAdmin(admin_);
              }
              /**
               * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
               *
               * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
               * implementation provides a function with the same selector.
               */
              modifier ifAdmin() {
                  if (msg.sender == _getAdmin()) {
                      _;
                  } else {
                      _fallback();
                  }
              }
              /**
               * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
               */
              function _fallback() internal virtual override {
                  if (msg.sender == _getAdmin()) {
                      bytes memory ret;
                      bytes4 selector = msg.sig;
                      if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                          ret = _dispatchUpgradeTo();
                      } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                          ret = _dispatchUpgradeToAndCall();
                      } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                          ret = _dispatchChangeAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                          ret = _dispatchAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                          ret = _dispatchImplementation();
                      } else {
                          revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      }
                      assembly {
                          return(add(ret, 0x20), mload(ret))
                      }
                  } else {
                      super._fallback();
                  }
              }
              /**
               * @dev Returns the current admin.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
               */
              function _dispatchAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address admin = _getAdmin();
                  return abi.encode(admin);
              }
              /**
               * @dev Returns the current implementation.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
               */
              function _dispatchImplementation() private returns (bytes memory) {
                  _requireZeroValue();
                  address implementation = _implementation();
                  return abi.encode(implementation);
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _dispatchChangeAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address newAdmin = abi.decode(msg.data[4:], (address));
                  _changeAdmin(newAdmin);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy.
               */
              function _dispatchUpgradeTo() private returns (bytes memory) {
                  _requireZeroValue();
                  address newImplementation = abi.decode(msg.data[4:], (address));
                  _upgradeToAndCall(newImplementation, bytes(""), false);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
               * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
               * proxied contract.
               */
              function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                  (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                  _upgradeToAndCall(newImplementation, data, true);
                  return "";
              }
              /**
               * @dev Returns the current admin.
               *
               * CAUTION: This function is deprecated. Use {ERC1967Upgrade-_getAdmin} instead.
               */
              function _admin() internal view virtual returns (address) {
                  return _getAdmin();
              }
              /**
               * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
               * emulate some proxy functions being non-payable while still allowing value to pass through.
               */
              function _requireZeroValue() private {
                  require(msg.value == 0);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
          pragma solidity ^0.8.0;
          import "../Proxy.sol";
          import "./ERC1967Upgrade.sol";
          /**
           * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
           * implementation address that can be changed. This address is stored in storage in the location specified by
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
           * implementation behind the proxy.
           */
          contract ERC1967Proxy is Proxy, ERC1967Upgrade {
              /**
               * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
               *
               * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
               * function call, and allows initializing the storage of the proxy like a Solidity constructor.
               */
              constructor(address _logic, bytes memory _data) payable {
                  _upgradeToAndCall(_logic, _data, false);
              }
              /**
               * @dev Returns the current implementation address.
               */
              function _implementation() internal view virtual override returns (address impl) {
                  return ERC1967Upgrade._getImplementation();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
           * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
           * be specified by overriding the virtual {_implementation} function.
           *
           * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
           * different contract through the {_delegate} function.
           *
           * The success and return data of the delegated call will be returned back to the caller of the proxy.
           */
          abstract contract Proxy {
              /**
               * @dev Delegates the current call to `implementation`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _delegate(address implementation) internal virtual {
                  assembly {
                      // Copy msg.data. We take full control of memory in this inline assembly
                      // block because it will not return to Solidity code. We overwrite the
                      // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize())
                      // Call the implementation.
                      // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                      // Copy the returned data.
                      returndatacopy(0, 0, returndatasize())
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 {
                          revert(0, returndatasize())
                      }
                      default {
                          return(0, returndatasize())
                      }
                  }
              }
              /**
               * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
               * and {_fallback} should delegate.
               */
              function _implementation() internal view virtual returns (address);
              /**
               * @dev Delegates the current call to the address returned by `_implementation()`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _fallback() internal virtual {
                  _beforeFallback();
                  _delegate(_implementation());
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
               * function in the contract matches the call data.
               */
              fallback() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
               * is empty.
               */
              receive() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
               * call, or as part of the Solidity `fallback` or `receive` functions.
               *
               * If overridden should call `super._beforeFallback()`.
               */
              function _beforeFallback() internal virtual {}
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
          pragma solidity ^0.8.2;
          import "../beacon/IBeacon.sol";
          import "../../interfaces/IERC1967.sol";
          import "../../interfaces/draft-IERC1822.sol";
          import "../../utils/Address.sol";
          import "../../utils/StorageSlot.sol";
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           */
          abstract contract ERC1967Upgrade is IERC1967 {
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                  _upgradeTo(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
              }
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                  // Upgrades from old implementations will perform a rollback test. This test requires the new
                  // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                  // this special case will break upgrade paths from old UUPS implementation to new ones.
                  if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                      _setImplementation(newImplementation);
                  } else {
                      try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                          require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                      } catch {
                          revert("ERC1967Upgrade: new implementation is not UUPS");
                      }
                      _upgradeToAndCall(newImplementation, data, forceCall);
                  }
              }
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
              }
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                  require(
                      Address.isContract(IBeacon(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeacon {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
           *
           * _Available since v4.8.3._
           */
          interface IERC1967 {
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
              /**
               * @dev Emitted when the beacon is changed.
               */
              event BeaconUpgraded(address indexed beacon);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
           * proxy whose upgrades are fully controlled by the current implementation.
           */
          interface IERC1822Proxiable {
              /**
               * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
               * address.
               *
               * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
               * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
               * function revert if invoked through a proxy.
               */
              function proxiableUUID() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
          // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
          pragma solidity ^0.8.0;
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```solidity
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
           * _Available since v4.9 for `string`, `bytes`._
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
              struct BooleanSlot {
                  bool value;
              }
              struct Bytes32Slot {
                  bytes32 value;
              }
              struct Uint256Slot {
                  uint256 value;
              }
              struct StringSlot {
                  string value;
              }
              struct BytesSlot {
                  bytes value;
              }
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` with member `value` located at `slot`.
               */
              function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
               */
              function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` with member `value` located at `slot`.
               */
              function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
               */
              function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
          }
          

          File 2 of 4: TransparentUpgradeableProxy
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
          pragma solidity ^0.8.0;
          import "../ERC1967/ERC1967Proxy.sol";
          /**
           * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
           * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
           * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
           * include them in the ABI so this interface must be used to interact with it.
           */
          interface ITransparentUpgradeableProxy is IERC1967 {
              function admin() external view returns (address);
              function implementation() external view returns (address);
              function changeAdmin(address) external;
              function upgradeTo(address) external;
              function upgradeToAndCall(address, bytes memory) external payable;
          }
          /**
           * @dev This contract implements a proxy that is upgradeable by an admin.
           *
           * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
           * clashing], which can potentially be used in an attack, this contract uses the
           * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
           * things that go hand in hand:
           *
           * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
           * that call matches one of the admin functions exposed by the proxy itself.
           * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
           * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
           * "admin cannot fallback to proxy target".
           *
           * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
           * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
           * to sudden errors when trying to call a function from the proxy implementation.
           *
           * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
           * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
           *
           * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
           * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
           * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
           * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
           * implementation.
           *
           * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
           * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
           * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
           * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
           */
          contract TransparentUpgradeableProxy is ERC1967Proxy {
              /**
               * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
               * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
               */
              constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                  _changeAdmin(admin_);
              }
              /**
               * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
               *
               * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
               * implementation provides a function with the same selector.
               */
              modifier ifAdmin() {
                  if (msg.sender == _getAdmin()) {
                      _;
                  } else {
                      _fallback();
                  }
              }
              /**
               * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
               */
              function _fallback() internal virtual override {
                  if (msg.sender == _getAdmin()) {
                      bytes memory ret;
                      bytes4 selector = msg.sig;
                      if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                          ret = _dispatchUpgradeTo();
                      } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                          ret = _dispatchUpgradeToAndCall();
                      } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                          ret = _dispatchChangeAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                          ret = _dispatchAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                          ret = _dispatchImplementation();
                      } else {
                          revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      }
                      assembly {
                          return(add(ret, 0x20), mload(ret))
                      }
                  } else {
                      super._fallback();
                  }
              }
              /**
               * @dev Returns the current admin.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
               */
              function _dispatchAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address admin = _getAdmin();
                  return abi.encode(admin);
              }
              /**
               * @dev Returns the current implementation.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
               */
              function _dispatchImplementation() private returns (bytes memory) {
                  _requireZeroValue();
                  address implementation = _implementation();
                  return abi.encode(implementation);
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _dispatchChangeAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address newAdmin = abi.decode(msg.data[4:], (address));
                  _changeAdmin(newAdmin);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy.
               */
              function _dispatchUpgradeTo() private returns (bytes memory) {
                  _requireZeroValue();
                  address newImplementation = abi.decode(msg.data[4:], (address));
                  _upgradeToAndCall(newImplementation, bytes(""), false);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
               * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
               * proxied contract.
               */
              function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                  (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                  _upgradeToAndCall(newImplementation, data, true);
                  return "";
              }
              /**
               * @dev Returns the current admin.
               *
               * CAUTION: This function is deprecated. Use {ERC1967Upgrade-_getAdmin} instead.
               */
              function _admin() internal view virtual returns (address) {
                  return _getAdmin();
              }
              /**
               * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
               * emulate some proxy functions being non-payable while still allowing value to pass through.
               */
              function _requireZeroValue() private {
                  require(msg.value == 0);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
          pragma solidity ^0.8.0;
          import "../Proxy.sol";
          import "./ERC1967Upgrade.sol";
          /**
           * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
           * implementation address that can be changed. This address is stored in storage in the location specified by
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
           * implementation behind the proxy.
           */
          contract ERC1967Proxy is Proxy, ERC1967Upgrade {
              /**
               * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
               *
               * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
               * function call, and allows initializing the storage of the proxy like a Solidity constructor.
               */
              constructor(address _logic, bytes memory _data) payable {
                  _upgradeToAndCall(_logic, _data, false);
              }
              /**
               * @dev Returns the current implementation address.
               */
              function _implementation() internal view virtual override returns (address impl) {
                  return ERC1967Upgrade._getImplementation();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
           * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
           * be specified by overriding the virtual {_implementation} function.
           *
           * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
           * different contract through the {_delegate} function.
           *
           * The success and return data of the delegated call will be returned back to the caller of the proxy.
           */
          abstract contract Proxy {
              /**
               * @dev Delegates the current call to `implementation`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _delegate(address implementation) internal virtual {
                  assembly {
                      // Copy msg.data. We take full control of memory in this inline assembly
                      // block because it will not return to Solidity code. We overwrite the
                      // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize())
                      // Call the implementation.
                      // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                      // Copy the returned data.
                      returndatacopy(0, 0, returndatasize())
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 {
                          revert(0, returndatasize())
                      }
                      default {
                          return(0, returndatasize())
                      }
                  }
              }
              /**
               * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
               * and {_fallback} should delegate.
               */
              function _implementation() internal view virtual returns (address);
              /**
               * @dev Delegates the current call to the address returned by `_implementation()`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _fallback() internal virtual {
                  _beforeFallback();
                  _delegate(_implementation());
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
               * function in the contract matches the call data.
               */
              fallback() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
               * is empty.
               */
              receive() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
               * call, or as part of the Solidity `fallback` or `receive` functions.
               *
               * If overridden should call `super._beforeFallback()`.
               */
              function _beforeFallback() internal virtual {}
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
          pragma solidity ^0.8.2;
          import "../beacon/IBeacon.sol";
          import "../../interfaces/IERC1967.sol";
          import "../../interfaces/draft-IERC1822.sol";
          import "../../utils/Address.sol";
          import "../../utils/StorageSlot.sol";
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           */
          abstract contract ERC1967Upgrade is IERC1967 {
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                  _upgradeTo(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
              }
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                  // Upgrades from old implementations will perform a rollback test. This test requires the new
                  // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                  // this special case will break upgrade paths from old UUPS implementation to new ones.
                  if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                      _setImplementation(newImplementation);
                  } else {
                      try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                          require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                      } catch {
                          revert("ERC1967Upgrade: new implementation is not UUPS");
                      }
                      _upgradeToAndCall(newImplementation, data, forceCall);
                  }
              }
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
              }
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                  require(
                      Address.isContract(IBeacon(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeacon {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
           *
           * _Available since v4.8.3._
           */
          interface IERC1967 {
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
              /**
               * @dev Emitted when the beacon is changed.
               */
              event BeaconUpgraded(address indexed beacon);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
           * proxy whose upgrades are fully controlled by the current implementation.
           */
          interface IERC1822Proxiable {
              /**
               * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
               * address.
               *
               * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
               * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
               * function revert if invoked through a proxy.
               */
              function proxiableUUID() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
          // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
          pragma solidity ^0.8.0;
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```solidity
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
           * _Available since v4.9 for `string`, `bytes`._
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
              struct BooleanSlot {
                  bool value;
              }
              struct Bytes32Slot {
                  bytes32 value;
              }
              struct Uint256Slot {
                  uint256 value;
              }
              struct StringSlot {
                  string value;
              }
              struct BytesSlot {
                  bytes value;
              }
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` with member `value` located at `slot`.
               */
              function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
               */
              function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` with member `value` located at `slot`.
               */
              function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
               */
              function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
          }
          

          File 3 of 4: TransparentUpgradeableProxy
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
          pragma solidity ^0.8.0;
          import "../ERC1967/ERC1967Proxy.sol";
          /**
           * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
           * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
           * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
           * include them in the ABI so this interface must be used to interact with it.
           */
          interface ITransparentUpgradeableProxy is IERC1967 {
              function admin() external view returns (address);
              function implementation() external view returns (address);
              function changeAdmin(address) external;
              function upgradeTo(address) external;
              function upgradeToAndCall(address, bytes memory) external payable;
          }
          /**
           * @dev This contract implements a proxy that is upgradeable by an admin.
           *
           * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
           * clashing], which can potentially be used in an attack, this contract uses the
           * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
           * things that go hand in hand:
           *
           * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
           * that call matches one of the admin functions exposed by the proxy itself.
           * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
           * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
           * "admin cannot fallback to proxy target".
           *
           * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
           * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
           * to sudden errors when trying to call a function from the proxy implementation.
           *
           * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
           * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
           *
           * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
           * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
           * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
           * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
           * implementation.
           *
           * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
           * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
           * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
           * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
           */
          contract TransparentUpgradeableProxy is ERC1967Proxy {
              /**
               * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
               * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
               */
              constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                  _changeAdmin(admin_);
              }
              /**
               * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
               *
               * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
               * implementation provides a function with the same selector.
               */
              modifier ifAdmin() {
                  if (msg.sender == _getAdmin()) {
                      _;
                  } else {
                      _fallback();
                  }
              }
              /**
               * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
               */
              function _fallback() internal virtual override {
                  if (msg.sender == _getAdmin()) {
                      bytes memory ret;
                      bytes4 selector = msg.sig;
                      if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                          ret = _dispatchUpgradeTo();
                      } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                          ret = _dispatchUpgradeToAndCall();
                      } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                          ret = _dispatchChangeAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                          ret = _dispatchAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                          ret = _dispatchImplementation();
                      } else {
                          revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      }
                      assembly {
                          return(add(ret, 0x20), mload(ret))
                      }
                  } else {
                      super._fallback();
                  }
              }
              /**
               * @dev Returns the current admin.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
               */
              function _dispatchAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address admin = _getAdmin();
                  return abi.encode(admin);
              }
              /**
               * @dev Returns the current implementation.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
               */
              function _dispatchImplementation() private returns (bytes memory) {
                  _requireZeroValue();
                  address implementation = _implementation();
                  return abi.encode(implementation);
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _dispatchChangeAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address newAdmin = abi.decode(msg.data[4:], (address));
                  _changeAdmin(newAdmin);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy.
