Transaction Hash:
Block:
16312915 at Jan-01-2023 03:48:59 PM +UTC
Transaction Fee:
0.002029224801715834 ETH
$5.52
Gas Used:
133,442 Gas / 15.206792477 Gwei
Emitted Events:
211 |
Vyper_contract.Transfer( _from=[Sender] 0x8851924938db253c2602cfb473c33b88deb83c43, _to=0x0000000000000000000000000000000000000000, _value=640032808888149441028 )
|
212 |
TetherToken.Transfer( from=[Receiver] Vyper_contract, to=[Sender] 0x8851924938db253c2602cfb473c33b88deb83c43, value=654991192 )
|
213 |
Vyper_contract.RemoveLiquidityOne( provider=[Sender] 0x8851924938db253c2602cfb473c33b88deb83c43, token_amount=640032808888149441028, coin_amount=654991192 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x6c3F90f0...2BDe6E490 | |||||
0x88519249...8dEb83C43 |
0.135701858038440429 Eth
Nonce: 1443
|
0.133672633236724595 Eth
Nonce: 1444
| 0.002029224801715834 | ||
0xbEbc4478...3032FF1C7 | (Curve.fi: DAI/USDC/USDT Pool) | ||||
0xdAC17F95...13D831ec7 | |||||
0xDAFEA492...692c98Bc5
Miner
| (Flashbots: Builder) | 1.172489631627245269 Eth | 1.172689794627245269 Eth | 0.000200163 |
Execution Trace
Vyper_contract.remove_liquidity_one_coin( _token_amount=640032808888149441028, i=2, min_amount=654794694 )
-
Vyper_contract.STATICCALL( )
-
Vyper_contract.burnFrom( _to=0x8851924938db253C2602cFB473C33b88dEb83C43, _value=640032808888149441028 ) => ( True )
-
Null: 0x000...004.CALL( )
-
Null: 0x000...004.00000000( )
-
TetherToken.transfer( _to=0x8851924938db253C2602cFB473C33b88dEb83C43, _value=654991192 )
-
Null: 0x000...004.00000000( )
File 1 of 3: Vyper_contract
File 2 of 3: Vyper_contract
File 3 of 3: TetherToken
# @version 0.2.4 # (c) Curve.Fi, 2020 # Pool for DAI/USDC/USDT from vyper.interfaces import ERC20 interface CurveToken: def totalSupply() -> uint256: view def mint(_to: address, _value: uint256) -> bool: nonpayable def burnFrom(_to: address, _value: uint256) -> bool: nonpayable # Events event TokenExchange: buyer: indexed(address) sold_id: int128 tokens_sold: uint256 bought_id: int128 tokens_bought: uint256 event AddLiquidity: provider: indexed(address) token_amounts: uint256[N_COINS] fees: uint256[N_COINS] invariant: uint256 token_supply: uint256 event RemoveLiquidity: provider: indexed(address) token_amounts: uint256[N_COINS] fees: uint256[N_COINS] token_supply: uint256 event RemoveLiquidityOne: provider: indexed(address) token_amount: uint256 coin_amount: uint256 event RemoveLiquidityImbalance: provider: indexed(address) token_amounts: uint256[N_COINS] fees: uint256[N_COINS] invariant: uint256 token_supply: uint256 event CommitNewAdmin: deadline: indexed(uint256) admin: indexed(address) event NewAdmin: admin: indexed(address) event CommitNewFee: deadline: indexed(uint256) fee: uint256 admin_fee: uint256 event NewFee: fee: uint256 admin_fee: uint256 event RampA: old_A: uint256 new_A: uint256 initial_time: uint256 future_time: uint256 event StopRampA: A: uint256 t: uint256 # This can (and needs to) be changed at compile time N_COINS: constant(int128) = 3 # <- change FEE_DENOMINATOR: constant(uint256) = 10 ** 10 LENDING_PRECISION: constant(uint256) = 10 ** 18 PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to PRECISION_MUL: constant(uint256[N_COINS]) = [1, 1000000000000, 1000000000000] RATES: constant(uint256[N_COINS]) = [1000000000000000000, 1000000000000000000000000000000, 1000000000000000000000000000000] FEE_INDEX: constant(int128) = 2 # Which coin may potentially have fees (USDT) MAX_ADMIN_FEE: constant(uint256) = 10 * 10 ** 9 MAX_FEE: constant(uint256) = 5 * 10 ** 9 MAX_A: constant(uint256) = 10 ** 6 MAX_A_CHANGE: constant(uint256) = 10 ADMIN_ACTIONS_DELAY: constant(uint256) = 3 * 86400 MIN_RAMP_TIME: constant(uint256) = 86400 coins: public(address[N_COINS]) balances: public(uint256[N_COINS]) fee: public(uint256) # fee * 1e10 admin_fee: public(uint256) # admin_fee * 1e10 owner: public(address) token: CurveToken initial_A: public(uint256) future_A: public(uint256) initial_A_time: public(uint256) future_A_time: public(uint256) admin_actions_deadline: public(uint256) transfer_ownership_deadline: public(uint256) future_fee: public(uint256) future_admin_fee: public(uint256) future_owner: public(address) is_killed: bool kill_deadline: uint256 KILL_DEADLINE_DT: constant(uint256) = 2 * 30 * 86400 @external def __init__( _owner: address, _coins: address[N_COINS], _pool_token: address, _A: uint256, _fee: uint256, _admin_fee: uint256 ): """ @notice Contract constructor @param _owner Contract owner address @param _coins Addresses of ERC20 conracts of coins @param _pool_token Address of the token representing LP