ETH Price: $1,824.87 (+0.80%)

Transaction Decoder

Block:
21831852 at Feb-12-2025 05:19:47 PM +UTC
Transaction Fee:
0.001304135009440614 ETH $2.38
Gas Used:
145,737 Gas / 8.948551222 Gwei

Emitted Events:

272 SafeProxy.0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d( 0x3d0ce9bfc3ed7d6862dbb28b2dea94561fe714a1b4d019aa8af39730d1ad7c3d, 0x0000000000000000000000004e502ab1bb313b3c1311eb0d11b31a6b62988b86, 0000000000000000000000000000000000000000000000000de0b6b3a7640000 )
273 MegaETH.Transfer( from=0x00000000...000000000, to=[Sender] 0x857ff99cd5caefca0d0752ee7f2b97e213bbf22f, tokenId=4762 )
274 MegaETH.Minted( to=[Sender] 0x857ff99cd5caefca0d0752ee7f2b97e213bbf22f, tokenId=4762, phase=1 )

Account State Difference:

  Address   Before After State Difference Code
0x4E502Ab1...B62988b86
0x857FF99c...213BBf22f
1.020365304775704384 Eth
Nonce: 118
0.01906116976626377 Eth
Nonce: 119
1.001304135009440614
(beaverbuild)
19.854786506851324506 Eth19.855091097181178769 Eth0.000304590329854263
0xcE92C82e...c18356050 4,726 Eth4,727 Eth1

Execution Trace

ETH 1 MegaETH.mint( )
  • ETH 1 SafeProxy.CALL( )
    • ETH 1 Safe.DELEGATECALL( )
      File 1 of 3: MegaETH
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.8.20;
      import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
      import "@openzeppelin/contracts/access/Ownable2Step.sol";
      import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
      import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
      import "@openzeppelin/contracts/utils/Strings.sol";
      /// @title MegaETH NFT Collection
      /// @notice This contract implements a two-phase NFT minting system with whitelist and guaranteed mint functionality
      /// @dev Implements soulbound NFTs with phased minting, merkle proofs for whitelisting
      contract MegaETH is ERC721, Ownable2Step, ReentrancyGuard {
          using Strings for uint256;
          // Custom Errors
          error SoldOut();
          error AlreadyMinted();
          error MintingNotStarted();
          error MintingEnded();
          error InvalidProof();
          error InsufficientPayment();
          error PaymentNotRequired();
          error Phase1SoldOut();
          error Phase1NotCompleted();
          error Phase2SoldOut();
          error TokenIsSoulbound();
          error TokenIdInvalid();
          error TokenNotMintedYet();
          error WithdrawalFailed();
          error PhasesNotInitialized();
          error ContractPaused();
          error InvalidGuranteedStartTime();
          error InvalidPhase2StartTime();
          error InvalidPhaseEndTime();
          error InvalidPaymentReceiver();
          error NotAuthorized();
          // Constants
          /// @notice Maximum number of NFTs that can be minted
          uint256 public constant MAX_SUPPLY = 10000;
          /// @notice Price per NFT in ETH
          uint256 public constant PRICE = 1 ether;
          /// @notice Maximum supply for phase 1 minting
          uint256 public constant PHASE1_SUPPLY = 5000;
          /// @notice Maximum supply for phase 2 minting
          uint256 public constant PHASE2_SUPPLY = 5000;
          /// @notice Address that receives payment for mints
          address public immutable PAYMENT_RECEIVER;
          // State variables
          uint256 public totalSupply;
          string public baseURI;
          bool public paused;
          // Phase timing variables
          uint256 public phase1GuaranteedStart;
          uint256 public phase1WhitelistStart;
          uint256 public phase1End;
          uint256 public phase2GuaranteedStart;
          uint256 public phase2WhitelistStart;
          uint256 public phase2End;
          // Merkle roots
          bytes32 public phase1GuaranteedRoot;
          bytes32 public phase1WhitelistRoot;
          bytes32 public phase1FreeMintRoot;
          bytes32 public phase2GuaranteedRoot;
          bytes32 public phase2WhitelistRoot;
          bytes32 public phase2FreeMintRoot;
          // Mapping to track minted status
          mapping(address => bool) public hasMinted;
          /// @notice Emitted when a new token is minted
          /// @param to Address receiving the NFT
          /// @param tokenId ID of the minted token
          /// @param phase Current minting phase (1 or 2)
          event Minted(address indexed to, uint256 tokenId, uint256 phase);
          /// @notice Emitted when contract pause state changes
          /// @param isPaused New pause state
          event ContractPausedEvent(bool isPaused);
          /// @notice Defines different types of minting methods available
          enum MintType {
              PHASE1_GUARANTEED,
              PHASE1_WHITELIST,
              PHASE1_FREE,
              PHASE2_GUARANTEED,
              PHASE2_WHITELIST,
              PHASE2_FREE
          }
          /// @notice Ensures caller is owner or payment receiver
          modifier onlyAdmin() {
              if (msg.sender != owner() && msg.sender != PAYMENT_RECEIVER) {
                  revert NotAuthorized();
              }
              _;
          }
          /// @notice Ensures contract is not paused
          modifier whenNotPaused() {
              if (paused) revert ContractPaused();
              _;
          }
          /// @notice Ensures all phase timings are initialized
          modifier phaseInitialized() {
              if (
                  phase1GuaranteedStart == 0 ||
                  phase1WhitelistStart == 0 ||
                  phase1End == 0 ||
                  phase2GuaranteedStart == 0 ||
                  phase2WhitelistStart == 0 ||
                  phase2End == 0
              ) revert PhasesNotInitialized();
              _;
          }
          /// @notice Validates phase timing sequence
          modifier validPhaseTimings(
              uint256 guaranteedStart,
              uint256 whitelistStart,
              uint256 end
          ) {
              if (guaranteedStart >= end) revert InvalidPhaseEndTime();
              if (whitelistStart >= end) revert InvalidPhaseEndTime();
              if (guaranteedStart > whitelistStart)
                  revert InvalidGuranteedStartTime();
              _;
          }
          /// @notice Initializes the contract with payment receiver address
          /// @param _paymentReceiver Address to receive mint payments
          constructor(
              address _paymentReceiver
          ) ERC721("MegaETH NFT", "MEGA") Ownable(msg.sender) {
              if (_paymentReceiver == address(0)) revert InvalidPaymentReceiver();
              PAYMENT_RECEIVER = _paymentReceiver;
          }
          /// @notice Mints an NFT based on specified mint type and proof
          /// @param mintType Type of mint to perform
          /// @param merkleProof Proof of whitelist inclusion
          /// @dev Handles different mint types with respective validations
          function mint(
              MintType mintType,
              bytes32[] calldata merkleProof
          ) external payable nonReentrant phaseInitialized whenNotPaused {
              if (totalSupply >= MAX_SUPPLY) revert SoldOut();
              if (hasMinted[msg.sender]) revert AlreadyMinted();
              bytes32 merkleRoot;
              uint256 startTime;
              uint256 endTime;
              bool requiresPayment;
              if (mintType == MintType.PHASE1_GUARANTEED) {
                  merkleRoot = phase1GuaranteedRoot;
                  startTime = phase1GuaranteedStart;
                  endTime = phase1WhitelistStart;
                  requiresPayment = true;
                  if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut();
              } else if (mintType == MintType.PHASE1_WHITELIST) {
                  merkleRoot = phase1WhitelistRoot;
                  startTime = phase1WhitelistStart;
                  endTime = phase1End;
                  requiresPayment = true;
                  if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut();
              } else if (mintType == MintType.PHASE1_FREE) {
                  merkleRoot = phase1FreeMintRoot;
                  startTime = phase1GuaranteedStart;
                  endTime = phase1WhitelistStart;
                  requiresPayment = false;
                  if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut();
              } else if (mintType == MintType.PHASE2_GUARANTEED) {
                  merkleRoot = phase2GuaranteedRoot;
                  startTime = phase2GuaranteedStart;
                  endTime = phase2WhitelistStart;
                  requiresPayment = true;
                  if (block.timestamp <= phase1End) revert Phase1NotCompleted();
              } else if (mintType == MintType.PHASE2_WHITELIST) {
                  merkleRoot = phase2WhitelistRoot;
                  startTime = phase2WhitelistStart;
                  endTime = phase2End;
                  requiresPayment = true;
                  if (block.timestamp <= phase1End) revert Phase1NotCompleted();
              } else if (mintType == MintType.PHASE2_FREE) {
                  merkleRoot = phase2FreeMintRoot;
                  startTime = phase2GuaranteedStart;
                  endTime = phase2WhitelistStart;
                  requiresPayment = false;
                  if (block.timestamp <= phase1End) revert Phase1NotCompleted();
              }
              if (block.timestamp < startTime) revert MintingNotStarted();
              if (block.timestamp > endTime) revert MintingEnded();
              if (
                  !MerkleProof.verify(
                      merkleProof,
                      merkleRoot,
                      keccak256(abi.encodePacked(msg.sender))
                  )
              ) {
                  revert InvalidProof();
              }
              if (requiresPayment) {
                  if (msg.value != PRICE) revert InsufficientPayment();
                  (bool success, ) = PAYMENT_RECEIVER.call{value: msg.value}("");
                  if (!success) revert WithdrawalFailed();
              } else {
                  if (msg.value > 0) revert PaymentNotRequired();
              }
              _mintInternal(msg.sender);
          }
          /// @notice Internal function to handle the NFT minting process
          /// @param to Address to receive the NFT
          /// @dev Handles the actual minting and updates relevant state
          function _mintInternal(address to) internal {
              uint256 tokenId = totalSupply;
              _safeMint(to, tokenId);
              totalSupply++;
              hasMinted[to] = true;
              emit Minted(to, tokenId, totalSupply <= PHASE1_SUPPLY ? 1 : 2);
          }
          /// @notice Override of _update to implement soulbound mechanism
          /// @dev Prevents transfers after initial mint
          function _update(
              address to,
              uint256 tokenId,
              address auth
          ) internal virtual override returns (address) {
              address from = _ownerOf(tokenId);
              // Allow minting, but prevent transfers
              if (from != address(0)) {
                  revert TokenIsSoulbound();
              }
              return super._update(to, tokenId, auth);
          }
          /// @notice Sets the contract's pause state
          /// @param _paused New pause state
          function setPaused(bool _paused) external onlyAdmin {
              paused = _paused;
              emit ContractPausedEvent(_paused);
          }
          /// @notice Sets the base URI for token metadata
          /// @param newBaseURI New base URI string
          function setBaseURI(string calldata newBaseURI) external onlyAdmin {
              baseURI = newBaseURI;
          }
          /// @notice Sets the timing parameters for phase 1
          /// @param _guaranteedStart Start time for guaranteed mints
          /// @param _whitelistStart Start time for whitelist mints
          /// @param _end End time for phase 1
          function setPhase1Times(
              uint256 _guaranteedStart,
              uint256 _whitelistStart,
              uint256 _end
          )
              external
              onlyAdmin
              validPhaseTimings(_guaranteedStart, _whitelistStart, _end)
          {
              phase1GuaranteedStart = _guaranteedStart;
              phase1WhitelistStart = _whitelistStart;
              phase1End = _end;
          }
          /// @notice Sets the timing parameters for phase 2
          /// @param _guaranteedStart Start time for guaranteed mints
          /// @param _whitelistStart Start time for whitelist mints
          /// @param _end End time for phase 2
          function setPhase2Times(
              uint256 _guaranteedStart,
              uint256 _whitelistStart,
              uint256 _end
          )
              external
              onlyAdmin
              validPhaseTimings(_guaranteedStart, _whitelistStart, _end)
          {
              if (_guaranteedStart < phase1End) revert InvalidPhase2StartTime();
              phase2GuaranteedStart = _guaranteedStart;
              phase2WhitelistStart = _whitelistStart;
              phase2End = _end;
          }
          /// @notice Sets all merkle roots for whitelist verification
          /// @param _phase1GuaranteedRoot Root for phase 1 guaranteed list
          /// @param _phase1WhitelistRoot Root for phase 1 whitelist
          /// @param _phase1FreeMintRoot Root for phase 1 free mints
          /// @param _phase2GuaranteedRoot Root for phase 2 guaranteed list
          /// @param _phase2WhitelistRoot Root for phase 2 whitelist
          /// @param _phase2FreeMintRoot Root for phase 2 free mints
          function setMerkleRoots(
              bytes32 _phase1GuaranteedRoot,
              bytes32 _phase1WhitelistRoot,
              bytes32 _phase1FreeMintRoot,
              bytes32 _phase2GuaranteedRoot,
              bytes32 _phase2WhitelistRoot,
              bytes32 _phase2FreeMintRoot
          ) external onlyAdmin {
              phase1GuaranteedRoot = _phase1GuaranteedRoot;
              phase1WhitelistRoot = _phase1WhitelistRoot;
              phase1FreeMintRoot = _phase1FreeMintRoot;
              phase2GuaranteedRoot = _phase2GuaranteedRoot;
              phase2WhitelistRoot = _phase2WhitelistRoot;
              phase2FreeMintRoot = _phase2FreeMintRoot;
          }
          /// @notice Returns base URI for computing {tokenURI}
          /// @return Base URI string
          function _baseURI() internal view virtual override returns (string memory) {
              return baseURI;
          }
          /// @notice Returns the URI for a given token
          /// @param tokenId ID of the token to get URI for
          /// @return Token URI string
          function tokenURI(
              uint256 tokenId
          ) public view virtual override returns (string memory) {
              return string(abi.encodePacked(baseURI, tokenId.toString()));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol)
      pragma solidity ^0.8.20;
      import {IERC721} from "./IERC721.sol";
      import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
      import {ERC721Utils} from "./utils/ERC721Utils.sol";
      import {Context} from "../../utils/Context.sol";
      import {Strings} from "../../utils/Strings.sol";
      import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
      import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";
      /**
       * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
       * the Metadata extension, but not including the Enumerable extension, which is available separately as
       * {ERC721Enumerable}.
       */
      abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
          using Strings for uint256;
          // Token name
          string private _name;
          // Token symbol
          string private _symbol;
          mapping(uint256 tokenId => address) private _owners;
          mapping(address owner => uint256) private _balances;
          mapping(uint256 tokenId => address) private _tokenApprovals;
          mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;
          /**
           * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
           */
          constructor(string memory name_, string memory symbol_) {
              _name = name_;
              _symbol = symbol_;
          }
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
              return
                  interfaceId == type(IERC721).interfaceId ||
                  interfaceId == type(IERC721Metadata).interfaceId ||
                  super.supportsInterface(interfaceId);
          }
          /**
           * @dev See {IERC721-balanceOf}.
           */
          function balanceOf(address owner) public view virtual returns (uint256) {
              if (owner == address(0)) {
                  revert ERC721InvalidOwner(address(0));
              }
              return _balances[owner];
          }
          /**
           * @dev See {IERC721-ownerOf}.
           */
          function ownerOf(uint256 tokenId) public view virtual returns (address) {
              return _requireOwned(tokenId);
          }
          /**
           * @dev See {IERC721Metadata-name}.
           */
          function name() public view virtual returns (string memory) {
              return _name;
          }
          /**
           * @dev See {IERC721Metadata-symbol}.
           */
          function symbol() public view virtual returns (string memory) {
              return _symbol;
          }
          /**
           * @dev See {IERC721Metadata-tokenURI}.
           */
          function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
              _requireOwned(tokenId);
              string memory baseURI = _baseURI();
              return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
          }
          /**
           * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
           * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
           * by default, can be overridden in child contracts.
           */
          function _baseURI() internal view virtual returns (string memory) {
              return "";
          }
          /**
           * @dev See {IERC721-approve}.
           */
          function approve(address to, uint256 tokenId) public virtual {
              _approve(to, tokenId, _msgSender());
          }
          /**
           * @dev See {IERC721-getApproved}.