               */
              function _dispatchUpgradeTo() private returns (bytes memory) {
                  _requireZeroValue();
                  address newImplementation = abi.decode(msg.data[4:], (address));
                  _upgradeToAndCall(newImplementation, bytes(""), false);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
               * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
               * proxied contract.
               */
              function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                  (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                  _upgradeToAndCall(newImplementation, data, true);
                  return "";
              }
              /**
               * @dev Returns the current admin.
               *
               * CAUTION: This function is deprecated. Use {ERC1967Upgrade-_getAdmin} instead.
               */
              function _admin() internal view virtual returns (address) {
                  return _getAdmin();
              }
              /**
               * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
               * emulate some proxy functions being non-payable while still allowing value to pass through.
               */
              function _requireZeroValue() private {
                  require(msg.value == 0);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
          pragma solidity ^0.8.0;
          import "../Proxy.sol";
          import "./ERC1967Upgrade.sol";
          /**
           * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
           * implementation address that can be changed. This address is stored in storage in the location specified by
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
           * implementation behind the proxy.
           */
          contract ERC1967Proxy is Proxy, ERC1967Upgrade {
              /**
               * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
               *
               * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
               * function call, and allows initializing the storage of the proxy like a Solidity constructor.
               */
              constructor(address _logic, bytes memory _data) payable {
                  _upgradeToAndCall(_logic, _data, false);
              }
              /**
               * @dev Returns the current implementation address.
               */
              function _implementation() internal view virtual override returns (address impl) {
                  return ERC1967Upgrade._getImplementation();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
           * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
           * be specified by overriding the virtual {_implementation} function.
           *
           * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
           * different contract through the {_delegate} function.
           *
           * The success and return data of the delegated call will be returned back to the caller of the proxy.
           */
          abstract contract Proxy {
              /**
               * @dev Delegates the current call to `implementation`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _delegate(address implementation) internal virtual {
                  assembly {
                      // Copy msg.data. We take full control of memory in this inline assembly
                      // block because it will not return to Solidity code. We overwrite the
                      // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize())
                      // Call the implementation.
                      // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                      // Copy the returned data.
                      returndatacopy(0, 0, returndatasize())
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 {
                          revert(0, returndatasize())
                      }
                      default {
                          return(0, returndatasize())
                      }
                  }
              }
              /**
               * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
               * and {_fallback} should delegate.
               */
              function _implementation() internal view virtual returns (address);
              /**
               * @dev Delegates the current call to the address returned by `_implementation()`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _fallback() internal virtual {
                  _beforeFallback();
                  _delegate(_implementation());
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
               * function in the contract matches the call data.
               */
              fallback() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
               * is empty.
               */
              receive() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
               * call, or as part of the Solidity `fallback` or `receive` functions.
               *
               * If overridden should call `super._beforeFallback()`.
               */
              function _beforeFallback() internal virtual {}
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
          pragma solidity ^0.8.2;
          import "../beacon/IBeacon.sol";
          import "../../interfaces/IERC1967.sol";
          import "../../interfaces/draft-IERC1822.sol";
          import "../../utils/Address.sol";
          import "../../utils/StorageSlot.sol";
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           */
          abstract contract ERC1967Upgrade is IERC1967 {
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                  _upgradeTo(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
              }
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                  // Upgrades from old implementations will perform a rollback test. This test requires the new
                  // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                  // this special case will break upgrade paths from old UUPS implementation to new ones.
                  if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                      _setImplementation(newImplementation);
                  } else {
                      try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                          require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                      } catch {
                          revert("ERC1967Upgrade: new implementation is not UUPS");
                      }
                      _upgradeToAndCall(newImplementation, data, forceCall);
                  }
              }
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
              }
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                  require(
                      Address.isContract(IBeacon(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeacon {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /**
           * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
           *
           * _Available since v4.8.3._
           */
          interface IERC1967 {
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
              /**
               * @dev Emitted when the beacon is changed.
               */
              event BeaconUpgraded(address indexed beacon);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
           * proxy whose upgrades are fully controlled by the current implementation.
           */
          interface IERC1822Proxiable {
              /**
               * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
               * address.
               *
               * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
               * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
               * function revert if invoked through a proxy.
               */
              function proxiableUUID() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
          // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
          pragma solidity ^0.8.0;
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```solidity
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
           * _Available since v4.9 for `string`, `bytes`._
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
              struct BooleanSlot {
                  bool value;
              }
              struct Bytes32Slot {
                  bytes32 value;
              }
              struct Uint256Slot {
                  uint256 value;
              }
              struct StringSlot {
                  string value;
              }
              struct BytesSlot {
                  bytes value;
              }
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` with member `value` located at `slot`.
               */
              function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
               */
              function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` with member `value` located at `slot`.
               */
              function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
               */
              function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
          }
          

          File 4 of 4: UnstakeRequestsManager
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          import {Initializable} from "openzeppelin-upgradeable/proxy/utils/Initializable.sol";
          import {AccessControlEnumerableUpgradeable} from
              "openzeppelin-upgradeable/access/AccessControlEnumerableUpgradeable.sol";
          import {Address} from "openzeppelin/utils/Address.sol";
          import {Math} from "openzeppelin/utils/math/Math.sol";
          import {SafeERC20Upgradeable} from "openzeppelin-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
          import {ProtocolEvents} from "./interfaces/ProtocolEvents.sol";
          import {IMETH} from "./interfaces/IMETH.sol";
          import {IOracleReadRecord} from "./interfaces/IOracle.sol";
          import {
              IUnstakeRequestsManager,
              IUnstakeRequestsManagerWrite,
              IUnstakeRequestsManagerRead,
              UnstakeRequest
          } from "./interfaces/IUnstakeRequestsManager.sol";
          import {IStakingReturnsWrite} from "./interfaces/IStaking.sol";
          /// @notice Events emitted by the unstake requests manager.
          interface UnstakeRequestsManagerEvents {
              /// @notice Created emitted when an unstake request has been created.
              /// @param id The id of the unstake request.
              /// @param requester The address of the user who requested to unstake.
              /// @param mETHLocked The amount of mETH that will be burned when the request is claimed.
              /// @param ethRequested The amount of ETH that will be returned to the requester.
              /// @param cumulativeETHRequested The cumulative amount of ETH requested at the time of the unstake request.
              /// @param blockNumber The block number at the point at which the request was created.
              event UnstakeRequestCreated(
                  uint256 indexed id,
                  address indexed requester,
                  uint256 mETHLocked,
                  uint256 ethRequested,
                  uint256 cumulativeETHRequested,
                  uint256 blockNumber
              );
              /// @notice Claimed emitted when an unstake request has been claimed.
              /// @param id The id of the unstake request.
              /// @param requester The address of the user who requested to unstake.
              /// @param mETHLocked The amount of mETH that will be burned when the request is claimed.
              /// @param ethRequested The amount of ETH that will be returned to the requester.
              /// @param cumulativeETHRequested The cumulative amount of ETH requested at the time of the unstake request.
              /// @param blockNumber The block number at the point at which the request was created.
              event UnstakeRequestClaimed(
                  uint256 indexed id,
                  address indexed requester,
                  uint256 mETHLocked,
                  uint256 ethRequested,
                  uint256 cumulativeETHRequested,
                  uint256 blockNumber
              );
              /// @notice Cancelled emitted when an unstake request has been cancelled by an admin.
              /// @param id The id of the unstake request.
              /// @param requester The address of the user who requested to unstake.
              /// @param mETHLocked The amount of mETH that will be burned when the request is claimed.
              /// @param ethRequested The amount of ETH that will be returned to the requester.
              /// @param cumulativeETHRequested The cumulative amount of ETH requested at the time of the unstake request.
              /// @param blockNumber The block number at the point at which the request was created.
              event UnstakeRequestCancelled(
                  uint256 indexed id,
                  address indexed requester,
                  uint256 mETHLocked,
                  uint256 ethRequested,
                  uint256 cumulativeETHRequested,
                  uint256 blockNumber
              );
          }
          /// @title UnstakeRequestsManager
          /// @notice Manages unstake requests from the staking contract.
          contract UnstakeRequestsManager is
              Initializable,
              AccessControlEnumerableUpgradeable,
              IUnstakeRequestsManager,
              UnstakeRequestsManagerEvents,
              ProtocolEvents
          {
              // Errors.
              error AlreadyClaimed();
              error DoesNotReceiveETH();
              error NotEnoughFunds(uint256 cumulativeETHOnRequest, uint256 allocatedETHForClaims);
              error NotFinalized();
              error NotRequester();
              error NotStakingContract();
              /// @notice Role allowed to set properties of the contract.
              bytes32 public constant MANAGER_ROLE = keccak256("MANAGER_ROLE");
              /// @notice Role that is allowed to cancel unfinalized requests if the protocol is in emergency state.
              bytes32 public constant REQUEST_CANCELLER_ROLE = keccak256("REQUEST_CANCELLER_ROLE");
              /// @notice The staking contract to which the unstake requests manager accepts claims and new unstake requests from.
              IStakingReturnsWrite public stakingContract;
              /// @notice The oracle contract that the finalization criteria relies on.
              IOracleReadRecord public oracle;
              /// @notice The total amount of ether sent by the staking contract.
              /// @dev This value can be decreased when reclaiming surplus allocatedETHs.
              uint256 public allocatedETHForClaims;
              /// @notice The total amount of ether claimed by requesters.
              uint256 public totalClaimed;
              /// @notice A request's block number on creation plus numberOfBlocksToFinalize determines
              /// if the request is finalized.
              uint256 public numberOfBlocksToFinalize;
              /// @notice The mETH token contract.
              /// @dev Tokens will be minted / burned during staking / unstaking.
              IMETH public mETH;
              /// @dev Cache the latest cumulative ETH requested value instead of checking latest element in the array.
              /// This prevents encountering an invalid value if someone claims the request which resets it.
              uint128 public latestCumulativeETHRequested;
              /// @dev The internal queue of unstake requests.
              UnstakeRequest[] internal _unstakeRequests;
              /// @notice Configuration for contract initialization.
              struct Init {
                  address admin;
                  address manager;
                  address requestCanceller;
                  IMETH mETH;
                  IStakingReturnsWrite stakingContract;
                  IOracleReadRecord oracle;
                  uint256 numberOfBlocksToFinalize;
              }
              constructor() {
                  _disableInitializers();
              }
              /// @notice Inititalizes the contract.
              /// @dev MUST be called during the contract upgrade to set up the proxies state.
              function initialize(Init memory init) external initializer {
                  __AccessControlEnumerable_init();
                  _grantRole(DEFAULT_ADMIN_ROLE, init.admin);
                  numberOfBlocksToFinalize = init.numberOfBlocksToFinalize;
                  stakingContract = init.stakingContract;
                  oracle = init.oracle;
                  mETH = init.mETH;
                  _grantRole(MANAGER_ROLE, init.manager);
                  _grantRole(REQUEST_CANCELLER_ROLE, init.requestCanceller);
              }
              /// @inheritdoc IUnstakeRequestsManagerWrite
              /// @dev Increases the cumulative ETH requested counter and pushes a new unstake request to the array. This function
              /// can only be called by the staking contract.
              function create(address requester, uint128 mETHLocked, uint128 ethRequested)
                  external
                  onlyStakingContract
                  returns (uint256)
              {
                  uint128 currentCumulativeETHRequested = latestCumulativeETHRequested + ethRequested;
                  uint256 requestID = _unstakeRequests.length;
                  UnstakeRequest memory unstakeRequest = UnstakeRequest({
                      id: uint128(requestID),
                      requester: requester,
                      mETHLocked: mETHLocked,
                      ethRequested: ethRequested,
                      cumulativeETHRequested: currentCumulativeETHRequested,
                      blockNumber: uint64(block.number)
                  });
                  _unstakeRequests.push(unstakeRequest);
                  latestCumulativeETHRequested = currentCumulativeETHRequested;
                  emit UnstakeRequestCreated(
                      requestID, requester, mETHLocked, ethRequested, currentCumulativeETHRequested, block.number
                  );
                  return requestID;
              }
              /// @inheritdoc IUnstakeRequestsManagerWrite
              /// @dev Verifies the requester's identity, finality of the request, and availability of funds before transferring
              /// the requested ETH. The unstake request is then removed from the array.
              function claim(uint256 requestID, address requester) external onlyStakingContract {
                  UnstakeRequest memory request = _unstakeRequests[requestID];
                  if (request.requester == address(0)) {
                      revert AlreadyClaimed();
                  }
                  if (requester != request.requester) {
                      revert NotRequester();
                  }
                  if (!_isFinalized(request)) {
                      revert NotFinalized();
                  }
                  if (request.cumulativeETHRequested > allocatedETHForClaims) {
                      revert NotEnoughFunds(request.cumulativeETHRequested, allocatedETHForClaims);
                  }
                  delete _unstakeRequests[requestID];
                  totalClaimed += request.ethRequested;
                  emit UnstakeRequestClaimed({
                      id: requestID,
                      requester: requester,
                      mETHLocked: request.mETHLocked,
                      ethRequested: request.ethRequested,
                      cumulativeETHRequested: request.cumulativeETHRequested,
                      blockNumber: request.blockNumber
                  });
                  // Claiming the request burns the locked mETH tokens from this contract.
                  // Note that it is intentional that burning happens here rather than at unstake time.
                  // Please see the docs folder for more information.
                  mETH.burn(request.mETHLocked);
                  Address.sendValue(payable(requester), request.ethRequested);
              }
              /// @inheritdoc IUnstakeRequestsManagerWrite
              /// @dev Iteratively checks the finality of the latest requests and cancels the unfinalized ones until reaching a
              /// finalized request or the max loop bound. Adjusts the state of the latest cumulative ETH accordingly.
              function cancelUnfinalizedRequests(uint256 maxCancel) external onlyRole(REQUEST_CANCELLER_ROLE) returns (bool) {
                  uint256 length = _unstakeRequests.length;
                  if (length == 0) {
                      return false;
                  }
                  if (length < maxCancel) {
                      maxCancel = length;
                  }
                  // Cache all cancelled requests to perform the refunds after processing all local effects to strictly follow the
                  // checks-effects-interaction pattern.