share @param _A Amplification coefficient multiplied by n * (n - 1) @param _fee Fee to charge for exchanges @param _admin_fee Admin fee """ for i in range(N_COINS): assert _coins[i] != ZERO_ADDRESS self.coins = _coins self.initial_A = _A self.future_A = _A self.fee = _fee self.admin_fee = _admin_fee self.owner = _owner self.kill_deadline = block.timestamp + KILL_DEADLINE_DT self.token = CurveToken(_pool_token) @view @internal def _A() -> uint256: """ Handle ramping A up or down """ t1: uint256 = self.future_A_time A1: uint256 = self.future_A if block.timestamp < t1: A0: uint256 = self.initial_A t0: uint256 = self.initial_A_time # Expressions in uint256 cannot have negative numbers, thus "if" if A1 > A0: return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0) else: return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0) else: # when t1 == 0 or block.timestamp >= t1 return A1 @view @external def A() -> uint256: return self._A() @view @internal def _xp() -> uint256[N_COINS]: result: uint256[N_COINS] = RATES for i in range(N_COINS): result[i] = result[i] * self.balances[i] / LENDING_PRECISION return result @pure @internal def _xp_mem(_balances: uint256[N_COINS]) -> uint256[N_COINS]: result: uint256[N_COINS] = RATES for i in range(N_COINS): result[i] = result[i] * _balances[i] / PRECISION return result @pure @internal def get_D(xp: uint256[N_COINS], amp: uint256) -> uint256: S: uint256 = 0 for _x in xp: S += _x if S == 0: return 0 Dprev: uint256 = 0 D: uint256 = S Ann: uint256 = amp * N_COINS for _i in range(255): D_P: uint256 = D for _x in xp: D_P = D_P * D / (_x * N_COINS) # If division by 0, this will be borked: only withdrawal will work. And that is good Dprev = D D = (Ann * S + D_P * N_COINS) * D / ((Ann - 1) * D + (N_COINS + 1) * D_P) # Equality with the precision of 1 if D > Dprev: if D - Dprev <= 1: break else: if Dprev - D <= 1: break return D @view @internal def get_D_mem(_balances: uint256[N_COINS], amp: uint256) -> uint256: return self.get_D(self._xp_mem(_balances), amp) @view @external def get_virtual_price() -> uint256: """ Returns portfolio virtual price (for calculating profit) scaled up by 1e18 """ D: uint256 = self.get_D(self._xp(), self._A()) # D is in the units similar to DAI (e.g. converted to precision 1e18) # When balanced, D = n * x_u - total virtual value of the portfolio token_supply: uint256 = self.token.totalSupply() return D * PRECISION / token_supply @view @external def calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256: """ Simplified method to calculate addition or reduction in token supply at deposit or withdrawal without taking fees into account (but looking at slippage). Needed to prevent front-running, not for precise calculations! """ _balances: uint256[N_COINS] = self.balances amp: uint256 = self._A() D0: uint256 = self.get_D_mem(_balances, amp) for i in range(N_COINS): if deposit: _balances[i] += amounts[i] else: _balances[i] -= amounts[i] D1: uint256 = self.get_D_mem(_balances, amp) token_amount: uint256 = self.token.totalSupply() diff: uint256 = 0 if deposit: diff = D1 - D0 else: diff = D0 - D1 return diff * token_amount / D0 @external @nonreentrant('lock') def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256): assert not self.is_killed # dev: is killed fees: uint256[N_COINS] = empty(uint256[N_COINS]) _fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1)) _admin_fee: uint256 = self.admin_fee amp: uint256 = self._A() token_supply: uint256 = self.token.totalSupply() # Initial invariant D0: uint256 = 0 old_balances: uint256[N_COINS] = self.balances if token_supply > 0: D0 = self.get_D_mem(old_balances, amp) new_balances: uint256[N_COINS] = old_balances for i in range(N_COINS): in_amount: uint256 = amounts[i] if token_supply == 0: assert in_amount > 0 # dev: initial deposit requires all coins in_coin: address = self.coins[i] # Take coins from the sender if in_amount > 0: if i == FEE_INDEX: in_amount = ERC20(in_coin).balanceOf(self) # "safeTransferFrom" which works for ERC20s which return bool or not _response: Bytes[32] = raw_call( in_coin, concat( method_id("transferFrom(address,address,uint256)"), convert(msg.sender, bytes32), convert(self, bytes32), convert(amounts[i], bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer if i == FEE_INDEX: in_amount = ERC20(in_coin).balanceOf(self) - in_amount new_balances[i] = old_balances[i] + in_amount # Invariant after change D1: uint256 = self.get_D_mem(new_balances, amp) assert D1 > D0 # We need to recalculate the invariant accounting for fees # to calculate fair user's