Transaction Hash:
Block:
21541188 at Jan-03-2025 03:12:11 AM +UTC
Transaction Fee:
0.000391043800174117 ETH
$0.95
Gas Used:
50,929 Gas / 7.678214773 Gwei
Emitted Events:
369 |
AuroraToken.Transfer( from=[Sender] 0x16b6f205d9fad0b57d42c7c09ee29e37df4cb7f7, to=[Receiver] ERC20Locker, value=25302150328006542218686 )
|
370 |
AuroraToken.Approval( owner=[Sender] 0x16b6f205d9fad0b57d42c7c09ee29e37df4cb7f7, spender=[Receiver] ERC20Locker, value=115792089237316195423570985008687907853269984665640563997929551756457034437620 )
|
371 |
ERC20Locker.Locked( token=AuroraToken, sender=[Sender] 0x16b6f205d9fad0b57d42c7c09ee29e37df4cb7f7, amount=25302150328006542218686, accountId=aurora:0390d5cf1fae4d80a396061811b77ab5af5f9576 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x16B6f205...7Df4Cb7F7 |
0.030361253657362492 Eth
Nonce: 502
|
0.029970209857188375 Eth
Nonce: 503
| 0.000391043800174117 | ||
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 8.392927677497973919 Eth | 8.392980584868184627 Eth | 0.000052907370210708 | |
0xAaAAAA20...668207961 |
Execution Trace
ERC20Locker.lockToken( ethToken=0xAaAAAA20D9E0e2461697782ef11675f668207961, amount=25302150328006542218686, accountId=aurora:0390d5cf1fae4d80a396061811b77ab5af5f9576 )
-
AuroraToken.balanceOf( account=0x23Ddd3e3692d1861Ed57EDE224608875809e127f ) => ( 848871608063056120579344592 )
-
AuroraToken.transferFrom( sender=0x16B6f205d9FAd0B57D42C7C09eE29E37Df4Cb7F7, recipient=0x23Ddd3e3692d1861Ed57EDE224608875809e127f, amount=25302150328006542218686 ) => ( True )
lockToken[ERC20Locker (ln:1266)]
add[ERC20Locker (ln:1270)]
balanceOf[ERC20Locker (ln:1270)]
safeTransferFrom[ERC20Locker (ln:1271)]
Locked[ERC20Locker (ln:1272)]
File 1 of 2: ERC20Locker
File 2 of 2: AuroraToken
// File: @openzeppelin/contracts/token/ERC20/IERC20.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: @openzeppelin/contracts/math/SafeMath.sol pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // File: @openzeppelin/contracts/utils/Address.sol pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts/token/ERC20/SafeERC20.sol pragma solidity >=0.6.0 <0.8.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File: rainbow-bridge/contracts/eth/nearbridge/contracts/AdminControlled.sol pragma solidity ^0.6; contract AdminControlled { address public admin; uint public paused; constructor(address _admin, uint flags) public { admin = _admin; // Add the possibility to set pause flags on the initialization paused = flags; } modifier onlyAdmin { require(msg.sender == admin); _; } modifier pausable(uint flag) { require((paused & flag) == 0 || msg.sender == admin); _; } function adminPause(uint flags) public onlyAdmin { paused = flags; } function adminSstore(uint key, uint value) public onlyAdmin { assembly { sstore(key, value) } } function adminSendEth(address payable destination, uint amount) public onlyAdmin { destination.transfer(amount); } function adminReceiveEth() public payable onlyAdmin {} function adminDelegatecall(address target, bytes memory data) public payable onlyAdmin returns (bytes memory) { (bool success, bytes memory rdata) = target.delegatecall(data); require(success); return rdata; } } // File: rainbow-bridge/contracts/eth/nearbridge/contracts/Borsh.sol pragma solidity ^0.6; library Borsh { using SafeMath for uint256; struct Data { uint256 offset; bytes raw; } function from(bytes memory data) internal pure returns (Data memory) { return Data({offset: 0, raw: data}); } modifier shift(Data memory data, uint256 size) { require(data.raw.length >= data.offset + size, "Borsh: Out of range"); _; data.offset += size; } function finished(Data memory data) internal pure returns (bool) { return data.offset == data.raw.length; } function peekKeccak256(Data memory data, uint256 length) internal pure returns (bytes32 res) { return bytesKeccak256(data.raw, data.offset, length); } function bytesKeccak256( bytes memory ptr, uint256 offset, uint256 length ) internal pure returns (bytes32 res) { // solium-disable-next-line security/no-inline-assembly assembly { res := keccak256(add(add(ptr, 32), offset), length) } } function peekSha256(Data memory data, uint256 length) internal view returns (bytes32) { return bytesSha256(data.raw, data.offset, length); } function bytesSha256( bytes memory ptr, uint256 offset, uint256 length ) internal view returns (bytes32) { bytes32[1] memory result; // solium-disable-next-line security/no-inline-assembly assembly { pop(staticcall(gas(), 0x02, add(add(ptr, 32), offset), length, result, 32)) } return result[0]; } function decodeU8(Data memory data) internal pure shift(data, 1) returns (uint8 value) { value = uint8(data.raw[data.offset]); } function decodeI8(Data memory data) internal pure shift(data, 1) returns (int8 value) { value = int8(data.raw[data.offset]); } function decodeU16(Data memory data) internal pure returns (uint16 value) { value = uint16(decodeU8(data)); value |= (uint16(decodeU8(data)) << 8); } function decodeI16(Data memory data) internal pure returns (int16 value) { value = int16(decodeI8(data)); value |= (int16(decodeI8(data)) << 8); } function decodeU32(Data memory data) internal pure returns (uint32 value) { value = uint32(decodeU16(data)); value |= (uint32(decodeU16(data)) << 16); } function decodeI32(Data memory data) internal pure returns (int32 value) { value = int32(decodeI16(data)); value |= (int32(decodeI16(data)) << 16); } function decodeU64(Data memory data) internal pure returns (uint64 value) { value = uint64(decodeU32(data)); value |= (uint64(decodeU32(data)) << 32); } function decodeI64(Data memory data) internal pure returns (int64 value) { value = int64(decodeI32(data)); value |= (int64(decodeI32(data)) << 32); } function decodeU128(Data memory data) internal pure returns (uint128 value) { value = uint128(decodeU64(data)); value |= (uint128(decodeU64(data)) << 64); } function decodeI128(Data memory data) internal pure returns (int128 value) { value = int128(decodeI64(data)); value |= (int128(decodeI64(data)) << 64); } function decodeU256(Data memory data) internal pure returns (uint256 value) { value = uint256(decodeU128(data)); value |= (uint256(decodeU128(data)) << 128); } function decodeI256(Data memory data) internal pure returns (int256 value) { value = int256(decodeI128(data)); value |= (int256(decodeI128(data)) << 128); } function decodeBool(Data memory data) internal pure returns (bool value) { value = (decodeU8(data) != 0); } function decodeBytes(Data memory data) internal pure returns (bytes memory value) { value = new bytes(decodeU32(data)); for (uint i = 0; i < value.length; i++) { value[i] = byte(decodeU8(data)); } } function decodeBytes32(Data memory data) internal pure shift(data, 32) returns (bytes32 value) { bytes memory raw = data.raw; uint256 offset = data.offset; // solium-disable-next-line security/no-inline-assembly assembly { value := mload(add(add(raw, 32), offset)) } } function decodeBytes20(Data memory data) internal pure returns (bytes20 value) { for (uint i = 0; i < 20; i++) { value |= bytes20(byte(decodeU8(data)) & 0xFF) >> (i * 8); } } // Public key struct SECP256K1PublicKey { uint256 x; uint256 y; } function decodeSECP256K1PublicKey(Borsh.Data memory data) internal pure returns (SECP256K1PublicKey memory key) { key.x = decodeU256(data); key.y = decodeU256(data); } struct ED25519PublicKey { bytes32 xy; } function decodeED25519PublicKey(Borsh.Data memory data) internal pure returns (ED25519PublicKey memory key) { key.xy = decodeBytes32(data); } // Signature struct SECP256K1Signature { bytes32 r; bytes32 s; uint8 v; } function decodeSECP256K1Signature(Borsh.Data memory data) internal pure returns (SECP256K1Signature memory sig) { sig.r = decodeBytes32(data); sig.s = decodeBytes32(data); sig.v = decodeU8(data); } struct ED25519Signature { bytes32[2] rs; } function decodeED25519Signature(Borsh.Data memory data) internal pure returns (ED25519Signature memory sig) { sig.rs[0] = decodeBytes32(data); sig.rs[1] = decodeBytes32(data); } } // File: rainbow-bridge/contracts/eth/nearbridge/contracts/NearDecoder.sol pragma solidity ^0.6; library NearDecoder { using Borsh for Borsh.Data; using NearDecoder for Borsh.Data; struct PublicKey { uint8 enumIndex; Borsh.ED25519PublicKey ed25519; Borsh.SECP256K1PublicKey secp256k1; } function decodePublicKey(Borsh.Data memory data) internal pure returns (PublicKey memory key) { key.enumIndex = data.decodeU8(); if (key.enumIndex == 0) { key.ed25519 = data.decodeED25519PublicKey(); } else if (key.enumIndex == 1) { key.secp256k1 = data.decodeSECP256K1PublicKey(); } else { revert("NearBridge: Only ED25519 and SECP256K1 public keys are supported"); } } struct ValidatorStake { string account_id; PublicKey public_key; uint128 stake; } function decodeValidatorStake(Borsh.Data memory data) internal pure returns (ValidatorStake memory validatorStake) { validatorStake.account_id = string(data.decodeBytes()); validatorStake.public_key = data.decodePublicKey(); validatorStake.stake = data.decodeU128(); } struct OptionalValidatorStakes { bool none; ValidatorStake[] validatorStakes; bytes32 hash; // Additional computable element } function decodeOptionalValidatorStakes(Borsh.Data memory data) internal view returns (OptionalValidatorStakes memory stakes) { stakes.none = (data.decodeU8() == 0); if (!stakes.none) { uint256 start = data.offset; stakes.validatorStakes = new ValidatorStake[](data.decodeU32()); for (uint i = 0; i < stakes.validatorStakes.length; i++) { stakes.validatorStakes[i] = data.decodeValidatorStake(); } uint256 stop = data.offset; data.offset = start; stakes.hash = data.peekSha256(stop - start); data.offset = stop; } } struct Signature { uint8 enumIndex; Borsh.ED25519Signature ed25519; Borsh.SECP256K1Signature secp256k1; } function decodeSignature(Borsh.Data memory data) internal pure returns (Signature memory sig) { sig.enumIndex = data.decodeU8(); if (sig.enumIndex == 0) { sig.ed25519 = data.decodeED25519Signature(); } else if (sig.enumIndex == 1) { sig.secp256k1 = data.decodeSECP256K1Signature(); } else { revert("NearBridge: Only ED25519 and SECP256K1 signatures are supported"); } } struct OptionalSignature { bool none; Signature signature; } function decodeOptionalSignature(Borsh.Data memory data) internal pure returns (OptionalSignature memory sig) { sig.none = (data.decodeU8() == 0); if (!sig.none) { sig.signature = data.decodeSignature(); } } struct LightClientBlock { bytes32 prev_block_hash; bytes32 next_block_inner_hash; BlockHeaderInnerLite inner_lite; bytes32 inner_rest_hash; OptionalValidatorStakes next_bps; OptionalSignature[] approvals_after_next; bytes32 hash; bytes32 next_hash; } struct InitialValidators { ValidatorStake[] validator_stakes; } function decodeInitialValidators(Borsh.Data memory data) internal view returns (InitialValidators memory validators) { validators.validator_stakes = new ValidatorStake[](data.decodeU32()); for (uint i = 0; i < validators.validator_stakes.length; i++) { validators.validator_stakes[i] = data.decodeValidatorStake(); } } function decodeLightClientBlock(Borsh.Data memory data) internal view returns (LightClientBlock memory header) { header.prev_block_hash = data.decodeBytes32(); header.next_block_inner_hash = data.decodeBytes32(); header.inner_lite = data.decodeBlockHeaderInnerLite(); header.inner_rest_hash = data.decodeBytes32(); header.next_bps = data.decodeOptionalValidatorStakes(); header.approvals_after_next = new OptionalSignature[](data.decodeU32()); for (uint i = 0; i < header.approvals_after_next.length; i++) { header.approvals_after_next[i] = data.decodeOptionalSignature(); } header.hash = sha256( abi.encodePacked( sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)), header.prev_block_hash ) ); header.next_hash = sha256(abi.encodePacked(header.next_block_inner_hash, header.hash)); } struct BlockHeaderInnerLite { uint64 height; /// Height of this block since the genesis block (height 0). bytes32 epoch_id; /// Epoch start hash of this block's epoch. Used for retrieving validator information bytes32 next_epoch_id; bytes32 prev_state_root; /// Root hash of the state at the previous block. bytes32 outcome_root; /// Root of the outcomes of transactions and receipts. uint64 timestamp; /// Timestamp at which the block was built. bytes32 next_bp_hash; /// Hash of the next epoch block producers set bytes32 block_merkle_root; bytes32 hash; // Additional computable element } function decodeBlockHeaderInnerLite(Borsh.Data memory data) internal view returns (BlockHeaderInnerLite memory header) { header.hash = data.peekSha256(208); header.height = data.decodeU64(); header.epoch_id = data.decodeBytes32(); header.next_epoch_id = data.decodeBytes32(); header.prev_state_root = data.decodeBytes32(); header.outcome_root = data.decodeBytes32(); header.timestamp = data.decodeU64(); header.next_bp_hash = data.decodeBytes32(); header.block_merkle_root = data.decodeBytes32(); } } // File: rainbow-bridge/contracts/eth/nearprover/contracts/ProofDecoder.sol pragma solidity ^0.6; library ProofDecoder { using Borsh for Borsh.Data; using ProofDecoder for Borsh.Data; using NearDecoder for Borsh.Data; struct FullOutcomeProof { ExecutionOutcomeWithIdAndProof outcome_proof; MerklePath outcome_root_proof; // TODO: now empty array BlockHeaderLight block_header_lite; MerklePath block_proof; } function decodeFullOutcomeProof(Borsh.Data memory data) internal view returns (FullOutcomeProof memory proof) { proof.outcome_proof = data.decodeExecutionOutcomeWithIdAndProof(); proof.outcome_root_proof = data.decodeMerklePath(); proof.block_header_lite = data.decodeBlockHeaderLight(); proof.block_proof = data.decodeMerklePath(); } struct BlockHeaderLight { bytes32 prev_block_hash; bytes32 inner_rest_hash; NearDecoder.BlockHeaderInnerLite inner_lite; bytes32 hash; // Computable } function decodeBlockHeaderLight(Borsh.Data memory data) internal view returns (BlockHeaderLight memory header) { header.prev_block_hash = data.decodeBytes32(); header.inner_rest_hash = data.decodeBytes32(); header.inner_lite = data.decodeBlockHeaderInnerLite(); header.hash = sha256( abi.encodePacked( sha256(abi.encodePacked(header.inner_lite.hash, header.inner_rest_hash)), header.prev_block_hash ) ); } struct ExecutionStatus { uint8 enumIndex; bool unknown; bool failed; bytes successValue; /// The final action succeeded and returned some value or an empty vec. bytes32 successReceiptId; /// The final action of the receipt returned a promise or the signed /// transaction was converted to a receipt. Contains the receipt_id of the generated receipt. } function decodeExecutionStatus(Borsh.Data memory data) internal pure returns (ExecutionStatus memory executionStatus) { executionStatus.enumIndex = data.decodeU8(); if (executionStatus.enumIndex == 0) { executionStatus.unknown = true; } else if (executionStatus.enumIndex == 1) { //revert("NearDecoder: decodeExecutionStatus failure case not implemented yet"); // Can avoid revert since ExecutionStatus is latest field in all parent structures executionStatus.failed = true; } else if (executionStatus.enumIndex == 2) { executionStatus.successValue = data.decodeBytes(); } else if (executionStatus.enumIndex == 3) { executionStatus.successReceiptId = data.decodeBytes32(); } else { revert("NearDecoder: decodeExecutionStatus index out of range"); } } struct ExecutionOutcome { bytes[] logs; /// Logs from this transaction or receipt. bytes32[] receipt_ids; /// Receipt IDs generated by this transaction or receipt. uint64 gas_burnt; /// The amount of the gas burnt by the given transaction or receipt. uint128 tokens_burnt; /// The total number of the tokens burnt by the given transaction or receipt. bytes executor_id; /// Hash of the transaction or receipt id that produced this outcome. ExecutionStatus status; /// Execution status. Contains the result in case of successful execution. bytes32[] merkelization_hashes; } function decodeExecutionOutcome(Borsh.Data memory data) internal view returns (ExecutionOutcome memory outcome) { outcome.logs = new bytes[](data.decodeU32()); for (uint i = 0; i < outcome.logs.length; i++) { outcome.logs[i] = data.decodeBytes(); } uint256 start = data.offset; outcome.receipt_ids = new bytes32[](data.decodeU32()); for (uint i = 0; i < outcome.receipt_ids.length; i++) { outcome.receipt_ids[i] = data.decodeBytes32(); } outcome.gas_burnt = data.decodeU64(); outcome.tokens_burnt = data.decodeU128(); outcome.executor_id = data.decodeBytes(); outcome.status = data.decodeExecutionStatus(); uint256 stop = data.offset; outcome.merkelization_hashes = new bytes32[](1 + outcome.logs.length); data.offset = start; outcome.merkelization_hashes[0] = data.peekSha256(stop - start); data.offset = stop; for (uint i = 0; i < outcome.logs.length; i++) { outcome.merkelization_hashes[i + 1] = sha256(outcome.logs[i]); } } struct ExecutionOutcomeWithId { bytes32 id; /// The transaction hash or the receipt ID. ExecutionOutcome outcome; bytes32 hash; } function decodeExecutionOutcomeWithId(Borsh.Data memory data) internal view returns (ExecutionOutcomeWithId memory outcome) { outcome.id = data.decodeBytes32(); outcome.outcome = data.decodeExecutionOutcome(); uint256 len = 1 + outcome.outcome.merkelization_hashes.length; outcome.hash = sha256( abi.encodePacked( uint8((len >> 0) & 0xFF), uint8((len >> 8) & 0xFF), uint8((len >> 16) & 0xFF), uint8((len >> 24) & 0xFF), outcome.id, outcome.outcome.merkelization_hashes ) ); } struct MerklePathItem { bytes32 hash; uint8 direction; // 0 = left, 1 = right } function decodeMerklePathItem(Borsh.Data memory data) internal pure returns (MerklePathItem memory item) { item.hash = data.decodeBytes32(); item.direction = data.decodeU8(); require(item.direction < 2, "ProofDecoder: MerklePathItem direction should be 0 or 1"); } struct MerklePath { MerklePathItem[] items; } function decodeMerklePath(Borsh.Data memory data) internal pure returns (MerklePath memory path) { path.items = new MerklePathItem[](data.decodeU32()); for (uint i = 0; i < path.items.length; i++) { path.items[i] = data.decodeMerklePathItem(); } } struct ExecutionOutcomeWithIdAndProof { MerklePath proof; bytes32 block_hash; ExecutionOutcomeWithId outcome_with_id; } function decodeExecutionOutcomeWithIdAndProof(Borsh.Data memory data) internal view returns (ExecutionOutcomeWithIdAndProof memory outcome) { outcome.proof = data.decodeMerklePath(); outcome.block_hash = data.decodeBytes32(); outcome.outcome_with_id = data.decodeExecutionOutcomeWithId(); } } // File: rainbow-bridge/contracts/eth/nearprover/contracts/INearProver.sol pragma solidity ^0.6; interface INearProver { function proveOutcome(bytes calldata proofData, uint64 blockHeight) external view returns (bool); } // File: contracts/Locker.sol pragma solidity ^0.6.12; contract Locker { using Borsh for Borsh.Data; using ProofDecoder for Borsh.Data; INearProver public prover_; bytes public nearTokenFactory_; /// Proofs from blocks that are below the acceptance height will be rejected. // If `minBlockAcceptanceHeight_` value is zero - proofs from block with any height are accepted. uint64 public minBlockAcceptanceHeight_; // OutcomeReciptId -> Used mapping(bytes32 => bool) public usedProofs_; constructor(bytes memory nearTokenFactory, INearProver prover, uint64 minBlockAcceptanceHeight) public { require(nearTokenFactory.length > 0, "Invalid Near Token Factory address"); require(address(prover) != address(0), "Invalid Near prover address"); nearTokenFactory_ = nearTokenFactory; prover_ = prover; minBlockAcceptanceHeight_ = minBlockAcceptanceHeight; } /// Parses the provided proof and consumes it if it's not already used. /// The consumed event cannot be reused for future calls. function _parseAndConsumeProof(bytes memory proofData, uint64 proofBlockHeight) internal returns (ProofDecoder.ExecutionStatus memory result) { require(proofBlockHeight >= minBlockAcceptanceHeight_, "Proof is from the ancient block"); require(prover_.proveOutcome(proofData, proofBlockHeight), "Proof should be valid"); // Unpack the proof and extract the execution outcome. Borsh.Data memory borshData = Borsh.from(proofData); ProofDecoder.FullOutcomeProof memory fullOutcomeProof = borshData.decodeFullOutcomeProof(); require(borshData.finished(), "Argument should be exact borsh serialization"); bytes32 receiptId = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.receipt_ids[0]; require(!usedProofs_[receiptId], "The burn event proof cannot be reused"); usedProofs_[receiptId] = true; require(keccak256(fullOutcomeProof.outcome_proof.outcome_with_id.outcome.executor_id) == keccak256(nearTokenFactory_), "Can only unlock tokens from the linked proof producer on Near blockchain"); result = fullOutcomeProof.outcome_proof.outcome_with_id.outcome.status; require(!result.failed, "Cannot use failed execution outcome for unlocking the tokens"); require(!result.unknown, "Cannot use unknown execution outcome for unlocking the tokens"); } } // File: contracts/ERC20Locker.sol pragma solidity ^0.6.12; contract ERC20Locker is Locker, AdminControlled { using SafeMath for uint256; using SafeERC20 for IERC20; event Locked ( address indexed token, address indexed sender, uint256 amount, string accountId ); event Unlocked ( uint128 amount, address recipient ); // Function output from burning fungible token on Near side. struct BurnResult { uint128 amount; address token; address recipient; } uint constant UNPAUSED_ALL = 0; uint constant PAUSED_LOCK = 1 << 0; uint constant PAUSED_UNLOCK = 1 << 1; // ERC20Locker is linked to the bridge token factory on NEAR side. // It also links to the prover that it uses to unlock the tokens. constructor(bytes memory nearTokenFactory, INearProver prover, uint64 minBlockAcceptanceHeight, address _admin, uint pausedFlags) AdminControlled(_admin, pausedFlags) Locker(nearTokenFactory, prover, minBlockAcceptanceHeight) public { } function lockToken(address ethToken, uint256 amount, string memory accountId) public pausable (PAUSED_LOCK) { require(IERC20(ethToken).balanceOf(address(this)).add(amount) <= ((uint256(1) << 128) - 1), "Maximum tokens locked exceeded (< 2^128 - 1)"); IERC20(ethToken).safeTransferFrom(msg.sender, address(this), amount); emit Locked(address(ethToken), msg.sender, amount, accountId); } function unlockToken(bytes memory proofData, uint64 proofBlockHeight) public pausable (PAUSED_UNLOCK) { ProofDecoder.ExecutionStatus memory status = _parseAndConsumeProof(proofData, proofBlockHeight); BurnResult memory result = _decodeBurnResult(status.successValue); IERC20(result.token).safeTransfer(result.recipient, result.amount); emit Unlocked(result.amount, result.recipient); } function _decodeBurnResult(bytes memory data) internal pure returns(BurnResult memory result) { Borsh.Data memory borshData = Borsh.from(data); uint8 flag = borshData.decodeU8(); require(flag == 0, "ERR_NOT_WITHDRAW_RESULT"); result.amount = borshData.decodeU128(); bytes20 token = borshData.decodeBytes20(); result.token = address(uint160(token)); bytes20 recipient = borshData.decodeBytes20(); result.recipient = address(uint160(recipient)); } // tokenFallback implements the ContractReceiver interface from ERC223-token-standard. // This allows to support ERC223 tokens with no extra cost. // The function always passes: we don't need to make any decision and the contract always // accept token transfers transfer. function tokenFallback(address _from, uint _value, bytes memory _data) public pure {} function adminTransfer(IERC20 token, address destination, uint amount) public onlyAdmin { token.safeTransfer(destination, amount); } }
File 2 of 2: AuroraToken
//SPDX-License-Identifier: CC0-1.0 pragma solidity ^0.8.7; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; /// @title AURORA Token /// @author Aurora team /// @notice This contract is managed by Aurora DAO. /// @dev This is the official Aurora ERC20 contract. contract AuroraToken is ERC20 { uint8 constant _DECIMALS = 18; uint256 constant _TOTALCAP = 1000000000; constructor( string memory name, string memory symbol, address dao ) ERC20(name, symbol) { uint256 _maxSupply = _TOTALCAP * (uint256(10) ** _DECIMALS); _mint(dao, _maxSupply); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); _afterTokenTransfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }