Transaction Hash:
Block:
11002990 at Oct-06-2020 03:25:19 PM +UTC
Transaction Fee:
0.01693152 ETH
$31.84
Gas Used:
105,822 Gas / 160 Gwei
Emitted Events:
256 |
AccessControlledAggregator.SubmissionReceived( submission=426350000000000, round=422, oracle=[Sender] 0xc4a92358757ef8d22580c5efed30d5241ac725ae )
|
257 |
AccessControlledAggregator.AnswerUpdated( current=427780000000000, roundId=422, updatedAt=1601997919 )
|
258 |
AccessControlledAggregator.AvailableFundsUpdated( amount=4545600000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x04668Ec2...D451c8F7F
Miner
| (zhizhu.top) | 1,767.437752226979177449 Eth | 1,767.454683746979177449 Eth | 0.01693152 | |
0xC4a92358...41ac725ae |
15.689352477193944382 Eth
Nonce: 146197
|
15.672420957193944382 Eth
Nonce: 146198
| 0.01693152 | ||
0xD79C42be...0e847cC91 | (Chainlink: CRO - ETH ACA 1) |
Execution Trace
AccessControlledAggregator.submit( _roundId=422, _submission=426350000000000 )
submit[FluxAggregator (ln:1055)]
validateOracleRound[FluxAggregator (ln:1058)]
add[FluxAggregator (ln:1870)]
previousAndCurrentUnanswered[FluxAggregator (ln:1870)]
supersedable[FluxAggregator (ln:1871)]
sub[FluxAggregator (ln:1871)]
oracleInitializeNewRound[FluxAggregator (ln:1063)]
initializeNewRound[FluxAggregator (ln:1613)]
updateTimedOutRoundInfo[FluxAggregator (ln:1590)]
sub[FluxAggregator (ln:1590)]
RoundDetails[FluxAggregator (ln:1593)]
NewRound[FluxAggregator (ln:1603)]
recordSubmission[FluxAggregator (ln:1064)]
acceptingSubmissions[FluxAggregator (ln:1763)]
push[FluxAggregator (ln:1765)]
SubmissionReceived[FluxAggregator (ln:1769)]
updateRoundAnswer[FluxAggregator (ln:1065)]
calculateInplace[FluxAggregator (ln:1714)]
quickselectTwo[Median (ln:219)]
shortSelectTwo[Median (ln:350)]
revert[Median (ln:284)]
revert[Median (ln:295)]
partition[Median (ln:352)]
quickselect[Median (ln:359)]
shortSelectTwo[Median (ln:312)]
revert[Median (ln:284)]
revert[Median (ln:295)]
partition[Median (ln:315)]
quickselect[Median (ln:360)]
shortSelectTwo[Median (ln:312)]
revert[Median (ln:284)]
revert[Median (ln:295)]
partition[Median (ln:315)]
quickselect[Median (ln:222)]
shortSelectTwo[Median (ln:312)]
revert[Median (ln:284)]
revert[Median (ln:295)]
partition[Median (ln:315)]
AnswerUpdated[FluxAggregator (ln:1720)]
payOracle[FluxAggregator (ln:1066)]
sub[FluxAggregator (ln:1752)]
add[FluxAggregator (ln:1753)]
add[FluxAggregator (ln:1755)]
AvailableFundsUpdated[FluxAggregator (ln:1757)]
deleteRoundDetails[FluxAggregator (ln:1067)]
validateAnswer[FluxAggregator (ln:1069)]
pragma solidity 0.6.6; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, "SafeMath: division by zero"); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, "SafeMath: modulo by zero"); return a % b; } } library SignedSafeMath { int256 constant private _INT256_MIN = -2**255; /** * @dev Multiplies two signed integers, reverts on overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Integer division of two signed integers truncating the quotient, reverts on division by zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Subtracts two signed integers, reverts on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Adds two signed integers, reverts on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } /** * @notice Computes average of two signed integers, ensuring that the computation * doesn't overflow. * @dev If the result is not an integer, it is rounded towards zero. For example, * avg(-3, -4) = -3 */ function avg(int256 _a, int256 _b) internal pure returns (int256) { if ((_a < 0 && _b > 0) || (_a > 0 && _b < 0)) { return add(_a, _b) / 2; } int256 remainder = (_a % 2 + _b % 2) / 2; return add(add(_a / 2, _b / 2), remainder); } } library Median { using SignedSafeMath for int256; int256 constant INT_MAX = 2**255-1; /** * @notice Returns the sorted middle, or the average of the two middle indexed items if the * array has an even number of elements. * @dev The list passed as an argument isn't modified. * @dev This algorithm has expected runtime O(n), but for adversarially chosen inputs * the runtime is O(n^2). * @param list The list of elements to compare */ function calculate(int256[] memory list) internal pure returns (int256) { return calculateInplace(copy(list)); } /** * @notice See documentation for function calculate. * @dev The list passed as an argument may be permuted. */ function calculateInplace(int256[] memory list) internal pure returns (int256) { require(0 < list.length, "list must not be empty"); uint256 len = list.length; uint256 middleIndex = len / 2; if (len % 2 == 0) { int256 median1; int256 median2; (median1, median2) = quickselectTwo(list, 0, len - 1, middleIndex - 1, middleIndex); return SignedSafeMath.avg(median1, median2); } else { return quickselect(list, 0, len - 1, middleIndex); } } /** * @notice Maximum length of list that shortSelectTwo can handle */ uint256 constant SHORTSELECTTWO_MAX_LENGTH = 7; /** * @notice Select the k1-th and k2-th element from list of length at most 7 * @dev Uses an optimal sorting network */ function shortSelectTwo( int256[] memory list, uint256 lo, uint256 hi, uint256 k1, uint256 k2 ) private pure returns (int256 k1th, int256 k2th) { // Uses an optimal sorting network (https://en.wikipedia.org/wiki/Sorting_network) // for lists of length 7. Network layout is taken from // http://jgamble.ripco.net/cgi-bin/nw.cgi?inputs=7&algorithm=hibbard&output=svg uint256 len = hi + 1 - lo; int256 x0 = list[lo + 0]; int256 x1 = 1 < len ? list[lo + 1] : INT_MAX; int256 x2 = 2 < len ? list[lo + 2] : INT_MAX; int256 x3 = 3 < len ? list[lo + 3] : INT_MAX; int256 x4 = 4 < len ? list[lo + 4] : INT_MAX; int256 x5 = 5 < len ? list[lo + 5] : INT_MAX; int256 x6 = 6 < len ? list[lo + 6] : INT_MAX; if (x0 > x1) {(x0, x1) = (x1, x0);} if (x2 > x3) {(x2, x3) = (x3, x2);} if (x4 > x5) {(x4, x5) = (x5, x4);} if (x0 > x2) {(x0, x2) = (x2, x0);} if (x1 > x3) {(x1, x3) = (x3, x1);} if (x4 > x6) {(x4, x6) = (x6, x4);} if (x1 > x2) {(x1, x2) = (x2, x1);} if (x5 > x6) {(x5, x6) = (x6, x5);} if (x0 > x4) {(x0, x4) = (x4, x0);} if (x1 > x5) {(x1, x5) = (x5, x1);} if (x2 > x6) {(x2, x6) = (x6, x2);} if (x1 > x4) {(x1, x4) = (x4, x1);} if (x3 > x6) {(x3, x6) = (x6, x3);} if (x2 > x4) {(x2, x4) = (x4, x2);} if (x3 > x5) {(x3, x5) = (x5, x3);} if (x3 > x4) {(x3, x4) = (x4, x3);} uint256 index1 = k1 - lo; if (index1 == 0) {k1th = x0;} else if (index1 == 1) {k1th = x1;} else if (index1 == 2) {k1th = x2;} else if (index1 == 3) {k1th = x3;} else if (index1 == 4) {k1th = x4;} else if (index1 == 5) {k1th = x5;} else if (index1 == 6) {k1th = x6;} else {revert("k1 out of bounds");} uint256 index2 = k2 - lo; if (k1 == k2) {return (k1th, k1th);} else