share D2: uint256 = D1 if token_supply > 0: # Only account for fees if we are not the first to deposit for i in range(N_COINS): ideal_balance: uint256 = D1 * old_balances[i] / D0 difference: uint256 = 0 if ideal_balance > new_balances[i]: difference = ideal_balance - new_balances[i] else: difference = new_balances[i] - ideal_balance fees[i] = _fee * difference / FEE_DENOMINATOR self.balances[i] = new_balances[i] - (fees[i] * _admin_fee / FEE_DENOMINATOR) new_balances[i] -= fees[i] D2 = self.get_D_mem(new_balances, amp) else: self.balances = new_balances # Calculate, how much pool tokens to mint mint_amount: uint256 = 0 if token_supply == 0: mint_amount = D1 # Take the dust if there was any else: mint_amount = token_supply * (D2 - D0) / D0 assert mint_amount >= min_mint_amount, "Slippage screwed you" # Mint pool tokens self.token.mint(msg.sender, mint_amount) log AddLiquidity(msg.sender, amounts, fees, D1, token_supply + mint_amount) @view @internal def get_y(i: int128, j: int128, x: uint256, xp_: uint256[N_COINS]) -> uint256: # x in the input is converted to the same price/precision assert i != j # dev: same coin assert j >= 0 # dev: j below zero assert j < N_COINS # dev: j above N_COINS # should be unreachable, but good for safety assert i >= 0 assert i < N_COINS amp: uint256 = self._A() D: uint256 = self.get_D(xp_, amp) c: uint256 = D S_: uint256 = 0 Ann: uint256 = amp * N_COINS _x: uint256 = 0 for _i in range(N_COINS): if _i == i: _x = x elif _i != j: _x = xp_[_i] else: continue S_ += _x c = c * D / (_x * N_COINS) c = c * D / (Ann * N_COINS) b: uint256 = S_ + D / Ann # - D y_prev: uint256 = 0 y: uint256 = D for _i in range(255): y_prev = y y = (y*y + c) / (2 * y + b - D) # Equality with the precision of 1 if y > y_prev: if y - y_prev <= 1: break else: if y_prev - y <= 1: break return y @view @external def get_dy(i: int128, j: int128, dx: uint256) -> uint256: # dx and dy in c-units rates: uint256[N_COINS] = RATES xp: uint256[N_COINS] = self._xp() x: uint256 = xp[i] + (dx * rates[i] / PRECISION) y: uint256 = self.get_y(i, j, x, xp) dy: uint256 = (xp[j] - y - 1) * PRECISION / rates[j] _fee: uint256 = self.fee * dy / FEE_DENOMINATOR return dy - _fee @view @external def get_dy_underlying(i: int128, j: int128, dx: uint256) -> uint256: # dx and dy in underlying units xp: uint256[N_COINS] = self._xp() precisions: uint256[N_COINS] = PRECISION_MUL x: uint256 = xp[i] + dx * precisions[i] y: uint256 = self.get_y(i, j, x, xp) dy: uint256 = (xp[j] - y - 1) / precisions[j] _fee: uint256 = self.fee * dy / FEE_DENOMINATOR return dy - _fee @external @nonreentrant('lock') def exchange(i: int128, j: int128, dx: uint256, min_dy: uint256): assert not self.is_killed # dev: is killed rates: uint256[N_COINS] = RATES old_balances: uint256[N_COINS] = self.balances xp: uint256[N_COINS] = self._xp_mem(old_balances) # Handling an unexpected charge of a fee on transfer (USDT, PAXG) dx_w_fee: uint256 = dx input_coin: address = self.coins[i] if i == FEE_INDEX: dx_w_fee = ERC20(input_coin).balanceOf(self) # "safeTransferFrom" which works for ERC20s which return bool or not _response: Bytes[32] = raw_call( input_coin, concat( method_id("transferFrom(address,address,uint256)"), convert(msg.sender, bytes32), convert(self, bytes32), convert(dx, bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer if i == FEE_INDEX: dx_w_fee = ERC20(input_coin).balanceOf(self) - dx_w_fee x: uint256 = xp[i] + dx_w_fee * rates[i] / PRECISION y: uint256 = self.get_y(i, j, x, xp) dy: uint256 = xp[j] - y - 1 # -1 just in case there were some rounding errors dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR # Convert all to real units dy = (dy - dy_fee) * PRECISION / rates[j] assert dy >= min_dy, "Exchange resulted in fewer coins than expected" dy_admin_fee: uint256 = dy_fee * self.admin_fee / FEE_DENOMINATOR dy_admin_fee = dy_admin_fee * PRECISION / rates[j] # Change balances exactly in same way as we change actual ERC20 coin amounts self.balances[i] = old_balances[i] + dx_w_fee # When rounding errors happen, we undercharge admin fee in favor of LP self.balances[j] = old_balances[j] - dy - dy_admin_fee # "safeTransfer" which works for ERC20s which return bool or not _response = raw_call( self.coins[j], concat( method_id("transfer(address,uint256)"), convert(msg.sender, bytes32), convert(dy, bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer log TokenExchange(msg.sender, i, dx, j, dy) @external @nonreentrant('lock') def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS]): total_supply: uint256 = self.token.totalSupply() amounts: uint256[N_COINS] = empty(uint256[N_COINS]) fees: uint256[N_COINS] = empty(uint256[N_COINS]) # Fees are unused but we've got them historically in event for i in range(N_COINS): value: uint256 = self.balances[i] * _amount / total_supply assert value >= min_amounts[i], "Withdrawal resulted in fewer coins than expected" self.balances[i] -= value amounts[i] = value # "safeTransfer" which works for ERC20s which return bool or not _response: Bytes[32] = raw_call( self.coins[i], concat( method_id("transfer(address,uint256)"), convert(msg.sender, bytes32), convert(value, bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer self.token.burnFrom(msg.sender, _amount) # dev: insufficient funds log RemoveLiquidity(msg.sender, amounts, fees, total_supply - _amount) @external @nonreentrant('lock') def remove_liquidity_imbalance(amounts: uint256[N_COINS], max_burn_amount: uint256): assert not self.is_killed # dev: is killed token_supply: uint256 = self.token.totalSupply() assert token_supply != 0 # dev: zero total supply _fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1)) _admin_fee: uint256 = self.admin_fee amp: uint256 = self._A() old_balances: uint256[N_COINS] = self.balances new_balances: uint256[N_COINS] = old_balances D0: uint256 = self.get_D_mem(old_balances, amp) for i in range(N_COINS): new_balances[i] -= amounts[i] D1: uint256 = self.get_D_mem(new_balances, amp) fees: uint256[N_COINS] = empty(uint256[N_COINS]) for i in range(N_COINS): ideal_balance: uint256 = D1 * old_balances[i] / D0 difference: uint256 = 0 if ideal_balance > new_balances[i]: difference = ideal_balance - new_balances[i] else: difference = new_balances[i] - ideal_balance fees[i] = _fee * difference / FEE_DENOMINATOR self.balances[i] = new_balances[i] - (fees[i] * _admin_fee / FEE_DENOMINATOR) new_balances[i] -= fees[i] D2: uint256 = self.get_D_mem(new_balances, amp) token_amount: uint256 = (D0 - D2) * token_supply / D0 assert token_amount != 0 # dev: zero tokens burned token_amount += 1 # In case of rounding errors - make it unfavorable for the "attacker" assert token_amount <= max_burn_amount, "Slippage screwed you" self.token.burnFrom(msg.sender, token_amount) # dev: insufficient funds for i in range(N_COINS): if amounts[i] != 0: # "safeTransfer" which works for ERC20s which return bool or not _response: Bytes[32] = raw_call( self.coins[i], concat( method_id("transfer(address,uint256)"), convert(msg.sender, bytes32), convert(amounts[i], bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer log RemoveLiquidityImbalance(msg.sender, amounts, fees, D1, token_supply - token_amount) @view @internal def get_y_D(A_: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256: """ Calculate x[i] if one reduces D from being calculated for xp to D Done by solving quadratic equation iteratively. x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) x_1**2 + b*x_1 = c x_1 = (x_1**2 + c) / (2*x_1 + b) """ # x in the input is converted to the same price/precision assert i >= 0 # dev: i below zero assert i < N_COINS # dev: i above N_COINS c: uint256 = D S_: uint256 = 0 Ann: uint256 = A_ * N_COINS _x: uint256 = 0 for _i in range(N_COINS): if _i != i: _x = xp[_i] else: continue S_ += _x c = c * D / (_x * N_COINS) c = c * D / (Ann * N_COINS) b: uint256 = S_ + D / Ann y_prev: uint256 = 0 y: uint256 = D for _i in range(255): y_prev = y y = (y*y + c) / (2 * y + b - D) # Equality with the precision of 1 if y > y_prev: if y - y_prev <= 1: break else: if y_prev - y <= 1: break return y @view @internal def _calc_withdraw_one_coin(_token_amount: uint256, i: int128) -> (uint256, uint256): # First, need to calculate # * Get current D # * Solve Eqn against y_i for D - _token_amount amp: uint256 = self._A() _fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1)) precisions: uint256[N_COINS] = PRECISION_MUL total_supply: uint256 = self.token.totalSupply() xp: uint256[N_COINS] = self._xp() D0: uint256 = self.get_D(xp, amp) D1: uint256 = D0 - _token_amount * D0 / total_supply xp_reduced: uint256[N_COINS] = xp new_y: uint256 = self.get_y_D(amp, i, xp, D1) dy_0: uint256 = (xp[i] - new_y) / precisions[i] # w/o fees for j in range(N_COINS): dx_expected: uint256 = 0 if j == i: dx_expected = xp[j] * D1 / D0 - new_y else: dx_expected = xp[j] - xp[j] * D1 / D0 xp_reduced[j] -= _fee * dx_expected / FEE_DENOMINATOR dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1) dy = (dy - 1) / precisions[i] # Withdraw less to account for rounding errors return dy, dy_0 - dy @view @external def calc_withdraw_one_coin(_token_amount: uint256, i: int128) -> uint256: return self._calc_withdraw_one_coin(_token_amount, i)[0] @external @nonreentrant('lock') def remove_liquidity_one_coin(_token_amount: uint256, i: int128, min_amount: uint256): """ Remove _amount of liquidity all in a form of coin i """ assert not self.is_killed # dev: is killed dy: uint256 = 0 dy_fee: uint256 = 0 dy, dy_fee = self._calc_withdraw_one_coin(_token_amount, i) assert dy >= min_amount, "Not enough coins removed" self.balances[i] -= (dy + dy_fee * self.admin_fee / FEE_DENOMINATOR) self.token.burnFrom(msg.sender, _token_amount) # dev: insufficient funds # "safeTransfer" which works for ERC20s which return bool or not _response: Bytes[32] = raw_call( self.coins[i], concat( method_id("transfer(address,uint256)"), convert(msg.sender, bytes32), convert(dy, bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer log RemoveLiquidityOne(msg.sender, _token_amount, dy) ### Admin functions ### @external def ramp_A(_future_A: uint256, _future_time: uint256): assert msg.sender == self.owner # dev: only owner assert block.timestamp >= self.initial_A_time + MIN_RAMP_TIME assert _future_time >= block.timestamp + MIN_RAMP_TIME # dev: insufficient time _initial_A: uint256 = self._A() assert (_future_A > 0) and (_future_A < MAX_A) assert ((_future_A >= _initial_A) and (_future_A <= _initial_A * MAX_A_CHANGE)) or\ ((_future_A < _initial_A) and (_future_A * MAX_A_CHANGE >= _initial_A)) self.initial_A = _initial_A self.future_A = _future_A self.initial_A_time = block.timestamp self.future_A_time = _future_time log RampA(_initial_A, _future_A, block.timestamp, _future_time) @external def stop_ramp_A(): assert msg.sender == self.owner # dev: only owner current_A: uint256 = self._A() self.initial_A = current_A self.future_A = current_A self.initial_A_time = block.timestamp self.future_A_time = block.timestamp # now (block.timestamp < t1) is always False, so we return saved A log StopRampA(current_A, block.timestamp) @external def commit_new_fee(new_fee: uint256, new_admin_fee: uint256): assert msg.sender == self.owner # dev: only owner assert self.admin_actions_deadline == 0 # dev: active action assert new_fee <= MAX_FEE # dev: fee exceeds maximum assert new_admin_fee <= MAX_ADMIN_FEE # dev: admin fee exceeds maximum _deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY self.admin_actions_deadline = _deadline self.future_fee = new_fee self.future_admin_fee = new_admin_fee log CommitNewFee(_deadline, new_fee, new_admin_fee) @external def apply_new_fee(): assert msg.sender == self.owner # dev: only owner assert block.timestamp >= self.admin_actions_deadline # dev: insufficient time assert self.admin_actions_deadline != 0 # dev: no active action self.admin_actions_deadline = 0 _fee: uint256 = self.future_fee _admin_fee: uint256 = self.future_admin_fee self.fee = _fee self.admin_fee = _admin_fee log NewFee(_fee, _admin_fee) @external def revert_new_parameters(): assert msg.sender == self.owner # dev: only owner self.admin_actions_deadline = 0 @external def commit_transfer_ownership(_owner: address): assert msg.sender == self.owner # dev: only owner assert self.transfer_ownership_deadline == 0 # dev: active transfer _deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY self.transfer_ownership_deadline = _deadline self.future_owner = _owner log CommitNewAdmin(_deadline, _owner) @external def apply_transfer_ownership(): assert msg.sender == self.owner # dev: only owner assert block.timestamp >= self.transfer_ownership_deadline # dev: insufficient time assert self.transfer_ownership_deadline != 0 # dev: no active transfer self.transfer_ownership_deadline = 0 _owner: address = self.future_owner self.owner = _owner log NewAdmin(_owner) @external def revert_transfer_ownership(): assert msg.sender == self.owner # dev: only owner self.transfer_ownership_deadline = 0 @view @external def admin_balances(i: uint256) -> uint256: return ERC20(self.coins[i]).balanceOf(self) - self.balances[i] @external def withdraw_admin_fees(): assert msg.sender == self.owner # dev: only owner for i in range(N_COINS): c: address = self.coins[i] value: uint256 = ERC20(c).balanceOf(self) - self.balances[i] if value > 0: # "safeTransfer" which works for ERC20s which return bool or not _response: Bytes[32] = raw_call( c, concat( method_id("transfer(address,uint256)"), convert(msg.sender, bytes32), convert(value, bytes32), ), max_outsize=32, ) # dev: failed transfer if len(_response) > 0: assert convert(_response, bool) # dev: failed transfer @external def donate_admin_fees(): assert msg.sender == self.owner # dev: only owner for i in range(N_COINS): self.balances[i] = ERC20(self.coins[i]).balanceOf(self) @external def kill_me(): assert msg.sender == self.owner # dev: only owner assert self.kill_deadline > block.timestamp # dev: deadline has passed self.is_killed = True @external def unkill_me(): assert msg.sender == self.owner # dev: only owner self.is_killed = False
File 2 of 3: Vyper_contract
