Transaction Hash:
Block:
12551123 at Jun-01-2021 09:50:08 PM +UTC
Transaction Fee:
0.004327056202470162 ETH
$11.00
Gas Used:
180,294 Gas / 24.000001123 Gwei
Emitted Events:
77 |
KittyCore.Transfer( from=0x1d5c30676ca03adae00257568b830c8d424a1e53, to=[Sender] 0x18fceb2ca9c4beec42bb38c85ec435d6c500d351, tokenId=1325066 )
|
78 |
WyvernExchange.OrdersMatched( buyHash=0000000000000000000000000000000000000000000000000000000000000000, sellHash=080EF2D83A10A8D609F9F709CF1B7AC86C1498D662D4C7BBE61EA565AC2E864B, maker=0x1d5c30676ca03adae00257568b830c8d424a1e53, taker=[Sender] 0x18fceb2ca9c4beec42bb38c85ec435d6c500d351, price=28000000000000000, metadata=0000000000000000000000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x06012c8c...f8E7A266d | |||||
0x18fCeB2C...6C500d351 |
0.064725946 Eth
Nonce: 14
|
0.032398889797529838 Eth
Nonce: 15
| 0.032327056202470162 | ||
0x1D5C3067...D424A1e53 | 0.101096755746665225 Eth | 0.128396755746665225 Eth | 0.0273 | ||
0x5b325696...807C01073 | (OpenSea: Wallet) | 462.899488525938636431 Eth | 462.900188525938636431 Eth | 0.0007 | |
0x7Be8076f...6C946D12b | |||||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 861.638555552848730671 Eth | 861.642882609051200833 Eth | 0.004327056202470162 |
Execution Trace
ETH 0.028
WyvernExchange.atomicMatch_( addrs=[0x7Be8076f4EA4A4AD08075C2508e481d6C946D12b, 0x18fCeB2CA9c4BEec42bb38c85EC435D6C500d351, 0x1D5C30676cA03adAe00257568B830C8D424A1e53, 0x0000000000000000000000000000000000000000, 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d, 0x0000000000000000000000000000000000000000, 0x0000000000000000000000000000000000000000, 0x7Be8076f4EA4A4AD08075C2508e481d6C946D12b, 0x1D5C30676cA03adAe00257568B830C8D424A1e53, 0x0000000000000000000000000000000000000000, 0x5b3256965e7C3cF26E11FCAf296DfC8807C01073, 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d, 0x0000000000000000000000000000000000000000, 0x0000000000000000000000000000000000000000], uints=[250, 0, 0, 0, 28000000000000000, 0, 1622584078, 0, 20620930981641297928894944752538479919233095860330166214252680339522032551580, 250, 0, 0, 0, 28000000000000000, 0, 1621965249, 0, 56549134229298056881119729884497711597859433205051792962973140010634246923069], feeMethodsSidesKindsHowToCalls=[1, 0, 0, 0, 1, 1, 0, 0], calldataBuy=0x23B872DD000000000000000000000000000000000000000000000000000000000000000000000000000000000000000018FCEB2CA9C4BEEC42BB38C85EC435D6C500D351000000000000000000000000000000000000000000000000000000000014380A, calldataSell=0x23B872DD0000000000000000000000001D5C30676CA03ADAE00257568B830C8D424A1E530000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000014380A, replacementPatternBuy=0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, replacementPatternSell=0x000000000000000000000000000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000000000000000000000000000000000000000000000000000000000000000, staticExtradataBuy=0x, staticExtradataSell=0x, vs=[27, 27], rssMetadata=[lYYGm8uciK2WHnW8ABH4PYeLWl53pn/YFHIkSP67AAo=, fu0hSgW40XKFVY3hNGjBBBuGUZ4b8KrT7G1yUPpKTXc=, lYYGm8uciK2WHnW8ABH4PYeLWl53pn/YFHIkSP67AAo=, fu0hSgW40XKFVY3hNGjBBBuGUZ4b8KrT7G1yUPpKTXc=, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=] )

-
Null: 0x000...001.080ef2d8( )
-
WyvernProxyRegistry.proxies( 0x1D5C30676cA03adAe00257568B830C8D424A1e53 ) => ( 0x3bB42466c525A15618dBf687dF2B944Dd3aB2e22 )
-
WyvernProxyRegistry.CALL( )
-
OwnableDelegateProxy.CALL( )
- ETH 0.0007
OpenSea: Wallet.CALL( )
- ETH 0.0273
0x1d5c30676ca03adae00257568b830c8d424a1e53.CALL( )
OwnableDelegateProxy.1b0f7ba9( )
AuthenticatedProxy.proxy( dest=0x06012c8cf97BEaD5deAe237070F9587f8E7A266d, howToCall=0, calldata=0x23B872DD0000000000000000000000001D5C30676CA03ADAE00257568B830C8D424A1E5300000000000000000000000018FCEB2CA9C4BEEC42BB38C85EC435D6C500D351000000000000000000000000000000000000000000000000000000000014380A ) => ( result=True )
-
WyvernProxyRegistry.contracts( 0x7Be8076f4EA4A4AD08075C2508e481d6C946D12b ) => ( True )
-
KittyCore.transferFrom( _from=0x1D5C30676cA03adAe00257568B830C8D424A1e53, _to=0x18fCeB2CA9c4BEec42bb38c85EC435D6C500d351, _tokenId=1325066 )
-
atomicMatch_[Exchange (ln:1359)]
atomicMatch[Exchange (ln:1375)]
Order[Exchange (ln:1376)]
FeeMethod[Exchange (ln:1376)]
Side[Exchange (ln:1376)]
SaleKind[Exchange (ln:1376)]
HowToCall[Exchange (ln:1376)]
Sig[Exchange (ln:1377)]
Order[Exchange (ln:1378)]
FeeMethod[Exchange (ln:1378)]
Side[Exchange (ln:1378)]
SaleKind[Exchange (ln:1378)]
HowToCall[Exchange (ln:1378)]
Sig[Exchange (ln:1379)]
File 1 of 5: WyvernExchange
File 2 of 5: KittyCore
File 3 of 5: WyvernProxyRegistry
File 4 of 5: OwnableDelegateProxy
File 5 of 5: AuthenticatedProxy
pragma solidity ^0.4.13; library SafeMath { /** * @dev Multiplies two numbers, throws on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } /** * @dev Integer division of two numbers, truncating the quotient. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return a / b; } /** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } /** * @dev Adds two numbers, throws on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } /** * @dev Allows the current owner to relinquish control of the contract. */ function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } library ArrayUtils { /** * Replace bytes in an array with bytes in another array, guarded by a bitmask * Efficiency of this function is a bit unpredictable because of the EVM's word-specific model (arrays under 32 bytes will be slower) * * @dev Mask must be the size of the byte array. A nonzero byte means the byte array can be changed. * @param array The original array * @param desired The target array * @param mask The mask specifying which bits can be changed * @return The updated byte array (the parameter will be modified inplace) */ function guardedArrayReplace(bytes memory array, bytes memory desired, bytes memory mask) internal pure { require(array.length == desired.length); require(array.length == mask.length); uint words = array.length / 0x20; uint index = words * 0x20; assert(index / 0x20 == words); uint i; for (i = 0; i < words; i++) { /* Conceptually: array[i] = (!mask[i] && array[i]) || (mask[i] && desired[i]), bitwise in word chunks. */ assembly { let commonIndex := mul(0x20, add(1, i)) let maskValue := mload(add(mask, commonIndex)) mstore(add(array, commonIndex), or(and(not(maskValue), mload(add(array, commonIndex))), and(maskValue, mload(add(desired, commonIndex))))) } } /* Deal with the last section of the byte array. */ if (words > 0) { /* This overlaps with bytes already set but is still more efficient than iterating through each of the remaining bytes individually. */ i = words; assembly { let commonIndex := mul(0x20, add(1, i)) let maskValue := mload(add(mask, commonIndex)) mstore(add(array, commonIndex), or(and(not(maskValue), mload(add(array, commonIndex))), and(maskValue, mload(add(desired, commonIndex))))) } } else { /* If the byte array is shorter than a word, we must unfortunately do the whole thing bytewise. (bounds checks could still probably be optimized away in assembly, but this is a rare case) */ for (i = index; i < array.length; i++) { array[i] = ((mask[i] ^ 0xff) & array[i]) | (mask[i] & desired[i]); } } } /** * Test if two arrays are equal * Source: https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol * * @dev Arrays must be of equal length, otherwise will return false * @param a First array * @param b Second array * @return Whether or not all bytes in the arrays are equal */ function arrayEq(bytes memory a, bytes memory b) internal pure returns (bool) { bool success = true; assembly { let length := mload(a) // if lengths don't match the arrays are not equal switch eq(length, mload(b)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(a, 0x20) let end := add(mc, length) for { let cc := add(b, 0x20) // the next line is the loop condition: // while(uint(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } /** * Unsafe write byte array into a memory location * * @param index Memory location * @param source Byte array to write * @return End memory index */ function unsafeWriteBytes(uint index, bytes source) internal pure returns (uint) { if (source.length > 0) { assembly { let length := mload(source) let end := add(source, add(0x20, length)) let arrIndex := add(source, 0x20) let tempIndex := index for { } eq(lt(arrIndex, end), 1) { arrIndex := add(arrIndex, 0x20) tempIndex := add(tempIndex, 0x20) } { mstore(tempIndex, mload(arrIndex)) } index := add(index, length) } } return index; } /** * Unsafe write address into a memory location * * @param index Memory location * @param source Address to write * @return End memory index */ function unsafeWriteAddress(uint index, address source) internal pure returns (uint) { uint conv = uint(source) << 0x60; assembly { mstore(index, conv) index := add(index, 0x14) } return index; } /** * Unsafe write uint into a memory location * * @param index Memory location * @param source uint to write * @return End memory index */ function unsafeWriteUint(uint index, uint source) internal pure returns (uint) { assembly { mstore(index, source) index := add(index, 0x20) } return index; } /** * Unsafe write uint8 into a memory location * * @param index Memory location * @param source uint8 to write * @return End memory index */ function unsafeWriteUint8(uint index, uint8 source) internal pure returns (uint) { assembly { mstore8(index, source) index := add(index, 0x1) } return index; } } contract ReentrancyGuarded { bool reentrancyLock = false; /* Prevent a contract function from being reentrant-called. */ modifier reentrancyGuard { if (reentrancyLock) { revert(); } reentrancyLock = true; _; reentrancyLock = false; } } contract TokenRecipient { event ReceivedEther(address indexed sender, uint amount); event ReceivedTokens(address indexed from, uint256 value, address indexed token, bytes extraData); /** * @dev Receive tokens and generate a log event * @param from Address from which to transfer tokens * @param value Amount of tokens to transfer * @param token Address of token * @param extraData Additional data to log */ function receiveApproval(address from, uint256 value, address token, bytes extraData) public { ERC20 t = ERC20(token); require(t.transferFrom(from, this, value)); emit ReceivedTokens(from, value, token, extraData); } /** * @dev Receive Ether and generate a log event */ function () payable public { emit ReceivedEther(msg.sender, msg.value); } } contract ExchangeCore is ReentrancyGuarded, Ownable { /* The token used to pay exchange fees. */ ERC20 public exchangeToken; /* User registry. */ ProxyRegistry public registry; /* Token transfer proxy. */ TokenTransferProxy public tokenTransferProxy; /* Cancelled / finalized orders, by hash. */ mapping(bytes32 => bool) public cancelledOrFinalized; /* Orders verified by on-chain approval (alternative to ECDSA signatures so that smart contracts can place orders directly). */ mapping(bytes32 => bool) public approvedOrders; /* For split fee orders, minimum required protocol maker fee, in basis points. Paid to owner (who can change it). */ uint public minimumMakerProtocolFee = 0; /* For split fee orders, minimum required protocol taker fee, in basis points. Paid to owner (who can change it). */ uint public minimumTakerProtocolFee = 0; /* Recipient of protocol fees. */ address public protocolFeeRecipient; /* Fee method: protocol fee or split fee. */ enum FeeMethod { ProtocolFee, SplitFee } /* Inverse basis point. */ uint public constant INVERSE_BASIS_POINT = 10000; /* An ECDSA signature. */ struct Sig { /* v parameter */ uint8 v; /* r parameter */ bytes32 r; /* s parameter */ bytes32 s; } /* An order on the exchange. */ struct Order { /* Exchange address, intended as a versioning mechanism. */ address exchange; /* Order maker address. */ address maker; /* Order taker address, if specified. */ address taker; /* Maker relayer fee of the order, unused for taker order. */ uint makerRelayerFee; /* Taker relayer fee of the order, or maximum taker fee for a taker order. */ uint takerRelayerFee; /* Maker protocol fee of the order, unused for taker order. */ uint makerProtocolFee; /* Taker protocol fee of the order, or maximum taker fee for a taker order. */ uint takerProtocolFee; /* Order fee recipient or zero address for taker order. */ address feeRecipient; /* Fee method (protocol token or split fee). */ FeeMethod feeMethod; /* Side (buy/sell). */ SaleKindInterface.Side side; /* Kind of sale. */ SaleKindInterface.SaleKind saleKind; /* Target. */ address target; /* HowToCall. */ AuthenticatedProxy.HowToCall howToCall; /* Calldata. */ bytes calldata; /* Calldata replacement pattern, or an empty byte array for no replacement. */ bytes replacementPattern; /* Static call target, zero-address for no static call. */ address staticTarget; /* Static call extra data. */ bytes staticExtradata; /* Token used to pay for the order, or the zero-address as a sentinel value for Ether. */ address paymentToken; /* Base price of the order (in paymentTokens). */ uint basePrice; /* Auction extra parameter - minimum bid increment for English auctions, starting/ending price difference. */ uint extra; /* Listing timestamp. */ uint listingTime; /* Expiration timestamp - 0 for no expiry. */ uint expirationTime; /* Order salt, used to prevent duplicate hashes. */ uint salt; } event OrderApprovedPartOne (bytes32 indexed hash, address exchange, address indexed maker, address taker, uint makerRelayerFee, uint takerRelayerFee, uint makerProtocolFee, uint takerProtocolFee, address indexed feeRecipient, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, address target); event OrderApprovedPartTwo (bytes32 indexed hash, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, address staticTarget, bytes staticExtradata, address paymentToken, uint basePrice, uint extra, uint listingTime, uint expirationTime, uint salt, bool orderbookInclusionDesired); event OrderCancelled (bytes32 indexed hash); event OrdersMatched (bytes32 buyHash, bytes32 sellHash, address indexed maker, address indexed taker, uint price, bytes32 indexed metadata); /** * @dev Change the minimum maker fee paid to the protocol (owner only) * @param newMinimumMakerProtocolFee New fee to set in basis points */ function changeMinimumMakerProtocolFee(uint newMinimumMakerProtocolFee) public onlyOwner { minimumMakerProtocolFee = newMinimumMakerProtocolFee; } /** * @dev Change the minimum taker fee paid to the protocol (owner only) * @param newMinimumTakerProtocolFee New fee to set in basis points */ function changeMinimumTakerProtocolFee(uint newMinimumTakerProtocolFee) public onlyOwner { minimumTakerProtocolFee = newMinimumTakerProtocolFee; } /** * @dev Change the protocol fee recipient (owner only) * @param newProtocolFeeRecipient New protocol fee recipient address */ function changeProtocolFeeRecipient(address newProtocolFeeRecipient) public onlyOwner { protocolFeeRecipient = newProtocolFeeRecipient; } /** * @dev Transfer tokens * @param token Token to transfer * @param from Address to charge fees * @param to Address to receive fees * @param amount Amount of protocol tokens to charge */ function transferTokens(address token, address from, address to, uint amount) internal { if (amount > 0) { require(tokenTransferProxy.transferFrom(token, from, to, amount)); } } /** * @dev Charge a fee in protocol tokens * @param from Address to charge fees * @param to Address to receive fees * @param amount Amount of protocol tokens to charge */ function chargeProtocolFee(address from, address to, uint amount) internal { transferTokens(exchangeToken, from, to, amount); } /** * @dev Execute a STATICCALL (introduced with Ethereum Metropolis, non-state-modifying external call) * @param target Contract to call * @param calldata Calldata (appended to extradata) * @param extradata Base data for STATICCALL (probably function selector and argument encoding) * @return The result of the call (success or failure) */ function staticCall(address target, bytes memory calldata, bytes memory extradata) public view returns (bool result) { bytes memory combined = new bytes(calldata.length + extradata.length); uint index; assembly { index := add(combined, 0x20) } index = ArrayUtils.unsafeWriteBytes(index, extradata); ArrayUtils.unsafeWriteBytes(index, calldata); assembly { result := staticcall(gas, target, add(combined, 0x20), mload(combined), mload(0x40), 0) } return result; } /** * Calculate size of an order struct when tightly packed * * @param order Order to calculate size of * @return Size in bytes */ function sizeOf(Order memory order) internal pure returns (uint) { return ((0x14 * 7) + (0x20 * 9) + 4 + order.calldata.length + order.replacementPattern.length + order.staticExtradata.length); } /** * @dev Hash an order, returning the canonical order hash, without the message prefix * @param order Order to hash * @return Hash of order */ function hashOrder(Order memory order) internal pure returns (bytes32 hash) { /* Unfortunately abi.encodePacked doesn't work here, stack size constraints. */ uint size = sizeOf(order); bytes memory array = new bytes(size); uint index; assembly { index := add(array, 0x20) } index = ArrayUtils.unsafeWriteAddress(index, order.exchange); index = ArrayUtils.unsafeWriteAddress(index, order.maker); index = ArrayUtils.unsafeWriteAddress(index, order.taker); index = ArrayUtils.unsafeWriteUint(index, order.makerRelayerFee); index = ArrayUtils.unsafeWriteUint(index, order.takerRelayerFee); index = ArrayUtils.unsafeWriteUint(index, order.makerProtocolFee); index = ArrayUtils.unsafeWriteUint(index, order.takerProtocolFee); index = ArrayUtils.unsafeWriteAddress(index, order.feeRecipient); index = ArrayUtils.unsafeWriteUint8(index, uint8(order.feeMethod)); index = ArrayUtils.unsafeWriteUint8(index, uint8(order.side)); index = ArrayUtils.unsafeWriteUint8(index, uint8(order.saleKind)); index = ArrayUtils.unsafeWriteAddress(index, order.target); index = ArrayUtils.unsafeWriteUint8(index, uint8(order.howToCall)); index = ArrayUtils.unsafeWriteBytes(index, order.calldata); index = ArrayUtils.unsafeWriteBytes(index, order.replacementPattern); index = ArrayUtils.unsafeWriteAddress(index, order.staticTarget); index = ArrayUtils.unsafeWriteBytes(index, order.staticExtradata); index = ArrayUtils.unsafeWriteAddress(index, order.paymentToken); index = ArrayUtils.unsafeWriteUint(index, order.basePrice); index = ArrayUtils.unsafeWriteUint(index, order.extra); index = ArrayUtils.unsafeWriteUint(index, order.listingTime); index = ArrayUtils.unsafeWriteUint(index, order.expirationTime); index = ArrayUtils.unsafeWriteUint(index, order.salt); assembly { hash := keccak256(add(array, 0x20), size) } return hash; } /** * @dev Hash an order, returning the hash that a client must sign, including the standard message prefix * @param order Order to hash * @return Hash of message prefix and order hash per Ethereum format */ function hashToSign(Order memory order) internal pure returns (bytes32) { return keccak256("\x19Ethereum Signed Message:\n32", hashOrder(order)); } /** * @dev Assert an order is valid and return its hash * @param order Order to validate * @param sig ECDSA signature */ function requireValidOrder(Order memory order, Sig memory sig) internal view returns (bytes32) { bytes32 hash = hashToSign(order); require(validateOrder(hash, order, sig)); return hash; } /** * @dev Validate order parameters (does *not* check signature validity) * @param order Order to validate */ function validateOrderParameters(Order memory order) internal view returns (bool) { /* Order must be targeted at this protocol version (this Exchange contract). */ if (order.exchange != address(this)) { return false; } /* Order must possess valid sale kind parameter combination. */ if (!SaleKindInterface.validateParameters(order.saleKind, order.expirationTime)) { return false; } /* If using the split fee method, order must have sufficient protocol fees. */ if (order.feeMethod == FeeMethod.SplitFee && (order.makerProtocolFee < minimumMakerProtocolFee || order.takerProtocolFee < minimumTakerProtocolFee)) { return false; } return true; } /** * @dev Validate a provided previously approved / signed order, hash, and signature. * @param hash Order hash (already calculated, passed to avoid recalculation) * @param order Order to validate * @param sig ECDSA signature */ function validateOrder(bytes32 hash, Order memory order, Sig memory sig) internal view returns (bool) { /* Not done in an if-conditional to prevent unnecessary ecrecover evaluation, which seems to happen even though it should short-circuit. */ /* Order must have valid parameters. */ if (!validateOrderParameters(order)) { return false; } /* Order must have not been canceled or already filled. */ if (cancelledOrFinalized[hash]) { return false; } /* Order authentication. Order must be either: /* (a) previously approved */ if (approvedOrders[hash]) { return true; } /* or (b) ECDSA-signed by maker. */ if (ecrecover(hash, sig.v, sig.r, sig.s) == order.maker) { return true; } return false; } /** * @dev Approve an order and optionally mark it for orderbook inclusion. Must be called by the maker of the order * @param order Order to approve * @param orderbookInclusionDesired Whether orderbook providers should include the order in their orderbooks */ function approveOrder(Order memory order, bool orderbookInclusionDesired) internal { /* CHECKS */ /* Assert sender is authorized to approve order. */ require(msg.sender == order.maker); /* Calculate order hash. */ bytes32 hash = hashToSign(order); /* Assert order has not already been approved. */ require(!approvedOrders[hash]); /* EFFECTS */ /* Mark order as approved. */ approvedOrders[hash] = true; /* Log approval event. Must be split in two due to Solidity stack size limitations. */ { emit OrderApprovedPartOne(hash, order.exchange, order.maker, order.taker, order.makerRelayerFee, order.takerRelayerFee, order.makerProtocolFee, order.takerProtocolFee, order.feeRecipient, order.feeMethod, order.side, order.saleKind, order.target); } { emit OrderApprovedPartTwo(hash, order.howToCall, order.calldata, order.replacementPattern, order.staticTarget, order.staticExtradata, order.paymentToken, order.basePrice, order.extra, order.listingTime, order.expirationTime, order.salt, orderbookInclusionDesired); } } /** * @dev Cancel an order, preventing it from being matched. Must be called by the maker of the order * @param order Order to cancel * @param sig ECDSA signature */ function cancelOrder(Order memory order, Sig memory sig) internal { /* CHECKS */ /* Calculate order hash. */ bytes32 hash = requireValidOrder(order, sig); /* Assert sender is authorized to cancel order. */ require(msg.sender == order.maker); /* EFFECTS */ /* Mark order as cancelled, preventing it from being matched. */ cancelledOrFinalized[hash] = true; /* Log cancel event. */ emit OrderCancelled(hash); } /** * @dev Calculate the current price of an order (convenience function) * @param order Order to calculate the price of * @return The current price of the order */ function calculateCurrentPrice (Order memory order) internal view returns (uint) { return SaleKindInterface.calculateFinalPrice(order.side, order.saleKind, order.basePrice, order.extra, order.listingTime, order.expirationTime); } /** * @dev Calculate the price two orders would match at, if in fact they would match (otherwise fail) * @param buy Buy-side order * @param sell Sell-side order * @return Match price */ function calculateMatchPrice(Order memory buy, Order memory sell) view internal returns (uint) { /* Calculate sell price. */ uint sellPrice = SaleKindInterface.calculateFinalPrice(sell.side, sell.saleKind, sell.basePrice, sell.extra, sell.listingTime, sell.expirationTime); /* Calculate buy price. */ uint buyPrice = SaleKindInterface.calculateFinalPrice(buy.side, buy.saleKind, buy.basePrice, buy.extra, buy.listingTime, buy.expirationTime); /* Require price cross. */ require(buyPrice >= sellPrice); /* Maker/taker priority. */ return sell.feeRecipient != address(0) ? sellPrice : buyPrice; } /** * @dev Execute all ERC20 token / Ether transfers associated with an order match (fees and buyer => seller transfer) * @param buy Buy-side order * @param sell Sell-side order */ function executeFundsTransfer(Order memory buy, Order memory sell) internal returns (uint) { /* Only payable in the special case of unwrapped Ether. */ if (sell.paymentToken != address(0)) { require(msg.value == 0); } /* Calculate match price. */ uint price = calculateMatchPrice(buy, sell); /* If paying using a token (not Ether), transfer tokens. This is done prior to fee payments to that a seller will have tokens before being charged fees. */ if (price > 0 && sell.paymentToken != address(0)) { transferTokens(sell.paymentToken, buy.maker, sell.maker, price); } /* Amount that will be received by seller (for Ether). */ uint receiveAmount = price; /* Amount that must be sent by buyer (for Ether). */ uint requiredAmount = price; /* Determine maker/taker and charge fees accordingly. */ if (sell.feeRecipient != address(0)) { /* Sell-side order is maker. */ /* Assert taker fee is less than or equal to maximum fee specified by buyer. */ require(sell.takerRelayerFee <= buy.takerRelayerFee); if (sell.feeMethod == FeeMethod.SplitFee) { /* Assert taker fee is less than or equal to maximum fee specified by buyer. */ require(sell.takerProtocolFee <= buy.takerProtocolFee); /* Maker fees are deducted from the token amount that the maker receives. Taker fees are extra tokens that must be paid by the taker. */ if (sell.makerRelayerFee > 0) { uint makerRelayerFee = SafeMath.div(SafeMath.mul(sell.makerRelayerFee, price), INVERSE_BASIS_POINT); if (sell.paymentToken == address(0)) { receiveAmount = SafeMath.sub(receiveAmount, makerRelayerFee); sell.feeRecipient.transfer(makerRelayerFee); } else { transferTokens(sell.paymentToken, sell.maker, sell.feeRecipient, makerRelayerFee); } } if (sell.takerRelayerFee > 0) { uint takerRelayerFee = SafeMath.div(SafeMath.mul(sell.takerRelayerFee, price), INVERSE_BASIS_POINT); if (sell.paymentToken == address(0)) { requiredAmount = SafeMath.add(requiredAmount, takerRelayerFee); sell.feeRecipient.transfer(takerRelayerFee); } else { transferTokens(sell.paymentToken, buy.maker, sell.feeRecipient, takerRelayerFee); } } if (sell.makerProtocolFee > 0) { uint makerProtocolFee = SafeMath.div(SafeMath.mul(sell.makerProtocolFee, price), INVERSE_BASIS_POINT); if (sell.paymentToken == address(0)) { receiveAmount = SafeMath.sub(receiveAmount, makerProtocolFee); protocolFeeRecipient.transfer(makerProtocolFee); } else { transferTokens(sell.paymentToken, sell.maker, protocolFeeRecipient, makerProtocolFee); } } if (sell.takerProtocolFee > 0) { uint takerProtocolFee = SafeMath.div(SafeMath.mul(sell.takerProtocolFee, price), INVERSE_BASIS_POINT); if (sell.paymentToken == address(0)) { requiredAmount = SafeMath.add(requiredAmount, takerProtocolFee); protocolFeeRecipient.transfer(takerProtocolFee); } else { transferTokens(sell.paymentToken, buy.maker, protocolFeeRecipient, takerProtocolFee); } } } else { /* Charge maker fee to seller. */ chargeProtocolFee(sell.maker, sell.feeRecipient, sell.makerRelayerFee); /* Charge taker fee to buyer. */ chargeProtocolFee(buy.maker, sell.feeRecipient, sell.takerRelayerFee); } } else { /* Buy-side order is maker. */ /* Assert taker fee is less than or equal to maximum fee specified by seller. */ require(buy.takerRelayerFee <= sell.takerRelayerFee); if (sell.feeMethod == FeeMethod.SplitFee) { /* The Exchange does not escrow Ether, so direct Ether can only be used to with sell-side maker / buy-side taker orders. */ require(sell.paymentToken != address(0)); /* Assert taker fee is less than or equal to maximum fee specified by seller. */ require(buy.takerProtocolFee <= sell.takerProtocolFee); if (buy.makerRelayerFee > 0) { makerRelayerFee = SafeMath.div(SafeMath.mul(buy.makerRelayerFee, price), INVERSE_BASIS_POINT); transferTokens(sell.paymentToken, buy.maker, buy.feeRecipient, makerRelayerFee); } if (buy.takerRelayerFee > 0) { takerRelayerFee = SafeMath.div(SafeMath.mul(buy.takerRelayerFee, price), INVERSE_BASIS_POINT); transferTokens(sell.paymentToken, sell.maker, buy.feeRecipient, takerRelayerFee); } if (buy.makerProtocolFee > 0) { makerProtocolFee = SafeMath.div(SafeMath.mul(buy.makerProtocolFee, price), INVERSE_BASIS_POINT); transferTokens(sell.paymentToken, buy.maker, protocolFeeRecipient, makerProtocolFee); } if (buy.takerProtocolFee > 0) { takerProtocolFee = SafeMath.div(SafeMath.mul(buy.takerProtocolFee, price), INVERSE_BASIS_POINT); transferTokens(sell.paymentToken, sell.maker, protocolFeeRecipient, takerProtocolFee); } } else { /* Charge maker fee to buyer. */ chargeProtocolFee(buy.maker, buy.feeRecipient, buy.makerRelayerFee); /* Charge taker fee to seller. */ chargeProtocolFee(sell.maker, buy.feeRecipient, buy.takerRelayerFee); } } if (sell.paymentToken == address(0)) { /* Special-case Ether, order must be matched by buyer. */ require(msg.value >= requiredAmount); sell.maker.transfer(receiveAmount); /* Allow overshoot for variable-price auctions, refund difference. */ uint diff = SafeMath.sub(msg.value, requiredAmount); if (diff > 0) { buy.maker.transfer(diff); } } /* This contract should never hold Ether, however, we cannot assert this, since it is impossible to prevent anyone from sending Ether e.g. with selfdestruct. */ return price; } /** * @dev Return whether or not two orders can be matched with each other by basic parameters (does not check order signatures / calldata or perform static calls) * @param buy Buy-side order * @param sell Sell-side order * @return Whether or not the two orders can be matched */ function ordersCanMatch(Order memory buy, Order memory sell) internal view returns (bool) { return ( /* Must be opposite-side. */ (buy.side == SaleKindInterface.Side.Buy && sell.side == SaleKindInterface.Side.Sell) && /* Must use same fee method. */ (buy.feeMethod == sell.feeMethod) && /* Must use same payment token. */ (buy.paymentToken == sell.paymentToken) && /* Must match maker/taker addresses. */ (sell.taker == address(0) || sell.taker == buy.maker) && (buy.taker == address(0) || buy.taker == sell.maker) && /* One must be maker and the other must be taker (no bool XOR in Solidity). */ ((sell.feeRecipient == address(0) && buy.feeRecipient != address(0)) || (sell.feeRecipient != address(0) && buy.feeRecipient == address(0))) && /* Must match target. */ (buy.target == sell.target) && /* Must match howToCall. */ (buy.howToCall == sell.howToCall) && /* Buy-side order must be settleable. */ SaleKindInterface.canSettleOrder(buy.listingTime, buy.expirationTime) && /* Sell-side order must be settleable. */ SaleKindInterface.canSettleOrder(sell.listingTime, sell.expirationTime) ); } /** * @dev Atomically match two orders, ensuring validity of the match, and execute all associated state transitions. Protected against reentrancy by a contract-global lock. * @param buy Buy-side order * @param buySig Buy-side order signature * @param sell Sell-side order * @param sellSig Sell-side order signature */ function atomicMatch(Order memory buy, Sig memory buySig, Order memory sell, Sig memory sellSig, bytes32 metadata) internal reentrancyGuard { /* CHECKS */ /* Ensure buy order validity and calculate hash if necessary. */ bytes32 buyHash; if (buy.maker == msg.sender) { require(validateOrderParameters(buy)); } else { buyHash = requireValidOrder(buy, buySig); } /* Ensure sell order validity and calculate hash if necessary. */ bytes32 sellHash; if (sell.maker == msg.sender) { require(validateOrderParameters(sell)); } else { sellHash = requireValidOrder(sell, sellSig); } /* Must be matchable. */ require(ordersCanMatch(buy, sell)); /* Target must exist (prevent malicious selfdestructs just prior to order settlement). */ uint size; address target = sell.target; assembly { size := extcodesize(target) } require(size > 0); /* Must match calldata after replacement, if specified. */ if (buy.replacementPattern.length > 0) { ArrayUtils.guardedArrayReplace(buy.calldata, sell.calldata, buy.replacementPattern); } if (sell.replacementPattern.length > 0) { ArrayUtils.guardedArrayReplace(sell.calldata, buy.calldata, sell.replacementPattern); } require(ArrayUtils.arrayEq(buy.calldata, sell.calldata)); /* Retrieve delegateProxy contract. */ OwnableDelegateProxy delegateProxy = registry.proxies(sell.maker); /* Proxy must exist. */ require(delegateProxy != address(0)); /* Assert implementation. */ require(delegateProxy.implementation() == registry.delegateProxyImplementation()); /* Access the passthrough AuthenticatedProxy. */ AuthenticatedProxy proxy = AuthenticatedProxy(delegateProxy); /* EFFECTS */ /* Mark previously signed or approved orders as finalized. */ if (msg.sender != buy.maker) { cancelledOrFinalized[buyHash] = true; } if (msg.sender != sell.maker) { cancelledOrFinalized[sellHash] = true; } /* INTERACTIONS */ /* Execute funds transfer and pay fees. */ uint price = executeFundsTransfer(buy, sell); /* Execute specified call through proxy. */ require(proxy.proxy(sell.target, sell.howToCall, sell.calldata)); /* Static calls are intentionally done after the effectful call so they can check resulting state. */ /* Handle buy-side static call if specified. */ if (buy.staticTarget != address(0)) { require(staticCall(buy.staticTarget, sell.calldata, buy.staticExtradata)); } /* Handle sell-side static call if specified. */ if (sell.staticTarget != address(0)) { require(staticCall(sell.staticTarget, sell.calldata, sell.staticExtradata)); } /* Log match event. */ emit OrdersMatched(buyHash, sellHash, sell.feeRecipient != address(0) ? sell.maker : buy.maker, sell.feeRecipient != address(0) ? buy.maker : sell.maker, price, metadata); } } contract Exchange is ExchangeCore { /** * @dev Call guardedArrayReplace - library function exposed for testing. */ function guardedArrayReplace(bytes array, bytes desired, bytes mask) public pure returns (bytes) { ArrayUtils.guardedArrayReplace(array, desired, mask); return array; } /** * Test copy byte array * * @param arrToCopy Array to copy * @return byte array */ function testCopy(bytes arrToCopy) public pure returns (bytes) { bytes memory arr = new bytes(arrToCopy.length); uint index; assembly { index := add(arr, 0x20) } ArrayUtils.unsafeWriteBytes(index, arrToCopy); return arr; } /** * Test write address to bytes * * @param addr Address to write * @return byte array */ function testCopyAddress(address addr) public pure returns (bytes) { bytes memory arr = new bytes(0x14); uint index; assembly { index := add(arr, 0x20) } ArrayUtils.unsafeWriteAddress(index, addr); return arr; } /** * @dev Call calculateFinalPrice - library function exposed for testing. */ function calculateFinalPrice(SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, uint basePrice, uint extra, uint listingTime, uint expirationTime) public view returns (uint) { return SaleKindInterface.calculateFinalPrice(side, saleKind, basePrice, extra, listingTime, expirationTime); } /** * @dev Call hashOrder - Solidity ABI encoding limitation workaround, hopefully temporary. */ function hashOrder_( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata) public pure returns (bytes32) { return hashOrder( Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]) ); } /** * @dev Call hashToSign - Solidity ABI encoding limitation workaround, hopefully temporary. */ function hashToSign_( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata) public pure returns (bytes32) { return hashToSign( Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]) ); } /** * @dev Call validateOrderParameters - Solidity ABI encoding limitation workaround, hopefully temporary. */ function validateOrderParameters_ ( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata) view public returns (bool) { Order memory order = Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]); return validateOrderParameters( order ); } /** * @dev Call validateOrder - Solidity ABI encoding limitation workaround, hopefully temporary. */ function validateOrder_ ( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata, uint8 v, bytes32 r, bytes32 s) view public returns (bool) { Order memory order = Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]); return validateOrder( hashToSign(order), order, Sig(v, r, s) ); } /** * @dev Call approveOrder - Solidity ABI encoding limitation workaround, hopefully temporary. */ function approveOrder_ ( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata, bool orderbookInclusionDesired) public { Order memory order = Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]); return approveOrder(order, orderbookInclusionDesired); } /** * @dev Call cancelOrder - Solidity ABI encoding limitation workaround, hopefully temporary. */ function cancelOrder_( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata, uint8 v, bytes32 r, bytes32 s) public { return cancelOrder( Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]), Sig(v, r, s) ); } /** * @dev Call calculateCurrentPrice - Solidity ABI encoding limitation workaround, hopefully temporary. */ function calculateCurrentPrice_( address[7] addrs, uint[9] uints, FeeMethod feeMethod, SaleKindInterface.Side side, SaleKindInterface.SaleKind saleKind, AuthenticatedProxy.HowToCall howToCall, bytes calldata, bytes replacementPattern, bytes staticExtradata) public view returns (uint) { return calculateCurrentPrice( Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], feeMethod, side, saleKind, addrs[4], howToCall, calldata, replacementPattern, addrs[5], staticExtradata, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]) ); } /** * @dev Call ordersCanMatch - Solidity ABI encoding limitation workaround, hopefully temporary. */ function ordersCanMatch_( address[14] addrs, uint[18] uints, uint8[8] feeMethodsSidesKindsHowToCalls, bytes calldataBuy, bytes calldataSell, bytes replacementPatternBuy, bytes replacementPatternSell, bytes staticExtradataBuy, bytes staticExtradataSell) public view returns (bool) { Order memory buy = Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], FeeMethod(feeMethodsSidesKindsHowToCalls[0]), SaleKindInterface.Side(feeMethodsSidesKindsHowToCalls[1]), SaleKindInterface.SaleKind(feeMethodsSidesKindsHowToCalls[2]), addrs[4], AuthenticatedProxy.HowToCall(feeMethodsSidesKindsHowToCalls[3]), calldataBuy, replacementPatternBuy, addrs[5], staticExtradataBuy, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]); Order memory sell = Order(addrs[7], addrs[8], addrs[9], uints[9], uints[10], uints[11], uints[12], addrs[10], FeeMethod(feeMethodsSidesKindsHowToCalls[4]), SaleKindInterface.Side(feeMethodsSidesKindsHowToCalls[5]), SaleKindInterface.SaleKind(feeMethodsSidesKindsHowToCalls[6]), addrs[11], AuthenticatedProxy.HowToCall(feeMethodsSidesKindsHowToCalls[7]), calldataSell, replacementPatternSell, addrs[12], staticExtradataSell, ERC20(addrs[13]), uints[13], uints[14], uints[15], uints[16], uints[17]); return ordersCanMatch( buy, sell ); } /** * @dev Return whether or not two orders' calldata specifications can match * @param buyCalldata Buy-side order calldata * @param buyReplacementPattern Buy-side order calldata replacement mask * @param sellCalldata Sell-side order calldata * @param sellReplacementPattern Sell-side order calldata replacement mask * @return Whether the orders' calldata can be matched */ function orderCalldataCanMatch(bytes buyCalldata, bytes buyReplacementPattern, bytes sellCalldata, bytes sellReplacementPattern) public pure returns (bool) { if (buyReplacementPattern.length > 0) { ArrayUtils.guardedArrayReplace(buyCalldata, sellCalldata, buyReplacementPattern); } if (sellReplacementPattern.length > 0) { ArrayUtils.guardedArrayReplace(sellCalldata, buyCalldata, sellReplacementPattern); } return ArrayUtils.arrayEq(buyCalldata, sellCalldata); } /** * @dev Call calculateMatchPrice - Solidity ABI encoding limitation workaround, hopefully temporary. */ function calculateMatchPrice_( address[14] addrs, uint[18] uints, uint8[8] feeMethodsSidesKindsHowToCalls, bytes calldataBuy, bytes calldataSell, bytes replacementPatternBuy, bytes replacementPatternSell, bytes staticExtradataBuy, bytes staticExtradataSell) public view returns (uint) { Order memory buy = Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], FeeMethod(feeMethodsSidesKindsHowToCalls[0]), SaleKindInterface.Side(feeMethodsSidesKindsHowToCalls[1]), SaleKindInterface.SaleKind(feeMethodsSidesKindsHowToCalls[2]), addrs[4], AuthenticatedProxy.HowToCall(feeMethodsSidesKindsHowToCalls[3]), calldataBuy, replacementPatternBuy, addrs[5], staticExtradataBuy, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]); Order memory sell = Order(addrs[7], addrs[8], addrs[9], uints[9], uints[10], uints[11], uints[12], addrs[10], FeeMethod(feeMethodsSidesKindsHowToCalls[4]), SaleKindInterface.Side(feeMethodsSidesKindsHowToCalls[5]), SaleKindInterface.SaleKind(feeMethodsSidesKindsHowToCalls[6]), addrs[11], AuthenticatedProxy.HowToCall(feeMethodsSidesKindsHowToCalls[7]), calldataSell, replacementPatternSell, addrs[12], staticExtradataSell, ERC20(addrs[13]), uints[13], uints[14], uints[15], uints[16], uints[17]); return calculateMatchPrice( buy, sell ); } /** * @dev Call atomicMatch - Solidity ABI encoding limitation workaround, hopefully temporary. */ function atomicMatch_( address[14] addrs, uint[18] uints, uint8[8] feeMethodsSidesKindsHowToCalls, bytes calldataBuy, bytes calldataSell, bytes replacementPatternBuy, bytes replacementPatternSell, bytes staticExtradataBuy, bytes staticExtradataSell, uint8[2] vs, bytes32[5] rssMetadata) public payable { return atomicMatch( Order(addrs[0], addrs[1], addrs[2], uints[0], uints[1], uints[2], uints[3], addrs[3], FeeMethod(feeMethodsSidesKindsHowToCalls[0]), SaleKindInterface.Side(feeMethodsSidesKindsHowToCalls[1]), SaleKindInterface.SaleKind(feeMethodsSidesKindsHowToCalls[2]), addrs[4], AuthenticatedProxy.HowToCall(feeMethodsSidesKindsHowToCalls[3]), calldataBuy, replacementPatternBuy, addrs[5], staticExtradataBuy, ERC20(addrs[6]), uints[4], uints[5], uints[6], uints[7], uints[8]), Sig(vs[0], rssMetadata[0], rssMetadata[1]), Order(addrs[7], addrs[8], addrs[9], uints[9], uints[10], uints[11], uints[12], addrs[10], FeeMethod(feeMethodsSidesKindsHowToCalls[4]), SaleKindInterface.Side(feeMethodsSidesKindsHowToCalls[5]), SaleKindInterface.SaleKind(feeMethodsSidesKindsHowToCalls[6]), addrs[11], AuthenticatedProxy.HowToCall(feeMethodsSidesKindsHowToCalls[7]), calldataSell, replacementPatternSell, addrs[12], staticExtradataSell, ERC20(addrs[13]), uints[13], uints[14], uints[15], uints[16], uints[17]), Sig(vs[1], rssMetadata[2], rssMetadata[3]), rssMetadata[4] ); } } contract WyvernExchange is Exchange { string public constant name = "Project Wyvern Exchange"; string public constant version = "2.2"; string public constant codename = "Lambton Worm"; /** * @dev Initialize a WyvernExchange instance * @param registryAddress Address of the registry instance which this Exchange instance will use * @param tokenAddress Address of the token used for protocol fees */ constructor (ProxyRegistry registryAddress, TokenTransferProxy tokenTransferProxyAddress, ERC20 tokenAddress, address protocolFeeAddress) public { registry = registryAddress; tokenTransferProxy = tokenTransferProxyAddress; exchangeToken = tokenAddress; protocolFeeRecipient = protocolFeeAddress; owner = msg.sender; } } library SaleKindInterface { /** * Side: buy or sell. */ enum Side { Buy, Sell } /** * Currently supported kinds of sale: fixed price, Dutch auction. * English auctions cannot be supported without stronger escrow guarantees. * Future interesting options: Vickrey auction, nonlinear Dutch auctions. */ enum SaleKind { FixedPrice, DutchAuction } /** * @dev Check whether the parameters of a sale are valid * @param saleKind Kind of sale * @param expirationTime Order expiration time * @return Whether the parameters were valid */ function validateParameters(SaleKind saleKind, uint expirationTime) pure internal returns (bool) { /* Auctions must have a set expiration date. */ return (saleKind == SaleKind.FixedPrice || expirationTime > 0); } /** * @dev Return whether or not an order can be settled * @dev Precondition: parameters have passed validateParameters * @param listingTime Order listing time * @param expirationTime Order expiration time */ function canSettleOrder(uint listingTime, uint expirationTime) view internal returns (bool) { return (listingTime < now) && (expirationTime == 0 || now < expirationTime); } /** * @dev Calculate the settlement price of an order * @dev Precondition: parameters have passed validateParameters. * @param side Order side * @param saleKind Method of sale * @param basePrice Order base price * @param extra Order extra price data * @param listingTime Order listing time * @param expirationTime Order expiration time */ function calculateFinalPrice(Side side, SaleKind saleKind, uint basePrice, uint extra, uint listingTime, uint expirationTime) view internal returns (uint finalPrice) { if (saleKind == SaleKind.FixedPrice) { return basePrice; } else if (saleKind == SaleKind.DutchAuction) { uint diff = SafeMath.div(SafeMath.mul(extra, SafeMath.sub(now, listingTime)), SafeMath.sub(expirationTime, listingTime)); if (side == Side.Sell) { /* Sell-side - start price: basePrice. End price: basePrice - extra. */ return SafeMath.sub(basePrice, diff); } else { /* Buy-side - start price: basePrice. End price: basePrice + extra. */ return SafeMath.add(basePrice, diff); } } } } contract ProxyRegistry is Ownable { /* DelegateProxy implementation contract. Must be initialized. */ address public delegateProxyImplementation; /* Authenticated proxies by user. */ mapping(address => OwnableDelegateProxy) public proxies; /* Contracts pending access. */ mapping(address => uint) public pending; /* Contracts allowed to call those proxies. */ mapping(address => bool) public contracts; /* Delay period for adding an authenticated contract. This mitigates a particular class of potential attack on the Wyvern DAO (which owns this registry) - if at any point the value of assets held by proxy contracts exceeded the value of half the WYV supply (votes in the DAO), a malicious but rational attacker could buy half the Wyvern and grant themselves access to all the proxy contracts. A delay period renders this attack nonthreatening - given two weeks, if that happened, users would have plenty of time to notice and transfer their assets. */ uint public DELAY_PERIOD = 2 weeks; /** * Start the process to enable access for specified contract. Subject to delay period. * * @dev ProxyRegistry owner only * @param addr Address to which to grant permissions */ function startGrantAuthentication (address addr) public onlyOwner { require(!contracts[addr] && pending[addr] == 0); pending[addr] = now; } /** * End the process to nable access for specified contract after delay period has passed. * * @dev ProxyRegistry owner only * @param addr Address to which to grant permissions */ function endGrantAuthentication (address addr) public onlyOwner { require(!contracts[addr] && pending[addr] != 0 && ((pending[addr] + DELAY_PERIOD) < now)); pending[addr] = 0; contracts[addr] = true; } /** * Revoke access for specified contract. Can be done instantly. * * @dev ProxyRegistry owner only * @param addr Address of which to revoke permissions */ function revokeAuthentication (address addr) public onlyOwner { contracts[addr] = false; } /** * Register a proxy contract with this registry * * @dev Must be called by the user which the proxy is for, creates a new AuthenticatedProxy * @return New AuthenticatedProxy contract */ function registerProxy() public returns (OwnableDelegateProxy proxy) { require(proxies[msg.sender] == address(0)); proxy = new OwnableDelegateProxy(msg.sender, delegateProxyImplementation, abi.encodeWithSignature("initialize(address,address)", msg.sender, address(this))); proxies[msg.sender] = proxy; return proxy; } } contract TokenTransferProxy { /* Authentication registry. */ ProxyRegistry public registry; /** * Call ERC20 `transferFrom` * * @dev Authenticated contract only * @param token ERC20 token address * @param from From address * @param to To address * @param amount Transfer amount */ function transferFrom(address token, address from, address to, uint amount) public returns (bool) { require(registry.contracts(msg.sender)); return ERC20(token).transferFrom(from, to, amount); } } contract OwnedUpgradeabilityStorage { // Current implementation address internal _implementation; // Owner of the contract address private _upgradeabilityOwner; /** * @dev Tells the address of the owner * @return the address of the owner */ function upgradeabilityOwner() public view returns (address) { return _upgradeabilityOwner; } /** * @dev Sets the address of the owner */ function setUpgradeabilityOwner(address newUpgradeabilityOwner) internal { _upgradeabilityOwner = newUpgradeabilityOwner; } /** * @dev Tells the address of the current implementation * @return address of the current implementation */ function implementation() public view returns (address) { return _implementation; } /** * @dev Tells the proxy type (EIP 897) * @return Proxy type, 2 for forwarding proxy */ function proxyType() public pure returns (uint256 proxyTypeId) { return 2; } } contract AuthenticatedProxy is TokenRecipient, OwnedUpgradeabilityStorage { /* Whether initialized. */ bool initialized = false; /* Address which owns this proxy. */ address public user; /* Associated registry with contract authentication information. */ ProxyRegistry public registry; /* Whether access has been revoked. */ bool public revoked; /* Delegate call could be used to atomically transfer multiple assets owned by the proxy contract with one order. */ enum HowToCall { Call, DelegateCall } /* Event fired when the proxy access is revoked or unrevoked. */ event Revoked(bool revoked); /** * Initialize an AuthenticatedProxy * * @param addrUser Address of user on whose behalf this proxy will act * @param addrRegistry Address of ProxyRegistry contract which will manage this proxy */ function initialize (address addrUser, ProxyRegistry addrRegistry) public { require(!initialized); initialized = true; user = addrUser; registry = addrRegistry; } /** * Set the revoked flag (allows a user to revoke ProxyRegistry access) * * @dev Can be called by the user only * @param revoke Whether or not to revoke access */ function setRevoke(bool revoke) public { require(msg.sender == user); revoked = revoke; emit Revoked(revoke); } /** * Execute a message call from the proxy contract * * @dev Can be called by the user, or by a contract authorized by the registry as long as the user has not revoked access * @param dest Address to which the call will be sent * @param howToCall Which kind of call to make * @param calldata Calldata to send * @return Result of the call (success or failure) */ function proxy(address dest, HowToCall howToCall, bytes calldata) public returns (bool result) { require(msg.sender == user || (!revoked && registry.contracts(msg.sender))); if (howToCall == HowToCall.Call) { result = dest.call(calldata); } else if (howToCall == HowToCall.DelegateCall) { result = dest.delegatecall(calldata); } return result; } /** * Execute a message call and assert success * * @dev Same functionality as `proxy`, just asserts the return value * @param dest Address to which the call will be sent * @param howToCall What kind of call to make * @param calldata Calldata to send */ function proxyAssert(address dest, HowToCall howToCall, bytes calldata) public { require(proxy(dest, howToCall, calldata)); } } contract Proxy { /** * @dev Tells the address of the implementation where every call will be delegated. * @return address of the implementation to which it will be delegated */ function implementation() public view returns (address); /** * @dev Tells the type of proxy (EIP 897) * @return Type of proxy, 2 for upgradeable proxy */ function proxyType() public pure returns (uint256 proxyTypeId); /** * @dev Fallback function allowing to perform a delegatecall to the given implementation. * This function will return whatever the implementation call returns */ function () payable public { address _impl = implementation(); require(_impl != address(0)); assembly { let ptr := mload(0x40) calldatacopy(ptr, 0, calldatasize) let result := delegatecall(gas, _impl, ptr, calldatasize, 0, 0) let size := returndatasize returndatacopy(ptr, 0, size) switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } contract OwnedUpgradeabilityProxy is Proxy, OwnedUpgradeabilityStorage { /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event ProxyOwnershipTransferred(address previousOwner, address newOwner); /** * @dev This event will be emitted every time the implementation gets upgraded * @param implementation representing the address of the upgraded implementation */ event Upgraded(address indexed implementation); /** * @dev Upgrades the implementation address * @param implementation representing the address of the new implementation to be set */ function _upgradeTo(address implementation) internal { require(_implementation != implementation); _implementation = implementation; emit Upgraded(implementation); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyProxyOwner() { require(msg.sender == proxyOwner()); _; } /** * @dev Tells the address of the proxy owner * @return the address of the proxy owner */ function proxyOwner() public view returns (address) { return upgradeabilityOwner(); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0)); emit ProxyOwnershipTransferred(proxyOwner(), newOwner); setUpgradeabilityOwner(newOwner); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy. * @param implementation representing the address of the new implementation to be set. */ function upgradeTo(address implementation) public onlyProxyOwner { _upgradeTo(implementation); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy * and delegatecall the new implementation for initialization. * @param implementation representing the address of the new implementation to be set. * @param data represents the msg.data to bet sent in the low level call. This parameter may include the function * signature of the implementation to be called with the needed payload */ function upgradeToAndCall(address implementation, bytes data) payable public onlyProxyOwner { upgradeTo(implementation); require(address(this).delegatecall(data)); } } contract OwnableDelegateProxy is OwnedUpgradeabilityProxy { constructor(address owner, address initialImplementation, bytes calldata) public { setUpgradeabilityOwner(owner); _upgradeTo(initialImplementation); require(initialImplementation.delegatecall(calldata)); } }
File 2 of 5: KittyCore
