Transaction Hash:
Block:
14333144 at Mar-06-2022 11:49:49 AM +UTC
Transaction Fee:
0.002270378264009346 ETH
$5.15
Gas Used:
115,062 Gas / 19.731781683 Gwei
Emitted Events:
130 |
Hedron.Transfer( from=0x0000000000000000000000000000000000000000, to=0x9d73Ced2e36C89E5d167151809eeE218a189f801, value=1752904528958850650 )
|
131 |
Hedron.Transfer( from=0x0000000000000000000000000000000000000000, to=[Sender] 0xef9a2e3be267c5b7d7d4ff0feb8f78851799d7e8, value=1928194981854735715 )
|
132 |
Hedron.Mint( data=167969472591514998114541976117732602408169793858497075781597, minter=[Sender] 0xef9a2e3be267c5b7d7d4ff0feb8f78851799d7e8, stakeId=106281 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2A20380D...988ad0050
Miner
| (Poolin 3) | 2,750.251404079616961604 Eth | 2,750.251576672616961604 Eth | 0.000172593 | |
0x3819f64f...dAF905e06 | |||||
0xef9A2e3b...51799d7E8 |
0.023758591770153689 Eth
Nonce: 43
|
0.021488213506144343 Eth
Nonce: 44
| 0.002270378264009346 |
Execution Trace
Hedron.mintNative( stakeIndex=4, stakeId=106281 ) => ( 1928194981854735715 )

-
HEX.stakeLists( 0xef9A2e3bE267C5B7d7D4fF0FeB8F78851799d7E8, 4 ) => ( stakeId=106281, stakedHearts=117853951659850, stakeShares=232172785292563, lockedDay=69, stakedDays=1789, unlockedDay=0, isAutoStake=False )
mintNative[Hedron (ln:3905)]
_currentDay[Hedron (ln:3916)]
_dailyDataLoad[Hedron (ln:3918)]
_hexCurrentDay[Hedron (ln:3413)]
_hexDailyDataLoad[Hedron (ln:3419)]
dailyData[Hedron (ln:3229)]
HEXDailyData[Hedron (ln:3231)]
_hexGlobalsLoad[Hedron (ln:3420)]
globals[Hedron (ln:3264)]
HEXGlobals[Hedron (ln:3266)]
totalSupply[Hedron (ln:3428)]
totalSupply[Hedron (ln:3429)]
_hexStakeLoad[Hedron (ln:3920)]
stakeLists[Hedron (ln:3304)]
HEXStake[Hedron (ln:3306)]
_hexCurrentDay[Hedron (ln:3924)]
_shareSearch[Hedron (ln:3938)]
_shareLoad[Hedron (ln:3662)]
_shareLoad[Hedron (ln:3942)]
_hexCurrentDay[Hedron (ln:3944)]
_calcBonus[Hedron (ln:3959)]
_mint[Hedron (ln:3962)]
_calcBonus[Hedron (ln:3970)]
_mint[Hedron (ln:3973)]
_mint[Hedron (ln:3983)]
_emitMint[Hedron (ln:3985)]
_shareUpdate[Hedron (ln:3992)]
_hexCurrentDay[Hedron (ln:3997)]
_currentDay[Hedron (ln:4008)]
_calcLPBMultiplier[Hedron (ln:4009)]
_currentDay[Hedron (ln:4009)]
_calcBonus[Hedron (ln:4010)]
_mint[Hedron (ln:4013)]
_calcBonus[Hedron (ln:4021)]
_mint[Hedron (ln:4024)]
_shareAdd[Hedron (ln:4031)]
ShareStore[Hedron (ln:3522)]
HEXStakeMinimal[Hedron (ln:4032)]
_shareLoad[Hedron (ln:4047)]
_mint[Hedron (ln:4051)]
_emitMint[Hedron (ln:4053)]
_dailyDataUpdate[Hedron (ln:4062)]
File 1 of 2: Hedron
File 2 of 2: HEX
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.9; /* Hedron is a collection of Ethereum / PulseChain smart contracts that * * build upon the HEX smart contract to provide additional functionality */ /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); _afterTokenTransfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; } /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } } /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to owner address mapping(uint256 => address) private _owners; // Mapping owner address to token count mapping(address => uint256) private _balances; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { address owner = _owners[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token"); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overriden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require( _msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransfer(from, to, tokenId, _data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `_data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer( address from, address to, uint256 tokenId, bytes memory _data ) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _owners[tokenId] != address(0); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ERC721.ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint( address to, uint256 tokenId, bytes memory _data ) internal virtual { _mint(to, tokenId); require( _checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer" ); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId); _balances[to] += 1; _owners[tokenId] = to; emit Transfer(address(0), to, tokenId); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); _beforeTokenTransfer(owner, address(0), tokenId); // Clear approvals _approve(address(0), tokenId); _balances[owner] -= 1; delete _owners[tokenId]; emit Transfer(owner, address(0), tokenId); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId); // Clear approvals from the previous owner _approve(address(0), tokenId); _balances[from] -= 1; _balances[to] += 1; _owners[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Approve `to` to operate on `tokenId` * * Emits a {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits a {ApprovalForAll} event. */ function _setApprovalForAll( address owner, address operator, bool approved ) internal virtual { require(owner != operator, "ERC721: approve to caller"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { if (to.isContract()) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) { return retval == IERC721Receiver.onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert("ERC721: transfer to non ERC721Receiver implementer"); } else { assembly { revert(add(32, reason), mload(reason)) } } } } else { return true; } } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 tokenId ) internal virtual {} } /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); } /** * @dev This implements an optional extension of {ERC721} defined in the EIP that adds * enumerability of all the token ids in the contract as well as all token ids owned by each * account. */ abstract contract ERC721Enumerable is ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => mapping(uint256 => uint256)) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) { return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) { require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _allTokens.length; } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual override returns (uint256) { require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` cannot be the zero address. * - `to` cannot be the zero address. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 tokenId ) internal virtual override { super._beforeTokenTransfer(from, to, tokenId); if (from == address(0)) { _addTokenToAllTokensEnumeration(tokenId); } else if (from != to) { _removeTokenFromOwnerEnumeration(from, tokenId); } if (to == address(0)) { _removeTokenFromAllTokensEnumeration(tokenId); } else if (to != from) { _addTokenToOwnerEnumeration(to, tokenId); } } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { uint256 length = ERC721.balanceOf(to); _ownedTokens[to][length] = tokenId; _ownedTokensIndex[tokenId] = length; } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = ERC721.balanceOf(from) - 1; uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array delete _ownedTokensIndex[tokenId]; delete _ownedTokens[from][lastTokenIndex]; } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length - 1; uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array delete _allTokensIndex[tokenId]; _allTokens.pop(); } } /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids. * * Include with `using Counters for Counters.Counter;` */ library Counters { struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } } /** * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. * * _Available since v3.4._ */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, implementation)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000) instance := create(0, ptr, 0x37) } require(instance != address(0), "ERC1167: create failed"); } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, implementation)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000) instance := create2(0, ptr, 0x37, salt) } require(instance != address(0), "ERC1167: create2 failed"); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { assembly { let ptr := mload(0x40) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000) mstore(add(ptr, 0x14), shl(0x60, implementation)) mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000) mstore(add(ptr, 0x38), shl(0x60, deployer)) mstore(add(ptr, 0x4c), salt) mstore(add(ptr, 0x6c), keccak256(ptr, 0x37)) predicted := keccak256(add(ptr, 0x37), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress(address implementation, bytes32 salt) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } } interface IHEX { event Approval( address indexed owner, address indexed spender, uint256 value ); event Claim( uint256 data0, uint256 data1, bytes20 indexed btcAddr, address indexed claimToAddr, address indexed referrerAddr ); event ClaimAssist( uint256 data0, uint256 data1, uint256 data2, address indexed senderAddr ); event DailyDataUpdate(uint256 data0, address indexed updaterAddr); event ShareRateChange(uint256 data0, uint40 indexed stakeId); event StakeEnd( uint256 data0, uint256 data1, address indexed stakerAddr, uint40 indexed stakeId ); event StakeGoodAccounting( uint256 data0, uint256 data1, address indexed stakerAddr, uint40 indexed stakeId, address indexed senderAddr ); event StakeStart( uint256 data0, address indexed stakerAddr, uint40 indexed stakeId ); event Transfer(address indexed from, address indexed to, uint256 value); event XfLobbyEnter( uint256 data0, address indexed memberAddr, uint256 indexed entryId, address indexed referrerAddr ); event XfLobbyExit( uint256 data0, address indexed memberAddr, uint256 indexed entryId, address indexed referrerAddr ); fallback() external payable; function allocatedSupply() external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function balanceOf(address account) external view returns (uint256); function btcAddressClaim( uint256 rawSatoshis, bytes32[] memory proof, address claimToAddr, bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags, uint8 v, bytes32 r, bytes32 s, uint256 autoStakeDays, address referrerAddr ) external returns (uint256); function btcAddressClaims(bytes20) external view returns (bool); function btcAddressIsClaimable( bytes20 btcAddr, uint256 rawSatoshis, bytes32[] memory proof ) external view returns (bool); function btcAddressIsValid( bytes20 btcAddr, uint256 rawSatoshis, bytes32[] memory proof ) external pure returns (bool); function claimMessageMatchesSignature( address claimToAddr, bytes32 claimParamHash, bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags, uint8 v, bytes32 r, bytes32 s ) external pure returns (bool); function currentDay() external view returns (uint256); function dailyData(uint256) external view returns ( uint72 dayPayoutTotal, uint72 dayStakeSharesTotal, uint56 dayUnclaimedSatoshisTotal ); function dailyDataRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list); function dailyDataUpdate(uint256 beforeDay) external; function decimals() external view returns (uint8); function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool); function globalInfo() external view returns (uint256[13] memory); function globals() external view returns ( uint72 lockedHeartsTotal, uint72 nextStakeSharesTotal, uint40 shareRate, uint72 stakePenaltyTotal, uint16 dailyDataCount, uint72 stakeSharesTotal, uint40 latestStakeId, uint128 claimStats ); function increaseAllowance(address spender, uint256 addedValue) external returns (bool); function merkleProofIsValid(bytes32 merkleLeaf, bytes32[] memory proof) external pure returns (bool); function name() external view returns (string memory); function pubKeyToBtcAddress( bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags ) external pure returns (bytes20); function pubKeyToEthAddress(bytes32 pubKeyX, bytes32 pubKeyY) external pure returns (address); function stakeCount(address stakerAddr) external view returns (uint256); function stakeEnd(uint256 stakeIndex, uint40 stakeIdParam) external; function stakeGoodAccounting( address stakerAddr, uint256 stakeIndex, uint40 stakeIdParam ) external; function stakeLists(address, uint256) external view returns ( uint40 stakeId, uint72 stakedHearts, uint72 stakeShares, uint16 lockedDay, uint16 stakedDays, uint16 unlockedDay, bool isAutoStake ); function stakeStart(uint256 newStakedHearts, uint256 newStakedDays) external; function symbol() external view returns (string memory); function totalSupply() external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); function xfLobby(uint256) external view returns (uint256); function xfLobbyEnter(address referrerAddr) external payable; function xfLobbyEntry(address memberAddr, uint256 entryId) external view returns (uint256 rawAmount, address referrerAddr); function xfLobbyExit(uint256 enterDay, uint256 count) external; function xfLobbyFlush() external; function xfLobbyMembers(uint256, address) external view returns (uint40 headIndex, uint40 tailIndex); function xfLobbyPendingDays(address memberAddr) external view returns (uint256[2] memory words); function xfLobbyRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list); } struct HEXDailyData { uint72 dayPayoutTotal; uint72 dayStakeSharesTotal; uint56 dayUnclaimedSatoshisTotal; } struct HEXGlobals { uint72 lockedHeartsTotal; uint72 nextStakeSharesTotal; uint40 shareRate; uint72 stakePenaltyTotal; uint16 dailyDataCount; uint72 stakeSharesTotal; uint40 latestStakeId; uint128 claimStats; } struct HEXStake { uint40 stakeId; uint72 stakedHearts; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; bool isAutoStake; } struct HEXStakeMinimal { uint40 stakeId; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; } struct ShareStore { HEXStakeMinimal stake; uint16 mintedDays; uint8 launchBonus; uint16 loanStart; uint16 loanedDays; uint32 interestRate; uint8 paymentsMade; bool isLoaned; } struct ShareCache { HEXStakeMinimal _stake; uint256 _mintedDays; uint256 _launchBonus; uint256 _loanStart; uint256 _loanedDays; uint256 _interestRate; uint256 _paymentsMade; bool _isLoaned; } address constant _hdrnSourceAddress = address(0x9d73Ced2e36C89E5d167151809eeE218a189f801); address constant _hdrnFlowAddress = address(0xF447BE386164dADfB5d1e7622613f289F17024D8); uint256 constant _hdrnLaunch = 1645833600; contract HEXStakeInstance { IHEX private _hx; address private _creator; ShareStore public share; /** * @dev Updates the HSI's internal HEX stake data. */ function _stakeDataUpdate( ) internal { uint40 stakeId; uint72 stakedHearts; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; bool isAutoStake; (stakeId, stakedHearts, stakeShares, lockedDay, stakedDays, unlockedDay, isAutoStake ) = _hx.stakeLists(address(this), 0); share.stake.stakeId = stakeId; share.stake.stakeShares = stakeShares; share.stake.lockedDay = lockedDay; share.stake.stakedDays = stakedDays; } function initialize( address hexAddress ) external { require(_creator == address(0), "HSI: Initialization already performed"); /* _creator is not an admin key. It is set at contsruction to be a link to the parent contract. In this case HSIM */ _creator = msg.sender; // set HEX contract address _hx = IHEX(payable(hexAddress)); } /** * @dev Creates a new HEX stake using all HEX ERC20 tokens assigned * to the HSI's contract address. This is a privileged operation only * HEXStakeInstanceManager.sol can call. * @param stakeLength Number of days the HEX ERC20 tokens will be staked. */ function create( uint256 stakeLength ) external { uint256 hexBalance = _hx.balanceOf(address(this)); require(msg.sender == _creator, "HSI: Caller must be contract creator"); require(share.stake.stakedDays == 0, "HSI: Creation already performed"); require(hexBalance > 0, "HSI: Creation requires a non-zero HEX balance"); _hx.stakeStart( hexBalance, stakeLength ); _stakeDataUpdate(); } /** * @dev Calls the HEX function "stakeGoodAccounting" against the * HEX stake held within the HSI. */ function goodAccounting( ) external { require(share.stake.stakedDays > 0, "HSI: Creation not yet performed"); _hx.stakeGoodAccounting(address(this), 0, share.stake.stakeId); _stakeDataUpdate(); } /** * @dev Ends the HEX stake, approves the "_creator" address to transfer * all HEX ERC20 tokens, and self-destructs the HSI. This is a * privileged operation only HEXStakeInstanceManager.sol can call. */ function destroy( ) external { require(msg.sender == _creator, "HSI: Caller must be contract creator"); require(share.stake.stakedDays > 0, "HSI: Creation not yet performed"); _hx.stakeEnd(0, share.stake.stakeId); uint256 hexBalance = _hx.balanceOf(address(this)); if (_hx.approve(_creator, hexBalance)) { selfdestruct(payable(_creator)); } else { revert(); } } /** * @dev Updates the HSI's internal share data. This is a privileged * operation only HEXStakeInstanceManager.sol can call. * @param _share "ShareCache" object containing updated share data. */ function update( ShareCache memory _share ) external { require(msg.sender == _creator, "HSI: Caller must be contract creator"); share.mintedDays = uint16(_share._mintedDays); share.launchBonus = uint8 (_share._launchBonus); share.loanStart = uint16(_share._loanStart); share.loanedDays = uint16(_share._loanedDays); share.interestRate = uint32(_share._interestRate); share.paymentsMade = uint8 (_share._paymentsMade); share.isLoaned = _share._isLoaned; } /** * @dev Fetches stake data from the HEX contract. * @return A "HEXStake" object containg the HEX stake data. */ function stakeDataFetch( ) external view returns(HEXStake memory) { uint40 stakeId; uint72 stakedHearts; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; bool isAutoStake; (stakeId, stakedHearts, stakeShares, lockedDay, stakedDays, unlockedDay, isAutoStake ) = _hx.stakeLists(address(this), 0); return HEXStake( stakeId, stakedHearts, stakeShares, lockedDay, stakedDays, unlockedDay, isAutoStake ); } } interface IHedron { event Approval( address indexed owner, address indexed spender, uint256 value ); event Claim(uint256 data, address indexed claimant, uint40 indexed stakeId); event LoanEnd( uint256 data, address indexed borrower, uint40 indexed stakeId ); event LoanLiquidateBid( uint256 data, address indexed bidder, uint40 indexed stakeId, uint40 indexed liquidationId ); event LoanLiquidateExit( uint256 data, address indexed liquidator, uint40 indexed stakeId, uint40 indexed liquidationId ); event LoanLiquidateStart( uint256 data, address indexed borrower, uint40 indexed stakeId, uint40 indexed liquidationId ); event LoanPayment( uint256 data, address indexed borrower, uint40 indexed stakeId ); event LoanStart( uint256 data, address indexed borrower, uint40 indexed stakeId ); event Mint(uint256 data, address indexed minter, uint40 indexed stakeId); event Transfer(address indexed from, address indexed to, uint256 value); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function balanceOf(address account) external view returns (uint256); function calcLoanPayment( address borrower, uint256 hsiIndex, address hsiAddress ) external view returns (uint256, uint256); function calcLoanPayoff( address borrower, uint256 hsiIndex, address hsiAddress ) external view returns (uint256, uint256); function claimInstanced( uint256 hsiIndex, address hsiAddress, address hsiStarterAddress ) external; function claimNative(uint256 stakeIndex, uint40 stakeId) external returns (uint256); function currentDay() external view returns (uint256); function dailyDataList(uint256) external view returns ( uint72 dayMintedTotal, uint72 dayLoanedTotal, uint72 dayBurntTotal, uint32 dayInterestRate, uint8 dayMintMultiplier ); function decimals() external view returns (uint8); function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool); function hsim() external view returns (address); function increaseAllowance(address spender, uint256 addedValue) external returns (bool); function liquidationList(uint256) external view returns ( uint256 liquidationStart, address hsiAddress, uint96 bidAmount, address liquidator, uint88 endOffset, bool isActive ); function loanInstanced(uint256 hsiIndex, address hsiAddress) external returns (uint256); function loanLiquidate( address owner, uint256 hsiIndex, address hsiAddress ) external returns (uint256); function loanLiquidateBid(uint256 liquidationId, uint256 liquidationBid) external returns (uint256); function loanLiquidateExit(uint256 hsiIndex, uint256 liquidationId) external returns (address); function loanPayment(uint256 hsiIndex, address hsiAddress) external returns (uint256); function loanPayoff(uint256 hsiIndex, address hsiAddress) external returns (uint256); function loanedSupply() external view returns (uint256); function mintInstanced(uint256 hsiIndex, address hsiAddress) external returns (uint256); function mintNative(uint256 stakeIndex, uint40 stakeId) external returns (uint256); function name() external view returns (string memory); function proofOfBenevolence(uint256 amount) external; function shareList(uint256) external view returns ( HEXStakeMinimal memory stake, uint16 mintedDays, uint8 launchBonus, uint16 loanStart, uint16 loanedDays, uint32 interestRate, uint8 paymentsMade, bool isLoaned ); function symbol() external view returns (string memory); function totalSupply() external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); } library LibPart { bytes32 public constant TYPE_HASH = keccak256("Part(address account,uint96 value)"); struct Part { address payable account; uint96 value; } function hash(Part memory part) internal pure returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, part.account, part.value)); } } abstract contract AbstractRoyalties { mapping (uint256 => LibPart.Part[]) internal royalties; function _saveRoyalties(uint256 id, LibPart.Part[] memory _royalties) internal { uint256 totalValue; for (uint i = 0; i < _royalties.length; i++) { require(_royalties[i].account != address(0x0), "Recipient should be present"); require(_royalties[i].value != 0, "Royalty value should be positive"); totalValue += _royalties[i].value; royalties[id].push(_royalties[i]); } require(totalValue < 10000, "Royalty total value should be < 10000"); _onRoyaltiesSet(id, _royalties); } function _updateAccount(uint256 _id, address _from, address _to) internal { uint length = royalties[_id].length; for(uint i = 0; i < length; i++) { if (royalties[_id][i].account == _from) { royalties[_id][i].account = payable(address(uint160(_to))); } } } function _onRoyaltiesSet(uint256 id, LibPart.Part[] memory _royalties) virtual internal; } interface RoyaltiesV2 { event RoyaltiesSet(uint256 tokenId, LibPart.Part[] royalties); function getRaribleV2Royalties(uint256 id) external view returns (LibPart.Part[] memory); } contract RoyaltiesV2Impl is AbstractRoyalties, RoyaltiesV2 { function getRaribleV2Royalties(uint256 id) override external view returns (LibPart.Part[] memory) { return royalties[id]; } function _onRoyaltiesSet(uint256 id, LibPart.Part[] memory _royalties) override internal { emit RoyaltiesSet(id, _royalties); } } library LibRoyaltiesV2 { /* * bytes4(keccak256('getRaribleV2Royalties(uint256)')) == 0xcad96cca */ bytes4 constant _INTERFACE_ID_ROYALTIES = 0xcad96cca; } contract HEXStakeInstanceManager is ERC721, ERC721Enumerable, RoyaltiesV2Impl { using Counters for Counters.Counter; bytes4 private constant _INTERFACE_ID_ERC2981 = 0x2a55205a; uint96 private constant _hsimRoyaltyBasis = 15; // Rarible V2 royalty basis string private constant _hostname = "https://api.hedron.pro/"; string private constant _endpoint = "/hsi/"; Counters.Counter private _tokenIds; address private _creator; IHEX private _hx; address private _hxAddress; address private _hsiImplementation; mapping(address => address[]) public hsiLists; mapping(uint256 => address) public hsiToken; constructor( address hexAddress ) ERC721("HEX Stake Instance", "HSI") { /* _creator is not an admin key. It is set at contsruction to be a link to the parent contract. In this case Hedron */ _creator = msg.sender; // set HEX contract address _hx = IHEX(payable(hexAddress)); _hxAddress = hexAddress; // create HSI implementation _hsiImplementation = address(new HEXStakeInstance()); // initialize the HSI just in case HEXStakeInstance hsi = HEXStakeInstance(_hsiImplementation); hsi.initialize(hexAddress); } function _baseURI( ) internal view virtual override returns (string memory) { string memory chainid = Strings.toString(block.chainid); return string(abi.encodePacked(_hostname, chainid, _endpoint)); } function _beforeTokenTransfer( address from, address to, uint256 tokenId ) internal override(ERC721, ERC721Enumerable) { super._beforeTokenTransfer(from, to, tokenId); } event HSIStart( uint256 timestamp, address indexed hsiAddress, address indexed staker ); event HSIEnd( uint256 timestamp, address indexed hsiAddress, address indexed staker ); event HSITransfer( uint256 timestamp, address indexed hsiAddress, address indexed oldStaker, address indexed newStaker ); event HSITokenize( uint256 timestamp, uint256 indexed hsiTokenId, address indexed hsiAddress, address indexed staker ); event HSIDetokenize( uint256 timestamp, uint256 indexed hsiTokenId, address indexed hsiAddress, address indexed staker ); /** * @dev Removes a HEX stake instance (HSI) contract address from an address mapping. * @param hsiList A mapped list of HSI contract addresses. * @param hsiIndex The index of the HSI contract address which will be removed. */ function _pruneHSI( address[] storage hsiList, uint256 hsiIndex ) internal { uint256 lastIndex = hsiList.length - 1; if (hsiIndex != lastIndex) { hsiList[hsiIndex] = hsiList[lastIndex]; } hsiList.pop(); } /** * @dev Loads share data from a HEX stake instance (HSI) into a "ShareCache" object. * @param hsi A HSI contract object from which share data will be loaded. * @return "ShareCache" object containing the loaded share data. */ function _hsiLoad( HEXStakeInstance hsi ) internal view returns (ShareCache memory) { HEXStakeMinimal memory stake; uint16 mintedDays; uint8 launchBonus; uint16 loanStart; uint16 loanedDays; uint32 interestRate; uint8 paymentsMade; bool isLoaned; (stake, mintedDays, launchBonus, loanStart, loanedDays, interestRate, paymentsMade, isLoaned) = hsi.share(); return ShareCache( stake, mintedDays, launchBonus, loanStart, loanedDays, interestRate, paymentsMade, isLoaned ); } // Internal NFT Marketplace Glue /** @dev Sets the Rarible V2 royalties on a specific token * @param tokenId Unique ID of the HSI NFT token. */ function _setRoyalties( uint256 tokenId ) internal { LibPart.Part[] memory _royalties = new LibPart.Part[](1); _royalties[0].value = _hsimRoyaltyBasis; _royalties[0].account = payable(_hdrnFlowAddress); _saveRoyalties(tokenId, _royalties); } /** * @dev Retreives the number of HSI elements in an addresses HSI list. * @param user Address to retrieve the HSI list for. * @return Number of HSI elements found within the HSI list. */ function hsiCount( address user ) public view returns (uint256) { return hsiLists[user].length; } /** * @dev Wrapper function for hsiCount to allow HEX based applications to pull stake data. * @param user Address to retrieve the HSI list for. * @return Number of HSI elements found within the HSI list. */ function stakeCount( address user ) external view returns (uint256) { return hsiCount(user); } /** * @dev Wrapper function for hsiLists to allow HEX based applications to pull stake data. * @param user Address to retrieve the HSI list for. * @param hsiIndex The index of the HSI contract address which will returned. * @return "HEXStake" object containing HEX stake data. */ function stakeLists( address user, uint256 hsiIndex ) external view returns (HEXStake memory) { address[] storage hsiList = hsiLists[user]; HEXStakeInstance hsi = HEXStakeInstance(hsiList[hsiIndex]); return hsi.stakeDataFetch(); } /** * @dev Creates a new HEX stake instance (HSI), transfers HEX ERC20 tokens to the * HSI's contract address, and calls the "initialize" function. * @param amount Number of HEX ERC20 tokens to be staked. * @param length Number of days the HEX ERC20 tokens will be staked. * @return Address of the newly created HSI contract. */ function hexStakeStart ( uint256 amount, uint256 length ) external returns (address) { require(amount <= _hx.balanceOf(msg.sender), "HSIM: Insufficient HEX to facilitate stake"); address[] storage hsiList = hsiLists[msg.sender]; address hsiAddress = Clones.clone(_hsiImplementation); HEXStakeInstance hsi = HEXStakeInstance(hsiAddress); hsi.initialize(_hxAddress); hsiList.push(hsiAddress); uint256 hsiIndex = hsiList.length - 1; require(_hx.transferFrom(msg.sender, hsiAddress, amount), "HSIM: HEX transfer from message sender to HSIM failed"); hsi.create(length); IHedron hedron = IHedron(_creator); hedron.claimInstanced(hsiIndex, hsiAddress, msg.sender); emit HSIStart(block.timestamp, hsiAddress, msg.sender); return hsiAddress; } /** * @dev Calls the HEX stake instance (HSI) function "destroy", transfers HEX ERC20 tokens * from the HSI's contract address to the senders address. * @param hsiIndex Index of the HSI contract's address in the caller's HSI list. * @param hsiAddress Address of the HSI contract in which to call the "destroy" function. * @return Amount of HEX ERC20 tokens awarded via ending the HEX stake. */ function hexStakeEnd ( uint256 hsiIndex, address hsiAddress ) external returns (uint256) { address[] storage hsiList = hsiLists[msg.sender]; require(hsiAddress == hsiList[hsiIndex], "HSIM: HSI index address mismatch"); HEXStakeInstance hsi = HEXStakeInstance(hsiAddress); ShareCache memory share = _hsiLoad(hsi); require (share._isLoaned == false, "HSIM: Cannot call stakeEnd against a loaned stake"); hsi.destroy(); emit HSIEnd(block.timestamp, hsiAddress, msg.sender); uint256 hsiBalance = _hx.balanceOf(hsiAddress); if (hsiBalance > 0) { require(_hx.transferFrom(hsiAddress, msg.sender, hsiBalance), "HSIM: HEX transfer from HSI failed"); } _pruneHSI(hsiList, hsiIndex); return hsiBalance; } /** * @dev Converts a HEX stake instance (HSI) contract address mapping into a * HSI ERC721 token. * @param hsiIndex Index of the HSI contract's address in the caller's HSI list. * @param hsiAddress Address of the HSI contract to be converted. * @return Token ID of the newly minted HSI ERC721 token. */ function hexStakeTokenize ( uint256 hsiIndex, address hsiAddress ) external returns (uint256) { address[] storage hsiList = hsiLists[msg.sender]; require(hsiAddress == hsiList[hsiIndex], "HSIM: HSI index address mismatch"); HEXStakeInstance hsi = HEXStakeInstance(hsiAddress); ShareCache memory share = _hsiLoad(hsi); require (share._isLoaned == false, "HSIM: Cannot tokenize a loaned stake"); _tokenIds.increment(); uint256 newTokenId = _tokenIds.current(); _mint(msg.sender, newTokenId); hsiToken[newTokenId] = hsiAddress; _setRoyalties(newTokenId); _pruneHSI(hsiList, hsiIndex); emit HSITokenize( block.timestamp, newTokenId, hsiAddress, msg.sender ); return newTokenId; } /** * @dev Converts a HEX stake instance (HSI) ERC721 token into an address mapping. * @param tokenId ID of the HSI ERC721 token to be converted. * @return Address of the detokenized HSI contract. */ function hexStakeDetokenize ( uint256 tokenId ) external returns (address) { require(ownerOf(tokenId) == msg.sender, "HSIM: Detokenization requires token ownership"); address hsiAddress = hsiToken[tokenId]; address[] storage hsiList = hsiLists[msg.sender]; hsiList.push(hsiAddress); hsiToken[tokenId] = address(0); _burn(tokenId); emit HSIDetokenize( block.timestamp, tokenId, hsiAddress, msg.sender ); return hsiAddress; } /** * @dev Updates the share data of a HEX stake instance (HSI) contract. * This is a pivileged operation only Hedron.sol can call. * @param holder Address of the HSI contract owner. * @param hsiIndex Index of the HSI contract's address in the holder's HSI list. * @param hsiAddress Address of the HSI contract to be updated. * @param share "ShareCache" object containing updated share data. */ function hsiUpdate ( address holder, uint256 hsiIndex, address hsiAddress, ShareCache memory share ) external { require(msg.sender == _creator, "HSIM: Caller must be contract creator"); address[] storage hsiList = hsiLists[holder]; require(hsiAddress == hsiList[hsiIndex], "HSIM: HSI index address mismatch"); HEXStakeInstance hsi = HEXStakeInstance(hsiAddress); hsi.update(share); } /** * @dev Transfers ownership of a HEX stake instance (HSI) contract to a new address. * This is a pivileged operation only Hedron.sol can call. End users can use * the NFT tokenize / detokenize to handle HSI transfers. * @param currentHolder Address to transfer the HSI contract from. * @param hsiIndex Index of the HSI contract's address in the currentHolder's HSI list. * @param hsiAddress Address of the HSI contract to be transfered. * @param newHolder Address to transfer to HSI contract to. */ function hsiTransfer ( address currentHolder, uint256 hsiIndex, address hsiAddress, address newHolder ) external { require(msg.sender == _creator, "HSIM: Caller must be contract creator"); address[] storage hsiListCurrent = hsiLists[currentHolder]; address[] storage hsiListNew = hsiLists[newHolder]; require(hsiAddress == hsiListCurrent[hsiIndex], "HSIM: HSI index address mismatch"); hsiListNew.push(hsiAddress); _pruneHSI(hsiListCurrent, hsiIndex); emit HSITransfer( block.timestamp, hsiAddress, currentHolder, newHolder ); } // External NFT Marketplace Glue /** * @dev Implements ERC2981 royalty functionality. We just read the royalty data from * the Rarible V2 implementation. * @param tokenId Unique ID of the HSI NFT token. * @param salePrice Price the HSI NFT token was sold for. * @return receiver address to send the royalties to as well as the royalty amount. */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) external view returns (address receiver, uint256 royaltyAmount) { LibPart.Part[] memory _royalties = royalties[tokenId]; if (_royalties.length > 0) { return (_royalties[0].account, (salePrice * _royalties[0].value) / 10000); } return (address(0), 0); } /** * @dev returns _hdrnFlowAddress, needed for some NFT marketplaces. This is not * an admin key. * @return _hdrnFlowAddress */ function owner( ) external pure returns (address) { return _hdrnFlowAddress; } /** * @dev Adds Rarible V2 and ERC2981 interface support. * @param interfaceId Unique contract interface identifier. * @return True if the interface is supported, false if not. */ function supportsInterface( bytes4 interfaceId ) public view virtual override(ERC721, ERC721Enumerable) returns (bool) { if (interfaceId == LibRoyaltiesV2._INTERFACE_ID_ROYALTIES) { return true; } if (interfaceId == _INTERFACE_ID_ERC2981) { return true; } return super.supportsInterface(interfaceId); } } contract Hedron is ERC20 { using Counters for Counters.Counter; struct DailyDataStore { uint72 dayMintedTotal; uint72 dayLoanedTotal; uint72 dayBurntTotal; uint32 dayInterestRate; uint8 dayMintMultiplier; } struct DailyDataCache { uint256 _dayMintedTotal; uint256 _dayLoanedTotal; uint256 _dayBurntTotal; uint256 _dayInterestRate; uint256 _dayMintMultiplier; } struct LiquidationStore{ uint256 liquidationStart; address hsiAddress; uint96 bidAmount; address liquidator; uint88 endOffset; bool isActive; } struct LiquidationCache { uint256 _liquidationStart; address _hsiAddress; uint256 _bidAmount; address _liquidator; uint256 _endOffset; bool _isActive; } uint256 constant private _hdrnLaunchDays = 100; // length of the launch phase bonus in Hedron days uint256 constant private _hdrnLoanInterestResolution = 1000000; // loan interest decimal resolution uint256 constant private _hdrnLoanInterestDivisor = 2; // relation of Hedron's interest rate to HEX's interest rate uint256 constant private _hdrnLoanPaymentWindow = 30; // how many Hedron days to roll into a single payment uint256 constant private _hdrnLoanDefaultThreshold = 90; // how many Hedron days before loan liquidation is allowed IHEX private _hx; uint256 private _hxLaunch; HEXStakeInstanceManager private _hsim; Counters.Counter private _liquidationIds; address public hsim; mapping(uint256 => ShareStore) public shareList; mapping(uint256 => DailyDataStore) public dailyDataList; mapping(uint256 => LiquidationStore) public liquidationList; uint256 public loanedSupply; constructor( address hexAddress, uint256 hexLaunch ) ERC20("Hedron", "HDRN") { // set HEX contract address and launch time _hx = IHEX(payable(hexAddress)); _hxLaunch = hexLaunch; // initialize HEX stake instance manager hsim = address(new HEXStakeInstanceManager(hexAddress)); _hsim = HEXStakeInstanceManager(hsim); } function decimals() public view virtual override returns (uint8) { return 9; } // Hedron Events event Claim( uint256 data, address indexed claimant, uint40 indexed stakeId ); event Mint( uint256 data, address indexed minter, uint40 indexed stakeId ); event LoanStart( uint256 data, address indexed borrower, uint40 indexed stakeId ); event LoanPayment( uint256 data, address indexed borrower, uint40 indexed stakeId ); event LoanEnd( uint256 data, address indexed borrower, uint40 indexed stakeId ); event LoanLiquidateStart( uint256 data, address indexed borrower, uint40 indexed stakeId, uint40 indexed liquidationId ); event LoanLiquidateBid( uint256 data, address indexed bidder, uint40 indexed stakeId, uint40 indexed liquidationId ); event LoanLiquidateExit( uint256 data, address indexed liquidator, uint40 indexed stakeId, uint40 indexed liquidationId ); // Hedron Private Functions function _emitClaim( uint40 stakeId, uint256 stakeShares, uint256 launchBonus ) private { emit Claim( uint256(uint40 (block.timestamp)) | (uint256(uint72 (stakeShares)) << 40) | (uint256(uint144(launchBonus)) << 112), msg.sender, stakeId ); } function _emitMint( ShareCache memory share, uint256 payout ) private { emit Mint( uint256(uint40 (block.timestamp)) | (uint256(uint72 (share._stake.stakeShares)) << 40) | (uint256(uint16 (share._mintedDays)) << 112) | (uint256(uint8 (share._launchBonus)) << 128) | (uint256(uint120(payout)) << 136), msg.sender, share._stake.stakeId ); } function _emitLoanStart( ShareCache memory share, uint256 borrowed ) private { emit LoanStart( uint256(uint40 (block.timestamp)) | (uint256(uint72(share._stake.stakeShares)) << 40) | (uint256(uint16(share._loanedDays)) << 112) | (uint256(uint32(share._interestRate)) << 128) | (uint256(uint96(borrowed)) << 160), msg.sender, share._stake.stakeId ); } function _emitLoanPayment( ShareCache memory share, uint256 payment ) private { emit LoanPayment( uint256(uint40 (block.timestamp)) | (uint256(uint72(share._stake.stakeShares)) << 40) | (uint256(uint16(share._loanedDays)) << 112) | (uint256(uint32(share._interestRate)) << 128) | (uint256(uint8 (share._paymentsMade)) << 160) | (uint256(uint88(payment)) << 168), msg.sender, share._stake.stakeId ); } function _emitLoanEnd( ShareCache memory share, uint256 payoff ) private { emit LoanEnd( uint256(uint40 (block.timestamp)) | (uint256(uint72(share._stake.stakeShares)) << 40) | (uint256(uint16(share._loanedDays)) << 112) | (uint256(uint32(share._interestRate)) << 128) | (uint256(uint8 (share._paymentsMade)) << 160) | (uint256(uint88(payoff)) << 168), msg.sender, share._stake.stakeId ); } function _emitLoanLiquidateStart( ShareCache memory share, uint40 liquidationId, address borrower, uint256 startingBid ) private { emit LoanLiquidateStart( uint256(uint40 (block.timestamp)) | (uint256(uint72(share._stake.stakeShares)) << 40) | (uint256(uint16(share._loanedDays)) << 112) | (uint256(uint32(share._interestRate)) << 128) | (uint256(uint8 (share._paymentsMade)) << 160) | (uint256(uint88(startingBid)) << 168), borrower, share._stake.stakeId, liquidationId ); } function _emitLoanLiquidateBid( uint40 stakeId, uint40 liquidationId, uint256 bidAmount ) private { emit LoanLiquidateBid( uint256(uint40 (block.timestamp)) | (uint256(uint216(bidAmount)) << 40), msg.sender, stakeId, liquidationId ); } function _emitLoanLiquidateExit( uint40 stakeId, uint40 liquidationId, address liquidator, uint256 finalBid ) private { emit LoanLiquidateExit( uint256(uint40 (block.timestamp)) | (uint256(uint216(finalBid)) << 40), liquidator, stakeId, liquidationId ); } // HEX Internal Functions /** * @dev Calculates the current HEX day. * @return Number representing the current HEX day. */ function _hexCurrentDay() internal view returns (uint256) { return (block.timestamp - _hxLaunch) / 1 days; } /** * @dev Loads HEX daily data values from the HEX contract into a "HEXDailyData" object. * @param hexDay The HEX day to obtain daily data for. * @return "HEXDailyData" object containing the daily data values returned by the HEX contract. */ function _hexDailyDataLoad( uint256 hexDay ) internal view returns (HEXDailyData memory) { uint72 dayPayoutTotal; uint72 dayStakeSharesTotal; uint56 dayUnclaimedSatoshisTotal; (dayPayoutTotal, dayStakeSharesTotal, dayUnclaimedSatoshisTotal) = _hx.dailyData(hexDay); return HEXDailyData( dayPayoutTotal, dayStakeSharesTotal, dayUnclaimedSatoshisTotal ); } /** * @dev Loads HEX global values from the HEX contract into a "HEXGlobals" object. * @return "HEXGlobals" object containing the global values returned by the HEX contract. */ function _hexGlobalsLoad() internal view returns (HEXGlobals memory) { uint72 lockedHeartsTotal; uint72 nextStakeSharesTotal; uint40 shareRate; uint72 stakePenaltyTotal; uint16 dailyDataCount; uint72 stakeSharesTotal; uint40 latestStakeId; uint128 claimStats; (lockedHeartsTotal, nextStakeSharesTotal, shareRate, stakePenaltyTotal, dailyDataCount, stakeSharesTotal, latestStakeId, claimStats) = _hx.globals(); return HEXGlobals( lockedHeartsTotal, nextStakeSharesTotal, shareRate, stakePenaltyTotal, dailyDataCount, stakeSharesTotal, latestStakeId, claimStats ); } /** * @dev Loads HEX stake values from the HEX contract into a "HEXStake" object. * @param stakeIndex The index of the desired HEX stake within the sender's HEX stake list. * @return "HEXStake" object containing the stake values returned by the HEX contract. */ function _hexStakeLoad( uint256 stakeIndex ) internal view returns (HEXStake memory) { uint40 stakeId; uint72 stakedHearts; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; bool isAutoStake; (stakeId, stakedHearts, stakeShares, lockedDay, stakedDays, unlockedDay, isAutoStake) = _hx.stakeLists(msg.sender, stakeIndex); return HEXStake( stakeId, stakedHearts, stakeShares, lockedDay, stakedDays, unlockedDay, isAutoStake ); } // Hedron Internal Functions /** * @dev Calculates the current Hedron day. * @return Number representing the current Hedron day. */ function _currentDay() internal view returns (uint256) { return (block.timestamp - _hdrnLaunch) / 1 days; } /** * @dev Calculates the multiplier to be used for the Launch Phase Bonus. * @param launchDay The current day of the Hedron launch phase. * @return Multiplier to use for the given launch day. */ function _calcLPBMultiplier ( uint256 launchDay ) internal pure returns (uint256) { if (launchDay > 90) { return 100; } else if (launchDay > 80) { return 90; } else if (launchDay > 70) { return 80; } else if (launchDay > 60) { return 70; } else if (launchDay > 50) { return 60; } else if (launchDay > 40) { return 50; } else if (launchDay > 30) { return 40; } else if (launchDay > 20) { return 30; } else if (launchDay > 10) { return 20; } else if (launchDay > 0) { return 10; } return 0; } /** * @dev Calculates the number of bonus HDRN tokens to be minted in regards to minting bonuses. * @param multiplier The multiplier to use, increased by a factor of 10. * @param payout Payout to apply the multiplier towards. * @return Number of tokens to mint as a bonus. */ function _calcBonus( uint256 multiplier, uint256 payout ) internal pure returns (uint256) { return uint256((payout * multiplier) / 10); } /** * @dev Loads values from a "DailyDataStore" object into a "DailyDataCache" object. * @param dayStore "DailyDataStore" object to be loaded. * @param day "DailyDataCache" object to be populated with storage data. */ function _dailyDataLoad( DailyDataStore storage dayStore, DailyDataCache memory day ) internal view { day._dayMintedTotal = dayStore.dayMintedTotal; day._dayLoanedTotal = dayStore.dayLoanedTotal; day._dayBurntTotal = dayStore.dayBurntTotal; day._dayInterestRate = dayStore.dayInterestRate; day._dayMintMultiplier = dayStore.dayMintMultiplier; if (day._dayInterestRate == 0) { uint256 hexCurrentDay = _hexCurrentDay(); /* There is a very small window of time where it would be technically possible to pull HEX dailyData that is not yet defined. While unlikely to happen, we should prevent the possibility by pulling data from two days prior. This means our interest rate will slightly lag behind HEX's interest rate. */ HEXDailyData memory hexDailyData = _hexDailyDataLoad(hexCurrentDay - 2); HEXGlobals memory hexGlobals = _hexGlobalsLoad(); uint256 hexDailyInterestRate = (hexDailyData.dayPayoutTotal * _hdrnLoanInterestResolution) / hexGlobals.lockedHeartsTotal; day._dayInterestRate = hexDailyInterestRate / _hdrnLoanInterestDivisor; /* Ideally we want a 50/50 split between loaned and minted Hedron. If less than 50% of the total supply is minted, allocate a bonus multiplier and scale it from 0 to 10. This is to attempt to prevent a situation where there is not enough available minted supply to cover loan interest. */ if (loanedSupply > 0 && totalSupply() > 0) { uint256 loanedToMinted = (loanedSupply * 100) / totalSupply(); if (loanedToMinted > 50) { day._dayMintMultiplier = (loanedToMinted - 50) * 2; } } } } /** * @dev Updates a "DailyDataStore" object with values stored in a "DailyDataCache" object. * @param dayStore "DailyDataStore" object to be updated. * @param day "DailyDataCache" object with updated values. */ function _dailyDataUpdate( DailyDataStore storage dayStore, DailyDataCache memory day ) internal { dayStore.dayMintedTotal = uint72(day._dayMintedTotal); dayStore.dayLoanedTotal = uint72(day._dayLoanedTotal); dayStore.dayBurntTotal = uint72(day._dayBurntTotal); dayStore.dayInterestRate = uint32(day._dayInterestRate); dayStore.dayMintMultiplier = uint8(day._dayMintMultiplier); } /** * @dev Loads share data from a HEX stake instance (HSI) into a "ShareCache" object. * @param hsi The HSI to load share data from. * @return "ShareCache" object containing the share data of the HSI. */ function _hsiLoad( HEXStakeInstance hsi ) internal view returns (ShareCache memory) { HEXStakeMinimal memory stake; uint16 mintedDays; uint8 launchBonus; uint16 loanStart; uint16 loanedDays; uint32 interestRate; uint8 paymentsMade; bool isLoaned; (stake, mintedDays, launchBonus, loanStart, loanedDays, interestRate, paymentsMade, isLoaned) = hsi.share(); return ShareCache( stake, mintedDays, launchBonus, loanStart, loanedDays, interestRate, paymentsMade, isLoaned ); } /** * @dev Creates (or overwrites) a new share element in the share list. * @param stake "HEXStakeMinimal" object with which the share element is tied to. * @param mintedDays Amount of Hedron days the HEX stake has been minted against. * @param launchBonus The launch bonus multiplier of the share element. * @param loanStart The Hedron day the loan was started * @param loanedDays Amount of Hedron days the HEX stake has been borrowed against. * @param interestRate The interest rate of the loan. * @param paymentsMade Amount of payments made towards the loan. * @param isLoaned Flag used to determine if the HEX stake is currently borrowed against.. */ function _shareAdd( HEXStakeMinimal memory stake, uint256 mintedDays, uint256 launchBonus, uint256 loanStart, uint256 loanedDays, uint256 interestRate, uint256 paymentsMade, bool isLoaned ) internal { shareList[stake.stakeId] = ShareStore( stake, uint16(mintedDays), uint8(launchBonus), uint16(loanStart), uint16(loanedDays), uint32(interestRate), uint8(paymentsMade), isLoaned ); } /** * @dev Creates a new liquidation element in the liquidation list. * @param hsiAddress Address of the HEX Stake Instance (HSI) being liquidated. * @param liquidator Address of the user starting the liquidation process. * @param liquidatorBid Bid amount (in HDRN) the user is starting the liquidation process with. * @return ID of the liquidation element. */ function _liquidationAdd( address hsiAddress, address liquidator, uint256 liquidatorBid ) internal returns (uint256) { _liquidationIds.increment(); liquidationList[_liquidationIds.current()] = LiquidationStore ( block.timestamp, hsiAddress, uint96(liquidatorBid), liquidator, uint88(0), true ); return _liquidationIds.current(); } /** * @dev Loads values from a "ShareStore" object into a "ShareCache" object. * @param shareStore "ShareStore" object to be loaded. * @param share "ShareCache" object to be populated with storage data. */ function _shareLoad( ShareStore storage shareStore, ShareCache memory share ) internal view { share._stake = shareStore.stake; share._mintedDays = shareStore.mintedDays; share._launchBonus = shareStore.launchBonus; share._loanStart = shareStore.loanStart; share._loanedDays = shareStore.loanedDays; share._interestRate = shareStore.interestRate; share._paymentsMade = shareStore.paymentsMade; share._isLoaned = shareStore.isLoaned; } /** * @dev Loads values from a "LiquidationStore" object into a "LiquidationCache" object. * @param liquidationStore "LiquidationStore" object to be loaded. * @param liquidation "LiquidationCache" object to be populated with storage data. */ function _liquidationLoad( LiquidationStore storage liquidationStore, LiquidationCache memory liquidation ) internal view { liquidation._liquidationStart = liquidationStore.liquidationStart; liquidation._endOffset = liquidationStore.endOffset; liquidation._hsiAddress = liquidationStore.hsiAddress; liquidation._liquidator = liquidationStore.liquidator; liquidation._bidAmount = liquidationStore.bidAmount; liquidation._isActive = liquidationStore.isActive; } /** * @dev Updates a "ShareStore" object with values stored in a "ShareCache" object. * @param shareStore "ShareStore" object to be updated. * @param share "ShareCache object with updated values. */ function _shareUpdate( ShareStore storage shareStore, ShareCache memory share ) internal { shareStore.stake = share._stake; shareStore.mintedDays = uint16(share._mintedDays); shareStore.launchBonus = uint8(share._launchBonus); shareStore.loanStart = uint16(share._loanStart); shareStore.loanedDays = uint16(share._loanedDays); shareStore.interestRate = uint32(share._interestRate); shareStore.paymentsMade = uint8(share._paymentsMade); shareStore.isLoaned = share._isLoaned; } /** * @dev Updates a "LiquidationStore" object with values stored in a "LiquidationCache" object. * @param liquidationStore "LiquidationStore" object to be updated. * @param liquidation "LiquidationCache" object with updated values. */ function _liquidationUpdate( LiquidationStore storage liquidationStore, LiquidationCache memory liquidation ) internal { liquidationStore.endOffset = uint48(liquidation._endOffset); liquidationStore.hsiAddress = liquidation._hsiAddress; liquidationStore.liquidator = liquidation._liquidator; liquidationStore.bidAmount = uint96(liquidation._bidAmount); liquidationStore.isActive = liquidation._isActive; } /** * @dev Attempts to match a "HEXStake" object to an existing share element within the share list. * @param stake "HEXStake" object to be matched. * @return Boolean indicating if the HEX stake was matched and it's index within the stake list as separate values. */ function _shareSearch( HEXStake memory stake ) internal view returns (bool, uint256) { bool stakeInShareList = false; uint256 shareIndex = 0; ShareCache memory share; _shareLoad(shareList[stake.stakeId], share); // stake matches an existing share element if (share._stake.stakeId == stake.stakeId && share._stake.stakeShares == stake.stakeShares && share._stake.lockedDay == stake.lockedDay && share._stake.stakedDays == stake.stakedDays) { stakeInShareList = true; shareIndex = stake.stakeId; } return(stakeInShareList, shareIndex); } // Hedron External Functions /** * @dev Returns the current Hedron day. * @return Current Hedron day */ function currentDay() external view returns (uint256) { return _currentDay(); } /** * @dev Claims the launch phase bonus for a HEX stake instance (HSI). It also injects * the HSI share data into into the shareList. This is a privileged operation * only HEXStakeInstanceManager.sol can call. * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @param hsiStarterAddress Address of the user creating the HSI. */ function claimInstanced( uint256 hsiIndex, address hsiAddress, address hsiStarterAddress ) external { require(msg.sender == hsim, "HSIM: Caller must be HSIM"); address _hsiAddress = _hsim.hsiLists(hsiStarterAddress, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); if (_currentDay() < _hdrnLaunchDays) { share._launchBonus = _calcLPBMultiplier(_hdrnLaunchDays - _currentDay()); _emitClaim(share._stake.stakeId, share._stake.stakeShares, share._launchBonus); } _hsim.hsiUpdate(hsiStarterAddress, hsiIndex, hsiAddress, share); _shareAdd( share._stake, share._mintedDays, share._launchBonus, share._loanStart, share._loanedDays, share._interestRate, share._paymentsMade, share._isLoaned ); } /** * @dev Mints Hedron ERC20 (HDRN) tokens to the sender using a HEX stake instance (HSI) backing. * HDRN Minted = HEX Stake B-Shares * (Days Served - Days Already Minted) * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @return Amount of HDRN ERC20 tokens minted. */ function mintInstanced( uint256 hsiIndex, address hsiAddress ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); address _hsiAddress = _hsim.hsiLists(msg.sender, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); require(_hexCurrentDay() >= share._stake.lockedDay, "HDRN: cannot mint against a pending HEX stake"); require(share._isLoaned == false, "HDRN: cannot mint against a loaned HEX stake"); uint256 servedDays = 0; uint256 mintDays = 0; uint256 payout = 0; servedDays = _hexCurrentDay() - share._stake.lockedDay; // served days should never exceed staked days if (servedDays > share._stake.stakedDays) { servedDays = share._stake.stakedDays; } // remove days already minted from the payout mintDays = servedDays - share._mintedDays; // base payout payout = share._stake.stakeShares * mintDays; // launch phase bonus if (share._launchBonus > 0) { uint256 bonus = _calcBonus(share._launchBonus, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } else if (_currentDay() < _hdrnLaunchDays) { share._launchBonus = _calcLPBMultiplier(_hdrnLaunchDays - _currentDay()); uint256 bonus = _calcBonus(share._launchBonus, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } // loan to mint ratio bonus if (day._dayMintMultiplier > 0) { uint256 bonus = _calcBonus(day._dayMintMultiplier, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } share._mintedDays += mintDays; // mint final payout to the sender if (payout > 0) { _mint(msg.sender, payout); _emitMint( share, payout ); } day._dayMintedTotal += payout; // update HEX stake instance _hsim.hsiUpdate(msg.sender, hsiIndex, hsiAddress, share); _shareUpdate(shareList[share._stake.stakeId], share); _dailyDataUpdate(dayStore, day); return payout; } /** * @dev Claims the launch phase bonus for a naitve HEX stake. * @param stakeIndex Index of the HEX stake in sender's HEX stake list. * (see stakeLists -> HEX.sol) * @param stakeId ID of the HEX stake which coinsides with the index. * @return Number representing the launch bonus of the claimed HEX stake * increased by a factor of 10 for decimal resolution. */ function claimNative( uint256 stakeIndex, uint40 stakeId ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); HEXStake memory stake = _hexStakeLoad(stakeIndex); require(stake.stakeId == stakeId, "HDRN: HEX stake index id mismatch"); bool stakeInShareList = false; uint256 shareIndex = 0; uint256 launchBonus = 0; // check if share element already exists in the sender's mapping (stakeInShareList, shareIndex) = _shareSearch(stake); require(stakeInShareList == false, "HDRN: HEX Stake already claimed"); if (_currentDay() < _hdrnLaunchDays) { launchBonus = _calcLPBMultiplier(_hdrnLaunchDays - _currentDay()); _emitClaim(stake.stakeId, stake.stakeShares, launchBonus); } _shareAdd( HEXStakeMinimal( stake.stakeId, stake.stakeShares, stake.lockedDay, stake.stakedDays ), 0, launchBonus, 0, 0, 0, 0, false ); return launchBonus; } /** * @dev Mints Hedron ERC20 (HDRN) tokens to the sender using a native HEX stake backing. * HDRN Minted = HEX Stake B-Shares * (Days Served - Days Already Minted) * @param stakeIndex Index of the HEX stake in sender's HEX stake list (see stakeLists -> HEX.sol). * @param stakeId ID of the HEX stake which coinsides with the index. * @return Amount of HDRN ERC20 tokens minted. */ function mintNative( uint256 stakeIndex, uint40 stakeId ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); HEXStake memory stake = _hexStakeLoad(stakeIndex); require(stake.stakeId == stakeId, "HDRN: HEX stake index id mismatch"); require(_hexCurrentDay() >= stake.lockedDay, "HDRN: cannot mint against a pending HEX stake"); bool stakeInShareList = false; uint256 shareIndex = 0; uint256 servedDays = 0; uint256 mintDays = 0; uint256 payout = 0; uint256 launchBonus = 0; ShareCache memory share; // check if share element already exists in the sender's mapping (stakeInShareList, shareIndex) = _shareSearch(stake); // stake matches an existing share element if (stakeInShareList) { _shareLoad(shareList[shareIndex], share); servedDays = _hexCurrentDay() - share._stake.lockedDay; // served days should never exceed staked days if (servedDays > share._stake.stakedDays) { servedDays = share._stake.stakedDays; } // remove days already minted from the payout mintDays = servedDays - share._mintedDays; // base payout payout = share._stake.stakeShares * mintDays; // launch phase bonus if (share._launchBonus > 0) { uint256 bonus = _calcBonus(share._launchBonus, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } // loan to mint ratio bonus if (day._dayMintMultiplier > 0) { uint256 bonus = _calcBonus(day._dayMintMultiplier, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } share._mintedDays += mintDays; // mint final payout to the sender if (payout > 0) { _mint(msg.sender, payout); _emitMint( share, payout ); } // update existing share mapping _shareUpdate(shareList[shareIndex], share); } // stake does not match an existing share element else { servedDays = _hexCurrentDay() - stake.lockedDay; // served days should never exceed staked days if (servedDays > stake.stakedDays) { servedDays = stake.stakedDays; } // base payout payout = stake.stakeShares * servedDays; // launch phase bonus if (_currentDay() < _hdrnLaunchDays) { launchBonus = _calcLPBMultiplier(_hdrnLaunchDays - _currentDay()); uint256 bonus = _calcBonus(launchBonus, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } // loan to mint ratio bonus if (day._dayMintMultiplier > 0) { uint256 bonus = _calcBonus(day._dayMintMultiplier, payout); if (bonus > 0) { // send bonus copy to the source address _mint(_hdrnSourceAddress, bonus); day._dayMintedTotal += bonus; payout += bonus; } } // create a new share element for the sender _shareAdd( HEXStakeMinimal( stake.stakeId, stake.stakeShares, stake.lockedDay, stake.stakedDays ), servedDays, launchBonus, 0, 0, 0, 0, false ); _shareLoad(shareList[stake.stakeId], share); // mint final payout to the sender if (payout > 0) { _mint(msg.sender, payout); _emitMint( share, payout ); } } day._dayMintedTotal += payout; _dailyDataUpdate(dayStore, day); return payout; } /** * @dev Calculates the payment for existing and non-existing HEX stake instance (HSI) loans. * @param borrower Address which has mapped ownership the HSI contract. * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @return Payment amount with principal and interest as serparate values. */ function calcLoanPayment ( address borrower, uint256 hsiIndex, address hsiAddress ) external view returns (uint256, uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); address _hsiAddress = _hsim.hsiLists(borrower, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); uint256 loanTermPaid = share._paymentsMade * _hdrnLoanPaymentWindow; uint256 loanTermRemaining = share._loanedDays - loanTermPaid; uint256 principal = 0; uint256 interest = 0; // loan already exists if (share._interestRate > 0) { // remaining term is greater than a single payment window if (loanTermRemaining > _hdrnLoanPaymentWindow) { principal = share._stake.stakeShares * _hdrnLoanPaymentWindow; interest = (principal * (share._interestRate * _hdrnLoanPaymentWindow)) / _hdrnLoanInterestResolution; } // remaing term is less than or equal to a single payment window else { principal = share._stake.stakeShares * loanTermRemaining; interest = (principal * (share._interestRate * loanTermRemaining)) / _hdrnLoanInterestResolution; } } // loan does not exist else { // remaining term is greater than a single payment window if (share._stake.stakedDays > _hdrnLoanPaymentWindow) { principal = share._stake.stakeShares * _hdrnLoanPaymentWindow; interest = (principal * (day._dayInterestRate * _hdrnLoanPaymentWindow)) / _hdrnLoanInterestResolution; } // remaing term is less than or equal to a single payment window else { principal = share._stake.stakeShares * share._stake.stakedDays; interest = (principal * (day._dayInterestRate * share._stake.stakedDays)) / _hdrnLoanInterestResolution; } } return(principal, interest); } /** * @dev Calculates the full payoff for an existing HEX stake instance (HSI) loan calculating interest only up to the current Hedron day. * @param borrower Address which has mapped ownership the HSI contract. * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @return Payoff amount with principal and interest as separate values. */ function calcLoanPayoff ( address borrower, uint256 hsiIndex, address hsiAddress ) external view returns (uint256, uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); address _hsiAddress = _hsim.hsiLists(borrower, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); require (share._isLoaned == true, "HDRN: Cannot payoff non-existant loan"); uint256 loanTermPaid = share._paymentsMade * _hdrnLoanPaymentWindow; uint256 loanTermRemaining = share._loanedDays - loanTermPaid; uint256 outstandingDays = 0; uint256 principal = 0; uint256 interest = 0; // user has made payments ahead of _currentDay(), no interest if (_currentDay() - share._loanStart < loanTermPaid) { principal = share._stake.stakeShares * loanTermRemaining; } // only calculate interest to the current Hedron day else { outstandingDays = _currentDay() - share._loanStart - loanTermPaid; if (outstandingDays > loanTermRemaining) { outstandingDays = loanTermRemaining; } principal = share._stake.stakeShares * loanTermRemaining; interest = ((share._stake.stakeShares * outstandingDays) * (share._interestRate * outstandingDays)) / _hdrnLoanInterestResolution; } return(principal, interest); } /** * @dev Loans all unminted Hedron ERC20 (HDRN) tokens against a HEX stake instance (HSI). * HDRN Loaned = HEX Stake B-Shares * (Days Staked - Days Already Minted) * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides the index. * @return Amount of HDRN ERC20 tokens borrowed. */ function loanInstanced ( uint256 hsiIndex, address hsiAddress ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); address _hsiAddress = _hsim.hsiLists(msg.sender, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); require (share._isLoaned == false, "HDRN: HSI loan already exists"); // only unminted days can be loaned upon uint256 loanDays = share._stake.stakedDays - share._mintedDays; require (loanDays > 0, "HDRN: No loanable days remaining"); uint256 payout = share._stake.stakeShares * loanDays; // mint loaned tokens to the sender if (payout > 0) { share._loanStart = _currentDay(); share._loanedDays = loanDays; share._interestRate = day._dayInterestRate; share._isLoaned = true; _emitLoanStart( share, payout ); day._dayLoanedTotal += payout; loanedSupply += payout; // update HEX stake instance _hsim.hsiUpdate(msg.sender, hsiIndex, hsiAddress, share); _shareUpdate(shareList[share._stake.stakeId], share); _dailyDataUpdate(dayStore, day); _mint(msg.sender, payout); } return payout; } /** * @dev Makes a single payment towards a HEX stake instance (HSI) loan. * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @return Amount of HDRN ERC20 burnt to facilitate the payment. */ function loanPayment ( uint256 hsiIndex, address hsiAddress ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); address _hsiAddress = _hsim.hsiLists(msg.sender, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); require (share._isLoaned == true, "HDRN: Cannot pay non-existant loan"); uint256 loanTermPaid = share._paymentsMade * _hdrnLoanPaymentWindow; uint256 loanTermRemaining = share._loanedDays - loanTermPaid; uint256 principal = 0; uint256 interest = 0; bool lastPayment = false; // remaining term is greater than a single payment window if (loanTermRemaining > _hdrnLoanPaymentWindow) { principal = share._stake.stakeShares * _hdrnLoanPaymentWindow; interest = (principal * (share._interestRate * _hdrnLoanPaymentWindow)) / _hdrnLoanInterestResolution; } // remaing term is less than or equal to a single payment window else { principal = share._stake.stakeShares * loanTermRemaining; interest = (principal * (share._interestRate * loanTermRemaining)) / _hdrnLoanInterestResolution; lastPayment = true; } require (balanceOf(msg.sender) >= (principal + interest), "HDRN: Insufficient balance to facilitate payment"); // increment payment counter share._paymentsMade++; _emitLoanPayment( share, (principal + interest) ); if (lastPayment == true) { share._loanStart = 0; share._loanedDays = 0; share._interestRate = 0; share._paymentsMade = 0; share._isLoaned = false; } // update HEX stake instance _hsim.hsiUpdate(msg.sender, hsiIndex, hsiAddress, share); _shareUpdate(shareList[share._stake.stakeId], share); // update daily data day._dayBurntTotal += (principal + interest); _dailyDataUpdate(dayStore, day); // remove pricipal from global loaned supply loanedSupply -= principal; // burn payment from the sender _burn(msg.sender, (principal + interest)); return(principal + interest); } /** * @dev Pays off a HEX stake instance (HSI) loan calculating interest only up to the current Hedron day. * @param hsiIndex Index of the HSI contract address in the sender's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @return Amount of HDRN ERC20 burnt to facilitate the payoff. */ function loanPayoff ( uint256 hsiIndex, address hsiAddress ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); address _hsiAddress = _hsim.hsiLists(msg.sender, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); require (share._isLoaned == true, "HDRN: Cannot payoff non-existant loan"); uint256 loanTermPaid = share._paymentsMade * _hdrnLoanPaymentWindow; uint256 loanTermRemaining = share._loanedDays - loanTermPaid; uint256 outstandingDays = 0; uint256 principal = 0; uint256 interest = 0; // user has made payments ahead of _currentDay(), no interest if (_currentDay() - share._loanStart < loanTermPaid) { principal = share._stake.stakeShares * loanTermRemaining; } // only calculate interest to the current Hedron day else { outstandingDays = _currentDay() - share._loanStart - loanTermPaid; if (outstandingDays > loanTermRemaining) { outstandingDays = loanTermRemaining; } principal = share._stake.stakeShares * loanTermRemaining; interest = ((share._stake.stakeShares * outstandingDays) * (share._interestRate * outstandingDays)) / _hdrnLoanInterestResolution; } require (balanceOf(msg.sender) >= (principal + interest), "HDRN: Insufficient balance to facilitate payoff"); _emitLoanEnd( share, (principal + interest) ); share._loanStart = 0; share._loanedDays = 0; share._interestRate = 0; share._paymentsMade = 0; share._isLoaned = false; // update HEX stake instance _hsim.hsiUpdate(msg.sender, hsiIndex, hsiAddress, share); _shareUpdate(shareList[share._stake.stakeId], share); // update daily data day._dayBurntTotal += (principal + interest); _dailyDataUpdate(dayStore, day); // remove pricipal from global loaned supply loanedSupply -= principal; // burn payment from the sender _burn(msg.sender, (principal + interest)); return(principal + interest); } /** * @dev Allows any address to liquidate a defaulted HEX stake instace (HSI) loan and start the liquidation process. * @param owner Address of the current HSI contract owner. * @param hsiIndex Index of the HSI contract address in the owner's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param hsiAddress Address of the HSI contract which coinsides with the index. * @return Amount of HDRN ERC20 tokens burnt as the initial liquidation bid. */ function loanLiquidate ( address owner, uint256 hsiIndex, address hsiAddress ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); address _hsiAddress = _hsim.hsiLists(owner, hsiIndex); require(hsiAddress == _hsiAddress, "HDRN: HSI index address mismatch"); ShareCache memory share = _hsiLoad(HEXStakeInstance(hsiAddress)); require (share._isLoaned == true, "HDRN: Cannot liquidate a non-existant loan"); uint256 loanTermPaid = share._paymentsMade * _hdrnLoanPaymentWindow; uint256 loanTermRemaining = share._loanedDays - loanTermPaid; uint256 outstandingDays = _currentDay() - share._loanStart - loanTermPaid; uint256 principal = share._stake.stakeShares * loanTermRemaining; require (outstandingDays >= _hdrnLoanDefaultThreshold, "HDRN: Cannot liquidate a loan not in default"); if (outstandingDays > loanTermRemaining) { outstandingDays = loanTermRemaining; } // only calculate interest to the current Hedron day uint256 interest = ((share._stake.stakeShares * outstandingDays) * (share._interestRate * outstandingDays)) / _hdrnLoanInterestResolution; require (balanceOf(msg.sender) >= (principal + interest), "HDRN: Insufficient balance to facilitate liquidation"); // zero out loan data share._loanStart = 0; share._loanedDays = 0; share._interestRate = 0; share._paymentsMade = 0; share._isLoaned = false; // update HEX stake instance _hsim.hsiUpdate(owner, hsiIndex, hsiAddress, share); _shareUpdate(shareList[share._stake.stakeId], share); // transfer ownership of the HEX stake instance to a temporary holding address _hsim.hsiTransfer(owner, hsiIndex, hsiAddress, address(0)); // create a new liquidation element _liquidationAdd(hsiAddress, msg.sender, (principal + interest)); _emitLoanLiquidateStart( share, uint40(_liquidationIds.current()), owner, (principal + interest) ); // remove pricipal from global loaned supply loanedSupply -= principal; // burn payment from the sender _burn(msg.sender, (principal + interest)); return(principal + interest); } /** * @dev Allows any address to enter a bid into an active liquidation. * @param liquidationId ID number of the liquidation to place the bid in. * @param liquidationBid Amount of HDRN to bid. * @return Block timestamp of when the liquidation is currently scheduled to end. */ function loanLiquidateBid ( uint256 liquidationId, uint256 liquidationBid ) external returns (uint256) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); LiquidationCache memory liquidation; LiquidationStore storage liquidationStore = liquidationList[liquidationId]; _liquidationLoad(liquidationStore, liquidation); require(liquidation._isActive == true, "HDRN: Cannot bid on invalid liquidation"); require (balanceOf(msg.sender) >= liquidationBid, "HDRN: Insufficient balance to facilitate liquidation"); require (liquidationBid > liquidation._bidAmount, "HDRN: Liquidation bid must be greater than current bid"); require((block.timestamp - (liquidation._liquidationStart + liquidation._endOffset)) <= 86400, "HDRN: Cannot bid on expired liquidation"); // if the bid is being placed in the last five minutes uint256 timestampModified = ((block.timestamp + 300) - (liquidation._liquidationStart + liquidation._endOffset)); if (timestampModified > 86400) { liquidation._endOffset += (timestampModified - 86400); } // give the previous bidder back their HDRN _mint(liquidation._liquidator, liquidation._bidAmount); // new bidder takes the liquidation position liquidation._liquidator = msg.sender; liquidation._bidAmount = liquidationBid; _liquidationUpdate(liquidationStore, liquidation); ShareCache memory share = _hsiLoad(HEXStakeInstance(liquidation._hsiAddress)); _emitLoanLiquidateBid( share._stake.stakeId, uint40(liquidationId), liquidationBid ); // burn the new bidders bid amount _burn(msg.sender, liquidationBid); return( liquidation._liquidationStart + liquidation._endOffset + 86400 ); } /** * @dev Allows any address to exit a completed liquidation, granting control of the HSI to the highest bidder. * @param hsiIndex Index of the HSI contract address in the zero address's HSI list. * (see hsiLists -> HEXStakeInstanceManager.sol) * @param liquidationId ID number of the liquidation to exit. * @return Address of the HEX Stake Instance (HSI) contract granted to the liquidator. */ function loanLiquidateExit ( uint256 hsiIndex, uint256 liquidationId ) external returns (address) { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); LiquidationStore storage liquidationStore = liquidationList[liquidationId]; LiquidationCache memory liquidation; _liquidationLoad(liquidationStore, liquidation); require(liquidation._isActive == true, "HDRN: Cannot exit on invalid liquidation"); require((block.timestamp - (liquidation._liquidationStart + liquidation._endOffset)) >= 86400, "HDRN: Cannot exit on active liquidation"); // transfer the held HSI to the liquidator _hsim.hsiTransfer(address(0), hsiIndex, liquidation._hsiAddress, liquidation._liquidator); // update the daily burnt total day._dayBurntTotal += liquidation._bidAmount; // deactivate liquidation, but keep data around for historical reasons. liquidation._isActive == false; ShareCache memory share = _hsiLoad(HEXStakeInstance(liquidation._hsiAddress)); _emitLoanLiquidateExit( share._stake.stakeId, uint40(liquidationId), liquidation._liquidator, liquidation._bidAmount ); _dailyDataUpdate(dayStore, day); _liquidationUpdate(liquidationStore, liquidation); return liquidation._hsiAddress; } /** * @dev Burns HDRN tokens from the caller's address. * @param amount Amount of HDRN to burn. */ function proofOfBenevolence ( uint256 amount ) external { require(block.timestamp >= _hdrnLaunch, "HDRN: Contract not yet active"); DailyDataCache memory day; DailyDataStore storage dayStore = dailyDataList[_currentDay()]; _dailyDataLoad(dayStore, day); require (balanceOf(msg.sender) >= amount, "HDRN: Insufficient balance to facilitate PoB"); uint256 currentAllowance = allowance(msg.sender, address(this)); require(currentAllowance >= amount, "HDRN: Burn amount exceeds allowance"); day._dayBurntTotal += amount; _dailyDataUpdate(dayStore, day); unchecked { _approve(msg.sender, address(this), currentAllowance - amount); } _burn(msg.sender, amount); } }
File 2 of 2: HEX
pragma solidity 0.5.13; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract Context { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. constructor () internal { } // solhint-disable-previous-line no-empty-blocks function _msgSender() internal view returns (address payable) { return msg.sender; } function _msgData() internal view returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } /** * @dev Interface of the ERC20 standard as defined in the EIP. Does not include * the optional functions; to access them see {ERC20Detailed}. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. * * _Available since v2.4.0._ */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. * * _Available since v2.4.0._ */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20Mintable}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for `sender`'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Destroys `amount` tokens from `account`.`amount` is then deducted * from the caller's allowance. * * See {_burn} and {_approve}. */ function _burnFrom(address account, uint256 amount) internal { _burn(account, amount); _approve(account, _msgSender(), _allowances[account][_msgSender()].sub(amount, "ERC20: burn amount exceeds allowance")); } } contract GlobalsAndUtility is ERC20 { /* XfLobbyEnter (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed memberAddr uint256 indexed entryId uint96 rawAmount --> data0 [135: 40] address indexed referrerAddr */ event XfLobbyEnter( uint256 data0, address indexed memberAddr, uint256 indexed entryId, address indexed referrerAddr ); /* XfLobbyExit (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed memberAddr uint256 indexed entryId uint72 xfAmount --> data0 [111: 40] address indexed referrerAddr */ event XfLobbyExit( uint256 data0, address indexed memberAddr, uint256 indexed entryId, address indexed referrerAddr ); /* DailyDataUpdate (auto-generated event) uint40 timestamp --> data0 [ 39: 0] uint16 beginDay --> data0 [ 55: 40] uint16 endDay --> data0 [ 71: 56] bool isAutoUpdate --> data0 [ 79: 72] address indexed updaterAddr */ event DailyDataUpdate( uint256 data0, address indexed updaterAddr ); /* Claim (auto-generated event) uint40 timestamp --> data0 [ 39: 0] bytes20 indexed btcAddr uint56 rawSatoshis --> data0 [ 95: 40] uint56 adjSatoshis --> data0 [151: 96] address indexed claimToAddr uint8 claimFlags --> data0 [159:152] uint72 claimedHearts --> data0 [231:160] address indexed referrerAddr address senderAddr --> data1 [159: 0] */ event Claim( uint256 data0, uint256 data1, bytes20 indexed btcAddr, address indexed claimToAddr, address indexed referrerAddr ); /* ClaimAssist (auto-generated event) uint40 timestamp --> data0 [ 39: 0] bytes20 btcAddr --> data0 [199: 40] uint56 rawSatoshis --> data0 [255:200] uint56 adjSatoshis --> data1 [ 55: 0] address claimToAddr --> data1 [215: 56] uint8 claimFlags --> data1 [223:216] uint72 claimedHearts --> data2 [ 71: 0] address referrerAddr --> data2 [231: 72] address indexed senderAddr */ event ClaimAssist( uint256 data0, uint256 data1, uint256 data2, address indexed senderAddr ); /* StakeStart (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed stakerAddr uint40 indexed stakeId uint72 stakedHearts --> data0 [111: 40] uint72 stakeShares --> data0 [183:112] uint16 stakedDays --> data0 [199:184] bool isAutoStake --> data0 [207:200] */ event StakeStart( uint256 data0, address indexed stakerAddr, uint40 indexed stakeId ); /* StakeGoodAccounting(auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed stakerAddr uint40 indexed stakeId uint72 stakedHearts --> data0 [111: 40] uint72 stakeShares --> data0 [183:112] uint72 payout --> data0 [255:184] uint72 penalty --> data1 [ 71: 0] address indexed senderAddr */ event StakeGoodAccounting( uint256 data0, uint256 data1, address indexed stakerAddr, uint40 indexed stakeId, address indexed senderAddr ); /* StakeEnd (auto-generated event) uint40 timestamp --> data0 [ 39: 0] address indexed stakerAddr uint40 indexed stakeId uint72 stakedHearts --> data0 [111: 40] uint72 stakeShares --> data0 [183:112] uint72 payout --> data0 [255:184] uint72 penalty --> data1 [ 71: 0] uint16 servedDays --> data1 [ 87: 72] bool prevUnlocked --> data1 [ 95: 88] */ event StakeEnd( uint256 data0, uint256 data1, address indexed stakerAddr, uint40 indexed stakeId ); /* ShareRateChange (auto-generated event) uint40 timestamp --> data0 [ 39: 0] uint40 shareRate --> data0 [ 79: 40] uint40 indexed stakeId */ event ShareRateChange( uint256 data0, uint40 indexed stakeId ); /* Origin address */ address internal constant ORIGIN_ADDR = 0x9A6a414D6F3497c05E3b1De90520765fA1E07c03; /* Flush address */ address payable internal constant FLUSH_ADDR = 0xDEC9f2793e3c17cd26eeFb21C4762fA5128E0399; /* ERC20 constants */ string public constant name = "HEX"; string public constant symbol = "HEX"; uint8 public constant decimals = 8; /* Hearts per Satoshi = 10,000 * 1e8 / 1e8 = 1e4 */ uint256 private constant HEARTS_PER_HEX = 10 ** uint256(decimals); // 1e8 uint256 private constant HEX_PER_BTC = 1e4; uint256 private constant SATOSHIS_PER_BTC = 1e8; uint256 internal constant HEARTS_PER_SATOSHI = HEARTS_PER_HEX / SATOSHIS_PER_BTC * HEX_PER_BTC; /* Time of contract launch (2019-12-03T00:00:00Z) */ uint256 internal constant LAUNCH_TIME = 1575331200; /* Size of a Hearts or Shares uint */ uint256 internal constant HEART_UINT_SIZE = 72; /* Size of a transform lobby entry index uint */ uint256 internal constant XF_LOBBY_ENTRY_INDEX_SIZE = 40; uint256 internal constant XF_LOBBY_ENTRY_INDEX_MASK = (1 << XF_LOBBY_ENTRY_INDEX_SIZE) - 1; /* Seed for WAAS Lobby */ uint256 internal constant WAAS_LOBBY_SEED_HEX = 1e9; uint256 internal constant WAAS_LOBBY_SEED_HEARTS = WAAS_LOBBY_SEED_HEX * HEARTS_PER_HEX; /* Start of claim phase */ uint256 internal constant PRE_CLAIM_DAYS = 1; uint256 internal constant CLAIM_PHASE_START_DAY = PRE_CLAIM_DAYS; /* Length of claim phase */ uint256 private constant CLAIM_PHASE_WEEKS = 50; uint256 internal constant CLAIM_PHASE_DAYS = CLAIM_PHASE_WEEKS * 7; /* End of claim phase */ uint256 internal constant CLAIM_PHASE_END_DAY = CLAIM_PHASE_START_DAY + CLAIM_PHASE_DAYS; /* Number of words to hold 1 bit for each transform lobby day */ uint256 internal constant XF_LOBBY_DAY_WORDS = (CLAIM_PHASE_END_DAY + 255) >> 8; /* BigPayDay */ uint256 internal constant BIG_PAY_DAY = CLAIM_PHASE_END_DAY + 1; /* Root hash of the UTXO Merkle tree */ bytes32 internal constant MERKLE_TREE_ROOT = 0x4e831acb4223b66de3b3d2e54a2edeefb0de3d7916e2886a4b134d9764d41bec; /* Size of a Satoshi claim uint in a Merkle leaf */ uint256 internal constant MERKLE_LEAF_SATOSHI_SIZE = 45; /* Zero-fill between BTC address and Satoshis in a Merkle leaf */ uint256 internal constant MERKLE_LEAF_FILL_SIZE = 256 - 160 - MERKLE_LEAF_SATOSHI_SIZE; uint256 internal constant MERKLE_LEAF_FILL_BASE = (1 << MERKLE_LEAF_FILL_SIZE) - 1; uint256 internal constant MERKLE_LEAF_FILL_MASK = MERKLE_LEAF_FILL_BASE << MERKLE_LEAF_SATOSHI_SIZE; /* Size of a Satoshi total uint */ uint256 internal constant SATOSHI_UINT_SIZE = 51; uint256 internal constant SATOSHI_UINT_MASK = (1 << SATOSHI_UINT_SIZE) - 1; /* Total Satoshis from all BTC addresses in UTXO snapshot */ uint256 internal constant FULL_SATOSHIS_TOTAL = 1807766732160668; /* Total Satoshis from supported BTC addresses in UTXO snapshot after applying Silly Whale */ uint256 internal constant CLAIMABLE_SATOSHIS_TOTAL = 910087996911001; /* Number of claimable BTC addresses in UTXO snapshot */ uint256 internal constant CLAIMABLE_BTC_ADDR_COUNT = 27997742; /* Largest BTC address Satoshis balance in UTXO snapshot (sanity check) */ uint256 internal constant MAX_BTC_ADDR_BALANCE_SATOSHIS = 25550214098481; /* Percentage of total claimed Hearts that will be auto-staked from a claim */ uint256 internal constant AUTO_STAKE_CLAIM_PERCENT = 90; /* Stake timing parameters */ uint256 internal constant MIN_STAKE_DAYS = 1; uint256 internal constant MIN_AUTO_STAKE_DAYS = 350; uint256 internal constant MAX_STAKE_DAYS = 5555; // Approx 15 years uint256 internal constant EARLY_PENALTY_MIN_DAYS = 90; uint256 private constant LATE_PENALTY_GRACE_WEEKS = 2; uint256 internal constant LATE_PENALTY_GRACE_DAYS = LATE_PENALTY_GRACE_WEEKS * 7; uint256 private constant LATE_PENALTY_SCALE_WEEKS = 100; uint256 internal constant LATE_PENALTY_SCALE_DAYS = LATE_PENALTY_SCALE_WEEKS * 7; /* Stake shares Longer Pays Better bonus constants used by _stakeStartBonusHearts() */ uint256 private constant LPB_BONUS_PERCENT = 20; uint256 private constant LPB_BONUS_MAX_PERCENT = 200; uint256 internal constant LPB = 364 * 100 / LPB_BONUS_PERCENT; uint256 internal constant LPB_MAX_DAYS = LPB * LPB_BONUS_MAX_PERCENT / 100; /* Stake shares Bigger Pays Better bonus constants used by _stakeStartBonusHearts() */ uint256 private constant BPB_BONUS_PERCENT = 10; uint256 private constant BPB_MAX_HEX = 150 * 1e6; uint256 internal constant BPB_MAX_HEARTS = BPB_MAX_HEX * HEARTS_PER_HEX; uint256 internal constant BPB = BPB_MAX_HEARTS * 100 / BPB_BONUS_PERCENT; /* Share rate is scaled to increase precision */ uint256 internal constant SHARE_RATE_SCALE = 1e5; /* Share rate max (after scaling) */ uint256 internal constant SHARE_RATE_UINT_SIZE = 40; uint256 internal constant SHARE_RATE_MAX = (1 << SHARE_RATE_UINT_SIZE) - 1; /* Constants for preparing the claim message text */ uint8 internal constant ETH_ADDRESS_BYTE_LEN = 20; uint8 internal constant ETH_ADDRESS_HEX_LEN = ETH_ADDRESS_BYTE_LEN * 2; uint8 internal constant CLAIM_PARAM_HASH_BYTE_LEN = 12; uint8 internal constant CLAIM_PARAM_HASH_HEX_LEN = CLAIM_PARAM_HASH_BYTE_LEN * 2; uint8 internal constant BITCOIN_SIG_PREFIX_LEN = 24; bytes24 internal constant BITCOIN_SIG_PREFIX_STR = "Bitcoin Signed Message:\n"; bytes internal constant STD_CLAIM_PREFIX_STR = "Claim_HEX_to_0x"; bytes internal constant OLD_CLAIM_PREFIX_STR = "Claim_BitcoinHEX_to_0x"; bytes16 internal constant HEX_DIGITS = "0123456789abcdef"; /* Claim flags passed to btcAddressClaim() */ uint8 internal constant CLAIM_FLAG_MSG_PREFIX_OLD = 1 << 0; uint8 internal constant CLAIM_FLAG_BTC_ADDR_COMPRESSED = 1 << 1; uint8 internal constant CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH = 1 << 2; uint8 internal constant CLAIM_FLAG_BTC_ADDR_BECH32 = 1 << 3; uint8 internal constant CLAIM_FLAG_ETH_ADDR_LOWERCASE = 1 << 4; /* Globals expanded for memory (except _latestStakeId) and compact for storage */ struct GlobalsCache { // 1 uint256 _lockedHeartsTotal; uint256 _nextStakeSharesTotal; uint256 _shareRate; uint256 _stakePenaltyTotal; // 2 uint256 _dailyDataCount; uint256 _stakeSharesTotal; uint40 _latestStakeId; uint256 _unclaimedSatoshisTotal; uint256 _claimedSatoshisTotal; uint256 _claimedBtcAddrCount; // uint256 _currentDay; } struct GlobalsStore { // 1 uint72 lockedHeartsTotal; uint72 nextStakeSharesTotal; uint40 shareRate; uint72 stakePenaltyTotal; // 2 uint16 dailyDataCount; uint72 stakeSharesTotal; uint40 latestStakeId; uint128 claimStats; } GlobalsStore public globals; /* Claimed BTC addresses */ mapping(bytes20 => bool) public btcAddressClaims; /* Daily data */ struct DailyDataStore { uint72 dayPayoutTotal; uint72 dayStakeSharesTotal; uint56 dayUnclaimedSatoshisTotal; } mapping(uint256 => DailyDataStore) public dailyData; /* Stake expanded for memory (except _stakeId) and compact for storage */ struct StakeCache { uint40 _stakeId; uint256 _stakedHearts; uint256 _stakeShares; uint256 _lockedDay; uint256 _stakedDays; uint256 _unlockedDay; bool _isAutoStake; } struct StakeStore { uint40 stakeId; uint72 stakedHearts; uint72 stakeShares; uint16 lockedDay; uint16 stakedDays; uint16 unlockedDay; bool isAutoStake; } mapping(address => StakeStore[]) public stakeLists; /* Temporary state for calculating daily rounds */ struct DailyRoundState { uint256 _allocSupplyCached; uint256 _mintOriginBatch; uint256 _payoutTotal; } struct XfLobbyEntryStore { uint96 rawAmount; address referrerAddr; } struct XfLobbyQueueStore { uint40 headIndex; uint40 tailIndex; mapping(uint256 => XfLobbyEntryStore) entries; } mapping(uint256 => uint256) public xfLobby; mapping(uint256 => mapping(address => XfLobbyQueueStore)) public xfLobbyMembers; /** * @dev PUBLIC FACING: Optionally update daily data for a smaller * range to reduce gas cost for a subsequent operation * @param beforeDay Only update days before this day number (optional; 0 for current day) */ function dailyDataUpdate(uint256 beforeDay) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* Skip pre-claim period */ require(g._currentDay > CLAIM_PHASE_START_DAY, "HEX: Too early"); if (beforeDay != 0) { require(beforeDay <= g._currentDay, "HEX: beforeDay cannot be in the future"); _dailyDataUpdate(g, beforeDay, false); } else { /* Default to updating before current day */ _dailyDataUpdate(g, g._currentDay, false); } _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: External helper to return multiple values of daily data with * a single call. Ugly implementation due to limitations of the