                  UnstakeRequest[] memory requests = new UnstakeRequest[](maxCancel);
                  // Find the number of requests that have not been finalized.
                  uint256 numCancelled = 0;
                  uint128 amountETHCancelled = 0;
                  while (numCancelled < maxCancel) {
                      UnstakeRequest memory request = _unstakeRequests[_unstakeRequests.length - 1];
                      if (_isFinalized(request)) {
                          break;
                      }
                      _unstakeRequests.pop();
                      requests[numCancelled] = request;
                      ++numCancelled;
                      amountETHCancelled += request.ethRequested;
                      emit UnstakeRequestCancelled(
                          request.id,
                          request.requester,
                          request.mETHLocked,
                          request.ethRequested,
                          request.cumulativeETHRequested,
                          request.blockNumber
                      );
                  }
                  // Reset the latest cumulative ETH state
                  if (amountETHCancelled > 0) {
                      latestCumulativeETHRequested -= amountETHCancelled;
                  }
                  // check whether there are more unfinalized requests to cancel.
                  bool hasMore;
                  uint256 remainingRequestsLength = _unstakeRequests.length;
                  if (remainingRequestsLength == 0) {
                      hasMore = false;
                  } else {
                      UnstakeRequest memory latestRemainingRequest = _unstakeRequests[remainingRequestsLength - 1];
                      hasMore = !_isFinalized(latestRemainingRequest);
                  }
                  // Return the locked mETH of all cancelled requests.
                  for (uint256 i = 0; i < numCancelled; i++) {
                      SafeERC20Upgradeable.safeTransfer(mETH, requests[i].requester, requests[i].mETHLocked);
                  }
                  return hasMore;
              }
              /// @inheritdoc IUnstakeRequestsManagerWrite
              /// @dev Handles incoming ether from the staking contract, increasing the allocatedETHForClaims counter by the value
              /// of the incoming allocatedETH.
              function allocateETH() external payable onlyStakingContract {
                  allocatedETHForClaims += msg.value;
              }
              /// @inheritdoc IUnstakeRequestsManagerWrite
              /// @dev Helps during the emergency scenario where we cancel unstake requests and we want to move ether back into
              /// the staking contract.
              function withdrawAllocatedETHSurplus() external onlyStakingContract {
                  uint256 toSend = allocatedETHSurplus();
                  if (toSend == 0) {
                      return;
                  }
                  allocatedETHForClaims -= toSend;
                  stakingContract.receiveFromUnstakeRequestsManager{value: toSend}();
              }
              /// @notice Returns the ID of the next unstake requests to be created.
              function nextRequestId() external view returns (uint256) {
                  return _unstakeRequests.length;
              }
              /// @inheritdoc IUnstakeRequestsManagerRead
              function requestByID(uint256 requestID) external view returns (UnstakeRequest memory) {
                  return _unstakeRequests[requestID];
              }
              /// @inheritdoc IUnstakeRequestsManagerRead
              function requestInfo(uint256 requestID) external view returns (bool, uint256) {
                  UnstakeRequest memory request = _unstakeRequests[requestID];
                  bool isFinalized = _isFinalized(request);
                  uint256 claimableAmount = 0;
                  // The cumulative ETH requested also includes the ETH requested and must be subtracted from the cumulative total
                  // to find partially filled amounts.
                  uint256 allocatedEthRequired = request.cumulativeETHRequested - request.ethRequested;
                  if (allocatedEthRequired < allocatedETHForClaims) {
                      // The allocatedETHForClaims increases over time whereas the request's cumulative ETH requested stays the
                      // same. This means the difference between the two will also increase over time. Given we only want to
                      // return the partially filled amount up to the full ETH requested, we take the minimum of the two.
                      claimableAmount = Math.min(allocatedETHForClaims - allocatedEthRequired, request.ethRequested);
                  }
                  return (isFinalized, claimableAmount);
              }
              /// @inheritdoc IUnstakeRequestsManagerRead
              /// @dev Compares the latest the allocatedETHForClaims value and the cumulative ETH requested value to determine if
              /// there's a surplus.
              function allocatedETHSurplus() public view returns (uint256) {
                  if (allocatedETHForClaims > latestCumulativeETHRequested) {
                      return allocatedETHForClaims - latestCumulativeETHRequested;
                  }
                  return 0;
              }
              /// @inheritdoc IUnstakeRequestsManagerRead
              /// @dev Compares the latest cumulative ETH requested value and the allocatedETHForClaims value to determine if
              /// there's a deficit.
              function allocatedETHDeficit() external view returns (uint256) {
                  if (latestCumulativeETHRequested > allocatedETHForClaims) {
                      return latestCumulativeETHRequested - allocatedETHForClaims;
                  }
                  return 0;
              }
              /// @inheritdoc IUnstakeRequestsManagerRead
              /// @dev The difference between allocatedETHForClaims and totalClaimed represents the amount of ether waiting to be
              /// claimed.
              function balance() external view returns (uint256) {
                  if (allocatedETHForClaims > totalClaimed) {
                      return allocatedETHForClaims - totalClaimed;
                  }
                  return 0;
              }
              /// @notice Updates the number of blocks required to finalize requests.
              /// @param numberOfBlocksToFinalize_ The number of blocks required to finalize requests.
              function setNumberOfBlocksToFinalize(uint256 numberOfBlocksToFinalize_) external onlyRole(MANAGER_ROLE) {
                  numberOfBlocksToFinalize = numberOfBlocksToFinalize_;
                  emit ProtocolConfigChanged(
                      this.setNumberOfBlocksToFinalize.selector,
                      "setNumberOfBlocksToFinalize(uint256)",
                      abi.encode(numberOfBlocksToFinalize_)
                  );
              }
              /// @notice Used by the claim function to check whether the request can be claimed (i.e. is finalized).
              /// @dev Finalization relies on the latest record of the oracle. This way, users can only claim their unstake
              /// requests in a period where the protocol has a valid record. We also use numberOfBlocksToFinalize as another
              /// safety buffer that can be set depending on the needs of the protocol.
              /// See also {claim}
              /// @return A boolean indicating whether the unstake request is finalized or not.
              function _isFinalized(UnstakeRequest memory request) internal view returns (bool) {
                  return (request.blockNumber + numberOfBlocksToFinalize) <= oracle.latestRecord().updateEndBlock;
              }
              /// @dev Validates that the caller is the staking contract.
              modifier onlyStakingContract() {
                  if (msg.sender != address(stakingContract)) {
                      revert NotStakingContract();
                  }
                  _;
              }
              // Fallbacks.
              receive() external payable {
                  revert DoesNotReceiveETH();
              }
              fallback() external payable {
                  revert DoesNotReceiveETH();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/AddressUpgradeable.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```solidity
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           *
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts.
               *
               * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
               * constructor.
               *
               * Emits an {Initialized} event.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * A reinitializer may be used after the original initialization step. This is essential to configure modules that
               * are added through upgrades and that require initialization.
               *
               * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
               * cannot be nested. If one is invoked in the context of another, execution will revert.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               *
               * WARNING: setting the version to 255 will prevent any future reinitialization.
               *
               * Emits an {Initialized} event.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               *
               * Emits an {Initialized} event the first time it is successfully executed.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized != type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
              /**
               * @dev Returns the highest version that has been initialized. See {reinitializer}.
               */
              function _getInitializedVersion() internal view returns (uint8) {
                  return _initialized;
              }
              /**
               * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
               */
              function _isInitializing() internal view returns (bool) {
                  return _initializing;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
          pragma solidity ^0.8.0;
          import "./IAccessControlEnumerableUpgradeable.sol";
          import "./AccessControlUpgradeable.sol";
          import "../utils/structs/EnumerableSetUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Extension of {AccessControl} that allows enumerating the members of each role.
           */
          abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerableUpgradeable, AccessControlUpgradeable {
              function __AccessControlEnumerable_init() internal onlyInitializing {
              }
              function __AccessControlEnumerable_init_unchained() internal onlyInitializing {
              }
              using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet;
              mapping(bytes32 => EnumerableSetUpgradeable.AddressSet) private _roleMembers;
              /**
               * @dev See {IERC165-supportsInterface}.
               */
              function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                  return interfaceId == type(IAccessControlEnumerableUpgradeable).interfaceId || super.supportsInterface(interfaceId);
              }
              /**
               * @dev Returns one of the accounts that have `role`. `index` must be a
               * value between 0 and {getRoleMemberCount}, non-inclusive.
               *
               * Role bearers are not sorted in any particular way, and their ordering may
               * change at any point.
               *
               * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
               * you perform all queries on the same block. See the following
               * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
               * for more information.
               */
              function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
                  return _roleMembers[role].at(index);
              }
              /**
               * @dev Returns the number of accounts that have `role`. Can be used
               * together with {getRoleMember} to enumerate all bearers of a role.
               */
              function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
                  return _roleMembers[role].length();
              }
              /**
               * @dev Overload {_grantRole} to track enumerable memberships
               */
              function _grantRole(bytes32 role, address account) internal virtual override {
                  super._grantRole(role, account);
                  _roleMembers[role].add(account);
              }
              /**
               * @dev Overload {_revokeRole} to track enumerable memberships
               */
              function _revokeRole(bytes32 role, address account) internal virtual override {
                  super._revokeRole(role, account);
                  _roleMembers[role].remove(account);
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                          // The surrounding unchecked block does not change this fact.
                          // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1, "Math: mulDiv overflow");
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  //
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                  //
                  // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                  // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                  // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                  //
                  // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1 << (log2(a) >> 1);
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = sqrt(a);
                      return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 2, rounded down, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 128;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 64;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 32;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 16;
                      }
                      if (value >> 8 > 0) {
                          value >>= 8;
                          result += 8;
                      }
                      if (value >> 4 > 0) {
                          value >>= 4;
                          result += 4;
                      }
                      if (value >> 2 > 0) {
                          value >>= 2;
                          result += 2;
                      }
                      if (value >> 1 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log2(value);
                      return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 10, rounded down, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >= 10 ** 64) {
                          value /= 10 ** 64;
                          result += 64;
                      }
                      if (value >= 10 ** 32) {
                          value /= 10 ** 32;
                          result += 32;
                      }
                      if (value >= 10 ** 16) {
                          value /= 10 ** 16;
                          result += 16;
                      }
                      if (value >= 10 ** 8) {
                          value /= 10 ** 8;
                          result += 8;
                      }
                      if (value >= 10 ** 4) {
                          value /= 10 ** 4;
                          result += 4;
                      }
                      if (value >= 10 ** 2) {
                          value /= 10 ** 2;
                          result += 2;
                      }
                      if (value >= 10 ** 1) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log10(value);
                      return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 256, rounded down, of a positive value.
               * Returns 0 if given 0.
               *
               * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
               */
              function log256(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 16;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 8;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 4;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 2;
                      }
                      if (value >> 8 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log256(value);
                      return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
          pragma solidity ^0.8.0;
          import "../IERC20Upgradeable.sol";
          import "../extensions/IERC20PermitUpgradeable.sol";
          import "../../../utils/AddressUpgradeable.sol";
          /**
           * @title SafeERC20
           * @dev Wrappers around ERC20 operations that throw on failure (when the token
           * contract returns false). Tokens that return no value (and instead revert or
           * throw on failure) are also supported, non-reverting calls are assumed to be
           * successful.
           * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
           * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
           */
          library SafeERC20Upgradeable {
              using AddressUpgradeable for address;
              /**
               * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
              }
              /**
               * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
               * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
               */
              function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
                  _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
              }
              /**
               * @dev Deprecated. This function has issues similar to the ones found in
               * {IERC20-approve}, and its usage is discouraged.
               *
               * Whenever possible, use {safeIncreaseAllowance} and
               * {safeDecreaseAllowance} instead.
               */
              function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
                  // safeApprove should only be called when setting an initial allowance,
                  // or when resetting it to zero. To increase and decrease it, use
                  // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                  require(
                      (value == 0) || (token.allowance(address(this), spender) == 0),
                      "SafeERC20: approve from non-zero to non-zero allowance"
                  );
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
              }
              /**
               * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
              }
              /**
               * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
                  unchecked {
                      uint256 oldAllowance = token.allowance(address(this), spender);
                      require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
                  }
              }
              /**
               * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
               * 0 before setting it to a non-zero value.
               */
              function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
                  bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
                  if (!_callOptionalReturnBool(token, approvalCall)) {
                      _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
                      _callOptionalReturn(token, approvalCall);
                  }
              }
              /**
               * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
               * Revert on invalid signature.
               */
              function safePermit(
                  IERC20PermitUpgradeable token,
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) internal {
                  uint256 nonceBefore = token.nonces(owner);
                  token.permit(owner, spender, value, deadline, v, r, s);
                  uint256 nonceAfter = token.nonces(owner);
                  require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               */
              function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                  // the target address contains contract code and also asserts for success in the low-level call.
                  bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                  require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               *
               * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
               */
              function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                  // and not revert is the subcall reverts.
                  (bool success, bytes memory returndata) = address(token).call(data);
                  return
                      success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          interface ProtocolEvents {
              /// @notice Emitted when a protocol configuration has been updated.
              /// @param setterSelector The selector of the function that updated the configuration.
              /// @param setterSignature The signature of the function that updated the configuration.
              /// @param value The abi-encoded data passed to the function that updated the configuration. Since this event will
              /// only be emitted by setters, this data corresponds to the updated values in the protocol configuration.
              event ProtocolConfigChanged(bytes4 indexed setterSelector, string setterSignature, bytes value);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          import {IERC20Upgradeable} from "openzeppelin-upgradeable/token/ERC20/ERC20Upgradeable.sol";
          import {IERC20PermitUpgradeable} from "openzeppelin-upgradeable/token/ERC20/extensions/IERC20PermitUpgradeable.sol";
          interface IMETH is IERC20Upgradeable, IERC20PermitUpgradeable {
              /// @notice Mint mETH to the staker.
              /// @param staker The address of the staker.
              /// @param amount The amount of tokens to mint.
              function mint(address staker, uint256 amount) external;
              /// @notice Burn mETH from the msg.sender.
              /// @param amount The amount of tokens to burn.
              function burn(uint256 amount) external;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          /// @notice The records stored by the oracle contract informing the protocol about consensus layer activity. It is
          /// computed and reported by off-chain oracle services.
          /// @dev "current" quantities refer to the state at the `updateEndBlock` block number.
          /// @dev "cumulative" quantities refer to sums up to the `updateEndBlock` block number.
          /// @dev "window" quantities refer to sums over the block window between the `updateStartBlock` and `updateEndBlock`.
          /// @param updateStartBlock The start of the oracle record block window. This should be 1 higher than the
          /// updateEndBlock of the previous oracle record.
          /// @param updateEndBlock The block number up to which this oracle record was computed (inclusive).
          /// @param currentNumValidatorsNotWithdrawable The number of our validators that do not have the withdrawable status.
          /// @param cumulativeNumValidatorsWithdrawable The total number of our validators that have the withdrawable status.
          /// These validators have either the status `withdrawal_possible` or `withdrawal_done`. Note: validators can
          /// fluctuate between the two statuses due to top ups.
          /// @param windowWithdrawnPrincipalAmount The amount of principal that has been withdrawn from the consensus layer in
          /// the analyzed block window.
          /// @param windowWithdrawnRewardAmount The amount of rewards that has been withdrawn from the consensus layer in the
          /// analysed block window.
          /// @param currentTotalValidatorBalance The total amount of ETH in the consensus layer (i.e. the sum of all validator
          /// balances). This is one of the major quantities to compute the total value controlled by the protocol.