pragma solidity ^0.4.11; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } /// @title Interface for contracts conforming to ERC-721: Non-Fungible Tokens /// @author Dieter Shirley <[email protected]> (https://github.com/dete) contract ERC721 { // Required methods function totalSupply() public view returns (uint256 total); function balanceOf(address _owner) public view returns (uint256 balance); function ownerOf(uint256 _tokenId) external view returns (address owner); function approve(address _to, uint256 _tokenId) external; function transfer(address _to, uint256 _tokenId) external; function transferFrom(address _from, address _to, uint256 _tokenId) external; // Events event Transfer(address from, address to, uint256 tokenId); event Approval(address owner, address approved, uint256 tokenId); // Optional // function name() public view returns (string name); // function symbol() public view returns (string symbol); // function tokensOfOwner(address _owner) external view returns (uint256[] tokenIds); // function tokenMetadata(uint256 _tokenId, string _preferredTransport) public view returns (string infoUrl); // ERC-165 Compatibility (https://github.com/ethereum/EIPs/issues/165) function supportsInterface(bytes4 _interfaceID) external view returns (bool); } // // Auction wrapper functions // Auction wrapper functions /// @title SEKRETOOOO contract GeneScienceInterface { /// @dev simply a boolean to indicate this is the contract we expect to be function isGeneScience() public pure returns (bool); /// @dev given genes of kitten 1 & 2, return a genetic combination - may have a random factor /// @param genes1 genes of mom /// @param genes2 genes of sire /// @return the genes that are supposed to be passed down the child function mixGenes(uint256 genes1, uint256 genes2, uint256 targetBlock) public returns (uint256); } /// @title A facet of KittyCore that manages special access privileges. /// @author Axiom Zen (https://www.axiomzen.co) /// @dev See the KittyCore contract documentation to understand how the various contract facets are arranged. contract KittyAccessControl { // This facet controls access control for CryptoKitties. There are four roles managed here: // // - The CEO: The CEO can reassign other roles and change the addresses of our dependent smart // contracts. It is also the only role that can unpause the smart contract. It is initially // set to the address that created the smart contract in the KittyCore constructor. // // - The CFO: The CFO can withdraw funds from KittyCore and its auction contracts. // // - The COO: The COO can release gen0 kitties to auction, and mint promo cats. // // It should be noted that these roles are distinct without overlap in their access abilities, the // abilities listed for each role above are exhaustive. In particular, while the CEO can assign any // address to any role, the CEO address itself doesn't have the ability to act in those roles. This // restriction is intentional so that we aren't tempted to use the CEO address frequently out of // convenience. The less we use an address, the less likely it is that we somehow compromise the // account. /// @dev Emited when contract is upgraded - See README.md for updgrade plan event ContractUpgrade(address newContract); // The addresses of the accounts (or contracts) that can execute actions within each roles. address public ceoAddress; address public cfoAddress; address public cooAddress; // @dev Keeps track whether the contract is paused. When that is true, most actions are blocked bool public paused = false; /// @dev Access modifier for CEO-only functionality modifier onlyCEO() { require(msg.sender == ceoAddress); _; } /// @dev Access modifier for CFO-only functionality modifier onlyCFO() { require(msg.sender == cfoAddress); _; } /// @dev Access modifier for COO-only functionality modifier onlyCOO() { require(msg.sender == cooAddress); _; } modifier onlyCLevel() { require( msg.sender == cooAddress || msg.sender == ceoAddress || msg.sender == cfoAddress ); _; } /// @dev Assigns a new address to act as the CEO. Only available to the current CEO. /// @param _newCEO The address of the new CEO function setCEO(address _newCEO) external onlyCEO { require(_newCEO != address(0)); ceoAddress = _newCEO; } /// @dev Assigns a new address to act as the CFO. Only available to the current CEO. /// @param _newCFO The address of the new CFO function setCFO(address _newCFO) external onlyCEO { require(_newCFO != address(0)); cfoAddress = _newCFO; } /// @dev Assigns a new address to act as the COO. Only available to the current CEO. /// @param _newCOO The address of the new COO function setCOO(address _newCOO) external onlyCEO { require(_newCOO != address(0)); cooAddress = _newCOO; } /*** Pausable functionality adapted from OpenZeppelin ***/ /// @dev Modifier to allow actions only when the contract IS NOT paused modifier whenNotPaused() { require(!paused); _; } /// @dev Modifier to allow actions only when the contract IS paused modifier whenPaused { require(paused); _; } /// @dev Called by any "C-level" role to pause the contract. Used only when /// a bug or exploit is detected and we need to limit damage. function pause() external onlyCLevel whenNotPaused { paused = true; } /// @dev Unpauses the smart contract. Can only be called by the CEO, since /// one reason we may pause the contract is when CFO or COO accounts are /// compromised. /// @notice This is public rather than external so it can be called by /// derived contracts. function unpause() public onlyCEO whenPaused { // can't unpause if contract was upgraded paused = false; } } /// @title Base contract for CryptoKitties. Holds all common structs, events and base variables. /// @author Axiom Zen (https://www.axiomzen.co) /// @dev See the KittyCore contract documentation to understand how the various contract facets are arranged. contract KittyBase is KittyAccessControl { /*** EVENTS ***/ /// @dev The Birth event is fired whenever a new kitten comes into existence. This obviously /// includes any time a cat is created through the giveBirth method, but it is also called /// when a new gen0 cat is created. event Birth(address owner, uint256 kittyId, uint256 matronId, uint256 sireId, uint256 genes); /// @dev Transfer event as defined in current draft of ERC721. Emitted every time a kitten /// ownership is assigned, including births. event Transfer(address from, address to, uint256 tokenId); /*** DATA TYPES ***/ /// @dev The main Kitty struct. Every cat in CryptoKitties is represented by a copy /// of this structure, so great care was taken to ensure that it fits neatly into /// exactly two 256-bit words. Note that the order of the members in this structure /// is important because of the byte-packing rules used by Ethereum. /// Ref: http://solidity.readthedocs.io/en/develop/miscellaneous.html struct Kitty { // The Kitty's genetic code is packed into these 256-bits, the format is // sooper-sekret! A cat's genes never change. uint256 genes; // The timestamp from the block when this cat came into existence. uint64 birthTime; // The minimum timestamp after which this cat can engage in breeding // activities again. This same timestamp is used for the pregnancy // timer (for matrons) as well as the siring cooldown. uint64 cooldownEndBlock; // The ID of the parents of this kitty, set to 0 for gen0 cats. // Note that using 32-bit unsigned integers limits us to a "mere" // 4 billion cats. This number might seem small until you realize // that Ethereum currently has a limit of about 500 million // transactions per year! So, this definitely won't be a problem // for several years (even as Ethereum learns to scale). uint32 matronId; uint32 sireId; // Set to the ID of the sire cat for matrons that are pregnant, // zero otherwise. A non-zero value here is how we know a cat // is pregnant. Used to retrieve the genetic material for the new // kitten when the birth transpires. uint32 siringWithId; // Set to the index in the cooldown array (see below) that represents // the current cooldown duration for this Kitty. This starts at zero // for gen0 cats, and is initialized to floor(generation/2) for others. // Incremented by one for each successful breeding action, regardless // of whether this cat is acting as matron or sire. uint16 cooldownIndex; // The "generation number" of this cat. Cats minted by the CK contract // for sale are called "gen0" and have a generation number of 0. The // generation number of all other cats is the larger of the two generation // numbers of their parents, plus one. // (i.e. max(matron.generation, sire.generation) + 1) uint16 generation; } /*** CONSTANTS ***/ /// @dev A lookup table indicating the cooldown duration after any successful /// breeding action, called "pregnancy time" for matrons and "siring cooldown" /// for sires. Designed such that the cooldown roughly doubles each time a cat /// is bred, encouraging owners not to just keep breeding the same cat over /// and over again. Caps out at one week (a cat can breed an unbounded number /// of times, and the maximum cooldown is always seven days). uint32[14] public cooldowns = [ uint32(1 minutes), uint32(2 minutes), uint32(5 minutes), uint32(10 minutes), uint32(30 minutes), uint32(1 hours), uint32(2 hours), uint32(4 hours), uint32(8 hours), uint32(16 hours), uint32(1 days), uint32(2 days), uint32(4 days), uint32(7 days) ]; // An approximation of currently how many seconds are in between blocks. uint256 public secondsPerBlock = 15; /*** STORAGE ***/ /// @dev An array containing the Kitty struct for all Kitties in existence. The ID /// of each cat is actually an index into this array. Note that ID 0 is a negacat, /// the unKitty, the mythical beast that is the parent of all gen0 cats. A bizarre /// creature that is both matron and sire... to itself! Has an invalid genetic code. /// In other words, cat ID 0 is invalid... ;-) Kitty[] kitties; /// @dev A mapping from cat IDs to the address that owns them. All cats have /// some valid owner address, even gen0 cats are created with a non-zero owner. mapping (uint256 => address) public kittyIndexToOwner; // @dev A mapping from owner address to count of tokens that address owns. // Used internally inside balanceOf() to resolve ownership count. mapping (address => uint256) ownershipTokenCount; /// @dev A mapping from KittyIDs to an address that has been approved to call /// transferFrom(). Each Kitty can only have one approved address for transfer /// at any time. A zero value means no approval is outstanding. mapping (uint256 => address) public kittyIndexToApproved; /// @dev A mapping from KittyIDs to an address that has been approved to use /// this Kitty for siring via breedWith(). Each Kitty can only have one approved /// address for siring at any time. A zero value means no approval is outstanding. mapping (uint256 => address) public sireAllowedToAddress; /// @dev The address of the ClockAuction contract that handles sales of Kitties. This /// same contract handles both peer-to-peer sales as well as the gen0 sales which are /// initiated every 15 minutes. SaleClockAuction public saleAuction; /// @dev The address of a custom ClockAuction subclassed contract that handles siring /// auctions. Needs to be separate from saleAuction because the actions taken on success /// after a sales and siring auction are quite different. SiringClockAuction public siringAuction; /// @dev Assigns ownership of a specific Kitty to an address. function _transfer(address _from, address _to, uint256 _tokenId) internal { // Since the number of kittens is capped to 2^32 we can't overflow this ownershipTokenCount[_to]++; // transfer ownership kittyIndexToOwner[_tokenId] = _to; // When creating new kittens _from is 0x0, but we can't account that address. if (_from != address(0)) { ownershipTokenCount[_from]--; // once the kitten is transferred also clear sire allowances delete sireAllowedToAddress[_tokenId]; // clear any previously approved ownership exchange delete kittyIndexToApproved[_tokenId]; } // Emit the transfer event. Transfer(_from, _to, _tokenId); } /// @dev An internal method that creates a new kitty and stores it. This /// method doesn't do any checking and should only be called when the /// input data is known to be valid. Will generate both a Birth event /// and a Transfer event. /// @param _matronId The kitty ID of the matron of this cat (zero for gen0) /// @param _sireId The kitty ID of the sire of this cat (zero for gen0) /// @param _generation The generation number of this cat, must be computed by caller. /// @param _genes The kitty's genetic code. /// @param _owner The inital owner of this cat, must be non-zero (except for the unKitty, ID 0) function _createKitty( uint256 _matronId, uint256 _sireId, uint256 _generation, uint256 _genes, address _owner ) internal returns (uint) { // These requires are not strictly necessary, our calling code should make // sure that these conditions are never broken. However! _createKitty() is already // an expensive call (for storage), and it doesn't hurt to be especially careful // to ensure our data structures are always valid. require(_matronId == uint256(uint32(_matronId))); require(_sireId == uint256(uint32(_sireId))); require(_generation == uint256(uint16(_generation))); // New kitty starts with the same cooldown as parent gen/2 uint16 cooldownIndex = uint16(_generation / 2); if (cooldownIndex > 13) { cooldownIndex = 13; } Kitty memory _kitty = Kitty({ genes: _genes, birthTime: uint64(now), cooldownEndBlock: 0, matronId: uint32(_matronId), sireId: uint32(_sireId), siringWithId: 0, cooldownIndex: cooldownIndex, generation: uint16(_generation) }); uint256 newKittenId = kitties.push(_kitty) - 1; // It's probably never going to happen, 4 billion cats is A LOT, but // let's just be 100% sure we never let this happen. require(newKittenId == uint256(uint32(newKittenId))); // emit the birth event Birth( _owner, newKittenId, uint256(_kitty.matronId), uint256(_kitty.sireId), _kitty.genes ); // This will assign ownership, and also emit the Transfer event as // per ERC721 draft _transfer(0, _owner, newKittenId); return newKittenId; } // Any C-level can fix how many seconds per blocks are currently observed. function setSecondsPerBlock(uint256 secs) external onlyCLevel { require(secs < cooldowns[0]); secondsPerBlock = secs; } } /// @title The external contract that is responsible for generating metadata for the kitties, /// it has one function that will return the data as bytes. contract ERC721Metadata { /// @dev Given a token Id, returns a byte array that is supposed to be converted into string. function getMetadata(uint256 _tokenId, string) public view returns (bytes32[4] buffer, uint256 count) { if (_tokenId == 1) { buffer[0] = "Hello World! :D"; count = 15; } else if (_tokenId == 2) { buffer[0] = "I would definitely choose a medi"; buffer[1] = "um length string."; count = 49; } else if (_tokenId == 3) { buffer[0] = "Lorem ipsum dolor sit amet, mi e"; buffer[1] = "st accumsan dapibus augue lorem,"; buffer[2] = " tristique vestibulum id, libero"; buffer[3] = " suscipit varius sapien aliquam."; count = 128; } } } /// @title The facet of the CryptoKitties core contract that manages ownership, ERC-721 (draft) compliant. /// @author Axiom Zen (https://www.axiomzen.co) /// @dev Ref: https://github.com/ethereum/EIPs/issues/721 /// See the KittyCore contract documentation to understand how the various contract facets are arranged. contract KittyOwnership is KittyBase, ERC721 { /// @notice Name and symbol of the non fungible token, as defined in ERC721. string public constant name = "CryptoKitties"; string public constant symbol = "CK"; // The contract that will return kitty metadata ERC721Metadata public erc721Metadata; bytes4 constant InterfaceSignature_ERC165 = bytes4(keccak256('supportsInterface(bytes4)')); bytes4 constant InterfaceSignature_ERC721 = bytes4(keccak256('name()')) ^ bytes4(keccak256('symbol()')) ^ bytes4(keccak256('totalSupply()')) ^ bytes4(keccak256('balanceOf(address)')) ^ bytes4(keccak256('ownerOf(uint256)')) ^ bytes4(keccak256('approve(address,uint256)')) ^ bytes4(keccak256('transfer(address,uint256)')) ^ bytes4(keccak256('transferFrom(address,address,uint256)')) ^ bytes4(keccak256('tokensOfOwner(address)')) ^ bytes4(keccak256('tokenMetadata(uint256,string)')); /// @notice Introspection interface as per ERC-165 (https://github.com/ethereum/EIPs/issues/165). /// Returns true for any standardized interfaces implemented by this contract. We implement /// ERC-165 (obviously!) and ERC-721. function supportsInterface(bytes4 _interfaceID) external view returns (bool) { // DEBUG ONLY //require((InterfaceSignature_ERC165 == 0x01ffc9a7) && (InterfaceSignature_ERC721 == 0x9a20483d)); return ((_interfaceID == InterfaceSignature_ERC165) || (_interfaceID == InterfaceSignature_ERC721)); } /// @dev Set the address of the sibling contract that tracks metadata. /// CEO only. function setMetadataAddress(address _contractAddress) public onlyCEO { erc721Metadata = ERC721Metadata(_contractAddress); } // Internal utility functions: These functions all assume that their input arguments // are valid. We leave it to public methods to sanitize their inputs and follow // the required logic. /// @dev Checks if a given address is the current owner of a particular Kitty. /// @param _claimant the address we are validating against. /// @param _tokenId kitten id, only valid when > 0 function _owns(address _claimant, uint256 _tokenId) internal view returns (bool) { return kittyIndexToOwner[_tokenId] == _claimant; } /// @dev Checks if a given address currently has transferApproval for a particular Kitty. /// @param _claimant the address we are confirming kitten is approved for. /// @param _tokenId kitten id, only valid when > 0 function _approvedFor(address _claimant, uint256 _tokenId) internal view returns (bool) { return kittyIndexToApproved[_tokenId] == _claimant; } /// @dev Marks an address as being approved for transferFrom(), overwriting any previous /// approval. Setting _approved to address(0) clears all transfer approval. /// NOTE: _approve() does NOT send the Approval event. This is intentional because /// _approve() and transferFrom() are used together for putting Kitties on auction, and /// there is no value in spamming the log with Approval events in that case. function _approve(uint256 _tokenId, address _approved) internal { kittyIndexToApproved[_tokenId] = _approved; } /// @notice Returns the number of Kitties owned by a specific address. /// @param _owner The owner address to check. /// @dev Required for ERC-721 compliance function balanceOf(address _owner) public view returns (uint256 count) { return ownershipTokenCount[_owner]; } /// @notice Transfers a Kitty to another address. If