ETH Price: $2,441.76 (+0.02%)

Transaction Decoder

Block:
21541188 at Jan-03-2025 03:12:11 AM +UTC
Transaction Fee:
0.000391043800174117 ETH $0.95
Gas Used:
50,929 Gas / 7.678214773 Gwei

Emitted Events:

369 AuroraToken.Transfer( from=[Sender] 0x16b6f205d9fad0b57d42c7c09ee29e37df4cb7f7, to=[Receiver] ERC20Locker, value=25302150328006542218686 )
370 AuroraToken.Approval( owner=[Sender] 0x16b6f205d9fad0b57d42c7c09ee29e37df4cb7f7, spender=[Receiver] ERC20Locker, value=115792089237316195423570985008687907853269984665640563997929551756457034437620 )
371 ERC20Locker.Locked( token=AuroraToken, sender=[Sender] 0x16b6f205d9fad0b57d42c7c09ee29e37df4cb7f7, amount=25302150328006542218686, accountId=aurora:0390d5cf1fae4d80a396061811b77ab5af5f9576 )

Account State Difference:

  Address   Before After State Difference Code
0x16B6f205...7Df4Cb7F7
0.030361253657362492 Eth
Nonce: 502
0.029970209857188375 Eth
Nonce: 503
0.000391043800174117
(Titan Builder)
8.392927677497973919 Eth8.392980584868184627 Eth0.000052907370210708
0xAaAAAA20...668207961

Execution Trace

ERC20Locker.lockToken( ethToken=0xAaAAAA20D9E0e2461697782ef11675f668207961, amount=25302150328006542218686, accountId=aurora:0390d5cf1fae4d80a396061811b77ab5af5f9576 )
  • AuroraToken.balanceOf( account=0x23Ddd3e3692d1861Ed57EDE224608875809e127f ) => ( 848871608063056120579344592 )
  • AuroraToken.transferFrom( sender=0x16B6f205d9FAd0B57D42C7C09eE29E37Df4Cb7F7, recipient=0x23Ddd3e3692d1861Ed57EDE224608875809e127f, amount=25302150328006542218686 ) => ( True )
    File 1 of 2: ERC20Locker
    // File: @openzeppelin/contracts/token/ERC20/IERC20.sol
    
    
    pragma solidity >=0.6.0 <0.8.0;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
    
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    
    // File: @openzeppelin/contracts/math/SafeMath.sol
    
    
    pragma solidity >=0.6.0 <0.8.0;
    
    /**
     * @dev Wrappers over Solidity's arithmetic operations with added overflow
     * checks.
     *
     * Arithmetic operations in Solidity wrap on overflow. This can easily result
     * in bugs, because programmers usually assume that an overflow raises an
     * error, which is the standard behavior in high level programming languages.
     * `SafeMath` restores this intuition by reverting the transaction when an
     * operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeMath {
        /**
         * @dev Returns the addition of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    
        /**
         * @dev Returns the substraction of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
         *
         * _Available since v3.4._
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
         *
         * _Available since v3.4._
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `+` operator.
         *
         * Requirements:
         *
         * - Addition cannot overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256) {
            uint256 c = a + b;
            require(c >= a, "SafeMath: addition overflow");
            return c;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting on
         * overflow (when the result is negative).
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b <= a, "SafeMath: subtraction overflow");
            return a - b;
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, reverting on
         * overflow.
         *
         * Counterpart to Solidity's `*` operator.
         *
         * Requirements:
         *
         * - Multiplication cannot overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256) {
            if (a == 0) return 0;
            uint256 c = a * b;
            require(c / a == b, "SafeMath: multiplication overflow");
            return c;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting on
         * division by zero. The result is rounded towards zero.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b > 0, "SafeMath: division by zero");
            return a / b;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting when dividing by zero.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b) internal pure returns (uint256) {
            require(b > 0, "SafeMath: modulo by zero");
            return a % b;
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
         * overflow (when the result is negative).
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {trySub}.
         *
         * Counterpart to Solidity's `-` operator.
         *
         * Requirements:
         *
         * - Subtraction cannot overflow.
         */
        function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b <= a, errorMessage);
            return a - b;
        }
    
        /**
         * @dev Returns the integer division of two unsigned integers, reverting with custom message on
         * division by zero. The result is rounded towards zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryDiv}.
         *
         * Counterpart to Solidity's `/` operator. Note: this function uses a
         * `revert` opcode (which leaves remaining gas untouched) while Solidity
         * uses an invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            return a / b;
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
         * reverting with custom message when dividing by zero.
         *
         * CAUTION: This function is deprecated because it requires allocating memory for the error
         * message unnecessarily. For custom revert reasons use {tryMod}.
         *
         * Counterpart to Solidity's `%` operator. This function uses a `revert`
         * opcode (which leaves remaining gas untouched) while Solidity uses an
         * invalid opcode to revert (consuming all remaining gas).
         *
         * Requirements:
         *
         * - The divisor cannot be zero.
         */
        function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
    