           */
          function getApproved(uint256 tokenId) public view virtual returns (address) {
              _requireOwned(tokenId);
              return _getApproved(tokenId);
          }
          /**
           * @dev See {IERC721-setApprovalForAll}.
           */
          function setApprovalForAll(address operator, bool approved) public virtual {
              _setApprovalForAll(_msgSender(), operator, approved);
          }
          /**
           * @dev See {IERC721-isApprovedForAll}.
           */
          function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
              return _operatorApprovals[owner][operator];
          }
          /**
           * @dev See {IERC721-transferFrom}.
           */
          function transferFrom(address from, address to, uint256 tokenId) public virtual {
              if (to == address(0)) {
                  revert ERC721InvalidReceiver(address(0));
              }
              // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
              // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
              address previousOwner = _update(to, tokenId, _msgSender());
              if (previousOwner != from) {
                  revert ERC721IncorrectOwner(from, tokenId, previousOwner);
              }
          }
          /**
           * @dev See {IERC721-safeTransferFrom}.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId) public {
              safeTransferFrom(from, to, tokenId, "");
          }
          /**
           * @dev See {IERC721-safeTransferFrom}.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
              transferFrom(from, to, tokenId);
              ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
          }
          /**
           * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
           *
           * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
           * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
           * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
           * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
           */
          function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
              return _owners[tokenId];
          }
          /**
           * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
           */
          function _getApproved(uint256 tokenId) internal view virtual returns (address) {
              return _tokenApprovals[tokenId];
          }
          /**
           * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
           * particular (ignoring whether it is owned by `owner`).
           *
           * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
           * assumption.
           */
          function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
              return
                  spender != address(0) &&
                  (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
          }
          /**
           * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
           * Reverts if:
           * - `spender` does not have approval from `owner` for `tokenId`.
           * - `spender` does not have approval to manage all of `owner`'s assets.
           *
           * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
           * assumption.
           */
          function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
              if (!_isAuthorized(owner, spender, tokenId)) {
                  if (owner == address(0)) {
                      revert ERC721NonexistentToken(tokenId);
                  } else {
                      revert ERC721InsufficientApproval(spender, tokenId);
                  }
              }
          }
          /**
           * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
           *
           * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
           * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
           *
           * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
           * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
           * remain consistent with one another.
           */
          function _increaseBalance(address account, uint128 value) internal virtual {
              unchecked {
                  _balances[account] += value;
              }
          }
          /**
           * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
           * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
           *
           * The `auth` argument is optional. If the value passed is non 0, then this function will check that
           * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
           *
           * Emits a {Transfer} event.
           *
           * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
           */
          function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
              address from = _ownerOf(tokenId);
              // Perform (optional) operator check
              if (auth != address(0)) {
                  _checkAuthorized(from, auth, tokenId);
              }
              // Execute the update
              if (from != address(0)) {
                  // Clear approval. No need to re-authorize or emit the Approval event
                  _approve(address(0), tokenId, address(0), false);
                  unchecked {
                      _balances[from] -= 1;
                  }
              }
              if (to != address(0)) {
                  unchecked {
                      _balances[to] += 1;
                  }
              }
              _owners[tokenId] = to;
              emit Transfer(from, to, tokenId);
              return from;
          }
          /**
           * @dev Mints `tokenId` and transfers it to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
           *
           * Requirements:
           *
           * - `tokenId` must not exist.
           * - `to` cannot be the zero address.
           *
           * Emits a {Transfer} event.
           */
          function _mint(address to, uint256 tokenId) internal {
              if (to == address(0)) {
                  revert ERC721InvalidReceiver(address(0));
              }
              address previousOwner = _update(to, tokenId, address(0));
              if (previousOwner != address(0)) {
                  revert ERC721InvalidSender(address(0));
              }
          }
          /**
           * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
           *
           * Requirements:
           *
           * - `tokenId` must not exist.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function _safeMint(address to, uint256 tokenId) internal {
              _safeMint(to, tokenId, "");
          }
          /**
           * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
           * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
           */
          function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
              _mint(to, tokenId);
              ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
          }
          /**
           * @dev Destroys `tokenId`.
           * The approval is cleared when the token is burned.
           * This is an internal function that does not check if the sender is authorized to operate on the token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           *
           * Emits a {Transfer} event.
           */
          function _burn(uint256 tokenId) internal {
              address previousOwner = _update(address(0), tokenId, address(0));
              if (previousOwner == address(0)) {
                  revert ERC721NonexistentToken(tokenId);
              }
          }
          /**
           * @dev Transfers `tokenId` from `from` to `to`.
           *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           *
           * Emits a {Transfer} event.
           */
          function _transfer(address from, address to, uint256 tokenId) internal {
              if (to == address(0)) {
                  revert ERC721InvalidReceiver(address(0));
              }
              address previousOwner = _update(to, tokenId, address(0));
              if (previousOwner == address(0)) {
                  revert ERC721NonexistentToken(tokenId);
              } else if (previousOwner != from) {
                  revert ERC721IncorrectOwner(from, tokenId, previousOwner);
              }
          }
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
           * are aware of the ERC-721 standard to prevent tokens from being forever locked.
           *
           * `data` is additional data, it has no specified format and it is sent in call to `to`.
           *
           * This internal function is like {safeTransferFrom} in the sense that it invokes
           * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
           * implement alternative mechanisms to perform token transfer, such as signature-based.
           *
           * Requirements:
           *
           * - `tokenId` token must exist and be owned by `from`.
           * - `to` cannot be the zero address.
           * - `from` cannot be the zero address.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function _safeTransfer(address from, address to, uint256 tokenId) internal {
              _safeTransfer(from, to, tokenId, "");
          }
          /**
           * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
           * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
           */
          function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
              _transfer(from, to, tokenId);
              ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
          }
          /**
           * @dev Approve `to` to operate on `tokenId`
           *
           * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
           * either the owner of the token, or approved to operate on all tokens held by this owner.
           *
           * Emits an {Approval} event.
           *
           * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
           */
          function _approve(address to, uint256 tokenId, address auth) internal {
              _approve(to, tokenId, auth, true);
          }
          /**
           * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
           * emitted in the context of transfers.
           */
          function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
              // Avoid reading the owner unless necessary
              if (emitEvent || auth != address(0)) {
                  address owner = _requireOwned(tokenId);
                  // We do not use _isAuthorized because single-token approvals should not be able to call approve
                  if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                      revert ERC721InvalidApprover(auth);
                  }
                  if (emitEvent) {
                      emit Approval(owner, to, tokenId);
                  }
              }
              _tokenApprovals[tokenId] = to;
          }
          /**
           * @dev Approve `operator` to operate on all of `owner` tokens
           *
           * Requirements:
           * - operator can't be the address zero.
           *
           * Emits an {ApprovalForAll} event.
           */
          function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
              if (operator == address(0)) {
                  revert ERC721InvalidOperator(operator);
              }
              _operatorApprovals[owner][operator] = approved;
              emit ApprovalForAll(owner, operator, approved);
          }
          /**
           * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
           * Returns the owner.
           *
           * Overrides to ownership logic should be done to {_ownerOf}.
           */
          function _requireOwned(uint256 tokenId) internal view returns (address) {
              address owner = _ownerOf(tokenId);
              if (owner == address(0)) {
                  revert ERC721NonexistentToken(tokenId);
              }
              return owner;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
      pragma solidity ^0.8.20;
      import {Ownable} from "./Ownable.sol";
      /**
       * @dev Contract module which provides access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * This extension of the {Ownable} contract includes a two-step mechanism to transfer
       * ownership, where the new owner must call {acceptOwnership} in order to replace the
       * old one. This can help prevent common mistakes, such as transfers of ownership to
       * incorrect accounts, or to contracts that are unable to interact with the
       * permission system.
       *
       * The initial owner is specified at deployment time in the constructor for `Ownable`. This
       * can later be changed with {transferOwnership} and {acceptOwnership}.
       *
       * This module is used through inheritance. It will make available all functions
       * from parent (Ownable).
       */
      abstract contract Ownable2Step is Ownable {
          address private _pendingOwner;
          event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Returns the address of the pending owner.
           */
          function pendingOwner() public view virtual returns (address) {
              return _pendingOwner;
          }
          /**
           * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
           * Can only be called by the current owner.
           *
           * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
           */
          function transferOwnership(address newOwner) public virtual override onlyOwner {
              _pendingOwner = newOwner;
              emit OwnershipTransferStarted(owner(), newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual override {
              delete _pendingOwner;
              super._transferOwnership(newOwner);
          }
          /**
           * @dev The new owner accepts the ownership transfer.
           */
          function acceptOwnership() public virtual {
              address sender = _msgSender();
              if (pendingOwner() != sender) {
                  revert OwnableUnauthorizedAccount(sender);
              }
              _transferOwnership(sender);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
      // This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
      pragma solidity ^0.8.20;
      import {Hashes} from "./Hashes.sol";
      /**
       * @dev These functions deal with verification of Merkle Tree proofs.
       *
       * The tree and the proofs can be generated using our
       * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
       * You will find a quickstart guide in the readme.
       *
       * WARNING: You should avoid using leaf values that are 64 bytes long prior to
       * hashing, or use a hash function other than keccak256 for hashing leaves.
       * This is because the concatenation of a sorted pair of internal nodes in
       * the Merkle tree could be reinterpreted as a leaf value.
       * OpenZeppelin's JavaScript library generates Merkle trees that are safe
       * against this attack out of the box.
       *
       * IMPORTANT: Consider memory side-effects when using custom hashing functions
       * that access memory in an unsafe way.
       *
       * NOTE: This library supports proof verification for merkle trees built using
       * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
       * leaf inclusion in trees built using non-commutative hashing functions requires
       * additional logic that is not supported by this library.
       */
      library MerkleProof {
          /**
           *@dev The multiproof provided is not valid.
           */
          error MerkleProofInvalidMultiproof();
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with the default hashing function.
           */
          function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProof(proof, leaf) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with the default hashing function.
           */
          function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with a custom hashing function.
           */
          function verify(
              bytes32[] memory proof,
              bytes32 root,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processProof(proof, leaf, hasher) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in memory with a custom hashing function.
           */
          function processProof(
              bytes32[] memory proof,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = hasher(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with the default hashing function.
           */
          function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
              return processProofCalldata(proof, leaf) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with the default hashing function.
           */
          function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
           * defined by `root`. For this, a `proof` must be provided, containing
           * sibling hashes on the branch from the leaf to the root of the tree. Each
           * pair of leaves and each pair of pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with a custom hashing function.
           */
          function verifyCalldata(
              bytes32[] calldata proof,
              bytes32 root,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processProofCalldata(proof, leaf, hasher) == root;
          }
          /**
           * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
           * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
           * hash matches the root of the tree. When processing the proof, the pairs
           * of leaves & pre-images are assumed to be sorted.
           *
           * This version handles proofs in calldata with a custom hashing function.
           */
          function processProofCalldata(
              bytes32[] calldata proof,
              bytes32 leaf,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32) {
              bytes32 computedHash = leaf;
              for (uint256 i = 0; i < proof.length; i++) {
                  computedHash = hasher(computedHash, proof[i]);
              }
              return computedHash;
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in memory with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProof}.
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProof(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in memory with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = Hashes.commutativeKeccak256(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in memory with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProof}.
           */
          function multiProofVerify(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32 root,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processMultiProof(proof, proofFlags, leaves, hasher) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in memory with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProof(
              bytes32[] memory proof,
              bool[] memory proofFlags,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = hasher(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in calldata with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProofCalldata}.
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves
          ) internal pure returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in calldata with the default hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves
          ) internal pure returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = Hashes.commutativeKeccak256(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
          /**
           * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
           * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
           *
           * This version handles multiproofs in calldata with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
           *
           * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
           * The `leaves` must be validated independently. See {processMultiProofCalldata}.
           */
          function multiProofVerifyCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32 root,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bool) {
              return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
          }
          /**
           * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
           * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
           * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
           * respectively.
           *
           * This version handles multiproofs in calldata with a custom hashing function.
           *
           * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
           * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
           * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
           *
           * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
           * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
           * validating the leaves elsewhere.
           */
          function processMultiProofCalldata(
              bytes32[] calldata proof,
              bool[] calldata proofFlags,
              bytes32[] memory leaves,
              function(bytes32, bytes32) view returns (bytes32) hasher
          ) internal view returns (bytes32 merkleRoot) {
              // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
              // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
              // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
              // the Merkle tree.
              uint256 leavesLen = leaves.length;
              uint256 proofFlagsLen = proofFlags.length;
              // Check proof validity.
              if (leavesLen + proof.length != proofFlagsLen + 1) {
                  revert MerkleProofInvalidMultiproof();
              }
              // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
              // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
              bytes32[] memory hashes = new bytes32[](proofFlagsLen);
              uint256 leafPos = 0;
              uint256 hashPos = 0;
              uint256 proofPos = 0;
              // At each step, we compute the next hash using two values:
              // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
              //   get the next hash.
              // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
              //   `proof` array.
              for (uint256 i = 0; i < proofFlagsLen; i++) {
                  bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                  bytes32 b = proofFlags[i]
                      ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                      : proof[proofPos++];
                  hashes[i] = hasher(a, b);
              }
              if (proofFlagsLen > 0) {
                  if (proofPos != proof.length) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  unchecked {
                      return hashes[proofFlagsLen - 1];
                  }
              } else if (leavesLen > 0) {
                  return leaves[0];
              } else {
                  return proof[0];
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
       * consider using {ReentrancyGuardTransient} instead.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuard {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant NOT_ENTERED = 1;
          uint256 private constant ENTERED = 2;
          uint256 private _status;
          /**
           * @dev Unauthorized reentrant call.
           */
          error ReentrancyGuardReentrantCall();
          constructor() {
              _status = NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              _nonReentrantBefore();
              _;
              _nonReentrantAfter();
          }
          function _nonReentrantBefore() private {
              // On the first call to nonReentrant, _status will be NOT_ENTERED
              if (_status == ENTERED) {
                  revert ReentrancyGuardReentrantCall();
              }
              // Any calls to nonReentrant after this point will fail
              _status = ENTERED;
          }
          function _nonReentrantAfter() private {
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = NOT_ENTERED;
          }
          /**
           * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
           * `nonReentrant` function in the call stack.
           */
          function _reentrancyGuardEntered() internal view returns (bool) {
              return _status == ENTERED;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
      pragma solidity ^0.8.20;
      import {Math} from "./math/Math.sol";
      import {SignedMath} from "./math/SignedMath.sol";
      /**
       * @dev String operations.
       */
      library Strings {
          bytes16 private constant HEX_DIGITS = "0123456789abcdef";
          uint8 private constant ADDRESS_LENGTH = 20;
          /**
           * @dev The `value` string doesn't fit in the specified `length`.
           */
          error StringsInsufficientHexLength(uint256 value, uint256 length);
          /**
           * @dev Converts a `uint256` to its ASCII `string` decimal representation.
           */
          function toString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  uint256 length = Math.log10(value) + 1;
                  string memory buffer = new string(length);
                  uint256 ptr;
                  assembly ("memory-safe") {
                      ptr := add(buffer, add(32, length))
                  }
                  while (true) {
                      ptr--;
                      assembly ("memory-safe") {
                          mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                      }
                      value /= 10;
                      if (value == 0) break;
                  }
                  return buffer;
              }
          }
          /**
           * @dev Converts a `int256` to its ASCII `string` decimal representation.
           */
          function toStringSigned(int256 value) internal pure returns (string memory) {
              return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
           */
          function toHexString(uint256 value) internal pure returns (string memory) {
              unchecked {
                  return toHexString(value, Math.log256(value) + 1);
              }
          }
          /**
           * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
           */
          function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
              uint256 localValue = value;
              bytes memory buffer = new bytes(2 * length + 2);
              buffer[0] = "0";
              buffer[1] = "x";
              for (uint256 i = 2 * length + 1; i > 1; --i) {
                  buffer[i] = HEX_DIGITS[localValue & 0xf];
                  localValue >>= 4;
              }
              if (localValue != 0) {
                  revert StringsInsufficientHexLength(value, length);
              }
              return string(buffer);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
           * representation.