if (index2 == 0) {return (k1th, x0);} else if (index2 == 1) {return (k1th, x1);} else if (index2 == 2) {return (k1th, x2);} else if (index2 == 3) {return (k1th, x3);} else if (index2 == 4) {return (k1th, x4);} else if (index2 == 5) {return (k1th, x5);} else if (index2 == 6) {return (k1th, x6);} else {revert("k2 out of bounds");} } /** * @notice Selects the k-th ranked element from list, looking only at indices between lo and hi * (inclusive). Modifies list in-place. */ function quickselect(int256[] memory list, uint256 lo, uint256 hi, uint256 k) private pure returns (int256 kth) { require(lo <= k); require(k <= hi); while (lo < hi) { if (hi - lo < SHORTSELECTTWO_MAX_LENGTH) { int256 ignore; (kth, ignore) = shortSelectTwo(list, lo, hi, k, k); return kth; } uint256 pivotIndex = partition(list, lo, hi); if (k <= pivotIndex) { // since pivotIndex < (original hi passed to partition), // termination is guaranteed in this case hi = pivotIndex; } else { // since (original lo passed to partition) <= pivotIndex, // termination is guaranteed in this case lo = pivotIndex + 1; } } return list[lo]; } /** * @notice Selects the k1-th and k2-th ranked elements from list, looking only at indices between * lo and hi (inclusive). Modifies list in-place. */ function quickselectTwo( int256[] memory list, uint256 lo, uint256 hi, uint256 k1, uint256 k2 ) internal // for testing pure returns (int256 k1th, int256 k2th) { require(k1 < k2); require(lo <= k1 && k1 <= hi); require(lo <= k2 && k2 <= hi); while (true) { if (hi - lo < SHORTSELECTTWO_MAX_LENGTH) { return shortSelectTwo(list, lo, hi, k1, k2); } uint256 pivotIdx = partition(list, lo, hi); if (k2 <= pivotIdx) { hi = pivotIdx; } else if (pivotIdx < k1) { lo = pivotIdx + 1; } else { assert(k1 <= pivotIdx && pivotIdx < k2); k1th = quickselect(list, lo, pivotIdx, k1); k2th = quickselect(list, pivotIdx + 1, hi, k2); return (k1th, k2th); } } } /** * @notice Partitions list in-place using Hoare's partitioning scheme. * Only elements of list between indices lo and hi (inclusive) will be modified. * Returns an index i, such that: * - lo <= i < hi * - forall j in [lo, i]. list[j] <= list[i] * - forall j in [i, hi]. list[i] <= list[j] */ function partition(int256[] memory list, uint256 lo, uint256 hi) private pure returns (uint256) { // We don't care about overflow of the addition, because it would require a list // larger than any feasible computer's memory. int256 pivot = list[(lo + hi) / 2]; lo -= 1; // this can underflow. that's intentional. hi += 1; while (true) { do { lo += 1; } while (list[lo] < pivot); do { hi -= 1; } while (list[hi] > pivot); if (lo < hi) { (list[lo], list[hi]) = (list[hi], list[lo]); } else { // Let orig_lo and orig_hi be the original values of lo and hi passed to partition. // Then, hi < orig_hi, because hi decreases *strictly* monotonically // in each loop iteration and // - either list[orig_hi] > pivot, in which case the first loop iteration // will achieve hi < orig_hi; // - or list[orig_hi] <= pivot, in which case at least two loop iterations are // needed: // - lo will have to stop at least once in the interval // [orig_lo, (orig_lo + orig_hi)/2] // - (orig_lo + orig_hi)/2 < orig_hi return hi; } } } /** * @notice Makes an in-memory copy of the array passed in * @param list Reference to the array to be copied */ function copy(int256[] memory list) private pure returns(int256[] memory) { int256[] memory list2 = new int256[](list.length); for (uint256 i = 0; i < list.length; i++) { list2[i] = list[i]; } return list2; } } /** * @title The Owned contract * @notice A contract with helpers for basic contract ownership. */ contract Owned { address payable public owner; address private pendingOwner; event OwnershipTransferRequested( address indexed from, address indexed to ); event OwnershipTransferred( address indexed from, address indexed to ); constructor() public { owner = msg.sender; } /** * @dev Allows an owner to begin transferring ownership to a new address, * pending. */ function transferOwnership(address _to) external onlyOwner() { pendingOwner = _to; emit OwnershipTransferRequested(owner, _to); } /** * @dev Allows an ownership transfer to be completed by the recipient. */ function acceptOwnership() external { require(msg.sender == pendingOwner, "Must be proposed owner"); address oldOwner = owner; owner = msg.sender; pendingOwner = address(0); emit OwnershipTransferred(oldOwner, msg.sender); } /** * @dev Reverts if called by anyone other than the contract owner. */ modifier onlyOwner() { require(msg.sender == owner, "Only callable by owner"); _; } } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * This library is a version of Open Zeppelin's SafeMath, modified to support * unsigned 128 bit integers. */ library SafeMath128 { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint128 a, uint128 b) internal pure returns (uint128) { uint128 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint128 a, uint128 b) internal pure returns (uint128) { require(b <= a, "SafeMath: subtraction overflow"); uint128 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint128 a, uint128 b) internal pure returns (uint128) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint128 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint128 a, uint128 b) internal pure returns (uint128) { // Solidity only automatically asserts when dividing by 0 require(b > 0, "SafeMath: division by zero"); uint128 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint128 a, uint128 b) internal pure returns (uint128) { require(b != 0, "SafeMath: modulo by zero"); return a % b; } } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * This library is a version of Open Zeppelin's SafeMath, modified to support * unsigned 32 bit integers. */ library SafeMath32 { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint32 a, uint32 b) internal pure returns (uint32) { uint32 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint32 a, uint32 b) internal pure returns (uint32) { require(b <= a, "SafeMath: subtraction overflow"); uint32 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint32 a, uint32 b) internal pure returns (uint32) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint32 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint32 a, uint32 b) internal pure returns (uint32) { // Solidity only automatically asserts when dividing by 0 require(b > 0, "SafeMath: division by zero"); uint32 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint32 a, uint32 b) internal pure returns (uint32) { require(b != 0, "SafeMath: modulo by zero"); return a % b; } } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * This library is a version of Open Zeppelin's SafeMath, modified to support * unsigned 64 bit integers. */ library SafeMath64 { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint64 a, uint64 b) internal pure returns (uint64) { uint64 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint64 a, uint64 b) internal pure returns (uint64) { require(b <= a, "SafeMath: subtraction overflow"); uint64 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint64 a, uint64 b) internal pure returns (uint64) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint64 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint64 a, uint64 b) internal pure returns (uint64) { // Solidity only automatically asserts when dividing by 0 require(b > 0, "SafeMath: division by zero"); uint64 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint64 a, uint64 b) internal pure returns (uint64) { require(b != 0, "SafeMath: modulo by zero"); return a % b; } } interface AggregatorInterface { function latestAnswer() external view returns (int256); function latestTimestamp() external view returns (uint256); function latestRound() external view returns (uint256); function getAnswer(uint256 roundId) external view returns (int256); function getTimestamp(uint256 roundId) external view returns (uint256); event AnswerUpdated(int256 indexed current, uint256 indexed roundId, uint256 updatedAt); event NewRound(uint256 indexed roundId, address indexed startedBy, uint256 startedAt); } interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); // getRoundData and latestRoundData should both raise "No data present" // if they do not have data to report, instead of returning unset values // which could be misinterpreted as actual reported values. function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); } interface AggregatorV2V3Interface is AggregatorInterface, AggregatorV3Interface { } interface AggregatorValidatorInterface { function validate( uint256 previousRoundId, int256 previousAnswer, uint256 currentRoundId, int256 currentAnswer ) external returns (bool); } interface LinkTokenInterface { function allowance(address owner, address spender) external view returns (uint256 remaining); function approve(address spender, uint256 value) external returns (bool success); function balanceOf(address owner) external view returns (uint256 balance); function decimals() external view returns (uint8 decimalPlaces); function decreaseApproval(address spender, uint256 addedValue) external returns (bool success); function increaseApproval(address spender, uint256 subtractedValue) external; function name() external view returns (string memory tokenName); function symbol() external view returns (string memory tokenSymbol); function totalSupply() external view returns (uint256 totalTokensIssued); function transfer(address to, uint256 value) external returns (bool success); function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool success); function transferFrom(address from, address to, uint256 value) external returns (bool success); } /** * @title The Prepaid Aggregator contract * @notice Handles aggregating data pushed in from off-chain, and unlocks * payment for oracles as they report. Oracles' submissions are gathered in * rounds, with each round aggregating the submissions for each oracle into a * single answer. The latest aggregated answer is exposed as well as historical * answers and their updated at timestamp. */ contract FluxAggregator is AggregatorV2V3Interface, Owned { using SafeMath for uint256; using SafeMath128 for uint128; using SafeMath64 for uint64; using SafeMath32 for uint32; struct Round { int256 answer; uint64 startedAt; uint64 updatedAt; uint32 answeredInRound; } struct RoundDetails { int256[] submissions; uint32 maxSubmissions; uint32 minSubmissions; uint32 timeout; uint128 paymentAmount; } struct OracleStatus { uint128 withdrawable; uint32 startingRound; uint32 endingRound; uint32 lastReportedRound; uint32 lastStartedRound; int256 latestSubmission; uint16 index; address admin; address pendingAdmin; } struct Requester { bool authorized; uint32 delay; uint32 lastStartedRound; } struct Funds { uint128 available; uint128 allocated; } LinkTokenInterface public linkToken; AggregatorValidatorInterface public validator; // Round related params uint128 public paymentAmount; uint32 public maxSubmissionCount; uint32 public minSubmissionCount; uint32 public restartDelay; uint32 public timeout; uint8 public override decimals; string public override description; int256 immutable public minSubmissionValue; int256 immutable public maxSubmissionValue; uint256 constant public override version = 3; /** * @notice To ensure owner isn't withdrawing required funds as oracles are * submitting updates, we enforce that the contract maintains a minimum * reserve of RESERVE_ROUNDS * oracleCount() LINK earmarked for payment to * oracles. (Of course, this doesn't prevent the contract from running out of * funds without the owner's intervention.) */ uint256 constant private RESERVE_ROUNDS = 2; uint256 constant private MAX_ORACLE_COUNT = 77; uint32 constant private ROUND_MAX = 2**32-1; uint256 private constant VALIDATOR_GAS_LIMIT = 100000; // An error specific to the Aggregator V3 Interface, to prevent possible // confusion around accidentally reading unset values as reported values. string constant private V3_NO_DATA_ERROR = "No data present"; uint32 private reportingRoundId; uint32 internal latestRoundId; mapping(address => OracleStatus) private oracles; mapping(uint32 => Round) internal rounds; mapping(uint32 => RoundDetails) internal details; mapping(address => Requester) internal requesters; address[] private oracleAddresses; Funds private recordedFunds; event AvailableFundsUpdated( uint256 indexed amount ); event RoundDetailsUpdated( uint128 indexed paymentAmount, uint32 indexed minSubmissionCount, uint32 indexed maxSubmissionCount, uint32 restartDelay, uint32 timeout // measured in seconds ); event OraclePermissionsUpdated( address indexed oracle, bool indexed whitelisted ); event OracleAdminUpdated( address indexed oracle, address indexed newAdmin ); event OracleAdminUpdateRequested( address indexed oracle, address admin, address newAdmin ); event SubmissionReceived( int256 indexed submission, uint32 indexed round, address indexed oracle ); event RequesterPermissionsSet( address indexed requester, bool authorized, uint32 delay ); event ValidatorUpdated( address indexed previous, address indexed current ); /** * @notice set up the aggregator with initial configuration * @param _link The address of the LINK token * @param _paymentAmount The amount paid of LINK paid to