    // File: @openzeppelin/contracts/utils/Address.sol
    
    
    pragma solidity >=0.6.2 <0.8.0;
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize, which returns 0 for contracts in
            // construction, since the code is only stored at the end of the
            // constructor execution.
    
            uint256 size;
            // solhint-disable-next-line no-inline-assembly
            assembly { size := extcodesize(account) }
            return size > 0;
        }
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
    
            // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
            (bool success, ) = recipient.call{ value: amount }("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain`call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
          return functionCall(target, data, "Address: low-level call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            require(isContract(target), "Address: call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.call{ value: value }(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
            require(isContract(target), "Address: static call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.staticcall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
            require(isContract(target), "Address: delegate call to non-contract");
    
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return _verifyCallResult(success, returndata, errorMessage);
        }
    
        function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
            if (success) {
                return returndata;
            } else {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
    
                    // solhint-disable-next-line no-inline-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
    }
    
    // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol
    
    
    pragma solidity >=0.6.0 <0.8.0;
    
    
    
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        using SafeMath for uint256;
        using Address for address;
    
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
        }
    
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
        }
    
        /**
         * @dev Deprecated. This function has issues similar to the ones found in
         * {IERC20-approve}, and its usage is discouraged.
         *
         * Whenever possible, use {safeIncreaseAllowance} and
         * {safeDecreaseAllowance} instead.
         */
        function safeApprove(IERC20 token, address spender, uint256 value) internal {
            // safeApprove should only be called when setting an initial allowance,
            // or when resetting it to zero. To increase and decrease it, use
            // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
            // solhint-disable-next-line max-line-length
            require((value == 0) || (token.allowance(address(this), spender) == 0),
                "SafeERC20: approve from non-zero to non-zero allowance"
            );
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
        }
    
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).add(value);
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
            // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
            // the target address contains contract code and also asserts for success in the low-level call.
    
            bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
            if (returndata.length > 0) { // Return data is optional
                // solhint-disable-next-line max-line-length
                require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
            }
        }
    }
    
    // File: rainbow-bridge/contracts/eth/nearbridge/contracts/AdminControlled.sol
    
    pragma solidity ^0.6;
    
    contract AdminControlled {
        address public admin;
        uint public paused;
    
        constructor(address _admin, uint flags) public {
            admin = _admin;
    
            // Add the possibility to set pause flags on the initialization
            paused = flags;
        }
    
        modifier onlyAdmin {
            require(msg.sender == admin);
            _;
        }
    
        modifier pausable(uint flag) {
            require((paused & flag) == 0 || msg.sender == admin);
            _;
        }
    
        function adminPause(uint flags) public onlyAdmin {
            paused = flags;
        }
    
        function adminSstore(uint key, uint value) public onlyAdmin {
            assembly {
                sstore(key, value)
            }
        }
    
        function adminSendEth(address payable destination, uint amount) public onlyAdmin {
            destination.transfer(amount);
        }
    
        function adminReceiveEth() public payable onlyAdmin {}
    
        function adminDelegatecall(address target, bytes memory data) public payable onlyAdmin returns (bytes memory) {
            (bool success, bytes memory rdata) = target.delegatecall(data);
            require(success);
            return rdata;
        }
    }
    
    // File: rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol
    
    pragma solidity ^0.6;
    
    
    library Borsh {
        using SafeMath for uint256;
    
        struct Data {
            uint256 offset;
            bytes raw;
        }
    
        function from(bytes memory data) internal pure returns (Data memory) {
            return Data({offset: 0, raw: data});
        }
    
        modifier shift(Data memory data, uint256 size) {
            require(data.raw.length >= data.offset + size, "Borsh: Out of range");
            _;
            data.offset += size;
        }
    
        function finished(Data memory data) internal pure returns (bool) {
            return data.offset == data.raw.length;
        }
    
        function peekKeccak256(Data memory data, uint256 length) internal pure returns (bytes32 res) {
            return bytesKeccak256(data.raw, data.offset, length);
        }
    
        function bytesKeccak256(
            bytes memory ptr,
            uint256 offset,
            uint256 length
        ) internal pure returns (bytes32 res) {
            // solium-disable-next-line security/no-inline-assembly
            assembly {
                res := keccak256(add(add(ptr, 32), offset), length)
            }
        }
    
        function peekSha256(Data memory data, uint256 length) internal view returns (bytes32) {
            return bytesSha256(data.raw, data.offset, length);
        }
    
        function bytesSha256(
            bytes memory ptr,
            uint256 offset,
            uint256 length
        ) internal view returns (bytes32) {
            bytes32[1] memory result;
            // solium-disable-next-line security/no-inline-assembly
            assembly {
                pop(staticcall(gas(), 0x02, add(add(ptr, 32), offset), length, result, 32))
            }
            return result[0];
        }
    