           */
          function toHexString(address addr) internal pure returns (string memory) {
              return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
          }
          /**
           * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
           * representation, according to EIP-55.
           */
          function toChecksumHexString(address addr) internal pure returns (string memory) {
              bytes memory buffer = bytes(toHexString(addr));
              // hash the hex part of buffer (skip length + 2 bytes, length 40)
              uint256 hashValue;
              assembly ("memory-safe") {
                  hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
              }
              for (uint256 i = 41; i > 1; --i) {
                  // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
                  if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                      // case shift by xoring with 0x20
                      buffer[i] ^= 0x20;
                  }
                  hashValue >>= 4;
              }
              return string(buffer);
          }
          /**
           * @dev Returns true if the two strings are equal.
           */
          function equal(string memory a, string memory b) internal pure returns (bool) {
              return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)
      pragma solidity ^0.8.20;
      import {IERC165} from "../../utils/introspection/IERC165.sol";
      /**
       * @dev Required interface of an ERC-721 compliant contract.
       */
      interface IERC721 is IERC165 {
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          /**
           * @dev Returns the number of tokens in ``owner``'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
           *   a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
           * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
           *   {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
           *   a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(address from, address to, uint256 tokenId) external;
          /**
           * @dev Transfers `tokenId` token from `from` to `to`.
           *
           * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
           * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
           * understand this adds an external call which potentially creates a reentrancy vulnerability.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address from, address to, uint256 tokenId) external;
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external;
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the address zero.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool approved) external;
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)
      pragma solidity ^0.8.20;
      import {IERC721} from "../IERC721.sol";
      /**
       * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
       * @dev See https://eips.ethereum.org/EIPS/eip-721
       */
      interface IERC721Metadata is IERC721 {
          /**
           * @dev Returns the token collection name.
           */
          function name() external view returns (string memory);
          /**
           * @dev Returns the token collection symbol.
           */
          function symbol() external view returns (string memory);
          /**
           * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
           */
          function tokenURI(uint256 tokenId) external view returns (string memory);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol)
      pragma solidity ^0.8.20;
      import {IERC721Receiver} from "../IERC721Receiver.sol";
      import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";
      /**
       * @dev Library that provide common ERC-721 utility functions.
       *
       * See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
       *
       * _Available since v5.1._
       */
      library ERC721Utils {
          /**
           * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received}
           * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
           *
           * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
           * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
           * the transfer.
           */
          function checkOnERC721Received(
              address operator,
              address from,
              address to,
              uint256 tokenId,
              bytes memory data
          ) internal {
              if (to.code.length > 0) {
                  try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
                      if (retval != IERC721Receiver.onERC721Received.selector) {
                          // Token rejected
                          revert IERC721Errors.ERC721InvalidReceiver(to);
                      }
                  } catch (bytes memory reason) {
                      if (reason.length == 0) {
                          // non-IERC721Receiver implementer
                          revert IERC721Errors.ERC721InvalidReceiver(to);
                      } else {
                          assembly ("memory-safe") {
                              revert(add(32, reason), mload(reason))
                          }
                      }
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          function _contextSuffixLength() internal view virtual returns (uint256) {
              return 0;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
      pragma solidity ^0.8.20;
      import {IERC165} from "./IERC165.sol";
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       */
      abstract contract ERC165 is IERC165 {
          /**
           * @dev See {IERC165-supportsInterface}.
           */
          function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
              return interfaceId == type(IERC165).interfaceId;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Standard ERC-20 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
       */
      interface IERC20Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC20InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC20InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           * @param allowance Amount of tokens a `spender` is allowed to operate with.
           * @param needed Minimum amount required to perform a transfer.
           */
          error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC20InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
           * @param spender Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC20InvalidSpender(address spender);
      }
      /**
       * @dev Standard ERC-721 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
       */
      interface IERC721Errors {
          /**
           * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
           * Used in balance queries.
           * @param owner Address of the current owner of a token.
           */
          error ERC721InvalidOwner(address owner);
          /**
           * @dev Indicates a `tokenId` whose `owner` is the zero address.
           * @param tokenId Identifier number of a token.
           */
          error ERC721NonexistentToken(uint256 tokenId);
          /**
           * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param tokenId Identifier number of a token.
           * @param owner Address of the current owner of a token.
           */
          error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC721InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC721InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param tokenId Identifier number of a token.
           */
          error ERC721InsufficientApproval(address operator, uint256 tokenId);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC721InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC721InvalidOperator(address operator);
      }
      /**
       * @dev Standard ERC-1155 Errors
       * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
       */
      interface IERC1155Errors {
          /**
           * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           * @param balance Current balance for the interacting account.
           * @param needed Minimum amount required to perform a transfer.
           * @param tokenId Identifier number of a token.
           */
          error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
          /**
           * @dev Indicates a failure with the token `sender`. Used in transfers.
           * @param sender Address whose tokens are being transferred.
           */
          error ERC1155InvalidSender(address sender);
          /**
           * @dev Indicates a failure with the token `receiver`. Used in transfers.
           * @param receiver Address to which tokens are being transferred.
           */
          error ERC1155InvalidReceiver(address receiver);
          /**
           * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           * @param owner Address of the current owner of a token.
           */
          error ERC1155MissingApprovalForAll(address operator, address owner);
          /**
           * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
           * @param approver Address initiating an approval operation.
           */
          error ERC1155InvalidApprover(address approver);
          /**
           * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
           * @param operator Address that may be allowed to operate on tokens without being their owner.
           */
          error ERC1155InvalidOperator(address operator);
          /**
           * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
           * Used in batch transfers.
           * @param idsLength Length of the array of token identifiers
           * @param valuesLength Length of the array of token amounts
           */
          error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
      pragma solidity ^0.8.20;
      import {Context} from "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * The initial owner is set to the address provided by the deployer. This can
       * later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          /**
           * @dev The caller account is not authorized to perform an operation.
           */
          error OwnableUnauthorizedAccount(address account);
          /**
           * @dev The owner is not a valid owner account. (eg. `address(0)`)
           */
          error OwnableInvalidOwner(address owner);
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
           */
          constructor(address initialOwner) {
              if (initialOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(initialOwner);
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              if (owner() != _msgSender()) {
                  revert OwnableUnauthorizedAccount(_msgSender());
              }
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby disabling any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              if (newOwner == address(0)) {
                  revert OwnableInvalidOwner(address(0));
              }
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Library of standard hash functions.
       *
       * _Available since v5.1._
       */
      library Hashes {
          /**
           * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
           *
           * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
           */
          function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
              return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
          }
          /**
           * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
           */
          function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
              assembly ("memory-safe") {
                  mstore(0x00, a)
                  mstore(0x20, b)
                  value := keccak256(0x00, 0x40)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
      pragma solidity ^0.8.20;
      import {Panic} from "../Panic.sol";
      import {SafeCast} from "./SafeCast.sol";
      /**
       * @dev Standard math utilities missing in the Solidity language.
       */
      library Math {
          enum Rounding {
              Floor, // Toward negative infinity
              Ceil, // Toward positive infinity
              Trunc, // Toward zero
              Expand // Away from zero
          }
          /**
           * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  uint256 c = a + b;
                  if (c < a) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b > a) return (false, 0);
                  return (true, a - b);
              }
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                  // benefit is lost if 'b' is also tested.
                  // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                  if (a == 0) return (true, 0);
                  uint256 c = a * b;
                  if (c / a != b) return (false, 0);
                  return (true, c);
              }
          }
          /**
           * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a / b);
              }
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
              unchecked {
                  if (b == 0) return (false, 0);
                  return (true, a % b);
              }
          }
          /**
           * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
           *
           * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
           * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
           * one branch when needed, making this function more expensive.
           */
          function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
              unchecked {
                  // branchless ternary works because:
                  // b ^ (a ^ b) == a
                  // b ^ 0 == b
                  return b ^ ((a ^ b) * SafeCast.toUint(condition));
              }
          }
          /**
           * @dev Returns the largest of two numbers.
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return ternary(a > b, a, b);
          }
          /**
           * @dev Returns the smallest of two numbers.
           */
          function min(uint256 a, uint256 b) internal pure returns (uint256) {
              return ternary(a < b, a, b);
          }
          /**
           * @dev Returns the average of two numbers. The result is rounded towards
           * zero.
           */
          function average(uint256 a, uint256 b) internal pure returns (uint256) {
              // (a + b) / 2 can overflow.
              return (a & b) + (a ^ b) / 2;
          }
          /**
           * @dev Returns the ceiling of the division of two numbers.
           *
           * This differs from standard division with `/` in that it rounds towards infinity instead
           * of rounding towards zero.
           */
          function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
              if (b == 0) {
                  // Guarantee the same behavior as in a regular Solidity division.
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              // The following calculation ensures accurate ceiling division without overflow.
              // Since a is non-zero, (a - 1) / b will not overflow.
              // The largest possible result occurs when (a - 1) / b is type(uint256).max,
              // but the largest value we can obtain is type(uint256).max - 1, which happens
              // when a = type(uint256).max and b = 1.
              unchecked {
                  return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
              }
          }
          /**
           * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
           * denominator == 0.
           *
           * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
           * Uniswap Labs also under MIT license.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
              unchecked {
                  // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                  // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                  // variables such that product = prod1 * 2²⁵⁶ + prod0.
                  uint256 prod0 = x * y; // Least significant 256 bits of the product
                  uint256 prod1; // Most significant 256 bits of the product
                  assembly {
                      let mm := mulmod(x, y, not(0))
                      prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                  }
                  // Handle non-overflow cases, 256 by 256 division.
                  if (prod1 == 0) {
                      // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                      // The surrounding unchecked block does not change this fact.
                      // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                      return prod0 / denominator;
                  }
                  // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                  if (denominator <= prod1) {
                      Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                  }
                  ///////////////////////////////////////////////
                  // 512 by 256 division.
                  ///////////////////////////////////////////////
                  // Make division exact by subtracting the remainder from [prod1 prod0].
                  uint256 remainder;
                  assembly {
                      // Compute remainder using mulmod.
                      remainder := mulmod(x, y, denominator)
                      // Subtract 256 bit number from 512 bit number.
                      prod1 := sub(prod1, gt(remainder, prod0))
                      prod0 := sub(prod0, remainder)
                  }
                  // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                  // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                  uint256 twos = denominator & (0 - denominator);
                  assembly {
                      // Divide denominator by twos.
                      denominator := div(denominator, twos)
                      // Divide [prod1 prod0] by twos.
                      prod0 := div(prod0, twos)
                      // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                      twos := add(div(sub(0, twos), twos), 1)
                  }
                  // Shift in bits from prod1 into prod0.
                  prod0 |= prod1 * twos;
                  // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                  // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                  // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                  uint256 inverse = (3 * denominator) ^ 2;
                  // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                  // works in modular arithmetic, doubling the correct bits in each step.
                  inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                  inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                  inverse *= 2 - denominator * inverse; // inverse mod 2³²
                  inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                  inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                  inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
                  // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                  // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                  // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                  // is no longer required.
                  result = prod0 * inverse;
                  return result;
              }
          }
          /**
           * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
           */
          function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
              return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
          }
          /**
           * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
           *
           * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
           * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
           *
           * If the input value is not inversible, 0 is returned.
           *
           * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
           * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
           */
          function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
              unchecked {
                  if (n == 0) return 0;
                  // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                  // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                  // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                  // ax + ny = 1
                  // ax = 1 + (-y)n
                  // ax ≡ 1 (mod n) # x is the inverse of a modulo n
                  // If the remainder is 0 the gcd is n right away.
                  uint256 remainder = a % n;
                  uint256 gcd = n;
                  // Therefore the initial coefficients are:
                  // ax + ny = gcd(a, n) = n
                  // 0a + 1n = n
                  int256 x = 0;
                  int256 y = 1;
                  while (remainder != 0) {
                      uint256 quotient = gcd / remainder;
                      (gcd, remainder) = (
                          // The old remainder is the next gcd to try.
                          remainder,
                          // Compute the next remainder.
                          // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                          // where gcd is at most n (capped to type(uint256).max)
                          gcd - remainder * quotient
                      );
                      (x, y) = (
                          // Increment the coefficient of a.
                          y,
                          // Decrement the coefficient of n.
                          // Can overflow, but the result is casted to uint256 so that the
                          // next value of y is "wrapped around" to a value between 0 and n - 1.
                          x - y * int256(quotient)
                      );
                  }
                  if (gcd != 1) return 0; // No inverse exists.
                  return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
              }
          }
          /**
           * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
           *
           * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
           * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
           * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
           *
           * NOTE: this function does NOT check that `p` is a prime greater than `2`.
           */
          function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
              unchecked {
                  return Math.modExp(a, p - 2, p);
              }
          }
          /**
           * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
           *
           * Requirements:
           * - modulus can't be zero
           * - underlying staticcall to precompile must succeed
           *
           * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
           * sure the chain you're using it on supports the precompiled contract for modular exponentiation
           * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
           * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
           * interpreted as 0.
           */
          function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
              (bool success, uint256 result) = tryModExp(b, e, m);
              if (!success) {
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              return result;
          }
          /**
           * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
           * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
           * to operate modulo 0 or if the underlying precompile reverted.
           *
           * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
           * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
           * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
           * of a revert, but the result may be incorrectly interpreted as 0.
           */
          function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
              if (m == 0) return (false, 0);
              assembly ("memory-safe") {
                  let ptr := mload(0x40)
                  // | Offset    | Content    | Content (Hex)                                                      |
                  // |-----------|------------|--------------------------------------------------------------------|
                  // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                  // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                  // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                  // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                  mstore(ptr, 0x20)
                  mstore(add(ptr, 0x20), 0x20)
                  mstore(add(ptr, 0x40), 0x20)
                  mstore(add(ptr, 0x60), b)
                  mstore(add(ptr, 0x80), e)
                  mstore(add(ptr, 0xa0), m)
                  // Given the result < m, it's guaranteed to fit in 32 bytes,
                  // so we can use the memory scratch space located at offset 0.
                  success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                  result := mload(0x00)
              }
          }
          /**
           * @dev Variant of {modExp} that supports inputs of arbitrary length.
           */
          function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
              (bool success, bytes memory result) = tryModExp(b, e, m);
              if (!success) {
                  Panic.panic(Panic.DIVISION_BY_ZERO);
              }
              return result;
          }
          /**
           * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
           */
          function tryModExp(
              bytes memory b,
              bytes memory e,
              bytes memory m
          ) internal view returns (bool success, bytes memory result) {
              if (_zeroBytes(m)) return (false, new bytes(0));
              uint256 mLen = m.length;
              // Encode call args in result and move the free memory pointer
              result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
              assembly ("memory-safe") {
                  let dataPtr := add(result, 0x20)
                  // Write result on top of args to avoid allocating extra memory.
                  success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                  // Overwrite the length.
                  // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                  mstore(result, mLen)
                  // Set the memory pointer after the returned data.
                  mstore(0x40, add(dataPtr, mLen))
              }
          }
          /**
           * @dev Returns whether the provided byte array is zero.
           */
          function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
              for (uint256 i = 0; i < byteArray.length; ++i) {
                  if (byteArray[i] != 0) {
                      return false;
                  }
              }
              return true;
          }
          /**
           * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
           * towards zero.
           *
           * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
           * using integer operations.
           */
          function sqrt(uint256 a) internal pure returns (uint256) {
              unchecked {
                  // Take care of easy edge cases when a == 0 or a == 1
                  if (a <= 1) {
                      return a;
                  }
                  // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                  // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                  // the current value as `ε_n = | x_n - sqrt(a) |`.
                  //
                  // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                  // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                  // bigger than any uint256.