          /// @param cumulativeProcessedDepositAmount The total amount of ETH that has been deposited into and processed by the
          /// consensus layer. This is used to prevent double counting of the ETH deposited to the consensus layer.
          struct OracleRecord {
              uint64 updateStartBlock;
              uint64 updateEndBlock;
              uint64 currentNumValidatorsNotWithdrawable;
              uint64 cumulativeNumValidatorsWithdrawable;
              uint128 windowWithdrawnPrincipalAmount;
              uint128 windowWithdrawnRewardAmount;
              uint128 currentTotalValidatorBalance;
              uint128 cumulativeProcessedDepositAmount;
          }
          interface IOracleWrite {
              /// @notice Pushes a new record to the oracle.
              function receiveRecord(OracleRecord calldata record) external;
          }
          interface IOracleReadRecord {
              /// @notice Returns the latest validated record.
              /// @return `OracleRecord` The latest validated record.
              function latestRecord() external view returns (OracleRecord calldata);
              /// @notice Returns the record at the given index.
              /// @param idx The index of the record to retrieve.
              /// @return `OracleRecord` The record at the given index.
              function recordAt(uint256 idx) external view returns (OracleRecord calldata);
              /// @notice Returns the number of records in the oracle.
              /// @return `uint256` The number of records in the oracle.
              function numRecords() external view returns (uint256);
          }
          interface IOracleReadPending {
              /// @notice Returns the pending update.
              /// @return `OracleRecord` The pending update.
              function pendingUpdate() external view returns (OracleRecord calldata);
              /// @notice Indicates whether an oracle update is pending, i.e. if it was rejected by `_sanityCheckUpdate`.
              function hasPendingUpdate() external view returns (bool);
          }
          interface IOracleRead is IOracleReadRecord, IOracleReadPending {}
          interface IOracleManager {
              /// @notice Sets the new oracle updater for the contract.
              /// @param newUpdater The new oracle updater.
              function setOracleUpdater(address newUpdater) external;
          }
          interface IOracle is IOracleWrite, IOracleRead, IOracleManager {}
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          import {Staking} from "../Staking.sol";
          /// @notice An unstake request is stored in the UnstakeRequestsManager and records the information required to
          /// fulfill an unstake request claim.
          /// @param id The unique ID of the unstake request.
          /// @param requester The address of the user that requested the unstake.
          /// @param mETHLocked The amount of mETH that was locked when the unstake request was created. The amount of mETH
          /// will be burned once the request has been claimed.
          /// @param ethRequested The amount of ETH that was requested when the unstake request was created.
          /// @param cumulativeETHRequested The cumulative amount of ETH that had been requested in this request and all unstake
          /// requests before this one.
          /// @param blockNumber The block number at which the unstake request was created.
          struct UnstakeRequest {
              uint64 blockNumber;
              address requester;
              uint128 id;
              uint128 mETHLocked;
              uint128 ethRequested;
              uint128 cumulativeETHRequested;
          }
          interface IUnstakeRequestsManagerWrite {
              /// @notice Creates a new unstake request and adds it to the unstake requests array.
              /// @param requester The address of the entity making the unstake request.
              /// @param mETHLocked The amount of mETH tokens currently locked in the contract.
              /// @param ethRequested The amount of ETH being requested for unstake.
              /// @return The ID of the new unstake request.
              function create(address requester, uint128 mETHLocked, uint128 ethRequested) external returns (uint256);
              /// @notice Allows the requester to claim their unstake request after it has been finalized.
              /// @param requestID The ID of the unstake request to claim.
              /// @param requester The address of the entity claiming the unstake request.
              function claim(uint256 requestID, address requester) external;
              /// @notice Cancels a batch of the latest unfinalized unstake requests.
              /// @param maxCancel The maximum number of requests to cancel.
              /// @return A boolean indicating if there are more unstake requests to cancel.
              function cancelUnfinalizedRequests(uint256 maxCancel) external returns (bool);
              /// @notice Allocate ether into the contract.
              function allocateETH() external payable;
              /// @notice Withdraws surplus ETH from the allocatedETHForClaims.
              function withdrawAllocatedETHSurplus() external;
          }
          interface IUnstakeRequestsManagerRead {
              /// @notice Retrieves a specific unstake request based on its ID.
              /// @param requestID The ID of the unstake request to fetch.
              /// @return The UnstakeRequest struct corresponding to the given ID.
              function requestByID(uint256 requestID) external view returns (UnstakeRequest memory);
              /// @notice Returns the status of the request whether it is finalized and how much ETH that has been filled.
              /// @param requestID The ID of the unstake request.
              /// @return bool indicating if the request is finalized, and the amount of ETH that has been filled.
              function requestInfo(uint256 requestID) external view returns (bool, uint256);
              /// @notice Calculates the amount of ether allocated in the contract exceeding the total required to pay unclaimed.
              /// @return The amount of surplus allocatedETH.
              function allocatedETHSurplus() external view returns (uint256);
              /// @notice Calculates the amount of ether that is needed to fulfill the unstake requests.
              /// @return The amount of allocatedETH deficit.
              function allocatedETHDeficit() external view returns (uint256);
              /// @notice Calculates the amount of ether that has been allocated but not yet claimed.
              /// @return The total amount of ether that is waiting to be claimed.
              function balance() external view returns (uint256);
          }
          interface IUnstakeRequestsManager is IUnstakeRequestsManagerRead, IUnstakeRequestsManagerWrite {}
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          interface IStakingInitiationRead {
              /// @notice The total amount of ETH sent to the beacon chain deposit contract.
              function totalDepositedInValidators() external view returns (uint256);
              /// @notice The number of validators initiated by the staking contract.
              function numInitiatedValidators() external view returns (uint256);
              /// @notice The block number at which the staking contract has been initialised.
              function initializationBlockNumber() external view returns (uint256);
          }
          interface IStakingReturnsWrite {
              /// @notice Accepts funds sent by the returns aggregator.
              function receiveReturns() external payable;
              /// @notice Accepts funds sent by the unstake requests manager.
              function receiveFromUnstakeRequestsManager() external payable;
          }
          interface IStaking is IStakingInitiationRead, IStakingReturnsWrite {}
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library AddressUpgradeable {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
          pragma solidity ^0.8.0;
          import "./IAccessControlUpgradeable.sol";
          /**
           * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
           */
          interface IAccessControlEnumerableUpgradeable is IAccessControlUpgradeable {
              /**
               * @dev Returns one of the accounts that have `role`. `index` must be a
               * value between 0 and {getRoleMemberCount}, non-inclusive.
               *
               * Role bearers are not sorted in any particular way, and their ordering may
               * change at any point.
               *
               * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
               * you perform all queries on the same block. See the following
               * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
               * for more information.
               */
              function getRoleMember(bytes32 role, uint256 index) external view returns (address);
              /**
               * @dev Returns the number of accounts that have `role`. Can be used
               * together with {getRoleMember} to enumerate all bearers of a role.
               */
              function getRoleMemberCount(bytes32 role) external view returns (uint256);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
          pragma solidity ^0.8.0;
          import "./IAccessControlUpgradeable.sol";
          import "../utils/ContextUpgradeable.sol";
          import "../utils/StringsUpgradeable.sol";
          import "../utils/introspection/ERC165Upgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module that allows children to implement role-based access
           * control mechanisms. This is a lightweight version that doesn't allow enumerating role
           * members except through off-chain means by accessing the contract event logs. Some
           * applications may benefit from on-chain enumerability, for those cases see
           * {AccessControlEnumerable}.
           *
           * Roles are referred to by their `bytes32` identifier. These should be exposed
           * in the external API and be unique. The best way to achieve this is by
           * using `public constant` hash digests:
           *
           * ```solidity
           * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
           * ```
           *
           * Roles can be used to represent a set of permissions. To restrict access to a
           * function call, use {hasRole}:
           *
           * ```solidity
           * function foo() public {
           *     require(hasRole(MY_ROLE, msg.sender));
           *     ...
           * }
           * ```
           *
           * Roles can be granted and revoked dynamically via the {grantRole} and
           * {revokeRole} functions. Each role has an associated admin role, and only
           * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
           *
           * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
           * that only accounts with this role will be able to grant or revoke other
           * roles. More complex role relationships can be created by using
           * {_setRoleAdmin}.
           *
           * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
           * grant and revoke this role. Extra precautions should be taken to secure
           * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
           * to enforce additional security measures for this role.
           */
          abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
              function __AccessControl_init() internal onlyInitializing {
              }
              function __AccessControl_init_unchained() internal onlyInitializing {
              }
              struct RoleData {
                  mapping(address => bool) members;
                  bytes32 adminRole;
              }
              mapping(bytes32 => RoleData) private _roles;
              bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
              /**
               * @dev Modifier that checks that an account has a specific role. Reverts
               * with a standardized message including the required role.
               *
               * The format of the revert reason is given by the following regular expression:
               *
               *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
               *
               * _Available since v4.1._
               */
              modifier onlyRole(bytes32 role) {
                  _checkRole(role);
                  _;
              }
              /**
               * @dev See {IERC165-supportsInterface}.
               */
              function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                  return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
              }
              /**
               * @dev Returns `true` if `account` has been granted `role`.
               */
              function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
                  return _roles[role].members[account];
              }
              /**
               * @dev Revert with a standard message if `_msgSender()` is missing `role`.
               * Overriding this function changes the behavior of the {onlyRole} modifier.
               *
               * Format of the revert message is described in {_checkRole}.
               *
               * _Available since v4.6._
               */
              function _checkRole(bytes32 role) internal view virtual {
                  _checkRole(role, _msgSender());
              }
              /**
               * @dev Revert with a standard message if `account` is missing `role`.
               *
               * The format of the revert reason is given by the following regular expression:
               *
               *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
               */
              function _checkRole(bytes32 role, address account) internal view virtual {
                  if (!hasRole(role, account)) {
                      revert(
                          string(
                              abi.encodePacked(
                                  "AccessControl: account ",
                                  StringsUpgradeable.toHexString(account),
                                  " is missing role ",
                                  StringsUpgradeable.toHexString(uint256(role), 32)
                              )
                          )
                      );
                  }
              }
              /**
               * @dev Returns the admin role that controls `role`. See {grantRole} and
               * {revokeRole}.
               *
               * To change a role's admin, use {_setRoleAdmin}.
               */
              function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
                  return _roles[role].adminRole;
              }
              /**
               * @dev Grants `role` to `account`.
               *
               * If `account` had not been already granted `role`, emits a {RoleGranted}
               * event.
               *
               * Requirements:
               *
               * - the caller must have ``role``'s admin role.
               *
               * May emit a {RoleGranted} event.
               */
              function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                  _grantRole(role, account);
              }
              /**
               * @dev Revokes `role` from `account`.
               *
               * If `account` had been granted `role`, emits a {RoleRevoked} event.
               *
               * Requirements:
               *
               * - the caller must have ``role``'s admin role.
               *
               * May emit a {RoleRevoked} event.
               */
              function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
                  _revokeRole(role, account);
              }
              /**
               * @dev Revokes `role` from the calling account.
               *
               * Roles are often managed via {grantRole} and {revokeRole}: this function's
               * purpose is to provide a mechanism for accounts to lose their privileges
               * if they are compromised (such as when a trusted device is misplaced).
               *
               * If the calling account had been revoked `role`, emits a {RoleRevoked}
               * event.
               *
               * Requirements:
               *
               * - the caller must be `account`.
               *
               * May emit a {RoleRevoked} event.
               */
              function renounceRole(bytes32 role, address account) public virtual override {
                  require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                  _revokeRole(role, account);
              }
              /**
               * @dev Grants `role` to `account`.
               *
               * If `account` had not been already granted `role`, emits a {RoleGranted}
               * event. Note that unlike {grantRole}, this function doesn't perform any
               * checks on the calling account.
               *
               * May emit a {RoleGranted} event.
               *
               * [WARNING]
               * ====
               * This function should only be called from the constructor when setting
               * up the initial roles for the system.
               *
               * Using this function in any other way is effectively circumventing the admin
               * system imposed by {AccessControl}.
               * ====
               *
               * NOTE: This function is deprecated in favor of {_grantRole}.
               */
              function _setupRole(bytes32 role, address account) internal virtual {
                  _grantRole(role, account);
              }
              /**
               * @dev Sets `adminRole` as ``role``'s admin role.
               *
               * Emits a {RoleAdminChanged} event.
               */
              function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                  bytes32 previousAdminRole = getRoleAdmin(role);
                  _roles[role].adminRole = adminRole;
                  emit RoleAdminChanged(role, previousAdminRole, adminRole);
              }
              /**
               * @dev Grants `role` to `account`.
               *
               * Internal function without access restriction.
               *
               * May emit a {RoleGranted} event.
               */
              function _grantRole(bytes32 role, address account) internal virtual {
                  if (!hasRole(role, account)) {
                      _roles[role].members[account] = true;
                      emit RoleGranted(role, account, _msgSender());
                  }
              }
              /**
               * @dev Revokes `role` from `account`.
               *
               * Internal function without access restriction.
               *
               * May emit a {RoleRevoked} event.
               */
              function _revokeRole(bytes32 role, address account) internal virtual {
                  if (hasRole(role, account)) {
                      _roles[role].members[account] = false;
                      emit RoleRevoked(role, account, _msgSender());
                  }
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
          // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
          pragma solidity ^0.8.0;
          /**
           * @dev Library for managing
           * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
           * types.
           *
           * Sets have the following properties:
           *
           * - Elements are added, removed, and checked for existence in constant time
           * (O(1)).
           * - Elements are enumerated in O(n). No guarantees are made on the ordering.
           *
           * ```solidity
           * contract Example {
           *     // Add the library methods
           *     using EnumerableSet for EnumerableSet.AddressSet;
           *
           *     // Declare a set state variable
           *     EnumerableSet.AddressSet private mySet;
           * }
           * ```
           *
           * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
           * and `uint256` (`UintSet`) are supported.
           *
           * [WARNING]
           * ====
           * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
           * unusable.
           * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
           *
           * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
           * array of EnumerableSet.
           * ====
           */
          library EnumerableSetUpgradeable {
              // To implement this library for multiple types with as little code
              // repetition as possible, we write it in terms of a generic Set type with
              // bytes32 values.
              // The Set implementation uses private functions, and user-facing
              // implementations (such as AddressSet) are just wrappers around the
              // underlying Set.
              // This means that we can only create new EnumerableSets for types that fit
              // in bytes32.
              struct Set {
                  // Storage of set values
                  bytes32[] _values;
                  // Position of the value in the `values` array, plus 1 because index 0
                  // means a value is not in the set.
                  mapping(bytes32 => uint256) _indexes;
              }
              /**
               * @dev Add a value to a set. O(1).
               *
               * Returns true if the value was added to the set, that is if it was not
               * already present.
               */
              function _add(Set storage set, bytes32 value) private returns (bool) {
                  if (!_contains(set, value)) {
                      set._values.push(value);
                      // The value is stored at length-1, but we add 1 to all indexes
                      // and use 0 as a sentinel value
                      set._indexes[value] = set._values.length;
                      return true;
                  } else {
                      return false;
                  }
              }
              /**
               * @dev Removes a value from a set. O(1).
               *
               * Returns true if the value was removed from the set, that is if it was
               * present.
               */
              function _remove(Set storage set, bytes32 value) private returns (bool) {
                  // We read and store the value's index to prevent multiple reads from the same storage slot
                  uint256 valueIndex = set._indexes[value];
                  if (valueIndex != 0) {
                      // Equivalent to contains(set, value)
                      // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                      // the array, and then remove the last element (sometimes called as 'swap and pop').