        function decodeU8(Data memory data) internal pure shift(data, 1) returns (uint8 value) {
            value = uint8(data.raw[data.offset]);
        }
    
        function decodeI8(Data memory data) internal pure shift(data, 1) returns (int8 value) {
            value = int8(data.raw[data.offset]);
        }
    
        function decodeU16(Data memory data) internal pure returns (uint16 value) {
            value = uint16(decodeU8(data));
            value |= (uint16(decodeU8(data)) << 8);
        }
    
        function decodeI16(Data memory data) internal pure returns (int16 value) {
            value = int16(decodeI8(data));
            value |= (int16(decodeI8(data)) << 8);
        }
    
        function decodeU32(Data memory data) internal pure returns (uint32 value) {
            value = uint32(decodeU16(data));
            value |= (uint32(decodeU16(data)) << 16);
        }
    
        function decodeI32(Data memory data) internal pure returns (int32 value) {
            value = int32(decodeI16(data));
            value |= (int32(decodeI16(data)) << 16);
        }
    
        function decodeU64(Data memory data) internal pure returns (uint64 value) {
            value = uint64(decodeU32(data));
            value |= (uint64(decodeU32(data)) << 32);
        }
    
        function decodeI64(Data memory data) internal pure returns (int64 value) {
            value = int64(decodeI32(data));
            value |= (int64(decodeI32(data)) << 32);
        }
    
        function decodeU128(Data memory data) internal pure returns (uint128 value) {
            value = uint128(decodeU64(data));
            value |= (uint128(decodeU64(data)) << 64);
        }
    
        function decodeI128(Data memory data) internal pure returns (int128 value) {
            value = int128(decodeI64(data));
            value |= (int128(decodeI64(data)) << 64);
        }
    
        function decodeU256(Data memory data) internal pure returns (uint256 value) {
            value = uint256(decodeU128(data));
            value |= (uint256(decodeU128(data)) << 128);
        }
    
        function decodeI256(Data memory data) internal pure returns (int256 value) {
            value = int256(decodeI128(data));
            value |= (int256(decodeI128(data)) << 128);
        }
    
        function decodeBool(Data memory data) internal pure returns (bool value) {
            value = (decodeU8(data) != 0);
        }
    
        function decodeBytes(Data memory data) internal pure returns (bytes memory value) {
            value = new bytes(decodeU32(data));
            for (uint i = 0; i < value.length; i++) {
                value[i] = byte(decodeU8(data));
            }
        }
    
        function decodeBytes32(Data memory data) internal pure shift(data, 32) returns (bytes32 value) {
            bytes memory raw = data.raw;
            uint256 offset = data.offset;
            // solium-disable-next-line security/no-inline-assembly
            assembly {
                value := mload(add(add(raw, 32), offset))
            }
        }
    
        function decodeBytes20(Data memory data) internal pure returns (bytes20 value) {
            for (uint i = 0; i < 20; i++) {
                value |= bytes20(byte(decodeU8(data)) & 0xFF) >> (i * 8);
            }
        }
    
        // Public key
    
        struct SECP256K1PublicKey {
            uint256 x;
            uint256 y;
        }
    
        function decodeSECP256K1PublicKey(Borsh.Data memory data) internal pure returns (SECP256K1PublicKey memory key) {
            key.x = decodeU256(data);
            key.y = decodeU256(data);
        }
    
        struct ED25519PublicKey {
            bytes32 xy;
        }
    
        function decodeED25519PublicKey(Borsh.Data memory data) internal pure returns (ED25519PublicKey memory key) {
            key.xy = decodeBytes32(data);
        }
    
        // Signature
    
        struct SECP256K1Signature {
            bytes32 r;
            bytes32 s;
            uint8 v;
        }
    
        function decodeSECP256K1Signature(Borsh.Data memory data) internal pure returns (SECP256K1Signature memory sig) {
            sig.r = decodeBytes32(data);
            sig.s = decodeBytes32(data);
            sig.v = decodeU8(data);
        }
    
        struct ED25519Signature {
            bytes32[2] rs;
        }
    
        function decodeED25519Signature(Borsh.Data memory data) internal pure returns (ED25519Signature memory sig) {
            sig.rs[0] = decodeBytes32(data);
            sig.rs[1] = decodeBytes32(data);
        }
    }
    
    // File: rainbow-bridge/contracts/eth/nearbridge/contracts/NearDecoder.sol
    
    pragma solidity ^0.6;
    