each oracle per submission, in wei (units of 10⁻¹⁸ LINK) * @param _timeout is the number of seconds after the previous round that are * allowed to lapse before allowing an oracle to skip an unfinished round * @param _validator is an optional contract address for validating * external validation of answers * @param _minSubmissionValue is an immutable check for a lower bound of what * submission values are accepted from an oracle * @param _maxSubmissionValue is an immutable check for an upper bound of what * submission values are accepted from an oracle * @param _decimals represents the number of decimals to offset the answer by * @param _description a short description of what is being reported */ constructor( address _link, uint128 _paymentAmount, uint32 _timeout, address _validator, int256 _minSubmissionValue, int256 _maxSubmissionValue, uint8 _decimals, string memory _description ) public { linkToken = LinkTokenInterface(_link); updateFutureRounds(_paymentAmount, 0, 0, 0, _timeout); setValidator(_validator); minSubmissionValue = _minSubmissionValue; maxSubmissionValue = _maxSubmissionValue; decimals = _decimals; description = _description; rounds[0].updatedAt = uint64(block.timestamp.sub(uint256(_timeout))); } /** * @notice called by oracles when they have witnessed a need to update * @param _roundId is the ID of the round this submission pertains to * @param _submission is the updated data that the oracle is submitting */ function submit(uint256 _roundId, int256 _submission) external { bytes memory error = validateOracleRound(msg.sender, uint32(_roundId)); require(_submission >= minSubmissionValue, "value below minSubmissionValue"); require(_submission <= maxSubmissionValue, "value above maxSubmissionValue"); require(error.length == 0, string(error)); oracleInitializeNewRound(uint32(_roundId)); recordSubmission(_submission, uint32(_roundId)); (bool updated, int256 newAnswer) = updateRoundAnswer(uint32(_roundId)); payOracle(uint32(_roundId)); deleteRoundDetails(uint32(_roundId)); if (updated) { validateAnswer(uint32(_roundId), newAnswer); } } /** * @notice called by the owner to remove and add new oracles as well as * update the round related parameters that pertain to total oracle count * @param _removed is the list of addresses for the new Oracles being removed * @param _added is the list of addresses for the new Oracles being added * @param _addedAdmins is the admin addresses for the new respective _added * list. Only this address is allowed to access the respective oracle's funds * @param _minSubmissions is the new minimum submission count for each round * @param _maxSubmissions is the new maximum submission count for each round * @param _restartDelay is the number of rounds an Oracle has to wait before * they can initiate a round */ function changeOracles( address[] calldata _removed, address[] calldata _added, address[] calldata _addedAdmins, uint32 _minSubmissions, uint32 _maxSubmissions, uint32 _restartDelay ) external onlyOwner() { for (uint256 i = 0; i < _removed.length; i++) { removeOracle(_removed[i]); } require(_added.length == _addedAdmins.length, "need same oracle and admin count"); require(uint256(oracleCount()).add(_added.length) <= MAX_ORACLE_COUNT, "max oracles allowed"); for (uint256 i = 0; i < _added.length; i++) { addOracle(_added[i], _addedAdmins[i]); } updateFutureRounds(paymentAmount, _minSubmissions, _maxSubmissions, _restartDelay, timeout); } /** * @notice update the round and payment related parameters for subsequent * rounds * @param _paymentAmount is the payment amount for subsequent rounds * @param _minSubmissions is the new minimum submission count for each round * @param _maxSubmissions is the new maximum submission count for each round * @param _restartDelay is the number of rounds an Oracle has to wait before * they can initiate a round */ function updateFutureRounds( uint128 _paymentAmount, uint32 _minSubmissions, uint32 _maxSubmissions, uint32 _restartDelay, uint32 _timeout ) public onlyOwner() { uint32 oracleNum = oracleCount(); // Save on storage reads require(_maxSubmissions >= _minSubmissions, "max must equal/exceed min"); require(oracleNum >= _maxSubmissions, "max cannot exceed total"); require(oracleNum == 0 || oracleNum > _restartDelay, "delay cannot exceed total"); require(recordedFunds.available >= requiredReserve(_paymentAmount), "insufficient funds for payment"); if (oracleCount() > 0) { require(_minSubmissions > 0, "min must be greater than 0"); } paymentAmount = _paymentAmount; minSubmissionCount = _minSubmissions; maxSubmissionCount = _maxSubmissions; restartDelay = _restartDelay; timeout = _timeout; emit RoundDetailsUpdated( paymentAmount, _minSubmissions, _maxSubmissions, _restartDelay, _timeout ); } /** * @notice the amount of payment yet to be withdrawn by oracles */ function allocatedFunds() external view returns (uint128) { return recordedFunds.allocated; } /** * @notice the amount of future funding available to oracles */ function availableFunds() external view returns (uint128) { return recordedFunds.available; } /** * @notice recalculate the amount of LINK available for payouts */ function updateAvailableFunds() public { Funds memory funds = recordedFunds; uint256 nowAvailable = linkToken.balanceOf(address(this)).sub(funds.allocated); if (funds.available != nowAvailable) { recordedFunds.available = uint128(nowAvailable); emit AvailableFundsUpdated(nowAvailable); } } /** * @notice returns the number of oracles */ function oracleCount() public view returns (uint8) { return uint8(oracleAddresses.length); } /** * @notice returns an array of addresses containing the oracles on contract */ function getOracles() external view returns (address[] memory) { return oracleAddresses; } /** * @notice get the most recently reported answer * * @dev #[deprecated] Use latestRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended latestRoundData * instead which includes better verification information. */ function latestAnswer() public view virtual override returns (int256) { return rounds[latestRoundId].answer; } /** * @notice get the most recent updated at timestamp * * @dev #[deprecated] Use latestRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended latestRoundData * instead which includes better verification information. */ function latestTimestamp() public view virtual override returns (uint256) { return rounds[latestRoundId].updatedAt; } /** * @notice get the ID of the last updated round * * @dev #[deprecated] Use latestRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended latestRoundData * instead which includes better verification information. */ function latestRound() public