                      // This modifies the order of the array, as noted in {at}.
                      uint256 toDeleteIndex = valueIndex - 1;
                      uint256 lastIndex = set._values.length - 1;
                      if (lastIndex != toDeleteIndex) {
                          bytes32 lastValue = set._values[lastIndex];
                          // Move the last value to the index where the value to delete is
                          set._values[toDeleteIndex] = lastValue;
                          // Update the index for the moved value
                          set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                      }
                      // Delete the slot where the moved value was stored
                      set._values.pop();
                      // Delete the index for the deleted slot
                      delete set._indexes[value];
                      return true;
                  } else {
                      return false;
                  }
              }
              /**
               * @dev Returns true if the value is in the set. O(1).
               */
              function _contains(Set storage set, bytes32 value) private view returns (bool) {
                  return set._indexes[value] != 0;
              }
              /**
               * @dev Returns the number of values on the set. O(1).
               */
              function _length(Set storage set) private view returns (uint256) {
                  return set._values.length;
              }
              /**
               * @dev Returns the value stored at position `index` in the set. O(1).
               *
               * Note that there are no guarantees on the ordering of values inside the
               * array, and it may change when more values are added or removed.
               *
               * Requirements:
               *
               * - `index` must be strictly less than {length}.
               */
              function _at(Set storage set, uint256 index) private view returns (bytes32) {
                  return set._values[index];
              }
              /**
               * @dev Return the entire set in an array
               *
               * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
               * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
               * this function has an unbounded cost, and using it as part of a state-changing function may render the function
               * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
               */
              function _values(Set storage set) private view returns (bytes32[] memory) {
                  return set._values;
              }
              // Bytes32Set
              struct Bytes32Set {
                  Set _inner;
              }
              /**
               * @dev Add a value to a set. O(1).
               *
               * Returns true if the value was added to the set, that is if it was not
               * already present.
               */
              function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                  return _add(set._inner, value);
              }
              /**
               * @dev Removes a value from a set. O(1).
               *
               * Returns true if the value was removed from the set, that is if it was
               * present.
               */
              function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                  return _remove(set._inner, value);
              }
              /**
               * @dev Returns true if the value is in the set. O(1).
               */
              function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
                  return _contains(set._inner, value);
              }
              /**
               * @dev Returns the number of values in the set. O(1).
               */
              function length(Bytes32Set storage set) internal view returns (uint256) {
                  return _length(set._inner);
              }
              /**
               * @dev Returns the value stored at position `index` in the set. O(1).
               *
               * Note that there are no guarantees on the ordering of values inside the
               * array, and it may change when more values are added or removed.
               *
               * Requirements:
               *
               * - `index` must be strictly less than {length}.
               */
              function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
                  return _at(set._inner, index);
              }
              /**
               * @dev Return the entire set in an array
               *
               * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
               * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
               * this function has an unbounded cost, and using it as part of a state-changing function may render the function
               * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
               */
              function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
                  bytes32[] memory store = _values(set._inner);
                  bytes32[] memory result;
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := store
                  }
                  return result;
              }
              // AddressSet
              struct AddressSet {
                  Set _inner;
              }
              /**
               * @dev Add a value to a set. O(1).
               *
               * Returns true if the value was added to the set, that is if it was not
               * already present.
               */
              function add(AddressSet storage set, address value) internal returns (bool) {
                  return _add(set._inner, bytes32(uint256(uint160(value))));
              }
              /**
               * @dev Removes a value from a set. O(1).
               *
               * Returns true if the value was removed from the set, that is if it was
               * present.
               */
              function remove(AddressSet storage set, address value) internal returns (bool) {
                  return _remove(set._inner, bytes32(uint256(uint160(value))));
              }
              /**
               * @dev Returns true if the value is in the set. O(1).
               */
              function contains(AddressSet storage set, address value) internal view returns (bool) {
                  return _contains(set._inner, bytes32(uint256(uint160(value))));
              }
              /**
               * @dev Returns the number of values in the set. O(1).
               */
              function length(AddressSet storage set) internal view returns (uint256) {
                  return _length(set._inner);
              }
              /**
               * @dev Returns the value stored at position `index` in the set. O(1).
               *
               * Note that there are no guarantees on the ordering of values inside the
               * array, and it may change when more values are added or removed.
               *
               * Requirements:
               *
               * - `index` must be strictly less than {length}.
               */
              function at(AddressSet storage set, uint256 index) internal view returns (address) {
                  return address(uint160(uint256(_at(set._inner, index))));
              }
              /**
               * @dev Return the entire set in an array
               *
               * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
               * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
               * this function has an unbounded cost, and using it as part of a state-changing function may render the function
               * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
               */
              function values(AddressSet storage set) internal view returns (address[] memory) {
                  bytes32[] memory store = _values(set._inner);
                  address[] memory result;
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := store
                  }
                  return result;
              }
              // UintSet
              struct UintSet {
                  Set _inner;
              }
              /**
               * @dev Add a value to a set. O(1).
               *
               * Returns true if the value was added to the set, that is if it was not
               * already present.
               */
              function add(UintSet storage set, uint256 value) internal returns (bool) {
                  return _add(set._inner, bytes32(value));
              }
              /**
               * @dev Removes a value from a set. O(1).
               *
               * Returns true if the value was removed from the set, that is if it was
               * present.
               */
              function remove(UintSet storage set, uint256 value) internal returns (bool) {
                  return _remove(set._inner, bytes32(value));
              }
              /**
               * @dev Returns true if the value is in the set. O(1).
               */
              function contains(UintSet storage set, uint256 value) internal view returns (bool) {
                  return _contains(set._inner, bytes32(value));
              }
              /**
               * @dev Returns the number of values in the set. O(1).
               */
              function length(UintSet storage set) internal view returns (uint256) {
                  return _length(set._inner);
              }
              /**
               * @dev Returns the value stored at position `index` in the set. O(1).
               *
               * Note that there are no guarantees on the ordering of values inside the
               * array, and it may change when more values are added or removed.
               *
               * Requirements:
               *
               * - `index` must be strictly less than {length}.
               */
              function at(UintSet storage set, uint256 index) internal view returns (uint256) {
                  return uint256(_at(set._inner, index));
              }
              /**
               * @dev Return the entire set in an array
               *
               * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
               * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
               * this function has an unbounded cost, and using it as part of a state-changing function may render the function
               * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
               */
              function values(UintSet storage set) internal view returns (uint256[] memory) {
                  bytes32[] memory store = _values(set._inner);
                  uint256[] memory result;
                  /// @solidity memory-safe-assembly
                  assembly {
                      result := store
                  }
                  return result;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20Upgradeable {
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `from` to `to` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 amount) external returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           */
          interface IERC20PermitUpgradeable {
              /**
               * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
               * given ``owner``'s signed approval.
               *
               * IMPORTANT: The same issues {IERC20-approve} has related to transaction
               * ordering also apply here.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `deadline` must be a timestamp in the future.
               * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
               * over the EIP712-formatted function arguments.
               * - the signature must use ``owner``'s current nonce (see {nonces}).
               *
               * For more information on the signature format, see the
               * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
               * section].
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external;
              /**
               * @dev Returns the current nonce for `owner`. This value must be
               * included whenever a signature is generated for {permit}.
               *
               * Every successful call to {permit} increases ``owner``'s nonce by one. This
               * prevents a signature from being used multiple times.
               */
              function nonces(address owner) external view returns (uint256);
              /**
               * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
          pragma solidity ^0.8.0;
          import "./IERC20Upgradeable.sol";
          import "./extensions/IERC20MetadataUpgradeable.sol";
          import "../../utils/ContextUpgradeable.sol";
          import "../../proxy/utils/Initializable.sol";
          /**
           * @dev Implementation of the {IERC20} interface.
           *
           * This implementation is agnostic to the way tokens are created. This means
           * that a supply mechanism has to be added in a derived contract using {_mint}.
           * For a generic mechanism see {ERC20PresetMinterPauser}.
           *
           * TIP: For a detailed writeup see our guide
           * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
           * to implement supply mechanisms].
           *
           * The default value of {decimals} is 18. To change this, you should override
           * this function so it returns a different value.
           *
           * We have followed general OpenZeppelin Contracts guidelines: functions revert
           * instead returning `false` on failure. This behavior is nonetheless
           * conventional and does not conflict with the expectations of ERC20
           * applications.
           *
           * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
           * This allows applications to reconstruct the allowance for all accounts just
           * by listening to said events. Other implementations of the EIP may not emit
           * these events, as it isn't required by the specification.
           *
           * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
           * functions have been added to mitigate the well-known issues around setting
           * allowances. See {IERC20-approve}.
           */
          contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
              mapping(address => uint256) private _balances;
              mapping(address => mapping(address => uint256)) private _allowances;
              uint256 private _totalSupply;
              string private _name;
              string private _symbol;
              /**
               * @dev Sets the values for {name} and {symbol}.
               *
               * All two of these values are immutable: they can only be set once during
               * construction.
               */
              function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
                  __ERC20_init_unchained(name_, symbol_);
              }
              function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                  _name = name_;
                  _symbol = symbol_;
              }
              /**
               * @dev Returns the name of the token.
               */
              function name() public view virtual override returns (string memory) {
                  return _name;
              }
              /**
               * @dev Returns the symbol of the token, usually a shorter version of the
               * name.
               */
              function symbol() public view virtual override returns (string memory) {
                  return _symbol;
              }
              /**
               * @dev Returns the number of decimals used to get its user representation.
               * For example, if `decimals` equals `2`, a balance of `505` tokens should
               * be displayed to a user as `5.05` (`505 / 10 ** 2`).
               *
               * Tokens usually opt for a value of 18, imitating the relationship between
               * Ether and Wei. This is the default value returned by this function, unless
               * it's overridden.
               *
               * NOTE: This information is only used for _display_ purposes: it in
               * no way affects any of the arithmetic of the contract, including
               * {IERC20-balanceOf} and {IERC20-transfer}.
               */
              function decimals() public view virtual override returns (uint8) {
                  return 18;
              }
              /**
               * @dev See {IERC20-totalSupply}.
               */
              function totalSupply() public view virtual override returns (uint256) {
                  return _totalSupply;
              }
              /**
               * @dev See {IERC20-balanceOf}.
               */
              function balanceOf(address account) public view virtual override returns (uint256) {
                  return _balances[account];
              }
              /**
               * @dev See {IERC20-transfer}.
               *
               * Requirements:
               *
               * - `to` cannot be the zero address.
               * - the caller must have a balance of at least `amount`.
               */
              function transfer(address to, uint256 amount) public virtual override returns (bool) {
                  address owner = _msgSender();
                  _transfer(owner, to, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-allowance}.
               */
              function allowance(address owner, address spender) public view virtual override returns (uint256) {
                  return _allowances[owner][spender];
              }
              /**
               * @dev See {IERC20-approve}.
               *
               * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
               * `transferFrom`. This is semantically equivalent to an infinite approval.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function approve(address spender, uint256 amount) public virtual override returns (bool) {
                  address owner = _msgSender();
                  _approve(owner, spender, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-transferFrom}.
               *
               * Emits an {Approval} event indicating the updated allowance. This is not
               * required by the EIP. See the note at the beginning of {ERC20}.
               *
               * NOTE: Does not update the allowance if the current allowance
               * is the maximum `uint256`.
               *
               * Requirements:
               *
               * - `from` and `to` cannot be the zero address.
               * - `from` must have a balance of at least `amount`.
               * - the caller must have allowance for ``from``'s tokens of at least
               * `amount`.
               */
              function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
                  address spender = _msgSender();
                  _spendAllowance(from, spender, amount);
                  _transfer(from, to, amount);
                  return true;
              }
              /**
               * @dev Atomically increases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                  address owner = _msgSender();
                  _approve(owner, spender, allowance(owner, spender) + addedValue);
                  return true;
              }
              /**
               * @dev Atomically decreases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `spender` must have allowance for the caller of at least
               * `subtractedValue`.
               */
              function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                  address owner = _msgSender();
                  uint256 currentAllowance = allowance(owner, spender);
                  require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                  unchecked {
                      _approve(owner, spender, currentAllowance - subtractedValue);
                  }
                  return true;
              }
              /**
               * @dev Moves `amount` of tokens from `from` to `to`.
               *
               * This internal function is equivalent to {transfer}, and can be used to
               * e.g. implement automatic token fees, slashing mechanisms, etc.
               *
               * Emits a {Transfer} event.
               *
               * Requirements:
               *
               * - `from` cannot be the zero address.
               * - `to` cannot be the zero address.
               * - `from` must have a balance of at least `amount`.
               */
              function _transfer(address from, address to, uint256 amount) internal virtual {
                  require(from != address(0), "ERC20: transfer from the zero address");
                  require(to != address(0), "ERC20: transfer to the zero address");
                  _beforeTokenTransfer(from, to, amount);
                  uint256 fromBalance = _balances[from];
                  require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                  unchecked {
                      _balances[from] = fromBalance - amount;
                      // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                      // decrementing then incrementing.
                      _balances[to] += amount;
                  }
                  emit Transfer(from, to, amount);
                  _afterTokenTransfer(from, to, amount);
              }
              /** @dev Creates `amount` tokens and assigns them to `account`, increasing
               * the total supply.
               *
               * Emits a {Transfer} event with `from` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               */
              function _mint(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: mint to the zero address");
                  _beforeTokenTransfer(address(0), account, amount);
                  _totalSupply += amount;
                  unchecked {
                      // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                      _balances[account] += amount;
                  }
                  emit Transfer(address(0), account, amount);
                  _afterTokenTransfer(address(0), account, amount);
              }
              /**
               * @dev Destroys `amount` tokens from `account`, reducing the
               * total supply.
               *
               * Emits a {Transfer} event with `to` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               * - `account` must have at least `amount` tokens.
               */
              function _burn(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: burn from the zero address");
                  _beforeTokenTransfer(account, address(0), amount);
                  uint256 accountBalance = _balances[account];
                  require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                  unchecked {
                      _balances[account] = accountBalance - amount;
                      // Overflow not possible: amount <= accountBalance <= totalSupply.
                      _totalSupply -= amount;
                  }
                  emit Transfer(account, address(0), amount);
                  _afterTokenTransfer(account, address(0), amount);
              }
              /**
               * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
               *
               * This internal function is equivalent to `approve`, and can be used to
               * e.g. set automatic allowances for certain subsystems, etc.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `owner` cannot be the zero address.
               * - `spender` cannot be the zero address.
               */
              function _approve(address owner, address spender, uint256 amount) internal virtual {
                  require(owner != address(0), "ERC20: approve from the zero address");
                  require(spender != address(0), "ERC20: approve to the zero address");
                  _allowances[owner][spender] = amount;
                  emit Approval(owner, spender, amount);
              }
              /**
               * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
               *
               * Does not update the allowance amount in case of infinite allowance.
               * Revert if not enough allowance is available.
               *
               * Might emit an {Approval} event.