                  //
                  // By noticing that
                  // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                  // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                  // to the msb function.
                  uint256 aa = a;
                  uint256 xn = 1;
                  if (aa >= (1 << 128)) {
                      aa >>= 128;
                      xn <<= 64;
                  }
                  if (aa >= (1 << 64)) {
                      aa >>= 64;
                      xn <<= 32;
                  }
                  if (aa >= (1 << 32)) {
                      aa >>= 32;
                      xn <<= 16;
                  }
                  if (aa >= (1 << 16)) {
                      aa >>= 16;
                      xn <<= 8;
                  }
                  if (aa >= (1 << 8)) {
                      aa >>= 8;
                      xn <<= 4;
                  }
                  if (aa >= (1 << 4)) {
                      aa >>= 4;
                      xn <<= 2;
                  }
                  if (aa >= (1 << 2)) {
                      xn <<= 1;
                  }
                  // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                  //
                  // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                  // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                  // This is going to be our x_0 (and ε_0)
                  xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
                  // From here, Newton's method give us:
                  // x_{n+1} = (x_n + a / x_n) / 2
                  //
                  // One should note that:
                  // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                  //              = ((x_n² + a) / (2 * x_n))² - a
                  //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                  //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                  //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                  //              = (x_n² - a)² / (2 * x_n)²
                  //              = ((x_n² - a) / (2 * x_n))²
                  //              ≥ 0
                  // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                  //
                  // This gives us the proof of quadratic convergence of the sequence:
                  // ε_{n+1} = | x_{n+1} - sqrt(a) |
                  //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                  //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                  //         = | (x_n - sqrt(a))² / (2 * x_n) |
                  //         = | ε_n² / (2 * x_n) |
                  //         = ε_n² / | (2 * x_n) |
                  //
                  // For the first iteration, we have a special case where x_0 is known:
                  // ε_1 = ε_0² / | (2 * x_0) |
                  //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                  //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                  //     ≤ 2**(e-3) / 3
                  //     ≤ 2**(e-3-log2(3))
                  //     ≤ 2**(e-4.5)
                  //
                  // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                  // ε_{n+1} = ε_n² / | (2 * x_n) |
                  //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                  //         ≤ 2**(2*e-2*k) / 2**e
                  //         ≤ 2**(e-2*k)
                  xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                  xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                  xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                  xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                  xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                  xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
                  // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                  // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                  // sqrt(a) or sqrt(a) + 1.
                  return xn - SafeCast.toUint(xn > a / xn);
              }
          }
          /**
           * @dev Calculates sqrt(a), following the selected rounding direction.
           */
          function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = sqrt(a);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
              }
          }
          /**
           * @dev Return the log in base 2 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log2(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              uint256 exp;
              unchecked {
                  exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                  value >>= exp;
                  result += exp;
                  exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                  value >>= exp;
                  result += exp;
                  result += SafeCast.toUint(value > 1);
              }
              return result;
          }
          /**
           * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log2(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
              }
          }
          /**
           * @dev Return the log in base 10 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           */
          function log10(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              unchecked {
                  if (value >= 10 ** 64) {
                      value /= 10 ** 64;
                      result += 64;
                  }
                  if (value >= 10 ** 32) {
                      value /= 10 ** 32;
                      result += 32;
                  }
                  if (value >= 10 ** 16) {
                      value /= 10 ** 16;
                      result += 16;
                  }
                  if (value >= 10 ** 8) {
                      value /= 10 ** 8;
                      result += 8;
                  }
                  if (value >= 10 ** 4) {
                      value /= 10 ** 4;
                      result += 4;
                  }
                  if (value >= 10 ** 2) {
                      value /= 10 ** 2;
                      result += 2;
                  }
                  if (value >= 10 ** 1) {
                      result += 1;
                  }
              }
              return result;
          }
          /**
           * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log10(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
              }
          }
          /**
           * @dev Return the log in base 256 of a positive value rounded towards zero.
           * Returns 0 if given 0.
           *
           * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
           */
          function log256(uint256 value) internal pure returns (uint256) {
              uint256 result = 0;
              uint256 isGt;
              unchecked {
                  isGt = SafeCast.toUint(value > (1 << 128) - 1);
                  value >>= isGt * 128;
                  result += isGt * 16;
                  isGt = SafeCast.toUint(value > (1 << 64) - 1);
                  value >>= isGt * 64;
                  result += isGt * 8;
                  isGt = SafeCast.toUint(value > (1 << 32) - 1);
                  value >>= isGt * 32;
                  result += isGt * 4;
                  isGt = SafeCast.toUint(value > (1 << 16) - 1);
                  value >>= isGt * 16;
                  result += isGt * 2;
                  result += SafeCast.toUint(value > (1 << 8) - 1);
              }
              return result;
          }
          /**
           * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
           * Returns 0 if given 0.
           */
          function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
              unchecked {
                  uint256 result = log256(value);
                  return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
              }
          }
          /**
           * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
           */
          function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
              return uint8(rounding) % 2 == 1;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
      pragma solidity ^0.8.20;
      import {SafeCast} from "./SafeCast.sol";
      /**
       * @dev Standard signed math utilities missing in the Solidity language.
       */
      library SignedMath {
          /**
           * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
           *
           * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
           * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
           * one branch when needed, making this function more expensive.
           */
          function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
              unchecked {
                  // branchless ternary works because:
                  // b ^ (a ^ b) == a
                  // b ^ 0 == b
                  return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
              }
          }
          /**
           * @dev Returns the largest of two signed numbers.
           */
          function max(int256 a, int256 b) internal pure returns (int256) {
              return ternary(a > b, a, b);
          }
          /**
           * @dev Returns the smallest of two signed numbers.
           */
          function min(int256 a, int256 b) internal pure returns (int256) {
              return ternary(a < b, a, b);
          }
          /**
           * @dev Returns the average of two signed numbers without overflow.
           * The result is rounded towards zero.
           */
          function average(int256 a, int256 b) internal pure returns (int256) {
              // Formula from the book "Hacker's Delight"
              int256 x = (a & b) + ((a ^ b) >> 1);
              return x + (int256(uint256(x) >> 255) & (a ^ b));
          }
          /**
           * @dev Returns the absolute unsigned value of a signed value.
           */
          function abs(int256 n) internal pure returns (uint256) {
              unchecked {
                  // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
                  // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
                  // taking advantage of the most significant (or "sign" bit) in two's complement representation.
                  // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
                  // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
                  int256 mask = n >> 255;
                  // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
                  return uint256((n + mask) ^ mask);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Interface of the ERC-165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[ERC].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)
      pragma solidity ^0.8.20;
      /**
       * @title ERC-721 token receiver interface
       * @dev Interface for any contract that wants to support safeTransfers
       * from ERC-721 asset contracts.
       */
      interface IERC721Receiver {
          /**
           * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
           * by `operator` from `from`, this function is called.
           *
           * It must return its Solidity selector to confirm the token transfer.
           * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
           * reverted.
           *
           * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
           */
          function onERC721Received(
              address operator,
              address from,
              uint256 tokenId,
              bytes calldata data
          ) external returns (bytes4);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
      pragma solidity ^0.8.20;
      /**
       * @dev Helper library for emitting standardized panic codes.
       *
       * ```solidity
       * contract Example {
       *      using Panic for uint256;
       *
       *      // Use any of the declared internal constants
       *      function foo() { Panic.GENERIC.panic(); }
       *
       *      // Alternatively
       *      function foo() { Panic.panic(Panic.GENERIC); }
       * }
       * ```
       *
       * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
       *
       * _Available since v5.1._
       */
      // slither-disable-next-line unused-state
      library Panic {
          /// @dev generic / unspecified error
          uint256 internal constant GENERIC = 0x00;
          /// @dev used by the assert() builtin
          uint256 internal constant ASSERT = 0x01;
          /// @dev arithmetic underflow or overflow
          uint256 internal constant UNDER_OVERFLOW = 0x11;
          /// @dev division or modulo by zero
          uint256 internal constant DIVISION_BY_ZERO = 0x12;
          /// @dev enum conversion error
          uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
          /// @dev invalid encoding in storage
          uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
          /// @dev empty array pop
          uint256 internal constant EMPTY_ARRAY_POP = 0x31;
          /// @dev array out of bounds access
          uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
          /// @dev resource error (too large allocation or too large array)
          uint256 internal constant RESOURCE_ERROR = 0x41;
          /// @dev calling invalid internal function
          uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
          /// @dev Reverts with a panic code. Recommended to use with
          /// the internal constants with predefined codes.
          function panic(uint256 code) internal pure {
              assembly ("memory-safe") {
                  mstore(0x00, 0x4e487b71)
                  mstore(0x20, code)
                  revert(0x1c, 0x24)
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
      // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
      pragma solidity ^0.8.20;
      /**
       * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
       * checks.
       *
       * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
       * easily result in undesired exploitation or bugs, since developers usually
       * assume that overflows raise errors. `SafeCast` restores this intuition by
       * reverting the transaction when such an operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeCast {
          /**
           * @dev Value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
          /**
           * @dev An int value doesn't fit in an uint of `bits` size.
           */
          error SafeCastOverflowedIntToUint(int256 value);
          /**
           * @dev Value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
          /**
           * @dev An uint value doesn't fit in an int of `bits` size.
           */
          error SafeCastOverflowedUintToInt(uint256 value);
          /**
           * @dev Returns the downcasted uint248 from uint256, reverting on
           * overflow (when the input is greater than largest uint248).
           *
           * Counterpart to Solidity's `uint248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toUint248(uint256 value) internal pure returns (uint248) {
              if (value > type(uint248).max) {
                  revert SafeCastOverflowedUintDowncast(248, value);
              }
              return uint248(value);
          }
          /**
           * @dev Returns the downcasted uint240 from uint256, reverting on
           * overflow (when the input is greater than largest uint240).
           *
           * Counterpart to Solidity's `uint240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toUint240(uint256 value) internal pure returns (uint240) {
              if (value > type(uint240).max) {
                  revert SafeCastOverflowedUintDowncast(240, value);
              }
              return uint240(value);
          }
          /**
           * @dev Returns the downcasted uint232 from uint256, reverting on
           * overflow (when the input is greater than largest uint232).
           *
           * Counterpart to Solidity's `uint232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toUint232(uint256 value) internal pure returns (uint232) {
              if (value > type(uint232).max) {
                  revert SafeCastOverflowedUintDowncast(232, value);
              }
              return uint232(value);
          }
          /**
           * @dev Returns the downcasted uint224 from uint256, reverting on
           * overflow (when the input is greater than largest uint224).
           *
           * Counterpart to Solidity's `uint224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toUint224(uint256 value) internal pure returns (uint224) {
              if (value > type(uint224).max) {
                  revert SafeCastOverflowedUintDowncast(224, value);
              }
              return uint224(value);
          }
          /**
           * @dev Returns the downcasted uint216 from uint256, reverting on
           * overflow (when the input is greater than largest uint216).
           *
           * Counterpart to Solidity's `uint216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toUint216(uint256 value) internal pure returns (uint216) {
              if (value > type(uint216).max) {
                  revert SafeCastOverflowedUintDowncast(216, value);
              }
              return uint216(value);
          }
          /**
           * @dev Returns the downcasted uint208 from uint256, reverting on
           * overflow (when the input is greater than largest uint208).
           *
           * Counterpart to Solidity's `uint208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toUint208(uint256 value) internal pure returns (uint208) {
              if (value > type(uint208).max) {
                  revert SafeCastOverflowedUintDowncast(208, value);
              }
              return uint208(value);
          }
          /**
           * @dev Returns the downcasted uint200 from uint256, reverting on
           * overflow (when the input is greater than largest uint200).
           *
           * Counterpart to Solidity's `uint200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toUint200(uint256 value) internal pure returns (uint200) {
              if (value > type(uint200).max) {
                  revert SafeCastOverflowedUintDowncast(200, value);
              }
              return uint200(value);
          }
          /**
           * @dev Returns the downcasted uint192 from uint256, reverting on
           * overflow (when the input is greater than largest uint192).
           *
           * Counterpart to Solidity's `uint192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toUint192(uint256 value) internal pure returns (uint192) {
              if (value > type(uint192).max) {
                  revert SafeCastOverflowedUintDowncast(192, value);
              }
              return uint192(value);
          }
          /**
           * @dev Returns the downcasted uint184 from uint256, reverting on
           * overflow (when the input is greater than largest uint184).
           *
           * Counterpart to Solidity's `uint184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toUint184(uint256 value) internal pure returns (uint184) {
              if (value > type(uint184).max) {
                  revert SafeCastOverflowedUintDowncast(184, value);
              }
              return uint184(value);
          }
          /**
           * @dev Returns the downcasted uint176 from uint256, reverting on
           * overflow (when the input is greater than largest uint176).
           *
           * Counterpart to Solidity's `uint176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toUint176(uint256 value) internal pure returns (uint176) {
              if (value > type(uint176).max) {
                  revert SafeCastOverflowedUintDowncast(176, value);
              }
              return uint176(value);
          }
          /**
           * @dev Returns the downcasted uint168 from uint256, reverting on
           * overflow (when the input is greater than largest uint168).
           *
           * Counterpart to Solidity's `uint168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toUint168(uint256 value) internal pure returns (uint168) {
              if (value > type(uint168).max) {
                  revert SafeCastOverflowedUintDowncast(168, value);
              }
              return uint168(value);
          }
          /**
           * @dev Returns the downcasted uint160 from uint256, reverting on
           * overflow (when the input is greater than largest uint160).
           *
           * Counterpart to Solidity's `uint160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toUint160(uint256 value) internal pure returns (uint160) {
              if (value > type(uint160).max) {
                  revert SafeCastOverflowedUintDowncast(160, value);
              }
              return uint160(value);
          }
          /**
           * @dev Returns the downcasted uint152 from uint256, reverting on
           * overflow (when the input is greater than largest uint152).
           *
           * Counterpart to Solidity's `uint152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toUint152(uint256 value) internal pure returns (uint152) {
              if (value > type(uint152).max) {
                  revert SafeCastOverflowedUintDowncast(152, value);
              }
              return uint152(value);
          }
          /**
           * @dev Returns the downcasted uint144 from uint256, reverting on
           * overflow (when the input is greater than largest uint144).
           *
           * Counterpart to Solidity's `uint144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toUint144(uint256 value) internal pure returns (uint144) {
              if (value > type(uint144).max) {
                  revert SafeCastOverflowedUintDowncast(144, value);
              }
              return uint144(value);
          }
          /**
           * @dev Returns the downcasted uint136 from uint256, reverting on
           * overflow (when the input is greater than largest uint136).
           *
           * Counterpart to Solidity's `uint136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toUint136(uint256 value) internal pure returns (uint136) {
              if (value > type(uint136).max) {
                  revert SafeCastOverflowedUintDowncast(136, value);
              }
              return uint136(value);
          }
          /**
           * @dev Returns the downcasted uint128 from uint256, reverting on
           * overflow (when the input is greater than largest uint128).
           *
           * Counterpart to Solidity's `uint128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toUint128(uint256 value) internal pure returns (uint128) {
              if (value > type(uint128).max) {
                  revert SafeCastOverflowedUintDowncast(128, value);
              }
              return uint128(value);
          }
          /**
           * @dev Returns the downcasted uint120 from uint256, reverting on
           * overflow (when the input is greater than largest uint120).
           *
           * Counterpart to Solidity's `uint120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toUint120(uint256 value) internal pure returns (uint120) {
              if (value > type(uint120).max) {
                  revert SafeCastOverflowedUintDowncast(120, value);
              }
              return uint120(value);
          }
          /**
           * @dev Returns the downcasted uint112 from uint256, reverting on
           * overflow (when the input is greater than largest uint112).
           *
           * Counterpart to Solidity's `uint112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toUint112(uint256 value) internal pure returns (uint112) {
              if (value > type(uint112).max) {
                  revert SafeCastOverflowedUintDowncast(112, value);
              }
              return uint112(value);
          }
          /**
           * @dev Returns the downcasted uint104 from uint256, reverting on
           * overflow (when the input is greater than largest uint104).