transferring to a smart /// contract be VERY CAREFUL to ensure that it is aware of ERC-721 (or /// CryptoKitties specifically) or your Kitty may be lost forever. Seriously. /// @param _to The address of the recipient, can be a user or contract. /// @param _tokenId The ID of the Kitty to transfer. /// @dev Required for ERC-721 compliance. function transfer( address _to, uint256 _tokenId ) external whenNotPaused { // Safety check to prevent against an unexpected 0x0 default. require(_to != address(0)); // Disallow transfers to this contract to prevent accidental misuse. // The contract should never own any kitties (except very briefly // after a gen0 cat is created and before it goes on auction). require(_to != address(this)); // Disallow transfers to the auction contracts to prevent accidental // misuse. Auction contracts should only take ownership of kitties // through the allow + transferFrom flow. require(_to != address(saleAuction)); require(_to != address(siringAuction)); // You can only send your own cat. require(_owns(msg.sender, _tokenId)); // Reassign ownership, clear pending approvals, emit Transfer event. _transfer(msg.sender, _to, _tokenId); } /// @notice Grant another address the right to transfer a specific Kitty via /// transferFrom(). This is the preferred flow for transfering NFTs to contracts. /// @param _to The address to be granted transfer approval. Pass address(0) to /// clear all approvals. /// @param _tokenId The ID of the Kitty that can be transferred if this call succeeds. /// @dev Required for ERC-721 compliance. function approve( address _to, uint256 _tokenId ) external whenNotPaused { // Only an owner can grant transfer approval. require(_owns(msg.sender, _tokenId)); // Register the approval (replacing any previous approval). _approve(_tokenId, _to); // Emit approval event. Approval(msg.sender, _to, _tokenId); } /// @notice Transfer a Kitty owned by another address, for which the calling address /// has previously been granted transfer approval by the owner. /// @param _from The address that owns the Kitty to be transfered. /// @param _to The address that should take ownership of the Kitty. Can be any address, /// including the caller. /// @param _tokenId The ID of the Kitty to be transferred. /// @dev Required for ERC-721 compliance. function transferFrom( address _from, address _to, uint256 _tokenId ) external whenNotPaused { // Safety check to prevent against an unexpected 0x0 default. require(_to != address(0)); // Disallow transfers to this contract to prevent accidental misuse. // The contract should never own any kitties (except very briefly // after a gen0 cat is created and before it goes on auction). require(_to != address(this)); // Check for approval and valid ownership require(_approvedFor(msg.sender, _tokenId)); require(_owns(_from, _tokenId)); // Reassign ownership (also clears pending approvals and emits Transfer event). _transfer(_from, _to, _tokenId); } /// @notice Returns the total number of Kitties currently in existence. /// @dev Required for ERC-721 compliance. function totalSupply() public view returns (uint) { return kitties.length - 1; } /// @notice Returns the address currently assigned ownership of a given Kitty. /// @dev Required for ERC-721 compliance. function ownerOf(uint256 _tokenId) external view returns (address owner) { owner = kittyIndexToOwner[_tokenId]; require(owner != address(0)); } /// @notice Returns a list of all Kitty IDs assigned to an address. /// @param _owner The owner whose Kitties we are interested in. /// @dev This method MUST NEVER be called by smart contract code. First, it's fairly /// expensive (it walks the entire Kitty array looking for cats belonging to owner), /// but it also returns a dynamic array, which is only supported for web3 calls, and /// not contract-to-contract calls. function tokensOfOwner(address _owner) external view returns(uint256[] ownerTokens) { uint256 tokenCount = balanceOf(_owner); if (tokenCount == 0) { // Return an empty array return new uint256[](0); } else { uint256[] memory result = new uint256[](tokenCount); uint256 totalCats = totalSupply(); uint256 resultIndex = 0; // We count on the fact that all cats have IDs starting at 1 and increasing // sequentially up to the totalCat count. uint256 catId; for (catId = 1; catId <= totalCats; catId++) { if (kittyIndexToOwner[catId] == _owner) { result[resultIndex] = catId; resultIndex++; } } return result; } } /// @dev Adapted from memcpy() by @arachnid (Nick Johnson <[email protected]>) /// This method is licenced under the Apache License. /// Ref: https://github.com/Arachnid/solidity-stringutils/blob/2f6ca9accb48ae14c66f1437ec50ed19a0616f78/strings.sol function _memcpy(uint _dest, uint _src, uint _len) private view { // Copy word-length chunks while possible for(; _len >= 32; _len -= 32) { assembly { mstore(_dest, mload(_src)) } _dest += 32; _src += 32; } // Copy remaining bytes uint256 mask = 256 ** (32 - _len) - 1; assembly { let srcpart := and(mload(_src), not(mask)) let destpart := and(mload(_dest), mask) mstore(_dest, or(destpart, srcpart)) } } /// @dev Adapted from toString(slice) by @arachnid (Nick Johnson <[email protected]>) /// This method is licenced under the Apache License. /// Ref: https://github.com/Arachnid/solidity-stringutils/blob/2f6ca9accb48ae14c66f1437ec50ed19a0616f78/strings.sol function _toString(bytes32[4] _rawBytes, uint256 _stringLength) private view returns (string) { var outputString = new string(_stringLength); uint256 outputPtr; uint256 bytesPtr; assembly { outputPtr := add(outputString, 32) bytesPtr := _rawBytes } _memcpy(outputPtr, bytesPtr, _stringLength); return outputString; } /// @notice Returns a URI pointing to a metadata package for this token conforming to /// ERC-721 (https://github.com/ethereum/EIPs/issues/721) /// @param _tokenId The ID number of the Kitty whose metadata should be returned. function tokenMetadata(uint256 _tokenId, string _preferredTransport) external view returns (string infoUrl) { require(erc721Metadata != address(0)); bytes32[4] memory buffer; uint256 count; (buffer, count) = erc721Metadata.getMetadata(_tokenId, _preferredTransport); return _toString(buffer, count); } } /// @title A facet of KittyCore that manages Kitty siring, gestation, and birth. /// @author Axiom Zen (https://www.axiomzen.co) /// @dev See the KittyCore contract documentation to understand how the various contract facets are arranged. contract KittyBreeding is KittyOwnership { /// @dev The Pregnant event is fired when two cats successfully breed and the pregnancy /// timer begins for the matron. event Pregnant(address owner, uint256 matronId, uint256 sireId, uint256 cooldownEndBlock); /// @notice The minimum payment required to use breedWithAuto(). This fee goes towards /// the gas cost paid by whatever calls giveBirth(), and can be dynamically updated by /// the COO role as the gas price changes. uint256 public autoBirthFee = 2 finney; // Keeps track of number of pregnant kitties. uint256 public pregnantKitties; /// @dev The address of the sibling contract that is used to implement the sooper-sekret /// genetic combination algorithm. GeneScienceInterface public geneScience; /// @dev Update the address of the genetic contract, can only be called by the CEO. /// @param _address An address of a GeneScience contract instance to be used from this point forward. function setGeneScienceAddress(address _address) external onlyCEO { GeneScienceInterface candidateContract = GeneScienceInterface(_address); // NOTE: verify that a contract is what we expect - https://github.com/Lunyr/crowdsale-contracts/blob/cfadd15986c30521d8ba7d5b6f57b4fefcc7ac38/contracts/LunyrToken.sol#L117 require(candidateContract.isGeneScience()); // Set the new contract address geneScience = candidateContract; } /// @dev Checks that a given kitten is able to breed. Requires that the /// current cooldown is finished (for sires) and also checks that there is /// no pending pregnancy. function _isReadyToBreed(Kitty _kit) internal view returns (bool) { // In addition to checking the cooldownEndBlock, we also need to check to see if // the cat has a pending birth; there can be some period of time between the end // of the pregnacy timer and the birth event. return (_kit.siringWithId == 0) && (_kit.cooldownEndBlock <= uint64(block.number)); } /// @dev Check if a sire has authorized breeding with this matron. True if both sire /// and matron have the same owner, or if the sire has given siring permission to /// the matron's owner (via approveSiring()). function _isSiringPermitted(uint256 _sireId, uint256 _matronId) internal view returns (bool) { address matronOwner = kittyIndexToOwner[_matronId]; address sireOwner = kittyIndexToOwner[_sireId]; // Siring is okay if they have same owner, or if the matron's owner was given // permission to breed with this sire. return (matronOwner == sireOwner || sireAllowedToAddress[_sireId] == matronOwner); } /// @dev Set the cooldownEndTime for the given Kitty, based on its current cooldownIndex. /// Also increments the cooldownIndex (unless it has hit the cap). /// @param _kitten A reference to the Kitty in storage which needs its timer started. function _triggerCooldown(Kitty storage _kitten) internal { // Compute an estimation of the cooldown time in blocks (based on current cooldownIndex). _kitten.cooldownEndBlock = uint64((cooldowns[_kitten.cooldownIndex]/secondsPerBlock) + block.number); // Increment the breeding count, clamping it at 13, which is the length of the // cooldowns array. We could check the array size dynamically, but hard-coding // this as a constant saves gas. Yay, Solidity! if (_kitten.cooldownIndex < 13) { _kitten.cooldownIndex += 1; } } /// @notice Grants approval to another user to sire with one of your Kitties. /// @param _addr The address that will be able to sire with your Kitty. Set to /// address(0) to clear all siring approvals for this Kitty. /// @param _sireId A Kitty that you own that _addr will now be able to sire with. function approveSiring(address _addr, uint256 _sireId) external whenNotPaused { require(_owns(msg.sender, _sireId)); sireAllowedToAddress[_sireId] = _addr; } /// @dev Updates the minimum payment required for calling giveBirthAuto(). Can only /// be called by the COO address. (This fee is used to offset the gas cost incurred /// by the autobirth daemon). function setAutoBirthFee(uint256 val) external onlyCOO { autoBirthFee = val; } /// @dev Checks to see if a given Kitty is pregnant and (if so) if the gestation /// period has passed. function _isReadyToGiveBirth(Kitty _matron) private view returns (bool) { return (_matron.siringWithId != 0) && (_matron.cooldownEndBlock <= uint64(block.number)); } /// @notice Checks that a given kitten is able to breed (i.e. it is not pregnant or /// in the middle of a siring cooldown). /// @param _kittyId reference the id of the kitten, any user can inquire about it function isReadyToBreed(uint256 _kittyId) public view returns (bool) { require(_kittyId > 0); Kitty storage kit = kitties[_kittyId]; return _isReadyToBreed(kit); } /// @dev Checks whether a kitty is currently pregnant. /// @param _kittyId reference the id of the kitten, any user can inquire about it function isPregnant(uint256 _kittyId) public view returns (bool) { require(_kittyId > 0); // A kitty is pregnant if and only if this field is set return kitties[_kittyId].siringWithId != 0; } /// @dev Internal check to see if a given sire and matron are a valid mating pair. DOES NOT /// check ownership permissions (that is up to the caller). /// @param _matron A reference to the Kitty struct of the potential matron. /// @param _matronId The matron's ID. /// @param _sire A reference to the Kitty struct of the potential sire. /// @param _sireId The sire's ID function _isValidMatingPair( Kitty storage _matron, uint256 _matronId, Kitty storage _sire, uint256 _sireId ) private view returns(bool) { // A Kitty can't breed with itself! if (_matronId == _sireId) { return false; } // Kitties can't breed with their parents. if (_matron.matronId == _sireId || _matron.sireId == _sireId) { return false; } if (_sire.matronId == _matronId || _sire.sireId == _matronId) { return false; } // We can short circuit the sibling check (below) if either cat is // gen zero (has a matron ID of zero). if (_sire.matronId == 0 || _matron.matronId == 0) { return true; } // Kitties can't breed with full or half siblings. if (_sire.matronId == _matron.matronId || _sire.matronId == _matron.sireId) { return false; } if (_sire.sireId == _matron.matronId || _sire.sireId == _matron.sireId) { return false; } // Everything seems cool! Let's get DTF. return true; } /// @dev Internal check to see if a given sire and matron are a valid mating pair for /// breeding via auction (i.e. skips ownership and siring approval checks). function _canBreedWithViaAuction(uint256 _matronId, uint256 _sireId) internal view returns (bool) { Kitty storage matron = kitties[_matronId]; Kitty storage sire = kitties[_sireId]; return _isValidMatingPair(matron, _matronId, sire, _sireId); } /// @notice Checks to see if two cats can breed together, including checks for /// ownership and siring approvals. Does NOT check that both cats are ready for /// breeding (i.e. breedWith could still fail until the cooldowns are finished). /// TODO: Shouldn't this check pregnancy and cooldowns?!? /// @param _matronId The ID of the proposed matron. /// @param _sireId The ID of the proposed sire. function canBreedWith(uint256 _matronId, uint256 _sireId) external view returns(bool) { require(_matronId > 0); require(_sireId > 0); Kitty storage matron = kitties[_matronId]; Kitty storage sire = kitties[_sireId]; return _isValidMatingPair(matron, _matronId, sire, _sireId) && _isSiringPermitted(_sireId, _matronId); } /// @dev Internal utility function to initiate breeding, assumes that all breeding /// requirements have been checked. function _breedWith(uint256 _matronId, uint256 _sireId) internal { // Grab a reference to the Kitties from storage. Kitty storage sire = kitties[_sireId]; Kitty storage matron = kitties[_matronId]; // Mark the matron as pregnant, keeping track of who the sire is. matron.siringWithId = uint32(_sireId); // Trigger the cooldown for both parents. _triggerCooldown(sire); _triggerCooldown(matron); // Clear siring permission for both parents. This may not be strictly necessary // but it's likely to avoid confusion! delete sireAllowedToAddress[_matronId]; delete sireAllowedToAddress[_sireId]; // Every time a kitty gets pregnant, counter is incremented. pregnantKitties++; // Emit the pregnancy event. Pregnant(kittyIndexToOwner[_matronId], _matronId, _sireId, matron.cooldownEndBlock); } /// @notice Breed a Kitty you own (as matron) with a sire that you own, or for which you /// have previously been given Siring approval. Will either make your cat pregnant, or will /// fail entirely. Requires a pre-payment of the fee given out to the first caller of giveBirth() /// @param _matronId The ID of the Kitty acting as matron (will end up pregnant if successful) /// @param _sireId The ID of the Kitty acting as sire (will begin its siring cooldown if successful) function breedWithAuto(uint256 _matronId, uint256 _sireId) external payable whenNotPaused { // Checks for payment. require(msg.value >= autoBirthFee); // Caller must own the matron. require(_owns(msg.sender, _matronId)); // Neither sire nor matron are allowed to be on auction during a normal // breeding operation, but we don't need to check that explicitly. // For matron: The caller of this function can't be the owner of the matron // because the owner of a Kitty on auction is the auction house, and the // auction house will never call breedWith(). // For sire: Similarly, a sire on auction will be owned by the auction house // and the act of transferring ownership will have cleared any oustanding // siring approval. // Thus we don't need to spend gas explicitly checking to see if either cat // is on auction. // Check that matron and sire are both owned by caller, or that the sire // has given siring permission to caller (i.e. matron's owner). // Will fail for _sireId = 0 require(_isSiringPermitted(_sireId, _matronId)); // Grab a reference to the potential matron Kitty storage matron = kitties[_matronId]; // Make sure matron isn't pregnant, or in the middle of a siring cooldown require(_isReadyToBreed(matron)); // Grab a reference to the potential sire Kitty storage sire = kitties[_sireId]; // Make sure sire isn't pregnant, or in the middle of a siring cooldown require(_isReadyToBreed(sire)); // Test that these cats are a valid mating pair. require(_isValidMatingPair( matron, _matronId, sire, _sireId )); // All checks passed, kitty gets pregnant! _breedWith(_matronId, _sireId); } /// @notice Have a pregnant Kitty give birth! /// @param _matronId A Kitty ready to give birth. /// @return The Kitty ID of the new kitten. /// @dev Looks at a given Kitty and, if pregnant and if the gestation period has passed, /// combines the genes of the two parents to create a new kitten. The new Kitty is assigned /// to the current owner of the matron. Upon successful completion, both the matron and the /// new kitten will be ready to breed again. Note that anyone can call this function (if they /// are willing to pay the gas!), but the new kitten always goes to the mother's owner. function giveBirth(uint256 _matronId) external whenNotPaused returns(uint256) { // Grab a reference to the matron in storage. Kitty storage matron = kitties[_matronId]; // Check that the matron is a valid cat. require(matron.birthTime != 0); // Check that the matron is pregnant, and that its time has come! require(_isReadyToGiveBirth(matron)); // Grab a reference to the sire in storage. uint256 sireId = matron.siringWithId; Kitty storage sire = kitties[sireId]; // Determine the higher generation number of the two parents uint16 parentGen = matron.generation; if (sire.generation > matron.generation) { parentGen = sire.generation; } // Call the sooper-sekret gene mixing operation. uint256 childGenes = geneScience.mixGenes(matron.genes, sire.genes, matron.cooldownEndBlock - 1); // Make the new kitten! address owner = kittyIndexToOwner[_matronId]; uint256 kittenId = _createKitty(_matronId, matron.siringWithId, parentGen + 1, childGenes, owner); // Clear the reference to sire from the matron (REQUIRED! Having siringWithId // set is what marks a matron as being pregnant.) delete matron.siringWithId; // Every time a kitty gives birth counter is decremented. pregnantKitties--; // Send the balance fee to the person who made birth happen. msg.sender.send(autoBirthFee); // return the new kitten's ID return kittenId; } } /// @title Auction Core /// @dev Contains models, variables, and internal methods for the auction. /// @notice We omit a fallback function to prevent accidental sends to this contract. contract ClockAuctionBase { // Represents an auction on an NFT struct Auction { // Current owner of NFT address seller; // Price (in wei) at beginning of auction uint128 startingPrice; // Price (in wei) at end of auction uint128 endingPrice; // Duration (in seconds) of auction uint64 duration; // Time when auction started // NOTE: 0 if this auction has been concluded uint64 startedAt; } // Reference to contract tracking NFT ownership ERC721 public nonFungibleContract; // Cut owner takes on each auction, measured in basis points (1/100 of a percent). // Values 0-10,000 map to 0%-100% uint256 public ownerCut; // Map from token ID to their corresponding auction. mapping (uint256 => Auction) tokenIdToAuction; event AuctionCreated(uint256 tokenId, uint256 startingPrice, uint256 endingPrice, uint256 duration); event AuctionSuccessful(uint256 tokenId, uint256 totalPrice, address winner); event AuctionCancelled(uint256 tokenId); /// @dev Returns true if the claimant owns the token. /// @param _claimant - Address claiming to own the token. /// @param _tokenId - ID of token whose ownership to verify. function _owns(address _claimant, uint256 _tokenId) internal view returns (bool) { return (nonFungibleContract.ownerOf(_tokenId) == _claimant); } /// @dev Escrows the NFT, assigning ownership to this contract. /// Throws if the escrow fails. /// @param _owner - Current owner address of token to escrow. /// @param _tokenId - ID of token whose approval to verify. function _escrow(address _owner, uint256 _tokenId) internal { // it will throw if transfer fails nonFungibleContract.transferFrom(_owner, this, _tokenId); } /// @dev Transfers an NFT owned by this contract to another address. /// Returns true if the transfer succeeds. /// @param _receiver - Address to transfer NFT to. /// @param _tokenId - ID of token to transfer. function _transfer(address _receiver, uint256 _tokenId) internal { // it will throw if transfer fails nonFungibleContract.transfer(_receiver, _tokenId); } /// @dev Adds an auction to the list of open auctions. Also fires the /// AuctionCreated event. /// @param _tokenId The ID of the token to be put on auction. /// @param _auction Auction to add. function _addAuction(uint256 _tokenId, Auction _auction) internal { // Require that all auctions have a duration of // at least one minute. (Keeps our math from getting hairy!) require(_auction.duration >= 1 minutes); tokenIdToAuction[_tokenId] = _auction; AuctionCreated( uint256(_tokenId), uint256(_auction.startingPrice), uint256(_auction.endingPrice), uint256(_auction.duration) ); } /// @dev Cancels an auction unconditionally. function _cancelAuction(uint256 _tokenId, address _seller) internal { _removeAuction(_tokenId); _transfer(_seller, _tokenId); AuctionCancelled(_tokenId); } /// @dev Computes the price and transfers winnings. /// Does NOT transfer ownership of token. function _bid(uint256 _tokenId, uint256 _bidAmount) internal returns (uint256) { // Get a reference to the auction struct Auction storage auction = tokenIdToAuction[_tokenId]; // Explicitly check that this auction is currently live. // (Because of how Ethereum mappings work, we can't just count // on the lookup above failing. An invalid _tokenId will just // return an auction object that is all zeros.) require(_isOnAuction(auction)); // Check that the bid is greater than or equal to the current price uint256 price = _currentPrice(auction); require(_bidAmount >= price); // Grab a reference to the seller before the auction struct // gets deleted. address seller = auction.seller; // The bid is good! Remove the auction before sending the fees // to the sender so we can't have a reentrancy attack. _removeAuction(_tokenId); // Transfer proceeds to seller (if there are any!) if (price > 0) { // Calculate the auctioneer's cut. // (NOTE: _computeCut() is guaranteed to return a // value <= price, so this subtraction can't go negative.) uint256 auctioneerCut = _computeCut(price); uint256 sellerProceeds = price - auctioneerCut; // NOTE: Doing a transfer() in the middle of a complex // method like this is generally discouraged because of // reentrancy attacks and DoS attacks if the seller is // a contract with an invalid fallback function. We explicitly // guard against reentrancy attacks by removing the auction // before calling transfer(), and the only thing the seller // can DoS is the sale of their own asset! (And if it's an // accident, they can call cancelAuction(). ) seller.transfer(sellerProceeds); } // Calculate any excess funds included with the bid. If the excess // is anything worth worrying about, transfer it back to bidder. // NOTE: We checked above that the bid amount is greater than or // equal to the price so this cannot underflow. uint256 bidExcess = _bidAmount - price; // Return the funds. Similar to the previous transfer, this is // not susceptible to a re-entry attack because the auction is // removed before any transfers occur. msg.sender.transfer(bidExcess); // Tell the world! AuctionSuccessful(_tokenId, price, msg.sender); return price; } /// @dev Removes an auction from the list of open auctions. /// @param _tokenId - ID of NFT on auction. function _removeAuction(uint256 _tokenId) internal { delete tokenIdToAuction[_tokenId]; } /// @dev Returns true if the NFT is on auction. /// @param _auction - Auction to check. function _isOnAuction(Auction storage _auction) internal view returns (bool) { return (_auction.startedAt > 0); } /// @dev Returns current price of an NFT on auction. Broken into two /// functions (this one, that computes the duration from the auction /// structure, and the other that does the price computation) so we /// can easily test that the price computation works correctly. function _currentPrice(Auction storage _auction) internal view returns (uint256) { uint256 secondsPassed = 0; // A bit of insurance against negative values (or wraparound). // Probably not necessary (since Ethereum guarnatees that the // now variable doesn't ever go backwards). if (now > _auction.startedAt) { secondsPassed = now - _auction.startedAt; } return _computeCurrentPrice( _auction.startingPrice, _auction.endingPrice, _auction.duration, secondsPassed ); } /// @dev Computes the current price of an auction. Factored out /// from _currentPrice so we can run extensive unit tests. /// When testing, make this function public and turn on /// `Current price computation` test suite. function _computeCurrentPrice( uint256 _startingPrice, uint256 _endingPrice, uint256 _duration, uint256 _secondsPassed ) internal pure returns (uint256) { // NOTE: We don't use SafeMath (or similar) in this function because // all of our public functions carefully cap the maximum values for // time (at 64-bits) and currency (at 128-bits). _duration is // also known to be non-zero (see the require() statement in // _addAuction()) if (_secondsPassed >= _duration) { // We've reached the end of the dynamic pricing portion // of the auction, just return the end price. return _endingPrice; } else { // Starting price can be higher than ending price (and often is!), so // this delta can be negative. int256 totalPriceChange = int256(_endingPrice) - int256(_startingPrice); // This multiplication can't overflow, _secondsPassed will easily fit within // 64-bits, and totalPriceChange will easily fit within 128-bits, their product // will always fit within 256-bits. int256 currentPriceChange = totalPriceChange * int256(_secondsPassed) / int256(_duration); // currentPriceChange can be negative, but if so, will have a magnitude // less that _startingPrice. Thus, this result will always end up positive. int256 currentPrice = int256(_startingPrice) + currentPriceChange; return uint256(currentPrice); } } /// @dev Computes owner's cut of a sale. /// @param _price - Sale price of NFT. function _computeCut(uint256 _price) internal view returns (uint256) { // NOTE: We don't use SafeMath (or similar) in this function because // all of our entry functions carefully cap the maximum values for // currency (at 128-bits), and ownerCut <= 10000 (see the require() // statement in the ClockAuction constructor). The result of this // function is always guaranteed to be <= _price. return _price * ownerCut / 10000; } } /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev modifier to allow actions only when the contract IS paused */ modifier whenNotPaused() { require(!paused); _; } /** * @dev modifier to allow actions only when the contract IS NOT paused */ modifier whenPaused { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused returns (bool) { paused = true; Pause(); return true; } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused returns (bool) { paused = false; Unpause(); return true; } } /// @title Clock auction for non-fungible tokens. /// @notice We omit a fallback function to prevent accidental sends to this contract. contract ClockAuction is Pausable, ClockAuctionBase { /// @dev The ERC-165 interface signature for ERC-721. /// Ref: https://github.com/ethereum/EIPs/issues/165 /// Ref: https://github.com/ethereum/EIPs/issues/721 bytes4 constant InterfaceSignature_ERC721 = bytes4(0x9a20483d); /// @dev Constructor creates a reference to the NFT ownership contract /// and verifies the owner cut is in the valid range. /// @param _nftAddress - address of a deployed contract implementing /// the Nonfungible Interface. /// @param _cut - percent cut the owner takes on each auction, must be /// between 0-10,000. function ClockAuction(address _nftAddress, uint256 _cut) public { require(_cut <= 10000); ownerCut = _cut; ERC721 candidateContract = ERC721(_nftAddress); require(candidateContract.supportsInterface(InterfaceSignature_ERC721)); nonFungibleContract = candidateContract; } /// @dev Remove all Ether from the contract, which is the owner's cuts /// as well as any Ether sent directly to the contract address. /// Always transfers to the NFT contract, but can be called either by /// the owner or the NFT contract. function withdrawBalance() external { address nftAddress = address(nonFungibleContract); require( msg.sender == owner || msg.sender == nftAddress ); // We are using this boolean method to make sure that even if one fails it will still work bool res = nftAddress.send(this.balance); } /// @dev Creates and begins a new auction. /// @param _tokenId - ID of token to auction, sender must be owner. /// @param _startingPrice - Price of item (in wei) at beginning of auction. /// @param _endingPrice - Price of item (in wei) at end of auction. /// @param _duration - Length of time to move between starting /// price and ending price (in seconds). /// @param _seller - Seller, if not the message sender function createAuction( uint256 _tokenId, uint256 _startingPrice, uint256 _endingPrice, uint256 _duration, address _seller ) external whenNotPaused { // Sanity check that no inputs overflow how many bits we've allocated // to store them in the auction struct. require(_startingPrice == uint256(uint128(_startingPrice))); require(_endingPrice == uint256(uint128(_endingPrice))); require(_duration == uint256(uint64(_duration))); require(_owns(msg.sender, _tokenId)); _escrow(msg.sender, _tokenId); Auction memory auction = Auction( _seller, uint128(_startingPrice), uint128(_endingPrice), uint64(_duration), uint64(now) ); _addAuction(_tokenId, auction); } /// @dev Bids on an open auction, completing the auction and transferring /// ownership of the NFT if enough Ether is supplied. /// @param _tokenId - ID of token to bid on. function bid(uint256 _tokenId) external payable whenNotPaused { // _bid will throw if the bid or funds transfer fails _bid(_tokenId, msg.value); _transfer(msg.sender, _tokenId); } /// @dev Cancels an auction that hasn't been won yet. /// Returns the NFT to original owner. /// @notice This is a state-modifying function that can /// be called while the contract is paused. /// @param _tokenId - ID of token on auction function cancelAuction(uint256 _tokenId) external { Auction storage auction = tokenIdToAuction[_tokenId]; require(_isOnAuction(auction)); address seller = auction.seller; require(msg.sender == seller); _cancelAuction(_tokenId, seller); } /// @dev Cancels an auction when the contract is paused. /// Only the owner may do this, and NFTs are returned to /// the seller. This should only be used in emergencies. /// @param _tokenId - ID of the NFT on auction to cancel. function cancelAuctionWhenPaused(uint256 _tokenId) whenPaused onlyOwner external { Auction storage auction = tokenIdToAuction[_tokenId]; require(_isOnAuction(auction)); _cancelAuction(_tokenId, auction.seller); } /// @dev Returns auction info for an NFT on auction. /// @param _tokenId - ID of NFT on auction. function getAuction(uint256 _tokenId) external view returns ( address seller, uint256 startingPrice, uint256 endingPrice, uint256 duration, uint256 startedAt ) { Auction storage auction = tokenIdToAuction[_tokenId]; require(_isOnAuction(auction)); return ( auction.seller, auction.startingPrice, auction.endingPrice, auction.duration, auction.startedAt ); } /// @dev Returns the current price of an auction. /// @param _tokenId - ID of the token price we are checking. function getCurrentPrice(uint256 _tokenId) external view returns (uint256) { Auction storage auction = tokenIdToAuction[_tokenId]; require(_isOnAuction(auction)); return _currentPrice(auction); } } /// @title Reverse auction modified for siring /// @notice We omit a fallback function to prevent accidental sends to this contract. contract SiringClockAuction is ClockAuction { // @dev Sanity check that allows us to ensure that we are pointing to the // right auction in our setSiringAuctionAddress() call. bool public isSiringClockAuction = true; // Delegate constructor function SiringClockAuction(address _nftAddr, uint256 _cut) public ClockAuction(_nftAddr, _cut) {} /// @dev Creates and begins a new auction. Since this function is wrapped, /// require sender to be KittyCore contract. /// @param _tokenId - ID of token to auction, sender must be owner. /// @param _startingPrice - Price of item (in wei) at beginning of auction. /// @param _endingPrice - Price of item (in wei) at end of auction. /// @param _duration - Length of auction (in seconds). /// @param _seller - Seller, if not the message sender function createAuction( uint256 _tokenId, uint256 _startingPrice, uint256 _endingPrice, uint256 _duration, address _seller ) external { // Sanity check that no inputs overflow how many bits we've allocated // to store them in the auction struct. require(_startingPrice == uint256(uint128(_startingPrice))); require(_endingPrice == uint256(uint128(_endingPrice))); require(_duration == uint256(uint64(_duration))); require(msg.sender == address(nonFungibleContract)); _escrow(_seller, _tokenId); Auction memory auction = Auction( _seller, uint128(_startingPrice), uint128(_endingPrice), uint64(_duration), uint64(now) ); _addAuction(_tokenId, auction); } /// @dev Places a bid for siring. Requires the sender /// is the KittyCore contract because all bid methods /// should be wrapped. Also returns the kitty to the /// seller rather than the winner. function bid(uint256 _tokenId) external payable { require(msg.sender == address(nonFungibleContract)); address seller = tokenIdToAuction[_tokenId].seller; // _bid checks that token ID is valid and will throw if bid fails _bid(_tokenId, msg.value); // We transfer the kitty back to the seller, the winner will get // the offspring _transfer(seller, _tokenId); } } /// @title Clock auction modified for sale of kitties /// @notice We omit a fallback function to prevent accidental sends to this contract. contract SaleClockAuction is ClockAuction { // @dev Sanity check that allows us to ensure that we are pointing to the // right auction in our setSaleAuctionAddress() call. bool public isSaleClockAuction = true; // Tracks last 5 sale price of gen0 kitty sales uint256 public gen0SaleCount; uint256[5] public lastGen0SalePrices; // Delegate constructor function SaleClockAuction(address _nftAddr, uint256 _cut) public ClockAuction(_nftAddr, _cut) {} /// @dev Creates and begins a new auction. /// @param _tokenId - ID of token to auction, sender must be owner. /// @param _startingPrice - Price of item (in wei) at beginning of auction. /// @param _endingPrice - Price of item (in wei) at end of auction. /// @param _duration - Length of auction (in seconds). /// @param _seller - Seller, if not the message sender function createAuction( uint256 _tokenId, uint256 _startingPrice, uint256 _endingPrice, uint256 _duration, address _seller ) external { // Sanity check that no inputs overflow how many bits we've allocated // to store them in the auction struct. require(_startingPrice == uint256(uint128(_startingPrice))); require(_endingPrice == uint256(uint128(_endingPrice))); require(_duration == uint256(uint64(_duration))); require(msg.sender == address(nonFungibleContract)); _escrow(_seller, _tokenId); Auction memory auction = Auction( _seller, uint128(_startingPrice), uint128(_endingPrice), uint64(_duration), uint64(now) ); _addAuction(_tokenId, auction); } /// @dev Updates lastSalePrice if seller is the nft contract /// Otherwise, works the same as default bid method. function bid(uint256 _tokenId) external payable { // _bid verifies token ID size address seller = tokenIdToAuction[_tokenId].seller; uint256 price = _bid(_tokenId, msg.value); _transfer(msg.sender, _tokenId); // If not a gen0 auction, exit if (seller == address(nonFungibleContract)) { // Track gen0 sale prices lastGen0SalePrices[gen0SaleCount % 5] = price; gen0SaleCount++; } } function averageGen0SalePrice() external view returns (uint256) { uint256 sum = 0; for (uint256 i = 0; i < 5; i++) { sum += lastGen0SalePrices[i]; } return sum / 5; } } /// @title Handles creating auctions for sale and siring of kitties. /// This wrapper of ReverseAuction exists only so that