               */
              function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
                  uint256 currentAllowance = allowance(owner, spender);
                  if (currentAllowance != type(uint256).max) {
                      require(currentAllowance >= amount, "ERC20: insufficient allowance");
                      unchecked {
                          _approve(owner, spender, currentAllowance - amount);
                      }
                  }
              }
              /**
               * @dev Hook that is called before any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * will be transferred to `to`.
               * - when `from` is zero, `amount` tokens will be minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
              /**
               * @dev Hook that is called after any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * has been transferred to `to`.
               * - when `from` is zero, `amount` tokens have been minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[45] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          import {Initializable} from "openzeppelin-upgradeable/proxy/utils/Initializable.sol";
          import {AccessControlEnumerableUpgradeable} from
              "openzeppelin-upgradeable/access/AccessControlEnumerableUpgradeable.sol";
          import {Math} from "openzeppelin/utils/math/Math.sol";
          import {IERC20} from "openzeppelin/token/ERC20/IERC20.sol";
          import {SafeERC20Upgradeable} from "openzeppelin-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
          import {ProtocolEvents} from "./interfaces/ProtocolEvents.sol";
          import {IDepositContract} from "./interfaces/IDepositContract.sol";
          import {IMETH} from "./interfaces/IMETH.sol";
          import {IOracleReadRecord, OracleRecord} from "./interfaces/IOracle.sol";
          import {IPauserRead} from "./interfaces/IPauser.sol";
          import {IStaking, IStakingReturnsWrite, IStakingInitiationRead} from "./interfaces/IStaking.sol";
          import {UnstakeRequest, IUnstakeRequestsManager} from "./interfaces/IUnstakeRequestsManager.sol";
          /// @notice Events emitted by the staking contract.
          interface StakingEvents {
              /// @notice Emitted when a user stakes ETH and receives mETH.
              /// @param staker The address of the user staking ETH.
              /// @param ethAmount The amount of ETH staked.
              /// @param mETHAmount The amount of mETH received.
              event Staked(address indexed staker, uint256 ethAmount, uint256 mETHAmount);
              /// @notice Emitted when a user unstakes mETH in exchange for ETH.
              /// @param id The ID of the unstake request.
              /// @param staker The address of the user unstaking mETH.
              /// @param ethAmount The amount of ETH that the staker will receive.
              /// @param mETHLocked The amount of mETH that will be burned.
              event UnstakeRequested(uint256 indexed id, address indexed staker, uint256 ethAmount, uint256 mETHLocked);
              /// @notice Emitted when a user claims their unstake request.
              /// @param id The ID of the unstake request.
              /// @param staker The address of the user claiming their unstake request.
              event UnstakeRequestClaimed(uint256 indexed id, address indexed staker);
              /// @notice Emitted when a validator has been initiated (i.e. the protocol has deposited into the deposit contract).
              /// @param id The ID of the validator which is the hash of its pubkey.
              /// @param operatorID The ID of the node operator to which the validator belongs to.
              /// @param pubkey The pubkey of the validator.
              /// @param amountDeposited The amount of ETH deposited into the deposit contract for that validator.
              event ValidatorInitiated(bytes32 indexed id, uint256 indexed operatorID, bytes pubkey, uint256 amountDeposited);
              /// @notice Emitted when the protocol has allocated ETH to the UnstakeRequestsManager.
              /// @param amount The amount of ETH allocated to the UnstakeRequestsManager.
              event AllocatedETHToUnstakeRequestsManager(uint256 amount);
              /// @notice Emitted when the protocol has allocated ETH to use for deposits into the deposit contract.
              /// @param amount The amount of ETH allocated to deposits.
              event AllocatedETHToDeposits(uint256 amount);
              /// @notice Emitted when the protocol has received returns from the returns aggregator.
              /// @param amount The amount of ETH received.
              event ReturnsReceived(uint256 amount);
          }
          /// @title Staking
          /// @notice Manages stake and unstake requests by users, keeps track of the total amount of ETH controlled by the
          /// protocol, and initiates new validators.
          contract Staking is Initializable, AccessControlEnumerableUpgradeable, IStaking, StakingEvents, ProtocolEvents {
              // Errors.
              error DoesNotReceiveETH();
              error InvalidConfiguration();
              error MaximumValidatorDepositExceeded();
              error MaximumMETHSupplyExceeded();
              error MinimumStakeBoundNotSatisfied();
              error MinimumUnstakeBoundNotSatisfied();
              error MinimumValidatorDepositNotSatisfied();
              error NotEnoughDepositETH();
              error NotEnoughUnallocatedETH();
              error NotReturnsAggregator();
              error NotUnstakeRequestsManager();
              error Paused();
              error PreviouslyUsedValidator();
              error ZeroAddress();
              error InvalidDepositRoot(bytes32);
              error StakeBelowMinimumMETHAmount(uint256 methAmount, uint256 expectedMinimum);
              error UnstakeBelowMinimumETHAmount(uint256 ethAmount, uint256 expectedMinimum);
              error InvalidWithdrawalCredentialsWrongLength(uint256);
              error InvalidWithdrawalCredentialsNotETH1(bytes12);
              error InvalidWithdrawalCredentialsWrongAddress(address);
              /// @notice Role allowed trigger administrative tasks such as allocating funds to / withdrawing surplusses from the
              /// UnstakeRequestsManager and setting various parameters on the contract.
              bytes32 public constant STAKING_MANAGER_ROLE = keccak256("STAKING_MANAGER_ROLE");
              /// @notice Role allowed to allocate funds to unstake requests manager and reserve funds to deposit into the
              /// validators.
              bytes32 public constant ALLOCATOR_SERVICE_ROLE = keccak256("ALLOCATER_SERVICE_ROLE");
              /// @notice Role allowed to initiate new validators by sending funds from the allocatedETHForDeposits balance
              /// to the beacon chain deposit contract.
              bytes32 public constant INITIATOR_SERVICE_ROLE = keccak256("INITIATOR_SERVICE_ROLE");
              /// @notice Role to manage the staking allowlist.
              bytes32 public constant STAKING_ALLOWLIST_MANAGER_ROLE = keccak256("STAKING_ALLOWLIST_MANAGER_ROLE");
              /// @notice Role allowed to stake ETH when allowlist is enabled.
              bytes32 public constant STAKING_ALLOWLIST_ROLE = keccak256("STAKING_ALLOWLIST_ROLE");
              /// @notice Role allowed to top up the unallocated ETH in the protocol.
              bytes32 public constant TOP_UP_ROLE = keccak256("TOP_UP_ROLE");
              /// @notice Payload struct submitted for validator initiation.
              /// @dev See also {initiateValidatorsWithDeposits}.
              struct ValidatorParams {
                  uint256 operatorID;
                  uint256 depositAmount;
                  bytes pubkey;
                  bytes withdrawalCredentials;
                  bytes signature;
                  bytes32 depositDataRoot;
              }
              /// @notice Keeps track of already initiated validators.
              /// @dev This is tracked to ensure that we never deposit for the same validator public key twice, which is a base
              /// assumption of this contract and the related off-chain accounting.
              mapping(bytes pubkey => bool exists) public usedValidators;
              /// @inheritdoc IStakingInitiationRead
              /// @dev This is needed to account for ETH that is still in flight, i.e. that has been sent to the deposit contract
              /// but has not been processed by the beacon chain yet. Once the off-chain oracle detects those deposits, they are
              /// recorded as `totalDepositsProcessed` in the oracle contract to avoid double counting. See also
              /// {totalControlled}.
              uint256 public totalDepositedInValidators;
              /// @inheritdoc IStakingInitiationRead
              uint256 public numInitiatedValidators;
              /// @notice The amount of ETH that is used to allocate to deposits and fill the pending unstake requests.
              uint256 public unallocatedETH;
              /// @notice The amount of ETH that is used deposit into validators.
              uint256 public allocatedETHForDeposits;
              /// @notice The minimum amount of ETH users can stake.
              uint256 public minimumStakeBound;
              /// @notice The minimum amount of mETH users can unstake.
              uint256 public minimumUnstakeBound;
              /// @notice When staking on Ethereum, validators must go through an entry queue to bring money into the system, and
              /// an exit queue to bring it back out. The entry queue increases in size as more people want to stake. While the
              /// money is in the entry queue, it is not earning any rewards. When a validator is active, or in the exit queue, it
              /// is earning rewards. Once a validator enters the entry queue, the only way that the money can be retrieved is by
              /// waiting for it to become active and then to exit it again. As of July 2023, the entry queue is approximately 40
              /// days and the exit queue is 0 days (with ~6 days of processing time).
              ///
              /// In a non-optimal scenario for the protocol, a user could stake (for example) 32 ETH to receive mETH, wait
              /// until a validator enters the queue, and then request to unstake to recover their 32 ETH. Now we have 32 ETH in
              /// the system which affects the exchange rate, but is not earning rewards.
              ///
              /// In this case, the 'fair' thing to do would be to make the user wait for the queue processing to finish before
              /// returning their funds. Because the tokens are fungible however, we have no way of matching 'pending' stakes to a
              /// particular user. This means that in order to fulfill unstake requests quickly, we must exit a different
              /// validator to return the user's funds. If we exit a validator, we can return the funds after ~5 days, but the
              /// original 32 ETH will not be earning for another 35 days, leading to a small but repeatable socialised loss of
              /// efficiency for the protocol. As we can only exit validators in chunks of 32 ETH, this case is also exacerbated
              /// by a user unstaking smaller amounts of ETH.
              ///
              /// To compensate for the fact that these two queues differ in length, we apply an adjustment to the exchange rate
              /// to reflect the difference and mitigate its effect on the protocol. This protects the protocol from the case
              /// above, and also from griefing attacks following the same principle. Essentially, when you stake you are
              /// receiving a value of mETH that discounts ~35 days worth of rewards in return for being able to access your
              /// money without waiting the full 40 days when unstaking. As the adjustment is applied to the exchange rate, this
              /// results in a small 'improvement' to the rate for all existing stakers (i.e. it is not a fee levied by the
              /// protocol itself).
              ///
              /// As the adjustment is applied to the exchange rate, the result is reflected in any user interface which shows the
              /// amount of mETH received when staking, meaning there is no surprise for users when staking or unstaking.
              /// @dev The value is in basis points (1/10000).
              uint16 public exchangeAdjustmentRate;
              /// @dev A basis point (often denoted as bp, 1bp = 0.01%) is a unit of measure used in finance to describe
              /// the percentage change in a financial instrument. This is a constant value set as 10000 which represents
              /// 100% in basis point terms.
              uint16 internal constant _BASIS_POINTS_DENOMINATOR = 10_000;
              /// @notice The maximum amount the exchange adjustment rate (10%) that can be set by the admin.
              uint16 internal constant _MAX_EXCHANGE_ADJUSTMENT_RATE = _BASIS_POINTS_DENOMINATOR / 10; // 10%
              /// @notice The minimum amount of ETH that the staking contract can send to the deposit contract to initiate new
              /// validators.
              /// @dev This is used as an additional safeguard to prevent sending deposits that would result in non-activated
              /// validators (since we don't do top-ups), that would need to be exited again to get the ETH back.
              uint256 public minimumDepositAmount;
              /// @notice The maximum amount of ETH that the staking contract can send to the deposit contract to initiate new
              /// validators.
              /// @dev This is used as an additional safeguard to prevent sending too large deposits. While this is not a critical
              /// issue as any surplus >32 ETH (at the time of writing) will automatically be withdrawn again at some point, it is
              /// still undesireable as it locks up not-earning ETH for the duration of the round trip decreasing the efficiency
              /// of the protocol.
              uint256 public maximumDepositAmount;
              /// @notice The beacon chain deposit contract.
              /// @dev ETH will be sent there during validator initiation.
              IDepositContract public depositContract;
              /// @notice The mETH token contract.
              /// @dev Tokens will be minted / burned during staking / unstaking.
              IMETH public mETH;
              /// @notice The oracle contract.
              /// @dev Tracks ETH on the beacon chain and other accounting relevant quantities.
              IOracleReadRecord public oracle;
              /// @notice The pauser contract.
              /// @dev Keeps the pause state across the protocol.
              IPauserRead public pauser;
              /// @notice The contract tracking unstake requests and related allocation and claim operations.
              IUnstakeRequestsManager public unstakeRequestsManager;
              /// @notice The address to receive beacon chain withdrawals (i.e. validator rewards and exits).
              /// @dev Changing this variable will not have an immediate effect as all exisiting validators will still have the
              /// original value set.
              address public withdrawalWallet;
              /// @notice The address for the returns aggregator contract to push funds.
              /// @dev See also {receiveReturns}.
              address public returnsAggregator;
              /// @notice The staking allowlist flag which, when enabled, allows staking only for addresses in allowlist.
              bool public isStakingAllowlist;
              /// @inheritdoc IStakingInitiationRead
              /// @dev This will be used to give off-chain services a sensible point in time to start their analysis from.
              uint256 public initializationBlockNumber;
              /// @notice The maximum amount of mETH that can be minted during the staking process.
              /// @dev This is used as an additional safeguard to create a maximum stake amount in the protocol. As the protocol
              /// scales up this value will be increased to allow for more staking.
              uint256 public maximumMETHSupply;
              /// @notice Configuration for contract initialization.
              struct Init {
                  address admin;
                  address manager;
                  address allocatorService;
                  address initiatorService;
                  address returnsAggregator;
                  address withdrawalWallet;
                  IMETH mETH;
                  IDepositContract depositContract;
                  IOracleReadRecord oracle;
                  IPauserRead pauser;
                  IUnstakeRequestsManager unstakeRequestsManager;
              }
              constructor() {
                  _disableInitializers();
              }
              /// @notice Inititalizes the contract.
              /// @dev MUST be called during the contract upgrade to set up the proxies state.
              function initialize(Init memory init) external initializer {
                  __AccessControlEnumerable_init();
                  _grantRole(DEFAULT_ADMIN_ROLE, init.admin);
                  _grantRole(STAKING_MANAGER_ROLE, init.manager);
                  _grantRole(ALLOCATOR_SERVICE_ROLE, init.allocatorService);
                  _grantRole(INITIATOR_SERVICE_ROLE, init.initiatorService);
                  // Intentionally does not set anyone as the TOP_UP_ROLE as it will only be granted
                  // in the off-chance that the top up functionality is required.
                  // Set up roles for the staking allowlist. Intentionally do not grant anyone the
                  // STAKING_ALLOWLIST_MANAGER_ROLE as it will only be granted later.
                  _setRoleAdmin(STAKING_ALLOWLIST_MANAGER_ROLE, STAKING_MANAGER_ROLE);
                  _setRoleAdmin(STAKING_ALLOWLIST_ROLE, STAKING_ALLOWLIST_MANAGER_ROLE);
                  mETH = init.mETH;
                  depositContract = init.depositContract;
                  oracle = init.oracle;
                  pauser = init.pauser;
                  returnsAggregator = init.returnsAggregator;
                  unstakeRequestsManager = init.unstakeRequestsManager;
                  withdrawalWallet = init.withdrawalWallet;
                  minimumStakeBound = 0.1 ether;
                  minimumUnstakeBound = 0.01 ether;
                  minimumDepositAmount = 32 ether;
                  maximumDepositAmount = 32 ether;
                  isStakingAllowlist = true;
                  initializationBlockNumber = block.number;
                  // Set the maximum mETH supply to some sensible amount which is expected to be changed as the
                  // protocol ramps up.
                  maximumMETHSupply = 1024 ether;
              }
              /// @notice Interface for users to stake their ETH with the protocol. Note: when allowlist is enabled, only users
              /// with the allowlist can stake.