           *
           * Counterpart to Solidity's `uint104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toUint104(uint256 value) internal pure returns (uint104) {
              if (value > type(uint104).max) {
                  revert SafeCastOverflowedUintDowncast(104, value);
              }
              return uint104(value);
          }
          /**
           * @dev Returns the downcasted uint96 from uint256, reverting on
           * overflow (when the input is greater than largest uint96).
           *
           * Counterpart to Solidity's `uint96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toUint96(uint256 value) internal pure returns (uint96) {
              if (value > type(uint96).max) {
                  revert SafeCastOverflowedUintDowncast(96, value);
              }
              return uint96(value);
          }
          /**
           * @dev Returns the downcasted uint88 from uint256, reverting on
           * overflow (when the input is greater than largest uint88).
           *
           * Counterpart to Solidity's `uint88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toUint88(uint256 value) internal pure returns (uint88) {
              if (value > type(uint88).max) {
                  revert SafeCastOverflowedUintDowncast(88, value);
              }
              return uint88(value);
          }
          /**
           * @dev Returns the downcasted uint80 from uint256, reverting on
           * overflow (when the input is greater than largest uint80).
           *
           * Counterpart to Solidity's `uint80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toUint80(uint256 value) internal pure returns (uint80) {
              if (value > type(uint80).max) {
                  revert SafeCastOverflowedUintDowncast(80, value);
              }
              return uint80(value);
          }
          /**
           * @dev Returns the downcasted uint72 from uint256, reverting on
           * overflow (when the input is greater than largest uint72).
           *
           * Counterpart to Solidity's `uint72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toUint72(uint256 value) internal pure returns (uint72) {
              if (value > type(uint72).max) {
                  revert SafeCastOverflowedUintDowncast(72, value);
              }
              return uint72(value);
          }
          /**
           * @dev Returns the downcasted uint64 from uint256, reverting on
           * overflow (when the input is greater than largest uint64).
           *
           * Counterpart to Solidity's `uint64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toUint64(uint256 value) internal pure returns (uint64) {
              if (value > type(uint64).max) {
                  revert SafeCastOverflowedUintDowncast(64, value);
              }
              return uint64(value);
          }
          /**
           * @dev Returns the downcasted uint56 from uint256, reverting on
           * overflow (when the input is greater than largest uint56).
           *
           * Counterpart to Solidity's `uint56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toUint56(uint256 value) internal pure returns (uint56) {
              if (value > type(uint56).max) {
                  revert SafeCastOverflowedUintDowncast(56, value);
              }
              return uint56(value);
          }
          /**
           * @dev Returns the downcasted uint48 from uint256, reverting on
           * overflow (when the input is greater than largest uint48).
           *
           * Counterpart to Solidity's `uint48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toUint48(uint256 value) internal pure returns (uint48) {
              if (value > type(uint48).max) {
                  revert SafeCastOverflowedUintDowncast(48, value);
              }
              return uint48(value);
          }
          /**
           * @dev Returns the downcasted uint40 from uint256, reverting on
           * overflow (when the input is greater than largest uint40).
           *
           * Counterpart to Solidity's `uint40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toUint40(uint256 value) internal pure returns (uint40) {
              if (value > type(uint40).max) {
                  revert SafeCastOverflowedUintDowncast(40, value);
              }
              return uint40(value);
          }
          /**
           * @dev Returns the downcasted uint32 from uint256, reverting on
           * overflow (when the input is greater than largest uint32).
           *
           * Counterpart to Solidity's `uint32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toUint32(uint256 value) internal pure returns (uint32) {
              if (value > type(uint32).max) {
                  revert SafeCastOverflowedUintDowncast(32, value);
              }
              return uint32(value);
          }
          /**
           * @dev Returns the downcasted uint24 from uint256, reverting on
           * overflow (when the input is greater than largest uint24).
           *
           * Counterpart to Solidity's `uint24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toUint24(uint256 value) internal pure returns (uint24) {
              if (value > type(uint24).max) {
                  revert SafeCastOverflowedUintDowncast(24, value);
              }
              return uint24(value);
          }
          /**
           * @dev Returns the downcasted uint16 from uint256, reverting on
           * overflow (when the input is greater than largest uint16).
           *
           * Counterpart to Solidity's `uint16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toUint16(uint256 value) internal pure returns (uint16) {
              if (value > type(uint16).max) {
                  revert SafeCastOverflowedUintDowncast(16, value);
              }
              return uint16(value);
          }
          /**
           * @dev Returns the downcasted uint8 from uint256, reverting on
           * overflow (when the input is greater than largest uint8).
           *
           * Counterpart to Solidity's `uint8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toUint8(uint256 value) internal pure returns (uint8) {
              if (value > type(uint8).max) {
                  revert SafeCastOverflowedUintDowncast(8, value);
              }
              return uint8(value);
          }
          /**
           * @dev Converts a signed int256 into an unsigned uint256.
           *
           * Requirements:
           *
           * - input must be greater than or equal to 0.
           */
          function toUint256(int256 value) internal pure returns (uint256) {
              if (value < 0) {
                  revert SafeCastOverflowedIntToUint(value);
              }
              return uint256(value);
          }
          /**
           * @dev Returns the downcasted int248 from int256, reverting on
           * overflow (when the input is less than smallest int248 or
           * greater than largest int248).
           *
           * Counterpart to Solidity's `int248` operator.
           *
           * Requirements:
           *
           * - input must fit into 248 bits
           */
          function toInt248(int256 value) internal pure returns (int248 downcasted) {
              downcasted = int248(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(248, value);
              }
          }
          /**
           * @dev Returns the downcasted int240 from int256, reverting on
           * overflow (when the input is less than smallest int240 or
           * greater than largest int240).
           *
           * Counterpart to Solidity's `int240` operator.
           *
           * Requirements:
           *
           * - input must fit into 240 bits
           */
          function toInt240(int256 value) internal pure returns (int240 downcasted) {
              downcasted = int240(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(240, value);
              }
          }
          /**
           * @dev Returns the downcasted int232 from int256, reverting on
           * overflow (when the input is less than smallest int232 or
           * greater than largest int232).
           *
           * Counterpart to Solidity's `int232` operator.
           *
           * Requirements:
           *
           * - input must fit into 232 bits
           */
          function toInt232(int256 value) internal pure returns (int232 downcasted) {
              downcasted = int232(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(232, value);
              }
          }
          /**
           * @dev Returns the downcasted int224 from int256, reverting on
           * overflow (when the input is less than smallest int224 or
           * greater than largest int224).
           *
           * Counterpart to Solidity's `int224` operator.
           *
           * Requirements:
           *
           * - input must fit into 224 bits
           */
          function toInt224(int256 value) internal pure returns (int224 downcasted) {
              downcasted = int224(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(224, value);
              }
          }
          /**
           * @dev Returns the downcasted int216 from int256, reverting on
           * overflow (when the input is less than smallest int216 or
           * greater than largest int216).
           *
           * Counterpart to Solidity's `int216` operator.
           *
           * Requirements:
           *
           * - input must fit into 216 bits
           */
          function toInt216(int256 value) internal pure returns (int216 downcasted) {
              downcasted = int216(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(216, value);
              }
          }
          /**
           * @dev Returns the downcasted int208 from int256, reverting on
           * overflow (when the input is less than smallest int208 or
           * greater than largest int208).
           *
           * Counterpart to Solidity's `int208` operator.
           *
           * Requirements:
           *
           * - input must fit into 208 bits
           */
          function toInt208(int256 value) internal pure returns (int208 downcasted) {
              downcasted = int208(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(208, value);
              }
          }
          /**
           * @dev Returns the downcasted int200 from int256, reverting on
           * overflow (when the input is less than smallest int200 or
           * greater than largest int200).
           *
           * Counterpart to Solidity's `int200` operator.
           *
           * Requirements:
           *
           * - input must fit into 200 bits
           */
          function toInt200(int256 value) internal pure returns (int200 downcasted) {
              downcasted = int200(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(200, value);
              }
          }
          /**
           * @dev Returns the downcasted int192 from int256, reverting on
           * overflow (when the input is less than smallest int192 or
           * greater than largest int192).
           *
           * Counterpart to Solidity's `int192` operator.
           *
           * Requirements:
           *
           * - input must fit into 192 bits
           */
          function toInt192(int256 value) internal pure returns (int192 downcasted) {
              downcasted = int192(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(192, value);
              }
          }
          /**
           * @dev Returns the downcasted int184 from int256, reverting on
           * overflow (when the input is less than smallest int184 or
           * greater than largest int184).
           *
           * Counterpart to Solidity's `int184` operator.
           *
           * Requirements:
           *
           * - input must fit into 184 bits
           */
          function toInt184(int256 value) internal pure returns (int184 downcasted) {
              downcasted = int184(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(184, value);
              }
          }
          /**
           * @dev Returns the downcasted int176 from int256, reverting on
           * overflow (when the input is less than smallest int176 or
           * greater than largest int176).
           *
           * Counterpart to Solidity's `int176` operator.
           *
           * Requirements:
           *
           * - input must fit into 176 bits
           */
          function toInt176(int256 value) internal pure returns (int176 downcasted) {
              downcasted = int176(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(176, value);
              }
          }
          /**
           * @dev Returns the downcasted int168 from int256, reverting on
           * overflow (when the input is less than smallest int168 or
           * greater than largest int168).
           *
           * Counterpart to Solidity's `int168` operator.
           *
           * Requirements:
           *
           * - input must fit into 168 bits
           */
          function toInt168(int256 value) internal pure returns (int168 downcasted) {
              downcasted = int168(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(168, value);
              }
          }
          /**
           * @dev Returns the downcasted int160 from int256, reverting on
           * overflow (when the input is less than smallest int160 or
           * greater than largest int160).
           *
           * Counterpart to Solidity's `int160` operator.
           *
           * Requirements:
           *
           * - input must fit into 160 bits
           */
          function toInt160(int256 value) internal pure returns (int160 downcasted) {
              downcasted = int160(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(160, value);
              }
          }
          /**
           * @dev Returns the downcasted int152 from int256, reverting on
           * overflow (when the input is less than smallest int152 or
           * greater than largest int152).
           *
           * Counterpart to Solidity's `int152` operator.
           *
           * Requirements:
           *
           * - input must fit into 152 bits
           */
          function toInt152(int256 value) internal pure returns (int152 downcasted) {
              downcasted = int152(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(152, value);
              }
          }
          /**
           * @dev Returns the downcasted int144 from int256, reverting on
           * overflow (when the input is less than smallest int144 or
           * greater than largest int144).
           *
           * Counterpart to Solidity's `int144` operator.
           *
           * Requirements:
           *
           * - input must fit into 144 bits
           */
          function toInt144(int256 value) internal pure returns (int144 downcasted) {
              downcasted = int144(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(144, value);
              }
          }
          /**
           * @dev Returns the downcasted int136 from int256, reverting on
           * overflow (when the input is less than smallest int136 or
           * greater than largest int136).
           *
           * Counterpart to Solidity's `int136` operator.
           *
           * Requirements:
           *
           * - input must fit into 136 bits
           */
          function toInt136(int256 value) internal pure returns (int136 downcasted) {
              downcasted = int136(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(136, value);
              }
          }
          /**
           * @dev Returns the downcasted int128 from int256, reverting on
           * overflow (when the input is less than smallest int128 or
           * greater than largest int128).
           *
           * Counterpart to Solidity's `int128` operator.
           *
           * Requirements:
           *
           * - input must fit into 128 bits
           */
          function toInt128(int256 value) internal pure returns (int128 downcasted) {
              downcasted = int128(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(128, value);
              }
          }
          /**
           * @dev Returns the downcasted int120 from int256, reverting on
           * overflow (when the input is less than smallest int120 or
           * greater than largest int120).
           *
           * Counterpart to Solidity's `int120` operator.
           *
           * Requirements:
           *
           * - input must fit into 120 bits
           */
          function toInt120(int256 value) internal pure returns (int120 downcasted) {
              downcasted = int120(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(120, value);
              }
          }
          /**
           * @dev Returns the downcasted int112 from int256, reverting on
           * overflow (when the input is less than smallest int112 or
           * greater than largest int112).
           *
           * Counterpart to Solidity's `int112` operator.
           *
           * Requirements:
           *
           * - input must fit into 112 bits
           */
          function toInt112(int256 value) internal pure returns (int112 downcasted) {
              downcasted = int112(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(112, value);
              }
          }
          /**
           * @dev Returns the downcasted int104 from int256, reverting on
           * overflow (when the input is less than smallest int104 or
           * greater than largest int104).
           *
           * Counterpart to Solidity's `int104` operator.
           *
           * Requirements:
           *
           * - input must fit into 104 bits
           */
          function toInt104(int256 value) internal pure returns (int104 downcasted) {
              downcasted = int104(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(104, value);
              }
          }
          /**
           * @dev Returns the downcasted int96 from int256, reverting on
           * overflow (when the input is less than smallest int96 or
           * greater than largest int96).
           *
           * Counterpart to Solidity's `int96` operator.
           *
           * Requirements:
           *
           * - input must fit into 96 bits
           */
          function toInt96(int256 value) internal pure returns (int96 downcasted) {
              downcasted = int96(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(96, value);
              }
          }
          /**
           * @dev Returns the downcasted int88 from int256, reverting on
           * overflow (when the input is less than smallest int88 or
           * greater than largest int88).
           *
           * Counterpart to Solidity's `int88` operator.
           *
           * Requirements:
           *
           * - input must fit into 88 bits
           */
          function toInt88(int256 value) internal pure returns (int88 downcasted) {
              downcasted = int88(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(88, value);
              }
          }
          /**
           * @dev Returns the downcasted int80 from int256, reverting on
           * overflow (when the input is less than smallest int80 or
           * greater than largest int80).
           *
           * Counterpart to Solidity's `int80` operator.
           *
           * Requirements:
           *
           * - input must fit into 80 bits
           */
          function toInt80(int256 value) internal pure returns (int80 downcasted) {
              downcasted = int80(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(80, value);
              }
          }
          /**
           * @dev Returns the downcasted int72 from int256, reverting on
           * overflow (when the input is less than smallest int72 or
           * greater than largest int72).
           *
           * Counterpart to Solidity's `int72` operator.
           *
           * Requirements:
           *
           * - input must fit into 72 bits
           */
          function toInt72(int256 value) internal pure returns (int72 downcasted) {
              downcasted = int72(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(72, value);
              }
          }
          /**
           * @dev Returns the downcasted int64 from int256, reverting on
           * overflow (when the input is less than smallest int64 or
           * greater than largest int64).
           *
           * Counterpart to Solidity's `int64` operator.
           *
           * Requirements:
           *
           * - input must fit into 64 bits
           */
          function toInt64(int256 value) internal pure returns (int64 downcasted) {
              downcasted = int64(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(64, value);
              }
          }
          /**
           * @dev Returns the downcasted int56 from int256, reverting on
           * overflow (when the input is less than smallest int56 or
           * greater than largest int56).
           *
           * Counterpart to Solidity's `int56` operator.
           *
           * Requirements:
           *
           * - input must fit into 56 bits
           */
          function toInt56(int256 value) internal pure returns (int56 downcasted) {
              downcasted = int56(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(56, value);
              }
          }
          /**
           * @dev Returns the downcasted int48 from int256, reverting on
           * overflow (when the input is less than smallest int48 or
           * greater than largest int48).
           *
           * Counterpart to Solidity's `int48` operator.
           *
           * Requirements:
           *
           * - input must fit into 48 bits
           */
          function toInt48(int256 value) internal pure returns (int48 downcasted) {
              downcasted = int48(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(48, value);
              }
          }
          /**
           * @dev Returns the downcasted int40 from int256, reverting on
           * overflow (when the input is less than smallest int40 or
           * greater than largest int40).
           *
           * Counterpart to Solidity's `int40` operator.
           *
           * Requirements:
           *
           * - input must fit into 40 bits
           */
          function toInt40(int256 value) internal pure returns (int40 downcasted) {
              downcasted = int40(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(40, value);
              }
          }
          /**
           * @dev Returns the downcasted int32 from int256, reverting on
           * overflow (when the input is less than smallest int32 or
           * greater than largest int32).