view virtual override returns (uint256) { return latestRoundId; } /** * @notice get past rounds answers * @param _roundId the round number to retrieve the answer for * * @dev #[deprecated] Use getRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended getRoundData * instead which includes better verification information. */ function getAnswer(uint256 _roundId) public view virtual override returns (int256) { if (validRoundId(_roundId)) { return rounds[uint32(_roundId)].answer; } return 0; } /** * @notice get timestamp when an answer was last updated * @param _roundId the round number to retrieve the updated timestamp for * * @dev #[deprecated] Use getRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended getRoundData * instead which includes better verification information. */ function getTimestamp(uint256 _roundId) public view virtual override returns (uint256) { if (validRoundId(_roundId)) { return rounds[uint32(_roundId)].updatedAt; } return 0; } /** * @notice get data about a round. Consumers are encouraged to check * that they're receiving fresh data by inspecting the updatedAt and * answeredInRound return values. * @param _roundId the round ID to retrieve the round data for * @return roundId is the round ID for which data was retrieved * @return answer is the answer for the given round * @return startedAt is the timestamp when the round was started. This is 0 * if the round hasn't been started yet. * @return updatedAt is the timestamp when the round last was updated (i.e. * answer was last computed) * @return answeredInRound is the round ID of the round in which the answer * was computed. answeredInRound may be smaller than roundId when the round * timed out. answeredInRound is equal to roundId when the round didn't time out * and was completed regularly. * @dev Note that for in-progress rounds (i.e. rounds that haven't yet received * maxSubmissions) answer and updatedAt may change between queries. */ function getRoundData(uint80 _roundId) public view virtual override returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ) { Round memory r = rounds[uint32(_roundId)]; require(r.answeredInRound > 0 && validRoundId(_roundId), V3_NO_DATA_ERROR); return ( _roundId, r.answer, r.startedAt, r.updatedAt, r.answeredInRound ); } /** * @notice get data about the latest round. Consumers are encouraged to check * that they're receiving fresh data by inspecting the updatedAt and * answeredInRound return values. Consumers are encouraged to * use this more fully featured method over the "legacy" latestRound/ * latestAnswer/latestTimestamp functions. Consumers are encouraged to check * that they're receiving fresh data by inspecting the updatedAt and * answeredInRound return values. * @return roundId is the round ID for which data was retrieved * @return answer is the answer for the given round * @return startedAt is the timestamp when the round was started. This is 0 * if the round hasn't been started yet. * @return updatedAt is the timestamp when the round last was updated (i.e. * answer was last computed) * @return answeredInRound is the round ID of the round in which the answer * was computed. answeredInRound may be smaller than roundId when the round * timed out. answeredInRound is equal to roundId when the round didn't time * out and was completed regularly. * @dev Note that for in-progress rounds (i.e. rounds that haven't yet * received maxSubmissions) answer and updatedAt may change between queries. */ function latestRoundData() public view virtual override returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ) { return getRoundData(latestRoundId); } /** * @notice query the available amount of LINK for an oracle to withdraw */ function withdrawablePayment(address _oracle) external view returns (uint256) { return oracles[_oracle].withdrawable; } /** * @notice transfers the oracle's LINK to another address. Can only be called * by the oracle's admin. * @param _oracle is the oracle whose LINK is transferred * @param _recipient is the address to send the LINK to * @param _amount is the amount of LINK to send */ function withdrawPayment(address _oracle, address _recipient, uint256 _amount) external { require(oracles[_oracle].admin == msg.sender, "only callable by admin"); // Safe to downcast _amount because the total amount of LINK is less than 2^128. uint128 amount = uint128(_amount); uint128 available = oracles[_oracle].withdrawable; require(available >= amount, "insufficient withdrawable funds"); oracles[_oracle].withdrawable = available.sub(amount); recordedFunds.allocated = recordedFunds.allocated.sub(amount); assert(linkToken.transfer(_recipient, uint256(amount))); } /** * @notice transfers the owner's LINK to another address * @param _recipient is the address to send the LINK to * @param _amount is the amount of LINK to send */ function withdrawFunds(address _recipient, uint256 _amount) external onlyOwner() { uint256 available = uint256(recordedFunds.available); require(available.sub(requiredReserve(paymentAmount)) >= _amount, "insufficient reserve funds"); require(linkToken.transfer(_recipient, _amount), "token transfer failed"); updateAvailableFunds(); } /** * @notice get the admin address of an oracle * @param _oracle is the address of the oracle whose admin is being queried */ function getAdmin(address _oracle) external view returns (address) { return oracles[_oracle].admin; } /** * @notice transfer the admin address for an oracle * @param _oracle is the address of the oracle whose admin is being transferred * @param _newAdmin is the new admin address */ function transferAdmin(address _oracle, address _newAdmin) external { require(oracles[_oracle].admin == msg.sender, "only callable by admin"); oracles[_oracle].pendingAdmin = _newAdmin; emit OracleAdminUpdateRequested(_oracle, msg.sender, _newAdmin); } /** * @notice accept the admin address transfer for an oracle * @param _oracle is the address of the oracle whose admin is being transferred */ function acceptAdmin(address _oracle) external { require(oracles[_oracle].pendingAdmin == msg.sender, "only callable by pending admin"); oracles[_oracle].pendingAdmin = address(0); oracles[_oracle].admin = msg.sender; emit OracleAdminUpdated(_oracle, msg.sender); } /** * @notice allows non-oracles to request a new round */ function requestNewRound() external returns (uint80) { require(requesters[msg.sender].authorized, "not authorized requester"); uint32 current = reportingRoundId; require(rounds[current].updatedAt > 0 || timedOut(current), "prev round must be supersedable"); uint32 newRoundId = current.add(1); requesterInitializeNewRound(newRoundId); return