              /// @dev Mints the corresponding amount of mETH (relative to the stake's share in the total ETH controlled by the
              /// protocol) to the user.
              /// @param minMETHAmount The minimum amount of mETH that the user expects to receive in return.
              function stake(uint256 minMETHAmount) external payable {
                  if (pauser.isStakingPaused()) {
                      revert Paused();
                  }
                  if (isStakingAllowlist) {
                      _checkRole(STAKING_ALLOWLIST_ROLE);
                  }
                  if (msg.value < minimumStakeBound) {
                      revert MinimumStakeBoundNotSatisfied();
                  }
                  uint256 mETHMintAmount = ethToMETH(msg.value);
                  if (mETHMintAmount + mETH.totalSupply() > maximumMETHSupply) {
                      revert MaximumMETHSupplyExceeded();
                  }
                  if (mETHMintAmount < minMETHAmount) {
                      revert StakeBelowMinimumMETHAmount(mETHMintAmount, minMETHAmount);
                  }
                  // Increment unallocated ETH after calculating the exchange rate to ensure
                  // a consistent rate.
                  unallocatedETH += msg.value;
                  emit Staked(msg.sender, msg.value, mETHMintAmount);
                  mETH.mint(msg.sender, mETHMintAmount);
              }
              /// @notice Interface for users to submit a request to unstake.
              /// @dev Transfers the specified amount of mETH to the staking contract and locks it there until it is burned on
              /// request claim. The staking contract must therefore be approved to move the user's mETH on their behalf.
              /// @param methAmount The amount of mETH to unstake.
              /// @param minETHAmount The minimum amount of ETH that the user expects to receive.
              /// @return The request ID.
              function unstakeRequest(uint128 methAmount, uint128 minETHAmount) external returns (uint256) {
                  return _unstakeRequest(methAmount, minETHAmount);
              }
              /// @notice Interface for users to submit a request to unstake with an ERC20 permit.
              /// @dev Transfers the specified amount of mETH to the staking contract and locks it there until it is burned on
              /// request claim. The permit must therefore allow the staking contract to move the user's mETH on their behalf.
              /// @return The request ID.
              function unstakeRequestWithPermit(
                  uint128 methAmount,
                  uint128 minETHAmount,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external returns (uint256) {
                  SafeERC20Upgradeable.safePermit(mETH, msg.sender, address(this), methAmount, deadline, v, r, s);
                  return _unstakeRequest(methAmount, minETHAmount);
              }
              /// @notice Processes a user's request to unstake by transferring the corresponding mETH to the staking contract
              /// and creating the request on the unstake requests manager.
              /// @param methAmount The amount of mETH to unstake.
              /// @param minETHAmount The minimum amount of ETH that the user expects to receive.
              function _unstakeRequest(uint128 methAmount, uint128 minETHAmount) internal returns (uint256) {
                  if (pauser.isUnstakeRequestsAndClaimsPaused()) {
                      revert Paused();
                  }
                  if (methAmount < minimumUnstakeBound) {
                      revert MinimumUnstakeBoundNotSatisfied();
                  }
                  uint128 ethAmount = uint128(mETHToETH(methAmount));
                  if (ethAmount < minETHAmount) {
                      revert UnstakeBelowMinimumETHAmount(ethAmount, minETHAmount);
                  }
                  uint256 requestID =
                      unstakeRequestsManager.create({requester: msg.sender, mETHLocked: methAmount, ethRequested: ethAmount});
                  emit UnstakeRequested({id: requestID, staker: msg.sender, ethAmount: ethAmount, mETHLocked: methAmount});
                  SafeERC20Upgradeable.safeTransferFrom(mETH, msg.sender, address(unstakeRequestsManager), methAmount);
                  return requestID;
              }
              /// @notice Interface for users to claim their finalized and filled unstaking requests.
              /// @dev See also {UnstakeRequestsManager} for a more detailed explanation of finalization and request filling.
              function claimUnstakeRequest(uint256 unstakeRequestID) external {
                  if (pauser.isUnstakeRequestsAndClaimsPaused()) {
                      revert Paused();
                  }
                  emit UnstakeRequestClaimed(unstakeRequestID, msg.sender);
                  unstakeRequestsManager.claim(unstakeRequestID, msg.sender);
              }
              /// @notice Returns the status of the request whether it is finalized and how much ETH has been filled.
              /// See also {UnstakeRequestsManager.requestInfo} for a more detailed explanation of finalization and request
              /// filling.
              /// @param unstakeRequestID The ID of the unstake request.
              /// @return bool indicating if the unstake request is finalized, and the amount of ETH that has been filled.
              function unstakeRequestInfo(uint256 unstakeRequestID) external view returns (bool, uint256) {
                  return unstakeRequestsManager.requestInfo(unstakeRequestID);
              }
              /// @notice Withdraws any surplus from the unstake requests manager.
              /// @dev The request manager is expected to return the funds by pushing them using
              /// {receiveFromUnstakeRequestsManager}.
              function reclaimAllocatedETHSurplus() external onlyRole(STAKING_MANAGER_ROLE) {
                  // Calls the receiveFromUnstakeRequestsManager() where we perform
                  // the accounting.
                  unstakeRequestsManager.withdrawAllocatedETHSurplus();
              }
              /// @notice Allocates ETH from the unallocatedETH balance to the unstake requests manager to fill pending requests
              /// and adds to the allocatedETHForDeposits balance that is used to initiate new validators.
              function allocateETH(uint256 allocateToUnstakeRequestsManager, uint256 allocateToDeposits)
                  external
                  onlyRole(ALLOCATOR_SERVICE_ROLE)
              {
                  if (pauser.isAllocateETHPaused()) {
                      revert Paused();
                  }
                  if (allocateToUnstakeRequestsManager + allocateToDeposits > unallocatedETH) {
                      revert NotEnoughUnallocatedETH();
                  }
                  unallocatedETH -= allocateToUnstakeRequestsManager + allocateToDeposits;
                  if (allocateToDeposits > 0) {
                      allocatedETHForDeposits += allocateToDeposits;
                      emit AllocatedETHToDeposits(allocateToDeposits);
                  }
                  if (allocateToUnstakeRequestsManager > 0) {
                      emit AllocatedETHToUnstakeRequestsManager(allocateToUnstakeRequestsManager);
                      unstakeRequestsManager.allocateETH{value: allocateToUnstakeRequestsManager}();
                  }
              }
              /// @notice Initiates new validators by sending ETH to the beacon chain deposit contract.
              /// @dev Cannot initiate the same validator (public key) twice. Since BLS signatures cannot be feasibly verified on
              /// the EVM, the caller must carefully make sure that the sent payloads (public keys + signatures) are correct,
              /// otherwise the sent ETH will be lost.
              function initiateValidatorsWithDeposits(ValidatorParams[] calldata validators, bytes32 expectedDepositRoot)
                  external
                  onlyRole(INITIATOR_SERVICE_ROLE)
              {
                  if (pauser.isInitiateValidatorsPaused()) {
                      revert Paused();
                  }
                  if (validators.length == 0) {
                      return;
                  }
                  // Check that the deposit root matches the given value. This ensures that the deposit contract state
                  // has not changed since the transaction was submitted, which means that a rogue node operator cannot
                  // front-run deposit transactions.
                  bytes32 actualRoot = depositContract.get_deposit_root();
                  if (expectedDepositRoot != actualRoot) {
                      revert InvalidDepositRoot(actualRoot);
                  }
                  // First loop is to check that all validators are valid according to our constraints and we record the
                  // validators and how much we have deposited.
                  uint256 amountDeposited = 0;
                  for (uint256 i = 0; i < validators.length; ++i) {
                      ValidatorParams calldata validator = validators[i];
                      if (usedValidators[validator.pubkey]) {
                          revert PreviouslyUsedValidator();
                      }
                      if (validator.depositAmount < minimumDepositAmount) {
                          revert MinimumValidatorDepositNotSatisfied();
                      }
                      if (validator.depositAmount > maximumDepositAmount) {
                          revert MaximumValidatorDepositExceeded();
                      }
                      _requireProtocolWithdrawalAccount(validator.withdrawalCredentials);
                      usedValidators[validator.pubkey] = true;
                      amountDeposited += validator.depositAmount;
                      emit ValidatorInitiated({
                          id: keccak256(validator.pubkey),
                          operatorID: validator.operatorID,
                          pubkey: validator.pubkey,
                          amountDeposited: validator.depositAmount
                      });
                  }
                  if (amountDeposited > allocatedETHForDeposits) {
                      revert NotEnoughDepositETH();
                  }
                  allocatedETHForDeposits -= amountDeposited;
                  totalDepositedInValidators += amountDeposited;
                  numInitiatedValidators += validators.length;
                  // Second loop is to send the deposits to the deposit contract. Keeps external calls to the deposit contract
                  // separate from state changes.
                  for (uint256 i = 0; i < validators.length; ++i) {
                      ValidatorParams calldata validator = validators[i];
                      depositContract.deposit{value: validator.depositAmount}({
                          pubkey: validator.pubkey,
                          withdrawal_credentials: validator.withdrawalCredentials,
                          signature: validator.signature,
                          deposit_data_root: validator.depositDataRoot
                      });
                  }
              }
              /// @inheritdoc IStakingReturnsWrite
              /// @dev Intended to be the called in the same transaction initiated by reclaimAllocatedETHSurplus().
              /// This should only be called in emergency scenarios, e.g. if the unstake requests manager has cancelled
              /// unfinalized requests and there is a surplus balance.
              /// Adds the received funds to the unallocated balance.
              function receiveFromUnstakeRequestsManager() external payable onlyUnstakeRequestsManager {
                  unallocatedETH += msg.value;
              }
              /// @notice Tops up the unallocated ETH balance to increase the amount of ETH in the protocol.
              /// @dev Bypasses the returns aggregator fee collection to inject ETH directly into the protocol.
              function topUp() external payable onlyRole(TOP_UP_ROLE) {
                  unallocatedETH += msg.value;
              }
              /// @notice Converts from mETH to ETH using the current exchange rate.
              /// The exchange rate is given by the total supply of mETH and total ETH controlled by the protocol.
              function ethToMETH(uint256 ethAmount) public view returns (uint256) {
                  // 1:1 exchange rate on the first stake.
                  // Using `METH.totalSupply` over `totalControlled` to check if the protocol is in its bootstrap phase since
                  // the latter can be manipulated, for example by transferring funds to the `ExecutionLayerReturnsReceiver`, and
                  // therefore be non-zero by the time the first stake is made
                  if (mETH.totalSupply() == 0) {
                      return ethAmount;
                  }
                  // deltaMETH = (1 - exchangeAdjustmentRate) * (mETHSupply / totalControlled) * ethAmount
                  // This rounds down to zero in the case of `(1 - exchangeAdjustmentRate) * ethAmount * mETHSupply <
                  // totalControlled`.
                  // While this scenario is theoretically possible, it can only be realised feasibly during the protocol's
                  // bootstrap phase and if `totalControlled` and `mETHSupply` can be changed independently of each other. Since
                  // the former is permissioned, and the latter is not permitted by the protocol, this cannot be exploited by an
                  // attacker.
                  return Math.mulDiv(
                      ethAmount,
                      mETH.totalSupply() * uint256(_BASIS_POINTS_DENOMINATOR - exchangeAdjustmentRate),
                      totalControlled() * uint256(_BASIS_POINTS_DENOMINATOR)
                  );
              }
              /// @notice Converts from ETH to mETH using the current exchange rate.
              /// The exchange rate is given by the total supply of mETH and total ETH controlled by the protocol.
              function mETHToETH(uint256 mETHAmount) public view returns (uint256) {
                  // 1:1 exchange rate on the first stake.
                  // Using `METH.totalSupply` over `totalControlled` to check if the protocol is in its bootstrap phase since
                  // the latter can be manipulated, for example by transferring funds to the `ExecutionLayerReturnsReceiver`, and
                  // therefore be non-zero by the time the first stake is made
                  if (mETH.totalSupply() == 0) {
                      return mETHAmount;
                  }
                  // deltaETH = (totalControlled / mETHSupply) * mETHAmount
                  // This rounds down to zero in the case of `mETHAmount * totalControlled < mETHSupply`.
                  // While this scenario is theoretically possible, it can only be realised feasibly during the protocol's
                  // bootstrap phase and if `totalControlled` and `mETHSupply` can be changed independently of each other. Since
                  // the former is permissioned, and the latter is not permitted by the protocol, this cannot be exploited by an
                  // attacker.
                  return Math.mulDiv(mETHAmount, totalControlled(), mETH.totalSupply());
              }
              /// @notice The total amount of ETH controlled by the protocol.
              /// @dev Sums over the balances of various contracts and the beacon chain information from the oracle.
              function totalControlled() public view returns (uint256) {
                  OracleRecord memory record = oracle.latestRecord();
                  uint256 total = 0;
                  total += unallocatedETH;
                  total += allocatedETHForDeposits;
                  /// The total ETH deposited to the beacon chain must be decreased by the deposits processed by the off-chain
                  /// oracle since it will be accounted for in the currentTotalValidatorBalance from that point onwards.
                  total += totalDepositedInValidators - record.cumulativeProcessedDepositAmount;
                  total += record.currentTotalValidatorBalance;
                  total += unstakeRequestsManager.balance();
                  return total;
              }
              /// @notice Checks if the given withdrawal credentials are a valid 0x01 prefixed withdrawal address.