           *
           * Counterpart to Solidity's `int32` operator.
           *
           * Requirements:
           *
           * - input must fit into 32 bits
           */
          function toInt32(int256 value) internal pure returns (int32 downcasted) {
              downcasted = int32(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(32, value);
              }
          }
          /**
           * @dev Returns the downcasted int24 from int256, reverting on
           * overflow (when the input is less than smallest int24 or
           * greater than largest int24).
           *
           * Counterpart to Solidity's `int24` operator.
           *
           * Requirements:
           *
           * - input must fit into 24 bits
           */
          function toInt24(int256 value) internal pure returns (int24 downcasted) {
              downcasted = int24(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(24, value);
              }
          }
          /**
           * @dev Returns the downcasted int16 from int256, reverting on
           * overflow (when the input is less than smallest int16 or
           * greater than largest int16).
           *
           * Counterpart to Solidity's `int16` operator.
           *
           * Requirements:
           *
           * - input must fit into 16 bits
           */
          function toInt16(int256 value) internal pure returns (int16 downcasted) {
              downcasted = int16(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(16, value);
              }
          }
          /**
           * @dev Returns the downcasted int8 from int256, reverting on
           * overflow (when the input is less than smallest int8 or
           * greater than largest int8).
           *
           * Counterpart to Solidity's `int8` operator.
           *
           * Requirements:
           *
           * - input must fit into 8 bits
           */
          function toInt8(int256 value) internal pure returns (int8 downcasted) {
              downcasted = int8(value);
              if (downcasted != value) {
                  revert SafeCastOverflowedIntDowncast(8, value);
              }
          }
          /**
           * @dev Converts an unsigned uint256 into a signed int256.
           *
           * Requirements:
           *
           * - input must be less than or equal to maxInt256.
           */
          function toInt256(uint256 value) internal pure returns (int256) {
              // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
              if (value > uint256(type(int256).max)) {
                  revert SafeCastOverflowedUintToInt(value);
              }
              return int256(value);
          }
          /**
           * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
           */
          function toUint(bool b) internal pure returns (uint256 u) {
              assembly ("memory-safe") {
                  u := iszero(iszero(b))
              }
          }
      }
      

      File 2 of 3: SafeProxy
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title IProxy - Helper interface to access the singleton address of the Proxy on-chain.
       * @author Richard Meissner - @rmeissner
       */
      interface IProxy {
          function masterCopy() external view returns (address);
      }
      /**
       * @title SafeProxy - Generic proxy contract allows to execute all transactions applying the code of a master contract.
       * @author Stefan George - <[email protected]>
       * @author Richard Meissner - <[email protected]>
       */
      contract SafeProxy {
          // Singleton always needs to be first declared variable, to ensure that it is at the same location in the contracts to which calls are delegated.
          // To reduce deployment costs this variable is internal and needs to be retrieved via `getStorageAt`
          address internal singleton;
          /**
           * @notice Constructor function sets address of singleton contract.
           * @param _singleton Singleton address.
           */
          constructor(address _singleton) {
              require(_singleton != address(0), "Invalid singleton address provided");
              singleton = _singleton;
          }
          /// @dev Fallback function forwards all transactions and returns all received return data.
          fallback() external payable {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let _singleton := and(sload(0), 0xffffffffffffffffffffffffffffffffffffffff)
                  // 0xa619486e == keccak("masterCopy()"). The value is right padded to 32-bytes with 0s
                  if eq(calldataload(0), 0xa619486e00000000000000000000000000000000000000000000000000000000) {
                      mstore(0, _singleton)
                      return(0, 0x20)
                  }
                  calldatacopy(0, 0, calldatasize())
                  let success := delegatecall(gas(), _singleton, 0, calldatasize(), 0, 0)
                  returndatacopy(0, 0, returndatasize())
                  if eq(success, 0) {
                      revert(0, returndatasize())
                  }
                  return(0, returndatasize())
              }
          }
      }
      

      File 3 of 3: Safe
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "./base/ModuleManager.sol";
      import "./base/OwnerManager.sol";
      import "./base/FallbackManager.sol";
      import "./base/GuardManager.sol";
      import "./common/NativeCurrencyPaymentFallback.sol";
      import "./common/Singleton.sol";
      import "./common/SignatureDecoder.sol";
      import "./common/SecuredTokenTransfer.sol";
      import "./common/StorageAccessible.sol";
      import "./interfaces/ISignatureValidator.sol";
      import "./external/SafeMath.sol";
      /**
       * @title Safe - A multisignature wallet with support for confirmations using signed messages based on EIP-712.
       * @dev Most important concepts:
       *      - Threshold: Number of required confirmations for a Safe transaction.
       *      - Owners: List of addresses that control the Safe. They are the only ones that can add/remove owners, change the threshold and
       *        approve transactions. Managed in `OwnerManager`.
       *      - Transaction Hash: Hash of a transaction is calculated using the EIP-712 typed structured data hashing scheme.
       *      - Nonce: Each transaction should have a different nonce to prevent replay attacks.
       *      - Signature: A valid signature of an owner of the Safe for a transaction hash.
       *      - Guard: Guard is a contract that can execute pre- and post- transaction checks. Managed in `GuardManager`.
       *      - Modules: Modules are contracts that can be used to extend the write functionality of a Safe. Managed in `ModuleManager`.
       *      - Fallback: Fallback handler is a contract that can provide additional read-only functional for Safe. Managed in `FallbackManager`.
       *      Note: This version of the implementation contract doesn't emit events for the sake of gas efficiency and therefore requires a tracing node for indexing/
       *      For the events-based implementation see `SafeL2.sol`.
       * @author Stefan George - @Georgi87
       * @author Richard Meissner - @rmeissner
       */
      contract Safe is
          Singleton,
          NativeCurrencyPaymentFallback,
          ModuleManager,
          OwnerManager,
          SignatureDecoder,
          SecuredTokenTransfer,
          ISignatureValidatorConstants,
          FallbackManager,
          StorageAccessible,
          GuardManager
      {
          using SafeMath for uint256;
          string public constant VERSION = "1.4.1";
          // keccak256(
          //     "EIP712Domain(uint256 chainId,address verifyingContract)"
          // );
          bytes32 private constant DOMAIN_SEPARATOR_TYPEHASH = 0x47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a79469218;
          // keccak256(
          //     "SafeTx(address to,uint256 value,bytes data,uint8 operation,uint256 safeTxGas,uint256 baseGas,uint256 gasPrice,address gasToken,address refundReceiver,uint256 nonce)"
          // );
          bytes32 private constant SAFE_TX_TYPEHASH = 0xbb8310d486368db6bd6f849402fdd73ad53d316b5a4b2644ad6efe0f941286d8;
          event SafeSetup(address indexed initiator, address[] owners, uint256 threshold, address initializer, address fallbackHandler);
          event ApproveHash(bytes32 indexed approvedHash, address indexed owner);
          event SignMsg(bytes32 indexed msgHash);
          event ExecutionFailure(bytes32 indexed txHash, uint256 payment);
          event ExecutionSuccess(bytes32 indexed txHash, uint256 payment);
          uint256 public nonce;
          bytes32 private _deprecatedDomainSeparator;
          // Mapping to keep track of all message hashes that have been approved by ALL REQUIRED owners
          mapping(bytes32 => uint256) public signedMessages;
          // Mapping to keep track of all hashes (message or transaction) that have been approved by ANY owners
          mapping(address => mapping(bytes32 => uint256)) public approvedHashes;
          // This constructor ensures that this contract can only be used as a singleton for Proxy contracts
          constructor() {
              /**
               * By setting the threshold it is not possible to call setup anymore,
               * so we create a Safe with 0 owners and threshold 1.
               * This is an unusable Safe, perfect for the singleton
               */
              threshold = 1;
          }
          /**
           * @notice Sets an initial storage of the Safe contract.
           * @dev This method can only be called once.
           *      If a proxy was created without setting up, anyone can call setup and claim the proxy.
           * @param _owners List of Safe owners.
           * @param _threshold Number of required confirmations for a Safe transaction.
           * @param to Contract address for optional delegate call.
           * @param data Data payload for optional delegate call.
           * @param fallbackHandler Handler for fallback calls to this contract
           * @param paymentToken Token that should be used for the payment (0 is ETH)
           * @param payment Value that should be paid
           * @param paymentReceiver Address that should receive the payment (or 0 if tx.origin)
           */
          function setup(
              address[] calldata _owners,
              uint256 _threshold,
              address to,
              bytes calldata data,
              address fallbackHandler,
              address paymentToken,
              uint256 payment,
              address payable paymentReceiver
          ) external {
              // setupOwners checks if the Threshold is already set, therefore preventing that this method is called twice
              setupOwners(_owners, _threshold);
              if (fallbackHandler != address(0)) internalSetFallbackHandler(fallbackHandler);
              // As setupOwners can only be called if the contract has not been initialized we don't need a check for setupModules
              setupModules(to, data);
              if (payment > 0) {
                  // To avoid running into issues with EIP-170 we reuse the handlePayment function (to avoid adjusting code of that has been verified we do not adjust the method itself)
                  // baseGas = 0, gasPrice = 1 and gas = payment => amount = (payment + 0) * 1 = payment
                  handlePayment(payment, 0, 1, paymentToken, paymentReceiver);
              }
              emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler);
          }
          /** @notice Executes a `operation` {0: Call, 1: DelegateCall}} transaction to `to` with `value` (Native Currency)
           *          and pays `gasPrice` * `gasLimit` in `gasToken` token to `refundReceiver`.
           * @dev The fees are always transferred, even if the user transaction fails.
           *      This method doesn't perform any sanity check of the transaction, such as:
           *      - if the contract at `to` address has code or not
           *      - if the `gasToken` is a contract or not
           *      It is the responsibility of the caller to perform such checks.
           * @param to Destination address of Safe transaction.
           * @param value Ether value of Safe transaction.
           * @param data Data payload of Safe transaction.
           * @param operation Operation type of Safe transaction.
           * @param safeTxGas Gas that should be used for the Safe transaction.
           * @param baseGas Gas costs that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
           * @param gasPrice Gas price that should be used for the payment calculation.
           * @param gasToken Token address (or 0 if ETH) that is used for the payment.
           * @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
           * @param signatures Signature data that should be verified.
           *                   Can be packed ECDSA signature ({bytes32 r}{bytes32 s}{uint8 v}), contract signature (EIP-1271) or approved hash.
           * @return success Boolean indicating transaction's success.
           */
          function execTransaction(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address payable refundReceiver,
              bytes memory signatures
          ) public payable virtual returns (bool success) {
              bytes32 txHash;
              // Use scope here to limit variable lifetime and prevent `stack too deep` errors
              {
                  bytes memory txHashData = encodeTransactionData(
                      // Transaction info
                      to,
                      value,
                      data,
                      operation,
                      safeTxGas,
                      // Payment info
                      baseGas,
                      gasPrice,
                      gasToken,
                      refundReceiver,
                      // Signature info
                      nonce
                  );
                  // Increase nonce and execute transaction.
                  nonce++;
                  txHash = keccak256(txHashData);
                  checkSignatures(txHash, txHashData, signatures);
              }
              address guard = getGuard();
              {
                  if (guard != address(0)) {
                      Guard(guard).checkTransaction(
                          // Transaction info
                          to,
                          value,
                          data,
                          operation,
                          safeTxGas,
                          // Payment info
                          baseGas,
                          gasPrice,
                          gasToken,
                          refundReceiver,
                          // Signature info
                          signatures,
                          msg.sender
                      );
                  }
              }
              // We require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (500)
              // We also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-150
              require(gasleft() >= ((safeTxGas * 64) / 63).max(safeTxGas + 2500) + 500, "GS010");
              // Use scope here to limit variable lifetime and prevent `stack too deep` errors
              {
                  uint256 gasUsed = gasleft();
                  // If the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
                  // We only substract 2500 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
                  success = execute(to, value, data, operation, gasPrice == 0 ? (gasleft() - 2500) : safeTxGas);
                  gasUsed = gasUsed.sub(gasleft());
                  // If no safeTxGas and no gasPrice was set (e.g. both are 0), then the internal tx is required to be successful
                  // This makes it possible to use `estimateGas` without issues, as it searches for the minimum gas where the tx doesn't revert
                  require(success || safeTxGas != 0 || gasPrice != 0, "GS013");
                  // We transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made calls
                  uint256 payment = 0;
                  if (gasPrice > 0) {
                      payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
                  }
                  if (success) emit ExecutionSuccess(txHash, payment);
                  else emit ExecutionFailure(txHash, payment);
              }
              {
                  if (guard != address(0)) {
                      Guard(guard).checkAfterExecution(txHash, success);
                  }
              }
          }
          /**
           * @notice Handles the payment for a Safe transaction.
           * @param gasUsed Gas used by the Safe transaction.
           * @param baseGas Gas costs that are independent of the transaction execution (e.g. base transaction fee, signature check, payment of the refund).
           * @param gasPrice Gas price that should be used for the payment calculation.
           * @param gasToken Token address (or 0 if ETH) that is used for the payment.
           * @return payment The amount of payment made in the specified token.
           */
          function handlePayment(
              uint256 gasUsed,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address payable refundReceiver
          ) private returns (uint256 payment) {
              // solhint-disable-next-line avoid-tx-origin
              address payable receiver = refundReceiver == address(0) ? payable(tx.origin) : refundReceiver;
              if (gasToken == address(0)) {
                  // For ETH we will only adjust the gas price to not be higher than the actual used gas price
                  payment = gasUsed.add(baseGas).mul(gasPrice < tx.gasprice ? gasPrice : tx.gasprice);
                  require(receiver.send(payment), "GS011");
              } else {
                  payment = gasUsed.add(baseGas).mul(gasPrice);
                  require(transferToken(gasToken, receiver, payment), "GS012");
              }
          }
          /**
           * @notice Checks whether the signature provided is valid for the provided data and hash. Reverts otherwise.
           * @param dataHash Hash of the data (could be either a message hash or transaction hash)
           * @param data That should be signed (this is passed to an external validator contract)
           * @param signatures Signature data that should be verified.
           *                   Can be packed ECDSA signature ({bytes32 r}{bytes32 s}{uint8 v}), contract signature (EIP-1271) or approved hash.
           */
          function checkSignatures(bytes32 dataHash, bytes memory data, bytes memory signatures) public view {
              // Load threshold to avoid multiple storage loads
              uint256 _threshold = threshold;
              // Check that a threshold is set
              require(_threshold > 0, "GS001");
              checkNSignatures(dataHash, data, signatures, _threshold);
          }
          /**
           * @notice Checks whether the signature provided is valid for the provided data and hash. Reverts otherwise.
           * @dev Since the EIP-1271 does an external call, be mindful of reentrancy attacks.
           * @param dataHash Hash of the data (could be either a message hash or transaction hash)
           * @param data That should be signed (this is passed to an external validator contract)
           * @param signatures Signature data that should be verified.
           *                   Can be packed ECDSA signature ({bytes32 r}{bytes32 s}{uint8 v}), contract signature (EIP-1271) or approved hash.
           * @param requiredSignatures Amount of required valid signatures.
           */
          function checkNSignatures(bytes32 dataHash, bytes memory data, bytes memory signatures, uint256 requiredSignatures) public view {
              // Check that the provided signature data is not too short
              require(signatures.length >= requiredSignatures.mul(65), "GS020");
              // There cannot be an owner with address 0.
              address lastOwner = address(0);
              address currentOwner;
              uint8 v;
              bytes32 r;
              bytes32 s;
              uint256 i;
              for (i = 0; i < requiredSignatures; i++) {
                  (v, r, s) = signatureSplit(signatures, i);
                  if (v == 0) {
                      require(keccak256(data) == dataHash, "GS027");
                      // If v is 0 then it is a contract signature
                      // When handling contract signatures the address of the contract is encoded into r
                      currentOwner = address(uint160(uint256(r)));
                      // Check that signature data pointer (s) is not pointing inside the static part of the signatures bytes
                      // This check is not completely accurate, since it is possible that more signatures than the threshold are send.