    
    
    library NearDecoder {
        using Borsh for Borsh.Data;
        using NearDecoder for Borsh.Data;
    
        struct PublicKey {
            uint8 enumIndex;
            Borsh.ED25519PublicKey ed25519;
            Borsh.SECP256K1PublicKey secp256k1;
        }
    
        function decodePublicKey(Borsh.Data memory data) internal pure returns (PublicKey memory key) {
            key.enumIndex = data.decodeU8();
    
            if (key.enumIndex == 0) {
                key.ed25519 = data.decodeED25519PublicKey();
            } else if (key.enumIndex == 1) {
                key.secp256k1 = data.decodeSECP256K1PublicKey();
            } else {
                revert("NearBridge: Only ED25519 and SECP256K1 public keys are supported");
            }
        }
    
        struct ValidatorStake {
            string account_id;
            PublicKey public_key;
            uint128 stake;
        }
    
        function decodeValidatorStake(Borsh.Data memory data) internal pure returns (ValidatorStake memory validatorStake) {
            validatorStake.account_id = string(data.decodeBytes());
            validatorStake.public_key = data.decodePublicKey();
            validatorStake.stake = data.decodeU128();
        }
    
        struct OptionalValidatorStakes {
            bool none;
            ValidatorStake[] validatorStakes;
            bytes32 hash; // Additional computable element
        }
    
        function decodeOptionalValidatorStakes(Borsh.Data memory data)
            internal
            view
            returns (OptionalValidatorStakes memory stakes)
        {
            stakes.none = (data.decodeU8() == 0);
            if (!stakes.none) {
                uint256 start = data.offset;
    
                stakes.validatorStakes = new ValidatorStake[](data.decodeU32());
                for (uint i = 0; i < stakes.validatorStakes.length; i++) {
                    stakes.validatorStakes[i] = data.decodeValidatorStake();
                }
    
                uint256 stop = data.offset;
                data.offset = start;
                stakes.hash = data.peekSha256(stop - start);
                data.offset = stop;
            }
        }
    
        struct Signature {
            uint8 enumIndex;
            Borsh.ED25519Signature ed25519;
            Borsh.SECP256K1Signature secp256k1;
        }
    
        function decodeSignature(Borsh.Data memory data) internal pure returns (Signature memory sig) {
            sig.enumIndex = data.decodeU8();
    
            if (sig.enumIndex == 0) {
                sig.ed25519 = data.decodeED25519Signature();
            } else if (sig.enumIndex == 1) {
                sig.secp256k1 = data.decodeSECP256K1Signature();
            } else {
                revert("NearBridge: Only ED25519 and SECP256K1 signatures are supported");
            }
        }
    
        struct OptionalSignature {
            bool none;
            Signature signature;
        }
    
        function decodeOptionalSignature(Borsh.Data memory data) internal pure returns (OptionalSignature memory sig) {
            sig.none = (data.decodeU8() == 0);
            if (!sig.none) {
                sig.signature = data.decodeSignature();
            }
        }
    
        struct LightClientBlock {
            bytes32 prev_block_hash;
            bytes32 next_block_inner_hash;
            BlockHeaderInnerLite inner_lite;
            bytes32 inner_rest_hash;
            OptionalValidatorStakes next_bps;
            OptionalSignature[] approvals_after_next;
            bytes32 hash;
            bytes32 next_hash;
        }
    
        struct InitialValidators {
            ValidatorStake[] validator_stakes;
        }
    
        function decodeInitialValidators(Borsh.Data memory data)
            internal
            view
            returns (InitialValidators memory validators)
        {
            validators.validator_stakes = new ValidatorStake[](data.decodeU32());
            for (uint i = 0; i < validators.validator_stakes.length; i++) {
                validators.validator_stakes[i] = data.decodeValidatorStake();
            }
        }
    
        function decodeLightClientBlock(Borsh.Data memory data) internal view returns (LightClientBlock memory header) {
            header.prev_block_hash = data.decodeBytes32();
            header.next_block_inner_hash = data.decodeBytes32();
            header.inner_lite = data.decodeBlockHeaderInnerLite();
            header.inner_rest_hash = data.decodeBytes32();
            header.next_bps = data.decodeOptionalValidatorStakes();
    
            header.approvals_after_next = new OptionalSignature[](data.decodeU32());
            for (uint i = 0; i < header.approvals_after_next.length; i++) {
                header.approvals_after_next[i] = data.decodeOptionalSignature();
            }
    
            header.hash = sha256(
                abi.encodePacked(
                    sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)),
                    header.prev_block_hash
                )
            );
    
            header.next_hash = sha256(abi.encodePacked(header.next_block_inner_hash, header.hash));
        }
    
        struct BlockHeaderInnerLite {
            uint64 height; /// Height of this block since the genesis block (height 0).
            bytes32 epoch_id; /// Epoch start hash of this block's epoch. Used for retrieving validator information
            bytes32 next_epoch_id;
            bytes32 prev_state_root; /// Root hash of the state at the previous block.
            bytes32 outcome_root; /// Root of the outcomes of transactions and receipts.
            uint64 timestamp; /// Timestamp at which the block was built.
            bytes32 next_bp_hash; /// Hash of the next epoch block producers set
            bytes32 block_merkle_root;
            bytes32 hash; // Additional computable element
        }
    
        function decodeBlockHeaderInnerLite(Borsh.Data memory data)
            internal
            view
            returns (BlockHeaderInnerLite memory header)
        {
            header.hash = data.peekSha256(208);
            header.height = data.decodeU64();
            header.epoch_id = data.decodeBytes32();
            header.next_epoch_id = data.decodeBytes32();
            header.prev_state_root = data.decodeBytes32();
            header.outcome_root = data.decodeBytes32();
            header.timestamp = data.decodeU64();
            header.next_bp_hash = data.decodeBytes32();
            header.block_merkle_root = data.decodeBytes32();
        }
    }
    
    // File: rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol
    
    pragma solidity ^0.6;
    
    
    
    library ProofDecoder {
        using Borsh for Borsh.Data;
        using ProofDecoder for Borsh.Data;
        using NearDecoder for Borsh.Data;
    
        struct FullOutcomeProof {
            ExecutionOutcomeWithIdAndProof outcome_proof;
            MerklePath outcome_root_proof; // TODO: now empty array
            BlockHeaderLight block_header_lite;
            MerklePath block_proof;
        }
    
        function decodeFullOutcomeProof(Borsh.Data memory data) internal view returns (FullOutcomeProof memory proof) {
            proof.outcome_proof = data.decodeExecutionOutcomeWithIdAndProof();
            proof.outcome_root_proof = data.decodeMerklePath();
            proof.block_header_lite = data.decodeBlockHeaderLight();
            proof.block_proof = data.decodeMerklePath();
        }
    
        struct BlockHeaderLight {
            bytes32 prev_block_hash;
            bytes32 inner_rest_hash;
            NearDecoder.BlockHeaderInnerLite inner_lite;
            bytes32 hash; // Computable
        }
    
        function decodeBlockHeaderLight(Borsh.Data memory data) internal view returns (BlockHeaderLight memory header) {
            header.prev_block_hash = data.decodeBytes32();
            header.inner_rest_hash = data.decodeBytes32();
            header.inner_lite = data.decodeBlockHeaderInnerLite();
    
            header.hash = sha256(
                abi.encodePacked(
                    sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)),
                    header.prev_block_hash
                )
            );
        }
    
        struct ExecutionStatus {
            uint8 enumIndex;
            bool unknown;
            bool failed;
            bytes successValue; /// The final action succeeded and returned some value or an empty vec.
            bytes32 successReceiptId; /// The final action of the receipt returned a promise or the signed
            /// transaction was converted to a receipt. Contains the receipt_id of the generated receipt.
        }
    
        function decodeExecutionStatus(Borsh.Data memory data)
            internal
            pure
            returns (ExecutionStatus memory executionStatus)
        {
            executionStatus.enumIndex = data.decodeU8();
            if (executionStatus.enumIndex == 0) {
                executionStatus.unknown = true;
            } else if (executionStatus.enumIndex == 1) {
                //revert("NearDecoder: decodeExecutionStatus failure case not implemented yet");
                // Can avoid revert since ExecutionStatus is latest field in all parent structures
                executionStatus.failed = true;
            } else if (executionStatus.enumIndex == 2) {
                executionStatus.successValue = data.decodeBytes();
            } else if (executionStatus.enumIndex == 3) {
                executionStatus.successReceiptId = data.decodeBytes32();
            } else {
                revert("NearDecoder: decodeExecutionStatus index out of range");
            }
        }
    
        struct ExecutionOutcome {
            bytes[] logs; /// Logs from this transaction or receipt.
            bytes32[] receipt_ids; /// Receipt IDs generated by this transaction or receipt.
            uint64 gas_burnt; /// The amount of the gas burnt by the given transaction or receipt.
            uint128 tokens_burnt; /// The total number of the tokens burnt by the given transaction or receipt.
            bytes executor_id; /// Hash of the transaction or receipt id that produced this outcome.
            ExecutionStatus status; /// Execution status. Contains the result in case of successful execution.
            bytes32[] merkelization_hashes;
        }
    
        function decodeExecutionOutcome(Borsh.Data memory data) internal view returns (ExecutionOutcome memory outcome) {
            outcome.logs = new bytes[](data.decodeU32());
            for (uint i = 0; i < outcome.logs.length; i++) {
                outcome.logs[i] = data.decodeBytes();
            }
    
            uint256 start = data.offset;
            outcome.receipt_ids = new bytes32[](data.decodeU32());
            for (uint i = 0; i < outcome.receipt_ids.length; i++) {
                outcome.receipt_ids[i] = data.decodeBytes32();
            }
            outcome.gas_burnt = data.decodeU64();
            outcome.tokens_burnt = data.decodeU128();
            outcome.executor_id = data.decodeBytes();
            outcome.status = data.decodeExecutionStatus();
            uint256 stop = data.offset;
    