              /// @dev See also
              /// https://github.com/ethereum/consensus-specs/blob/master/specs/phase0/validator.md#eth1_address_withdrawal_prefix
              function _requireProtocolWithdrawalAccount(bytes calldata withdrawalCredentials) internal view {
                  if (withdrawalCredentials.length != 32) {
                      revert InvalidWithdrawalCredentialsWrongLength(withdrawalCredentials.length);
                  }
                  // Check the ETH1_ADDRESS_WITHDRAWAL_PREFIX and that all other bytes are zero.
                  bytes12 prefixAndPadding = bytes12(withdrawalCredentials[:12]);
                  if (prefixAndPadding != 0x010000000000000000000000) {
                      revert InvalidWithdrawalCredentialsNotETH1(prefixAndPadding);
                  }
                  address addr = address(bytes20(withdrawalCredentials[12:32]));
                  if (addr != withdrawalWallet) {
                      revert InvalidWithdrawalCredentialsWrongAddress(addr);
                  }
              }
              /// @inheritdoc IStakingReturnsWrite
              /// @dev Adds the received funds to the unallocated balance.
              function receiveReturns() external payable onlyReturnsAggregator {
                  emit ReturnsReceived(msg.value);
                  unallocatedETH += msg.value;
              }
              /// @notice Ensures that the caller is the returns aggregator.
              modifier onlyReturnsAggregator() {
                  if (msg.sender != returnsAggregator) {
                      revert NotReturnsAggregator();
                  }
                  _;
              }
              /// @notice Ensures that the caller is the unstake requests manager.
              modifier onlyUnstakeRequestsManager() {
                  if (msg.sender != address(unstakeRequestsManager)) {
                      revert NotUnstakeRequestsManager();
                  }
                  _;
              }
              /// @notice Ensures that the given address is not the zero address.
              modifier notZeroAddress(address addr) {
                  if (addr == address(0)) {
                      revert ZeroAddress();
                  }
                  _;
              }
              /// @notice Sets the minimum amount of ETH users can stake.
              function setMinimumStakeBound(uint256 minimumStakeBound_) external onlyRole(STAKING_MANAGER_ROLE) {
                  minimumStakeBound = minimumStakeBound_;
                  emit ProtocolConfigChanged(
                      this.setMinimumStakeBound.selector, "setMinimumStakeBound(uint256)", abi.encode(minimumStakeBound_)
                  );
              }
              /// @notice Sets the minimum amount of mETH users can unstake.
              function setMinimumUnstakeBound(uint256 minimumUnstakeBound_) external onlyRole(STAKING_MANAGER_ROLE) {
                  minimumUnstakeBound = minimumUnstakeBound_;
                  emit ProtocolConfigChanged(
                      this.setMinimumUnstakeBound.selector, "setMinimumUnstakeBound(uint256)", abi.encode(minimumUnstakeBound_)
                  );
              }
              /// @notice Sets the staking adjust rate.
              function setExchangeAdjustmentRate(uint16 exchangeAdjustmentRate_) external onlyRole(STAKING_MANAGER_ROLE) {
                  if (exchangeAdjustmentRate_ > _MAX_EXCHANGE_ADJUSTMENT_RATE) {
                      revert InvalidConfiguration();
                  }
                  // even though this check is redundant with the one above, this function will be rarely used so we keep it as a
                  // reminder for future upgrades that this must never be violated.
                  assert(exchangeAdjustmentRate_ <= _BASIS_POINTS_DENOMINATOR);
                  exchangeAdjustmentRate = exchangeAdjustmentRate_;
                  emit ProtocolConfigChanged(
                      this.setExchangeAdjustmentRate.selector,
                      "setExchangeAdjustmentRate(uint16)",
                      abi.encode(exchangeAdjustmentRate_)
                  );
              }
              /// @notice Sets the minimum amount of ETH that the staking contract can send to the deposit contract to initiate
              /// new validators.
              function setMinimumDepositAmount(uint256 minimumDepositAmount_) external onlyRole(STAKING_MANAGER_ROLE) {
                  minimumDepositAmount = minimumDepositAmount_;
                  emit ProtocolConfigChanged(
                      this.setMinimumDepositAmount.selector, "setMinimumDepositAmount(uint256)", abi.encode(minimumDepositAmount_)
                  );
              }
              /// @notice Sets the maximum amount of ETH that the staking contract can send to the deposit contract to initiate
              /// new validators.
              function setMaximumDepositAmount(uint256 maximumDepositAmount_) external onlyRole(STAKING_MANAGER_ROLE) {
                  maximumDepositAmount = maximumDepositAmount_;
                  emit ProtocolConfigChanged(
                      this.setMaximumDepositAmount.selector, "setMaximumDepositAmount(uint256)", abi.encode(maximumDepositAmount_)
                  );
              }
              /// @notice Sets the maximumMETHSupply variable.
              /// Note: We intentionally allow this to be set lower than the current totalSupply so that the amount can be
              /// adjusted downwards by unstaking.
              /// See also {maximumMETHSupply}.
              function setMaximumMETHSupply(uint256 maximumMETHSupply_) external onlyRole(STAKING_MANAGER_ROLE) {
                  maximumMETHSupply = maximumMETHSupply_;
                  emit ProtocolConfigChanged(
                      this.setMaximumMETHSupply.selector, "setMaximumMETHSupply(uint256)", abi.encode(maximumMETHSupply_)
                  );
              }
              /// @notice Sets the address to receive beacon chain withdrawals (i.e. validator rewards and exits).
              /// @dev Changing this variable will not have an immediate effect as all exisiting validators will still have the
              /// original value set.
              function setWithdrawalWallet(address withdrawalWallet_)
                  external
                  onlyRole(STAKING_MANAGER_ROLE)
                  notZeroAddress(withdrawalWallet_)
              {
                  withdrawalWallet = withdrawalWallet_;
                  emit ProtocolConfigChanged(
                      this.setWithdrawalWallet.selector, "setWithdrawalWallet(address)", abi.encode(withdrawalWallet_)
                  );
              }
              /// @notice Sets the staking allowlist flag.
              function setStakingAllowlist(bool isStakingAllowlist_) external onlyRole(STAKING_MANAGER_ROLE) {
                  isStakingAllowlist = isStakingAllowlist_;
                  emit ProtocolConfigChanged(
                      this.setStakingAllowlist.selector, "setStakingAllowlist(bool)", abi.encode(isStakingAllowlist_)
                  );
              }
              receive() external payable {
                  revert DoesNotReceiveETH();
              }
              fallback() external payable {
                  revert DoesNotReceiveETH();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev External interface of AccessControl declared to support ERC165 detection.
           */
          interface IAccessControlUpgradeable {
              /**
               * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
               *
               * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
               * {RoleAdminChanged} not being emitted signaling this.
               *
               * _Available since v3.1._
               */
              event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
              /**
               * @dev Emitted when `account` is granted `role`.
               *
               * `sender` is the account that originated the contract call, an admin role
               * bearer except when using {AccessControl-_setupRole}.
               */
              event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
              /**
               * @dev Emitted when `account` is revoked `role`.
               *
               * `sender` is the account that originated the contract call:
               *   - if using `revokeRole`, it is the admin role bearer
               *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
               */
              event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
              /**
               * @dev Returns `true` if `account` has been granted `role`.
               */
              function hasRole(bytes32 role, address account) external view returns (bool);
              /**
               * @dev Returns the admin role that controls `role`. See {grantRole} and
               * {revokeRole}.
               *
               * To change a role's admin, use {AccessControl-_setRoleAdmin}.
               */
              function getRoleAdmin(bytes32 role) external view returns (bytes32);
              /**
               * @dev Grants `role` to `account`.
               *
               * If `account` had not been already granted `role`, emits a {RoleGranted}
               * event.
               *
               * Requirements:
               *
               * - the caller must have ``role``'s admin role.
               */
              function grantRole(bytes32 role, address account) external;
              /**
               * @dev Revokes `role` from `account`.
               *
               * If `account` had been granted `role`, emits a {RoleRevoked} event.
               *
               * Requirements:
               *
               * - the caller must have ``role``'s admin role.
               */
              function revokeRole(bytes32 role, address account) external;
              /**
               * @dev Revokes `role` from the calling account.
               *
               * Roles are often managed via {grantRole} and {revokeRole}: this function's
               * purpose is to provide a mechanism for accounts to lose their privileges
               * if they are compromised (such as when a trusted device is misplaced).
               *
               * If the calling account had been granted `role`, emits a {RoleRevoked}
               * event.
               *
               * Requirements:
               *
               * - the caller must be `account`.
               */
              function renounceRole(bytes32 role, address account) external;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract ContextUpgradeable is Initializable {
              function __Context_init() internal onlyInitializing {
              }
              function __Context_init_unchained() internal onlyInitializing {
              }
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
          pragma solidity ^0.8.0;
          import "./math/MathUpgradeable.sol";
          import "./math/SignedMathUpgradeable.sol";
          /**
           * @dev String operations.
           */
          library StringsUpgradeable {
              bytes16 private constant _SYMBOLS = "0123456789abcdef";
              uint8 private constant _ADDRESS_LENGTH = 20;
              /**
               * @dev Converts a `uint256` to its ASCII `string` decimal representation.
               */
              function toString(uint256 value) internal pure returns (string memory) {
                  unchecked {
                      uint256 length = MathUpgradeable.log10(value) + 1;
                      string memory buffer = new string(length);
                      uint256 ptr;
                      /// @solidity memory-safe-assembly
                      assembly {
                          ptr := add(buffer, add(32, length))
                      }
                      while (true) {
                          ptr--;
                          /// @solidity memory-safe-assembly
                          assembly {
                              mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                          }
                          value /= 10;
                          if (value == 0) break;
                      }
                      return buffer;
                  }
              }
              /**
               * @dev Converts a `int256` to its ASCII `string` decimal representation.
               */
              function toString(int256 value) internal pure returns (string memory) {
                  return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
               */
              function toHexString(uint256 value) internal pure returns (string memory) {
                  unchecked {
                      return toHexString(value, MathUpgradeable.log256(value) + 1);
                  }
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
               */
              function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                  bytes memory buffer = new bytes(2 * length + 2);
                  buffer[0] = "0";
                  buffer[1] = "x";
                  for (uint256 i = 2 * length + 1; i > 1; --i) {
                      buffer[i] = _SYMBOLS[value & 0xf];
                      value >>= 4;
                  }
                  require(value == 0, "Strings: hex length insufficient");
                  return string(buffer);
              }
              /**
               * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
               */
              function toHexString(address addr) internal pure returns (string memory) {
                  return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
              }
              /**
               * @dev Returns true if the two strings are equal.
               */
              function equal(string memory a, string memory b) internal pure returns (bool) {
                  return keccak256(bytes(a)) == keccak256(bytes(b));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
          pragma solidity ^0.8.0;
          import "./IERC165Upgradeable.sol";
          import "../../proxy/utils/Initializable.sol";
          /**
           * @dev Implementation of the {IERC165} interface.
           *
           * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
           * for the additional interface id that will be supported. For example:
           *
           * ```solidity
           * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
           *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
           * }
           * ```
           *
           * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
           */
          abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
              function __ERC165_init() internal onlyInitializing {
              }
              function __ERC165_init_unchained() internal onlyInitializing {
              }
              /**
               * @dev See {IERC165-supportsInterface}.
               */
              function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
                  return interfaceId == type(IERC165Upgradeable).interfaceId;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
          pragma solidity ^0.8.0;
          import "../IERC20Upgradeable.sol";
          /**
           * @dev Interface for the optional metadata functions from the ERC20 standard.
           *
           * _Available since v4.1._
           */
          interface IERC20MetadataUpgradeable is IERC20Upgradeable {
              /**
               * @dev Returns the name of the token.
               */
              function name() external view returns (string memory);
              /**
               * @dev Returns the symbol of the token.
               */
              function symbol() external view returns (string memory);
              /**
               * @dev Returns the decimals places of the token.
               */
              function decimals() external view returns (uint8);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `from` to `to` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 amount) external returns (bool);
          }
          // ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━
          // ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓
          // ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛
          // ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃��━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━
          // ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓
          // ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛
          // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          //
          // From: https://github.com/ethereum/consensus-specs/blob/dev/solidity_deposit_contract/deposit_contract.sol
          // SPDX-License-Identifier: CC0-1.0
          pragma solidity ^0.8.20;
          // This interface is designed to be compatible with the Vyper version.
          /// @notice This is the Ethereum 2.0 deposit contract interface.
          /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs
          interface IDepositContract {
              /// @notice A processed deposit event.
              event DepositEvent(bytes pubkey, bytes withdrawal_credentials, bytes amount, bytes signature, bytes index);
              /// @notice Submit a Phase 0 DepositData object.
              /// @param pubkey A BLS12-381 public key.
              /// @param withdrawal_credentials Commitment to a public key for withdrawals.
              /// @param signature A BLS12-381 signature.
              /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object.
              /// Used as a protection against malformed input.
              function deposit(
                  bytes calldata pubkey,
                  bytes calldata withdrawal_credentials,
                  bytes calldata signature,
                  bytes32 deposit_data_root
              ) external payable;
              /// @notice Query the current deposit root hash.
              /// @return The deposit root hash.
              function get_deposit_root() external view returns (bytes32);
              /// @notice Query the current deposit count.
              /// @return The deposit count encoded as a little endian 64-bit number.
              function get_deposit_count() external view returns (bytes memory);
          }
          // Based on official specification in https://eips.ethereum.org/EIPS/eip-165
          interface ERC165 {
              /// @notice Query if a contract implements an interface
              /// @param interfaceId The interface identifier, as specified in ERC-165
              /// @dev Interface identification is specified in ERC-165. This function
              ///  uses less than 30,000 gas.
              /// @return `true` if the contract implements `interfaceId` and
              ///  `interfaceId` is not 0xffffffff, `false` otherwise
              function supportsInterface(bytes4 interfaceId) external pure returns (bool);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.20;
          interface IPauserRead {
              /// @notice Flag indicating if staking is paused.
              function isStakingPaused() external view returns (bool);
              /// @notice Flag indicating if unstake requests are paused.
              function isUnstakeRequestsAndClaimsPaused() external view returns (bool);
              /// @notice Flag indicating if initiate validators is paused
              function isInitiateValidatorsPaused() external view returns (bool);
              /// @notice Flag indicating if submit oracle records is paused.
              function isSubmitOracleRecordsPaused() external view returns (bool);
              /// @notice Flag indicating if allocate ETH is paused.
              function isAllocateETHPaused() external view returns (bool);
          }
          interface IPauserWrite {
              /// @notice Pauses all actions.
              function pauseAll() external;
          }
          interface IPauser is IPauserRead, IPauserWrite {}
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library MathUpgradeable {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                          // The surrounding unchecked block does not change this fact.
                          // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1, "Math: mulDiv overflow");
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  //
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                  //
                  // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                  // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                  // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                  //
                  // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1 << (log2(a) >> 1);
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = sqrt(a);
                      return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 2, rounded down, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 128;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 64;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 32;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 16;
                      }
                      if (value >> 8 > 0) {
                          value >>= 8;
                          result += 8;
                      }
                      if (value >> 4 > 0) {
                          value >>= 4;
                          result += 4;
                      }
                      if (value >> 2 > 0) {
                          value >>= 2;
                          result += 2;
                      }
                      if (value >> 1 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log2(value);
                      return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 10, rounded down, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >= 10 ** 64) {
                          value /= 10 ** 64;
                          result += 64;
                      }
                      if (value >= 10 ** 32) {
                          value /= 10 ** 32;
                          result += 32;
                      }
                      if (value >= 10 ** 16) {
                          value /= 10 ** 16;
                          result += 16;
                      }
                      if (value >= 10 ** 8) {
                          value /= 10 ** 8;
                          result += 8;
                      }
                      if (value >= 10 ** 4) {
                          value /= 10 ** 4;
                          result += 4;
                      }
                      if (value >= 10 ** 2) {
                          value /= 10 ** 2;
                          result += 2;
                      }
                      if (value >= 10 ** 1) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log10(value);
                      return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 256, rounded down, of a positive value.
               * Returns 0 if given 0.
               *
               * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
               */
              function log256(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 16;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 8;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 4;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 2;
                      }
                      if (value >> 8 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log256(value);
                      return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMathUpgradeable {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC165 standard, as defined in the
           * https://eips.ethereum.org/EIPS/eip-165[EIP].
           *
           * Implementers can declare support of contract interfaces, which can then be
           * queried by others ({ERC165Checker}).
           *
           * For an implementation, see {ERC165}.
           */
          interface IERC165Upgradeable {
              /**
               * @dev Returns true if this contract implements the interface defined by
               * `interfaceId`. See the corresponding
               * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
               * to learn more about how these ids are created.
               *
               * This function call must use less than 30 000 gas.
               */
              function supportsInterface(bytes4 interfaceId) external view returns (bool);
          }