newRoundId; } /** * @notice allows the owner to specify new non-oracles to start new rounds * @param _requester is the address to set permissions for * @param _authorized is a boolean specifying whether they can start new rounds or not * @param _delay is the number of rounds the requester must wait before starting another round */ function setRequesterPermissions(address _requester, bool _authorized, uint32 _delay) external onlyOwner() { if (requesters[_requester].authorized == _authorized) return; if (_authorized) { requesters[_requester].authorized = _authorized; requesters[_requester].delay = _delay; } else { delete requesters[_requester]; } emit RequesterPermissionsSet(_requester, _authorized, _delay); } /** * @notice called through LINK's transferAndCall to update available funds * in the same transaction as the funds were transferred to the aggregator * @param _data is mostly ignored. It is checked for length, to be sure * nothing strange is passed in. */ function onTokenTransfer(address, uint256, bytes calldata _data) external { require(_data.length == 0, "transfer doesn't accept calldata"); updateAvailableFunds(); } /** * @notice a method to provide all current info oracles need. Intended only * only to be callable by oracles. Not for use by contracts to read state. * @param _oracle the address to look up information for. */ function oracleRoundState(address _oracle, uint32 _queriedRoundId) external view returns ( bool _eligibleToSubmit, uint32 _roundId, int256 _latestSubmission, uint64 _startedAt, uint64 _timeout, uint128 _availableFunds, uint8 _oracleCount, uint128 _paymentAmount ) { require(msg.sender == tx.origin, "off-chain reading only"); if (_queriedRoundId > 0) { Round storage round = rounds[_queriedRoundId]; RoundDetails storage details = details[_queriedRoundId]; return ( eligibleForSpecificRound(_oracle, _queriedRoundId), _queriedRoundId, oracles[_oracle].latestSubmission, round.startedAt, details.timeout, recordedFunds.available, oracleCount(), (round.startedAt > 0 ? details.paymentAmount : paymentAmount) ); } else { return oracleRoundStateSuggestRound(_oracle); } } /** * @notice method to update the address which does external data validation. * @param _newValidator designates the address of the new validation contract. */ function setValidator(address _newValidator) public onlyOwner() { address previous = address(validator); if (previous != _newValidator) { validator = AggregatorValidatorInterface(_newValidator); emit ValidatorUpdated(previous, _newValidator); } } /** * Private */ function initializeNewRound(uint32 _roundId) private { updateTimedOutRoundInfo(_roundId.sub(1)); reportingRoundId = _roundId; RoundDetails memory nextDetails = RoundDetails( new int256[](0), maxSubmissionCount, minSubmissionCount, timeout, paymentAmount ); details[_roundId] = nextDetails; rounds[_roundId].startedAt = uint64(block.timestamp); emit NewRound(_roundId, msg.sender, rounds[_roundId].startedAt); } function oracleInitializeNewRound(uint32 _roundId) private { if (!newRound(_roundId)) return; uint256 lastStarted = oracles[msg.sender].lastStartedRound; // cache storage reads if (_roundId <= lastStarted + restartDelay && lastStarted != 0) return; initializeNewRound(_roundId); oracles[msg.sender].lastStartedRound = _roundId; } function requesterInitializeNewRound(uint32 _roundId) private { if (!newRound(_roundId)) return; uint256 lastStarted = requesters[msg.sender].lastStartedRound; // cache storage reads require(_roundId > lastStarted + requesters[msg.sender].delay || lastStarted == 0, "must delay requests"); initializeNewRound(_roundId); requesters[msg.sender].lastStartedRound = _roundId; } function updateTimedOutRoundInfo(uint32 _roundId) private { if (!timedOut(_roundId)) return; uint32 prevId = _roundId.sub(1); rounds[_roundId].answer = rounds[prevId].answer; rounds[_roundId].answeredInRound = rounds[prevId].answeredInRound; rounds[_roundId].updatedAt = uint64(block.timestamp); delete details[_roundId]; } function eligibleForSpecificRound(address _oracle, uint32 _queriedRoundId) private view returns (bool _eligible) { if (rounds[_queriedRoundId].startedAt > 0) { return acceptingSubmissions(_queriedRoundId) && validateOracleRound(_oracle, _queriedRoundId).length == 0; } else { return delayed(_oracle, _queriedRoundId) && validateOracleRound(_oracle, _queriedRoundId).length == 0; } } function oracleRoundStateSuggestRound(address _oracle) private view returns ( bool _eligibleToSubmit, uint32 _roundId, int256 _latestSubmission, uint64 _startedAt, uint64 _timeout, uint128 _availableFunds, uint8 _oracleCount, uint128 _paymentAmount ) { Round storage round = rounds[0]; OracleStatus storage oracle = oracles[_oracle]; bool shouldSupersede = oracle.lastReportedRound == reportingRoundId || !acceptingSubmissions(reportingRoundId); // Instead of nudging oracles to submit to the next round, the inclusion of // the shouldSupersede bool in the if condition pushes them towards // submitting in a currently open round. if (supersedable(reportingRoundId) && shouldSupersede) { _roundId = reportingRoundId.add(1); round = rounds[_roundId]; _paymentAmount = paymentAmount; _eligibleToSubmit = delayed(_oracle, _roundId); } else { _roundId = reportingRoundId; round = rounds[_roundId]; _paymentAmount = details[_roundId].paymentAmount; _eligibleToSubmit = acceptingSubmissions(_roundId); } if (validateOracleRound(_oracle, _roundId).length != 0) { _eligibleToSubmit = false; } return ( _eligibleToSubmit, _roundId, oracle.latestSubmission, round.startedAt, details[_roundId].timeout, recordedFunds.available, oracleCount(), _paymentAmount ); } function updateRoundAnswer(uint32 _roundId) internal returns (bool, int256) { if (details[_roundId].submissions.length < details[_roundId].minSubmissions) { return (false, 0); } int256 newAnswer = Median.calculateInplace(details[_roundId].submissions); rounds[_roundId].answer = newAnswer; rounds[_roundId].updatedAt = uint64(block.timestamp); rounds[_roundId].answeredInRound = _roundId; latestRoundId = _roundId; emit AnswerUpdated(newAnswer, _roundId, now); return (true, newAnswer); } function validateAnswer( uint32 _roundId, int256 _newAnswer ) private { AggregatorValidatorInterface av = validator; // cache storage reads if (address(av) == address(0)) return; uint32 prevRound = _roundId.sub(1); uint32 prevAnswerRoundId = rounds[prevRound].answeredInRound; int256 prevRoundAnswer = rounds[prevRound].answer; // We do not want the validator to ever prevent reporting, so we limit its // gas usage and catch any errors that may arise. try av.validate{gas: VALIDATOR_GAS_LIMIT}( prevAnswerRoundId, prevRoundAnswer, _roundId, _newAnswer ) {} catch {} } function payOracle(uint32 _roundId) private { uint128 payment = details[_roundId].paymentAmount; Funds memory funds = recordedFunds; funds.available = funds.available.sub(payment); funds.allocated = funds.allocated.add(payment); recordedFunds = funds; oracles[msg.sender].withdrawable = oracles[msg.sender].withdrawable.add(payment); emit AvailableFundsUpdated(funds.available); } function recordSubmission(int256 _submission, uint32 _roundId) private { require(acceptingSubmissions(_roundId), "round not accepting submissions"); details[_roundId].submissions.push(_submission); oracles[msg.sender].lastReportedRound = _roundId; oracles[msg.sender].latestSubmission = _submission; emit SubmissionReceived(_submission, _roundId, msg.sender); } function deleteRoundDetails(uint32 _roundId) private { if (details[_roundId].submissions.length < details[_roundId].maxSubmissions) return; delete details[_roundId]; } function timedOut(uint32 _roundId) private view returns (bool) { uint64 startedAt = rounds[_roundId].startedAt; uint32 roundTimeout = details[_roundId].timeout; return startedAt > 0 && roundTimeout > 0 && startedAt.add(roundTimeout) < block.timestamp; } function getStartingRound(address _oracle) private view returns (uint32) { uint32 currentRound = reportingRoundId; if (currentRound != 0 && currentRound == oracles[_oracle].endingRound) { return currentRound; } return currentRound.add(1); } function previousAndCurrentUnanswered(uint32 _roundId, uint32 _rrId) private view returns (bool) { return _roundId.add(1) == _rrId && rounds[_rrId].updatedAt == 0; } function requiredReserve(uint256 payment) private view returns (uint256) { return payment.mul(oracleCount()).mul(RESERVE_ROUNDS); } function addOracle( address _oracle, address _admin ) private { require(!oracleEnabled(_oracle), "oracle already enabled"); require(_admin != address(0), "cannot set admin to 0"); require(oracles[_oracle].admin == address(0) || oracles[_oracle].admin == _admin, "owner cannot overwrite admin"); oracles[_oracle].startingRound = getStartingRound(_oracle); oracles[_oracle].endingRound = ROUND_MAX; oracles[_oracle].index = uint16(oracleAddresses.length); oracleAddresses.push(_oracle); oracles[_oracle].admin = _admin; emit OraclePermissionsUpdated(_oracle, true); emit OracleAdminUpdated(_oracle, _admin); } function removeOracle( address _oracle ) private { require(oracleEnabled(_oracle), "oracle not enabled"); oracles[_oracle].endingRound = reportingRoundId.add(1); address tail = oracleAddresses[uint256(oracleCount()).sub(1)]; uint16 index = oracles[_oracle].index; oracles[tail].index = index; delete oracles[_oracle].index; oracleAddresses[index] = tail; oracleAddresses.pop(); emit OraclePermissionsUpdated(_oracle, false); } function validateOracleRound(address _oracle, uint32 _roundId) private view returns (bytes memory) { // cache storage reads uint32 startingRound = oracles[_oracle].startingRound; uint32 rrId = reportingRoundId; if (startingRound == 0) return "not enabled oracle"; if (startingRound > _roundId) return "not yet enabled oracle"; if (oracles[_oracle].endingRound < _roundId) return "no longer allowed oracle"; if (oracles[_oracle].lastReportedRound >= _roundId) return "cannot report on previous rounds"; if (_roundId != rrId && _roundId != rrId.add(1) && !previousAndCurrentUnanswered(_roundId, rrId)) return "invalid round to report"; if (_roundId != 1 && !supersedable(_roundId.sub(1))) return "previous round not supersedable"; } function supersedable(uint32 _roundId) private view returns (bool) { return rounds[_roundId].updatedAt > 0 || timedOut(_roundId); } function oracleEnabled(address _oracle) private view returns (bool) { return oracles[_oracle].endingRound == ROUND_MAX; } function acceptingSubmissions(uint32 _roundId) private view returns (bool) { return details[_roundId].maxSubmissions != 0; } function delayed(address _oracle, uint32 _roundId) private view returns (bool) { uint256 lastStarted = oracles[_oracle].lastStartedRound; return _roundId > lastStarted + restartDelay || lastStarted == 0; } function newRound(uint32 _roundId) private view returns (bool) { return _roundId == reportingRoundId.add(1); } function validRoundId(uint256 _roundId) private view returns (bool) { return _roundId <= ROUND_MAX; } } interface AccessControllerInterface { function hasAccess(address user, bytes calldata data) external view returns (bool); } /** * @title SimpleWriteAccessController * @notice Gives access to accounts explicitly added to an access list by the * controller's owner. * @dev does not make any special permissions for externally, see * SimpleReadAccessController for that. */ contract SimpleWriteAccessController is AccessControllerInterface, Owned { bool public checkEnabled; mapping(address => bool) internal accessList; event AddedAccess(address user); event RemovedAccess(address user); event CheckAccessEnabled(); event CheckAccessDisabled(); constructor() public { checkEnabled = true; } /** * @notice Returns the access of an address * @param _user The address to query */ function hasAccess( address _user, bytes memory ) public view virtual override returns (bool) { return accessList[_user] || !checkEnabled; } /** * @notice Adds an address to the access list * @param _user The address to add */ function addAccess(address _user) external onlyOwner() { if (!accessList[_user]) { accessList[_user] = true; emit AddedAccess(_user); } } /** * @notice Removes an address from the access list * @param _user The address to remove */ function removeAccess(address _user) external onlyOwner() { if (accessList[_user]) { accessList[_user] = false; emit RemovedAccess(_user); } } /** * @notice makes the access check enforced */ function enableAccessCheck() external onlyOwner() { if (!checkEnabled) { checkEnabled = true; emit CheckAccessEnabled(); } } /** * @notice makes the access check unenforced */ function disableAccessCheck() external onlyOwner() { if (checkEnabled) { checkEnabled = false; emit CheckAccessDisabled(); } } /** * @dev reverts if the caller does not have access */ modifier checkAccess() { require(hasAccess(msg.sender, msg.data), "No access"); _; } } /** * @title SimpleReadAccessController * @notice Gives access to: * - any externally owned account (note that offchain actors can always read * any contract storage regardless of onchain access control measures, so this * does not weaken the access control while improving usability) * - accounts explicitly added to an access list * @dev SimpleReadAccessController is not suitable for access controlling writes * since it grants any externally owned account access! See * SimpleWriteAccessController