standard ABI encoder. * @param beginDay First day of data range * @param endDay Last day (non-inclusive) of data range * @return Fixed array of packed values */ function dailyDataRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list) { require(beginDay < endDay && endDay <= globals.dailyDataCount, "HEX: range invalid"); list = new uint256[](endDay - beginDay); uint256 src = beginDay; uint256 dst = 0; uint256 v; do { v = uint256(dailyData[src].dayUnclaimedSatoshisTotal) << (HEART_UINT_SIZE * 2); v |= uint256(dailyData[src].dayStakeSharesTotal) << HEART_UINT_SIZE; v |= uint256(dailyData[src].dayPayoutTotal); list[dst++] = v; } while (++src < endDay); return list; } /** * @dev PUBLIC FACING: External helper to return most global info with a single call. * Ugly implementation due to limitations of the standard ABI encoder. * @return Fixed array of values */ function globalInfo() external view returns (uint256[13] memory) { uint256 _claimedBtcAddrCount; uint256 _claimedSatoshisTotal; uint256 _unclaimedSatoshisTotal; (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal) = _claimStatsDecode( globals.claimStats ); return [ // 1 globals.lockedHeartsTotal, globals.nextStakeSharesTotal, globals.shareRate, globals.stakePenaltyTotal, // 2 globals.dailyDataCount, globals.stakeSharesTotal, globals.latestStakeId, _unclaimedSatoshisTotal, _claimedSatoshisTotal, _claimedBtcAddrCount, // block.timestamp, totalSupply(), xfLobby[_currentDay()] ]; } /** * @dev PUBLIC FACING: ERC20 totalSupply() is the circulating supply and does not include any * staked Hearts. allocatedSupply() includes both. * @return Allocated Supply in Hearts */ function allocatedSupply() external view returns (uint256) { return totalSupply() + globals.lockedHeartsTotal; } /** * @dev PUBLIC FACING: External helper for the current day number since launch time * @return Current day number (zero-based) */ function currentDay() external view returns (uint256) { return _currentDay(); } function _currentDay() internal view returns (uint256) { return (block.timestamp - LAUNCH_TIME) / 1 days; } function _dailyDataUpdateAuto(GlobalsCache memory g) internal { _dailyDataUpdate(g, g._currentDay, true); } function _globalsLoad(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal view { // 1 g._lockedHeartsTotal = globals.lockedHeartsTotal; g._nextStakeSharesTotal = globals.nextStakeSharesTotal; g._shareRate = globals.shareRate; g._stakePenaltyTotal = globals.stakePenaltyTotal; // 2 g._dailyDataCount = globals.dailyDataCount; g._stakeSharesTotal = globals.stakeSharesTotal; g._latestStakeId = globals.latestStakeId; (g._claimedBtcAddrCount, g._claimedSatoshisTotal, g._unclaimedSatoshisTotal) = _claimStatsDecode( globals.claimStats ); // g._currentDay = _currentDay(); _globalsCacheSnapshot(g, gSnapshot); } function _globalsCacheSnapshot(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal pure { // 1 gSnapshot._lockedHeartsTotal = g._lockedHeartsTotal; gSnapshot._nextStakeSharesTotal = g._nextStakeSharesTotal; gSnapshot._shareRate = g._shareRate; gSnapshot._stakePenaltyTotal = g._stakePenaltyTotal; // 2 gSnapshot._dailyDataCount = g._dailyDataCount; gSnapshot._stakeSharesTotal = g._stakeSharesTotal; gSnapshot._latestStakeId = g._latestStakeId; gSnapshot._unclaimedSatoshisTotal = g._unclaimedSatoshisTotal; gSnapshot._claimedSatoshisTotal = g._claimedSatoshisTotal; gSnapshot._claimedBtcAddrCount = g._claimedBtcAddrCount; } function _globalsSync(GlobalsCache memory g, GlobalsCache memory gSnapshot) internal { if (g._lockedHeartsTotal != gSnapshot._lockedHeartsTotal || g._nextStakeSharesTotal != gSnapshot._nextStakeSharesTotal || g._shareRate != gSnapshot._shareRate || g._stakePenaltyTotal != gSnapshot._stakePenaltyTotal) { // 1 globals.lockedHeartsTotal = uint72(g._lockedHeartsTotal); globals.nextStakeSharesTotal = uint72(g._nextStakeSharesTotal); globals.shareRate = uint40(g._shareRate); globals.stakePenaltyTotal = uint72(g._stakePenaltyTotal); } if (g._dailyDataCount != gSnapshot._dailyDataCount || g._stakeSharesTotal != gSnapshot._stakeSharesTotal || g._latestStakeId != gSnapshot._latestStakeId || g._unclaimedSatoshisTotal != gSnapshot._unclaimedSatoshisTotal || g._claimedSatoshisTotal != gSnapshot._claimedSatoshisTotal || g._claimedBtcAddrCount != gSnapshot._claimedBtcAddrCount) { // 2 globals.dailyDataCount = uint16(g._dailyDataCount); globals.stakeSharesTotal = uint72(g._stakeSharesTotal); globals.latestStakeId = g._latestStakeId; globals.claimStats = _claimStatsEncode( g._claimedBtcAddrCount, g._claimedSatoshisTotal, g._unclaimedSatoshisTotal ); } } function _stakeLoad(StakeStore storage stRef, uint40 stakeIdParam, StakeCache memory st) internal view { /* Ensure caller's stakeIndex is still current */ require(stakeIdParam == stRef.stakeId, "HEX: stakeIdParam not in stake"); st._stakeId = stRef.stakeId; st._stakedHearts = stRef.stakedHearts; st._stakeShares = stRef.stakeShares; st._lockedDay = stRef.lockedDay; st._stakedDays = stRef.stakedDays; st._unlockedDay = stRef.unlockedDay; st._isAutoStake = stRef.isAutoStake; } function _stakeUpdate(StakeStore storage stRef, StakeCache memory st) internal { stRef.stakeId = st._stakeId; stRef.stakedHearts = uint72(st._stakedHearts); stRef.stakeShares = uint72(st._stakeShares); stRef.lockedDay = uint16(st._lockedDay); stRef.stakedDays = uint16(st._stakedDays); stRef.unlockedDay = uint16(st._unlockedDay); stRef.isAutoStake = st._isAutoStake; } function _stakeAdd( StakeStore[] storage stakeListRef, uint40 newStakeId, uint256 newStakedHearts, uint256 newStakeShares, uint256 newLockedDay, uint256 newStakedDays, bool newAutoStake ) internal { stakeListRef.push( StakeStore( newStakeId, uint72(newStakedHearts), uint72(newStakeShares), uint16(newLockedDay), uint16(newStakedDays), uint16(0), // unlockedDay newAutoStake ) ); } /** * @dev Efficiently delete from an unordered array by moving the last element * to the "hole" and reducing the array length. Can change the order of the list * and invalidate previously held indexes. * @notice stakeListRef length and stakeIndex are already ensured valid in stakeEnd() * @param stakeListRef Reference to stakeLists[stakerAddr] array in storage * @param stakeIndex Index of the element to delete */ function _stakeRemove(StakeStore[] storage stakeListRef, uint256 stakeIndex) internal { uint256 lastIndex = stakeListRef.length - 1; /* Skip the copy if element to be removed is already the last element */ if (stakeIndex != lastIndex) { /* Copy last element to the requested element's "hole" */ stakeListRef[stakeIndex] = stakeListRef[lastIndex]; } /* Reduce the array length now that the array is contiguous. Surprisingly, 'pop()' uses less gas than 'stakeListRef.length = lastIndex' */ stakeListRef.pop(); } function _claimStatsEncode( uint256 _claimedBtcAddrCount, uint256 _claimedSatoshisTotal, uint256 _unclaimedSatoshisTotal ) internal pure returns (uint128) { uint256 v = _claimedBtcAddrCount << (SATOSHI_UINT_SIZE * 2); v |= _claimedSatoshisTotal << SATOSHI_UINT_SIZE; v |= _unclaimedSatoshisTotal; return uint128(v); } function _claimStatsDecode(uint128 v) internal pure returns (uint256 _claimedBtcAddrCount, uint256 _claimedSatoshisTotal, uint256 _unclaimedSatoshisTotal) { _claimedBtcAddrCount = v >> (SATOSHI_UINT_SIZE * 2); _claimedSatoshisTotal = (v >> SATOSHI_UINT_SIZE) & SATOSHI_UINT_MASK; _unclaimedSatoshisTotal = v & SATOSHI_UINT_MASK; return (_claimedBtcAddrCount, _claimedSatoshisTotal, _unclaimedSatoshisTotal); } /** * @dev Estimate the stake payout for an incomplete day * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param day Day to calculate bonuses for * @return Payout in Hearts */ function _estimatePayoutRewardsDay(GlobalsCache memory g, uint256 stakeSharesParam, uint256 day) internal view returns (uint256 payout) { /* Prevent updating state for this estimation */ GlobalsCache memory gTmp; _globalsCacheSnapshot(g, gTmp); DailyRoundState memory rs; rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal; _dailyRoundCalc(gTmp, rs, day); /* Stake is no longer locked so it must be added to total as if it were */ gTmp._stakeSharesTotal += stakeSharesParam; payout = rs._payoutTotal * stakeSharesParam / gTmp._stakeSharesTotal; if (day == BIG_PAY_DAY) { uint256 bigPaySlice = gTmp._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam / gTmp._stakeSharesTotal; payout += bigPaySlice + _calcAdoptionBonus(gTmp, bigPaySlice); } return payout; } function _calcAdoptionBonus(GlobalsCache memory g, uint256 payout) internal pure returns (uint256) { /* VIRAL REWARDS: Add adoption percentage bonus to payout viral = payout * (claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT) */ uint256 viral = payout * g._claimedBtcAddrCount / CLAIMABLE_BTC_ADDR_COUNT; /* CRIT MASS REWARDS: Add adoption percentage bonus to payout crit = payout * (claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL) */ uint256 crit = payout * g._claimedSatoshisTotal / CLAIMABLE_SATOSHIS_TOTAL; return viral + crit; } function _dailyRoundCalc(GlobalsCache memory g, DailyRoundState memory rs, uint256 day) private pure { /* Calculate payout round Inflation of 3.69% inflation per 364 days (approx 1 year) dailyInterestRate = exp(log(1 + 3.69%) / 364) - 1 = exp(log(1 + 0.0369) / 364) - 1 = exp(log(1.0369) / 364) - 1 = 0.000099553011616349 (approx) payout = allocSupply * dailyInterestRate = allocSupply / (1 / dailyInterestRate) = allocSupply / (1 / 0.000099553011616349) = allocSupply / 10044.899534066692 (approx) = allocSupply * 10000 / 100448995 (* 10000/10000 for int precision) */ rs._payoutTotal = rs._allocSupplyCached * 10000 / 100448995; if (day < CLAIM_PHASE_END_DAY) { uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS; uint256 originBonus = bigPaySlice + _calcAdoptionBonus(g, rs._payoutTotal + bigPaySlice); rs._mintOriginBatch += originBonus; rs._allocSupplyCached += originBonus; rs._payoutTotal += _calcAdoptionBonus(g, rs._payoutTotal); } if (g._stakePenaltyTotal != 0) { rs._payoutTotal += g._stakePenaltyTotal; g._stakePenaltyTotal = 0; } } function _dailyRoundCalcAndStore(GlobalsCache memory g, DailyRoundState memory rs, uint256 day) private { _dailyRoundCalc(g, rs, day); dailyData[day].dayPayoutTotal = uint72(rs._payoutTotal); dailyData[day].dayStakeSharesTotal = uint72(g._stakeSharesTotal); dailyData[day].dayUnclaimedSatoshisTotal = uint56(g._unclaimedSatoshisTotal); } function _dailyDataUpdate(GlobalsCache memory g, uint256 beforeDay, bool isAutoUpdate) private { if (g._dailyDataCount >= beforeDay) { /* Already up-to-date */ return; } DailyRoundState memory rs; rs._allocSupplyCached = totalSupply() + g._lockedHeartsTotal; uint256 day = g._dailyDataCount; _dailyRoundCalcAndStore(g, rs, day); /* Stakes started during this day are added to the total the next day */ if (g._nextStakeSharesTotal != 0) { g._stakeSharesTotal += g._nextStakeSharesTotal; g._nextStakeSharesTotal = 0; } while (++day < beforeDay) { _dailyRoundCalcAndStore(g, rs, day); } _emitDailyDataUpdate(g._dailyDataCount, day, isAutoUpdate); g._dailyDataCount = day; if (rs._mintOriginBatch != 0) { _mint(ORIGIN_ADDR, rs._mintOriginBatch); } } function _emitDailyDataUpdate(uint256 beginDay, uint256 endDay, bool isAutoUpdate) private { emit DailyDataUpdate( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint16(beginDay)) << 40) | (uint256(uint16(endDay)) << 56) | (isAutoUpdate ? (1 << 72) : 0), msg.sender ); } } contract StakeableToken is GlobalsAndUtility { /** * @dev PUBLIC FACING: Open a stake. * @param newStakedHearts Number of Hearts to stake * @param newStakedDays Number of days to stake */ function stakeStart(uint256 newStakedHearts, uint256 newStakedDays) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* Enforce the minimum stake time */ require(newStakedDays >= MIN_STAKE_DAYS, "HEX: newStakedDays lower than minimum"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); _stakeStart(g, newStakedHearts, newStakedDays, false); /* Remove staked Hearts from balance of staker */ _burn(msg.sender, newStakedHearts); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Unlocks a completed stake, distributing the proceeds of any penalty * immediately. The staker must still call stakeEnd() to retrieve their stake return (if any). * @param stakerAddr Address of staker * @param stakeIndex Index of stake within stake list * @param stakeIdParam The stake's id */ function stakeGoodAccounting(address stakerAddr, uint256 stakeIndex, uint40 stakeIdParam) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); /* require() is more informative than the default assert() */ require(stakeLists[stakerAddr].length != 0, "HEX: Empty stake list"); require(stakeIndex < stakeLists[stakerAddr].length, "HEX: stakeIndex invalid"); StakeStore storage stRef = stakeLists[stakerAddr][stakeIndex]; /* Get stake copy */ StakeCache memory st; _stakeLoad(stRef, stakeIdParam, st); /* Stake must have served full term */ require(g._currentDay >= st._lockedDay + st._stakedDays, "HEX: Stake not fully served"); /* Stake must still be locked */ require(st._unlockedDay == 0, "HEX: Stake already unlocked"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); /* Unlock the completed stake */ _stakeUnlock(g, st); /* stakeReturn value is unused here */ (, uint256 payout, uint256 penalty, uint256 cappedPenalty) = _stakePerformance( g, st, st._stakedDays ); _emitStakeGoodAccounting( stakerAddr, stakeIdParam, st._stakedHearts, st._stakeShares, payout, penalty ); if (cappedPenalty != 0) { _splitPenaltyProceeds(g, cappedPenalty); } /* st._unlockedDay has changed */ _stakeUpdate(stRef, st); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Closes a stake. The order of the stake list can change so * a stake id is used to reject stale indexes. * @param stakeIndex Index of stake within stake list * @param stakeIdParam The stake's id */ function stakeEnd(uint256 stakeIndex, uint40 stakeIdParam) external { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); StakeStore[] storage stakeListRef = stakeLists[msg.sender]; /* require() is more informative than the default assert() */ require(stakeListRef.length != 0, "HEX: Empty stake list"); require(stakeIndex < stakeListRef.length, "HEX: stakeIndex invalid"); /* Get stake copy */ StakeCache memory st; _stakeLoad(stakeListRef[stakeIndex], stakeIdParam, st); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); uint256 servedDays = 0; bool prevUnlocked = (st._unlockedDay != 0); uint256 stakeReturn; uint256 payout = 0; uint256 penalty = 0; uint256 cappedPenalty = 0; if (g._currentDay >= st._lockedDay) { if (prevUnlocked) { /* Previously unlocked in stakeGoodAccounting(), so must have served full term */ servedDays = st._stakedDays; } else { _stakeUnlock(g, st); servedDays = g._currentDay - st._lockedDay; if (servedDays > st._stakedDays) { servedDays = st._stakedDays; } else { /* Deny early-unstake before an auto-stake minimum has been served */ if (servedDays < MIN_AUTO_STAKE_DAYS) { require(!st._isAutoStake, "HEX: Auto-stake still locked"); } } } (stakeReturn, payout, penalty, cappedPenalty) = _stakePerformance(g, st, servedDays); } else { /* Deny early-unstake before an auto-stake minimum has been served */ require(!st._isAutoStake, "HEX: Auto-stake still locked"); /* Stake hasn't been added to the total yet, so no penalties or rewards apply */ g._nextStakeSharesTotal -= st._stakeShares; stakeReturn = st._stakedHearts; } _emitStakeEnd( stakeIdParam, st._stakedHearts, st._stakeShares, payout, penalty, servedDays, prevUnlocked ); if (cappedPenalty != 0 && !prevUnlocked) { /* Split penalty proceeds only if not previously unlocked by stakeGoodAccounting() */ _splitPenaltyProceeds(g, cappedPenalty); } /* Pay the stake return, if any, to the staker */ if (stakeReturn != 0) { _mint(msg.sender, stakeReturn); /* Update the share rate if necessary */ _shareRateUpdate(g, st, stakeReturn); } g._lockedHeartsTotal -= st._stakedHearts; _stakeRemove(stakeListRef, stakeIndex); _globalsSync(g, gSnapshot); } /** * @dev PUBLIC FACING: Return the current stake count for a staker address * @param stakerAddr Address of staker */ function stakeCount(address stakerAddr) external view returns (uint256) { return stakeLists[stakerAddr].length; } /** * @dev Open a stake. * @param g Cache of stored globals * @param newStakedHearts Number of Hearts to stake * @param newStakedDays Number of days to stake * @param newAutoStake Stake is automatic directly from a new claim */ function _stakeStart( GlobalsCache memory g, uint256 newStakedHearts, uint256 newStakedDays, bool newAutoStake ) internal { /* Enforce the maximum stake time */ require(newStakedDays <= MAX_STAKE_DAYS, "HEX: newStakedDays higher than maximum"); uint256 bonusHearts = _stakeStartBonusHearts(newStakedHearts, newStakedDays); uint256 newStakeShares = (newStakedHearts + bonusHearts) * SHARE_RATE_SCALE / g._shareRate; /* Ensure newStakedHearts is enough for at least one stake share */ require(newStakeShares != 0, "HEX: newStakedHearts must be at least minimum shareRate"); /* The stakeStart timestamp will always be part-way through the current day, so it needs to be rounded-up to the next day to ensure all stakes align with the same fixed calendar days. The current day is already rounded-down, so rounded-up is current day + 1. */ uint256 newLockedDay = g._currentDay < CLAIM_PHASE_START_DAY ? CLAIM_PHASE_START_DAY + 1 : g._currentDay + 1; /* Create Stake */ uint40 newStakeId = ++g._latestStakeId; _stakeAdd( stakeLists[msg.sender], newStakeId, newStakedHearts, newStakeShares, newLockedDay, newStakedDays, newAutoStake ); _emitStakeStart(newStakeId, newStakedHearts, newStakeShares, newStakedDays, newAutoStake); /* Stake is added to total in the next round, not the current round */ g._nextStakeSharesTotal += newStakeShares; /* Track total staked Hearts for inflation calculations */ g._lockedHeartsTotal += newStakedHearts; } /** * @dev Calculates total stake payout including rewards for a multi-day range * @param g Cache of stored globals * @param stakeSharesParam Param from stake to calculate bonuses for * @param beginDay First day to calculate bonuses for * @param endDay Last day (non-inclusive) of range to calculate bonuses for * @return Payout in Hearts */ function _calcPayoutRewards( GlobalsCache memory g, uint256 stakeSharesParam, uint256 beginDay, uint256 endDay ) private view returns (uint256 payout) { for (uint256 day = beginDay; day < endDay; day++) { payout += dailyData[day].dayPayoutTotal * stakeSharesParam / dailyData[day].dayStakeSharesTotal; } /* Less expensive to re-read storage than to have the condition inside the loop */ if (beginDay <= BIG_PAY_DAY && endDay > BIG_PAY_DAY) { uint256 bigPaySlice = g._unclaimedSatoshisTotal * HEARTS_PER_SATOSHI * stakeSharesParam / dailyData[BIG_PAY_DAY].dayStakeSharesTotal; payout += bigPaySlice + _calcAdoptionBonus(g, bigPaySlice); } return payout; } /** * @dev Calculate bonus Hearts for a new stake, if any * @param newStakedHearts Number of Hearts to stake * @param newStakedDays Number of days to stake */ function _stakeStartBonusHearts(uint256 newStakedHearts, uint256 newStakedDays) private pure returns (uint256 bonusHearts) { /* LONGER PAYS BETTER: If longer than 1 day stake is committed to, each extra day gives bonus shares of approximately 0.0548%, which is approximately 20% extra per year of increased stake length committed to, but capped to a maximum of 200% extra. extraDays = stakedDays - 1 longerBonus% = (extraDays / 364) * 20% = (extraDays / 364) / 5 = extraDays / 1820 = extraDays / LPB extraDays = longerBonus% * 1820 extraDaysMax = longerBonusMax% * 1820 = 200% * 1820 = 3640 = LPB_MAX_DAYS BIGGER PAYS BETTER: Bonus percentage scaled 0% to 10% for the first 150M HEX of stake. biggerBonus% = (cappedHearts / BPB_MAX_HEARTS) * 10% = (cappedHearts / BPB_MAX_HEARTS) / 10 = cappedHearts / (BPB_MAX_HEARTS * 10) = cappedHearts / BPB COMBINED: combinedBonus% = longerBonus% + biggerBonus% cappedExtraDays cappedHearts = --------------- + ------------ LPB BPB cappedExtraDays * BPB cappedHearts * LPB = --------------------- + ------------------ LPB * BPB LPB * BPB cappedExtraDays * BPB + cappedHearts * LPB = -------------------------------------------- LPB * BPB bonusHearts = hearts * combinedBonus% = hearts * (cappedExtraDays * BPB + cappedHearts * LPB) / (LPB * BPB) */ uint256 cappedExtraDays = 0; /* Must be more than 1 day for Longer-Pays-Better */ if (newStakedDays > 1) { cappedExtraDays = newStakedDays <= LPB_MAX_DAYS ? newStakedDays - 1 : LPB_MAX_DAYS; } uint256 cappedStakedHearts = newStakedHearts <= BPB_MAX_HEARTS ? newStakedHearts : BPB_MAX_HEARTS; bonusHearts = cappedExtraDays * BPB + cappedStakedHearts * LPB; bonusHearts = newStakedHearts * bonusHearts / (LPB * BPB); return bonusHearts; } function _stakeUnlock(GlobalsCache memory g, StakeCache memory st) private pure { g._stakeSharesTotal -= st._stakeShares; st._unlockedDay = g._currentDay; } function _stakePerformance(GlobalsCache memory g, StakeCache memory st, uint256 servedDays) private view returns (uint256 stakeReturn, uint256 payout, uint256 penalty, uint256 cappedPenalty) { if (servedDays < st._stakedDays) { (payout, penalty) = _calcPayoutAndEarlyPenalty( g, st._lockedDay, st._stakedDays, servedDays, st._stakeShares ); stakeReturn = st._stakedHearts + payout; } else { // servedDays must == stakedDays here payout = _calcPayoutRewards( g, st._stakeShares, st._lockedDay, st._lockedDay + servedDays ); stakeReturn = st._stakedHearts + payout; penalty = _calcLatePenalty(st._lockedDay, st._stakedDays, st._unlockedDay, stakeReturn); } if (penalty != 0) { if (penalty > stakeReturn) { /* Cannot have a negative stake return */ cappedPenalty = stakeReturn; stakeReturn = 0; } else { /* Remove penalty from the stake return */ cappedPenalty = penalty; stakeReturn -= cappedPenalty; } } return (stakeReturn, payout, penalty, cappedPenalty); } function _calcPayoutAndEarlyPenalty( GlobalsCache memory g, uint256 lockedDayParam, uint256 stakedDaysParam, uint256 servedDays, uint256 stakeSharesParam ) private view returns (uint256 payout, uint256 penalty) { uint256 servedEndDay = lockedDayParam + servedDays; /* 50% of stakedDays (rounded up) with a minimum applied */ uint256 penaltyDays = (stakedDaysParam + 1) / 2; if (penaltyDays < EARLY_PENALTY_MIN_DAYS) { penaltyDays = EARLY_PENALTY_MIN_DAYS; } if (servedDays == 0) { /* Fill penalty days with the estimated average payout */ uint256 expected = _estimatePayoutRewardsDay(g, stakeSharesParam, lockedDayParam); penalty = expected * penaltyDays; return (payout, penalty); // Actual payout was 0 } if (penaltyDays < servedDays) { /* Simplified explanation of intervals where end-day is non-inclusive: penalty: [lockedDay ... penaltyEndDay) delta: [penaltyEndDay ... servedEndDay) payout: [lockedDay ....................... servedEndDay) */ uint256 penaltyEndDay = lockedDayParam + penaltyDays; penalty = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, penaltyEndDay); uint256 delta = _calcPayoutRewards(g, stakeSharesParam, penaltyEndDay, servedEndDay); payout = penalty + delta; return (payout, penalty); } /* penaltyDays >= servedDays */ payout = _calcPayoutRewards(g, stakeSharesParam, lockedDayParam, servedEndDay); if (penaltyDays == servedDays) { penalty = payout; } else { /* (penaltyDays > servedDays) means not enough days served, so fill the penalty days with the average payout from only the days that were served. */ penalty = payout * penaltyDays / servedDays; } return (payout, penalty); } function _calcLatePenalty( uint256 lockedDayParam, uint256 stakedDaysParam, uint256 unlockedDayParam, uint256 rawStakeReturn ) private pure returns (uint256) { /* Allow grace time before penalties accrue */ uint256 maxUnlockedDay = lockedDayParam + stakedDaysParam + LATE_PENALTY_GRACE_DAYS; if (unlockedDayParam <= maxUnlockedDay) { return 0; } /* Calculate penalty as a percentage of stake return based on time */ return rawStakeReturn * (unlockedDayParam - maxUnlockedDay) / LATE_PENALTY_SCALE_DAYS; } function _splitPenaltyProceeds(GlobalsCache memory g, uint256 penalty) private { /* Split a penalty 50:50 between Origin and stakePenaltyTotal */ uint256 splitPenalty = penalty / 2; if (splitPenalty != 0) { _mint(ORIGIN_ADDR, splitPenalty); } /* Use the other half of the penalty to account for an odd-numbered penalty */ splitPenalty = penalty - splitPenalty; g._stakePenaltyTotal += splitPenalty; } function _shareRateUpdate(GlobalsCache memory g, StakeCache memory st, uint256 stakeReturn) private { if (stakeReturn > st._stakedHearts) { /* Calculate the new shareRate that would yield the same number of shares if the user re-staked this stakeReturn, factoring in any bonuses they would receive in stakeStart(). */ uint256 bonusHearts = _stakeStartBonusHearts(stakeReturn, st._stakedDays); uint256 newShareRate = (stakeReturn + bonusHearts) * SHARE_RATE_SCALE / st._stakeShares; if (newShareRate > SHARE_RATE_MAX) { /* Realistically this can't happen, but there are contrived theoretical scenarios that can lead to extreme values of newShareRate, so it is capped to prevent them anyway. */ newShareRate = SHARE_RATE_MAX; } if (newShareRate > g._shareRate) { g._shareRate = newShareRate; _emitShareRateChange(newShareRate, st._stakeId); } } } function _emitStakeStart( uint40 stakeId, uint256 stakedHearts, uint256 stakeShares, uint256 stakedDays, bool isAutoStake ) private { emit StakeStart( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(stakedHearts)) << 40) | (uint256(uint72(stakeShares)) << 112) | (uint256(uint16(stakedDays)) << 184) | (isAutoStake ? (1 << 200) : 0), msg.sender, stakeId ); } function _emitStakeGoodAccounting( address stakerAddr, uint40 stakeId, uint256 stakedHearts, uint256 stakeShares, uint256 payout, uint256 penalty ) private { emit StakeGoodAccounting( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(stakedHearts)) << 40) | (uint256(uint72(stakeShares)) << 112) | (uint256(uint72(payout)) << 184), uint256(uint72(penalty)), stakerAddr, stakeId, msg.sender ); } function _emitStakeEnd( uint40 stakeId, uint256 stakedHearts, uint256 stakeShares, uint256 payout, uint256 penalty, uint256 servedDays, bool prevUnlocked ) private { emit StakeEnd( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(stakedHearts)) << 40) | (uint256(uint72(stakeShares)) << 112) | (uint256(uint72(payout)) << 184), uint256(uint72(penalty)) | (uint256(uint16(servedDays)) << 72) | (prevUnlocked ? (1 << 88) : 0), msg.sender, stakeId ); } function _emitShareRateChange(uint256 shareRate, uint40 stakeId) private { emit ShareRateChange( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint40(shareRate)) << 40), stakeId ); } } /** * @dev These functions deal with verification of Merkle trees (hash trees), */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (computedHash < proofElement) { // Hash(current computed hash + current element of the proof) computedHash = keccak256(abi.encodePacked(computedHash, proofElement)); } else { // Hash(current element of the proof + current computed hash) computedHash = keccak256(abi.encodePacked(proofElement, computedHash)); } } // Check if the computed hash (root) is equal to the provided root return computedHash == root; } } contract UTXOClaimValidation is StakeableToken { /** * @dev PUBLIC FACING: Verify a BTC address and balance are unclaimed and part of the Merkle tree * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @return True if can be claimed */ function btcAddressIsClaimable(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof) external view returns (bool) { uint256 day = _currentDay(); require(day >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started"); require(day < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended"); /* Don't need to check Merkle proof if UTXO BTC address has already been claimed */ if (btcAddressClaims[btcAddr]) { return false; } /* Verify the Merkle tree proof */ return _btcAddressIsValid(btcAddr, rawSatoshis, proof); } /** * @dev PUBLIC FACING: Verify a BTC address and balance are part of the Merkle tree * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @return True if valid */ function btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] calldata proof) external pure returns (bool) { return _btcAddressIsValid(btcAddr, rawSatoshis, proof); } /** * @dev PUBLIC FACING: Verify a Merkle proof using the UTXO Merkle tree * @param merkleLeaf Leaf asserted to be present in the Merkle tree * @param proof Generated Merkle tree proof * @return True if valid */ function merkleProofIsValid(bytes32 merkleLeaf, bytes32[] calldata proof) external pure returns (bool) { return _merkleProofIsValid(merkleLeaf, proof); } /** * @dev PUBLIC FACING: Verify that a Bitcoin signature matches the claim message containing * the Ethereum address and claim param hash * @param claimToAddr Eth address within the signed claim message * @param claimParamHash Param hash within the signed claim message * @param pubKeyX First half of uncompressed ECDSA public key * @param pubKeyY Second half of uncompressed ECDSA public key * @param claimFlags Claim flags specifying address and message formats * @param v v parameter of ECDSA signature * @param r r parameter of ECDSA signature * @param s s parameter of ECDSA signature * @return True if matching */ function claimMessageMatchesSignature( address claimToAddr, bytes32 claimParamHash, bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags, uint8 v, bytes32 r, bytes32 s ) public pure returns (bool) { require(v >= 27 && v <= 30, "HEX: v invalid"); /* ecrecover() returns an Eth address rather than a public key, so we must do the same to compare. */ address pubKeyEthAddr = pubKeyToEthAddress(pubKeyX, pubKeyY); /* Create and hash the claim message text */ bytes32 messageHash = _hash256( _claimMessageCreate(claimToAddr, claimParamHash, claimFlags) ); /* Verify the public key */ return ecrecover(messageHash, v, r, s) == pubKeyEthAddr; } /** * @dev PUBLIC FACING: Derive an Ethereum address from an ECDSA public key * @param pubKeyX First half of uncompressed ECDSA public key * @param pubKeyY Second half of uncompressed ECDSA public key * @return Derived Eth address */ function pubKeyToEthAddress(bytes32 pubKeyX, bytes32 pubKeyY) public pure returns (address) { return address(uint160(uint256(keccak256(abi.encodePacked(pubKeyX, pubKeyY))))); } /** * @dev PUBLIC FACING: Derive a Bitcoin address from an ECDSA public key * @param pubKeyX First half of uncompressed ECDSA public key * @param pubKeyY Second half of uncompressed ECDSA public key * @param claimFlags Claim flags specifying address and message formats * @return Derived Bitcoin address (binary; no base58-check encoding) */ function pubKeyToBtcAddress(bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags) public pure returns (bytes20) { /* Helpful references: - https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses - https://github.com/cryptocoinjs/ecurve/blob/master/lib/point.js */ uint8 startingByte; bytes memory pubKey; bool compressed = (claimFlags & CLAIM_FLAG_BTC_ADDR_COMPRESSED) != 0; bool nested = (claimFlags & CLAIM_FLAG_BTC_ADDR_P2WPKH_IN_P2SH) != 0; bool bech32 = (claimFlags & CLAIM_FLAG_BTC_ADDR_BECH32) != 0; if (compressed) { /* Compressed public key format */ require(!(nested && bech32), "HEX: claimFlags invalid"); startingByte = (pubKeyY[31] & 0x01) == 0 ? 0x02 : 0x03; pubKey = abi.encodePacked(startingByte, pubKeyX); } else { /* Uncompressed public key format */ require(!nested && !bech32, "HEX: claimFlags invalid"); startingByte = 0x04; pubKey = abi.encodePacked(startingByte, pubKeyX, pubKeyY); } bytes20 pubKeyHash = _hash160(pubKey); if (nested) { return _hash160(abi.encodePacked(hex"0014", pubKeyHash)); } return pubKeyHash; } /** * @dev Verify a BTC address and balance are part of the Merkle tree * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @return True if valid */ function _btcAddressIsValid(bytes20 btcAddr, uint256 rawSatoshis, bytes32[] memory proof) internal pure returns (bool) { /* Ensure the proof does not attempt to treat a Merkle leaf as if it were an internal Merkle tree node. A leaf will always have the zero-fill. An internal node will never have the zero-fill, as guaranteed by HEX's Merkle tree construction. The first element, proof[0], will always be a leaf because it is the pair of the leaf being validated. The rest of the elements, proof[1..length-1], must be internal nodes. The number of leaves (CLAIMABLE_BTC_ADDR_COUNT) is even, as guaranteed by HEX's Merkle tree construction, which eliminates the only edge-case where this validation would not apply. */ require((uint256(proof[0]) & MERKLE_LEAF_FILL_MASK) == 0, "HEX: proof invalid"); for (uint256 i = 1; i < proof.length; i++) { require((uint256(proof[i]) & MERKLE_LEAF_FILL_MASK) != 0, "HEX: proof invalid"); } /* Calculate the 32 byte Merkle leaf associated with this BTC address and balance 160 bits: BTC address 52 bits: Zero-fill 45 bits: Satoshis (limited by MAX_BTC_ADDR_BALANCE_SATOSHIS) */ bytes32 merkleLeaf = bytes32(btcAddr) | bytes32(rawSatoshis); /* Verify the Merkle tree proof */ return _merkleProofIsValid(merkleLeaf, proof); } /** * @dev Verify a Merkle proof using the UTXO Merkle tree * @param merkleLeaf Leaf asserted to be present in the Merkle tree * @param proof Generated Merkle tree proof * @return True if valid */ function _merkleProofIsValid(bytes32 merkleLeaf, bytes32[] memory proof) private pure returns (bool) { return MerkleProof.verify(proof, MERKLE_TREE_ROOT, merkleLeaf); } function _claimMessageCreate(address claimToAddr, bytes32 claimParamHash, uint8 claimFlags) private pure returns (bytes memory) { bytes memory prefixStr = (claimFlags & CLAIM_FLAG_MSG_PREFIX_OLD) != 0 ? OLD_CLAIM_PREFIX_STR : STD_CLAIM_PREFIX_STR; bool includeAddrChecksum = (claimFlags & CLAIM_FLAG_ETH_ADDR_LOWERCASE) == 0; bytes memory addrStr = _addressStringCreate(claimToAddr, includeAddrChecksum); if (claimParamHash == 0) { return abi.encodePacked( BITCOIN_SIG_PREFIX_LEN, BITCOIN_SIG_PREFIX_STR, uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN, prefixStr, addrStr ); } bytes memory claimParamHashStr = new bytes(CLAIM_PARAM_HASH_HEX_LEN); _hexStringFromData(claimParamHashStr, claimParamHash, CLAIM_PARAM_HASH_BYTE_LEN); return abi.encodePacked( BITCOIN_SIG_PREFIX_LEN, BITCOIN_SIG_PREFIX_STR, uint8(prefixStr.length) + ETH_ADDRESS_HEX_LEN + 1 + CLAIM_PARAM_HASH_HEX_LEN, prefixStr, addrStr, "_", claimParamHashStr ); } function _addressStringCreate(address addr, bool includeAddrChecksum) private pure returns (bytes memory addrStr) { addrStr = new bytes(ETH_ADDRESS_HEX_LEN); _hexStringFromData(addrStr, bytes32(bytes20(addr)), ETH_ADDRESS_BYTE_LEN); if (includeAddrChecksum) { bytes32 addrStrHash = keccak256(addrStr); uint256 offset = 0; for (uint256 i = 0; i < ETH_ADDRESS_BYTE_LEN; i++) { uint8 b = uint8(addrStrHash[i]); _addressStringChecksumChar(addrStr, offset++, b >> 4); _addressStringChecksumChar(addrStr, offset++, b & 0x0f); } } return addrStr; } function _addressStringChecksumChar(bytes memory addrStr, uint256 offset, uint8 hashNybble) private pure { bytes1 ch = addrStr[offset]; if (ch >= "a" && hashNybble >= 8) { addrStr[offset] = ch ^ 0x20; } } function _hexStringFromData(bytes memory hexStr, bytes32 data, uint256 dataLen) private pure { uint256 offset = 0; for (uint256 i = 0; i < dataLen; i++) { uint8 b = uint8(data[i]); hexStr[offset++] = HEX_DIGITS[b >> 4]; hexStr[offset++] = HEX_DIGITS[b & 0x0f]; } } /** * @dev sha256(sha256(data)) * @param data Data to be hashed * @return 32-byte hash */ function _hash256(bytes memory data) private pure returns (bytes32) { return sha256(abi.encodePacked(sha256(data))); } /** * @dev ripemd160(sha256(data)) * @param data Data to be hashed * @return 20-byte hash */ function _hash160(bytes memory data) private pure returns (bytes20) { return ripemd160(abi.encodePacked(sha256(data))); } } contract UTXORedeemableToken is UTXOClaimValidation { /** * @dev PUBLIC FACING: Claim a BTC address and its Satoshi balance in Hearts * crediting the appropriate amount to a specified Eth address. Bitcoin ECDSA * signature must be from that BTC address and must match the claim message * for the Eth address. * @param rawSatoshis Raw BTC address balance in Satoshis * @param proof Merkle tree proof * @param claimToAddr Destination Eth address to credit Hearts to * @param pubKeyX First half of uncompressed ECDSA public key for the BTC address * @param pubKeyY Second half of uncompressed ECDSA public key for the BTC address * @param claimFlags Claim flags specifying address and message formats * @param v v parameter of ECDSA signature * @param r r parameter of ECDSA signature * @param s s parameter of ECDSA signature * @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer) * @return Total number of Hearts credited, if successful */ function btcAddressClaim( uint256 rawSatoshis, bytes32[] calldata proof, address claimToAddr, bytes32 pubKeyX, bytes32 pubKeyY, uint8 claimFlags, uint8 v, bytes32 r, bytes32 s, uint256 autoStakeDays, address referrerAddr ) external returns (uint256) { /* Sanity check */ require(rawSatoshis <= MAX_BTC_ADDR_BALANCE_SATOSHIS, "HEX: CHK: rawSatoshis"); /* Enforce the minimum stake time for the auto-stake from this claim */ require(autoStakeDays >= MIN_AUTO_STAKE_DAYS, "HEX: autoStakeDays lower than minimum"); /* Ensure signature matches the claim message containing the Eth address and claimParamHash */ { bytes32 claimParamHash = 0; if (claimToAddr != msg.sender) { /* Claimer did not send this, so claim params must be signed */ claimParamHash = keccak256( abi.encodePacked(MERKLE_TREE_ROOT, autoStakeDays, referrerAddr) ); } require( claimMessageMatchesSignature( claimToAddr, claimParamHash, pubKeyX, pubKeyY, claimFlags, v, r, s ), "HEX: Signature mismatch" ); } /* Derive BTC address from public key */ bytes20 btcAddr = pubKeyToBtcAddress(pubKeyX, pubKeyY, claimFlags); /* Ensure BTC address has not yet been claimed */ require(!btcAddressClaims[btcAddr], "HEX: BTC address balance already claimed"); /* Ensure BTC address is part of the Merkle tree */ require( _btcAddressIsValid(btcAddr, rawSatoshis, proof), "HEX: BTC address or balance unknown" ); /* Mark BTC address as claimed */ btcAddressClaims[btcAddr] = true; return _satoshisClaimSync( rawSatoshis, claimToAddr, btcAddr, claimFlags, autoStakeDays, referrerAddr ); } function _satoshisClaimSync( uint256 rawSatoshis, address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 autoStakeDays, address referrerAddr ) private returns (uint256 totalClaimedHearts) { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); totalClaimedHearts = _satoshisClaim( g, rawSatoshis, claimToAddr, btcAddr, claimFlags, autoStakeDays, referrerAddr ); _globalsSync(g, gSnapshot); return totalClaimedHearts; } /** * @dev Credit an Eth address with the Hearts value of a raw Satoshis balance * @param g Cache of stored globals * @param rawSatoshis Raw BTC address balance in Satoshis * @param claimToAddr Destination Eth address for the claimed Hearts to be sent * @param btcAddr Bitcoin address (binary; no base58-check encoding) * @param autoStakeDays Number of days to auto-stake, subject to minimum auto-stake days * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer) * @return Total number of Hearts credited, if successful */ function _satoshisClaim( GlobalsCache memory g, uint256 rawSatoshis, address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 autoStakeDays, address referrerAddr ) private returns (uint256 totalClaimedHearts) { /* Allowed only during the claim phase */ require(g._currentDay >= CLAIM_PHASE_START_DAY, "HEX: Claim phase has not yet started"); require(g._currentDay < CLAIM_PHASE_END_DAY, "HEX: Claim phase has ended"); /* Check if log data needs to be updated */ _dailyDataUpdateAuto(g); /* Sanity check */ require( g._claimedBtcAddrCount < CLAIMABLE_BTC_ADDR_COUNT, "HEX: CHK: _claimedBtcAddrCount" ); (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts) = _calcClaimValues( g, rawSatoshis ); /* Increment claim count to track viral rewards */ g._claimedBtcAddrCount++; totalClaimedHearts = _remitBonuses( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, claimedHearts, claimBonusHearts, referrerAddr ); /* Auto-stake a percentage of the successful claim */ uint256 autoStakeHearts = totalClaimedHearts * AUTO_STAKE_CLAIM_PERCENT / 100; _stakeStart(g, autoStakeHearts, autoStakeDays, true); /* Mint remaining claimed Hearts to claim address */ _mint(claimToAddr, totalClaimedHearts - autoStakeHearts); return totalClaimedHearts; } function _remitBonuses( address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 rawSatoshis, uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts, address referrerAddr ) private returns (uint256 totalClaimedHearts) { totalClaimedHearts = claimedHearts + claimBonusHearts; uint256 originBonusHearts = claimBonusHearts; if (referrerAddr == address(0)) { /* No referrer */ _emitClaim( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, totalClaimedHearts, referrerAddr ); } else { /* Referral bonus of 10% of total claimed Hearts to claimer */ uint256 referralBonusHearts = totalClaimedHearts / 10; totalClaimedHearts += referralBonusHearts; /* Then a cumulative referrer bonus of 20% to referrer */ uint256 referrerBonusHearts = totalClaimedHearts / 5; originBonusHearts += referralBonusHearts + referrerBonusHearts; if (referrerAddr == claimToAddr) { /* Self-referred */ totalClaimedHearts += referrerBonusHearts; _emitClaim( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, totalClaimedHearts, referrerAddr ); } else { /* Referred by different address */ _emitClaim( claimToAddr, btcAddr, claimFlags, rawSatoshis, adjSatoshis, totalClaimedHearts, referrerAddr ); _mint(referrerAddr, referrerBonusHearts); } } _mint(ORIGIN_ADDR, originBonusHearts); return totalClaimedHearts; } function _emitClaim( address claimToAddr, bytes20 btcAddr, uint8 claimFlags, uint256 rawSatoshis, uint256 adjSatoshis, uint256 claimedHearts, address referrerAddr ) private { emit Claim( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint56(rawSatoshis)) << 40) | (uint256(uint56(adjSatoshis)) << 96) | (uint256(claimFlags) << 152) | (uint256(uint72(claimedHearts)) << 160), uint256(uint160(msg.sender)), btcAddr, claimToAddr, referrerAddr ); if (claimToAddr == msg.sender) { return; } emit ClaimAssist( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint160(btcAddr)) << 40) | (uint256(uint56(rawSatoshis)) << 200), uint256(uint56(adjSatoshis)) | (uint256(uint160(claimToAddr)) << 56) | (uint256(claimFlags) << 216), uint256(uint72(claimedHearts)) | (uint256(uint160(referrerAddr)) << 72), msg.sender ); } function _calcClaimValues(GlobalsCache memory g, uint256 rawSatoshis) private pure returns (uint256 adjSatoshis, uint256 claimedHearts, uint256 claimBonusHearts) { /* Apply Silly Whale reduction */ adjSatoshis = _adjustSillyWhale(rawSatoshis); require( g._claimedSatoshisTotal + adjSatoshis <= CLAIMABLE_SATOSHIS_TOTAL, "HEX: CHK: _claimedSatoshisTotal" ); g._claimedSatoshisTotal += adjSatoshis; uint256 daysRemaining = CLAIM_PHASE_END_DAY - g._currentDay; /* Apply late-claim reduction */ adjSatoshis = _adjustLateClaim(adjSatoshis, daysRemaining); g._unclaimedSatoshisTotal -= adjSatoshis; /* Convert to Hearts and calculate speed bonus */ claimedHearts = adjSatoshis * HEARTS_PER_SATOSHI; claimBonusHearts = _calcSpeedBonus(claimedHearts, daysRemaining); return (adjSatoshis, claimedHearts, claimBonusHearts); } /** * @dev Apply Silly Whale adjustment * @param rawSatoshis Raw BTC address balance in Satoshis * @return Adjusted BTC address balance in Satoshis */ function _adjustSillyWhale(uint256 rawSatoshis) private pure returns (uint256) { if (rawSatoshis < 1000e8) { /* For < 1,000 BTC: no penalty */ return rawSatoshis; } if (rawSatoshis >= 10000e8) { /* For >= 10,000 BTC: penalty is 75%, leaving 25% */ return rawSatoshis / 4; } /* For 1,000 <= BTC < 10,000: penalty scales linearly from 50% to 75% penaltyPercent = (btc - 1000) / (10000 - 1000) * (75 - 50) + 50 = (btc - 1000) / 9000 * 25 + 50 = (btc - 1000) / 360 + 50 appliedPercent = 100 - penaltyPercent = 100 - ((btc - 1000) / 360 + 50) = 100 - (btc - 1000) / 360 - 50 = 50 - (btc - 1000) / 360 = (18000 - (btc - 1000)) / 360 = (18000 - btc + 1000) / 360 = (19000 - btc) / 360 adjustedBtc = btc * appliedPercent / 100 = btc * ((19000 - btc) / 360) / 100 = btc * (19000 - btc) / 36000 adjustedSat = 1e8 * adjustedBtc = 1e8 * (btc * (19000 - btc) / 36000) = 1e8 * ((sat / 1e8) * (19000 - (sat / 1e8)) / 36000) = 1e8 * (sat / 1e8) * (19000 - (sat / 1e8)) / 36000 = (sat / 1e8) * 1e8 * (19000 - (sat / 1e8)) / 36000 = (sat / 1e8) * (19000e8 - sat) / 36000 = sat * (19000e8 - sat) / 36000e8 */ return rawSatoshis * (19000e8 - rawSatoshis) / 36000e8; } /** * @dev Apply late-claim adjustment to scale claim to zero by end of claim phase * @param adjSatoshis Adjusted BTC address balance in Satoshis (after Silly Whale) * @param daysRemaining Number of reward days remaining in claim phase * @return Adjusted BTC address balance in Satoshis (after Silly Whale and Late-Claim) */ function _adjustLateClaim(uint256 adjSatoshis, uint256 daysRemaining) private pure returns (uint256) { /* Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time. adjustedSat = sat * (daysRemaining / CLAIM_PHASE_DAYS) * 100% = sat * daysRemaining / CLAIM_PHASE_DAYS */ return adjSatoshis * daysRemaining / CLAIM_PHASE_DAYS; } /** * @dev Calculates speed bonus for claiming earlier in the claim phase * @param claimedHearts Hearts claimed from adjusted BTC address balance Satoshis * @param daysRemaining Number of claim days remaining in claim phase * @return Speed bonus in Hearts */ function _calcSpeedBonus(uint256 claimedHearts, uint256 daysRemaining) private pure returns (uint256) { /* Only valid from CLAIM_PHASE_DAYS to 1, and only used during that time. Speed bonus is 20% ... 0% inclusive. bonusHearts = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) * 20% = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) * 20/100 = claimedHearts * ((daysRemaining - 1) / (CLAIM_PHASE_DAYS - 1)) / 5 = claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5) */ return claimedHearts * (daysRemaining - 1) / ((CLAIM_PHASE_DAYS - 1) * 5); } } contract TransformableToken is UTXORedeemableToken { /** * @dev PUBLIC FACING: Enter the tranform lobby for the current round * @param referrerAddr Eth address of referring user (optional; 0x0 for no referrer) */ function xfLobbyEnter(address referrerAddr) external payable { uint256 enterDay = _currentDay(); require(enterDay < CLAIM_PHASE_END_DAY, "HEX: Lobbies have ended"); uint256 rawAmount = msg.value; require(rawAmount != 0, "HEX: Amount required"); XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender]; uint256 entryIndex = qRef.tailIndex++; qRef.entries[entryIndex] = XfLobbyEntryStore(uint96(rawAmount), referrerAddr); xfLobby[enterDay] += rawAmount; _emitXfLobbyEnter(enterDay, entryIndex, rawAmount, referrerAddr); } /** * @dev PUBLIC FACING: Leave the transform lobby after the round is complete * @param enterDay Day number when the member entered * @param count Number of queued-enters to exit (optional; 0 for all) */ function xfLobbyExit(uint256 enterDay, uint256 count) external { require(enterDay < _currentDay(), "HEX: Round is not complete"); XfLobbyQueueStore storage qRef = xfLobbyMembers[enterDay][msg.sender]; uint256 headIndex = qRef.headIndex; uint256 endIndex; if (count != 0) { require(count <= qRef.tailIndex - headIndex, "HEX: count invalid"); endIndex = headIndex + count; } else { endIndex = qRef.tailIndex; require(headIndex < endIndex, "HEX: count invalid"); } uint256 waasLobby = _waasLobby(enterDay); uint256 _xfLobby = xfLobby[enterDay]; uint256 totalXfAmount = 0; uint256 originBonusHearts = 0; do { uint256 rawAmount = qRef.entries[headIndex].rawAmount; address referrerAddr = qRef.entries[headIndex].referrerAddr; delete qRef.entries[headIndex]; uint256 xfAmount = waasLobby * rawAmount / _xfLobby; if (referrerAddr == address(0)) { /* No referrer */ _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); } else { /* Referral bonus of 10% of xfAmount to member */ uint256 referralBonusHearts = xfAmount / 10; xfAmount += referralBonusHearts; /* Then a cumulative referrer bonus of 20% to referrer */ uint256 referrerBonusHearts = xfAmount / 5; if (referrerAddr == msg.sender) { /* Self-referred */ xfAmount += referrerBonusHearts; _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); } else { /* Referred by different address */ _emitXfLobbyExit(enterDay, headIndex, xfAmount, referrerAddr); _mint(referrerAddr, referrerBonusHearts); } originBonusHearts += referralBonusHearts + referrerBonusHearts; } totalXfAmount += xfAmount; } while (++headIndex < endIndex); qRef.headIndex = uint40(headIndex); if (originBonusHearts != 0) { _mint(ORIGIN_ADDR, originBonusHearts); } if (totalXfAmount != 0) { _mint(msg.sender, totalXfAmount); } } /** * @dev PUBLIC FACING: Release any value that has been sent to the contract */ function xfLobbyFlush() external { require(address(this).balance != 0, "HEX: No value"); FLUSH_ADDR.transfer(address(this).balance); } /** * @dev PUBLIC FACING: External helper to return multiple values of xfLobby[] with * a single call * @param beginDay First day of data range * @param endDay Last day (non-inclusive) of data range * @return Fixed array of values */ function xfLobbyRange(uint256 beginDay, uint256 endDay) external view returns (uint256[] memory list) { require( beginDay < endDay && endDay <= CLAIM_PHASE_END_DAY && endDay <= _currentDay(), "HEX: invalid range" ); list = new uint256[](endDay - beginDay); uint256 src = beginDay; uint256 dst = 0; do { list[dst++] = uint256(xfLobby[src++]); } while (src < endDay); return list; } /** * @dev PUBLIC FACING: Return a current lobby member queue entry. * Only needed due to limitations of the standard ABI encoder. * @param memberAddr Eth address of the lobby member * @param entryId 49 bit compound value. Top 9 bits: enterDay, Bottom 40 bits: entryIndex * @return 1: Raw amount that was entered with; 2: Referring Eth addr (optional; 0x0 for no referrer) */ function xfLobbyEntry(address memberAddr, uint256 entryId) external view returns (uint256 rawAmount, address referrerAddr) { uint256 enterDay = entryId >> XF_LOBBY_ENTRY_INDEX_SIZE; uint256 entryIndex = entryId & XF_LOBBY_ENTRY_INDEX_MASK; XfLobbyEntryStore storage entry = xfLobbyMembers[enterDay][memberAddr].entries[entryIndex]; require(entry.rawAmount != 0, "HEX: Param invalid"); return (entry.rawAmount, entry.referrerAddr); } /** * @dev PUBLIC FACING: Return the lobby days that a user is in with a single call * @param memberAddr Eth address of the user * @return Bit vector of lobby day numbers */ function xfLobbyPendingDays(address memberAddr) external view returns (uint256[XF_LOBBY_DAY_WORDS] memory words) { uint256 day = _currentDay() + 1; if (day > CLAIM_PHASE_END_DAY) { day = CLAIM_PHASE_END_DAY; } while (day-- != 0) { if (xfLobbyMembers[day][memberAddr].tailIndex > xfLobbyMembers[day][memberAddr].headIndex) { words[day >> 8] |= 1 << (day & 255); } } return words; } function _waasLobby(uint256 enterDay) private returns (uint256 waasLobby) { if (enterDay >= CLAIM_PHASE_START_DAY) { GlobalsCache memory g; GlobalsCache memory gSnapshot; _globalsLoad(g, gSnapshot); _dailyDataUpdateAuto(g); uint256 unclaimed = dailyData[enterDay].dayUnclaimedSatoshisTotal; waasLobby = unclaimed * HEARTS_PER_SATOSHI / CLAIM_PHASE_DAYS; _globalsSync(g, gSnapshot); } else { waasLobby = WAAS_LOBBY_SEED_HEARTS; } return waasLobby; } function _emitXfLobbyEnter( uint256 enterDay, uint256 entryIndex, uint256 rawAmount, address referrerAddr ) private { emit XfLobbyEnter( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint96(rawAmount)) << 40), msg.sender, (enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex, referrerAddr ); } function _emitXfLobbyExit( uint256 enterDay, uint256 entryIndex, uint256 xfAmount, address referrerAddr ) private { emit XfLobbyExit( // (auto-generated event) uint256(uint40(block.timestamp)) | (uint256(uint72(xfAmount)) << 40), msg.sender, (enterDay << XF_LOBBY_ENTRY_INDEX_SIZE) | entryIndex, referrerAddr ); } } contract HEX is TransformableToken { constructor() public { /* Initialize global shareRate to 1 */ globals.shareRate = uint40(1 * SHARE_RATE_SCALE); /* Initialize dailyDataCount to skip pre-claim period */ globals.dailyDataCount = uint16(PRE_CLAIM_DAYS); /* Add all Satoshis from UTXO snapshot to contract */ globals.claimStats = _claimStatsEncode( 0, // _claimedBtcAddrCount 0, // _claimedSatoshisTotal FULL_SATOSHIS_TOTAL // _unclaimedSatoshisTotal ); } function() external payable {} }