users can create /// auctions with only one transaction. contract KittyAuction is KittyBreeding { // @notice The auction contract variables are defined in KittyBase to allow // us to refer to them in KittyOwnership to prevent accidental transfers. // `saleAuction` refers to the auction for gen0 and p2p sale of kitties. // `siringAuction` refers to the auction for siring rights of kitties. /// @dev Sets the reference to the sale auction. /// @param _address - Address of sale contract. function setSaleAuctionAddress(address _address) external onlyCEO { SaleClockAuction candidateContract = SaleClockAuction(_address); // NOTE: verify that a contract is what we expect - https://github.com/Lunyr/crowdsale-contracts/blob/cfadd15986c30521d8ba7d5b6f57b4fefcc7ac38/contracts/LunyrToken.sol#L117 require(candidateContract.isSaleClockAuction()); // Set the new contract address saleAuction = candidateContract; } /// @dev Sets the reference to the siring auction. /// @param _address - Address of siring contract. function setSiringAuctionAddress(address _address) external onlyCEO { SiringClockAuction candidateContract = SiringClockAuction(_address); // NOTE: verify that a contract is what we expect - https://github.com/Lunyr/crowdsale-contracts/blob/cfadd15986c30521d8ba7d5b6f57b4fefcc7ac38/contracts/LunyrToken.sol#L117 require(candidateContract.isSiringClockAuction()); // Set the new contract address siringAuction = candidateContract; } /// @dev Put a kitty up for auction. /// Does some ownership trickery to create auctions in one tx. function createSaleAuction( uint256 _kittyId, uint256 _startingPrice, uint256 _endingPrice, uint256 _duration ) external whenNotPaused { // Auction contract checks input sizes // If kitty is already on any auction, this will throw // because it will be owned by the auction contract. require(_owns(msg.sender, _kittyId)); // Ensure the kitty is not pregnant to prevent the auction // contract accidentally receiving ownership of the child. // NOTE: the kitty IS allowed to be in a cooldown. require(!isPregnant(_kittyId)); _approve(_kittyId, saleAuction); // Sale auction throws if inputs are invalid and clears // transfer and sire approval after escrowing the kitty. saleAuction.createAuction( _kittyId, _startingPrice, _endingPrice, _duration, msg.sender ); } /// @dev Put a kitty up for auction to be sire. /// Performs checks to ensure the kitty can be sired, then /// delegates to reverse auction. function createSiringAuction( uint256 _kittyId, uint256 _startingPrice, uint256 _endingPrice, uint256 _duration ) external whenNotPaused { // Auction contract checks input sizes // If kitty is already on any auction, this will throw // because it will be owned by the auction contract. require(_owns(msg.sender, _kittyId)); require(isReadyToBreed(_kittyId)); _approve(_kittyId, siringAuction); // Siring auction throws if inputs are invalid and clears // transfer and sire approval after escrowing the kitty. siringAuction.createAuction( _kittyId, _startingPrice, _endingPrice, _duration, msg.sender ); } /// @dev Completes a siring auction by bidding. /// Immediately breeds the winning matron with the sire on auction. /// @param _sireId - ID of the sire on auction. /// @param _matronId - ID of the matron owned by the bidder. function bidOnSiringAuction( uint256 _sireId, uint256 _matronId ) external payable whenNotPaused { // Auction contract checks input sizes require(_owns(msg.sender, _matronId)); require(isReadyToBreed(_matronId)); require(_canBreedWithViaAuction(_matronId, _sireId)); // Define the current price of the auction. uint256 currentPrice = siringAuction.getCurrentPrice(_sireId); require(msg.value >= currentPrice + autoBirthFee); // Siring auction will throw if the bid fails. siringAuction.bid.value(msg.value - autoBirthFee)(_sireId); _breedWith(uint32(_matronId), uint32(_sireId)); } /// @dev Transfers the balance of the sale auction contract /// to the KittyCore contract. We use two-step withdrawal to /// prevent two transfer calls in the auction bid function. function withdrawAuctionBalances() external onlyCLevel { saleAuction.withdrawBalance(); siringAuction.withdrawBalance(); } } /// @title all functions related to creating kittens contract KittyMinting is KittyAuction { // Limits the number of cats the contract owner can ever create. uint256 public constant PROMO_CREATION_LIMIT = 5000; uint256 public constant GEN0_CREATION_LIMIT = 45000; // Constants for gen0 auctions. uint256 public constant GEN0_STARTING_PRICE = 10 finney; uint256 public constant GEN0_AUCTION_DURATION = 1 days; // Counts the number of cats the contract owner has created. uint256 public promoCreatedCount; uint256 public gen0CreatedCount; /// @dev we can create promo kittens, up to a limit. Only callable by COO /// @param _genes the encoded genes of the kitten to be created, any value is accepted /// @param _owner the future owner of the created kittens. Default to contract COO function createPromoKitty(uint256 _genes, address _owner) external onlyCOO { address kittyOwner = _owner; if (kittyOwner == address(0)) { kittyOwner = cooAddress; } require(promoCreatedCount < PROMO_CREATION_LIMIT); promoCreatedCount++; _createKitty(0, 0, 0, _genes, kittyOwner); } /// @dev Creates a new gen0 kitty with the given genes and /// creates an auction for it. function createGen0Auction(uint256 _genes) external onlyCOO { require(gen0CreatedCount < GEN0_CREATION_LIMIT); uint256 kittyId = _createKitty(0, 0, 0, _genes, address(this)); _approve(kittyId, saleAuction); saleAuction.createAuction( kittyId, _computeNextGen0Price(), 0, GEN0_AUCTION_DURATION, address(this) ); gen0CreatedCount++; } /// @dev Computes the next gen0 auction starting price, given /// the average of the past 5 prices + 50%. function _computeNextGen0Price() internal view returns (uint256) { uint256 avePrice = saleAuction.averageGen0SalePrice(); // Sanity check to ensure we don't overflow arithmetic require(avePrice == uint256(uint128(avePrice))); uint256 nextPrice = avePrice + (avePrice / 2); // We never auction for less than starting price if (nextPrice < GEN0_STARTING_PRICE) { nextPrice = GEN0_STARTING_PRICE; } return nextPrice; } } /// @title CryptoKitties: Collectible, breedable, and oh-so-adorable cats on the Ethereum blockchain. /// @author Axiom Zen (https://www.axiomzen.co) /// @dev The main CryptoKitties contract, keeps track of kittens so they don't wander around and get lost. contract KittyCore is KittyMinting { // This is the main CryptoKitties contract. In order to keep our code seperated into logical sections, // we've broken it up in two ways. First, we have several seperately-instantiated sibling contracts // that handle auctions and our super-top-secret genetic combination algorithm. The auctions are // seperate since their logic is somewhat complex and there's always a risk of subtle bugs. By keeping // them in their own contracts, we can upgrade them without disrupting the main contract that tracks // kitty ownership. The genetic combination algorithm is kept seperate so we can open-source all of // the rest of our code without making it _too_ easy for folks to figure out how the genetics work. // Don't worry, I'm sure someone will reverse engineer it soon enough! // // Secondly, we break the core contract into multiple files using inheritence, one for each major // facet of functionality of CK. This allows us to keep related code bundled together while still // avoiding a single giant file with everything in it. The breakdown is as follows: // // - KittyBase: This is where we define the most fundamental code shared throughout the core // functionality. This includes our main data storage, constants and data types, plus // internal functions for managing these items. // // - KittyAccessControl: This contract manages the various addresses and constraints for operations // that can be executed only by specific roles. Namely CEO, CFO and COO. // // - KittyOwnership: This provides the methods required for basic non-fungible token // transactions, following the draft ERC-721 spec (https://github.com/ethereum/EIPs/issues/721). // // - KittyBreeding: This file contains the methods necessary to breed cats together, including // keeping track of siring offers, and relies on an external genetic combination contract. // // - KittyAuctions: Here we have the public methods for auctioning or bidding on cats or siring // services. The actual auction functionality is handled in two sibling contracts (one // for sales and one for siring), while auction creation and bidding is mostly mediated // through this facet of the core contract. // // - KittyMinting: This final facet contains the functionality we use for creating new gen0 cats. // We can make up to 5000 "promo" cats that can be given away (especially important when // the community is new), and all others can only be created and then immediately put up // for auction via an algorithmically determined starting price. Regardless of how they // are created, there is a hard limit of 50k gen0 cats. After that, it's all up to the // community to breed, breed, breed! // Set in case the core contract is broken and an upgrade is required address public newContractAddress; /// @notice Creates the main CryptoKitties smart contract instance. function KittyCore() public { // Starts paused. paused = true; // the creator of the contract is the initial CEO ceoAddress = msg.sender; // the creator of the contract is also the initial COO cooAddress = msg.sender; // start with the mythical kitten 0 - so we don't have generation-0 parent issues _createKitty(0, 0, 0, uint256(-1), address(0)); } /// @dev Used to mark the smart contract as upgraded, in case there is a serious /// breaking bug. This method does nothing but keep track of the new contract and /// emit a message indicating that the new address is set. It's up to clients of this /// contract to update to the new contract address in that case. (This contract will /// be paused indefinitely if such an upgrade takes place.) /// @param _v2Address new address function setNewAddress(address _v2Address) external onlyCEO whenPaused { // See README.md for updgrade plan newContractAddress = _v2Address; ContractUpgrade(_v2Address); } /// @notice No tipping! /// @dev Reject all Ether from being sent here, unless it's from one of the /// two auction contracts. (Hopefully, we can prevent user accidents.) function() external payable { require( msg.sender == address(saleAuction) || msg.sender == address(siringAuction) ); } /// @notice Returns all the relevant information about a specific kitty. /// @param _id The ID of the kitty of interest. function getKitty(uint256 _id) external view returns ( bool isGestating, bool isReady, uint256 cooldownIndex, uint256 nextActionAt, uint256 siringWithId, uint256 birthTime, uint256 matronId, uint256 sireId, uint256 generation, uint256 genes ) { Kitty storage kit = kitties[_id]; // if this variable is 0 then it's not gestating isGestating = (kit.siringWithId != 0); isReady = (kit.cooldownEndBlock <= block.number); cooldownIndex = uint256(kit.cooldownIndex); nextActionAt = uint256(kit.cooldownEndBlock); siringWithId = uint256(kit.siringWithId); birthTime = uint256(kit.birthTime); matronId = uint256(kit.matronId); sireId = uint256(kit.sireId); generation = uint256(kit.generation); genes = kit.genes; } /// @dev Override unpause so it requires all external contract addresses /// to be set before contract can be unpaused. Also, we can't have /// newContractAddress set either, because then the contract was upgraded. /// @notice This is public rather than external so we can call super.unpause /// without using an expensive CALL. function unpause() public onlyCEO whenPaused { require(saleAuction != address(0)); require(siringAuction != address(0)); require(geneScience != address(0)); require(newContractAddress == address(0)); // Actually unpause the contract. super.unpause(); } // @dev Allows the CFO to capture the balance available to the contract. function withdrawBalance() external onlyCFO { uint256 balance = this.balance; // Subtract all the currently pregnant kittens we have, plus 1 of margin. uint256 subtractFees = (pregnantKitties + 1) * autoBirthFee; if (balance > subtractFees) { cfoAddress.send(balance - subtractFees); } } }
File 3 of 5: WyvernProxyRegistry
pragma solidity ^0.4.13; contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } /** * @dev Allows the current owner to relinquish control of the contract. */ function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract TokenRecipient { event ReceivedEther(address indexed sender, uint amount); event ReceivedTokens(address indexed from, uint256 value, address indexed token, bytes extraData); /** * @dev Receive tokens and generate a log event * @param from Address from which to transfer tokens * @param value Amount of tokens to transfer * @param token Address of token * @param extraData Additional data to log */ function receiveApproval(address from, uint256 value, address token, bytes extraData) public { ERC20 t = ERC20(token); require(t.transferFrom(from, this, value)); emit ReceivedTokens(from, value, token, extraData); } /** * @dev Receive Ether and generate a log event */ function () payable public { emit ReceivedEther(msg.sender, msg.value); } } contract ProxyRegistry is Ownable { /* DelegateProxy implementation contract. Must be initialized. */ address public delegateProxyImplementation; /* Authenticated proxies by user. */ mapping(address => OwnableDelegateProxy) public proxies; /* Contracts pending access. */ mapping(address => uint) public pending; /* Contracts allowed to call those proxies. */ mapping(address => bool) public contracts; /* Delay period for adding an authenticated contract. This mitigates a particular class of potential attack on the Wyvern DAO (which owns this registry) - if at any point the value of assets held by proxy contracts exceeded the value of half the WYV supply (votes in the DAO), a malicious but rational attacker could buy half the Wyvern and grant themselves access to all the proxy contracts. A delay period renders this attack nonthreatening - given two weeks, if that happened, users would have plenty of time to notice and transfer their assets. */ uint public DELAY_PERIOD = 2 weeks; /** * Start the process to enable access for specified contract. Subject to delay period. * * @dev ProxyRegistry owner only * @param addr Address to which to grant permissions */ function startGrantAuthentication (address addr) public onlyOwner { require(!contracts[addr] && pending[addr] == 0); pending[addr] = now; } /** * End the process to nable access for specified contract after delay period has passed. * * @dev ProxyRegistry owner only * @param addr Address to which to grant permissions */ function endGrantAuthentication (address addr) public onlyOwner { require(!contracts[addr] && pending[addr] != 0 && ((pending[addr] + DELAY_PERIOD) < now)); pending[addr] = 0; contracts[addr] = true; } /** * Revoke access for specified contract. Can be done instantly. * * @dev ProxyRegistry owner only * @param addr Address of which to revoke permissions */ function revokeAuthentication (address addr) public onlyOwner { contracts[addr] = false; } /** * Register a proxy contract with this registry * * @dev Must be called by the user which the proxy is for, creates a new AuthenticatedProxy * @return New AuthenticatedProxy contract */ function registerProxy() public returns (OwnableDelegateProxy proxy) { require(proxies[msg.sender] == address(0)); proxy = new OwnableDelegateProxy(msg.sender, delegateProxyImplementation, abi.encodeWithSignature("initialize(address,address)", msg.sender, address(this))); proxies[msg.sender] = proxy; return proxy; } } contract WyvernProxyRegistry is ProxyRegistry { string public constant name = "Project Wyvern Proxy Registry"; /* Whether the initial auth address has been set. */ bool public initialAddressSet = false; constructor () public { delegateProxyImplementation = new AuthenticatedProxy(); } /** * Grant authentication to the initial Exchange protocol contract * * @dev No delay, can only be called once - after that the standard registry process with a delay must be used * @param authAddress Address of the contract to grant authentication */ function grantInitialAuthentication (address authAddress) onlyOwner public { require(!initialAddressSet); initialAddressSet = true; contracts[authAddress] = true; } } contract OwnedUpgradeabilityStorage { // Current implementation address internal _implementation; // Owner of the contract address private _upgradeabilityOwner; /** * @dev Tells the address of the owner * @return the address of the owner */ function upgradeabilityOwner() public view returns (address) { return _upgradeabilityOwner; } /** * @dev Sets the address of the owner */ function setUpgradeabilityOwner(address newUpgradeabilityOwner) internal { _upgradeabilityOwner = newUpgradeabilityOwner; } /** * @dev Tells the address of the current implementation * @return address of the current implementation */ function implementation() public view returns (address) { return _implementation; } /** * @dev Tells the proxy type (EIP 897) * @return Proxy type, 2 for forwarding proxy */ function proxyType() public pure returns (uint256 proxyTypeId) { return 2; } } contract AuthenticatedProxy is TokenRecipient, OwnedUpgradeabilityStorage { /* Whether initialized. */ bool initialized = false; /* Address which owns this proxy. */ address public user; /* Associated registry with contract authentication information. */ ProxyRegistry public registry; /* Whether access has been revoked. */ bool public revoked; /* Delegate call could be used to atomically transfer multiple assets owned by the proxy contract with one order. */ enum HowToCall { Call, DelegateCall } /* Event fired when the proxy access is revoked or unrevoked. */ event Revoked(bool revoked); /** * Initialize an AuthenticatedProxy * * @param addrUser Address of user on whose behalf this proxy will act * @param addrRegistry Address of ProxyRegistry contract which will manage this proxy */ function initialize (address addrUser, ProxyRegistry addrRegistry) public { require(!initialized); initialized = true; user = addrUser; registry = addrRegistry; } /** * Set the revoked flag (allows a user to revoke ProxyRegistry access) * * @dev Can be called by the user only * @param revoke Whether or not to revoke access */ function setRevoke(bool revoke) public { require(msg.sender == user); revoked = revoke; emit Revoked(revoke); } /** * Execute a message call from the proxy contract * * @dev Can be called by the user, or by a contract authorized by the registry as long as the user has not revoked access * @param dest Address to which the call will be sent * @param howToCall Which kind of call to make * @param calldata Calldata to send * @return Result of the call (success or failure) */ function proxy(address dest, HowToCall howToCall, bytes calldata) public returns (bool result) { require(msg.sender == user || (!revoked && registry.contracts(msg.sender))); if (howToCall == HowToCall.Call) { result = dest.call(calldata); } else if (howToCall == HowToCall.DelegateCall) { result = dest.delegatecall(calldata); } return result; } /** * Execute a message call and assert success * * @dev Same functionality as `proxy`, just asserts the return value * @param dest Address to which the call will be sent * @param howToCall What kind of call to make * @param calldata Calldata to send */ function proxyAssert(address dest, HowToCall howToCall, bytes calldata) public { require(proxy(dest, howToCall, calldata)); } } contract Proxy { /** * @dev Tells the address of the implementation where every call will be delegated. * @return address of the implementation to which it will be delegated */ function implementation() public view returns (address); /** * @dev Tells the type of proxy (EIP 897) * @return Type of proxy, 2 for upgradeable proxy */ function proxyType() public pure returns (uint256 proxyTypeId); /** * @dev Fallback function allowing to perform a delegatecall to the given implementation. * This function will return whatever the implementation call returns */ function () payable public { address _impl = implementation(); require(_impl != address(0)); assembly { let ptr := mload(0x40) calldatacopy(ptr, 0, calldatasize) let result := delegatecall(gas, _impl, ptr, calldatasize, 0, 0) let size := returndatasize returndatacopy(ptr, 0, size) switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } contract OwnedUpgradeabilityProxy is Proxy, OwnedUpgradeabilityStorage { /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event ProxyOwnershipTransferred(address previousOwner, address newOwner); /** * @dev This event will be emitted every time the implementation gets upgraded * @param implementation representing the address of the upgraded implementation */ event Upgraded(address indexed implementation); /** * @dev Upgrades the implementation address * @param implementation representing the address of the new implementation to be set */ function _upgradeTo(address implementation) internal { require(_implementation != implementation); _implementation = implementation; emit Upgraded(implementation); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyProxyOwner() { require(msg.sender == proxyOwner()); _; } /** * @dev Tells the address of the proxy owner * @return the address of the proxy owner */ function proxyOwner() public view returns (address) { return upgradeabilityOwner(); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0)); emit ProxyOwnershipTransferred(proxyOwner(), newOwner); setUpgradeabilityOwner(newOwner); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy. * @param implementation representing the address of the new implementation to be set. */ function upgradeTo(address implementation) public onlyProxyOwner { _upgradeTo(implementation); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy * and delegatecall the new implementation for initialization. * @param implementation representing the address of the new implementation to be set. * @param data represents the msg.data to bet sent in the low level call. This parameter may include the function * signature of the implementation to be called with the needed payload */ function upgradeToAndCall(address implementation, bytes data) payable public onlyProxyOwner { upgradeTo(implementation); require(address(this).delegatecall(data)); } } contract OwnableDelegateProxy is OwnedUpgradeabilityProxy { constructor(address owner, address initialImplementation, bytes calldata) public { setUpgradeabilityOwner(owner); _upgradeTo(initialImplementation); require(initialImplementation.delegatecall(calldata)); } }
File 4 of 5: OwnableDelegateProxy
contract OwnedUpgradeabilityStorage { // Current implementation address internal _implementation; // Owner of the contract address private _upgradeabilityOwner; /** * @dev Tells the address of the owner * @return the address of the owner */ function upgradeabilityOwner() public view returns (address) { return _upgradeabilityOwner; } /** * @dev Sets the address of the owner */ function setUpgradeabilityOwner(address newUpgradeabilityOwner) internal { _upgradeabilityOwner = newUpgradeabilityOwner; } /** * @dev Tells the address of the current implementation * @return address of the current implementation */ function implementation() public view returns (address) { return _implementation; } /** * @dev Tells the proxy type (EIP 897) * @return Proxy type, 2 for forwarding proxy */ function proxyType() public pure returns (uint256 proxyTypeId) { return 2; } } contract Proxy { /** * @dev Tells the address of the implementation where every call will be delegated. * @return address of the implementation to which it will be delegated */ function implementation() public view returns (address); /** * @dev Tells the type of proxy (EIP 897) * @return Type of proxy, 2 for upgradeable proxy */ function proxyType() public pure returns (uint256 proxyTypeId); /** * @dev Fallback function allowing to perform a delegatecall to the given implementation. * This function will return whatever the implementation call returns */ function () payable public { address _impl = implementation(); require(_impl != address(0)); assembly { let ptr := mload(0x40) calldatacopy(ptr, 0, calldatasize) let result := delegatecall(gas, _impl, ptr, calldatasize, 0, 0) let size := returndatasize returndatacopy(ptr, 0, size) switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } contract OwnedUpgradeabilityProxy is Proxy, OwnedUpgradeabilityStorage { /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event ProxyOwnershipTransferred(address previousOwner, address newOwner); /** * @dev This event will be emitted every time the implementation gets upgraded * @param implementation representing the address of the upgraded implementation */ event Upgraded(address indexed implementation); /** * @dev Upgrades the implementation address * @param implementation representing the address of the new implementation to be set */ function _upgradeTo(address implementation) internal { require(_implementation != implementation); _implementation = implementation; emit Upgraded(implementation); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyProxyOwner() { require(msg.sender == proxyOwner()); _; } /** * @dev Tells the address of the proxy owner * @return the address of the proxy owner */ function proxyOwner() public view returns (address) { return upgradeabilityOwner(); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0)); emit ProxyOwnershipTransferred(proxyOwner(), newOwner); setUpgradeabilityOwner(newOwner); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy. * @param implementation representing the address of the new implementation to be set. */ function upgradeTo(address implementation) public onlyProxyOwner { _upgradeTo(implementation); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy * and delegatecall the new implementation for initialization. * @param implementation representing the address of the new implementation to be set. * @param data represents the msg.data to bet sent in the low level call. This parameter may include the function * signature of the implementation to be called with the needed payload */ function upgradeToAndCall(address implementation, bytes data) payable public onlyProxyOwner { upgradeTo(implementation); require(address(this).delegatecall(data)); } } contract OwnableDelegateProxy is OwnedUpgradeabilityProxy { constructor(address owner, address initialImplementation, bytes calldata) public { setUpgradeabilityOwner(owner); _upgradeTo(initialImplementation); require(initialImplementation.delegatecall(calldata)); } }
File 5 of 5: AuthenticatedProxy
pragma solidity ^0.4.13; contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } /** * @dev Allows the current owner to relinquish control of the contract. */ function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract ProxyRegistry is Ownable { /* DelegateProxy implementation contract. Must be initialized. */ address public delegateProxyImplementation; /* Authenticated proxies by user. */ mapping(address => OwnableDelegateProxy) public proxies; /* Contracts pending access. */ mapping(address => uint) public pending; /* Contracts allowed to call those proxies. */ mapping(address => bool) public contracts; /* Delay period for adding an authenticated contract. This mitigates a particular class of potential attack on the Wyvern DAO (which owns this registry) - if at any point the value of assets held by proxy contracts exceeded the value of half the WYV supply (votes in the DAO), a malicious but rational attacker could buy half the Wyvern and grant themselves access to all the proxy contracts. A delay period renders this attack nonthreatening - given two weeks, if that happened, users would have plenty of time to notice and transfer their assets. */ uint public DELAY_PERIOD = 2 weeks; /** * Start the process to enable access for specified contract. Subject to delay period. * * @dev ProxyRegistry owner only * @param addr Address to which to grant permissions */ function startGrantAuthentication (address addr) public onlyOwner { require(!contracts[addr] && pending[addr] == 0); pending[addr] = now; } /** * End the process to nable access for specified contract after delay period has passed. * * @dev ProxyRegistry owner only * @param addr Address to which to grant permissions */ function endGrantAuthentication (address addr) public onlyOwner { require(!contracts[addr] && pending[addr] != 0 && ((pending[addr] + DELAY_PERIOD) < now)); pending[addr] = 0; contracts[addr] = true; } /** * Revoke access for specified contract. Can be done instantly. * * @dev ProxyRegistry owner only * @param addr Address of which to revoke permissions */ function revokeAuthentication (address addr) public onlyOwner { contracts[addr] = false; } /** * Register a proxy contract with this registry * * @dev Must be called by the user which the proxy is for, creates a new AuthenticatedProxy * @return New AuthenticatedProxy contract */ function registerProxy() public returns (OwnableDelegateProxy proxy) { require(proxies[msg.sender] == address(0)); proxy = new OwnableDelegateProxy(msg.sender, delegateProxyImplementation, abi.encodeWithSignature("initialize(address,address)", msg.sender, address(this))); proxies[msg.sender] = proxy; return proxy; } } contract TokenRecipient { event ReceivedEther(address indexed sender, uint amount); event ReceivedTokens(address indexed from, uint256 value, address indexed token, bytes extraData); /** * @dev Receive tokens and generate a log event * @param from Address from which to transfer tokens * @param value Amount of tokens to transfer * @param token Address of token * @param extraData Additional data to log */ function receiveApproval(address from, uint256 value, address token, bytes extraData) public { ERC20 t = ERC20(token); require(t.transferFrom(from, this, value)); emit ReceivedTokens(from, value, token, extraData); } /** * @dev Receive Ether and generate a log event */ function () payable public { emit ReceivedEther(msg.sender, msg.value); } } contract OwnedUpgradeabilityStorage { // Current implementation address internal _implementation; // Owner of the contract address private _upgradeabilityOwner; /** * @dev Tells the address of the owner * @return the address of the owner */ function upgradeabilityOwner() public view returns (address) { return _upgradeabilityOwner; } /** * @dev Sets the address of the owner */ function setUpgradeabilityOwner(address newUpgradeabilityOwner) internal { _upgradeabilityOwner = newUpgradeabilityOwner; } /** * @dev Tells the address of the current implementation * @return address of the current implementation */ function implementation() public view returns (address) { return _implementation; } /** * @dev Tells the proxy type (EIP 897) * @return Proxy type, 2 for forwarding proxy */ function proxyType() public pure returns (uint256 proxyTypeId) { return 2; } } contract AuthenticatedProxy is TokenRecipient, OwnedUpgradeabilityStorage { /* Whether initialized. */ bool initialized = false; /* Address which owns this proxy. */ address public user; /* Associated registry with contract authentication information. */ ProxyRegistry public registry; /* Whether access has been revoked. */ bool public revoked; /* Delegate call could be used to atomically transfer multiple assets owned by the proxy contract with one order. */ enum HowToCall { Call, DelegateCall } /* Event fired when the proxy access is revoked or unrevoked. */ event Revoked(bool revoked); /** * Initialize an AuthenticatedProxy * * @param addrUser Address of user on whose behalf this proxy will act * @param addrRegistry Address of ProxyRegistry contract which will manage this proxy */ function initialize (address addrUser, ProxyRegistry addrRegistry) public { require(!initialized); initialized = true; user = addrUser; registry = addrRegistry; } /** * Set the revoked flag (allows a user to revoke ProxyRegistry access) * * @dev Can be called by the user only * @param revoke Whether or not to revoke access */ function setRevoke(bool revoke) public { require(msg.sender == user); revoked = revoke; emit Revoked(revoke); } /** * Execute a message call from the proxy contract * * @dev Can be called by the user, or by a contract authorized by the registry as long as the user has not revoked access * @param dest Address to which the call will be sent * @param howToCall Which kind of call to make * @param calldata Calldata to send * @return Result of the call (success or failure) */ function proxy(address dest, HowToCall howToCall, bytes calldata) public returns (bool result) { require(msg.sender == user || (!revoked && registry.contracts(msg.sender))); if (howToCall == HowToCall.Call) { result = dest.call(calldata); } else if (howToCall == HowToCall.DelegateCall) { result = dest.delegatecall(calldata); } return result; } /** * Execute a message call and assert success * * @dev Same functionality as `proxy`, just asserts the return value * @param dest Address to which the call will be sent * @param howToCall What kind of call to make * @param calldata Calldata to send */ function proxyAssert(address dest, HowToCall howToCall, bytes calldata) public { require(proxy(dest, howToCall, calldata)); } } contract Proxy { /** * @dev Tells the address of the implementation where every call will be delegated. * @return address of the implementation to which it will be delegated */ function implementation() public view returns (address); /** * @dev Tells the type of proxy (EIP 897) * @return Type of proxy, 2 for upgradeable proxy */ function proxyType() public pure returns (uint256 proxyTypeId); /** * @dev Fallback function allowing to perform a delegatecall to the given implementation. * This function will return whatever the implementation call returns */ function () payable public { address _impl = implementation(); require(_impl != address(0)); assembly { let ptr := mload(0x40) calldatacopy(ptr, 0, calldatasize) let result := delegatecall(gas, _impl, ptr, calldatasize, 0, 0) let size := returndatasize returndatacopy(ptr, 0, size) switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } contract OwnedUpgradeabilityProxy is Proxy, OwnedUpgradeabilityStorage { /** * @dev Event to show ownership has been transferred * @param previousOwner representing the address of the previous owner * @param newOwner representing the address of the new owner */ event ProxyOwnershipTransferred(address previousOwner, address newOwner); /** * @dev This event will be emitted every time the implementation gets upgraded * @param implementation representing the address of the upgraded implementation */ event Upgraded(address indexed implementation); /** * @dev Upgrades the implementation address * @param implementation representing the address of the new implementation to be set */ function _upgradeTo(address implementation) internal { require(_implementation != implementation); _implementation = implementation; emit Upgraded(implementation); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyProxyOwner() { require(msg.sender == proxyOwner()); _; } /** * @dev Tells the address of the proxy owner * @return the address of the proxy owner */ function proxyOwner() public view returns (address) { return upgradeabilityOwner(); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferProxyOwnership(address newOwner) public onlyProxyOwner { require(newOwner != address(0)); emit ProxyOwnershipTransferred(proxyOwner(), newOwner); setUpgradeabilityOwner(newOwner); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy. * @param implementation representing the address of the new implementation to be set. */ function upgradeTo(address implementation) public onlyProxyOwner { _upgradeTo(implementation); } /** * @dev Allows the upgradeability owner to upgrade the current implementation of the proxy * and delegatecall the new implementation for initialization. * @param implementation representing the address of the new implementation to be set. * @param data represents the msg.data to bet sent in the low level call. This parameter may include the function * signature of the implementation to be called with the needed payload */ function upgradeToAndCall(address implementation, bytes data) payable public onlyProxyOwner { upgradeTo(implementation); require(address(this).delegatecall(data)); } } contract OwnableDelegateProxy is OwnedUpgradeabilityProxy { constructor(address owner, address initialImplementation, bytes calldata) public { setUpgradeabilityOwner(owner); _upgradeTo(initialImplementation); require(initialImplementation.delegatecall(calldata)); } }