for that. */ contract SimpleReadAccessController is SimpleWriteAccessController { /** * @notice Returns the access of an address * @param _user The address to query */ function hasAccess( address _user, bytes memory _calldata ) public view virtual override returns (bool) { return super.hasAccess(_user, _calldata) || _user == tx.origin; } } /** * @title AccessControlled FluxAggregator contract * @notice This contract requires addresses to be added to a controller * in order to read the answers stored in the FluxAggregator contract */ contract AccessControlledAggregator is FluxAggregator, SimpleReadAccessController { /** * @notice set up the aggregator with initial configuration * @param _link The address of the LINK token * @param _paymentAmount The amount paid of LINK paid to each oracle per submission, in wei (units of 10⁻¹⁸ LINK) * @param _timeout is the number of seconds after the previous round that are * allowed to lapse before allowing an oracle to skip an unfinished round * @param _validator is an optional contract address for validating * external validation of answers * @param _minSubmissionValue is an immutable check for a lower bound of what * submission values are accepted from an oracle * @param _maxSubmissionValue is an immutable check for an upper bound of what * submission values are accepted from an oracle * @param _decimals represents the number of decimals to offset the answer by * @param _description a short description of what is being reported */ constructor( address _link, uint128 _paymentAmount, uint32 _timeout, address _validator, int256 _minSubmissionValue, int256 _maxSubmissionValue, uint8 _decimals, string memory _description ) public FluxAggregator( _link, _paymentAmount, _timeout, _validator, _minSubmissionValue, _maxSubmissionValue, _decimals, _description ){} /** * @notice get data about a round. Consumers are encouraged to check * that they're receiving fresh data by inspecting the updatedAt and * answeredInRound return values. * @param _roundId the round ID to retrieve the round data for * @return roundId is the round ID for which data was retrieved * @return answer is the answer for the given round * @return startedAt is the timestamp when the round was started. This is 0 * if the round hasn't been started yet. * @return updatedAt is the timestamp when the round last was updated (i.e. * answer was last computed) * @return answeredInRound is the round ID of the round in which the answer * was computed. answeredInRound may be smaller than roundId when the round * timed out. answerInRound is equal to roundId when the round didn't time out * and was completed regularly. * @dev overridden funcion to add the checkAccess() modifier * @dev Note that for in-progress rounds (i.e. rounds that haven't yet * received maxSubmissions) answer and updatedAt may change between queries. */ function getRoundData(uint80 _roundId) public view override checkAccess() returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ) { return super.getRoundData(_roundId); } /** * @notice get data about the latest round. Consumers are encouraged to check * that they're receiving fresh data by inspecting the updatedAt and * answeredInRound return values. Consumers are encouraged to * use this more fully featured method over the "legacy" latestAnswer * functions. Consumers are encouraged to check that they're receiving fresh * data by inspecting the updatedAt and answeredInRound return values. * @return roundId is the round ID for which data was retrieved * @return answer is the answer for the given round * @return startedAt is the timestamp when the round was started. This is 0 * if the round hasn't been started yet. * @return updatedAt is the timestamp when the round last was updated (i.e. * answer was last computed) * @return answeredInRound is the round ID of the round in which the answer * was computed. answeredInRound may be smaller than roundId when the round * timed out. answerInRound is equal to roundId when the round didn't time out * and was completed regularly. * @dev overridden funcion to add the checkAccess() modifier * @dev Note that for in-progress rounds (i.e. rounds that haven't yet * received maxSubmissions) answer and updatedAt may change between queries. */ function latestRoundData() public view override checkAccess() returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ) { return super.latestRoundData(); } /** * @notice get the most recently reported answer * @dev overridden funcion to add the checkAccess() modifier * * @dev #[deprecated] Use latestRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended latestRoundData * instead which includes better verification information. */ function latestAnswer() public view override checkAccess() returns (int256) { return super.latestAnswer(); } /** * @notice get the most recently reported round ID * @dev overridden funcion to add the checkAccess() modifier * * @dev #[deprecated] Use latestRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended latestRoundData * instead which includes better verification information. */ function latestRound() public view override checkAccess() returns (uint256) { return super.latestRound(); } /** * @notice get the most recent updated at timestamp * @dev overridden funcion to add the checkAccess() modifier * * @dev #[deprecated] Use latestRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended latestRoundData * instead which includes better verification information. */ function latestTimestamp() public view override checkAccess() returns (uint256) { return super.latestTimestamp(); } /** * @notice get past rounds answers * @dev overridden funcion to add the checkAccess() modifier * @param _roundId the round number to retrieve the answer for * * @dev #[deprecated] Use getRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended getRoundData * instead which includes better verification information. */ function getAnswer(uint256 _roundId) public view override checkAccess() returns (int256) { return super.getAnswer(_roundId); } /** * @notice get timestamp when an answer was last updated * @dev overridden funcion to add the checkAccess() modifier * @param _roundId the round number to retrieve the updated timestamp for * * @dev #[deprecated] Use getRoundData instead. This does not error if no * answer has been reached, it will simply return 0. Either wait to point to * an already answered Aggregator or use the recommended getRoundData * instead which includes better verification information. */ function getTimestamp(uint256 _roundId) public view override checkAccess() returns (uint256) { return super.getTimestamp(_roundId); } }