                      // Here we only check that the pointer is not pointing inside the part that is being processed
                      require(uint256(s) >= requiredSignatures.mul(65), "GS021");
                      // Check that signature data pointer (s) is in bounds (points to the length of data -> 32 bytes)
                      require(uint256(s).add(32) <= signatures.length, "GS022");
                      // Check if the contract signature is in bounds: start of data is s + 32 and end is start + signature length
                      uint256 contractSignatureLen;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          contractSignatureLen := mload(add(add(signatures, s), 0x20))
                      }
                      require(uint256(s).add(32).add(contractSignatureLen) <= signatures.length, "GS023");
                      // Check signature
                      bytes memory contractSignature;
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          // The signature data for contract signatures is appended to the concatenated signatures and the offset is stored in s
                          contractSignature := add(add(signatures, s), 0x20)
                      }
                      require(ISignatureValidator(currentOwner).isValidSignature(data, contractSignature) == EIP1271_MAGIC_VALUE, "GS024");
                  } else if (v == 1) {
                      // If v is 1 then it is an approved hash
                      // When handling approved hashes the address of the approver is encoded into r
                      currentOwner = address(uint160(uint256(r)));
                      // Hashes are automatically approved by the sender of the message or when they have been pre-approved via a separate transaction
                      require(msg.sender == currentOwner || approvedHashes[currentOwner][dataHash] != 0, "GS025");
                  } else if (v > 30) {
                      // If v > 30 then default va (27,28) has been adjusted for eth_sign flow
                      // To support eth_sign and similar we adjust v and hash the messageHash with the Ethereum message prefix before applying ecrecover
                      currentOwner = ecrecover(keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
      32", dataHash)), v - 4, r, s);
                  } else {
                      // Default is the ecrecover flow with the provided data hash
                      // Use ecrecover with the messageHash for EOA signatures
                      currentOwner = ecrecover(dataHash, v, r, s);
                  }
                  require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner != SENTINEL_OWNERS, "GS026");
                  lastOwner = currentOwner;
              }
          }
          /**
           * @notice Marks hash `hashToApprove` as approved.
           * @dev This can be used with a pre-approved hash transaction signature.
           *      IMPORTANT: The approved hash stays approved forever. There's no revocation mechanism, so it behaves similarly to ECDSA signatures
           * @param hashToApprove The hash to mark as approved for signatures that are verified by this contract.
           */
          function approveHash(bytes32 hashToApprove) external {
              require(owners[msg.sender] != address(0), "GS030");
              approvedHashes[msg.sender][hashToApprove] = 1;
              emit ApproveHash(hashToApprove, msg.sender);
          }
          /**
           * @notice Returns the ID of the chain the contract is currently deployed on.
           * @return The ID of the current chain as a uint256.
           */
          function getChainId() public view returns (uint256) {
              uint256 id;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  id := chainid()
              }
              return id;
          }
          /**
           * @dev Returns the domain separator for this contract, as defined in the EIP-712 standard.
           * @return bytes32 The domain separator hash.
           */
          function domainSeparator() public view returns (bytes32) {
              return keccak256(abi.encode(DOMAIN_SEPARATOR_TYPEHASH, getChainId(), this));
          }
          /**
           * @notice Returns the pre-image of the transaction hash (see getTransactionHash).
           * @param to Destination address.
           * @param value Ether value.
           * @param data Data payload.
           * @param operation Operation type.
           * @param safeTxGas Gas that should be used for the safe transaction.
           * @param baseGas Gas costs for that are independent of the transaction execution(e.g. base transaction fee, signature check, payment of the refund)
           * @param gasPrice Maximum gas price that should be used for this transaction.
           * @param gasToken Token address (or 0 if ETH) that is used for the payment.
           * @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
           * @param _nonce Transaction nonce.
           * @return Transaction hash bytes.
           */
          function encodeTransactionData(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address refundReceiver,
              uint256 _nonce
          ) public view returns (bytes memory) {
              bytes32 safeTxHash = keccak256(
                  abi.encode(
                      SAFE_TX_TYPEHASH,
                      to,
                      value,
                      keccak256(data),
                      operation,
                      safeTxGas,
                      baseGas,
                      gasPrice,
                      gasToken,
                      refundReceiver,
                      _nonce
                  )
              );
              return abi.encodePacked(bytes1(0x19), bytes1(0x01), domainSeparator(), safeTxHash);
          }
          /**
           * @notice Returns transaction hash to be signed by owners.
           * @param to Destination address.
           * @param value Ether value.
           * @param data Data payload.
           * @param operation Operation type.
           * @param safeTxGas Fas that should be used for the safe transaction.
           * @param baseGas Gas costs for data used to trigger the safe transaction.
           * @param gasPrice Maximum gas price that should be used for this transaction.
           * @param gasToken Token address (or 0 if ETH) that is used for the payment.
           * @param refundReceiver Address of receiver of gas payment (or 0 if tx.origin).
           * @param _nonce Transaction nonce.
           * @return Transaction hash.
           */
          function getTransactionHash(
              address to,
              uint256 value,
              bytes calldata data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address refundReceiver,
              uint256 _nonce
          ) public view returns (bytes32) {
              return keccak256(encodeTransactionData(to, value, data, operation, safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, _nonce));
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/Enum.sol";
      /**
       * @title Executor - A contract that can execute transactions
       * @author Richard Meissner - @rmeissner
       */
      abstract contract Executor {
          /**
           * @notice Executes either a delegatecall or a call with provided parameters.
           * @dev This method doesn't perform any sanity check of the transaction, such as:
           *      - if the contract at `to` address has code or not
           *      It is the responsibility of the caller to perform such checks.
           * @param to Destination address.
           * @param value Ether value.
           * @param data Data payload.
           * @param operation Operation type.
           * @return success boolean flag indicating if the call succeeded.
           */
          function execute(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation,
              uint256 txGas
          ) internal returns (bool success) {
              if (operation == Enum.Operation.DelegateCall) {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0)
                  }
              } else {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0)
                  }
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/SelfAuthorized.sol";
      /**
       * @title Fallback Manager - A contract managing fallback calls made to this contract
       * @author Richard Meissner - @rmeissner
       */
      abstract contract FallbackManager is SelfAuthorized {
          event ChangedFallbackHandler(address indexed handler);
          // keccak256("fallback_manager.handler.address")
          bytes32 internal constant FALLBACK_HANDLER_STORAGE_SLOT = 0x6c9a6c4a39284e37ed1cf53d337577d14212a4870fb976a4366c693b939918d5;
          /**
           *  @notice Internal function to set the fallback handler.
           *  @param handler contract to handle fallback calls.
           */
          function internalSetFallbackHandler(address handler) internal {
              /*
                  If a fallback handler is set to self, then the following attack vector is opened:
                  Imagine we have a function like this:
                  function withdraw() internal authorized {
                      withdrawalAddress.call.value(address(this).balance)("");
                  }
                  If the fallback method is triggered, the fallback handler appends the msg.sender address to the calldata and calls the fallback handler.
                  A potential attacker could call a Safe with the 3 bytes signature of a withdraw function. Since 3 bytes do not create a valid signature,
                  the call would end in a fallback handler. Since it appends the msg.sender address to the calldata, the attacker could craft an address 
                  where the first 3 bytes of the previous calldata + the first byte of the address make up a valid function signature. The subsequent call would result in unsanctioned access to Safe's internal protected methods.
                  For some reason, solidity matches the first 4 bytes of the calldata to a function signature, regardless if more data follow these 4 bytes.
              */
              require(handler != address(this), "GS400");
              bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  sstore(slot, handler)
              }
          }
          /**
           * @notice Set Fallback Handler to `handler` for the Safe.
           * @dev Only fallback calls without value and with data will be forwarded.
           *      This can only be done via a Safe transaction.
           *      Cannot be set to the Safe itself.
           * @param handler contract to handle fallback calls.
           */
          function setFallbackHandler(address handler) public authorized {
              internalSetFallbackHandler(handler);
              emit ChangedFallbackHandler(handler);
          }
          // @notice Forwards all calls to the fallback handler if set. Returns 0 if no handler is set.
          // @dev Appends the non-padded caller address to the calldata to be optionally used in the handler
          //      The handler can make us of `HandlerContext.sol` to extract the address.
          //      This is done because in the next call frame the `msg.sender` will be FallbackManager's address
          //      and having the original caller address may enable additional verification scenarios.
          // solhint-disable-next-line payable-fallback,no-complex-fallback
          fallback() external {
              bytes32 slot = FALLBACK_HANDLER_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let handler := sload(slot)
                  if iszero(handler) {
                      return(0, 0)
                  }
                  calldatacopy(0, 0, calldatasize())
                  // The msg.sender address is shifted to the left by 12 bytes to remove the padding
                  // Then the address without padding is stored right after the calldata
                  mstore(calldatasize(), shl(96, caller()))
                  // Add 20 bytes for the address appended add the end
                  let success := call(gas(), handler, 0, 0, add(calldatasize(), 20), 0, 0)
                  returndatacopy(0, 0, returndatasize())
                  if iszero(success) {
                      revert(0, returndatasize())
                  }
                  return(0, returndatasize())
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/Enum.sol";
      import "../common/SelfAuthorized.sol";
      import "../interfaces/IERC165.sol";
      interface Guard is IERC165 {
          function checkTransaction(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation,
              uint256 safeTxGas,
              uint256 baseGas,
              uint256 gasPrice,
              address gasToken,
              address payable refundReceiver,
              bytes memory signatures,
              address msgSender
          ) external;
          function checkAfterExecution(bytes32 txHash, bool success) external;
      }
      abstract contract BaseGuard is Guard {
          function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) {
              return
                  interfaceId == type(Guard).interfaceId || // 0xe6d7a83a
                  interfaceId == type(IERC165).interfaceId; // 0x01ffc9a7
          }
      }
      /**
       * @title Guard Manager - A contract managing transaction guards which perform pre and post-checks on Safe transactions.
       * @author Richard Meissner - @rmeissner
       */
      abstract contract GuardManager is SelfAuthorized {
          event ChangedGuard(address indexed guard);
          // keccak256("guard_manager.guard.address")
          bytes32 internal constant GUARD_STORAGE_SLOT = 0x4a204f620c8c5ccdca3fd54d003badd85ba500436a431f0cbda4f558c93c34c8;
          /**
           * @dev Set a guard that checks transactions before execution
           *      This can only be done via a Safe transaction.
           *      ⚠️ IMPORTANT: Since a guard has full power to block Safe transaction execution,
           *        a broken guard can cause a denial of service for the Safe. Make sure to carefully
           *        audit the guard code and design recovery mechanisms.
           * @notice Set Transaction Guard `guard` for the Safe. Make sure you trust the guard.
           * @param guard The address of the guard to be used or the 0 address to disable the guard
           */
          function setGuard(address guard) external authorized {
              if (guard != address(0)) {
                  require(Guard(guard).supportsInterface(type(Guard).interfaceId), "GS300");
              }
              bytes32 slot = GUARD_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  sstore(slot, guard)
              }
              emit ChangedGuard(guard);
          }
          /**
           * @dev Internal method to retrieve the current guard
           *      We do not have a public method because we're short on bytecode size limit,
           *      to retrieve the guard address, one can use `getStorageAt` from `StorageAccessible` contract
           *      with the slot `GUARD_STORAGE_SLOT`
           * @return guard The address of the guard
           */
          function getGuard() internal view returns (address guard) {
              bytes32 slot = GUARD_STORAGE_SLOT;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  guard := sload(slot)
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/Enum.sol";
      import "../common/SelfAuthorized.sol";
      import "./Executor.sol";
      /**
       * @title Module Manager - A contract managing Safe modules
       * @notice Modules are extensions with unlimited access to a Safe that can be added to a Safe by its owners.
                 ⚠️ WARNING: Modules are a security risk since they can execute arbitrary transactions, 
                 so only trusted and audited modules should be added to a Safe. A malicious module can
                 completely takeover a Safe.
       * @author Stefan George - @Georgi87
       * @author Richard Meissner - @rmeissner
       */
      abstract contract ModuleManager is SelfAuthorized, Executor {
          event EnabledModule(address indexed module);
          event DisabledModule(address indexed module);
          event ExecutionFromModuleSuccess(address indexed module);
          event ExecutionFromModuleFailure(address indexed module);
          address internal constant SENTINEL_MODULES = address(0x1);
          mapping(address => address) internal modules;
          /**
           * @notice Setup function sets the initial storage of the contract.
           *         Optionally executes a delegate call to another contract to setup the modules.
           * @param to Optional destination address of call to execute.
           * @param data Optional data of call to execute.
           */
          function setupModules(address to, bytes memory data) internal {
              require(modules[SENTINEL_MODULES] == address(0), "GS100");
              modules[SENTINEL_MODULES] = SENTINEL_MODULES;
              if (to != address(0)) {
                  require(isContract(to), "GS002");
                  // Setup has to complete successfully or transaction fails.
                  require(execute(to, 0, data, Enum.Operation.DelegateCall, type(uint256).max), "GS000");
              }
          }
          /**
           * @notice Enables the module `module` for the Safe.
           * @dev This can only be done via a Safe transaction.
           * @param module Module to be whitelisted.
           */
          function enableModule(address module) public authorized {
              // Module address cannot be null or sentinel.
              require(module != address(0) && module != SENTINEL_MODULES, "GS101");
              // Module cannot be added twice.
              require(modules[module] == address(0), "GS102");
              modules[module] = modules[SENTINEL_MODULES];
              modules[SENTINEL_MODULES] = module;
              emit EnabledModule(module);
          }
          /**
           * @notice Disables the module `module` for the Safe.
           * @dev This can only be done via a Safe transaction.
           * @param prevModule Previous module in the modules linked list.
           * @param module Module to be removed.
           */
          function disableModule(address prevModule, address module) public authorized {
              // Validate module address and check that it corresponds to module index.
              require(module != address(0) && module != SENTINEL_MODULES, "GS101");
              require(modules[prevModule] == module, "GS103");
              modules[prevModule] = modules[module];
              modules[module] = address(0);
              emit DisabledModule(module);
          }
          /**
           * @notice Execute `operation` (0: Call, 1: DelegateCall) to `to` with `value` (Native Token)
           * @dev Function is virtual to allow overriding for L2 singleton to emit an event for indexing.
           * @param to Destination address of module transaction.
           * @param value Ether value of module transaction.
           * @param data Data payload of module transaction.
           * @param operation Operation type of module transaction.
           * @return success Boolean flag indicating if the call succeeded.
           */
          function execTransactionFromModule(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation
          ) public virtual returns (bool success) {
              // Only whitelisted modules are allowed.
              require(msg.sender != SENTINEL_MODULES && modules[msg.sender] != address(0), "GS104");
              // Execute transaction without further confirmations.
              success = execute(to, value, data, operation, type(uint256).max);
              if (success) emit ExecutionFromModuleSuccess(msg.sender);
              else emit ExecutionFromModuleFailure(msg.sender);
          }
          /**
           * @notice Execute `operation` (0: Call, 1: DelegateCall) to `to` with `value` (Native Token) and return data
           * @param to Destination address of module transaction.
           * @param value Ether value of module transaction.
           * @param data Data payload of module transaction.
           * @param operation Operation type of module transaction.
           * @return success Boolean flag indicating if the call succeeded.
           * @return returnData Data returned by the call.
           */
          function execTransactionFromModuleReturnData(
              address to,
              uint256 value,
              bytes memory data,
              Enum.Operation operation
          ) public returns (bool success, bytes memory returnData) {
              success = execTransactionFromModule(to, value, data, operation);
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  // Load free memory location
                  let ptr := mload(0x40)
                  // We allocate memory for the return data by setting the free memory location to
                  // current free memory location + data size + 32 bytes for data size value
                  mstore(0x40, add(ptr, add(returndatasize(), 0x20)))
                  // Store the size
                  mstore(ptr, returndatasize())
                  // Store the data
                  returndatacopy(add(ptr, 0x20), 0, returndatasize())
                  // Point the return data to the correct memory location
                  returnData := ptr
              }
          }
          /**
           * @notice Returns if an module is enabled
           * @return True if the module is enabled
           */
          function isModuleEnabled(address module) public view returns (bool) {
              return SENTINEL_MODULES != module && modules[module] != address(0);
          }
          /**
           * @notice Returns an array of modules.
           *         If all entries fit into a single page, the next pointer will be 0x1.
           *         If another page is present, next will be the last element of the returned array.
           * @param start Start of the page. Has to be a module or start pointer (0x1 address)
           * @param pageSize Maximum number of modules that should be returned. Has to be > 0
           * @return array Array of modules.
           * @return next Start of the next page.
           */
          function getModulesPaginated(address start, uint256 pageSize) external view returns (address[] memory array, address next) {
              require(start == SENTINEL_MODULES || isModuleEnabled(start), "GS105");
              require(pageSize > 0, "GS106");
              // Init array with max page size
              array = new address[](pageSize);
              // Populate return array
              uint256 moduleCount = 0;
              next = modules[start];
              while (next != address(0) && next != SENTINEL_MODULES && moduleCount < pageSize) {
                  array[moduleCount] = next;
                  next = modules[next];
                  moduleCount++;
              }
              /**
                Because of the argument validation, we can assume that the loop will always iterate over the valid module list values
                and the `next` variable will either be an enabled module or a sentinel address (signalling the end). 
                
                If we haven't reached the end inside the loop, we need to set the next pointer to the last element of the modules array
                because the `next` variable (which is a module by itself) acting as a pointer to the start of the next page is neither 
                included to the current page, nor will it be included in the next one if you pass it as a start.
              */
              if (next != SENTINEL_MODULES) {
                  next = array[moduleCount - 1];
              }
              // Set correct size of returned array
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  mstore(array, moduleCount)
              }
          }
          /**
           * @notice Returns true if `account` is a contract.
           * @dev This function will return false if invoked during the constructor of a contract,
           *      as the code is not actually created until after the constructor finishes.
           * @param account The address being queried
           */
          function isContract(address account) internal view returns (bool) {
              uint256 size;
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  size := extcodesize(account)
              }
              return size > 0;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      import "../common/SelfAuthorized.sol";
      /**
       * @title OwnerManager - Manages Safe owners and a threshold to authorize transactions.
       * @dev Uses a linked list to store the owners because the code generate by the solidity compiler
       *      is more efficient than using a dynamic array.
       * @author Stefan George - @Georgi87
       * @author Richard Meissner - @rmeissner
       */
      abstract contract OwnerManager is SelfAuthorized {
          event AddedOwner(address indexed owner);
          event RemovedOwner(address indexed owner);
          event ChangedThreshold(uint256 threshold);
          address internal constant SENTINEL_OWNERS = address(0x1);
          mapping(address => address) internal owners;
          uint256 internal ownerCount;
          uint256 internal threshold;
          /**
           * @notice Sets the initial storage of the contract.
           * @param _owners List of Safe owners.
           * @param _threshold Number of required confirmations for a Safe transaction.
           */
          function setupOwners(address[] memory _owners, uint256 _threshold) internal {
              // Threshold can only be 0 at initialization.
              // Check ensures that setup function can only be called once.
              require(threshold == 0, "GS200");
              // Validate that threshold is smaller than number of added owners.
              require(_threshold <= _owners.length, "GS201");
              // There has to be at least one Safe owner.
              require(_threshold >= 1, "GS202");
              // Initializing Safe owners.
              address currentOwner = SENTINEL_OWNERS;
              for (uint256 i = 0; i < _owners.length; i++) {
                  // Owner address cannot be null.
                  address owner = _owners[i];
                  require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this) && currentOwner != owner, "GS203");
                  // No duplicate owners allowed.
                  require(owners[owner] == address(0), "GS204");
                  owners[currentOwner] = owner;
                  currentOwner = owner;
              }
              owners[currentOwner] = SENTINEL_OWNERS;
              ownerCount = _owners.length;
              threshold = _threshold;
          }
          /**
           * @notice Adds the owner `owner` to the Safe and updates the threshold to `_threshold`.
           * @dev This can only be done via a Safe transaction.
           * @param owner New owner address.
           * @param _threshold New threshold.
           */
          function addOwnerWithThreshold(address owner, uint256 _threshold) public authorized {
              // Owner address cannot be null, the sentinel or the Safe itself.
              require(owner != address(0) && owner != SENTINEL_OWNERS && owner != address(this), "GS203");
              // No duplicate owners allowed.
              require(owners[owner] == address(0), "GS204");
              owners[owner] = owners[SENTINEL_OWNERS];
              owners[SENTINEL_OWNERS] = owner;
              ownerCount++;
              emit AddedOwner(owner);
              // Change threshold if threshold was changed.
              if (threshold != _threshold) changeThreshold(_threshold);
          }
          /**
           * @notice Removes the owner `owner` from the Safe and updates the threshold to `_threshold`.
           * @dev This can only be done via a Safe transaction.
           * @param prevOwner Owner that pointed to the owner to be removed in the linked list
           * @param owner Owner address to be removed.
           * @param _threshold New threshold.
           */
          function removeOwner(address prevOwner, address owner, uint256 _threshold) public authorized {
              // Only allow to remove an owner, if threshold can still be reached.
              require(ownerCount - 1 >= _threshold, "GS201");
              // Validate owner address and check that it corresponds to owner index.
              require(owner != address(0) && owner != SENTINEL_OWNERS, "GS203");
              require(owners[prevOwner] == owner, "GS205");
              owners[prevOwner] = owners[owner];
              owners[owner] = address(0);
              ownerCount--;
              emit RemovedOwner(owner);
              // Change threshold if threshold was changed.
              if (threshold != _threshold) changeThreshold(_threshold);
          }
          /**
           * @notice Replaces the owner `oldOwner` in the Safe with `newOwner`.
           * @dev This can only be done via a Safe transaction.
           * @param prevOwner Owner that pointed to the owner to be replaced in the linked list
           * @param oldOwner Owner address to be replaced.
           * @param newOwner New owner address.
           */
          function swapOwner(address prevOwner, address oldOwner, address newOwner) public authorized {
              // Owner address cannot be null, the sentinel or the Safe itself.
              require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203");
              // No duplicate owners allowed.
              require(owners[newOwner] == address(0), "GS204");
              // Validate oldOwner address and check that it corresponds to owner index.
              require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203");
              require(owners[prevOwner] == oldOwner, "GS205");
              owners[newOwner] = owners[oldOwner];
              owners[prevOwner] = newOwner;
              owners[oldOwner] = address(0);
              emit RemovedOwner(oldOwner);
              emit AddedOwner(newOwner);
          }
          /**
           * @notice Changes the threshold of the Safe to `_threshold`.
           * @dev This can only be done via a Safe transaction.
           * @param _threshold New threshold.
           */
          function changeThreshold(uint256 _threshold) public authorized {
              // Validate that threshold is smaller than number of owners.
              require(_threshold <= ownerCount, "GS201");
              // There has to be at least one Safe owner.
              require(_threshold >= 1, "GS202");
              threshold = _threshold;
              emit ChangedThreshold(threshold);
          }
          /**
           * @notice Returns the number of required confirmations for a Safe transaction aka the threshold.
           * @return Threshold number.
           */
          function getThreshold() public view returns (uint256) {
              return threshold;
          }
          /**
           * @notice Returns if `owner` is an owner of the Safe.
           * @return Boolean if owner is an owner of the Safe.
           */
          function isOwner(address owner) public view returns (bool) {
              return owner != SENTINEL_OWNERS && owners[owner] != address(0);
          }
          /**
           * @notice Returns a list of Safe owners.
           * @return Array of Safe owners.
           */
          function getOwners() public view returns (address[] memory) {
              address[] memory array = new address[](ownerCount);
              // populate return array
              uint256 index = 0;
              address currentOwner = owners[SENTINEL_OWNERS];
              while (currentOwner != SENTINEL_OWNERS) {
                  array[index] = currentOwner;
                  currentOwner = owners[currentOwner];
                  index++;
              }
              return array;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title Enum - Collection of enums used in Safe contracts.
       * @author Richard Meissner - @rmeissner
       */
      abstract contract Enum {
          enum Operation {
              Call,
              DelegateCall
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title NativeCurrencyPaymentFallback - A contract that has a fallback to accept native currency payments.
       * @author Richard Meissner - @rmeissner
       */
      abstract contract NativeCurrencyPaymentFallback {
          event SafeReceived(address indexed sender, uint256 value);
          /**
           * @notice Receive function accepts native currency transactions.
           * @dev Emits an event with sender and received value.
           */
          receive() external payable {
              emit SafeReceived(msg.sender, msg.value);
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title SecuredTokenTransfer - Secure token transfer.
       * @author Richard Meissner - @rmeissner
       */
      abstract contract SecuredTokenTransfer {
          /**
           * @notice Transfers a token and returns a boolean if it was a success
           * @dev It checks the return data of the transfer call and returns true if the transfer was successful.
           *      It doesn't check if the `token` address is a contract or not.
           * @param token Token that should be transferred
           * @param receiver Receiver to whom the token should be transferred
           * @param amount The amount of tokens that should be transferred
           * @return transferred Returns true if the transfer was successful
           */
          function transferToken(address token, address receiver, uint256 amount) internal returns (bool transferred) {
              // 0xa9059cbb - keccack("transfer(address,uint256)")
              bytes memory data = abi.encodeWithSelector(0xa9059cbb, receiver, amount);
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  // We write the return value to scratch space.
                  // See https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html#layout-in-memory
                  let success := call(sub(gas(), 10000), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                  switch returndatasize()
                  case 0 {
                      transferred := success
                  }
                  case 0x20 {
                      transferred := iszero(or(iszero(success), iszero(mload(0))))
                  }
                  default {
                      transferred := 0
                  }
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title SelfAuthorized - Authorizes current contract to perform actions to itself.
       * @author Richard Meissner - @rmeissner
       */
      abstract contract SelfAuthorized {
          function requireSelfCall() private view {
              require(msg.sender == address(this), "GS031");
          }
          modifier authorized() {
              // Modifiers are copied around during compilation. This is a function call as it minimized the bytecode size
              requireSelfCall();
              _;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title SignatureDecoder - Decodes signatures encoded as bytes
       * @author Richard Meissner - @rmeissner
       */
      abstract contract SignatureDecoder {
          /**
           * @notice Splits signature bytes into `uint8 v, bytes32 r, bytes32 s`.
           * @dev Make sure to perform a bounds check for @param pos, to avoid out of bounds access on @param signatures
           *      The signature format is a compact form of {bytes32 r}{bytes32 s}{uint8 v}
           *      Compact means uint8 is not padded to 32 bytes.
           * @param pos Which signature to read.
           *            A prior bounds check of this parameter should be performed, to avoid out of bounds access.
           * @param signatures Concatenated {r, s, v} signatures.
           * @return v Recovery ID or Safe signature type.
           * @return r Output value r of the signature.
           * @return s Output value s of the signature.
           */
          function signatureSplit(bytes memory signatures, uint256 pos) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let signaturePos := mul(0x41, pos)
                  r := mload(add(signatures, add(signaturePos, 0x20)))
                  s := mload(add(signatures, add(signaturePos, 0x40)))
                  /**
                   * Here we are loading the last 32 bytes, including 31 bytes
                   * of 's'. There is no 'mload8' to do this.
                   * 'byte' is not working due to the Solidity parser, so lets
                   * use the second best option, 'and'
                   */
                  v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title Singleton - Base for singleton contracts (should always be the first super contract)
       *        This contract is tightly coupled to our proxy contract (see `proxies/SafeProxy.sol`)
       * @author Richard Meissner - @rmeissner
       */
      abstract contract Singleton {
          // singleton always has to be the first declared variable to ensure the same location as in the Proxy contract.
          // It should also always be ensured the address is stored alone (uses a full word)
          address private singleton;
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title StorageAccessible - A generic base contract that allows callers to access all internal storage.
       * @notice See https://github.com/gnosis/util-contracts/blob/bb5fe5fb5df6d8400998094fb1b32a178a47c3a1/contracts/StorageAccessible.sol
       *         It removes a method from the original contract not needed for the Safe contracts.
       * @author Gnosis Developers
       */
      abstract contract StorageAccessible {
          /**
           * @notice Reads `length` bytes of storage in the currents contract
           * @param offset - the offset in the current contract's storage in words to start reading from
           * @param length - the number of words (32 bytes) of data to read
           * @return the bytes that were read.
           */
          function getStorageAt(uint256 offset, uint256 length) public view returns (bytes memory) {
              bytes memory result = new bytes(length * 32);
              for (uint256 index = 0; index < length; index++) {
                  // solhint-disable-next-line no-inline-assembly
                  assembly {
                      let word := sload(add(offset, index))
                      mstore(add(add(result, 0x20), mul(index, 0x20)), word)
                  }
              }
              return result;
          }
          /**
           * @dev Performs a delegatecall on a targetContract in the context of self.
           * Internally reverts execution to avoid side effects (making it static).
           *
           * This method reverts with data equal to `abi.encode(bool(success), bytes(response))`.
           * Specifically, the `returndata` after a call to this method will be:
           * `success:bool || response.length:uint256 || response:bytes`.
           *
           * @param targetContract Address of the contract containing the code to execute.
           * @param calldataPayload Calldata that should be sent to the target contract (encoded method name and arguments).
           */
          function simulateAndRevert(address targetContract, bytes memory calldataPayload) external {
              // solhint-disable-next-line no-inline-assembly
              assembly {
                  let success := delegatecall(gas(), targetContract, add(calldataPayload, 0x20), mload(calldataPayload), 0, 0)
                  mstore(0x00, success)
                  mstore(0x20, returndatasize())
                  returndatacopy(0x40, 0, returndatasize())
                  revert(0, add(returndatasize(), 0x40))
              }
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /**
       * @title SafeMath
       * @notice Math operations with safety checks that revert on error (overflow/underflow)
       */
      library SafeMath {
          /**
           * @notice Multiplies two numbers, reverts on overflow.
           * @param a First number
           * @param b Second number
           * @return Product of a and b
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
              if (a == 0) {
                  return 0;
              }
              uint256 c = a * b;
              require(c / a == b);
              return c;
          }
          /**
           * @notice Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
           * @param a First number
           * @param b Second number
           * @return Difference of a and b
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              require(b <= a);
              uint256 c = a - b;
              return c;
          }
          /**
           * @notice Adds two numbers, reverts on overflow.
           * @param a First number
           * @param b Second number
           * @return Sum of a and b
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a);
              return c;
          }
          /**
           * @notice Returns the largest of two numbers.
           * @param a First number
           * @param b Second number
           * @return Largest of a and b
           */
          function max(uint256 a, uint256 b) internal pure returns (uint256) {
              return a >= b ? a : b;
          }
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      /// @notice More details at https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/introspection/IERC165.sol
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by `interfaceId`.
           * See the corresponding EIP section
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      // SPDX-License-Identifier: LGPL-3.0-only
      pragma solidity >=0.7.0 <0.9.0;
      contract ISignatureValidatorConstants {
          // bytes4(keccak256("isValidSignature(bytes,bytes)")
          bytes4 internal constant EIP1271_MAGIC_VALUE = 0x20c13b0b;
      }
      abstract contract ISignatureValidator is ISignatureValidatorConstants {
          /**
           * @notice Legacy EIP1271 method to validate a signature.
           * @param _data Arbitrary length data signed on the behalf of address(this).
           * @param _signature Signature byte array associated with _data.
           *
           * MUST return the bytes4 magic value 0x20c13b0b when function passes.
           * MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
           * MUST allow external calls
           */
          function isValidSignature(bytes memory _data, bytes memory _signature) public view virtual returns (bytes4);
      }