# @version 0.2.4 # https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md from vyper.interfaces import ERC20 implements: ERC20 interface Curve: def owner() -> address: view event Transfer: _from: indexed(address) _to: indexed(address) _value: uint256 event Approval: _owner: indexed(address) _spender: indexed(address) _value: uint256 name: public(String[64]) symbol: public(String[32]) decimals: public(uint256) # NOTE: By declaring `balanceOf` as public, vyper automatically generates a 'balanceOf()' getter # method to allow access to account balances. # The _KeyType will become a required parameter for the getter and it will return _ValueType. # See: https://vyper.readthedocs.io/en/v0.1.0-beta.8/types.html?highlight=getter#mappings balanceOf: public(HashMap[address, uint256]) allowances: HashMap[address, HashMap[address, uint256]] total_supply: uint256 minter: address @external def __init__(_name: String[64], _symbol: String[32], _decimals: uint256, _supply: uint256): init_supply: uint256 = _supply * 10 ** _decimals self.name = _name self.symbol = _symbol self.decimals = _decimals self.balanceOf[msg.sender] = init_supply self.total_supply = init_supply self.minter = msg.sender log Transfer(ZERO_ADDRESS, msg.sender, init_supply) @external def set_minter(_minter: address): assert msg.sender == self.minter self.minter = _minter @external def set_name(_name: String[64], _symbol: String[32]): assert Curve(self.minter).owner() == msg.sender self.name = _name self.symbol = _symbol @view @external def totalSupply() -> uint256: """ @dev Total number of tokens in existence. """ return self.total_supply @view @external def allowance(_owner : address, _spender : address) -> uint256: """ @dev Function to check the amount of tokens that an owner allowed to a spender. @param _owner The address which owns the funds. @param _spender The address which will spend the funds. @return An uint256 specifying the amount of tokens still available for the spender. """ return self.allowances[_owner][_spender] @external def transfer(_to : address, _value : uint256) -> bool: """ @dev Transfer token for a specified address @param _to The address to transfer to. @param _value The amount to be transferred. """ # NOTE: vyper does not allow underflows # so the following subtraction would revert on insufficient balance self.balanceOf[msg.sender] -= _value self.balanceOf[_to] += _value log Transfer(msg.sender, _to, _value) return True @external def transferFrom(_from : address, _to : address, _value : uint256) -> bool: """ @dev Transfer tokens from one address to another. @param _from address The address which you want to send tokens from @param _to address The address which you want to transfer to @param _value uint256 the amount of tokens to be transferred """ # NOTE: vyper does not allow underflows # so the following subtraction would revert on insufficient balance self.balanceOf[_from] -= _value self.balanceOf[_to] += _value if msg.sender != self.minter: # minter is allowed to transfer anything # NOTE: vyper does not allow underflows # so the following subtraction would revert on insufficient allowance self.allowances[_from][msg.sender] -= _value log Transfer(_from, _to, _value) return True @external def approve(_spender : address, _value : uint256) -> bool: """ @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. Beware that changing an allowance with this method brings the risk that someone may use both the old and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 @param _spender The address which will spend the funds. @param _value The amount of tokens to be spent. """ assert _value == 0 or self.allowances[msg.sender][_spender] == 0 self.allowances[msg.sender][_spender] = _value log Approval(msg.sender, _spender, _value) return True @external def mint(_to: address, _value: uint256) -> bool: """ @dev Mint an amount of the token and assigns it to an account. This encapsulates the modification of balances such that the proper events are emitted. @param _to The account that will receive the created tokens. @param _value The amount that will be created. """ assert msg.sender == self.minter assert _to != ZERO_ADDRESS self.total_supply += _value self.balanceOf[_to] += _value log Transfer(ZERO_ADDRESS, _to, _value) return True @external def burnFrom(_to: address, _value: uint256) -> bool: """ @dev Burn an amount of the token from a given account. @param _to The account whose tokens will be burned. @param _value The amount that will be burned. """ assert msg.sender == self.minter assert _to != ZERO_ADDRESS self.total_supply -= _value self.balanceOf[_to] -= _value log Transfer(_to, ZERO_ADDRESS, _value) return True
File 3 of 3: TetherToken
pragma solidity ^0.4.17; /** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { // assert(b > 0); // Solidity automatically throws when dividing by 0 uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ function Ownable() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20Basic { uint public _totalSupply; function totalSupply() public constant returns (uint); function balanceOf(address who) public constant returns (uint); function transfer(address to, uint value) public; event Transfer(address indexed from, address indexed to, uint value); } /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint); function transferFrom(address from, address to, uint value) public; function approve(address spender, uint value) public; event Approval(address indexed owner, address indexed spender, uint value); } /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is Ownable, ERC20Basic { using SafeMath for uint; mapping(address => uint) public balances; // additional variables for use if transaction fees ever became necessary uint public basisPointsRate = 0; uint public maximumFee = 0; /** * @dev Fix for the ERC20 short address attack. */ modifier onlyPayloadSize(uint size) { require(!(msg.data.length < size + 4)); _; } /** * @dev transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) { uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } uint sendAmount = _value.sub(fee); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(msg.sender, owner, fee); } Transfer(msg.sender, _to, sendAmount); } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint representing the amount owned by the passed address. */ function balanceOf(address _owner) public constant returns (uint balance) { return balances[_owner]; } } /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * @dev https://github.com/ethereum/EIPs/issues/20 * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is BasicToken, ERC20 { mapping (address => mapping (address => uint)) public allowed; uint public constant MAX_UINT = 2**256 - 1; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint the amount of tokens to be transferred */ function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) { var _allowance = allowed[_from][msg.sender]; // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met // if (_value > _allowance) throw; uint fee = (_value.mul(basisPointsRate)).div(10000); if (fee > maximumFee) { fee = maximumFee; } if (_allowance < MAX_UINT) { allowed[_from][msg.sender] = _allowance.sub(_value); } uint sendAmount = _value.sub(fee); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(sendAmount); if (fee > 0) { balances[owner] = balances[owner].add(fee); Transfer(_from, owner, fee); } Transfer(_from, _to, sendAmount); } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { // To change the approve amount you first have to reduce the addresses` // allowance to zero by calling `approve(_spender, 0)` if it is not // already 0 to mitigate the race condition described here: // https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0))); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); } /** * @dev Function to check the amount of tokens than an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint specifying the amount of tokens still available for the spender. */ function allowance(address _owner, address _spender) public constant returns (uint remaining) { return allowed[_owner][_spender]; } } /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } contract BlackList is Ownable, BasicToken { /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) /////// function getBlackListStatus(address _maker) external constant returns (bool) { return isBlackListed[_maker]; } function getOwner() external constant returns (address) { return owner; } mapping (address => bool) public isBlackListed; function addBlackList (address _evilUser) public onlyOwner { isBlackListed[_evilUser] = true; AddedBlackList(_evilUser); } function removeBlackList (address _clearedUser) public onlyOwner { isBlackListed[_clearedUser] = false; RemovedBlackList(_clearedUser); } function destroyBlackFunds (address _blackListedUser) public onlyOwner { require(isBlackListed[_blackListedUser]); uint dirtyFunds = balanceOf(_blackListedUser); balances[_blackListedUser] = 0; _totalSupply -= dirtyFunds; DestroyedBlackFunds(_blackListedUser, dirtyFunds); } event DestroyedBlackFunds(address _blackListedUser, uint _balance); event AddedBlackList(address _user); event RemovedBlackList(address _user); } contract UpgradedStandardToken is StandardToken{ // those methods are called by the legacy contract // and they must ensure msg.sender to be the contract address function transferByLegacy(address from, address to, uint value) public; function transferFromByLegacy(address sender, address from, address spender, uint value) public; function approveByLegacy(address from, address spender, uint value) public; } contract TetherToken is Pausable, StandardToken, BlackList { string public name; string public symbol; uint public decimals; address public upgradedAddress; bool public deprecated; // The contract can be initialized with a number of tokens // All the tokens are deposited to the owner address // // @param _balance Initial supply of the contract // @param _name Token Name // @param _symbol Token symbol // @param _decimals Token decimals function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public { _totalSupply = _initialSupply; name = _name; symbol = _symbol; decimals = _decimals; balances[owner] = _initialSupply; deprecated = false; } // Forward ERC20 methods to upgraded contract if this one is deprecated function transfer(address _to, uint _value) public whenNotPaused { require(!isBlackListed[msg.sender]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value); } else { return super.transfer(_to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function transferFrom(address _from, address _to, uint _value) public whenNotPaused { require(!isBlackListed[_from]); if (deprecated) { return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value); } else { return super.transferFrom(_from, _to, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function balanceOf(address who) public constant returns (uint) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).balanceOf(who); } else { return super.balanceOf(who); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) { if (deprecated) { return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value); } else { return super.approve(_spender, _value); } } // Forward ERC20 methods to upgraded contract if this one is deprecated function allowance(address _owner, address _spender) public constant returns (uint remaining) { if (deprecated) { return StandardToken(upgradedAddress).allowance(_owner, _spender); } else { return super.allowance(_owner, _spender); } } // deprecate current contract in favour of a new one function deprecate(address _upgradedAddress) public onlyOwner { deprecated = true; upgradedAddress = _upgradedAddress; Deprecate(_upgradedAddress); } // deprecate current contract if favour of a new one function totalSupply() public constant returns (uint) { if (deprecated) { return StandardToken(upgradedAddress).totalSupply(); } else { return _totalSupply; } } // Issue a new amount of tokens // these tokens are deposited into the owner address // // @param _amount Number of tokens to be issued function issue(uint amount) public onlyOwner { require(_totalSupply + amount > _totalSupply); require(balances[owner] + amount > balances[owner]); balances[owner] += amount; _totalSupply += amount; Issue(amount); } // Redeem tokens. // These tokens are withdrawn from the owner address // if the balance must be enough to cover the redeem // or the call will fail. // @param _amount Number of tokens to be issued function redeem(uint amount) public onlyOwner { require(_totalSupply >= amount); require(balances[owner] >= amount); _totalSupply -= amount; balances[owner] -= amount; Redeem(amount); } function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner { // Ensure transparency by hardcoding limit beyond which fees can never be added require(newBasisPoints < 20); require(newMaxFee < 50); basisPointsRate = newBasisPoints; maximumFee = newMaxFee.mul(10**decimals); Params(basisPointsRate, maximumFee); } // Called when new token are issued event Issue(uint amount); // Called when tokens are redeemed event Redeem(uint amount); // Called when contract is deprecated event Deprecate(address newAddress); // Called if contract ever adds fees event Params(uint feeBasisPoints, uint maxFee); }