            outcome.merkelization_hashes = new bytes32[](1 + outcome.logs.length);
            data.offset = start;
            outcome.merkelization_hashes[0] = data.peekSha256(stop - start);
            data.offset = stop;
            for (uint i = 0; i < outcome.logs.length; i++) {
                outcome.merkelization_hashes[i + 1] = sha256(outcome.logs[i]);
            }
        }
    
        struct ExecutionOutcomeWithId {
            bytes32 id; /// The transaction hash or the receipt ID.
            ExecutionOutcome outcome;
            bytes32 hash;
        }
    
        function decodeExecutionOutcomeWithId(Borsh.Data memory data)
            internal
            view
            returns (ExecutionOutcomeWithId memory outcome)
        {
            outcome.id = data.decodeBytes32();
            outcome.outcome = data.decodeExecutionOutcome();
    
            uint256 len = 1 + outcome.outcome.merkelization_hashes.length;
            outcome.hash = sha256(
                abi.encodePacked(
                    uint8((len >> 0) & 0xFF),
                    uint8((len >> 8) & 0xFF),
                    uint8((len >> 16) & 0xFF),
                    uint8((len >> 24) & 0xFF),
                    outcome.id,
                    outcome.outcome.merkelization_hashes
                )
            );
        }
    
        struct MerklePathItem {
            bytes32 hash;
            uint8 direction; // 0 = left, 1 = right
        }
    
        function decodeMerklePathItem(Borsh.Data memory data) internal pure returns (MerklePathItem memory item) {
            item.hash = data.decodeBytes32();
            item.direction = data.decodeU8();
            require(item.direction < 2, "ProofDecoder: MerklePathItem direction should be 0 or 1");
        }
    
        struct MerklePath {
            MerklePathItem[] items;
        }
    
        function decodeMerklePath(Borsh.Data memory data) internal pure returns (MerklePath memory path) {
            path.items = new MerklePathItem[](data.decodeU32());
            for (uint i = 0; i < path.items.length; i++) {
                path.items[i] = data.decodeMerklePathItem();
            }
        }
    
        struct ExecutionOutcomeWithIdAndProof {
            MerklePath proof;
            bytes32 block_hash;
            ExecutionOutcomeWithId outcome_with_id;
        }
    
        function decodeExecutionOutcomeWithIdAndProof(Borsh.Data memory data)
            internal
            view
            returns (ExecutionOutcomeWithIdAndProof memory outcome)
        {
            outcome.proof = data.decodeMerklePath();
            outcome.block_hash = data.decodeBytes32();
            outcome.outcome_with_id = data.decodeExecutionOutcomeWithId();
        }
    }
    
    // File: rainbow-bridge/contracts/eth/nearprover/contracts/INearProver.sol
    
    pragma solidity ^0.6;
    
    interface INearProver {
        function proveOutcome(bytes calldata proofData, uint64 blockHeight) external view returns (bool);
    }
    
    // File: contracts/Locker.sol
    
    pragma solidity ^0.6.12;
    
    
    
    
    contract Locker {
        using Borsh for Borsh.Data;
        using ProofDecoder for Borsh.Data;
    
        INearProver public prover_;
        bytes public nearTokenFactory_;
    
        /// Proofs from blocks that are below the acceptance height will be rejected.
        // If `minBlockAcceptanceHeight_` value is zero - proofs from block with any height are accepted.
        uint64 public minBlockAcceptanceHeight_;
    
        // OutcomeReciptId -> Used
        mapping(bytes32 => bool) public usedProofs_;
    
        constructor(bytes memory nearTokenFactory, INearProver prover, uint64 minBlockAcceptanceHeight) public {
            require(nearTokenFactory.length > 0, "Invalid Near Token Factory address");
            require(address(prover) != address(0), "Invalid Near prover address");
    
            nearTokenFactory_ = nearTokenFactory;
            prover_ = prover;
            minBlockAcceptanceHeight_ = minBlockAcceptanceHeight;
        }
    
        /// Parses the provided proof and consumes it if it's not already used.
        /// The consumed event cannot be reused for future calls.
        function _parseAndConsumeProof(bytes memory proofData, uint64 proofBlockHeight)
            internal
            returns (ProofDecoder.ExecutionStatus memory result)
        {
            require(proofBlockHeight >= minBlockAcceptanceHeight_, "Proof is from the ancient block");
            require(prover_.proveOutcome(proofData, proofBlockHeight), "Proof should be valid");
    
            // Unpack the proof and extract the execution outcome.
            Borsh.Data memory borshData = Borsh.from(proofData);
            ProofDecoder.FullOutcomeProof memory fullOutcomeProof = borshData.decodeFullOutcomeProof();
            require(borshData.finished(), "Argument should be exact borsh serialization");
    
            bytes32 receiptId = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.receipt_ids[0];
            require(!usedProofs_[receiptId], "The burn event proof cannot be reused");
            usedProofs_[receiptId] = true;
    
            require(keccak256(fullOutcomeProof.outcome_proof.outcome_with_id.outcome.executor_id)
                    == keccak256(nearTokenFactory_),
                    "Can only unlock tokens from the linked proof producer on Near blockchain");
    
            result = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.status;
            require(!result.failed, "Cannot use failed execution outcome for unlocking the tokens");
            require(!result.unknown, "Cannot use unknown execution outcome for unlocking the tokens");
        }
    }
    
    // File: contracts/ERC20Locker.sol
    
    pragma solidity ^0.6.12;
    
    
    
    
    
    
    
    
    contract ERC20Locker is Locker, AdminControlled {
        using SafeMath for uint256;
        using SafeERC20 for IERC20;
    
        event Locked (
            address indexed token,
            address indexed sender,
            uint256 amount,
            string accountId
        );
    
        event Unlocked (
            uint128 amount,
            address recipient
        );
    
        // Function output from burning fungible token on Near side.
        struct BurnResult {
            uint128 amount;
            address token;
            address recipient;
        }
    
        uint constant UNPAUSED_ALL = 0;
        uint constant PAUSED_LOCK = 1 << 0;
        uint constant PAUSED_UNLOCK = 1 << 1;
    
        // ERC20Locker is linked to the bridge token factory on NEAR side.
        // It also links to the prover that it uses to unlock the tokens.
        constructor(bytes memory nearTokenFactory,
                    INearProver prover,
                    uint64 minBlockAcceptanceHeight,
                    address _admin,
                    uint pausedFlags)
            AdminControlled(_admin, pausedFlags)
            Locker(nearTokenFactory, prover, minBlockAcceptanceHeight)
            public
        {
        }
    
        function lockToken(address ethToken, uint256 amount, string memory accountId)
            public
            pausable (PAUSED_LOCK)
        {
            require(IERC20(ethToken).balanceOf(address(this)).add(amount) <= ((uint256(1) << 128) - 1), "Maximum tokens locked exceeded (< 2^128 - 1)");
            IERC20(ethToken).safeTransferFrom(msg.sender, address(this), amount);
            emit Locked(address(ethToken), msg.sender, amount, accountId);
        }
    
        function unlockToken(bytes memory proofData, uint64 proofBlockHeight)
            public
            pausable (PAUSED_UNLOCK)
        {
            ProofDecoder.ExecutionStatus memory status = _parseAndConsumeProof(proofData, proofBlockHeight);
            BurnResult memory result = _decodeBurnResult(status.successValue);
            IERC20(result.token).safeTransfer(result.recipient, result.amount);
            emit Unlocked(result.amount, result.recipient);
        }
    
        function _decodeBurnResult(bytes memory data) internal pure returns(BurnResult memory result) {
            Borsh.Data memory borshData = Borsh.from(data);
            uint8 flag = borshData.decodeU8();
            require(flag == 0, "ERR_NOT_WITHDRAW_RESULT");
            result.amount = borshData.decodeU128();
            bytes20 token = borshData.decodeBytes20();
            result.token = address(uint160(token));
            bytes20 recipient = borshData.decodeBytes20();
            result.recipient = address(uint160(recipient));
        }
    
        // tokenFallback implements the ContractReceiver interface from ERC223-token-standard.
        // This allows to support ERC223 tokens with no extra cost.
        // The function always passes: we don't need to make any decision and the contract always
        // accept token transfers transfer.
        function tokenFallback(address _from, uint _value, bytes memory _data) public pure {}
    
        function adminTransfer(IERC20 token, address destination, uint amount)
            public
            onlyAdmin
        {
            token.safeTransfer(destination, amount);
        }
    }

    File 2 of 2: AuroraToken
    //SPDX-License-Identifier: CC0-1.0
    pragma solidity ^0.8.7;
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    /// @title AURORA Token
    /// @author Aurora team
    /// @notice This contract is managed by Aurora DAO.
    /// @dev This is the official Aurora ERC20 contract.
    contract AuroraToken is ERC20 {
        uint8 constant _DECIMALS = 18;
        uint256 constant _TOTALCAP = 1000000000;
        constructor(
            string memory name,
            string memory symbol,
            address dao
        ) ERC20(name, symbol) {
            uint256 _maxSupply = _TOTALCAP * (uint256(10) ** _DECIMALS);
            _mint(dao, _maxSupply);
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "./IERC20.sol";
    import "./extensions/IERC20Metadata.sol";
    import "../../utils/Context.sol";
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     * For a generic mechanism see {ERC20PresetMinterPauser}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     *
     * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
     * functions have been added to mitigate the well-known issues around setting
     * allowances. See {IERC20-approve}.
     */
    contract ERC20 is Context, IERC20, IERC20Metadata {
        mapping(address => uint256) private _balances;
        mapping(address => mapping(address => uint256)) private _allowances;
        uint256 private _totalSupply;
        string private _name;
        string private _symbol;
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * The default value of {decimals} is 18. To select a different value for
         * {decimals} you should overload it.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the value {ERC20} uses, unless this function is
         * overridden;
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual override returns (uint8) {
            return 18;
        }
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            return _totalSupply;
        }
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual override returns (uint256) {
            return _balances[account];
        }
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `recipient` cannot be the zero address.
         * - the caller must have a balance of at least `amount`.
         */
        function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
            _transfer(_msgSender(), recipient, amount);
            return true;
        }
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual override returns (uint256) {
            return _allowances[owner][spender];
        }
        /**
         * @dev See {IERC20-approve}.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 amount) public virtual override returns (bool) {
            _approve(_msgSender(), spender, amount);
            return true;
        }
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * Requirements:
         *
         * - `sender` and `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         * - the caller must have allowance for ``sender``'s tokens of at least
         * `amount`.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) public virtual override returns (bool) {
            _transfer(sender, recipient, amount);
            uint256 currentAllowance = _allowances[sender][_msgSender()];
            require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
            unchecked {
                _approve(sender, _msgSender(), currentAllowance - amount);
            }
            return true;
        }
        /**
         * @dev Atomically increases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
            _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
            return true;
        }
        /**
         * @dev Atomically decreases the allowance granted to `spender` by the caller.
         *
         * This is an alternative to {approve} that can be used as a mitigation for
         * problems described in {IERC20-approve}.
         *
         * Emits an {Approval} event indicating the updated allowance.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         * - `spender` must have allowance for the caller of at least
         * `subtractedValue`.
         */
        function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
            uint256 currentAllowance = _allowances[_msgSender()][spender];
            require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
            unchecked {
                _approve(_msgSender(), spender, currentAllowance - subtractedValue);
            }
            return true;
        }
        /**
         * @dev Moves `amount` of tokens from `sender` to `recipient`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * Requirements:
         *
         * - `sender` cannot be the zero address.
         * - `recipient` cannot be the zero address.
         * - `sender` must have a balance of at least `amount`.
         */
        function _transfer(
            address sender,
            address recipient,
            uint256 amount
        ) internal virtual {
            require(sender != address(0), "ERC20: transfer from the zero address");
            require(recipient != address(0), "ERC20: transfer to the zero address");
            _beforeTokenTransfer(sender, recipient, amount);
            uint256 senderBalance = _balances[sender];
            require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
            unchecked {
                _balances[sender] = senderBalance - amount;
            }
            _balances[recipient] += amount;
            emit Transfer(sender, recipient, amount);
            _afterTokenTransfer(sender, recipient, amount);
        }
        /** @dev Creates `amount` tokens and assigns them to `account`, increasing
         * the total supply.
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         */
        function _mint(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: mint to the zero address");
            _beforeTokenTransfer(address(0), account, amount);
            _totalSupply += amount;
            _balances[account] += amount;
            emit Transfer(address(0), account, amount);
            _afterTokenTransfer(address(0), account, amount);
        }
        /**
         * @dev Destroys `amount` tokens from `account`, reducing the
         * total supply.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * Requirements:
         *
         * - `account` cannot be the zero address.
         * - `account` must have at least `amount` tokens.
         */
        function _burn(address account, uint256 amount) internal virtual {
            require(account != address(0), "ERC20: burn from the zero address");
            _beforeTokenTransfer(account, address(0), amount);
            uint256 accountBalance = _balances[account];
            require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
            unchecked {
                _balances[account] = accountBalance - amount;
            }
            _totalSupply -= amount;
            emit Transfer(account, address(0), amount);
            _afterTokenTransfer(account, address(0), amount);
        }
        /**
         * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         */
        function _approve(
            address owner,
            address spender,
            uint256 amount
        ) internal virtual {
            require(owner != address(0), "ERC20: approve from the zero address");
            require(spender != address(0), "ERC20: approve to the zero address");
            _allowances[owner][spender] = amount;
            emit Approval(owner, spender, amount);
        }
        /**
         * @dev Hook that is called before any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * will be transferred to `to`.
         * - when `from` is zero, `amount` tokens will be minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _beforeTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
        /**
         * @dev Hook that is called after any transfer of tokens. This includes
         * minting and burning.
         *
         * Calling conditions:
         *
         * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
         * has been transferred to `to`.
         * - when `from` is zero, `amount` tokens have been minted for `to`.
         * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
         * - `from` and `to` are never both zero.
         *
         * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
         */
        function _afterTokenTransfer(
            address from,
            address to,
            uint256 amount
        ) internal virtual {}
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `recipient`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address recipient, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `sender` to `recipient` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address sender,
            address recipient,
            uint256 amount
        ) external returns (bool);
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    import "../IERC20.sol";
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     *
     * _Available since v4.1._
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }