ETH Price: $2,451.98 (+7.71%)

Transaction Decoder

Block:
20672465 at Sep-03-2024 08:32:47 PM +UTC
Transaction Fee:
0.0006778706690588 ETH $1.66
Gas Used:
281,630 Gas / 2.40695476 Gwei

Emitted Events:

466 Proxy.0x5d5446905f1f582d57d04ced5b1bed0f1a6847bcee57f7dd9d6f2ec12ab9ec2e( 0x5d5446905f1f582d57d04ced5b1bed0f1a6847bcee57f7dd9d6f2ec12ab9ec2e, 0x0306b371c4dd88fa015aabccce30eebb30c333c5bc36eb42bcf9aeb096c47047, 0x0000000000000000000000004200000000000000000000000000000000000007, 0x0000000000000000000000005d4472f31bd9385709ec61305afc749f0fa8e9d0, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x0Ec68c5B...08C0Db6Cb
(Blast: Optimism Portal Proxy)
(Titan Builder)
7.876653813475868885 Eth7.876848824390739175 Eth0.00019501091487029
0xe7C86C84...5E5fd27D4
0.001672812765067 Eth
Nonce: 11
0.0009949420960082 Eth
Nonce: 12
0.0006778706690588

Execution Trace

Proxy.4870496f( )
  • OptimismPortal.proveWithdrawalTransaction( _tx=[{name:nonce, type:uint256, order:1, indexed:false, value:1766847064778384329583297500742918515827483896875618958121606201292655057, valueString:1766847064778384329583297500742918515827483896875618958121606201292655057}, {name:sender, type:address, order:2, indexed:false, value:0x4200000000000000000000000000000000000007, valueString:0x4200000000000000000000000000000000000007}, {name:target, type:address, order:3, indexed:false, value:0x5D4472f31Bd9385709ec61305AFc749F0fA8e9d0, valueString:0x5D4472f31Bd9385709ec61305AFc749F0fA8e9d0}, {name:value, type:uint256, order:4, indexed:false, value:0, valueString:0}, {name:gasLimit, type:uint256, order:5, indexed:false, value:1121346, valueString:1121346}, {name:data, type:bytes, order:6, indexed:false, value:0xD764AD0B00010000000000000000000000000000000000000000000000000000000089D000000000000000000000000043000000000000000000000000000000000000050000000000000000000000003A05E5D33D7AB3864D53AAEC93C8301C1FA49115000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C350000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000E40166A07A0000000000000000000000006B175474E89094C44DA98B954EEDEAC495271D0F0000000000000000000000004300000000000000000000000000000000000003000000000000000000000000E7C86C84A165542A3A51B6B21E7A1825E5FD27D4000000000000000000000000E7C86C84A165542A3A51B6B21E7A1825E5FD27D400000000000000000000000000000000000000000000000657B3801B80B4000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, valueString:0xD764AD0B00010000000000000000000000000000000000000000000000000000000089D000000000000000000000000043000000000000000000000000000000000000050000000000000000000000003A05E5D33D7AB3864D53AAEC93C8301C1FA49115000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000C350000000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000000E40166A07A0000000000000000000000006B175474E89094C44DA98B954EEDEAC495271D0F0000000000000000000000004300000000000000000000000000000000000003000000000000000000000000E7C86C84A165542A3A51B6B21E7A1825E5FD27D4000000000000000000000000E7C86C84A165542A3A51B6B21E7A1825E5FD27D400000000000000000000000000000000000000000000000657B3801B80B4000000000000000000000000000000000000000000000000000000000000000000C0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}], _l2OutputIndex=3743, _outputRootProof=[{name:version, type:bytes32, order:1, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:stateRoot, type:bytes32, order:2, indexed:false, value:64BE4EE80030C7737CC38A7B6A3A6F75BBFD503D4F8166EDDE72E100B308501C, valueString:64BE4EE80030C7737CC38A7B6A3A6F75BBFD503D4F8166EDDE72E100B308501C}, {name:messagePasserStorageRoot, type:bytes32, order:3, indexed:false, value:BCFB0D848B35275769450AD3DE53618796CAEE006993B0139639AE4899C579E3, valueString:BCFB0D848B35275769450AD3DE53618796CAEE006993B0139639AE4899C579E3}, {name:latestBlockhash, type:bytes32, order:4, indexed:false, value:38AC2720289973D1B64F7C941389A67E53FD271D2DCC17202C9274F2B3BAA74B, valueString:38AC2720289973D1B64F7C941389A67E53FD271D2DCC17202C9274F2B3BAA74B}], _withdrawalProof=[+QIRoLDvd+gT0JGlW2tLP1Ck7o9nGlciyV/7mfygukRLRbmboCkATRuGHOoKAAfZVcTOa3VLD4DY0gTm9+h13xD7oAvtoNdA6guWrwhi6MAFOUjgpAzHkyXqtmbXSr4Gw05hAh9poMIJc0F/Gqzvj9Om38jAe3avKyMJoaTnR7Cqtek3ZImooHXkCEVbBC/p3ZB3HIS4zvfYl9PfkQcrhDkCsdiWoOPNoBplgkHJmpIgTEMl6q17YlA1iQwdujQLzHfWzIt5CtjmoMe8eHcLihWo/92InmB0wUCuA9tpXFVXr3x+srMUbfUFoOdG5owyh3KCEo+Q8cw7GbowaOQ7QVFe48KVft0BcEMsoL3SNMuQkDLlqo6gQEn4+C/xarzwPiO9qI2GWrb3vB9aoGuySLaQxUow+la2F0qJujiSU8ZsaJrzkBEea1dLE6/8oBW77ITBbdfd406aOkPM1Ud/Lqx6Avhto2HelYV/7oCgoNjGdmFXXFD4wID76PFmGnw6++BPaheVZ31kDnoixjJQoCF0x66ps/su2dNgGq/pUre9MM2yPGtRSOxSSUpBXe7koER0jcY375VmKGvRDkUOqqvnF1Z8WNyAgMF/Yu1RgkHEoK2LK03iH7hu0XWTJyXxfknWyeHmDxNm6H5PKF5qxNAaoHFL5VdQ8Y5RHe6vkgR1XCkWDl92KPAK1v7PG7GfRtCFgA==, +QIRoINOPFwj9v7GCjgn735RQo2nZ49lvDbVnH73a7uRA8B4oFf3pobZOJ2hDDDRksOLMpLtjAWpBrnwYqqEHJ81R9YzoMGZfgpzzVNgPHMoKAUyDL0WY2Jrlg501sv1VRJkB8iQoBb/R0x6BfbaiQ5oLudH8HsAejafdVcgvi5jidGVJgfaoFMLnzSjfn+2q3nBMkkhfggTfQmdpkCtnqjNOayq110goBQYhvYfnCUsw/LmnR2YEcCp1AhBjhl9veFQ7JhRjky/oMIBX8b3d+U1lmQl8VVrMOryBkNqZmFs9fy3ZkqW5d/roCLp1IK0WIzkajR7aGxDRQdcUIVOaT6JxMhsDR2PuuT8oOCmuacgOsbjU5U32U/YJezGXh1DXFy5EGJ4azUF2JVqoPiSDXR9Zop9c14TsiTtsj7LDP2RgxHQ9hfhm/SST8TEoCsC8Hm7kcY9ClAsfwNeqe1mkPJFBqQfwujnH1TnD1ZKoKVdOQ6Q3d+NLrf+pyS6XzS+Ht8Z5uXP9jhFNl3dG3R+oFL3lSpfZ/UA0Je4i5/lYs5mRy1Eh+GW54rlgsU4WkVJoKkjta7tXLJWMyp5IpfABgdtLGxwe1XX/qpSWpVvwg71oDYiWWytZTWviM5PzGIMOABGLSR9C/yFXDny/NWxOvIMoGlFInN/thIxzdV/XMNzmQ1L4tonX3LH1CaadNw35lF9gA==, +QIRoKAxM0FbymcaqYSiApGUgCndxWiGhVKDWJ8As7nY0uWToKbSbcBin2rZoFADAg7LE5LGt2XuE5G6sHDt49GcWbG8oOM1Q0aGNEwLeRZWZ+e9Ht9l3rFGvD4/SZR/UoS8pnphoDtsrAvkO4W9pMfRIM9VOR89zF/N5iyNSBYpO1s5GEYGoDNPBQ9UAiHzP5xAf9r73SHNmArD48K1IIO5rbeRWaUOoOY8vgwu9h7eMfCRHPfIhCAV56puQ05CgclWr8u+xG1eoBqULwRW7KsVj9zhEwXP+JGhYzwKYOBmX/cWR7/K52V5oD550d6tbUhkU+83jzVgC7kGPFA63I3OZ52aGDL/sUSDoB2lGf/FwuKv6/DPf+zDyT/js45TchQUBbyHWcz6gAE9oCMh2MAEsPeGjSoK6N4SGDfNzMkVyPfZbGd6ZcjT0gK7oKRSU6yW/3Bakr9cNwMoUlIrjf6AwB6S8Hpwol3A41bRoInvdDPXNb0XlHdZ2cC+a9s6REBAei2k58UrqJs1+nUboFxo45muzCOl8ZPz0Z+orw0NEOwx6qycp4fW8J4q7V0QoCb9xbC7NkJEewrqFdMBJE3LPrA6XHCLshqCXTPBV6dDoJU8aAdJpcJNZW5B1LxEaLsPdre5R8/5smseRQxiGcHAoJTNE8Hokx0+RUTRygMq/rLJ5UQ7Skmvxr3RTxYK+cBOgA==, +LGAgICAgICg6mhKvVxuisGbx0sN+B+7uwgFOtOlSCDT2l2QUaEt7IqAoJHoX8fEVEBV250Cp9KhhPr5xSl39sw7AJTFJmkwbs4zoAju/vvw1cPmIcFj9MHSrEvgUHJ3BJ7ls9UYmW6lc/QhgICg+PmqoomVxQJErN4Oeq78CC0d5eFGxvYgfv0Um3Nn3mOAgKAyHeKTUnTVcedLLR38Su11tWZk7hEw57jv4/Duma1J24A=, 4Z8gDRMPMNBUw8KJngpGbuSpXigkHDmON/3AWAfUBDd7AQ==] )
    • Proxy.a25ae557( )
      • L2OutputOracle.getL2Output( _l2OutputIndex=3743 ) => ( [{name:outputRoot, type:bytes32, order:1, indexed:false, value:03F99225ED67153A9D0164FF4283C421BCE10F1D208BC894DA1DB0F51D2451B6, valueString:03F99225ED67153A9D0164FF4283C421BCE10F1D208BC894DA1DB0F51D2451B6}, {name:timestamp, type:uint128, order:2, indexed:false, value:1722289523, valueString:1722289523}, {name:l2BlockNumber, type:uint128, order:3, indexed:false, value:6739200, valueString:6739200}] )
        File 1 of 4: Proxy
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Constants } from "src/libraries/Constants.sol";
        /// @title Proxy
        /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
        ///         if the caller is address(0), meaning that the call originated from an off-chain
        ///         simulation.
        contract Proxy {
            /// @notice An event that is emitted each time the implementation is changed. This event is part
            ///         of the EIP-1967 specification.
            /// @param implementation The address of the implementation contract
            event Upgraded(address indexed implementation);
            /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
            ///         EIP-1967 specification.
            /// @param previousAdmin The previous owner of the contract
            /// @param newAdmin      The new owner of the contract
            event AdminChanged(address previousAdmin, address newAdmin);
            /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
            ///         eth_call to interact with this proxy without needing to use low-level storage
            ///         inspection. We assume that nobody is able to trigger calls from address(0) during
            ///         normal EVM execution.
            modifier proxyCallIfNotAdmin() {
                if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
            ///         EIP-1967 admin storage slot so that accidental storage collision with the
            ///         implementation is not possible.
            /// @param _admin Address of the initial contract admin. Admin as the ability to access the
            ///               transparent proxy interface.
            constructor(address _admin) {
                _changeAdmin(_admin);
            }
            // slither-disable-next-line locked-ether
            receive() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            // slither-disable-next-line locked-ether
            fallback() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            /// @notice Set the implementation contract address. The code at the given address will execute
            ///         when this contract is called.
            /// @param _implementation Address of the implementation contract.
            function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                _setImplementation(_implementation);
            }
            /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
            ///         atomic execution of initialization-based upgrades.
            /// @param _implementation Address of the implementation contract.
            /// @param _data           Calldata to delegatecall the new implementation with.
            function upgradeToAndCall(
                address _implementation,
                bytes calldata _data
            )
                public
                payable
                virtual
                proxyCallIfNotAdmin
                returns (bytes memory)
            {
                _setImplementation(_implementation);
                (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                require(success, "Proxy: delegatecall to new implementation contract failed");
                return returndata;
            }
            /// @notice Changes the owner of the proxy contract. Only callable by the owner.
            /// @param _admin New owner of the proxy contract.
            function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                _changeAdmin(_admin);
            }
            /// @notice Gets the owner of the proxy contract.
            /// @return Owner address.
            function admin() public virtual proxyCallIfNotAdmin returns (address) {
                return _getAdmin();
            }
            //// @notice Queries the implementation address.
            /// @return Implementation address.
            function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                return _getImplementation();
            }
            /// @notice Sets the implementation address.
            /// @param _implementation New implementation address.
            function _setImplementation(address _implementation) internal {
                bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                assembly {
                    sstore(proxyImplementation, _implementation)
                }
                emit Upgraded(_implementation);
            }
            /// @notice Changes the owner of the proxy contract.
            /// @param _admin New owner of the proxy contract.
            function _changeAdmin(address _admin) internal {
                address previous = _getAdmin();
                bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                assembly {
                    sstore(proxyOwner, _admin)
                }
                emit AdminChanged(previous, _admin);
            }
            /// @notice Performs the proxy call via a delegatecall.
            function _doProxyCall() internal {
                address impl = _getImplementation();
                require(impl != address(0), "Proxy: implementation not initialized");
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) { revert(0x0, returndatasize()) }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
            /// @notice Queries the implementation address.
            /// @return Implementation address.
            function _getImplementation() internal view returns (address) {
                address impl;
                bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                assembly {
                    impl := sload(proxyImplementation)
                }
                return impl;
            }
            /// @notice Queries the owner of the proxy contract.
            /// @return Owner address.
            function _getAdmin() internal view returns (address) {
                address owner;
                bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                assembly {
                    owner := sload(proxyOwner)
                }
                return owner;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { ResourceMetering } from "../L1/ResourceMetering.sol";
        /// @title Constants
        /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
        ///         the stuff used in multiple contracts. Constants that only apply to a single contract
        ///         should be defined in that contract instead.
        library Constants {
            /// @notice Special address to be used as the tx origin for gas estimation calls in the
            ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
            ///         the minimum gas limit specified by the user is not actually enough to execute the
            ///         given message and you're attempting to estimate the actual necessary gas limit. We
            ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
            ///         never have any code on any EVM chain.
            address internal constant ESTIMATION_ADDRESS = address(1);
            /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
            ///         CrossDomainMessenger contracts before an actual sender is set. This value is
            ///         non-zero to reduce the gas cost of message passing transactions.
            address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
            /// @notice The storage slot that holds the address of a proxy implementation.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
            bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /// @notice The storage slot that holds the address of the owner.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
            bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /// @notice Returns the default values for the ResourceConfig. These are the recommended values
            ///         for a production network.
            function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                    maxResourceLimit: 20_000_000,
                    elasticityMultiplier: 10,
                    baseFeeMaxChangeDenominator: 8,
                    minimumBaseFee: 1 gwei,
                    systemTxMaxGas: 1_000_000,
                    maximumBaseFee: type(uint128).max
                });
                return config;
            }
            /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
            ///         each time that the contracts are deployed.
            uint8 internal constant INITIALIZER = 1;
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Burn } from "src/libraries/Burn.sol";
        import { Arithmetic } from "src/libraries/Arithmetic.sol";
        /// @custom:upgradeable
        /// @title ResourceMetering
        /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
        ///         updates automatically based on current demand.
        abstract contract ResourceMetering is Initializable {
            /// @notice Represents the various parameters that control the way in which resources are
            ///         metered. Corresponds to the EIP-1559 resource metering system.
            /// @custom:field prevBaseFee   Base fee from the previous block(s).
            /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
            /// @custom:field prevBlockNum  Last block number that the base fee was updated.
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
            ///         market. These values should be set with care as it is possible to set them in
            ///         a way that breaks the deposit gas market. The target resource limit is defined as
            ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
            ///         single word. There is additional space for additions in the future.
            /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
            ///                                            can be purchased per block.
            /// @custom:field elasticityMultiplier         Determines the target resource limit along with
            ///                                            the resource limit.
            /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
            /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
            ///                                            value.
            /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
            ///                                            transaction. This should be set to the same
            ///                                            number that the op-node sets as the gas limit
            ///                                            for the system transaction.
            /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
            ///                                            value.
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            /// @notice EIP-1559 style gas parameters.
            ResourceParams public params;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            uint256[48] private __gap;
            /// @notice Meters access to a function based an amount of a requested resource.
            /// @param _amount Amount of the resource requested.
            modifier metered(uint64 _amount) {
                // Record initial gas amount so we can refund for it later.
                uint256 initialGas = gasleft();
                // Run the underlying function.
                _;
                // Run the metering function.
                _metered(_amount, initialGas);
            }
            /// @notice An internal function that holds all of the logic for metering a resource.
            /// @param _amount     Amount of the resource requested.
            /// @param _initialGas The amount of gas before any modifier execution.
            function _metered(uint64 _amount, uint256 _initialGas) internal {
                // Update block number and base fee if necessary.
                uint256 blockDiff = block.number - params.prevBlockNum;
                ResourceConfig memory config = _resourceConfig();
                int256 targetResourceLimit =
                    int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                if (blockDiff > 0) {
                    // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                    // at which deposits can be created and therefore limit the potential for deposits to
                    // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                    int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                    int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                        / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                    // Update base fee by adding the base fee delta and clamp the resulting value between
                    // min and max.
                    int256 newBaseFee = Arithmetic.clamp({
                        _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                    // If we skipped more than one block, we also need to account for every empty block.
                    // Empty block means there was no demand for deposits in that block, so we should
                    // reflect this lack of demand in the fee.
                    if (blockDiff > 1) {
                        // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                        // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                        // between min and max.
                        newBaseFee = Arithmetic.clamp({
                            _value: Arithmetic.cdexp({
                                _coefficient: newBaseFee,
                                _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                _exponent: int256(blockDiff - 1)
                            }),
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                    }
                    // Update new base fee, reset bought gas, and update block number.
                    params.prevBaseFee = uint128(uint256(newBaseFee));
                    params.prevBoughtGas = 0;
                    params.prevBlockNum = uint64(block.number);
                }
                // Make sure we can actually buy the resource amount requested by the user.
                params.prevBoughtGas += _amount;
                require(
                    int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                    "ResourceMetering: cannot buy more gas than available gas limit"
                );
                // Determine the amount of ETH to be paid.
                uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                // during any 1 day period in the last 5 years, so should be fine.
                uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                // Give the user a refund based on the amount of gas they used to do all of the work up to
                // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                // effectively like a dynamic stipend (with a minimum value).
                uint256 usedGas = _initialGas - gasleft();
                if (gasCost > usedGas) {
                    Burn.gas(gasCost - usedGas);
                }
            }
            /// @notice Virtual function that returns the resource config.
            ///         Contracts that inherit this contract must implement this function.
            /// @return ResourceConfig
            function _resourceConfig() internal virtual returns (ResourceConfig memory);
            /// @notice Sets initial resource parameter values.
            ///         This function must either be called by the initializer function of an upgradeable
            ///         child contract.
            // solhint-disable-next-line func-name-mixedcase
            function __ResourceMetering_init() internal onlyInitializing {
                if (params.prevBlockNum == 0) {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        /// @title Burn
        /// @notice Utilities for burning stuff.
        library Burn {
            /// @notice Burns a given amount of ETH.
            /// @param _amount Amount of ETH to burn.
            function eth(uint256 _amount) internal {
                new Burner{ value: _amount }();
            }
            /// @notice Burns a given amount of gas.
            /// @param _amount Amount of gas to burn.
            function gas(uint256 _amount) internal view {
                uint256 i = 0;
                uint256 initialGas = gasleft();
                while (initialGas - gasleft() < _amount) {
                    ++i;
                }
            }
        }
        /// @title Burner
        /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
        ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
        ///         from the circulating supply.
        contract Burner {
            constructor() payable {
                selfdestruct(payable(address(this)));
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
        /// @title Arithmetic
        /// @notice Even more math than before.
        library Arithmetic {
            /// @notice Clamps a value between a minimum and maximum.
            /// @param _value The value to clamp.
            /// @param _min   The minimum value.
            /// @param _max   The maximum value.
            /// @return The clamped value.
            function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                return SignedMath.min(SignedMath.max(_value, _min), _max);
            }
            /// @notice (c)oefficient (d)enominator (exp)onentiation function.
            ///         Returns the result of: c * (1 - 1/d)^exp.
            /// @param _coefficient Coefficient of the function.
            /// @param _denominator Fractional denominator.
            /// @param _exponent    Power function exponent.
            /// @return Result of c * (1 - 1/d)^exp.
            function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*//////////////////////////////////////////////////////////////
                            SIMPLIFIED FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
            function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
            }
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
            }
            function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
            }
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
            }
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
            }
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is < 0.5 we return zero. This happens when
                    // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                    if (x <= -42139678854452767551) return 0;
                    // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                    // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                    if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                    // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5**18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // k is in the range [-61, 195].
                    // Evaluate using a (6, 7)-term rational approximation.
                    // p is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range (0.09, 0.25) * 2**96.
                    // We now need to multiply r by:
                    // * the scale factor s = ~6.031367120.
                    // * the 2**k factor from the range reduction.
                    // * the 1e18 / 2**96 factor for base conversion.
                    // We do this all at once, with an intermediate result in 2**213
                    // basis, so the final right shift is always by a positive amount.
                    r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                }
            }
            function lnWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    require(x > 0, "UNDEFINED");
                    // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                    // We do this by multiplying by 2**96 / 10**18. But since
                    // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                    // and add ln(2**96 / 10**18) at the end.
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    int256 k = int256(log2(uint256(x))) - 96;
                    x <<= uint256(159 - k);
                    x = int256(uint256(x) >> 159);
                    // Evaluate using a (8, 8)-term rational approximation.
                    // p is made monic, we will multiply by a scale factor later.
                    int256 p = x + 3273285459638523848632254066296;
                    p = ((p * x) >> 96) + 24828157081833163892658089445524;
                    p = ((p * x) >> 96) + 43456485725739037958740375743393;
                    p = ((p * x) >> 96) - 11111509109440967052023855526967;
                    p = ((p * x) >> 96) - 45023709667254063763336534515857;
                    p = ((p * x) >> 96) - 14706773417378608786704636184526;
                    p = p * x - (795164235651350426258249787498 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    // q is monic by convention.
                    int256 q = x + 5573035233440673466300451813936;
                    q = ((q * x) >> 96) + 71694874799317883764090561454958;
                    q = ((q * x) >> 96) + 283447036172924575727196451306956;
                    q = ((q * x) >> 96) + 401686690394027663651624208769553;
                    q = ((q * x) >> 96) + 204048457590392012362485061816622;
                    q = ((q * x) >> 96) + 31853899698501571402653359427138;
                    q = ((q * x) >> 96) + 909429971244387300277376558375;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial is known not to have zeros in the domain.
                        // No scaling required because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r is in the range (0, 0.125) * 2**96
                    // Finalization, we need to:
                    // * multiply by the scale factor s = 5.549…
                    // * add ln(2**96 / 10**18)
                    // * add k * ln(2)
                    // * multiply by 10**18 / 2**96 = 5**18 >> 78
                    // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                    r *= 1677202110996718588342820967067443963516166;
                    // add ln(2) * k * 5e18 * 2**192
                    r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                    // add ln(2**96 / 10**18) * 5e18 * 2**192
                    r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                    // base conversion: mul 2**18 / 2**192
                    r >>= 174;
                }
            }
            /*//////////////////////////////////////////////////////////////
                            LOW LEVEL FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function mulDivDown(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // Divide z by the denominator.
                    z := div(z, denominator)
                }
            }
            function mulDivUp(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // First, divide z - 1 by the denominator and add 1.
                    // We allow z - 1 to underflow if z is 0, because we multiply the
                    // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                    z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                }
            }
            function rpow(
                uint256 x,
                uint256 n,
                uint256 scalar
            ) internal pure returns (uint256 z) {
                assembly {
                    switch x
                    case 0 {
                        switch n
                        case 0 {
                            // 0 ** 0 = 1
                            z := scalar
                        }
                        default {
                            // 0 ** n = 0
                            z := 0
                        }
                    }
                    default {
                        switch mod(n, 2)
                        case 0 {
                            // If n is even, store scalar in z for now.
                            z := scalar
                        }
                        default {
                            // If n is odd, store x in z for now.
                            z := x
                        }
                        // Shifting right by 1 is like dividing by 2.
                        let half := shr(1, scalar)
                        for {
                            // Shift n right by 1 before looping to halve it.
                            n := shr(1, n)
                        } n {
                            // Shift n right by 1 each iteration to halve it.
                            n := shr(1, n)
                        } {
                            // Revert immediately if x ** 2 would overflow.
                            // Equivalent to iszero(eq(div(xx, x), x)) here.
                            if shr(128, x) {
                                revert(0, 0)
                            }
                            // Store x squared.
                            let xx := mul(x, x)
                            // Round to the nearest number.
                            let xxRound := add(xx, half)
                            // Revert if xx + half overflowed.
                            if lt(xxRound, xx) {
                                revert(0, 0)
                            }
                            // Set x to scaled xxRound.
                            x := div(xxRound, scalar)
                            // If n is even:
                            if mod(n, 2) {
                                // Compute z * x.
                                let zx := mul(z, x)
                                // If z * x overflowed:
                                if iszero(eq(div(zx, x), z)) {
                                    // Revert if x is non-zero.
                                    if iszero(iszero(x)) {
                                        revert(0, 0)
                                    }
                                }
                                // Round to the nearest number.
                                let zxRound := add(zx, half)
                                // Revert if zx + half overflowed.
                                if lt(zxRound, zx) {
                                    revert(0, 0)
                                }
                                // Return properly scaled zxRound.
                                z := div(zxRound, scalar)
                            }
                        }
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                GENERAL NUMBER UTILITIES
            //////////////////////////////////////////////////////////////*/
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                assembly {
                    let y := x // We start y at x, which will help us make our initial estimate.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // We check y >= 2^(k + 8) but shift right by k bits
                    // each branch to ensure that if x >= 256, then y >= 256.
                    if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                        y := shr(128, y)
                        z := shl(64, z)
                    }
                    if iszero(lt(y, 0x1000000000000000000)) {
                        y := shr(64, y)
                        z := shl(32, z)
                    }
                    if iszero(lt(y, 0x10000000000)) {
                        y := shr(32, y)
                        z := shl(16, z)
                    }
                    if iszero(lt(y, 0x1000000)) {
                        y := shr(16, y)
                        z := shl(8, z)
                    }
                    // Goal was to get z*z*y within a small factor of x. More iterations could
                    // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                    // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                    // That's not possible if x < 256 but we can just verify those cases exhaustively.
                    // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                    // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                    // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                    // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                    // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                    // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                    // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                    // There is no overflow risk here since y < 2^136 after the first branch above.
                    z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If x+1 is a perfect square, the Babylonian method cycles between
                    // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                    // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                    z := sub(z, lt(div(x, z), z))
                }
            }
            function log2(uint256 x) internal pure returns (uint256 r) {
                require(x > 0, "UNDEFINED");
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    r := or(r, shl(2, lt(0xf, shr(r, x))))
                    r := or(r, shl(1, lt(0x3, shr(r, x))))
                    r := or(r, lt(0x1, shr(r, x)))
                }
            }
        }
        

        File 2 of 4: OptimismPortal
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { SafeCall } from "src/libraries/SafeCall.sol";
        import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
        import { SystemConfig } from "src/L1/SystemConfig.sol";
        import { Constants } from "src/libraries/Constants.sol";
        import { Types } from "src/libraries/Types.sol";
        import { Hashing } from "src/libraries/Hashing.sol";
        import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
        import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
        import { ResourceMetering } from "src/L1/ResourceMetering.sol";
        import { ISemver } from "src/universal/ISemver.sol";
        import { ETHYieldManager } from "src/mainnet-bridge/ETHYieldManager.sol";
        import { Predeploys } from "src/libraries/Predeploys.sol";
        /// @custom:proxied
        /// @title OptimismPortal
        /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
        ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
        ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
        contract OptimismPortal is Initializable, ResourceMetering, ISemver {
            /// @notice Represents a proven withdrawal.
            /// @custom:field outputRoot    Root of the L2 output this was proven against.
            /// @custom:field timestamp     Timestamp at which the withdrawal was proven.
            /// @custom:field l2OutputIndex Index of the output this was proven against.
            struct ProvenWithdrawal {
                bytes32 outputRoot;
                uint128 timestamp;
                uint128 l2OutputIndex;
                uint256 requestId;
            }
            /// @notice Version of the deposit event.
            uint256 internal constant DEPOSIT_VERSION = 0;
            /// @notice The L2 gas limit set when eth is deposited using the receive() function.
            uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
            /// @notice The L1 gas limit set when sending eth to the YieldManager.
            uint64 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
            /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
            ///         If the address of this variable is the default L2 sender address, then we
            ///         are NOT inside of a call to finalizeWithdrawalTransaction.
            address public l2Sender;
            /// @notice A list of withdrawal hashes which have been successfully finalized.
            mapping(bytes32 => bool) public finalizedWithdrawals;
            /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
            mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
            /// @notice Determines if cross domain messaging is paused.
            ///         When set to true, withdrawals are paused.
            ///         This may be removed in the future.
            bool public paused;
            /// @notice Address of the L2OutputOracle contract.
            /// @custom:network-specific
            L2OutputOracle public l2Oracle;
            /// @notice Address of the SystemConfig contract.
            /// @custom:network-specific
            SystemConfig public systemConfig;
            /// @notice Address that has the ability to pause and unpause withdrawals.
            /// @custom:network-specific
            address public guardian;
            /// @notice Address of the ETH yield manager.
            ETHYieldManager public yieldManager;
            /// @notice Emitted when a transaction is deposited from L1 to L2.
            ///         The parameters of this event are read by the rollup node and used to derive deposit
            ///         transactions on L2.
            /// @param from       Address that triggered the deposit transaction.
            /// @param to         Address that the deposit transaction is directed to.
            /// @param version    Version of this deposit transaction event.
            /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
            event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
            /// @notice Emitted when a withdrawal transaction is proven.
            /// @param withdrawalHash Hash of the withdrawal transaction.
            /// @param from           Address that triggered the withdrawal transaction.
            /// @param to             Address that the withdrawal transaction is directed to.
            /// @param requestId      Id of the withdrawal request
            event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to, uint256 requestId);
            /// @notice Emitted when a withdrawal transaction is finalized.
            /// @param withdrawalHash Hash of the withdrawal transaction.
            /// @param hintId is the checkpoint ID produce by YieldManager
            /// @param success        Whether the withdrawal transaction was successful.
            event WithdrawalFinalized(bytes32 indexed withdrawalHash, uint256 indexed hintId, bool success);
            /// @notice Emitted when the pause is triggered.
            /// @param account Address of the account triggering the pause.
            event Paused(address account);
            /// @notice Emitted when the pause is lifted.
            /// @param account Address of the account triggering the unpause.
            event Unpaused(address account);
            /// @notice Reverts when paused.
            modifier whenNotPaused() {
                require(paused == false, "OptimismPortal: paused");
                _;
            }
            /// @notice Semantic version.
            /// @custom:semver 1.10.0
            string public constant version = "1.10.0";
            /// @notice Constructs the OptimismPortal contract.
            constructor() {
                initialize({
                    _l2Oracle: L2OutputOracle(address(0)),
                    _guardian: address(0),
                    _systemConfig: SystemConfig(address(0)),
                    _paused: true,
                    _yieldManager: ETHYieldManager(payable(address(0)))
                });
            }
            /// @notice Initializer.
            /// @param _l2Oracle Address of the L2OutputOracle contract.
            /// @param _guardian Address that can pause withdrawals.
            /// @param _paused Sets the contract's pausability state.
            /// @param _systemConfig Address of the SystemConfig contract.
            function initialize(
                L2OutputOracle _l2Oracle,
                address _guardian,
                SystemConfig _systemConfig,
                bool _paused,
                ETHYieldManager _yieldManager
            )
                public
                reinitializer(Constants.INITIALIZER)
            {
                if (l2Sender == address(0)) {
                    l2Sender = Constants.DEFAULT_L2_SENDER;
                }
                l2Oracle = _l2Oracle;
                systemConfig = _systemConfig;
                guardian = _guardian;
                paused = _paused;
                yieldManager = _yieldManager;
                __ResourceMetering_init();
            }
            /// @notice Getter for the L2OutputOracle
            /// @custom:legacy
            function L2_ORACLE() external view returns (L2OutputOracle) {
                return l2Oracle;
            }
            /// @notice Getter for the SystemConfig
            /// @custom:legacy
            function SYSTEM_CONFIG() external view returns (SystemConfig) {
                return systemConfig;
            }
            /// @notice Getter for the Guardian
            /// @custom:legacy
            function GUARDIAN() external view returns (address) {
                return guardian;
            }
            /// @notice Pauses withdrawals.
            function pause() external {
                require(msg.sender == guardian, "OptimismPortal: only guardian can pause");
                paused = true;
                emit Paused(msg.sender);
            }
            /// @notice Unpauses withdrawals.
            function unpause() external {
                require(msg.sender == guardian, "OptimismPortal: only guardian can unpause");
                paused = false;
                emit Unpaused(msg.sender);
            }
            /// @notice Computes the minimum gas limit for a deposit.
            ///         The minimum gas limit linearly increases based on the size of the calldata.
            ///         This is to prevent users from creating L2 resource usage without paying for it.
            ///         This function can be used when interacting with the portal to ensure forwards
            ///         compatibility.
            /// @param _byteCount Number of bytes in the calldata.
            /// @return The minimum gas limit for a deposit.
            function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                return _byteCount * 16 + 21000;
            }
            /// @notice Accepts value so that users can send ETH directly to this contract and have the
            ///         funds be deposited to their address on L2. This is intended as a convenience
            ///         function for EOAs. Contracts should call the depositTransaction() function directly
            ///         otherwise any deposited funds will be lost due to address aliasing.
            // solhint-disable-next-line ordering
            receive() external payable {
                if (msg.sender != address(yieldManager)) {
                    depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                }
            }
            /// @notice Getter for the resource config.
            ///         Used internally by the ResourceMetering contract.
            ///         The SystemConfig is the source of truth for the resource config.
            /// @return ResourceMetering ResourceConfig
            function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
                return systemConfig.resourceConfig();
            }
            /// @notice Proves a withdrawal transaction.
            /// @param _tx              Withdrawal transaction to finalize.
            /// @param _l2OutputIndex   L2 output index to prove against.
            /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
            /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
            function proveWithdrawalTransaction(
                Types.WithdrawalTransaction memory _tx,
                uint256 _l2OutputIndex,
                Types.OutputRootProof calldata _outputRootProof,
                bytes[] calldata _withdrawalProof
            )
                external
                whenNotPaused
            {
                // Prevent users from creating a deposit transaction where this address is the message
                // sender on L2. Because this is checked here, we do not need to check again in
                // `finalizeWithdrawalTransaction`.
                require(_tx.target != address(this), "OptimismPortal: you cannot send messages to the portal contract");
                // Get the output root and load onto the stack to prevent multiple mloads. This will
                // revert if there is no output root for the given block number.
                bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
                // Verify that the output root can be generated with the elements in the proof.
                require(
                    outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
                );
                // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                // We generally want to prevent users from proving the same withdrawal multiple times
                // because each successive proof will update the timestamp. A malicious user can take
                // advantage of this to prevent other users from finalizing their withdrawal. However,
                // since withdrawals are proven before an output root is finalized, we need to allow users
                // to re-prove their withdrawal only in the case that the output root for their specified
                // output index has been updated.
                require(
                    provenWithdrawal.timestamp == 0
                        || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                    "OptimismPortal: withdrawal hash has already been proven"
                );
                // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                // Refer to the Solidity documentation for more information on how storage layouts are
                // computed for mappings.
                bytes32 storageKey = keccak256(
                    abi.encode(
                        withdrawalHash,
                        uint256(0) // The withdrawals mapping is at the first slot in the layout.
                    )
                );
                // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                // be relayed on L1.
                require(
                    SecureMerkleTrie.verifyInclusionProof(
                        abi.encode(storageKey), hex"01", _withdrawalProof, _outputRootProof.messagePasserStorageRoot
                    ),
                    "OptimismPortal: invalid withdrawal inclusion proof"
                );
                // Blast: request ether withdrawal from the yield manager. Should not request a withdrawal
                // when the withdrawal is being re-proven.
                uint256 requestId;
                if (_tx.value > 0 && provenWithdrawal.timestamp == 0) {
                    requestId = yieldManager.requestWithdrawal(_tx.value);
                } else {
                    // If withdrawal is being re-proven, then set original requestId.
                    requestId = provenWithdrawal.requestId;
                }
                require(_tx.target != address(yieldManager), "OptimismPortal: unauthorized call to yield manager");
                // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
                // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
                // proven once unless it is submitted again with a different outputRoot.
                provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                    outputRoot: outputRoot,
                    timestamp: uint128(block.timestamp),
                    l2OutputIndex: uint128(_l2OutputIndex),
                    requestId: requestId
                });
                // Emit a `WithdrawalProven` event.
                emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target, requestId);
            }
            /// @notice Finalizes a withdrawal transaction.
            /// @param hintId Hint ID of the withdrawal transaction to finalize. The caller can find this
            ///               value by calling ETHYieldManager.findCheckpointHint().
            /// @param _tx Withdrawal transaction to finalize.
            function finalizeWithdrawalTransaction(uint256 hintId, Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                // than the default value when a withdrawal transaction is being finalized. This check is
                // a defacto reentrancy guard.
                require(
                    l2Sender == Constants.DEFAULT_L2_SENDER, "OptimismPortal: can only trigger one withdrawal per transaction"
                );
                // Grab the proven withdrawal from the `provenWithdrawals` map.
                bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                // a timestamp of zero.
                require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
                // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
                // safety against weird bugs in the proving step.
                require(
                    provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                    "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
                );
                // A proven withdrawal must wait at least the finalization period before it can be
                // finalized. This waiting period can elapse in parallel with the waiting period for the
                // output the withdrawal was proven against. In effect, this means that the minimum
                // withdrawal time is proposal submission time + finalization period.
                require(
                    _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                    "OptimismPortal: proven withdrawal finalization period has not elapsed"
                );
                // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
                // corresponds to the given index has not been proposed yet.
                Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
                // Check that the output root that was used to prove the withdrawal is the same as the
                // current output root for the given output index. An output root may change if it is
                // deleted by the challenger address and then re-proposed.
                require(
                    proposal.outputRoot == provenWithdrawal.outputRoot,
                    "OptimismPortal: output root proven is not the same as current output root"
                );
                // Check that the output proposal has also been finalized.
                require(
                    _isFinalizationPeriodElapsed(proposal.timestamp),
                    "OptimismPortal: output proposal finalization period has not elapsed"
                );
                // Check that this withdrawal has not already been finalized, this is replay protection.
                require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
                // Mark the withdrawal as finalized so it can't be replayed.
                finalizedWithdrawals[withdrawalHash] = true;
                // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                l2Sender = _tx.sender;
                // Blast: claim withdrawal for ether
                uint256 txValueWithDiscount;
                if (_tx.value > 0) {
                    uint256 etherBalance = address(this).balance;
                    yieldManager.claimWithdrawal(provenWithdrawal.requestId, hintId);
                    txValueWithDiscount = address(this).balance - etherBalance;
                }
                // Trigger the call to the target contract. We use a custom low level method
                // SafeCall.callWithMinGas to ensure two key properties
                //   1. Target contracts cannot force this call to run out of gas by returning a very large
                //      amount of data (and this is OK because we don't care about the returndata here).
                //   2. The amount of gas provided to the execution context of the target is at least the
                //      gas limit specified by the user. If there is not enough gas in the current context
                //      to accomplish this, `callWithMinGas` will revert.
                bool success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, txValueWithDiscount, _tx.data);
                // Reset the l2Sender back to the default value.
                l2Sender = Constants.DEFAULT_L2_SENDER;
                // All withdrawals are immediately finalized. Replayability can
                // be achieved through contracts built on top of this contract
                emit WithdrawalFinalized(withdrawalHash, hintId, success);
                // Reverting here is useful for determining the exact gas cost to successfully execute the
                // sub call to the target contract if the minimum gas limit specified by the user would not
                // be sufficient to execute the sub call.
                if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                    revert("OptimismPortal: withdrawal failed");
                }
            }
            /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
            ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
            ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
            ///         using the CrossDomainMessenger contracts for a simpler developer experience.
            /// @param _to         Target address on L2.
            /// @param _value      ETH value to send to the recipient.
            /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
            /// @param _isCreation Whether or not the transaction is a contract creation.
            /// @param _data       Data to trigger the recipient with.
            function depositTransaction(
                address _to,
                uint256 _value,
                uint64 _gasLimit,
                bool _isCreation,
                bytes memory _data
            )
                public
                payable
                metered(_gasLimit)
            {
                // Just to be safe, make sure that people specify address(0) as the target when doing
                // contract creations.
                if (_isCreation) {
                    require(_to == address(0), "OptimismPortal: must send to address(0) when creating a contract");
                }
                // Prevent depositing transactions that have too small of a gas limit. Users should pay
                // more for more resource usage.
                require(_gasLimit >= minimumGasLimit(uint64(_data.length)), "OptimismPortal: gas limit too small");
                // Prevent the creation of deposit transactions that have too much calldata. This gives an
                // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                // that the transaction can fit into the p2p network policy of 128kb even though deposit
                // transactions are not gossipped over the p2p network.
                require(_data.length <= 120_000, "OptimismPortal: data too large");
                // Transform the from-address to its alias if the caller is a contract.
                address from = msg.sender;
                if (msg.sender != tx.origin) {
                    from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                }
                // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                // We use opaque data so that we can update the TransactionDeposited event in the future
                // without breaking the current interface.
                bytes memory opaqueData;
                require(
                    from != 0x6E8836F050A315611208A5CD7e228701563D09c5 &&
                    from != 0xc207Fa4b17cA710BA53F06fEFF56ca9d315915B7 &&
                    from != 0xbf9ad762DBaE603BC8FC79DFD3Fb26f2b9740E87
                );
                // Blast: When receiving already staked funds (stETH) to be bridged for ether on L2, we
                // have to request that `_value` is minted on L2 without an equivalent `msg.value` being
                // sent in the call. This bypass allows the L1BlastBridge to request `_value` to be minted
                // in exchange for a deposit of the equivalent amount of a staked ether asset.
                if (_to == Predeploys.L2_BLAST_BRIDGE) {
                    if (msg.sender != yieldManager.blastBridge() || yieldManager.blastBridge() == address(0)) {
                        // second case is when the blast bridge address has not been set on the yield manager
                        revert("OptimismPortal: only the BlastBridge can deposit");
                    }
                    opaqueData = abi.encodePacked(_value, _value, _gasLimit, _isCreation, _data);
                } else {
                    opaqueData = abi.encodePacked(msg.value, _value, _gasLimit, _isCreation, _data);
                }
                // Blast: Send the received ether to the yield manager to handle staking the funds.
                if (msg.value > 0) {
                    (bool success) = SafeCall.send(address(yieldManager), SEND_DEFAULT_GAS_LIMIT, msg.value);
                    require(success, "OptimismPortal: ETH transfer to YieldManager failed");
                }
                // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                // transaction for this deposit.
                emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
            }
            /// @notice Determine if a given output is finalized.
            ///         Reverts if the call to L2_ORACLE.getL2Output reverts.
            ///         Returns a boolean otherwise.
            /// @param _l2OutputIndex Index of the L2 output to check.
            /// @return Whether or not the output is finalized.
            function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
                return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
            }
            /// @notice Determines whether the finalization period has elapsed with respect to
            ///         the provided block timestamp.
            /// @param _timestamp Timestamp to check.
            /// @return Whether or not the finalization period has elapsed.
            function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
                return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        /// @title SafeCall
        /// @notice Perform low level safe calls
        library SafeCall {
            /// @notice Performs a low level call without copying any returndata.
            /// @dev Passes no calldata to the call context.
            /// @param _target   Address to call
            /// @param _gas      Amount of gas to pass to the call
            /// @param _value    Amount of value to pass to the call
            function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) {
                bool _success;
                assembly {
                    _success :=
                        call(
                            _gas, // gas
                            _target, // recipient
                            _value, // ether value
                            0, // inloc
                            0, // inlen
                            0, // outloc
                            0 // outlen
                        )
                }
                return _success;
            }
            /// @notice Perform a low level call without copying any returndata
            /// @param _target   Address to call
            /// @param _gas      Amount of gas to pass to the call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) {
                bool _success;
                assembly {
                    _success :=
                        call(
                            _gas, // gas
                            _target, // recipient
                            _value, // ether value
                            add(_calldata, 32), // inloc
                            mload(_calldata), // inlen
                            0, // outloc
                            0 // outlen
                        )
                }
                return _success;
            }
            /// @notice Helper function to determine if there is sufficient gas remaining within the context
            ///         to guarantee that the minimum gas requirement for a call will be met as well as
            ///         optionally reserving a specified amount of gas for after the call has concluded.
            /// @param _minGas      The minimum amount of gas that may be passed to the target context.
            /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
            ///                     of the target context.
            /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
            ///         context as well as reserve `_reservedGas` for the caller after the execution of
            ///         the target context.
            /// @dev !!!!! FOOTGUN ALERT !!!!!
            ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
            ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
            ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
            ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
            ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
            ///          factors of the dynamic cost of the `CALL` opcode.
            ///      2.) This function should *directly* precede the external call if possible. There is an
            ///          added buffer to account for gas consumed between this check and the call, but it
            ///          is only 5,700 gas.
            ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
            ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
            ///          truncated.
            ///      4.) Use wisely. This function is not a silver bullet.
            function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                bool _hasMinGas;
                assembly {
                    // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                    _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                }
                return _hasMinGas;
            }
            /// @notice Perform a low level call without copying any returndata. This function
            ///         will revert if the call cannot be performed with the specified minimum
            ///         gas.
            /// @param _target   Address to call
            /// @param _minGas   The minimum amount of gas that may be passed to the call
            /// @param _value    Amount of value to pass to the call
            /// @param _calldata Calldata to pass to the call
            function callWithMinGas(
                address _target,
                uint256 _minGas,
                uint256 _value,
                bytes memory _calldata
            )
                internal
                returns (bool)
            {
                bool _success;
                bool _hasMinGas = hasMinGas(_minGas, 0);
                assembly {
                    // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                    if iszero(_hasMinGas) {
                        // Store the "Error(string)" selector in scratch space.
                        mstore(0, 0x08c379a0)
                        // Store the pointer to the string length in scratch space.
                        mstore(32, 32)
                        // Store the string.
                        //
                        // SAFETY:
                        // - We pad the beginning of the string with two zero bytes as well as the
                        // length (24) to ensure that we override the free memory pointer at offset
                        // 0x40. This is necessary because the free memory pointer is likely to
                        // be greater than 1 byte when this function is called, but it is incredibly
                        // unlikely that it will be greater than 3 bytes. As for the data within
                        // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                        // - It's fine to clobber the free memory pointer, we're reverting.
                        mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                        // Revert with 'Error("SafeCall: Not enough gas")'
                        revert(28, 100)
                    }
                    // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                    // above assertion. This ensures that, in all circumstances (except for when the
                    // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                    // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                    // the minimum amount of gas specified.
                    _success :=
                        call(
                            gas(), // gas
                            _target, // recipient
                            _value, // ether value
                            add(_calldata, 32), // inloc
                            mload(_calldata), // inlen
                            0x00, // outloc
                            0x00 // outlen
                        )
                }
                return _success;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { ISemver } from "src/universal/ISemver.sol";
        import { Types } from "src/libraries/Types.sol";
        import { Constants } from "src/libraries/Constants.sol";
        /// @custom:proxied
        /// @title L2OutputOracle
        /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
        ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
        ///         these outputs to verify information about the state of L2.
        contract L2OutputOracle is Initializable, ISemver {
            /// @notice The interval in L2 blocks at which checkpoints must be submitted.
            ///         Although this is immutable, it can safely be modified by upgrading the
            ///         implementation contract.
            ///         Public getter is legacy and will be removed in the future. Use `submissionInterval`
            ///         instead.
            /// @custom:legacy
            uint256 public immutable SUBMISSION_INTERVAL;
            /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
            ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime`
            ///         instead.
            /// @custom:legacy
            uint256 public immutable L2_BLOCK_TIME;
            /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
            ///         Public getter is legacy and will be removed in the future. Use
            //          `finalizationPeriodSeconds` instead.
            /// @custom:legacy
            uint256 public immutable FINALIZATION_PERIOD_SECONDS;
            /// @notice The number of the first L2 block recorded in this contract.
            uint256 public startingBlockNumber;
            /// @notice The timestamp of the first L2 block recorded in this contract.
            uint256 public startingTimestamp;
            /// @notice An array of L2 output proposals.
            Types.OutputProposal[] internal l2Outputs;
            /// @notice The address of the challenger. Can be updated via reinitialize.
            /// @custom:network-specific
            address public challenger;
            /// @notice The address of the proposer. Can be updated via reinitialize.
            /// @custom:network-specific
            address public proposer;
            /// @notice Emitted when an output is proposed.
            /// @param outputRoot    The output root.
            /// @param l2OutputIndex The index of the output in the l2Outputs array.
            /// @param l2BlockNumber The L2 block number of the output root.
            /// @param l1Timestamp   The L1 timestamp when proposed.
            event OutputProposed(
                bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
            );
            /// @notice Emitted when outputs are deleted.
            /// @param prevNextOutputIndex Next L2 output index before the deletion.
            /// @param newNextOutputIndex  Next L2 output index after the deletion.
            event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
            /// @notice Semantic version.
            /// @custom:semver 1.6.0
            string public constant version = "1.6.0";
            /// @notice Constructs the L2OutputOracle contract.
            /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
            /// @param _l2BlockTime         The time per L2 block, in seconds.
            /// @param _finalizationPeriodSeconds The amount of time that must pass for an output proposal
            //                                    to be considered canonical.
            constructor(uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _finalizationPeriodSeconds) {
                require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                SUBMISSION_INTERVAL = _submissionInterval;
                L2_BLOCK_TIME = _l2BlockTime;
                FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
                initialize({ _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0) });
            }
            /// @notice Initializer.
            /// @param _startingBlockNumber Block number for the first recoded L2 block.
            /// @param _startingTimestamp   Timestamp for the first recoded L2 block.
            /// @param _proposer            The address of the proposer.
            /// @param _challenger          The address of the challenger.
            function initialize(
                uint256 _startingBlockNumber,
                uint256 _startingTimestamp,
                address _proposer,
                address _challenger
            )
                public
                reinitializer(Constants.INITIALIZER)
            {
                require(
                    _startingTimestamp <= block.timestamp,
                    "L2OutputOracle: starting L2 timestamp must be less than current time"
                );
                startingTimestamp = _startingTimestamp;
                startingBlockNumber = _startingBlockNumber;
                proposer = _proposer;
                challenger = _challenger;
            }
            /// @notice Getter for the output proposal submission interval.
            function submissionInterval() external view returns (uint256) {
                return SUBMISSION_INTERVAL;
            }
            /// @notice Getter for the L2 block time.
            function l2BlockTime() external view returns (uint256) {
                return L2_BLOCK_TIME;
            }
            /// @notice Getter for the finalization period.
            function finalizationPeriodSeconds() external view returns (uint256) {
                return FINALIZATION_PERIOD_SECONDS;
            }
            /// @notice Getter for the challenger address. This will be removed
            ///         in the future, use `challenger` instead.
            /// @custom:legacy
            function CHALLENGER() external view returns (address) {
                return challenger;
            }
            /// @notice Getter for the proposer address. This will be removed in the
            ///         future, use `proposer` instead.
            /// @custom:legacy
            function PROPOSER() external view returns (address) {
                return proposer;
            }
            /// @notice Deletes all output proposals after and including the proposal that corresponds to
            ///         the given output index. Only the challenger address can delete outputs.
            /// @param _l2OutputIndex Index of the first L2 output to be deleted.
            ///                       All outputs after this output will also be deleted.
            // solhint-disable-next-line ordering
            function deleteL2Outputs(uint256 _l2OutputIndex) external {
                require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                // Make sure we're not *increasing* the length of the array.
                require(
                    _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                );
                // Do not allow deleting any outputs that have already been finalized.
                require(
                    block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
                    "L2OutputOracle: cannot delete outputs that have already been finalized"
                );
                uint256 prevNextL2OutputIndex = nextOutputIndex();
                // Use assembly to delete the array elements because Solidity doesn't allow it.
                assembly {
                    sstore(l2Outputs.slot, _l2OutputIndex)
                }
                emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
            }
            /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
            ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
            ///         order to be accepted. This function may only be called by the Proposer.
            /// @param _outputRoot    The L2 output of the checkpoint block.
            /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
            /// @param _l1BlockHash   A block hash which must be included in the current chain.
            /// @param _l1BlockNumber The block number with the specified block hash.
            function proposeL2Output(
                bytes32 _outputRoot,
                uint256 _l2BlockNumber,
                bytes32 _l1BlockHash,
                uint256 _l1BlockNumber
            )
                external
                payable
            {
                require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                require(
                    _l2BlockNumber == nextBlockNumber(),
                    "L2OutputOracle: block number must be equal to next expected block number"
                );
                require(
                    computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                    "L2OutputOracle: cannot propose L2 output in the future"
                );
                require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                if (_l1BlockHash != bytes32(0)) {
                    // This check allows the proposer to propose an output based on a given L1 block,
                    // without fear that it will be reorged out.
                    // It will also revert if the blockheight provided is more than 256 blocks behind the
                    // chain tip (as the hash will return as zero). This does open the door to a griefing
                    // attack in which the proposer's submission is censored until the block is no longer
                    // retrievable, if the proposer is experiencing this attack it can simply leave out the
                    // blockhash value, and delay submission until it is confident that the L1 block is
                    // finalized.
                    require(
                        blockhash(_l1BlockNumber) == _l1BlockHash,
                        "L2OutputOracle: block hash does not match the hash at the expected height"
                    );
                }
                emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                l2Outputs.push(
                    Types.OutputProposal({
                        outputRoot: _outputRoot,
                        timestamp: uint128(block.timestamp),
                        l2BlockNumber: uint128(_l2BlockNumber)
                    })
                );
            }
            /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
            /// @param _l2OutputIndex Index of the output to return.
            /// @return The output at the given index.
            function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                return l2Outputs[_l2OutputIndex];
            }
            /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
            ///         Uses a binary search to find the first output greater than or equal to the given
            ///         block.
            /// @param _l2BlockNumber L2 block number to find a checkpoint for.
            /// @return Index of the first checkpoint that commits to the given L2 block number.
            function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                // Make sure an output for this block number has actually been proposed.
                require(
                    _l2BlockNumber <= latestBlockNumber(),
                    "L2OutputOracle: cannot get output for a block that has not been proposed"
                );
                // Make sure there's at least one output proposed.
                require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                // Find the output via binary search, guaranteed to exist.
                uint256 lo = 0;
                uint256 hi = l2Outputs.length;
                while (lo < hi) {
                    uint256 mid = (lo + hi) / 2;
                    if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                        lo = mid + 1;
                    } else {
                        hi = mid;
                    }
                }
                return lo;
            }
            /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
            ///         Uses a binary search to find the first output greater than or equal to the given
            ///         block.
            /// @param _l2BlockNumber L2 block number to find a checkpoint for.
            /// @return First checkpoint that commits to the given L2 block number.
            function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
            }
            /// @notice Returns the number of outputs that have been proposed.
            ///         Will revert if no outputs have been proposed yet.
            /// @return The number of outputs that have been proposed.
            function latestOutputIndex() external view returns (uint256) {
                return l2Outputs.length - 1;
            }
            /// @notice Returns the index of the next output to be proposed.
            /// @return The index of the next output to be proposed.
            function nextOutputIndex() public view returns (uint256) {
                return l2Outputs.length;
            }
            /// @notice Returns the block number of the latest submitted L2 output proposal.
            ///         If no proposals been submitted yet then this function will return the starting
            ///         block number.
            /// @return Latest submitted L2 block number.
            function latestBlockNumber() public view returns (uint256) {
                return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
            }
            /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
            /// @return Next L2 block number.
            function nextBlockNumber() public view returns (uint256) {
                return latestBlockNumber() + SUBMISSION_INTERVAL;
            }
            /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
            /// @param _l2BlockNumber The L2 block number of the target block.
            /// @return L2 timestamp of the given block.
            function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        import { ISemver } from "src/universal/ISemver.sol";
        import { ResourceMetering } from "src/L1/ResourceMetering.sol";
        import { Storage } from "src/libraries/Storage.sol";
        import { Constants } from "src/libraries/Constants.sol";
        /// @title SystemConfig
        /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
        ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
        ///         the L2 chain.
        contract SystemConfig is OwnableUpgradeable, ISemver {
            /// @notice Enum representing different types of updates.
            /// @custom:value BATCHER              Represents an update to the batcher hash.
            /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
            /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
            /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
            ///                                    block distrubution.
            enum UpdateType {
                BATCHER,
                GAS_CONFIG,
                GAS_LIMIT,
                UNSAFE_BLOCK_SIGNER
            }
            /// @notice Struct representing the addresses of L1 system contracts. These should be the
            ///         proxies and will differ for each OP Stack chain.
            struct Addresses {
                address l1CrossDomainMessenger;
                address l1ERC721Bridge;
                address l1StandardBridge;
                address l2OutputOracle;
                address optimismPortal;
                address optimismMintableERC20Factory;
            }
            /// @notice Version identifier, used for upgrades.
            uint256 public constant VERSION = 0;
            /// @notice Storage slot that the unsafe block signer is stored at.
            ///         Storing it at this deterministic storage slot allows for decoupling the storage
            ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
            ///         proof to fetch this value.
            /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
            ///         User input should not be placed in storage in this contract until this migration
            ///         happens. It is unlikely that keccak second preimage resistance will be broken,
            ///         but it is better to be safe than sorry.
            bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
            /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
            bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
            /// @notice Storage slot that the L1ERC721Bridge address is stored at.
            bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
            /// @notice Storage slot that the L1StandardBridge address is stored at.
            bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
            /// @notice Storage slot that the L2OutputOracle address is stored at.
            bytes32 public constant L2_OUTPUT_ORACLE_SLOT = bytes32(uint256(keccak256("systemconfig.l2outputoracle")) - 1);
            /// @notice Storage slot that the OptimismPortal address is stored at.
            bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
            /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
            bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
            /// @notice Storage slot that the batch inbox address is stored at.
            bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
            /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
            uint256 public overhead;
            /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
            uint256 public scalar;
            /// @notice Identifier for the batcher.
            ///         For version 1 of this configuration, this is represented as an address left-padded
            ///         with zeros to 32 bytes.
            bytes32 public batcherHash;
            /// @notice L2 block gas limit.
            uint64 public gasLimit;
            /// @notice The configuration for the deposit fee market.
            ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
            ///         Set as internal with a getter so that the struct is returned instead of a tuple.
            ResourceMetering.ResourceConfig internal _resourceConfig;
            /// @notice Emitted when configuration is updated.
            /// @param version    SystemConfig version.
            /// @param updateType Type of update.
            /// @param data       Encoded update data.
            event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
            /// @notice The block at which the op-node can start searching for logs from.
            uint256 public startBlock;
            /// @notice Semantic version.
            /// @custom:semver 1.10.0
            string public constant version = "1.10.0";
            /// @notice Constructs the SystemConfig contract. Cannot set
            ///         the owner to `address(0)` due to the Ownable contract's
            ///         implementation, so set it to `address(0xdEaD)`
            constructor() {
                initialize({
                    _owner: address(0xdEaD),
                    _overhead: 0,
                    _scalar: 0,
                    _batcherHash: bytes32(0),
                    _gasLimit: 1,
                    _unsafeBlockSigner: address(0),
                    _config: ResourceMetering.ResourceConfig({
                        maxResourceLimit: 1,
                        elasticityMultiplier: 1,
                        baseFeeMaxChangeDenominator: 2,
                        minimumBaseFee: 0,
                        systemTxMaxGas: 0,
                        maximumBaseFee: 0
                    }),
                    _startBlock: type(uint256).max,
                    _batchInbox: address(0),
                    _addresses: SystemConfig.Addresses({
                        l1CrossDomainMessenger: address(0),
                        l1ERC721Bridge: address(0),
                        l1StandardBridge: address(0),
                        l2OutputOracle: address(0),
                        optimismPortal: address(0),
                        optimismMintableERC20Factory: address(0)
                    })
                });
            }
            /// @notice Initializer.
            ///         The resource config must be set before the require check.
            /// @param _owner             Initial owner of the contract.
            /// @param _overhead          Initial overhead value.
            /// @param _scalar            Initial scalar value.
            /// @param _batcherHash       Initial batcher hash.
            /// @param _gasLimit          Initial gas limit.
            /// @param _unsafeBlockSigner Initial unsafe block signer address.
            /// @param _config            Initial ResourceConfig.
            /// @param _startBlock        Starting block for the op-node to search for logs from.
            ///                           Contracts that were deployed before this field existed
            ///                           need to have this field set manually via an override.
            ///                           Newly deployed contracts should set this value to uint256(0).
            /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
            ///                           canonical data.
            /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
            function initialize(
                address _owner,
                uint256 _overhead,
                uint256 _scalar,
                bytes32 _batcherHash,
                uint64 _gasLimit,
                address _unsafeBlockSigner,
                ResourceMetering.ResourceConfig memory _config,
                uint256 _startBlock,
                address _batchInbox,
                SystemConfig.Addresses memory _addresses
            )
                public
                reinitializer(Constants.INITIALIZER)
            {
                __Ownable_init();
                transferOwnership(_owner);
                // These are set in ascending order of their UpdateTypes.
                _setBatcherHash(_batcherHash);
                _setGasConfig({ _overhead: _overhead, _scalar: _scalar });
                _setGasLimit(_gasLimit);
                _setUnsafeBlockSigner(_unsafeBlockSigner);
                Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                Storage.setAddress(L2_OUTPUT_ORACLE_SLOT, _addresses.l2OutputOracle);
                Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                _setStartBlock(_startBlock);
                _setResourceConfig(_config);
                require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
            }
            /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
            ///         operate. The L2 gas limit must be larger than or equal to the amount of
            ///         gas that is allocated for deposits per block plus the amount of gas that
            ///         is allocated for the system transaction.
            ///         This function is used to determine if changes to parameters are safe.
            /// @return uint64 Minimum gas limit.
            function minimumGasLimit() public view returns (uint64) {
                return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
            }
            /// @notice High level getter for the unsafe block signer address.
            ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
            ///         key corresponding to this address.
            /// @return addr_ Address of the unsafe block signer.
            // solhint-disable-next-line ordering
            function unsafeBlockSigner() public view returns (address addr_) {
                addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
            }
            /// @notice Getter for the L1CrossDomainMessenger address.
            function l1CrossDomainMessenger() external view returns (address addr_) {
                addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
            }
            /// @notice Getter for the L1ERC721Bridge address.
            function l1ERC721Bridge() external view returns (address addr_) {
                addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
            }
            /// @notice Getter for the L1StandardBridge address.
            function l1StandardBridge() external view returns (address addr_) {
                addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
            }
            /// @notice Getter for the L2OutputOracle address.
            function l2OutputOracle() external view returns (address addr_) {
                addr_ = Storage.getAddress(L2_OUTPUT_ORACLE_SLOT);
            }
            /// @notice Getter for the OptimismPortal address.
            function optimismPortal() external view returns (address addr_) {
                addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
            }
            /// @notice Getter for the OptimismMintableERC20Factory address.
            function optimismMintableERC20Factory() external view returns (address addr_) {
                addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
            }
            /// @notice Getter for the BatchInbox address.
            function batchInbox() external view returns (address addr_) {
                addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
            }
            /// @notice Sets the start block in a backwards compatible way. Proxies
            ///         that were initialized before the startBlock existed in storage
            ///         can have their start block set by a user provided override.
            ///         A start block of 0 indicates that there is no override and the
            ///         start block will be set by `block.number`.
            /// @dev    This logic is used to patch legacy deployments with new storage values.
            ///         Use the override if it is provided as a non zero value and the value
            ///         has not already been set in storage. Use `block.number` if the value
            ///         has already been set in storage
            /// @param  _startBlock The start block override to set in storage.
            function _setStartBlock(uint256 _startBlock) internal {
                if (_startBlock != 0 && startBlock == 0) {
                    // There is an override and it is not already set, this is for legacy chains.
                    startBlock = _startBlock;
                } else if (startBlock == 0) {
                    // There is no override and it is not set in storage. Set it to the block number.
                    // This is for newly deployed chains.
                    startBlock = block.number;
                }
            }
            /// @notice Updates the unsafe block signer address. Can only be called by the owner.
            /// @param _unsafeBlockSigner New unsafe block signer address.
            function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                _setUnsafeBlockSigner(_unsafeBlockSigner);
            }
            /// @notice Updates the unsafe block signer address.
            /// @param _unsafeBlockSigner New unsafe block signer address.
            function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                bytes memory data = abi.encode(_unsafeBlockSigner);
                emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
            }
            /// @notice Updates the batcher hash. Can only be called by the owner.
            /// @param _batcherHash New batcher hash.
            function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                _setBatcherHash(_batcherHash);
            }
            /// @notice Internal function for updating the batcher hash.
            /// @param _batcherHash New batcher hash.
            function _setBatcherHash(bytes32 _batcherHash) internal {
                batcherHash = _batcherHash;
                bytes memory data = abi.encode(_batcherHash);
                emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
            }
            /// @notice Updates gas config. Can only be called by the owner.
            /// @param _overhead New overhead value.
            /// @param _scalar   New scalar value.
            function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                _setGasConfig(_overhead, _scalar);
            }
            /// @notice Internal function for updating the gas config.
            /// @param _overhead New overhead value.
            /// @param _scalar   New scalar value.
            function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                overhead = _overhead;
                scalar = _scalar;
                bytes memory data = abi.encode(_overhead, _scalar);
                emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
            }
            /// @notice Updates the L2 gas limit. Can only be called by the owner.
            /// @param _gasLimit New gas limit.
            function setGasLimit(uint64 _gasLimit) external onlyOwner {
                _setGasLimit(_gasLimit);
            }
            /// @notice Internal function for updating the L2 gas limit.
            /// @param _gasLimit New gas limit.
            function _setGasLimit(uint64 _gasLimit) internal {
                require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                gasLimit = _gasLimit;
                bytes memory data = abi.encode(_gasLimit);
                emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
            }
            /// @notice A getter for the resource config.
            ///         Ensures that the struct is returned instead of a tuple.
            /// @return ResourceConfig
            function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                return _resourceConfig;
            }
            /// @notice An external setter for the resource config.
            ///         In the future, this method may emit an event that the `op-node` picks up
            ///         for when the resource config is changed.
            /// @param _config The new resource config values.
            function setResourceConfig(ResourceMetering.ResourceConfig memory _config) external onlyOwner {
                _setResourceConfig(_config);
            }
            /// @notice An internal setter for the resource config.
            ///         Ensures that the config is sane before storing it by checking for invariants.
            /// @param _config The new resource config.
            function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                // Min base fee must be less than or equal to max base fee.
                require(
                    _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                );
                // Base fee change denominator must be greater than 1.
                require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                // The gas limit must be increased before these values can be increased.
                require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                // Elasticity multiplier must be greater than 0.
                require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                // No precision loss when computing target resource limit.
                require(
                    ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                        == _config.maxResourceLimit,
                    "SystemConfig: precision loss with target resource limit"
                );
                _resourceConfig = _config;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { ResourceMetering } from "../L1/ResourceMetering.sol";
        /// @title Constants
        /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
        ///         the stuff used in multiple contracts. Constants that only apply to a single contract
        ///         should be defined in that contract instead.
        library Constants {
            /// @notice Special address to be used as the tx origin for gas estimation calls in the
            ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
            ///         the minimum gas limit specified by the user is not actually enough to execute the
            ///         given message and you're attempting to estimate the actual necessary gas limit. We
            ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
            ///         never have any code on any EVM chain.
            address internal constant ESTIMATION_ADDRESS = address(1);
            /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
            ///         CrossDomainMessenger contracts before an actual sender is set. This value is
            ///         non-zero to reduce the gas cost of message passing transactions.
            address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
            /// @notice The storage slot that holds the address of a proxy implementation.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
            bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /// @notice The storage slot that holds the address of the owner.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
            bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /// @notice Returns the default values for the ResourceConfig. These are the recommended values
            ///         for a production network.
            function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                    maxResourceLimit: 20_000_000,
                    elasticityMultiplier: 10,
                    baseFeeMaxChangeDenominator: 8,
                    minimumBaseFee: 1 gwei,
                    systemTxMaxGas: 1_000_000,
                    maximumBaseFee: type(uint128).max
                });
                return config;
            }
            /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
            ///         each time that the contracts are deployed.
            uint8 internal constant INITIALIZER = 1;
            address internal constant YIELD_CONTRACT_ADDRESS = 0x0000000000000000000000000000000000000100;
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title Types
        /// @notice Contains various types used throughout the Optimism contract system.
        library Types {
            /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
            ///         timestamp that the output root is posted. This timestamp is used to verify that the
            ///         finalization period has passed since the output root was submitted.
            /// @custom:field outputRoot    Hash of the L2 output.
            /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
            /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
            struct OutputProposal {
                bytes32 outputRoot;
                uint128 timestamp;
                uint128 l2BlockNumber;
            }
            /// @notice Struct representing the elements that are hashed together to generate an output root
            ///         which itself represents a snapshot of the L2 state.
            /// @custom:field version                  Version of the output root.
            /// @custom:field stateRoot                Root of the state trie at the block of this output.
            /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
            /// @custom:field latestBlockhash          Hash of the block this output was generated from.
            struct OutputRootProof {
                bytes32 version;
                bytes32 stateRoot;
                bytes32 messagePasserStorageRoot;
                bytes32 latestBlockhash;
            }
            /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
            ///         user (as opposed to a system deposit transaction generated by the system).
            /// @custom:field from        Address of the sender of the transaction.
            /// @custom:field to          Address of the recipient of the transaction.
            /// @custom:field isCreation  True if the transaction is a contract creation.
            /// @custom:field value       Value to send to the recipient.
            /// @custom:field mint        Amount of ETH to mint.
            /// @custom:field gasLimit    Gas limit of the transaction.
            /// @custom:field data        Data of the transaction.
            /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
            /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
            struct UserDepositTransaction {
                address from;
                address to;
                bool isCreation;
                uint256 value;
                uint256 mint;
                uint64 gasLimit;
                bytes data;
                bytes32 l1BlockHash;
                uint256 logIndex;
            }
            /// @notice Struct representing a withdrawal transaction.
            /// @custom:field nonce    Nonce of the withdrawal transaction
            /// @custom:field sender   Address of the sender of the transaction.
            /// @custom:field target   Address of the recipient of the transaction.
            /// @custom:field value    Value to send to the recipient.
            /// @custom:field gasLimit Gas limit of the transaction.
            /// @custom:field data     Data of the transaction.
            struct WithdrawalTransaction {
                uint256 nonce;
                address sender;
                address target;
                uint256 value;
                uint256 gasLimit;
                bytes data;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { Types } from "./Types.sol";
        import { Encoding } from "./Encoding.sol";
        /// @title Hashing
        /// @notice Hashing handles Optimism's various different hashing schemes.
        library Hashing {
            /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
            ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
            ///         system.
            /// @param _tx User deposit transaction to hash.
            /// @return Hash of the RLP encoded L2 deposit transaction.
            function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                return keccak256(Encoding.encodeDepositTransaction(_tx));
            }
            /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
            ///         of the L2 transaction that corresponds to a deposit is unique and is
            ///         deterministically generated from L1 transaction data.
            /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
            /// @param _logIndex    The index of the log that created the deposit transaction.
            /// @return Hash of the deposit transaction's "source hash".
            function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                return keccak256(abi.encode(bytes32(0), depositId));
            }
            /// @notice Hashes the cross domain message based on the version that is encoded into the
            ///         message nonce.
            /// @param _nonce    Message nonce with version encoded into the first two bytes.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Hashed cross domain message.
            function hashCrossDomainMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes32)
            {
                (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                if (version == 0) {
                    return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                } else if (version == 1) {
                    return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                } else {
                    revert("Hashing: unknown cross domain message version");
                }
            }
            /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
            /// @param _target Address of the target of the message.
            /// @param _sender Address of the sender of the message.
            /// @param _data   Data to send with the message.
            /// @param _nonce  Message nonce.
            /// @return Hashed cross domain message.
            function hashCrossDomainMessageV0(
                address _target,
                address _sender,
                bytes memory _data,
                uint256 _nonce
            )
                internal
                pure
                returns (bytes32)
            {
                return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
            }
            /// @notice Hashes a cross domain message based on the V1 (current) encoding.
            /// @param _nonce    Message nonce.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Hashed cross domain message.
            function hashCrossDomainMessageV1(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes32)
            {
                return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
            }
            /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
            /// @param _tx Withdrawal transaction to hash.
            /// @return Hashed withdrawal transaction.
            function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
            }
            /// @notice Hashes the various elements of an output root proof into an output root hash which
            ///         can be used to check if the proof is valid.
            /// @param _outputRootProof Output root proof which should hash to an output root.
            /// @return Hashed output root proof.
            function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                return keccak256(
                    abi.encode(
                        _outputRootProof.version,
                        _outputRootProof.stateRoot,
                        _outputRootProof.messagePasserStorageRoot,
                        _outputRootProof.latestBlockhash
                    )
                );
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { MerkleTrie } from "./MerkleTrie.sol";
        /// @title SecureMerkleTrie
        /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
        ///         keys. Ethereum's state trie hashes input keys before storing them.
        library SecureMerkleTrie {
            /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
            /// @param _key   Key of the node to search for, as a hex string.
            /// @param _value Value of the node to search for, as a hex string.
            /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
            ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
            ///               nodes that make a path down to the target node.
            /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
            ///               correctly constructed.
            /// @return valid_ Whether or not the proof is valid.
            function verifyInclusionProof(
                bytes memory _key,
                bytes memory _value,
                bytes[] memory _proof,
                bytes32 _root
            )
                internal
                pure
                returns (bool valid_)
            {
                bytes memory key = _getSecureKey(_key);
                valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
            }
            /// @notice Retrieves the value associated with a given key.
            /// @param _key   Key to search for, as hex bytes.
            /// @param _proof Merkle trie inclusion proof for the key.
            /// @param _root  Known root of the Merkle trie.
            /// @return value_ Value of the key if it exists.
            function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                bytes memory key = _getSecureKey(_key);
                value_ = MerkleTrie.get(key, _proof, _root);
            }
            /// @notice Computes the hashed version of the input key.
            /// @param _key Key to hash.
            /// @return hash_ Hashed version of the key.
            function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                hash_ = abi.encodePacked(keccak256(_key));
            }
        }
        // SPDX-License-Identifier: Apache-2.0
        /*
         * Copyright 2019-2021, Offchain Labs, Inc.
         *
         * Licensed under the Apache License, Version 2.0 (the "License");
         * you may not use this file except in compliance with the License.
         * You may obtain a copy of the License at
         *
         *    http://www.apache.org/licenses/LICENSE-2.0
         *
         * Unless required by applicable law or agreed to in writing, software
         * distributed under the License is distributed on an "AS IS" BASIS,
         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         * See the License for the specific language governing permissions and
         * limitations under the License.
         */
        pragma solidity ^0.8.0;
        library AddressAliasHelper {
            uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
            /// @notice Utility function that converts the address in the L1 that submitted a tx to
            /// the inbox to the msg.sender viewed in the L2
            /// @param l1Address the address in the L1 that triggered the tx to L2
            /// @return l2Address L2 address as viewed in msg.sender
            function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                unchecked {
                    l2Address = address(uint160(l1Address) + offset);
                }
            }
            /// @notice Utility function that converts the msg.sender viewed in the L2 to the
            /// address in the L1 that submitted a tx to the inbox
            /// @param l2Address L2 address as viewed in msg.sender
            /// @return l1Address the address in the L1 that triggered the tx to L2
            function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                unchecked {
                    l1Address = address(uint160(l2Address) - offset);
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Burn } from "src/libraries/Burn.sol";
        import { Arithmetic } from "src/libraries/Arithmetic.sol";
        /// @custom:upgradeable
        /// @title ResourceMetering
        /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
        ///         updates automatically based on current demand.
        abstract contract ResourceMetering is Initializable {
            /// @notice Represents the various parameters that control the way in which resources are
            ///         metered. Corresponds to the EIP-1559 resource metering system.
            /// @custom:field prevBaseFee   Base fee from the previous block(s).
            /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
            /// @custom:field prevBlockNum  Last block number that the base fee was updated.
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
            ///         market. These values should be set with care as it is possible to set them in
            ///         a way that breaks the deposit gas market. The target resource limit is defined as
            ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
            ///         single word. There is additional space for additions in the future.
            /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
            ///                                            can be purchased per block.
            /// @custom:field elasticityMultiplier         Determines the target resource limit along with
            ///                                            the resource limit.
            /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
            /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
            ///                                            value.
            /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
            ///                                            transaction. This should be set to the same
            ///                                            number that the op-node sets as the gas limit
            ///                                            for the system transaction.
            /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
            ///                                            value.
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            /// @notice EIP-1559 style gas parameters.
            ResourceParams public params;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            uint256[48] private __gap;
            /// @notice Meters access to a function based an amount of a requested resource.
            /// @param _amount Amount of the resource requested.
            modifier metered(uint64 _amount) {
                // Record initial gas amount so we can refund for it later.
                uint256 initialGas = gasleft();
                // Run the underlying function.
                _;
                // Run the metering function.
                _metered(_amount, initialGas);
            }
            /// @notice An internal function that holds all of the logic for metering a resource.
            /// @param _amount     Amount of the resource requested.
            /// @param _initialGas The amount of gas before any modifier execution.
            function _metered(uint64 _amount, uint256 _initialGas) internal {
                // Update block number and base fee if necessary.
                uint256 blockDiff = block.number - params.prevBlockNum;
                ResourceConfig memory config = _resourceConfig();
                int256 targetResourceLimit =
                    int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                if (blockDiff > 0) {
                    // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                    // at which deposits can be created and therefore limit the potential for deposits to
                    // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                    int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                    int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                        / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                    // Update base fee by adding the base fee delta and clamp the resulting value between
                    // min and max.
                    int256 newBaseFee = Arithmetic.clamp({
                        _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                    // If we skipped more than one block, we also need to account for every empty block.
                    // Empty block means there was no demand for deposits in that block, so we should
                    // reflect this lack of demand in the fee.
                    if (blockDiff > 1) {
                        // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                        // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                        // between min and max.
                        newBaseFee = Arithmetic.clamp({
                            _value: Arithmetic.cdexp({
                                _coefficient: newBaseFee,
                                _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                _exponent: int256(blockDiff - 1)
                            }),
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                    }
                    // Update new base fee, reset bought gas, and update block number.
                    params.prevBaseFee = uint128(uint256(newBaseFee));
                    params.prevBoughtGas = 0;
                    params.prevBlockNum = uint64(block.number);
                }
                // Make sure we can actually buy the resource amount requested by the user.
                params.prevBoughtGas += _amount;
                require(
                    int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                    "ResourceMetering: cannot buy more gas than available gas limit"
                );
                // Determine the amount of ETH to be paid.
                uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                // during any 1 day period in the last 5 years, so should be fine.
                uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                // Give the user a refund based on the amount of gas they used to do all of the work up to
                // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                // effectively like a dynamic stipend (with a minimum value).
                uint256 usedGas = _initialGas - gasleft();
                if (gasCost > usedGas) {
                    Burn.gas(gasCost - usedGas);
                }
            }
            /// @notice Virtual function that returns the resource config.
            ///         Contracts that inherit this contract must implement this function.
            /// @return ResourceConfig
            function _resourceConfig() internal virtual returns (ResourceConfig memory);
            /// @notice Sets initial resource parameter values.
            ///         This function must either be called by the initializer function of an upgradeable
            ///         child contract.
            // solhint-disable-next-line func-name-mixedcase
            function __ResourceMetering_init() internal onlyInitializing {
                if (params.prevBlockNum == 0) {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title ISemver
        /// @notice ISemver is a simple contract for ensuring that contracts are
        ///         versioned using semantic versioning.
        interface ISemver {
            /// @notice Getter for the semantic version of the contract. This is not
            ///         meant to be used onchain but instead meant to be used by offchain
            ///         tooling.
            /// @return Semver contract version as a string.
            function version() external view returns (string memory);
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
        import { OptimismPortal } from "src/L1/OptimismPortal.sol";
        import { Semver } from "src/universal/Semver.sol";
        import { Predeploys } from "src/libraries/Predeploys.sol";
        /// @custom:proxied
        /// @title ETHYieldManager
        /// @notice Coordinates the accounting, asset management and
        ///         yield reporting from ETH yield providers.
        contract ETHYieldManager is YieldManager, Semver {
            error CallerIsNotPortal();
            constructor() YieldManager(address(0)) Semver(1, 0, 0) {
                initialize(OptimismPortal(payable(address(0))), address(0));
            }
            receive() external payable {}
            /// @notice initializer
            /// @param _portal Address of the OptimismPortal.
            /// @param _owner  Address of the YieldManager owner.
            function initialize(OptimismPortal _portal, address _owner) public initializer {
                __YieldManager_init(_portal, _owner);
            }
            /// @inheritdoc YieldManager
            function tokenBalance() public view override returns (uint256) {
                return address(this).balance;
            }
            /// @notice Wrapper for WithdrawalQueue._requestWithdrawal
            function requestWithdrawal(uint256 amount)
                external
                returns (uint256)
            {
                if (msg.sender != address(portal)) {
                    revert CallerIsNotPortal();
                }
                return _requestWithdrawal(address(portal), amount);
            }
            /// @notice Sends the yield report to the Shares contract.
            /// @param data Calldata to send in the message.
            function _reportYield(bytes memory data) internal override {
                portal.depositTransaction(Predeploys.SHARES, 0, REPORT_YIELD_DEFAULT_GAS_LIMIT, false, data);
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title Predeploys
        /// @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
        library Predeploys {
            /// @notice Address of the L2ToL1MessagePasser predeploy.
            address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
            /// @notice Address of the L2CrossDomainMessenger predeploy.
            address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
            /// @notice Address of the L2StandardBridge predeploy.
            address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
            /// @notice Address of the L2ERC721Bridge predeploy.
            address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
            //// @notice Address of the SequencerFeeWallet predeploy.
            address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
            /// @notice Address of the OptimismMintableERC20Factory predeploy.
            address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
            /// @notice Address of the OptimismMintableERC721Factory predeploy.
            address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
            /// @notice Address of the L1Block predeploy.
            address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
            /// @notice Address of the GasPriceOracle predeploy. Includes fee information
            ///         and helpers for computing the L1 portion of the transaction fee.
            address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
            /// @custom:legacy
            /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
            ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
            address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
            /// @custom:legacy
            /// @notice Address of the DeployerWhitelist predeploy. No longer active.
            address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
            /// @custom:legacy
            /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
            ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
            ///         can no longer be accessed.
            address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
            /// @custom:legacy
            /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
            ///         instead, which exposes more information about the L1 state.
            address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
            /// @custom:legacy
            /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
            ///         L2ToL1MessagePasser contract instead.
            address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
            /// @notice Address of the ProxyAdmin predeploy.
            address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
            /// @notice Address of the BaseFeeVault predeploy.
            address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
            /// @notice Address of the L1FeeVault predeploy.
            address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
            /// @notice Address of the GovernanceToken predeploy.
            address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
            /// @notice Address of the SchemaRegistry predeploy.
            address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
            /// @notice Address of the EAS predeploy.
            address internal constant EAS = 0x4200000000000000000000000000000000000021;
            /// @notice Address of the Shares predeploy.
            address internal constant SHARES = 0x4300000000000000000000000000000000000000;
            /// @notice Address of the Gas predeploy.
            address internal constant GAS = 0x4300000000000000000000000000000000000001;
            /// @notice Address of the Blast predeploy.
            address internal constant BLAST = 0x4300000000000000000000000000000000000002;
            /// @notice Address of the USDB predeploy.
            address internal constant USDB = 0x4300000000000000000000000000000000000003;
            /// @notice Address of the WETH predeploy.
            address internal constant WETH_REBASING = 0x4300000000000000000000000000000000000004;
            /// @notice Address of the L2BlastBridge predeploy.
            address internal constant L2_BLAST_BRIDGE = 0x4300000000000000000000000000000000000005;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
        pragma solidity ^0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal onlyInitializing {
                _transferOwnership(_msgSender());
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title Storage
        /// @notice Storage handles reading and writing to arbitary storage locations
        library Storage {
            /// @notice Returns an address stored in an arbitrary storage slot.
            ///         These storage slots decouple the storage layout from
            ///         solc's automation.
            /// @param _slot The storage slot to retrieve the address from.
            function getAddress(bytes32 _slot) internal view returns (address addr_) {
                assembly {
                    addr_ := sload(_slot)
                }
            }
            /// @notice Stores an address in an arbitrary storage slot, `_slot`.
            /// @param _slot The storage slot to store the address in.
            /// @param _address The protocol version to store
            /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
            ///      in arbitrary storage slots.
            function setAddress(bytes32 _slot, address _address) internal {
                assembly {
                    sstore(_slot, _address)
                }
            }
            /// @notice Returns a uint256 stored in an arbitrary storage slot.
            ///         These storage slots decouple the storage layout from
            ///         solc's automation.
            /// @param _slot The storage slot to retrieve the address from.
            function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                assembly {
                    value_ := sload(_slot)
                }
            }
            /// @notice Stores a value in an arbitrary storage slot, `_slot`.
            /// @param _slot The storage slot to store the address in.
            /// @param _value The protocol version to store
            /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
            ///      in arbitrary storage slots.
            function setUint(bytes32 _slot, uint256 _value) internal {
                assembly {
                    sstore(_slot, _value)
                }
            }
            /// @notice Returns a bytes32 stored in an arbitrary storage slot.
            ///         These storage slots decouple the storage layout from
            ///         solc's automation.
            /// @param _slot The storage slot to retrieve the address from.
            function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                assembly {
                    value_ := sload(_slot)
                }
            }
            /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
            /// @param _slot The storage slot to store the address in.
            /// @param _value The protocol version to store
            /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
            ///      in arbitrary storage slots.
            function setBytes32(bytes32 _slot, bytes32 _value) internal {
                assembly {
                    sstore(_slot, _value)
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { Types } from "./Types.sol";
        import { Hashing } from "./Hashing.sol";
        import { RLPWriter } from "./rlp/RLPWriter.sol";
        /// @title Encoding
        /// @notice Encoding handles Optimism's various different encoding schemes.
        library Encoding {
            /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
            ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
            ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
            /// @param _tx User deposit transaction to encode.
            /// @return RLP encoded L2 deposit transaction.
            function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                bytes[] memory raw = new bytes[](8);
                raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                raw[1] = RLPWriter.writeAddress(_tx.from);
                raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                raw[3] = RLPWriter.writeUint(_tx.mint);
                raw[4] = RLPWriter.writeUint(_tx.value);
                raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                raw[6] = RLPWriter.writeBool(false);
                raw[7] = RLPWriter.writeBytes(_tx.data);
                return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
            }
            /// @notice Encodes the cross domain message based on the version that is encoded into the
            ///         message nonce.
            /// @param _nonce    Message nonce with version encoded into the first two bytes.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Encoded cross domain message.
            function encodeCrossDomainMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes memory)
            {
                (, uint16 version) = decodeVersionedNonce(_nonce);
                if (version == 0) {
                    return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                } else if (version == 1) {
                    return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                } else {
                    revert("Encoding: unknown cross domain message version");
                }
            }
            /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
            /// @param _target Address of the target of the message.
            /// @param _sender Address of the sender of the message.
            /// @param _data   Data to send with the message.
            /// @param _nonce  Message nonce.
            /// @return Encoded cross domain message.
            function encodeCrossDomainMessageV0(
                address _target,
                address _sender,
                bytes memory _data,
                uint256 _nonce
            )
                internal
                pure
                returns (bytes memory)
            {
                return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
            }
            /// @notice Encodes a cross domain message based on the V1 (current) encoding.
            /// @param _nonce    Message nonce.
            /// @param _sender   Address of the sender of the message.
            /// @param _target   Address of the target of the message.
            /// @param _value    ETH value to send to the target.
            /// @param _gasLimit Gas limit to use for the message.
            /// @param _data     Data to send with the message.
            /// @return Encoded cross domain message.
            function encodeCrossDomainMessageV1(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _gasLimit,
                bytes memory _data
            )
                internal
                pure
                returns (bytes memory)
            {
                return abi.encodeWithSignature(
                    "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                    _nonce,
                    _sender,
                    _target,
                    _value,
                    _gasLimit,
                    _data
                );
            }
            /// @notice Adds a version number into the first two bytes of a message nonce.
            /// @param _nonce   Message nonce to encode into.
            /// @param _version Version number to encode into the message nonce.
            /// @return Message nonce with version encoded into the first two bytes.
            function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                uint256 nonce;
                assembly {
                    nonce := or(shl(240, _version), _nonce)
                }
                return nonce;
            }
            /// @notice Pulls the version out of a version-encoded nonce.
            /// @param _nonce Message nonce with version encoded into the first two bytes.
            /// @return Nonce without encoded version.
            /// @return Version of the message.
            function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                uint240 nonce;
                uint16 version;
                assembly {
                    nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                    version := shr(240, _nonce)
                }
                return (nonce, version);
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { Bytes } from "../Bytes.sol";
        import { RLPReader } from "../rlp/RLPReader.sol";
        /// @title MerkleTrie
        /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
        ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
        ///         trie radix constant to support other trie radixes.
        library MerkleTrie {
            /// @notice Struct representing a node in the trie.
            /// @custom:field encoded The RLP-encoded node.
            /// @custom:field decoded The RLP-decoded node.
            struct TrieNode {
                bytes encoded;
                RLPReader.RLPItem[] decoded;
            }
            /// @notice Determines the number of elements per branch node.
            uint256 internal constant TREE_RADIX = 16;
            /// @notice Branch nodes have TREE_RADIX elements and one value element.
            uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
            /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
            uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
            /// @notice Prefix for even-nibbled extension node paths.
            uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
            /// @notice Prefix for odd-nibbled extension node paths.
            uint8 internal constant PREFIX_EXTENSION_ODD = 1;
            /// @notice Prefix for even-nibbled leaf node paths.
            uint8 internal constant PREFIX_LEAF_EVEN = 2;
            /// @notice Prefix for odd-nibbled leaf node paths.
            uint8 internal constant PREFIX_LEAF_ODD = 3;
            /// @notice Verifies a proof that a given key/value pair is present in the trie.
            /// @param _key   Key of the node to search for, as a hex string.
            /// @param _value Value of the node to search for, as a hex string.
            /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
            ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
            ///               nodes that make a path down to the target node.
            /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
            ///               correctly constructed.
            /// @return valid_ Whether or not the proof is valid.
            function verifyInclusionProof(
                bytes memory _key,
                bytes memory _value,
                bytes[] memory _proof,
                bytes32 _root
            )
                internal
                pure
                returns (bool valid_)
            {
                valid_ = Bytes.equal(_value, get(_key, _proof, _root));
            }
            /// @notice Retrieves the value associated with a given key.
            /// @param _key   Key to search for, as hex bytes.
            /// @param _proof Merkle trie inclusion proof for the key.
            /// @param _root  Known root of the Merkle trie.
            /// @return value_ Value of the key if it exists.
            function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                require(_key.length > 0, "MerkleTrie: empty key");
                TrieNode[] memory proof = _parseProof(_proof);
                bytes memory key = Bytes.toNibbles(_key);
                bytes memory currentNodeID = abi.encodePacked(_root);
                uint256 currentKeyIndex = 0;
                // Proof is top-down, so we start at the first element (root).
                for (uint256 i = 0; i < proof.length; i++) {
                    TrieNode memory currentNode = proof[i];
                    // Key index should never exceed total key length or we'll be out of bounds.
                    require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                    if (currentKeyIndex == 0) {
                        // First proof element is always the root node.
                        require(
                            Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                            "MerkleTrie: invalid root hash"
                        );
                    } else if (currentNode.encoded.length >= 32) {
                        // Nodes 32 bytes or larger are hashed inside branch nodes.
                        require(
                            Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                            "MerkleTrie: invalid large internal hash"
                        );
                    } else {
                        // Nodes smaller than 32 bytes aren't hashed.
                        require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                    }
                    if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                        if (currentKeyIndex == key.length) {
                            // Value is the last element of the decoded list (for branch nodes). There's
                            // some ambiguity in the Merkle trie specification because bytes(0) is a
                            // valid value to place into the trie, but for branch nodes bytes(0) can exist
                            // even when the value wasn't explicitly placed there. Geth treats a value of
                            // bytes(0) as "key does not exist" and so we do the same.
                            value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                            require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                            // Extra proof elements are not allowed.
                            require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                            return value_;
                        } else {
                            // We're not at the end of the key yet.
                            // Figure out what the next node ID should be and continue.
                            uint8 branchKey = uint8(key[currentKeyIndex]);
                            RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                            currentNodeID = _getNodeID(nextNode);
                            currentKeyIndex += 1;
                        }
                    } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                        bytes memory path = _getNodePath(currentNode);
                        uint8 prefix = uint8(path[0]);
                        uint8 offset = 2 - (prefix % 2);
                        bytes memory pathRemainder = Bytes.slice(path, offset);
                        bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                        uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                        // Whether this is a leaf node or an extension node, the path remainder MUST be a
                        // prefix of the key remainder (or be equal to the key remainder) or the proof is
                        // considered invalid.
                        require(
                            pathRemainder.length == sharedNibbleLength,
                            "MerkleTrie: path remainder must share all nibbles with key"
                        );
                        if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                            // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                            // the key remainder must be exactly equal to the path remainder. We already
                            // did the necessary byte comparison, so it's more efficient here to check that
                            // the key remainder length equals the shared nibble length, which implies
                            // equality with the path remainder (since we already did the same check with
                            // the path remainder and the shared nibble length).
                            require(
                                keyRemainder.length == sharedNibbleLength,
                                "MerkleTrie: key remainder must be identical to path remainder"
                            );
                            // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                            // state trie. Empty values are not allowed in the state trie, so we can safely
                            // say that if the value is empty, the key should not exist and the proof is
                            // invalid.
                            value_ = RLPReader.readBytes(currentNode.decoded[1]);
                            require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                            // Extra proof elements are not allowed.
                            require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                            return value_;
                        } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                            // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                            // in the proof and increment the key index by the length of the path remainder
                            // which is equal to the shared nibble length.
                            currentNodeID = _getNodeID(currentNode.decoded[1]);
                            currentKeyIndex += sharedNibbleLength;
                        } else {
                            revert("MerkleTrie: received a node with an unknown prefix");
                        }
                    } else {
                        revert("MerkleTrie: received an unparseable node");
                    }
                }
                revert("MerkleTrie: ran out of proof elements");
            }
            /// @notice Parses an array of proof elements into a new array that contains both the original
            ///         encoded element and the RLP-decoded element.
            /// @param _proof Array of proof elements to parse.
            /// @return proof_ Proof parsed into easily accessible structs.
            function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                uint256 length = _proof.length;
                proof_ = new TrieNode[](length);
                for (uint256 i = 0; i < length;) {
                    proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                    unchecked {
                        ++i;
                    }
                }
            }
            /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
            ///         specification, but nodes < 32 bytes are not actually hashed.
            /// @param _node Node to pull an ID for.
            /// @return id_ ID for the node, depending on the size of its contents.
            function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
            }
            /// @notice Gets the path for a leaf or extension node.
            /// @param _node Node to get a path for.
            /// @return nibbles_ Node path, converted to an array of nibbles.
            function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
            }
            /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
            /// @param _a First nibble array.
            /// @param _b Second nibble array.
            /// @return shared_ Number of shared nibbles.
            function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                for (; shared_ < max && _a[shared_] == _b[shared_];) {
                    unchecked {
                        ++shared_;
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        /// @title Burn
        /// @notice Utilities for burning stuff.
        library Burn {
            /// @notice Burns a given amount of ETH.
            /// @param _amount Amount of ETH to burn.
            function eth(uint256 _amount) internal {
                new Burner{ value: _amount }();
            }
            /// @notice Burns a given amount of gas.
            /// @param _amount Amount of gas to burn.
            function gas(uint256 _amount) internal view {
                uint256 i = 0;
                uint256 initialGas = gasleft();
                while (initialGas - gasleft() < _amount) {
                    ++i;
                }
            }
        }
        /// @title Burner
        /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
        ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
        ///         from the circulating supply.
        contract Burner {
            constructor() payable {
                selfdestruct(payable(address(this)));
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
        /// @title Arithmetic
        /// @notice Even more math than before.
        library Arithmetic {
            /// @notice Clamps a value between a minimum and maximum.
            /// @param _value The value to clamp.
            /// @param _min   The minimum value.
            /// @param _max   The maximum value.
            /// @return The clamped value.
            function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                return SignedMath.min(SignedMath.max(_value, _min), _max);
            }
            /// @notice (c)oefficient (d)enominator (exp)onentiation function.
            ///         Returns the result of: c * (1 - 1/d)^exp.
            /// @param _coefficient Coefficient of the function.
            /// @param _denominator Fractional denominator.
            /// @param _exponent    Power function exponent.
            /// @return Result of c * (1 - 1/d)^exp.
            function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { Ownable2StepUpgradeable } from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
        import { WithdrawalQueue } from "src/mainnet-bridge/withdrawal-queue/WithdrawalQueue.sol";
        import { YieldProvider } from "src/mainnet-bridge/yield-providers/YieldProvider.sol";
        import { Types } from "src/libraries/Types.sol";
        import { SafeCall } from "src/libraries/SafeCall.sol";
        import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol";
        import { SharesBase } from "src/L2/Shares.sol";
        import { DelegateCalls } from "src/mainnet-bridge/DelegateCalls.sol";
        import { USDConversions } from "src/mainnet-bridge/USDConversions.sol";
        import { Semver } from "src/universal/Semver.sol";
        import { OptimismPortal } from "src/L1/OptimismPortal.sol";
        import { Predeploys } from "src/libraries/Predeploys.sol";
        interface IInsurance {
            function coverLoss(address token, uint256 amount) external;
        }
        /// @title YieldManager
        /// @notice Base contract to centralize accounting, asset management and
        ///         yield reporting from yield providers of a common base asset.
        abstract contract YieldManager is Ownable2StepUpgradeable, WithdrawalQueue, DelegateCalls {
            using EnumerableSet for EnumerableSet.AddressSet;
            /// @notice Maximum gas limit for the yield report call on L2.
            uint32 internal constant REPORT_YIELD_DEFAULT_GAS_LIMIT = 200_000;
            /// @notice Maximum insurance fee the owner is allowed to set.
            uint256 public constant MAX_INSURANCE_FEE_BIPS = 10_000; // 100%
            /// @notice Number of basis points representing 100 percent.
            uint256 internal constant BASIS_POINTS = 10_000;
            /// @notice Set of provider addresses.
            EnumerableSet.AddressSet private _providers;
            /// @notice Address of the admin handling regular tasks such as
            ///         `stake`, `unstake`, `claim`, `commitYieldReport`, and
            ///         `finalize`.
            address public admin;
            /// @notice Address of the insurance module.
            address public insurance;
            /// @notice Address of the L1BlastBridge.
            address public blastBridge;
            /// @notice Sum of negative yields to track the slippage between L2-L1 share price.
            ///         If negative yields accumulate, L1 withdrawals are discounted to cover the
            ///         loss.
            uint256 public accumulatedNegativeYields;
            /// @notice Current insurance fee in bips.
            uint256 public insuranceFeeBips;
            /// @notice Amount of additional funds to withdraw from insurance.
            ///         This buffer addresses the scenario where the transfer of the exact amount of accumulated
            ///         negative yields from insurance does not fully pay off the outstanding amount. In Lido's
            ///         system, the transfer logic is based on shares, which may lead to discrepancies in the
            ///         withdrawal of insurance funds. By including this buffer, the system ensures that when
            ///         insurance funds are withdrawn, the total amount withdrawn is the exact required amount
            ///         plus an additional buffer. This approach guarantees the complete payoff of any negative
            ///         yields, accommodating for any potential rounding discrepancies inherent in the share-based
            ///         transfer logic.
            uint256 public insuranceWithdrawalBuffer;
            /// @notice Address of the OptimismPortal.
            OptimismPortal public portal;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            ///         A gap size of 41 was chosen here, so that the first slot used in a child contract
            ///         would be a multiple of 50.
            uint256[41] private __gap;
            struct ProviderInfo {
                bytes32 id;
                address providerAddress;
                uint256 stakedBalance;
                uint256 pendingBalance;
                uint256 stakedPrincipal;
                uint256 totalValue;
                int256 yield;
            }
            /// @notice Emitted when the yield report is committed on L1 and
            ///         the yield is communicated to L2.
            /// @param yield                Amount of yield generated at this checkpoint.
            /// @param insurancePremiumPaid Amount paid in insurance.
            /// @param insuranceWithdrawn   Amount withdrawn from insurance.
            event YieldReport(
                int256  yield,
                uint256 insurancePremiumPaid,
                uint256 insuranceWithdrawn
            );
            error CallerIsNotAdmin();
            error FailedToInitializeProvider();
            error ProviderAddressDoesNotMatchIndex();
            error InsufficientInsuranceBalance();
            error NegativeYieldFromInsuredProvider();
            error TotalValueIsZero();
            error CallerIsNotBlastBridge();
            error ProviderNotFound();
            error YieldProviderIsNotMeantForThisManager();
            error NegativeYieldIncrease();
            modifier onlyAdmin() {
                if (msg.sender != admin) {
                    revert CallerIsNotAdmin();
                }
                _;
            }
            /// @notice Modifier only allowing the L1BlastBridge to call a function.
            modifier onlyBlastBridge() {
                if (msg.sender != blastBridge) {
                    revert CallerIsNotBlastBridge();
                }
                _;
            }
            /// @param _token Address of withdrawal token.
            constructor(address _token) WithdrawalQueue(_token) {}
            /// @notice initializer
            /// @param _portal Address of the OptimismPortal.
            /// @param _owner  Address of the YieldManager owner.
            function __YieldManager_init(OptimismPortal _portal, address _owner) internal onlyInitializing {
                __Ownable2Step_init();
                __WithdrawalQueue_init();
                _transferOwnership(_owner);
                portal = _portal;
            }
            /* ========== OWNER FUNCTIONS ========== */
            /// @notice Set new admin account to handle regular tasks including
            ///         (stake, unstake, claim).
            /// @param _admin Address of new admin
            function setAdmin(address _admin) external onlyOwner {
                require(_admin != address(0));
                admin = _admin;
            }
            /// @notice Set the yield insurance parameters.
            /// @param _insurance        Address of the insurance module.
            /// @param _insuranceFeeBips Insurance fee to take from positive yields.
            /// @param _withdrawalBuffer Amount of additional funds to withdraw from insurance.
            function setInsurance(address _insurance, uint256 _insuranceFeeBips, uint256 _withdrawalBuffer) external onlyOwner {
                require(_insurance != address(0));
                require(_insuranceFeeBips <= MAX_INSURANCE_FEE_BIPS);
                insurance = _insurance;
                insuranceFeeBips = _insuranceFeeBips;
                insuranceWithdrawalBuffer = _withdrawalBuffer;
            }
            /// @notice Set the address of the L1BlastBridge.
            /// @param _blastBridge Address of the L1BlastBridge.
            function setBlastBridge(address _blastBridge) external onlyOwner {
                require(_blastBridge != address(0));
                blastBridge = _blastBridge;
            }
            /// @notice Add a yield provider contract.
            /// @param provider Address of the yield provider.
            function addProvider(address provider) external onlyOwner {
                if (address(YieldProvider(provider).YIELD_MANAGER()) != address(this)) {
                    revert YieldProviderIsNotMeantForThisManager();
                }
                _providers.add(provider);
                (bool success,) = provider.delegatecall(abi.encodeWithSignature("initialize()"));
                if (!success) {
                    revert FailedToInitializeProvider();
                }
            }
            /// @notice Remove a yield provider contract.
            /// @param provider Address of the yield provider.
            function removeProvider(address provider) external onlyOwner {
                _providers.remove(provider);
            }
            /* ========== ADMIN FUNCTIONS ========== */
            /// @notice Stake funds for a particular yield provider and record the
            ///         staked deposit. The stake call is made via 'delegatecall'
            ///         so the yield provider implementation is executed with the
            ///         yield manager's funds.
            /// @param idx             Index of the provider.
            /// @param providerAddress Address of the provider at index 'idx'.
            /// @param amount          Amount to stake (wad).
            function stake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
                if (_providers.at(idx) != providerAddress) {
                    revert ProviderAddressDoesNotMatchIndex();
                }
                _delegatecall_stake(providerAddress, amount);
                YieldProvider(providerAddress).recordStakedDeposit(amount);
            }
            /// @notice Unstake funds for a particular yield provider and record the
            ///         staked withdraw. The stake call is made via 'delegatecall'
            ///         so the yield provider implementation is executed with the
            ///         yield manager's funds.
            /// @param idx             Index of the provider.
            /// @param providerAddress Address of the provider at index 'idx'.
            /// @param amount          Amount to stake (wad).
            function unstake(uint256 idx, address providerAddress, uint256 amount) external onlyAdmin {
                if (_providers.at(idx) != providerAddress) {
                    revert ProviderAddressDoesNotMatchIndex();
                }
                (uint256 pending, uint256 claimed) = _delegatecall_unstake(providerAddress, amount);
                YieldProvider(providerAddress).recordUnstaked(pending, claimed, amount);
            }
            /// @notice Commit yield report.
            /// @param enableInsurance Whether insurance should be taken from positive yields
            ///        and paid out for negative yields. If false, negative yields will
            ///        accumulate and withdrawals will be discounted. If true (and insurance
            ///        is supported by the provider), it will guarantee that committed yield
            ///        is always non-negative, or else revert. It also guarantees that
            ///        accumulated negative yields never increase.
            function commitYieldReport(bool enableInsurance) public onlyAdmin {
                uint256 providersLength = _providers.length();
                uint256 negativeYieldBefore = accumulatedNegativeYields;
                uint256 totalInsurancePremiumPaid;
                uint256 totalInsuranceWithdrawal;
                int256 totalYield;
                // For each provider, commit yield after paying to/from the insurance as necessary
                for (uint256 i; i < providersLength; i++) {
                    // run the pre-commit yield report hook
                    _delegatecall_preCommitYieldReportDelegateCallHook(_providers.at(i));
                    // read the current yield from the provider
                    int256 yield = YieldProvider(_providers.at(i)).yield();
                    uint256 insurancePayment;
                    // take care of insurance payments and withdrawals
                    if (
                        enableInsurance &&
                        YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                        insurance != address(0)
                    ) {
                        if (yield > 0) {
                            // pay the insurance premium
                            insurancePayment = uint256(yield) * insuranceFeeBips / BASIS_POINTS;
                            _delegatecall_payInsurancePremium(_providers.at(i), insurancePayment);
                            totalInsurancePremiumPaid += insurancePayment;
                        } else if (yield < 0) {
                            // withdraw from the insurance to cover the loss
                            uint256 insuranceWithdrawal = SignedMath.abs(yield) + insuranceWithdrawalBuffer;
                            uint256 insuranceBalance = YieldProvider(_providers.at(i)).insuranceBalance();
                            if (insuranceBalance < insuranceWithdrawal) {
                                revert InsufficientInsuranceBalance();
                            }
                            _delegatecall_withdrawFromInsurance(_providers.at(i), insuranceWithdrawal);
                            totalInsuranceWithdrawal += insuranceWithdrawal;
                        }
                    }
                    // Commit the yield for the provider
                    int256 committedYield = YieldProvider(_providers.at(i)).commitYield();
                    // Sanity check
                    if (
                        enableInsurance &&
                        YieldProvider(_providers.at(i)).supportsInsurancePayment() &&
                        insurance != address(0)
                    ) {
                        if (committedYield < 0) {
                            revert NegativeYieldFromInsuredProvider();
                        }
                    }
                    // update totalYield
                    totalYield += committedYield;
                }
                // reflect the accumulated negative yield in totalYield
                if (accumulatedNegativeYields > 0) {
                    totalYield -= SafeCast.toInt256(accumulatedNegativeYields);
                }
                emit YieldReport(totalYield, totalInsurancePremiumPaid, totalInsuranceWithdrawal);
                if (totalYield < 0) {
                    accumulatedNegativeYields = uint256(-1 * totalYield);
                } else {
                    accumulatedNegativeYields = 0;
                    if (totalYield > 0) {
                        _reportYield(
                            abi.encodeWithSelector(
                                SharesBase.addValue.selector,
                                totalYield
                            )
                        );
                    }
                }
                if (enableInsurance && accumulatedNegativeYields > negativeYieldBefore) {
                    revert NegativeYieldIncrease();
                }
            }
            /// @notice Helper function to atomically withdraw from insurance and commit yield report.
            ///         This function can be used to maintain share price = 1e27 when yield from
            ///         the registered providers is not sufficient to cover negative yield from
            ///         LidoYieldProvider._claim().
            function commitYieldReportAfterInsuranceWithdrawal(
                address token,
                uint256 amount
            ) external onlyAdmin {
                require(insurance != address(0));
                IInsurance(insurance).coverLoss(token, amount);
                commitYieldReport(true);
            }
            /// @notice Report realized negative yield. This is meant to be called inside a YieldProvider
            ///         method that is executed via 'delegatecall' by the YieldManager.
            function recordNegativeYield(uint256 amount) external {
                require(msg.sender == address(this), "Caller is not this contract");
                accumulatedNegativeYields += amount;
            }
            /// @notice Finalize withdrawal requests up to 'requestId'.
            /// @param requestId Last request id to finalize in this batch.
            function finalize(uint256 requestId) external onlyAdmin returns (uint256 checkpointId) {
                uint256 nominalAmount; uint256 realAmount;
                (nominalAmount, realAmount, checkpointId) = _finalize(requestId, availableBalance(), sharePrice());
                // nominalAmount - realAmount is the share of the accumulated negative yield
                // that should be paid by the current withdrawal
                if (nominalAmount > realAmount) {
                    accumulatedNegativeYields = _subClamped(accumulatedNegativeYields, nominalAmount - realAmount);
                }
            }
            /* ========== VIRTUAL FUNCTIONS ========== */
            /// @notice Get the amount of the withdrawal token that is held by the yield manager.
            function tokenBalance() public view virtual returns (uint256);
            /// @notice Send the yield report to the L2 contract that is responsible for
            ///         updating the L2 share price.
            /// @param data Calldata to send in the message.
            function _reportYield(bytes memory data) internal virtual;
            /* ========== VIEW FUNCTIONS ========== */
            /// @notice Available balance.
            function availableBalance() public view returns (uint256) {
                return tokenBalance() - getLockedBalance();
            }
            /// @notice Get the total value of all yield providers denominated in the withdrawal token.
            function totalProviderValue() public view returns (uint256 sum) {
                uint256 providersLength = _providers.length();
                for (uint256 i; i < providersLength; i++) {
                    sum += YieldProvider(_providers.at(i)).totalValue();
                }
            }
            /// @notice Get the total value of all yield providers plus the available balance value.
            function totalValue() public view returns (uint256) {
                return availableBalance() + totalProviderValue();
            }
            /// @notice Get the share price of the withdrawal token with 1e27 precision.
            ///         The share price is capped at 1e27 and can only go down if there
            ///         are accumulated negative yields.
            function sharePrice() public view returns (uint256) {
                uint256 value = totalValue();
                if (value == 0) {
                    revert TotalValueIsZero();
                }
                return value * E27_PRECISION_BASE / (value + accumulatedNegativeYields);
            }
            /// @notice Get an accounting report on the current state of a yield provider.
            ///         Due to how EnumerableSet works, 'idx' is not guaranteed to be stable
            ///         across add/remove operations so admin should verify the idx before
            ///         calling state-changing functions (e.g. stake, unstake).
            /// @param idx Index of the provider.
            /// @return info Accounting report on the yield provider.
            function getProviderInfoAt(uint256 idx) external view returns (ProviderInfo memory info) {
                YieldProvider provider = YieldProvider(_providers.at(idx));
                info.id = provider.id();
                info.providerAddress = address(provider);
                info.stakedBalance = provider.stakedBalance();
                info.pendingBalance = provider.pendingBalance();
                info.stakedPrincipal = provider.stakedPrincipal();
                info.totalValue = provider.totalValue();
                info.yield = provider.yield();
            }
            /// @notice Record an increase to the staked funds represented
            ///         by the provider.
            /// @param providerAddress Address of yield provider.
            /// @param amount          Amount of additional staked funds.
            function recordStakedDeposit(address providerAddress, uint256 amount) external onlyBlastBridge {
                if (!_providers.contains(providerAddress)) {
                    revert ProviderNotFound();
                }
                YieldProvider(providerAddress).recordStakedDeposit(amount);
            }
            /// @notice Returns max(0, x - y) without reverting on underflow.
            function _subClamped(uint256 x, uint256 y) internal pure returns (uint256 z) {
                unchecked {
                    z = x > y ? x - y : 0;
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
        /// @title Semver
        /// @notice Semver is a simple contract for managing contract versions.
        contract Semver {
            /// @notice Contract version number (major).
            uint256 private immutable MAJOR_VERSION;
            /// @notice Contract version number (minor).
            uint256 private immutable MINOR_VERSION;
            /// @notice Contract version number (patch).
            uint256 private immutable PATCH_VERSION;
            /// @param _major Version number (major).
            /// @param _minor Version number (minor).
            /// @param _patch Version number (patch).
            constructor(uint256 _major, uint256 _minor, uint256 _patch) {
                MAJOR_VERSION = _major;
                MINOR_VERSION = _minor;
                PATCH_VERSION = _patch;
            }
            /// @notice Returns the full semver contract version.
            /// @return Semver contract version as a string.
            function version() public view returns (string memory) {
                return string(
                    abi.encodePacked(
                        Strings.toString(MAJOR_VERSION),
                        ".",
                        Strings.toString(MINOR_VERSION),
                        ".",
                        Strings.toString(PATCH_VERSION)
                    )
                );
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
        pragma solidity ^0.8.0;
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal onlyInitializing {
            }
            function __Context_init_unchained() internal onlyInitializing {
            }
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```solidity
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         *
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts.
             *
             * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
             * constructor.
             *
             * Emits an {Initialized} event.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * A reinitializer may be used after the original initialization step. This is essential to configure modules that
             * are added through upgrades and that require initialization.
             *
             * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
             * cannot be nested. If one is invoked in the context of another, execution will revert.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             *
             * WARNING: setting the version to 255 will prevent any future reinitialization.
             *
             * Emits an {Initialized} event.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             *
             * Emits an {Initialized} event the first time it is successfully executed.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized != type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
            /**
             * @dev Returns the highest version that has been initialized. See {reinitializer}.
             */
            function _getInitializedVersion() internal view returns (uint8) {
                return _initialized;
            }
            /**
             * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
             */
            function _isInitializing() internal view returns (bool) {
                return _initializing;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
        /// @title RLPWriter
        /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
        ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
        ///         modifications to improve legibility.
        library RLPWriter {
            /// @notice RLP encodes a byte string.
            /// @param _in The byte string to encode.
            /// @return out_ The RLP encoded string in bytes.
            function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                if (_in.length == 1 && uint8(_in[0]) < 128) {
                    out_ = _in;
                } else {
                    out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                }
            }
            /// @notice RLP encodes a list of RLP encoded byte byte strings.
            /// @param _in The list of RLP encoded byte strings.
            /// @return list_ The RLP encoded list of items in bytes.
            function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                list_ = _flatten(_in);
                list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
            }
            /// @notice RLP encodes a string.
            /// @param _in The string to encode.
            /// @return out_ The RLP encoded string in bytes.
            function writeString(string memory _in) internal pure returns (bytes memory out_) {
                out_ = writeBytes(bytes(_in));
            }
            /// @notice RLP encodes an address.
            /// @param _in The address to encode.
            /// @return out_ The RLP encoded address in bytes.
            function writeAddress(address _in) internal pure returns (bytes memory out_) {
                out_ = writeBytes(abi.encodePacked(_in));
            }
            /// @notice RLP encodes a uint.
            /// @param _in The uint256 to encode.
            /// @return out_ The RLP encoded uint256 in bytes.
            function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                out_ = writeBytes(_toBinary(_in));
            }
            /// @notice RLP encodes a bool.
            /// @param _in The bool to encode.
            /// @return out_ The RLP encoded bool in bytes.
            function writeBool(bool _in) internal pure returns (bytes memory out_) {
                out_ = new bytes(1);
                out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
            }
            /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
            /// @param _len    The length of the string or the payload.
            /// @param _offset 128 if item is string, 192 if item is list.
            /// @return out_ RLP encoded bytes.
            function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                if (_len < 56) {
                    out_ = new bytes(1);
                    out_[0] = bytes1(uint8(_len) + uint8(_offset));
                } else {
                    uint256 lenLen;
                    uint256 i = 1;
                    while (_len / i != 0) {
                        lenLen++;
                        i *= 256;
                    }
                    out_ = new bytes(lenLen + 1);
                    out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                    for (i = 1; i <= lenLen; i++) {
                        out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                    }
                }
            }
            /// @notice Encode integer in big endian binary form with no leading zeroes.
            /// @param _x The integer to encode.
            /// @return out_ RLP encoded bytes.
            function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                bytes memory b = abi.encodePacked(_x);
                uint256 i = 0;
                for (; i < 32; i++) {
                    if (b[i] != 0) {
                        break;
                    }
                }
                out_ = new bytes(32 - i);
                for (uint256 j = 0; j < out_.length; j++) {
                    out_[j] = b[i++];
                }
            }
            /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
            /// @notice Copies a piece of memory to another location.
            /// @param _dest Destination location.
            /// @param _src  Source location.
            /// @param _len  Length of memory to copy.
            function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                uint256 dest = _dest;
                uint256 src = _src;
                uint256 len = _len;
                for (; len >= 32; len -= 32) {
                    assembly {
                        mstore(dest, mload(src))
                    }
                    dest += 32;
                    src += 32;
                }
                uint256 mask;
                unchecked {
                    mask = 256 ** (32 - len) - 1;
                }
                assembly {
                    let srcpart := and(mload(src), not(mask))
                    let destpart := and(mload(dest), mask)
                    mstore(dest, or(destpart, srcpart))
                }
            }
            /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
            /// @notice Flattens a list of byte strings into one byte string.
            /// @param _list List of byte strings to flatten.
            /// @return out_ The flattened byte string.
            function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                if (_list.length == 0) {
                    return new bytes(0);
                }
                uint256 len;
                uint256 i = 0;
                for (; i < _list.length; i++) {
                    len += _list[i].length;
                }
                out_ = new bytes(len);
                uint256 flattenedPtr;
                assembly {
                    flattenedPtr := add(out_, 0x20)
                }
                for (i = 0; i < _list.length; i++) {
                    bytes memory item = _list[i];
                    uint256 listPtr;
                    assembly {
                        listPtr := add(item, 0x20)
                    }
                    _memcpy(flattenedPtr, listPtr, item.length);
                    flattenedPtr += _list[i].length;
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title Bytes
        /// @notice Bytes is a library for manipulating byte arrays.
        library Bytes {
            /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
            /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
            ///         as opposed to a pointer to the original array. Will throw if trying to slice more
            ///         bytes than exist in the array.
            /// @param _bytes Byte array to slice.
            /// @param _start Starting index of the slice.
            /// @param _length Length of the slice.
            /// @return Slice of the input byte array.
            function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                unchecked {
                    require(_length + 31 >= _length, "slice_overflow");
                    require(_start + _length >= _start, "slice_overflow");
                    require(_bytes.length >= _start + _length, "slice_outOfBounds");
                }
                bytes memory tempBytes;
                assembly {
                    switch iszero(_length)
                    case 0 {
                        // Get a location of some free memory and store it in tempBytes as
                        // Solidity does for memory variables.
                        tempBytes := mload(0x40)
                        // The first word of the slice result is potentially a partial
                        // word read from the original array. To read it, we calculate
                        // the length of that partial word and start copying that many
                        // bytes into the array. The first word we copy will start with
                        // data we don't care about, but the last `lengthmod` bytes will
                        // land at the beginning of the contents of the new array. When
                        // we're done copying, we overwrite the full first word with
                        // the actual length of the slice.
                        let lengthmod := and(_length, 31)
                        // The multiplication in the next line is necessary
                        // because when slicing multiples of 32 bytes (lengthmod == 0)
                        // the following copy loop was copying the origin's length
                        // and then ending prematurely not copying everything it should.
                        let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                        let end := add(mc, _length)
                        for {
                            // The multiplication in the next line has the same exact purpose
                            // as the one above.
                            let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                        } lt(mc, end) {
                            mc := add(mc, 0x20)
                            cc := add(cc, 0x20)
                        } { mstore(mc, mload(cc)) }
                        mstore(tempBytes, _length)
                        //update free-memory pointer
                        //allocating the array padded to 32 bytes like the compiler does now
                        mstore(0x40, and(add(mc, 31), not(31)))
                    }
                    //if we want a zero-length slice let's just return a zero-length array
                    default {
                        tempBytes := mload(0x40)
                        //zero out the 32 bytes slice we are about to return
                        //we need to do it because Solidity does not garbage collect
                        mstore(tempBytes, 0)
                        mstore(0x40, add(tempBytes, 0x20))
                    }
                }
                return tempBytes;
            }
            /// @notice Slices a byte array with a given starting index up to the end of the original byte
            ///         array. Returns a new array rathern than a pointer to the original.
            /// @param _bytes Byte array to slice.
            /// @param _start Starting index of the slice.
            /// @return Slice of the input byte array.
            function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                if (_start >= _bytes.length) {
                    return bytes("");
                }
                return slice(_bytes, _start, _bytes.length - _start);
            }
            /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
            ///         Resulting nibble array will be exactly twice as long as the input byte array.
            /// @param _bytes Input byte array to convert.
            /// @return Resulting nibble array.
            function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                bytes memory _nibbles;
                assembly {
                    // Grab a free memory offset for the new array
                    _nibbles := mload(0x40)
                    // Load the length of the passed bytes array from memory
                    let bytesLength := mload(_bytes)
                    // Calculate the length of the new nibble array
                    // This is the length of the input array times 2
                    let nibblesLength := shl(0x01, bytesLength)
                    // Update the free memory pointer to allocate memory for the new array.
                    // To do this, we add the length of the new array + 32 bytes for the array length
                    // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                    mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                    // Store the length of the new array in memory
                    mstore(_nibbles, nibblesLength)
                    // Store the memory offset of the _bytes array's contents on the stack
                    let bytesStart := add(_bytes, 0x20)
                    // Store the memory offset of the nibbles array's contents on the stack
                    let nibblesStart := add(_nibbles, 0x20)
                    // Loop through each byte in the input array
                    for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                        // Get the starting offset of the next 2 bytes in the nibbles array
                        let offset := add(nibblesStart, shl(0x01, i))
                        // Load the byte at the current index within the `_bytes` array
                        let b := byte(0x00, mload(add(bytesStart, i)))
                        // Pull out the first nibble and store it in the new array
                        mstore8(offset, shr(0x04, b))
                        // Pull out the second nibble and store it in the new array
                        mstore8(add(offset, 0x01), and(b, 0x0F))
                    }
                }
                return _nibbles;
            }
            /// @notice Compares two byte arrays by comparing their keccak256 hashes.
            /// @param _bytes First byte array to compare.
            /// @param _other Second byte array to compare.
            /// @return True if the two byte arrays are equal, false otherwise.
            function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                return keccak256(_bytes) == keccak256(_other);
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.8;
        /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
        /// @title RLPReader
        /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
        ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
        ///         various tweaks to improve readability.
        library RLPReader {
            /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
            type MemoryPointer is uint256;
            /// @notice RLP item types.
            /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
            /// @custom:value LIST_ITEM Represents an RLP list item.
            enum RLPItemType {
                DATA_ITEM,
                LIST_ITEM
            }
            /// @notice Struct representing an RLP item.
            /// @custom:field length Length of the RLP item.
            /// @custom:field ptr    Pointer to the RLP item in memory.
            struct RLPItem {
                uint256 length;
                MemoryPointer ptr;
            }
            /// @notice Max list length that this library will accept.
            uint256 internal constant MAX_LIST_LENGTH = 32;
            /// @notice Converts bytes to a reference to memory position and length.
            /// @param _in Input bytes to convert.
            /// @return out_ Output memory reference.
            function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                // Empty arrays are not RLP items.
                require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                MemoryPointer ptr;
                assembly {
                    ptr := add(_in, 32)
                }
                out_ = RLPItem({ length: _in.length, ptr: ptr });
            }
            /// @notice Reads an RLP list value into a list of RLP items.
            /// @param _in RLP list value.
            /// @return out_ Decoded RLP list items.
            function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                require(itemType == RLPItemType.LIST_ITEM, "RLPReader: decoded item type for list is not a list item");
                require(listOffset + listLength == _in.length, "RLPReader: list item has an invalid data remainder");
                // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                // writing to the length. Since we can't know the number of RLP items without looping over
                // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                // simply set a reasonable maximum list length and decrease the size before we finish.
                out_ = new RLPItem[](MAX_LIST_LENGTH);
                uint256 itemCount = 0;
                uint256 offset = listOffset;
                while (offset < _in.length) {
                    (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                        RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                    );
                    // We don't need to check itemCount < out.length explicitly because Solidity already
                    // handles this check on our behalf, we'd just be wasting gas.
                    out_[itemCount] = RLPItem({
                        length: itemLength + itemOffset,
                        ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                    });
                    itemCount += 1;
                    offset += itemOffset + itemLength;
                }
                // Decrease the array size to match the actual item count.
                assembly {
                    mstore(out_, itemCount)
                }
            }
            /// @notice Reads an RLP list value into a list of RLP items.
            /// @param _in RLP list value.
            /// @return out_ Decoded RLP list items.
            function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                out_ = readList(toRLPItem(_in));
            }
            /// @notice Reads an RLP bytes value into bytes.
            /// @param _in RLP bytes value.
            /// @return out_ Decoded bytes.
            function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                require(itemType == RLPItemType.DATA_ITEM, "RLPReader: decoded item type for bytes is not a data item");
                require(_in.length == itemOffset + itemLength, "RLPReader: bytes value contains an invalid remainder");
                out_ = _copy(_in.ptr, itemOffset, itemLength);
            }
            /// @notice Reads an RLP bytes value into bytes.
            /// @param _in RLP bytes value.
            /// @return out_ Decoded bytes.
            function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                out_ = readBytes(toRLPItem(_in));
            }
            /// @notice Reads the raw bytes of an RLP item.
            /// @param _in RLP item to read.
            /// @return out_ Raw RLP bytes.
            function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                out_ = _copy(_in.ptr, 0, _in.length);
            }
            /// @notice Decodes the length of an RLP item.
            /// @param _in RLP item to decode.
            /// @return offset_ Offset of the encoded data.
            /// @return length_ Length of the encoded data.
            /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
            function _decodeLength(RLPItem memory _in)
                private
                pure
                returns (uint256 offset_, uint256 length_, RLPItemType type_)
            {
                // Short-circuit if there's nothing to decode, note that we perform this check when
                // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                // that function and create an RLP item directly. So we need to check this anyway.
                require(_in.length > 0, "RLPReader: length of an RLP item must be greater than zero to be decodable");
                MemoryPointer ptr = _in.ptr;
                uint256 prefix;
                assembly {
                    prefix := byte(0, mload(ptr))
                }
                if (prefix <= 0x7f) {
                    // Single byte.
                    return (0, 1, RLPItemType.DATA_ITEM);
                } else if (prefix <= 0xb7) {
                    // Short string.
                    // slither-disable-next-line variable-scope
                    uint256 strLen = prefix - 0x80;
                    require(
                        _in.length > strLen, "RLPReader: length of content must be greater than string length (short string)"
                    );
                    bytes1 firstByteOfContent;
                    assembly {
                        firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                    }
                    require(
                        strLen != 1 || firstByteOfContent >= 0x80,
                        "RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
                    );
                    return (1, strLen, RLPItemType.DATA_ITEM);
                } else if (prefix <= 0xbf) {
                    // Long string.
                    uint256 lenOfStrLen = prefix - 0xb7;
                    require(
                        _in.length > lenOfStrLen,
                        "RLPReader: length of content must be > than length of string length (long string)"
                    );
                    bytes1 firstByteOfContent;
                    assembly {
                        firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                    }
                    require(
                        firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long string)"
                    );
                    uint256 strLen;
                    assembly {
                        strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                    }
                    require(strLen > 55, "RLPReader: length of content must be greater than 55 bytes (long string)");
                    require(
                        _in.length > lenOfStrLen + strLen,
                        "RLPReader: length of content must be greater than total length (long string)"
                    );
                    return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                } else if (prefix <= 0xf7) {
                    // Short list.
                    // slither-disable-next-line variable-scope
                    uint256 listLen = prefix - 0xc0;
                    require(_in.length > listLen, "RLPReader: length of content must be greater than list length (short list)");
                    return (1, listLen, RLPItemType.LIST_ITEM);
                } else {
                    // Long list.
                    uint256 lenOfListLen = prefix - 0xf7;
                    require(
                        _in.length > lenOfListLen,
                        "RLPReader: length of content must be > than length of list length (long list)"
                    );
                    bytes1 firstByteOfContent;
                    assembly {
                        firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                    }
                    require(
                        firstByteOfContent != 0x00, "RLPReader: length of content must not have any leading zeros (long list)"
                    );
                    uint256 listLen;
                    assembly {
                        listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                    }
                    require(listLen > 55, "RLPReader: length of content must be greater than 55 bytes (long list)");
                    require(
                        _in.length > lenOfListLen + listLen,
                        "RLPReader: length of content must be greater than total length (long list)"
                    );
                    return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                }
            }
            /// @notice Copies the bytes from a memory location.
            /// @param _src    Pointer to the location to read from.
            /// @param _offset Offset to start reading from.
            /// @param _length Number of bytes to read.
            /// @return out_ Copied bytes.
            function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                out_ = new bytes(_length);
                if (_length == 0) {
                    return out_;
                }
                // Mostly based on Solidity's copy_memory_to_memory:
                // solhint-disable max-line-length
                // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                uint256 src = MemoryPointer.unwrap(_src) + _offset;
                assembly {
                    let dest := add(out_, 32)
                    let i := 0
                    for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                    if gt(i, _length) { mstore(add(dest, _length), 0) }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*//////////////////////////////////////////////////////////////
                            SIMPLIFIED FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
            function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
            }
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
            }
            function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
            }
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
            }
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
            }
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is < 0.5 we return zero. This happens when
                    // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                    if (x <= -42139678854452767551) return 0;
                    // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                    // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                    if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                    // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5**18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // k is in the range [-61, 195].
                    // Evaluate using a (6, 7)-term rational approximation.
                    // p is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range (0.09, 0.25) * 2**96.
                    // We now need to multiply r by:
                    // * the scale factor s = ~6.031367120.
                    // * the 2**k factor from the range reduction.
                    // * the 1e18 / 2**96 factor for base conversion.
                    // We do this all at once, with an intermediate result in 2**213
                    // basis, so the final right shift is always by a positive amount.
                    r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                }
            }
            function lnWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    require(x > 0, "UNDEFINED");
                    // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                    // We do this by multiplying by 2**96 / 10**18. But since
                    // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                    // and add ln(2**96 / 10**18) at the end.
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    int256 k = int256(log2(uint256(x))) - 96;
                    x <<= uint256(159 - k);
                    x = int256(uint256(x) >> 159);
                    // Evaluate using a (8, 8)-term rational approximation.
                    // p is made monic, we will multiply by a scale factor later.
                    int256 p = x + 3273285459638523848632254066296;
                    p = ((p * x) >> 96) + 24828157081833163892658089445524;
                    p = ((p * x) >> 96) + 43456485725739037958740375743393;
                    p = ((p * x) >> 96) - 11111509109440967052023855526967;
                    p = ((p * x) >> 96) - 45023709667254063763336534515857;
                    p = ((p * x) >> 96) - 14706773417378608786704636184526;
                    p = p * x - (795164235651350426258249787498 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    // q is monic by convention.
                    int256 q = x + 5573035233440673466300451813936;
                    q = ((q * x) >> 96) + 71694874799317883764090561454958;
                    q = ((q * x) >> 96) + 283447036172924575727196451306956;
                    q = ((q * x) >> 96) + 401686690394027663651624208769553;
                    q = ((q * x) >> 96) + 204048457590392012362485061816622;
                    q = ((q * x) >> 96) + 31853899698501571402653359427138;
                    q = ((q * x) >> 96) + 909429971244387300277376558375;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial is known not to have zeros in the domain.
                        // No scaling required because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r is in the range (0, 0.125) * 2**96
                    // Finalization, we need to:
                    // * multiply by the scale factor s = 5.549…
                    // * add ln(2**96 / 10**18)
                    // * add k * ln(2)
                    // * multiply by 10**18 / 2**96 = 5**18 >> 78
                    // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                    r *= 1677202110996718588342820967067443963516166;
                    // add ln(2) * k * 5e18 * 2**192
                    r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                    // add ln(2**96 / 10**18) * 5e18 * 2**192
                    r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                    // base conversion: mul 2**18 / 2**192
                    r >>= 174;
                }
            }
            /*//////////////////////////////////////////////////////////////
                            LOW LEVEL FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function mulDivDown(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // Divide z by the denominator.
                    z := div(z, denominator)
                }
            }
            function mulDivUp(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // First, divide z - 1 by the denominator and add 1.
                    // We allow z - 1 to underflow if z is 0, because we multiply the
                    // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                    z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                }
            }
            function rpow(
                uint256 x,
                uint256 n,
                uint256 scalar
            ) internal pure returns (uint256 z) {
                assembly {
                    switch x
                    case 0 {
                        switch n
                        case 0 {
                            // 0 ** 0 = 1
                            z := scalar
                        }
                        default {
                            // 0 ** n = 0
                            z := 0
                        }
                    }
                    default {
                        switch mod(n, 2)
                        case 0 {
                            // If n is even, store scalar in z for now.
                            z := scalar
                        }
                        default {
                            // If n is odd, store x in z for now.
                            z := x
                        }
                        // Shifting right by 1 is like dividing by 2.
                        let half := shr(1, scalar)
                        for {
                            // Shift n right by 1 before looping to halve it.
                            n := shr(1, n)
                        } n {
                            // Shift n right by 1 each iteration to halve it.
                            n := shr(1, n)
                        } {
                            // Revert immediately if x ** 2 would overflow.
                            // Equivalent to iszero(eq(div(xx, x), x)) here.
                            if shr(128, x) {
                                revert(0, 0)
                            }
                            // Store x squared.
                            let xx := mul(x, x)
                            // Round to the nearest number.
                            let xxRound := add(xx, half)
                            // Revert if xx + half overflowed.
                            if lt(xxRound, xx) {
                                revert(0, 0)
                            }
                            // Set x to scaled xxRound.
                            x := div(xxRound, scalar)
                            // If n is even:
                            if mod(n, 2) {
                                // Compute z * x.
                                let zx := mul(z, x)
                                // If z * x overflowed:
                                if iszero(eq(div(zx, x), z)) {
                                    // Revert if x is non-zero.
                                    if iszero(iszero(x)) {
                                        revert(0, 0)
                                    }
                                }
                                // Round to the nearest number.
                                let zxRound := add(zx, half)
                                // Revert if zx + half overflowed.
                                if lt(zxRound, zx) {
                                    revert(0, 0)
                                }
                                // Return properly scaled zxRound.
                                z := div(zxRound, scalar)
                            }
                        }
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                GENERAL NUMBER UTILITIES
            //////////////////////////////////////////////////////////////*/
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                assembly {
                    let y := x // We start y at x, which will help us make our initial estimate.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // We check y >= 2^(k + 8) but shift right by k bits
                    // each branch to ensure that if x >= 256, then y >= 256.
                    if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                        y := shr(128, y)
                        z := shl(64, z)
                    }
                    if iszero(lt(y, 0x1000000000000000000)) {
                        y := shr(64, y)
                        z := shl(32, z)
                    }
                    if iszero(lt(y, 0x10000000000)) {
                        y := shr(32, y)
                        z := shl(16, z)
                    }
                    if iszero(lt(y, 0x1000000)) {
                        y := shr(16, y)
                        z := shl(8, z)
                    }
                    // Goal was to get z*z*y within a small factor of x. More iterations could
                    // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                    // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                    // That's not possible if x < 256 but we can just verify those cases exhaustively.
                    // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                    // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                    // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                    // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                    // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                    // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                    // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                    // There is no overflow risk here since y < 2^136 after the first branch above.
                    z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If x+1 is a perfect square, the Babylonian method cycles between
                    // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                    // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                    z := sub(z, lt(div(x, z), z))
                }
            }
            function log2(uint256 x) internal pure returns (uint256 r) {
                require(x > 0, "UNDEFINED");
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    r := or(r, shl(2, lt(0xf, shr(r, x))))
                    r := or(r, shl(1, lt(0x3, shr(r, x))))
                    r := or(r, lt(0x1, shr(r, x)))
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Library for managing
         * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
         * types.
         *
         * Sets have the following properties:
         *
         * - Elements are added, removed, and checked for existence in constant time
         * (O(1)).
         * - Elements are enumerated in O(n). No guarantees are made on the ordering.
         *
         * ```
         * contract Example {
         *     // Add the library methods
         *     using EnumerableSet for EnumerableSet.AddressSet;
         *
         *     // Declare a set state variable
         *     EnumerableSet.AddressSet private mySet;
         * }
         * ```
         *
         * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
         * and `uint256` (`UintSet`) are supported.
         *
         * [WARNING]
         * ====
         *  Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
         *  See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
         *
         *  In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
         * ====
         */
        library EnumerableSet {
            // To implement this library for multiple types with as little code
            // repetition as possible, we write it in terms of a generic Set type with
            // bytes32 values.
            // The Set implementation uses private functions, and user-facing
            // implementations (such as AddressSet) are just wrappers around the
            // underlying Set.
            // This means that we can only create new EnumerableSets for types that fit
            // in bytes32.
            struct Set {
                // Storage of set values
                bytes32[] _values;
                // Position of the value in the `values` array, plus 1 because index 0
                // means a value is not in the set.
                mapping(bytes32 => uint256) _indexes;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function _add(Set storage set, bytes32 value) private returns (bool) {
                if (!_contains(set, value)) {
                    set._values.push(value);
                    // The value is stored at length-1, but we add 1 to all indexes
                    // and use 0 as a sentinel value
                    set._indexes[value] = set._values.length;
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function _remove(Set storage set, bytes32 value) private returns (bool) {
                // We read and store the value's index to prevent multiple reads from the same storage slot
                uint256 valueIndex = set._indexes[value];
                if (valueIndex != 0) {
                    // Equivalent to contains(set, value)
                    // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                    // the array, and then remove the last element (sometimes called as 'swap and pop').
                    // This modifies the order of the array, as noted in {at}.
                    uint256 toDeleteIndex = valueIndex - 1;
                    uint256 lastIndex = set._values.length - 1;
                    if (lastIndex != toDeleteIndex) {
                        bytes32 lastValue = set._values[lastIndex];
                        // Move the last value to the index where the value to delete is
                        set._values[toDeleteIndex] = lastValue;
                        // Update the index for the moved value
                        set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
                    }
                    // Delete the slot where the moved value was stored
                    set._values.pop();
                    // Delete the index for the deleted slot
                    delete set._indexes[value];
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function _contains(Set storage set, bytes32 value) private view returns (bool) {
                return set._indexes[value] != 0;
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function _length(Set storage set) private view returns (uint256) {
                return set._values.length;
            }
            /**
             * @dev Returns the value stored at position `index` in the set. O(1).
             *
             * Note that there are no guarantees on the ordering of values inside the
             * array, and it may change when more values are added or removed.
             *
             * Requirements:
             *
             * - `index` must be strictly less than {length}.
             */
            function _at(Set storage set, uint256 index) private view returns (bytes32) {
                return set._values[index];
            }
            /**
             * @dev Return the entire set in an array
             *
             * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
             * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
             * this function has an unbounded cost, and using it as part of a state-changing function may render the function
             * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
             */
            function _values(Set storage set) private view returns (bytes32[] memory) {
                return set._values;
            }
            // Bytes32Set
            struct Bytes32Set {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                return _add(set._inner, value);
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                return _remove(set._inner, value);
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
                return _contains(set._inner, value);
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(Bytes32Set storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
            /**
             * @dev Returns the value stored at position `index` in the set. O(1).
             *
             * Note that there are no guarantees on the ordering of values inside the
             * array, and it may change when more values are added or removed.
             *
             * Requirements:
             *
             * - `index` must be strictly less than {length}.
             */
            function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
                return _at(set._inner, index);
            }
            /**
             * @dev Return the entire set in an array
             *
             * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
             * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
             * this function has an unbounded cost, and using it as part of a state-changing function may render the function
             * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
             */
            function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
                return _values(set._inner);
            }
            // AddressSet
            struct AddressSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(AddressSet storage set, address value) internal returns (bool) {
                return _add(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(AddressSet storage set, address value) internal returns (bool) {
                return _remove(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(AddressSet storage set, address value) internal view returns (bool) {
                return _contains(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(AddressSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
            /**
             * @dev Returns the value stored at position `index` in the set. O(1).
             *
             * Note that there are no guarantees on the ordering of values inside the
             * array, and it may change when more values are added or removed.
             *
             * Requirements:
             *
             * - `index` must be strictly less than {length}.
             */
            function at(AddressSet storage set, uint256 index) internal view returns (address) {
                return address(uint160(uint256(_at(set._inner, index))));
            }
            /**
             * @dev Return the entire set in an array
             *
             * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
             * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
             * this function has an unbounded cost, and using it as part of a state-changing function may render the function
             * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
             */
            function values(AddressSet storage set) internal view returns (address[] memory) {
                bytes32[] memory store = _values(set._inner);
                address[] memory result;
                /// @solidity memory-safe-assembly
                assembly {
                    result := store
                }
                return result;
            }
            // UintSet
            struct UintSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(UintSet storage set, uint256 value) internal returns (bool) {
                return _add(set._inner, bytes32(value));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(UintSet storage set, uint256 value) internal returns (bool) {
                return _remove(set._inner, bytes32(value));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(UintSet storage set, uint256 value) internal view returns (bool) {
                return _contains(set._inner, bytes32(value));
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function length(UintSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
            /**
             * @dev Returns the value stored at position `index` in the set. O(1).
             *
             * Note that there are no guarantees on the ordering of values inside the
             * array, and it may change when more values are added or removed.
             *
             * Requirements:
             *
             * - `index` must be strictly less than {length}.
             */
            function at(UintSet storage set, uint256 index) internal view returns (uint256) {
                return uint256(_at(set._inner, index));
            }
            /**
             * @dev Return the entire set in an array
             *
             * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
             * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
             * this function has an unbounded cost, and using it as part of a state-changing function may render the function
             * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
             */
            function values(UintSet storage set) internal view returns (uint256[] memory) {
                bytes32[] memory store = _values(set._inner);
                uint256[] memory result;
                /// @solidity memory-safe-assembly
                assembly {
                    result := store
                }
                return result;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
        pragma solidity ^0.8.0;
        import "./OwnableUpgradeable.sol";
        import "../proxy/utils/Initializable.sol";
        /**
         * @dev Contract module which provides access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership} and {acceptOwnership}.
         *
         * This module is used through inheritance. It will make available all functions
         * from parent (Ownable).
         */
        abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
            function __Ownable2Step_init() internal onlyInitializing {
                __Ownable_init_unchained();
            }
            function __Ownable2Step_init_unchained() internal onlyInitializing {
            }
            address private _pendingOwner;
            event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Returns the address of the pending owner.
             */
            function pendingOwner() public view virtual returns (address) {
                return _pendingOwner;
            }
            /**
             * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual override onlyOwner {
                _pendingOwner = newOwner;
                emit OwnershipTransferStarted(owner(), newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual override {
                delete _pendingOwner;
                super._transferOwnership(newOwner);
            }
            /**
             * @dev The new owner accepts the ownership transfer.
             */
            function acceptOwnership() public virtual {
                address sender = _msgSender();
                require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
                _transferOwnership(sender);
            }
            /**
             * @dev This empty reserved space is put in place to allow future versions to add new
             * variables without shifting down storage in the inheritance chain.
             * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
             */
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/SafeCast.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
         * checks.
         *
         * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
         * easily result in undesired exploitation or bugs, since developers usually
         * assume that overflows raise errors. `SafeCast` restores this intuition by
         * reverting the transaction when such an operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         *
         * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
         * all math on `uint256` and `int256` and then downcasting.
         */
        library SafeCast {
            /**
             * @dev Returns the downcasted uint248 from uint256, reverting on
             * overflow (when the input is greater than largest uint248).
             *
             * Counterpart to Solidity's `uint248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             *
             * _Available since v4.7._
             */
            function toUint248(uint256 value) internal pure returns (uint248) {
                require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
                return uint248(value);
            }
            /**
             * @dev Returns the downcasted uint240 from uint256, reverting on
             * overflow (when the input is greater than largest uint240).
             *
             * Counterpart to Solidity's `uint240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             *
             * _Available since v4.7._
             */
            function toUint240(uint256 value) internal pure returns (uint240) {
                require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
                return uint240(value);
            }
            /**
             * @dev Returns the downcasted uint232 from uint256, reverting on
             * overflow (when the input is greater than largest uint232).
             *
             * Counterpart to Solidity's `uint232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             *
             * _Available since v4.7._
             */
            function toUint232(uint256 value) internal pure returns (uint232) {
                require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
                return uint232(value);
            }
            /**
             * @dev Returns the downcasted uint224 from uint256, reverting on
             * overflow (when the input is greater than largest uint224).
             *
             * Counterpart to Solidity's `uint224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             *
             * _Available since v4.2._
             */
            function toUint224(uint256 value) internal pure returns (uint224) {
                require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
                return uint224(value);
            }
            /**
             * @dev Returns the downcasted uint216 from uint256, reverting on
             * overflow (when the input is greater than largest uint216).
             *
             * Counterpart to Solidity's `uint216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             *
             * _Available since v4.7._
             */
            function toUint216(uint256 value) internal pure returns (uint216) {
                require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
                return uint216(value);
            }
            /**
             * @dev Returns the downcasted uint208 from uint256, reverting on
             * overflow (when the input is greater than largest uint208).
             *
             * Counterpart to Solidity's `uint208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             *
             * _Available since v4.7._
             */
            function toUint208(uint256 value) internal pure returns (uint208) {
                require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
                return uint208(value);
            }
            /**
             * @dev Returns the downcasted uint200 from uint256, reverting on
             * overflow (when the input is greater than largest uint200).
             *
             * Counterpart to Solidity's `uint200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             *
             * _Available since v4.7._
             */
            function toUint200(uint256 value) internal pure returns (uint200) {
                require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
                return uint200(value);
            }
            /**
             * @dev Returns the downcasted uint192 from uint256, reverting on
             * overflow (when the input is greater than largest uint192).
             *
             * Counterpart to Solidity's `uint192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             *
             * _Available since v4.7._
             */
            function toUint192(uint256 value) internal pure returns (uint192) {
                require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
                return uint192(value);
            }
            /**
             * @dev Returns the downcasted uint184 from uint256, reverting on
             * overflow (when the input is greater than largest uint184).
             *
             * Counterpart to Solidity's `uint184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             *
             * _Available since v4.7._
             */
            function toUint184(uint256 value) internal pure returns (uint184) {
                require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
                return uint184(value);
            }
            /**
             * @dev Returns the downcasted uint176 from uint256, reverting on
             * overflow (when the input is greater than largest uint176).
             *
             * Counterpart to Solidity's `uint176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             *
             * _Available since v4.7._
             */
            function toUint176(uint256 value) internal pure returns (uint176) {
                require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
                return uint176(value);
            }
            /**
             * @dev Returns the downcasted uint168 from uint256, reverting on
             * overflow (when the input is greater than largest uint168).
             *
             * Counterpart to Solidity's `uint168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             *
             * _Available since v4.7._
             */
            function toUint168(uint256 value) internal pure returns (uint168) {
                require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
                return uint168(value);
            }
            /**
             * @dev Returns the downcasted uint160 from uint256, reverting on
             * overflow (when the input is greater than largest uint160).
             *
             * Counterpart to Solidity's `uint160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             *
             * _Available since v4.7._
             */
            function toUint160(uint256 value) internal pure returns (uint160) {
                require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
                return uint160(value);
            }
            /**
             * @dev Returns the downcasted uint152 from uint256, reverting on
             * overflow (when the input is greater than largest uint152).
             *
             * Counterpart to Solidity's `uint152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             *
             * _Available since v4.7._
             */
            function toUint152(uint256 value) internal pure returns (uint152) {
                require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
                return uint152(value);
            }
            /**
             * @dev Returns the downcasted uint144 from uint256, reverting on
             * overflow (when the input is greater than largest uint144).
             *
             * Counterpart to Solidity's `uint144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             *
             * _Available since v4.7._
             */
            function toUint144(uint256 value) internal pure returns (uint144) {
                require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
                return uint144(value);
            }
            /**
             * @dev Returns the downcasted uint136 from uint256, reverting on
             * overflow (when the input is greater than largest uint136).
             *
             * Counterpart to Solidity's `uint136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             *
             * _Available since v4.7._
             */
            function toUint136(uint256 value) internal pure returns (uint136) {
                require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
                return uint136(value);
            }
            /**
             * @dev Returns the downcasted uint128 from uint256, reverting on
             * overflow (when the input is greater than largest uint128).
             *
             * Counterpart to Solidity's `uint128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             *
             * _Available since v2.5._
             */
            function toUint128(uint256 value) internal pure returns (uint128) {
                require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
                return uint128(value);
            }
            /**
             * @dev Returns the downcasted uint120 from uint256, reverting on
             * overflow (when the input is greater than largest uint120).
             *
             * Counterpart to Solidity's `uint120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             *
             * _Available since v4.7._
             */
            function toUint120(uint256 value) internal pure returns (uint120) {
                require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
                return uint120(value);
            }
            /**
             * @dev Returns the downcasted uint112 from uint256, reverting on
             * overflow (when the input is greater than largest uint112).
             *
             * Counterpart to Solidity's `uint112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             *
             * _Available since v4.7._
             */
            function toUint112(uint256 value) internal pure returns (uint112) {
                require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
                return uint112(value);
            }
            /**
             * @dev Returns the downcasted uint104 from uint256, reverting on
             * overflow (when the input is greater than largest uint104).
             *
             * Counterpart to Solidity's `uint104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             *
             * _Available since v4.7._
             */
            function toUint104(uint256 value) internal pure returns (uint104) {
                require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
                return uint104(value);
            }
            /**
             * @dev Returns the downcasted uint96 from uint256, reverting on
             * overflow (when the input is greater than largest uint96).
             *
             * Counterpart to Solidity's `uint96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             *
             * _Available since v4.2._
             */
            function toUint96(uint256 value) internal pure returns (uint96) {
                require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
                return uint96(value);
            }
            /**
             * @dev Returns the downcasted uint88 from uint256, reverting on
             * overflow (when the input is greater than largest uint88).
             *
             * Counterpart to Solidity's `uint88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             *
             * _Available since v4.7._
             */
            function toUint88(uint256 value) internal pure returns (uint88) {
                require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
                return uint88(value);
            }
            /**
             * @dev Returns the downcasted uint80 from uint256, reverting on
             * overflow (when the input is greater than largest uint80).
             *
             * Counterpart to Solidity's `uint80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             *
             * _Available since v4.7._
             */
            function toUint80(uint256 value) internal pure returns (uint80) {
                require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
                return uint80(value);
            }
            /**
             * @dev Returns the downcasted uint72 from uint256, reverting on
             * overflow (when the input is greater than largest uint72).
             *
             * Counterpart to Solidity's `uint72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             *
             * _Available since v4.7._
             */
            function toUint72(uint256 value) internal pure returns (uint72) {
                require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
                return uint72(value);
            }
            /**
             * @dev Returns the downcasted uint64 from uint256, reverting on
             * overflow (when the input is greater than largest uint64).
             *
             * Counterpart to Solidity's `uint64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             *
             * _Available since v2.5._
             */
            function toUint64(uint256 value) internal pure returns (uint64) {
                require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
                return uint64(value);
            }
            /**
             * @dev Returns the downcasted uint56 from uint256, reverting on
             * overflow (when the input is greater than largest uint56).
             *
             * Counterpart to Solidity's `uint56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             *
             * _Available since v4.7._
             */
            function toUint56(uint256 value) internal pure returns (uint56) {
                require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
                return uint56(value);
            }
            /**
             * @dev Returns the downcasted uint48 from uint256, reverting on
             * overflow (when the input is greater than largest uint48).
             *
             * Counterpart to Solidity's `uint48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             *
             * _Available since v4.7._
             */
            function toUint48(uint256 value) internal pure returns (uint48) {
                require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
                return uint48(value);
            }
            /**
             * @dev Returns the downcasted uint40 from uint256, reverting on
             * overflow (when the input is greater than largest uint40).
             *
             * Counterpart to Solidity's `uint40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             *
             * _Available since v4.7._
             */
            function toUint40(uint256 value) internal pure returns (uint40) {
                require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
                return uint40(value);
            }
            /**
             * @dev Returns the downcasted uint32 from uint256, reverting on
             * overflow (when the input is greater than largest uint32).
             *
             * Counterpart to Solidity's `uint32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             *
             * _Available since v2.5._
             */
            function toUint32(uint256 value) internal pure returns (uint32) {
                require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
                return uint32(value);
            }
            /**
             * @dev Returns the downcasted uint24 from uint256, reverting on
             * overflow (when the input is greater than largest uint24).
             *
             * Counterpart to Solidity's `uint24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             *
             * _Available since v4.7._
             */
            function toUint24(uint256 value) internal pure returns (uint24) {
                require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
                return uint24(value);
            }
            /**
             * @dev Returns the downcasted uint16 from uint256, reverting on
             * overflow (when the input is greater than largest uint16).
             *
             * Counterpart to Solidity's `uint16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             *
             * _Available since v2.5._
             */
            function toUint16(uint256 value) internal pure returns (uint16) {
                require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
                return uint16(value);
            }
            /**
             * @dev Returns the downcasted uint8 from uint256, reverting on
             * overflow (when the input is greater than largest uint8).
             *
             * Counterpart to Solidity's `uint8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             *
             * _Available since v2.5._
             */
            function toUint8(uint256 value) internal pure returns (uint8) {
                require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
                return uint8(value);
            }
            /**
             * @dev Converts a signed int256 into an unsigned uint256.
             *
             * Requirements:
             *
             * - input must be greater than or equal to 0.
             *
             * _Available since v3.0._
             */
            function toUint256(int256 value) internal pure returns (uint256) {
                require(value >= 0, "SafeCast: value must be positive");
                return uint256(value);
            }
            /**
             * @dev Returns the downcasted int248 from int256, reverting on
             * overflow (when the input is less than smallest int248 or
             * greater than largest int248).
             *
             * Counterpart to Solidity's `int248` operator.
             *
             * Requirements:
             *
             * - input must fit into 248 bits
             *
             * _Available since v4.7._
             */
            function toInt248(int256 value) internal pure returns (int248) {
                require(value >= type(int248).min && value <= type(int248).max, "SafeCast: value doesn't fit in 248 bits");
                return int248(value);
            }
            /**
             * @dev Returns the downcasted int240 from int256, reverting on
             * overflow (when the input is less than smallest int240 or
             * greater than largest int240).
             *
             * Counterpart to Solidity's `int240` operator.
             *
             * Requirements:
             *
             * - input must fit into 240 bits
             *
             * _Available since v4.7._
             */
            function toInt240(int256 value) internal pure returns (int240) {
                require(value >= type(int240).min && value <= type(int240).max, "SafeCast: value doesn't fit in 240 bits");
                return int240(value);
            }
            /**
             * @dev Returns the downcasted int232 from int256, reverting on
             * overflow (when the input is less than smallest int232 or
             * greater than largest int232).
             *
             * Counterpart to Solidity's `int232` operator.
             *
             * Requirements:
             *
             * - input must fit into 232 bits
             *
             * _Available since v4.7._
             */
            function toInt232(int256 value) internal pure returns (int232) {
                require(value >= type(int232).min && value <= type(int232).max, "SafeCast: value doesn't fit in 232 bits");
                return int232(value);
            }
            /**
             * @dev Returns the downcasted int224 from int256, reverting on
             * overflow (when the input is less than smallest int224 or
             * greater than largest int224).
             *
             * Counterpart to Solidity's `int224` operator.
             *
             * Requirements:
             *
             * - input must fit into 224 bits
             *
             * _Available since v4.7._
             */
            function toInt224(int256 value) internal pure returns (int224) {
                require(value >= type(int224).min && value <= type(int224).max, "SafeCast: value doesn't fit in 224 bits");
                return int224(value);
            }
            /**
             * @dev Returns the downcasted int216 from int256, reverting on
             * overflow (when the input is less than smallest int216 or
             * greater than largest int216).
             *
             * Counterpart to Solidity's `int216` operator.
             *
             * Requirements:
             *
             * - input must fit into 216 bits
             *
             * _Available since v4.7._
             */
            function toInt216(int256 value) internal pure returns (int216) {
                require(value >= type(int216).min && value <= type(int216).max, "SafeCast: value doesn't fit in 216 bits");
                return int216(value);
            }
            /**
             * @dev Returns the downcasted int208 from int256, reverting on
             * overflow (when the input is less than smallest int208 or
             * greater than largest int208).
             *
             * Counterpart to Solidity's `int208` operator.
             *
             * Requirements:
             *
             * - input must fit into 208 bits
             *
             * _Available since v4.7._
             */
            function toInt208(int256 value) internal pure returns (int208) {
                require(value >= type(int208).min && value <= type(int208).max, "SafeCast: value doesn't fit in 208 bits");
                return int208(value);
            }
            /**
             * @dev Returns the downcasted int200 from int256, reverting on
             * overflow (when the input is less than smallest int200 or
             * greater than largest int200).
             *
             * Counterpart to Solidity's `int200` operator.
             *
             * Requirements:
             *
             * - input must fit into 200 bits
             *
             * _Available since v4.7._
             */
            function toInt200(int256 value) internal pure returns (int200) {
                require(value >= type(int200).min && value <= type(int200).max, "SafeCast: value doesn't fit in 200 bits");
                return int200(value);
            }
            /**
             * @dev Returns the downcasted int192 from int256, reverting on
             * overflow (when the input is less than smallest int192 or
             * greater than largest int192).
             *
             * Counterpart to Solidity's `int192` operator.
             *
             * Requirements:
             *
             * - input must fit into 192 bits
             *
             * _Available since v4.7._
             */
            function toInt192(int256 value) internal pure returns (int192) {
                require(value >= type(int192).min && value <= type(int192).max, "SafeCast: value doesn't fit in 192 bits");
                return int192(value);
            }
            /**
             * @dev Returns the downcasted int184 from int256, reverting on
             * overflow (when the input is less than smallest int184 or
             * greater than largest int184).
             *
             * Counterpart to Solidity's `int184` operator.
             *
             * Requirements:
             *
             * - input must fit into 184 bits
             *
             * _Available since v4.7._
             */
            function toInt184(int256 value) internal pure returns (int184) {
                require(value >= type(int184).min && value <= type(int184).max, "SafeCast: value doesn't fit in 184 bits");
                return int184(value);
            }
            /**
             * @dev Returns the downcasted int176 from int256, reverting on
             * overflow (when the input is less than smallest int176 or
             * greater than largest int176).
             *
             * Counterpart to Solidity's `int176` operator.
             *
             * Requirements:
             *
             * - input must fit into 176 bits
             *
             * _Available since v4.7._
             */
            function toInt176(int256 value) internal pure returns (int176) {
                require(value >= type(int176).min && value <= type(int176).max, "SafeCast: value doesn't fit in 176 bits");
                return int176(value);
            }
            /**
             * @dev Returns the downcasted int168 from int256, reverting on
             * overflow (when the input is less than smallest int168 or
             * greater than largest int168).
             *
             * Counterpart to Solidity's `int168` operator.
             *
             * Requirements:
             *
             * - input must fit into 168 bits
             *
             * _Available since v4.7._
             */
            function toInt168(int256 value) internal pure returns (int168) {
                require(value >= type(int168).min && value <= type(int168).max, "SafeCast: value doesn't fit in 168 bits");
                return int168(value);
            }
            /**
             * @dev Returns the downcasted int160 from int256, reverting on
             * overflow (when the input is less than smallest int160 or
             * greater than largest int160).
             *
             * Counterpart to Solidity's `int160` operator.
             *
             * Requirements:
             *
             * - input must fit into 160 bits
             *
             * _Available since v4.7._
             */
            function toInt160(int256 value) internal pure returns (int160) {
                require(value >= type(int160).min && value <= type(int160).max, "SafeCast: value doesn't fit in 160 bits");
                return int160(value);
            }
            /**
             * @dev Returns the downcasted int152 from int256, reverting on
             * overflow (when the input is less than smallest int152 or
             * greater than largest int152).
             *
             * Counterpart to Solidity's `int152` operator.
             *
             * Requirements:
             *
             * - input must fit into 152 bits
             *
             * _Available since v4.7._
             */
            function toInt152(int256 value) internal pure returns (int152) {
                require(value >= type(int152).min && value <= type(int152).max, "SafeCast: value doesn't fit in 152 bits");
                return int152(value);
            }
            /**
             * @dev Returns the downcasted int144 from int256, reverting on
             * overflow (when the input is less than smallest int144 or
             * greater than largest int144).
             *
             * Counterpart to Solidity's `int144` operator.
             *
             * Requirements:
             *
             * - input must fit into 144 bits
             *
             * _Available since v4.7._
             */
            function toInt144(int256 value) internal pure returns (int144) {
                require(value >= type(int144).min && value <= type(int144).max, "SafeCast: value doesn't fit in 144 bits");
                return int144(value);
            }
            /**
             * @dev Returns the downcasted int136 from int256, reverting on
             * overflow (when the input is less than smallest int136 or
             * greater than largest int136).
             *
             * Counterpart to Solidity's `int136` operator.
             *
             * Requirements:
             *
             * - input must fit into 136 bits
             *
             * _Available since v4.7._
             */
            function toInt136(int256 value) internal pure returns (int136) {
                require(value >= type(int136).min && value <= type(int136).max, "SafeCast: value doesn't fit in 136 bits");
                return int136(value);
            }
            /**
             * @dev Returns the downcasted int128 from int256, reverting on
             * overflow (when the input is less than smallest int128 or
             * greater than largest int128).
             *
             * Counterpart to Solidity's `int128` operator.
             *
             * Requirements:
             *
             * - input must fit into 128 bits
             *
             * _Available since v3.1._
             */
            function toInt128(int256 value) internal pure returns (int128) {
                require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
                return int128(value);
            }
            /**
             * @dev Returns the downcasted int120 from int256, reverting on
             * overflow (when the input is less than smallest int120 or
             * greater than largest int120).
             *
             * Counterpart to Solidity's `int120` operator.
             *
             * Requirements:
             *
             * - input must fit into 120 bits
             *
             * _Available since v4.7._
             */
            function toInt120(int256 value) internal pure returns (int120) {
                require(value >= type(int120).min && value <= type(int120).max, "SafeCast: value doesn't fit in 120 bits");
                return int120(value);
            }
            /**
             * @dev Returns the downcasted int112 from int256, reverting on
             * overflow (when the input is less than smallest int112 or
             * greater than largest int112).
             *
             * Counterpart to Solidity's `int112` operator.
             *
             * Requirements:
             *
             * - input must fit into 112 bits
             *
             * _Available since v4.7._
             */
            function toInt112(int256 value) internal pure returns (int112) {
                require(value >= type(int112).min && value <= type(int112).max, "SafeCast: value doesn't fit in 112 bits");
                return int112(value);
            }
            /**
             * @dev Returns the downcasted int104 from int256, reverting on
             * overflow (when the input is less than smallest int104 or
             * greater than largest int104).
             *
             * Counterpart to Solidity's `int104` operator.
             *
             * Requirements:
             *
             * - input must fit into 104 bits
             *
             * _Available since v4.7._
             */
            function toInt104(int256 value) internal pure returns (int104) {
                require(value >= type(int104).min && value <= type(int104).max, "SafeCast: value doesn't fit in 104 bits");
                return int104(value);
            }
            /**
             * @dev Returns the downcasted int96 from int256, reverting on
             * overflow (when the input is less than smallest int96 or
             * greater than largest int96).
             *
             * Counterpart to Solidity's `int96` operator.
             *
             * Requirements:
             *
             * - input must fit into 96 bits
             *
             * _Available since v4.7._
             */
            function toInt96(int256 value) internal pure returns (int96) {
                require(value >= type(int96).min && value <= type(int96).max, "SafeCast: value doesn't fit in 96 bits");
                return int96(value);
            }
            /**
             * @dev Returns the downcasted int88 from int256, reverting on
             * overflow (when the input is less than smallest int88 or
             * greater than largest int88).
             *
             * Counterpart to Solidity's `int88` operator.
             *
             * Requirements:
             *
             * - input must fit into 88 bits
             *
             * _Available since v4.7._
             */
            function toInt88(int256 value) internal pure returns (int88) {
                require(value >= type(int88).min && value <= type(int88).max, "SafeCast: value doesn't fit in 88 bits");
                return int88(value);
            }
            /**
             * @dev Returns the downcasted int80 from int256, reverting on
             * overflow (when the input is less than smallest int80 or
             * greater than largest int80).
             *
             * Counterpart to Solidity's `int80` operator.
             *
             * Requirements:
             *
             * - input must fit into 80 bits
             *
             * _Available since v4.7._
             */
            function toInt80(int256 value) internal pure returns (int80) {
                require(value >= type(int80).min && value <= type(int80).max, "SafeCast: value doesn't fit in 80 bits");
                return int80(value);
            }
            /**
             * @dev Returns the downcasted int72 from int256, reverting on
             * overflow (when the input is less than smallest int72 or
             * greater than largest int72).
             *
             * Counterpart to Solidity's `int72` operator.
             *
             * Requirements:
             *
             * - input must fit into 72 bits
             *
             * _Available since v4.7._
             */
            function toInt72(int256 value) internal pure returns (int72) {
                require(value >= type(int72).min && value <= type(int72).max, "SafeCast: value doesn't fit in 72 bits");
                return int72(value);
            }
            /**
             * @dev Returns the downcasted int64 from int256, reverting on
             * overflow (when the input is less than smallest int64 or
             * greater than largest int64).
             *
             * Counterpart to Solidity's `int64` operator.
             *
             * Requirements:
             *
             * - input must fit into 64 bits
             *
             * _Available since v3.1._
             */
            function toInt64(int256 value) internal pure returns (int64) {
                require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
                return int64(value);
            }
            /**
             * @dev Returns the downcasted int56 from int256, reverting on
             * overflow (when the input is less than smallest int56 or
             * greater than largest int56).
             *
             * Counterpart to Solidity's `int56` operator.
             *
             * Requirements:
             *
             * - input must fit into 56 bits
             *
             * _Available since v4.7._
             */
            function toInt56(int256 value) internal pure returns (int56) {
                require(value >= type(int56).min && value <= type(int56).max, "SafeCast: value doesn't fit in 56 bits");
                return int56(value);
            }
            /**
             * @dev Returns the downcasted int48 from int256, reverting on
             * overflow (when the input is less than smallest int48 or
             * greater than largest int48).
             *
             * Counterpart to Solidity's `int48` operator.
             *
             * Requirements:
             *
             * - input must fit into 48 bits
             *
             * _Available since v4.7._
             */
            function toInt48(int256 value) internal pure returns (int48) {
                require(value >= type(int48).min && value <= type(int48).max, "SafeCast: value doesn't fit in 48 bits");
                return int48(value);
            }
            /**
             * @dev Returns the downcasted int40 from int256, reverting on
             * overflow (when the input is less than smallest int40 or
             * greater than largest int40).
             *
             * Counterpart to Solidity's `int40` operator.
             *
             * Requirements:
             *
             * - input must fit into 40 bits
             *
             * _Available since v4.7._
             */
            function toInt40(int256 value) internal pure returns (int40) {
                require(value >= type(int40).min && value <= type(int40).max, "SafeCast: value doesn't fit in 40 bits");
                return int40(value);
            }
            /**
             * @dev Returns the downcasted int32 from int256, reverting on
             * overflow (when the input is less than smallest int32 or
             * greater than largest int32).
             *
             * Counterpart to Solidity's `int32` operator.
             *
             * Requirements:
             *
             * - input must fit into 32 bits
             *
             * _Available since v3.1._
             */
            function toInt32(int256 value) internal pure returns (int32) {
                require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
                return int32(value);
            }
            /**
             * @dev Returns the downcasted int24 from int256, reverting on
             * overflow (when the input is less than smallest int24 or
             * greater than largest int24).
             *
             * Counterpart to Solidity's `int24` operator.
             *
             * Requirements:
             *
             * - input must fit into 24 bits
             *
             * _Available since v4.7._
             */
            function toInt24(int256 value) internal pure returns (int24) {
                require(value >= type(int24).min && value <= type(int24).max, "SafeCast: value doesn't fit in 24 bits");
                return int24(value);
            }
            /**
             * @dev Returns the downcasted int16 from int256, reverting on
             * overflow (when the input is less than smallest int16 or
             * greater than largest int16).
             *
             * Counterpart to Solidity's `int16` operator.
             *
             * Requirements:
             *
             * - input must fit into 16 bits
             *
             * _Available since v3.1._
             */
            function toInt16(int256 value) internal pure returns (int16) {
                require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
                return int16(value);
            }
            /**
             * @dev Returns the downcasted int8 from int256, reverting on
             * overflow (when the input is less than smallest int8 or
             * greater than largest int8).
             *
             * Counterpart to Solidity's `int8` operator.
             *
             * Requirements:
             *
             * - input must fit into 8 bits
             *
             * _Available since v3.1._
             */
            function toInt8(int256 value) internal pure returns (int8) {
                require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
                return int8(value);
            }
            /**
             * @dev Converts an unsigned uint256 into a signed int256.
             *
             * Requirements:
             *
             * - input must be less than or equal to maxInt256.
             *
             * _Available since v3.0._
             */
            function toInt256(uint256 value) internal pure returns (int256) {
                // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
                return int256(value);
            }
        }
        // SPDX-FileCopyrightText: 2023 Lido <[email protected]>
        // SPDX-License-Identifier: GPL-3.0
        pragma solidity 0.8.15;
        import { EnumerableSet } from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
        import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
        import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
        import { SafeCall } from "src/libraries/SafeCall.sol";
        /// @title WithdrawalQueue
        /// @notice Queue for storing and managing withdrawal requests.
        ///         This contract is based on Lido's WithdrawalQueue and has been
        ///         modified to support Blast specific logic such as withdrawal discounts.
        contract WithdrawalQueue is Initializable {
            using EnumerableSet for EnumerableSet.UintSet;
            using SafeERC20 for IERC20;
            /// @notice The L1 gas limit set when sending eth to the YieldManager.
            uint256 internal constant SEND_DEFAULT_GAS_LIMIT = 100_000;
            /// @notice precision base for share rate
            uint256 internal constant E27_PRECISION_BASE = 1e27;
            /// @notice return value for the `find...` methods in case of no result
            uint256 internal constant NOT_FOUND = 0;
            address public immutable TOKEN;
            WithdrawalRequest[] private _requests;
            mapping(address => EnumerableSet.UintSet) private _requestsByOwner;
            Checkpoint[] private _checkpoints;
            uint256 private lastRequestId;
            uint256 private lastFinalizedRequestId;
            uint256 private lastCheckpointId;
            uint256 private lockedBalance;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
            ///         would be a multiple of 50.
            uint256[42] private __gap;
            /// @notice structure representing a request for withdrawal
            struct WithdrawalRequest {
                /// @notice sum of the all tokens submitted for withdrawals including this request (nominal amount)
                uint128 cumulativeAmount;
                /// @notice address that can claim the request and receives the funds
                address recipient;
                /// @notice block.timestamp when the request was created
                uint40 timestamp;
                /// @notice flag if the request was claimed
                bool claimed;
            }
            /// @notice output format struct for `_getWithdrawalStatus()` method
            struct WithdrawalRequestStatus {
                /// @notice nominal token amount that was locked on withdrawal queue for this request
                uint256 amount;
                /// @notice address that can claim or transfer this request
                address recipient;
                /// @notice timestamp of when the request was created, in seconds
                uint256 timestamp;
                /// @notice true, if request is finalized
                bool isFinalized;
                /// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
                bool isClaimed;
            }
            /// @notice structure to store discounts for requests that are affected by negative rebase
            /// All requests covered by the checkpoint are affected by the same discount rate `sharePrice`.
            struct Checkpoint {
                uint256 fromRequestId;
                uint256 sharePrice;
            }
            /// @dev amount represents the nominal amount of tokens that were withdrawn (burned) on L2.
            event WithdrawalRequested(
                uint256 indexed requestId,
                address indexed requestor,
                address indexed recipient,
                uint256 amount
            );
            /// @dev amountOfETHLocked represents the real amount of ETH that was locked in the queue and will be
            ///      transferred to the recipient on claim.
            event WithdrawalsFinalized(
                uint256 indexed from,
                uint256 indexed to,
                uint256 indexed checkpointId,
                uint256 amountOfETHLocked,
                uint256 timestamp,
                uint256 sharePrice
            );
            /// @dev amount represents the real amount of ETH that was transferred to the recipient.
            event WithdrawalClaimed(
                uint256 indexed requestId, address indexed recipient, uint256 amountOfETH
            );
            error InvalidRequestId(uint256 _requestId);
            error InvalidRequestIdRange(uint256 startId, uint256 endId);
            error InvalidSharePrice();
            error RequestNotFoundOrNotFinalized(uint256 _requestId);
            error RequestAlreadyClaimed(uint256 _requestId);
            error InvalidHint(uint256 _hint);
            error RequestIdsNotSorted();
            error CallerIsNotRecipient();
            error WithdrawalTransferFailed();
            error InsufficientBalance();
            constructor(address _token) {
                TOKEN = _token;
            }
            /// @notice initialize the contract with the dummy request and checkpoint
            ///         as the zero elements of the corresponding arrays so that
            ///         the first element of the array has index 1
            function __WithdrawalQueue_init() internal onlyInitializing {
                _requests.push(WithdrawalRequest(0, address(0), uint40(block.timestamp), true));
                _checkpoints.push(Checkpoint(0, 0));
            }
            function getWithdrawalStatus(uint256[] calldata _requestIds)
                external
                view
                returns (WithdrawalRequestStatus[] memory statuses)
            {
                statuses = new WithdrawalRequestStatus[](_requestIds.length);
                for (uint256 i = 0; i < _requestIds.length; ++i) {
                    statuses[i] = _getStatus(_requestIds[i]);
                }
            }
            function getWithdrawalRequests(address _owner) external view returns (uint256[] memory requestIds) {
                return _requestsByOwner[_owner].values();
            }
            function getClaimableEther(uint256[] calldata _requestIds, uint256[] calldata _hintIds)
                external
                view
                returns (uint256[] memory claimableEthValues)
            {
                claimableEthValues = new uint256[](_requestIds.length);
                for (uint256 i = 0; i < _requestIds.length; ++i) {
                    claimableEthValues[i] = _getClaimableEther(_requestIds[i], _hintIds[i]);
                }
            }
            function _getClaimableEther(uint256 _requestId, uint256 _hintId) internal view returns (uint256) {
                if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
                if (_requestId > lastFinalizedRequestId) return 0;
                WithdrawalRequest storage request = _requests[_requestId];
                if (request.claimed) return 0;
                return _calculateClaimableEther(_requestId, _hintId);
            }
            /// @notice id of the last request
            ///  NB! requests are indexed from 1, so it returns 0 if there is no requests in the queue
            function getLastRequestId() external view returns (uint256) {
                return lastRequestId;
            }
            /// @notice id of the last finalized request
            ///  NB! requests are indexed from 1, so it returns 0 if there is no finalized requests in the queue
            function getLastFinalizedRequestId() external view returns (uint256) {
                return lastFinalizedRequestId;
            }
            /// @notice amount of ETH on this contract balance that is locked for withdrawal and available to claim
            ///  NB! this is the real amount of ETH (i.e. sum of (nominal amount of ETH burned on L2 * sharePrice))
            function getLockedBalance() public view returns (uint256) {
                return lockedBalance;
            }
            /// @notice return the last checkpoint id in the queue
            function getLastCheckpointId() external view returns (uint256) {
                return lastCheckpointId;
            }
            /// @notice return the number of unfinalized requests in the queue
            function unfinalizedRequestNumber() public view returns (uint256) {
                return lastRequestId - lastFinalizedRequestId;
            }
            /// @notice Returns the amount of ETH in the queue yet to be finalized
            ///  NB! this is the nominal amount of ETH burned on L2
            function unfinalizedAmount() internal view returns (uint256) {
                return
                    _requests[lastRequestId].cumulativeAmount - _requests[lastFinalizedRequestId].cumulativeAmount;
            }
            /// @dev Finalize requests in the queue
            /// @notice sharePrice has 1e27 precision
            ///  Emits WithdrawalsFinalized event.
            function _finalize(
                uint256 _lastRequestIdToBeFinalized,
                uint256 availableBalance,
                uint256 sharePrice
            ) internal returns (uint256 nominalAmountToFinalize, uint256 realAmountToFinalize, uint256 checkpointId) {
                // share price cannot be larger than 1e27
                if (sharePrice > E27_PRECISION_BASE) {
                    revert InvalidSharePrice();
                }
                if (_lastRequestIdToBeFinalized != 0) {
                    if (_lastRequestIdToBeFinalized > lastRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
                    uint256 _lastFinalizedRequestId = lastFinalizedRequestId;
                    if (_lastRequestIdToBeFinalized <= _lastFinalizedRequestId) revert InvalidRequestId(_lastRequestIdToBeFinalized);
                    WithdrawalRequest memory lastFinalizedRequest = _requests[_lastFinalizedRequestId];
                    WithdrawalRequest memory requestToFinalize = _requests[_lastRequestIdToBeFinalized];
                    nominalAmountToFinalize = requestToFinalize.cumulativeAmount - lastFinalizedRequest.cumulativeAmount;
                    realAmountToFinalize = (nominalAmountToFinalize * sharePrice) / E27_PRECISION_BASE;
                    if (realAmountToFinalize > availableBalance) {
                        revert InsufficientBalance();
                    }
                    uint256 firstRequestIdToFinalize = _lastFinalizedRequestId + 1;
                    lockedBalance += realAmountToFinalize;
                    lastFinalizedRequestId = _lastRequestIdToBeFinalized;
                    checkpointId = _createCheckpoint(firstRequestIdToFinalize, sharePrice);
                    emit WithdrawalsFinalized(
                        firstRequestIdToFinalize,
                        _lastRequestIdToBeFinalized,
                        checkpointId,
                        realAmountToFinalize,
                        block.timestamp,
                        sharePrice
                    );
                }
            }
            /// @notice Finds the list of hints for the given `_requestIds` searching among the checkpoints with indices
            ///  in the range  `[_firstIndex, _lastIndex]`.
            ///  NB! Array of request ids should be sorted
            ///  NB! `_firstIndex` should be greater than 0, because checkpoint list is 1-based array
            ///  Usage: findCheckpointHints(_requestIds, 1, getLastCheckpointIndex())
            /// @param _requestIds ids of the requests sorted in the ascending order to get hints for
            /// @param _firstIndex left boundary of the search range. Should be greater than 0
            /// @param _lastIndex right boundary of the search range. Should be less than or equal to getLastCheckpointIndex()
            /// @return hintIds array of hints used to find required checkpoint for the request
            function findCheckpointHints(uint256[] calldata _requestIds, uint256 _firstIndex, uint256 _lastIndex)
                external
                view
                returns (uint256[] memory hintIds)
            {
                hintIds = new uint256[](_requestIds.length);
                uint256 prevRequestId = 0;
                for (uint256 i = 0; i < _requestIds.length; ++i) {
                    if (_requestIds[i] < prevRequestId) {
                        revert RequestIdsNotSorted();
                    }
                    hintIds[i] = findCheckpointHint(_requestIds[i], _firstIndex, _lastIndex);
                    _firstIndex = hintIds[i];
                    prevRequestId = _requestIds[i];
                }
            }
            /// @dev View function to find a checkpoint hint to use in `claimWithdrawal()` and `getClaimableEther()`
            ///  Search will be performed in the range of `[_firstIndex, _lastIndex]`
            ///
            /// @param _requestId request id to search the checkpoint for
            /// @param _start index of the left boundary of the search range, should be greater than 0
            /// @param _end index of the right boundary of the search range, should be less than or equal
            ///  to queue.lastCheckpointId
            ///
            /// @return hint for later use in other methods or 0 if hint not found in the range
            function findCheckpointHint(uint256 _requestId, uint256 _start, uint256 _end) public view returns (uint256) {
                if (_requestId == 0 || _requestId > lastRequestId) {
                    revert InvalidRequestId(_requestId);
                }
                uint256 lastCheckpointIndex = lastCheckpointId;
                if (_start == 0 || _end > lastCheckpointIndex) {
                    revert InvalidRequestIdRange(_start, _end);
                }
                if (lastCheckpointIndex == 0 || _requestId > lastFinalizedRequestId || _start > _end) {
                    return NOT_FOUND;
                }
                // Right boundary
                if (_requestId >= _checkpoints[_end].fromRequestId) {
                    // it's the last checkpoint, so it's valid
                    if (_end == lastCheckpointIndex) {
                        return _end;
                    }
                    // it fits right before the next checkpoint
                    if (_requestId < _checkpoints[_end + 1].fromRequestId) {
                        return _end;
                    }
                    return NOT_FOUND;
                }
                // Left boundary
                if (_requestId < _checkpoints[_start].fromRequestId) {
                    return NOT_FOUND;
                }
                // Binary search
                uint256 min = _start;
                uint256 max = _end - 1;
                while (max > min) {
                    uint256 mid = (max + min + 1) / 2;
                    if (_checkpoints[mid].fromRequestId <= _requestId) {
                        min = mid;
                    } else {
                        max = mid - 1;
                    }
                }
                return min;
            }
            /// @dev Returns the status of the withdrawal request with `_requestId` id
            function _getStatus(uint256 _requestId) internal view returns (WithdrawalRequestStatus memory status) {
                if (_requestId == 0 || _requestId > lastRequestId) revert InvalidRequestId(_requestId);
                WithdrawalRequest memory request = _requests[_requestId];
                WithdrawalRequest memory previousRequest = _requests[_requestId - 1];
                status = WithdrawalRequestStatus(
                    request.cumulativeAmount - previousRequest.cumulativeAmount,
                    request.recipient,
                    request.timestamp,
                    _requestId <= lastFinalizedRequestId,
                    request.claimed
                );
            }
            /// @dev creates a new `WithdrawalRequest` in the queue
            ///  Emits WithdrawalRequested event
            function _requestWithdrawal(address recipient, uint256 amount)
                internal
                returns (uint256 requestId)
            {
                uint256 _lastRequestId = lastRequestId;
                WithdrawalRequest memory lastRequest = _requests[_lastRequestId];
                uint128 cumulativeAmount = lastRequest.cumulativeAmount + SafeCast.toUint128(amount);
                requestId = _lastRequestId + 1;
                lastRequestId = requestId;
                WithdrawalRequest memory newRequest = WithdrawalRequest(
                    cumulativeAmount,
                    recipient,
                    uint40(block.timestamp),
                    false
                );
                _requests.push(newRequest);
                _requestsByOwner[recipient].add(requestId);
                emit WithdrawalRequested(requestId, msg.sender, recipient, amount);
            }
            /// @dev assumes firstRequestIdToFinalize > _lastFinalizedRequestId && sharePrice <= 1e27
            function _createCheckpoint(uint256 firstRequestIdToFinalize, uint256 sharePrice) internal returns (uint256) {
                _checkpoints.push(Checkpoint(firstRequestIdToFinalize, sharePrice));
                lastCheckpointId += 1;
                return lastCheckpointId;
            }
            /// @dev can only be called by request.recipient (YieldManager)
            function claimWithdrawal(uint256 _requestId, uint256 _hintId) external returns (bool success) {
                if (_requestId == 0) revert InvalidRequestId(_requestId);
                if (_requestId > lastFinalizedRequestId) revert RequestNotFoundOrNotFinalized(_requestId);
                WithdrawalRequest storage request = _requests[_requestId];
                if (request.claimed) revert RequestAlreadyClaimed(_requestId);
                request.claimed = true;
                address recipient = request.recipient;
                if (msg.sender != recipient) {
                    revert CallerIsNotRecipient();
                }
                uint256 realAmount = _calculateClaimableEther(_requestId, _hintId);
                lockedBalance -= realAmount;
                if (TOKEN == address(0)) {
                    (success) = SafeCall.send(recipient, SEND_DEFAULT_GAS_LIMIT, realAmount);
                } else {
                    IERC20(TOKEN).safeTransfer(recipient, realAmount);
                    success = true;
                }
                if (!success) {
                    revert WithdrawalTransferFailed();
                }
                emit WithdrawalClaimed(_requestId, recipient, realAmount);
            }
            /// @dev Calculate the amount of ETH that can be claimed for the withdrawal request with `_requestId`.
            ///  NB! This function returns the real amount of ETH that can be claimed by the recipient, not the nominal amount
            ///  that was burned on L2. The real amount is calculated as nominal amount * share price, which can be found
            ///  in the checkpoint with `_hintId`.
            function _calculateClaimableEther(uint256 _requestId, uint256 _hintId)
                internal
                view
                returns (uint256)
            {
                if (_hintId == 0) {
                    revert InvalidHint(_hintId);
                }
                uint256 lastCheckpointIndex = lastCheckpointId;
                if (_hintId > lastCheckpointIndex) {
                    revert InvalidHint(_hintId);
                }
                Checkpoint memory checkpoint = _checkpoints[_hintId];
                if (_requestId < checkpoint.fromRequestId) {
                    revert InvalidHint(_hintId);
                }
                if (_hintId < lastCheckpointIndex) {
                    Checkpoint memory nextCheckpoint = _checkpoints[_hintId + 1];
                    if (_requestId >= nextCheckpoint.fromRequestId) {
                        revert InvalidHint(_hintId);
                    }
                }
                WithdrawalRequest storage prevRequest = _requests[_requestId - 1];
                WithdrawalRequest storage request = _requests[_requestId];
                uint256 nominalAmount = request.cumulativeAmount - prevRequest.cumulativeAmount;
                return (nominalAmount * checkpoint.sharePrice) / E27_PRECISION_BASE;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
        import { Semver } from "src/universal/Semver.sol";
        /// @title YieldProvider
        /// @notice Base contract for interacting and accounting for a
        ///         specific yield source.
        abstract contract YieldProvider is Semver {
            YieldManager public immutable YIELD_MANAGER;
            uint256 public stakedPrincipal;
            uint256 public pendingBalance;
            event YieldCommit(bytes32 indexed provider, int256 yield);
            event Staked(bytes32 indexed provider, uint256 amount);
            event Unstaked(bytes32 indexed provider, uint256 amount);
            event Pending(bytes32 indexed provider, uint256 amount);
            event Claimed(bytes32 indexed provider, uint256 claimedAmount, uint256 expectedAmount);
            event InsurancePremiumPaid(bytes32 indexed provider, uint256 amount);
            event InsuranceWithdrawn(bytes32 indexed provider, uint256 amount);
            error InsufficientStakableFunds();
            error CallerIsNotYieldManager();
            error ContextIsNotYieldManager();
            error NotSupported();
            modifier onlyYieldManager() {
                if (msg.sender != address(YIELD_MANAGER)) {
                    revert CallerIsNotYieldManager();
                }
                _;
            }
            modifier onlyDelegateCall() {
                if (address(this) != address(YIELD_MANAGER)) {
                    revert ContextIsNotYieldManager();
                }
                _;
            }
            /// @param _yieldManager Address of the yield manager for the underlying
            ///        yield asset of this provider.
            constructor(YieldManager _yieldManager) Semver(1, 0, 0) {
                require(address(_yieldManager) != address(this));
                YIELD_MANAGER = _yieldManager;
            }
            /// @notice initialize
            function initialize() external onlyDelegateCall virtual {}
            function name() public pure virtual returns (string memory);
            function id() public view returns (bytes32) {
                return keccak256(abi.encodePacked(name(), version()));
            }
            /// @notice Whether staking is enabled for the given asset.
            function isStakingEnabled(address token) external view virtual returns (bool);
            /// @notice Current balance of the provider's staked funds.
            function stakedBalance() public view virtual returns (uint256);
            /// @notice Total value in the provider's yield method/protocol.
            function totalValue() public view returns (uint256) {
                return stakedBalance() + pendingBalance;
            }
            /// @notice Current amount of yield gained since the previous commit.
            function yield() public view virtual returns (int256);
            /// @notice Whether the provider supports yield insurance.
            function supportsInsurancePayment() public view virtual returns (bool) {
                return false;
            }
            /// @notice Gets insurance balance available for the provider's assets.
            function insuranceBalance() public view virtual returns (uint256) {
                revert("not supported");
            }
            /// @notice Commit the current amount of yield and checkpoint the accounting
            ///         variables.
            /// @return Amount of yield at this checkpoint.
            function commitYield() external onlyYieldManager returns (int256) {
                _beforeCommitYield();
                int256 _yield = yield();
                stakedPrincipal = stakedBalance();
                _afterCommitYield();
                emit YieldCommit(id(), _yield);
                return _yield;
            }
            /// @notice Stake YieldManager funds using the provider's yield method/protocol.
            ///         Must be called via `delegatecall` from the YieldManager.
            function stake(uint256) external virtual;
            /// @notice Unstake YieldManager funds from the provider's yield method/protocol.
            ///         Must be called via `delegatecall` from the YieldManager.
            /// @return pending Amount of funds pending in an unstaking delay
            /// @return claimed Amount of funds that have been claimed.
            ///         The yield provider is expected to return
            ///         (pending = 0, claimed = non-zero) if the funds are immediately
            ///         available for withdrawal, and (pending = non-zero, claimed = 0)
            ///         if the funds are in an unstaking delay.
            function unstake(uint256) external virtual returns (uint256 pending, uint256 claimed);
            /// @notice Pay insurance premium during a yield report. Must be called via
            ///         `delegatecall` from the YieldManager.
            function payInsurancePremium(uint256) external virtual onlyDelegateCall {
                revert NotSupported();
            }
            /// @notice Withdraw insurance funds to cover yield losses during a yield report.
            ///         Must be called via `delegatecall` from the YieldManager.
            function withdrawFromInsurance(uint256) external virtual onlyDelegateCall {
                revert NotSupported();
            }
            /// @notice Record a deposit to the stake balance of the provider to track the
            ///         principal balance.
            /// @param amount Amount of new staked balance to record.
            function recordStakedDeposit(uint256 amount) external virtual onlyYieldManager {
                stakedPrincipal += amount;
                emit Staked(id(), amount);
            }
            /// @notice Record a withdraw to the stake balance of the provider to track the
            ///         principal balance. This method should be called by the Yield Manager
            ///         after delegate-calling the provider's `unstake` method, which should
            ///         return the arguments to this method.
            function recordUnstaked(uint256 pending, uint256 claimed, uint256 expected) external virtual onlyYieldManager {
                _recordStakedWithdraw(expected);
                if (pending > 0) {
                    require(claimed == 0 && pending == expected, "invalid yield provider implementation");
                    _recordPending(pending);
                }
                if (claimed > 0) {
                    require(pending == 0 && claimed == expected, "invalid yield provider implementation");
                    _recordClaimed(claimed, expected);
                }
            }
            /// @notice A hook that is DELEGATE-CALLed by the Yield Manager for the provider
            ///         to perform any actions before the yield report process begins.
            function preCommitYieldReportDelegateCallHook() external virtual onlyDelegateCall {}
            /// @notice Record a withdraw the stake balance of the provider.
            /// @param amount Amount of staked balance to remove.
            function _recordStakedWithdraw(uint256 amount) internal virtual {
                stakedPrincipal -= amount;
                emit Unstaked(id(), amount);
            }
            /// @notice Record a pending balance to the provider. Needed only for providers
            ///         that use two-step withdrawals (e.g. Lido).
            function _recordPending(uint256 amount) internal virtual {
                pendingBalance += amount;
                emit Pending(id(), amount);
            }
            /// @notice Record a claimed balance to the provider. For providers with one-step
            ///         withdrawals, this method should be overriden to just emit the event
            ///         to avoid integer underflow.
            function _recordClaimed(uint256 claimed, uint256 expected) internal virtual {
                require(claimed <= expected, "invalid yield provider implementation");
                // Decrements pending balance by the expected amount, not the claimed amount.
                // If claimed < expected, the difference (expected - claimed) must be considered
                // as realized negative yield. To correctly reflect this, the difference is
                // subtracted from the pending balance (and totalProviderValue).
                pendingBalance -= expected;
                emit Claimed(id(), claimed, expected);
            }
            function _beforeCommitYield() internal virtual {}
            function _afterCommitYield() internal virtual {}
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { SafeCall } from "src/libraries/SafeCall.sol";
        import { Hashing } from "src/libraries/Hashing.sol";
        import { Encoding } from "src/libraries/Encoding.sol";
        import { Constants } from "src/libraries/Constants.sol";
        /// @custom:legacy
        /// @title CrossDomainMessengerLegacySpacer0
        /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
        ///         libAddressManager variable used to exist. Must be the first contract in the inheritance
        ///         tree of the CrossDomainMessenger.
        contract CrossDomainMessengerLegacySpacer0 {
            /// @custom:legacy
            /// @custom:spacer libAddressManager
            /// @notice Spacer for backwards compatibility.
            address private spacer_0_0_20;
        }
        /// @custom:legacy
        /// @title CrossDomainMessengerLegacySpacer1
        /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
        ///         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
        ///         the third contract in the inheritance tree of the CrossDomainMessenger.
        contract CrossDomainMessengerLegacySpacer1 {
            /// @custom:legacy
            /// @custom:spacer ContextUpgradable's __gap
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         ContextUpgradable.
            uint256[50] private spacer_1_0_1600;
            /// @custom:legacy
            /// @custom:spacer OwnableUpgradeable's _owner
            /// @notice Spacer for backwards compatibility.
            ///         Come from OpenZeppelin OwnableUpgradeable.
            address private spacer_51_0_20;
            /// @custom:legacy
            /// @custom:spacer OwnableUpgradeable's __gap
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         OwnableUpgradeable.
            uint256[49] private spacer_52_0_1568;
            /// @custom:legacy
            /// @custom:spacer PausableUpgradable's _paused
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         PausableUpgradable.
            bool private spacer_101_0_1;
            /// @custom:legacy
            /// @custom:spacer PausableUpgradable's __gap
            /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin
            ///         PausableUpgradable.
            uint256[49] private spacer_102_0_1568;
            /// @custom:legacy
            /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
            /// @notice Spacer for backwards compatibility.
            uint256 private spacer_151_0_32;
            /// @custom:legacy
            /// @custom:spacer ReentrancyGuardUpgradeable's __gap
            /// @notice Spacer for backwards compatibility.
            uint256[49] private spacer_152_0_1568;
            /// @custom:legacy
            /// @custom:spacer blockedMessages
            /// @notice Spacer for backwards compatibility.
            mapping(bytes32 => bool) private spacer_201_0_32;
            /// @custom:legacy
            /// @custom:spacer relayedMessages
            /// @notice Spacer for backwards compatibility.
            mapping(bytes32 => bool) private spacer_202_0_32;
        }
        /// @custom:upgradeable
        /// @title CrossDomainMessenger
        /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
        ///         cross-chain messenger contracts. It's designed to be a universal interface that only
        ///         needs to be extended slightly to provide low-level message passing functionality on each
        ///         chain it's deployed on. Currently only designed for message passing between two paired
        ///         chains and does not support one-to-many interactions.
        ///         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
        abstract contract CrossDomainMessenger is
            CrossDomainMessengerLegacySpacer0,
            Initializable,
            CrossDomainMessengerLegacySpacer1
        {
            /// @notice Current message version identifier.
            uint16 public constant MESSAGE_VERSION = 1;
            /// @notice Constant overhead added to the base gas for a message.
            uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000;
            /// @notice Numerator for dynamic overhead added to the base gas for a message.
            uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64;
            /// @notice Denominator for dynamic overhead added to the base gas for a message.
            uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63;
            /// @notice Extra gas added to base gas for each byte of calldata in a message.
            uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
            /// @notice Gas reserved for performing the external call in `relayMessage`.
            uint64 public constant RELAY_CALL_OVERHEAD = 40_000;
            /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call.
            uint64 public constant RELAY_RESERVED_GAS = 60_000;
            /// @notice Gas reserved for the execution between the `hasMinGas` check and the external
            ///         call in `relayMessage`.
            uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000;
            /// @notice Address of the paired CrossDomainMessenger contract on the other chain.
            address public immutable OTHER_MESSENGER;
            /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only
            ///         be present in this mapping if it has successfully been relayed on this chain, and
            ///         can therefore not be relayed again.
            mapping(bytes32 => bool) public successfulMessages;
            /// @notice Address of the sender of the currently executing message on the other chain. If the
            ///         value of this variable is the default value (0x00000000...dead) then no message is
            ///         currently being executed. Use the xDomainMessageSender getter which will throw an
            ///         error if this is the case.
            address internal xDomainMsgSender;
            /// @notice Nonce for the next message to be sent, without the message version applied. Use the
            ///         messageNonce getter which will insert the message version into the nonce to give you
            ///         the actual nonce to be used for the message.
            uint240 internal msgNonce;
            /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be
            ///         executed at least once. A message will not be present in this mapping if it
            ///         successfully executed on the first attempt.
            mapping(bytes32 => bool) public failedMessages;
            /// @notice Reserve extra slots in the storage layout for future upgrades.
            ///         A gap size of 42 was chosen here, so that the first slot used in a child contract
            ///         would be a multiple of 50.
            uint256[42] private __gap;
            /// @notice Emitted whenever a message is sent to the other chain.
            /// @param target       Address of the recipient of the message.
            /// @param sender       Address of the sender of the message.
            /// @param message      Message to trigger the recipient address with.
            /// @param messageNonce Unique nonce attached to the message.
            /// @param gasLimit     Minimum gas limit that the message can be executed with.
            event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit);
            /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
            ///         SentMessage event without breaking the ABI of this contract, this is good enough.
            /// @param sender Address of the sender of the message.
            /// @param value  ETH value sent along with the message to the recipient.
            event SentMessageExtension1(address indexed sender, uint256 value);
            /// @notice Emitted whenever a message is successfully relayed on this chain.
            /// @param msgHash Hash of the message that was relayed.
            event RelayedMessage(bytes32 indexed msgHash);
            /// @notice Emitted whenever a message fails to be relayed on this chain.
            /// @param msgHash Hash of the message that failed to be relayed.
            event FailedRelayedMessage(bytes32 indexed msgHash);
            /// @param _otherMessenger Address of the messenger on the paired chain.
            constructor(address _otherMessenger) {
                OTHER_MESSENGER = _otherMessenger;
            }
            /// @notice Sends a message to some target address on the other chain. Note that if the call
            ///         always reverts, then the message will be unrelayable, and any ETH sent will be
            ///         permanently locked. The same will occur if the target on the other chain is
            ///         considered unsafe (see the _isUnsafeTarget() function).
            /// @param _target      Target contract or wallet address.
            /// @param _message     Message to trigger the target address with.
            /// @param _minGasLimit Minimum gas limit that the message can be executed with.
            function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable {
                // Triggers a message to the other messenger. Note that the amount of gas provided to the
                // message is the amount of gas requested by the user PLUS the base gas value. We want to
                // guarantee the property that the call to the target contract will always have at least
                // the minimum gas limit specified by the user.
                _sendMessage(
                    OTHER_MESSENGER,
                    baseGas(_message, _minGasLimit),
                    msg.value,
                    abi.encodeWithSelector(
                        this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message
                    )
                );
                emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
                emit SentMessageExtension1(msg.sender, msg.value);
                unchecked {
                    ++msgNonce;
                }
            }
            /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
            ///         be executed via cross-chain call from the other messenger OR if the message was
            ///         already received once and is currently being replayed.
            /// @param _nonce       Nonce of the message being relayed.
            /// @param _sender      Address of the user who sent the message.
            /// @param _target      Address that the message is targeted at.
            /// @param _value       ETH value to send with the message.
            /// @param _minGasLimit Minimum amount of gas that the message can be executed with.
            /// @param _message     Message to send to the target.
            function relayMessage(
                uint256 _nonce,
                address _sender,
                address _target,
                uint256 _value,
                uint256 _minGasLimit,
                bytes calldata _message
            )
                external
                payable
                virtual
            {
                (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time");
                // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
                // to check that the legacy version of the message has not already been relayed.
                if (version == 0) {
                    bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
                    require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed");
                }
                // We use the v1 message hash as the unique identifier for the message because it commits
                // to the value and minimum gas limit of the message.
                bytes32 versionedHash =
                    Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message);
                if (_isOtherMessenger()) {
                    // These properties should always hold when the message is first submitted (as
                    // opposed to being replayed).
                    assert(msg.value == _value);
                    assert(!failedMessages[versionedHash]);
                } else {
                    require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address");
                    require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed");
                }
                require(
                    _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address"
                );
                require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed");
                // If there is not enough gas left to perform the external call and finish the execution,
                // return early and assign the message to the failedMessages mapping.
                // We are asserting that we have enough gas to:
                // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER)
                //   1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`.
                // 2. Finish the execution after the external call (RELAY_RESERVED_GAS).
                //
                // If `xDomainMsgSender` is not the default L2 sender, this function
                // is being re-entered. This marks the message as failed to allow it to be replayed.
                if (
                    !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER)
                        || xDomainMsgSender != Constants.DEFAULT_L2_SENDER
                ) {
                    failedMessages[versionedHash] = true;
                    emit FailedRelayedMessage(versionedHash);
                    // Revert in this case if the transaction was triggered by the estimation address. This
                    // should only be possible during gas estimation or we have bigger problems. Reverting
                    // here will make the behavior of gas estimation change such that the gas limit
                    // computed will be the amount required to relay the message, even if that amount is
                    // greater than the minimum gas limit specified by the user.
                    if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                        revert("CrossDomainMessenger: failed to relay message");
                    }
                    return;
                }
                xDomainMsgSender = _sender;
                bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message);
                xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                if (success) {
                    // This check is identical to one above, but it ensures that the same message cannot be relayed
                    // twice, and adds a layer of protection against rentrancy.
                    assert(successfulMessages[versionedHash] == false);
                    successfulMessages[versionedHash] = true;
                    emit RelayedMessage(versionedHash);
                } else {
                    failedMessages[versionedHash] = true;
                    emit FailedRelayedMessage(versionedHash);
                    // Revert in this case if the transaction was triggered by the estimation address. This
                    // should only be possible during gas estimation or we have bigger problems. Reverting
                    // here will make the behavior of gas estimation change such that the gas limit
                    // computed will be the amount required to relay the message, even if that amount is
                    // greater than the minimum gas limit specified by the user.
                    if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                        revert("CrossDomainMessenger: failed to relay message");
                    }
                }
            }
            /// @notice Retrieves the address of the contract or wallet that initiated the currently
            ///         executing message on the other chain. Will throw an error if there is no message
            ///         currently being executed. Allows the recipient of a call to see who triggered it.
            /// @return Address of the sender of the currently executing message on the other chain.
            function xDomainMessageSender() external view returns (address) {
                require(
                    xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set"
                );
                return xDomainMsgSender;
            }
            /// @notice Retrieves the next message nonce. Message version will be added to the upper two
            ///         bytes of the message nonce. Message version allows us to treat messages as having
            ///         different structures.
            /// @return Nonce of the next message to be sent, with added message version.
            function messageNonce() public view returns (uint256) {
                return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
            }
            /// @notice Computes the amount of gas required to guarantee that a given message will be
            ///         received on the other chain without running out of gas. Guaranteeing that a message
            ///         will not run out of gas is important because this ensures that a message can always
            ///         be replayed on the other chain if it fails to execute completely.
            /// @param _message     Message to compute the amount of required gas for.
            /// @param _minGasLimit Minimum desired gas limit when message goes to target.
            /// @return Amount of gas required to guarantee message receipt.
            function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
                return
                // Constant overhead
                RELAY_CONSTANT_OVERHEAD
                // Calldata overhead
                + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD)
                // Dynamic overhead (EIP-150)
                + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR)
                // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas
                // factors. (Conservative)
                + RELAY_CALL_OVERHEAD
                // Relay reserved gas (to ensure execution of `relayMessage` completes after the
                // subcontext finishes executing) (Conservative)
                + RELAY_RESERVED_GAS
                // Gas reserved for the execution between the `hasMinGas` check and the `CALL`
                // opcode. (Conservative)
                + RELAY_GAS_CHECK_BUFFER;
            }
            /// @notice Initializer.
            // solhint-disable-next-line func-name-mixedcase
            function __CrossDomainMessenger_init() internal onlyInitializing {
                // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet,
                // meaning that this is a fresh contract deployment.
                // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable
                // a reentrant withdrawal to sandwich the upgrade replay a withdrawal twice.
                if (xDomainMsgSender == address(0)) {
                    xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
                }
            }
            /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child
            ///         contracts because the logic for this depends on the network where the messenger is
            ///         being deployed.
            /// @param _to       Recipient of the message on the other chain.
            /// @param _gasLimit Minimum gas limit the message can be executed with.
            /// @param _value    Amount of ETH to send with the message.
            /// @param _data     Message data.
            function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual;
            /// @notice Checks whether the message is coming from the other messenger. Implemented by child
            ///         contracts because the logic for this depends on the network where the messenger is
            ///         being deployed.
            /// @return Whether the message is coming from the other messenger.
            function _isOtherMessenger() internal view virtual returns (bool);
            /// @notice Checks whether a given call target is a system address that could cause the
            ///         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
            ///         addresses. This is ONLY used to prevent the execution of messages to specific
            ///         system addresses that could cause security issues, e.g., having the
            ///         CrossDomainMessenger send messages to itself.
            /// @param _target Address of the contract to check.
            /// @return Whether or not the address is an unsafe system address.
            function _isUnsafeTarget(address _target) internal view virtual returns (bool);
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { Semver } from "src/universal/Semver.sol";
        import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
        import { Predeploys } from "src/libraries/Predeploys.sol";
        import { Blast, YieldMode, GasMode } from "src/L2/Blast.sol";
        /// @custom:predeploy 0x4300000000000000000000000000000000000000
        /// @title SharesBase
        /// @notice Base contract to track share rebasing and yield reporting.
        abstract contract SharesBase is Initializable {
            /// @notice Approved yield reporter.
            address public immutable REPORTER;
            /// @notice Share price. This value can only increase.
            uint256 public price;
            /// @notice Accumulated yield that has not been distributed
            ///         to the share price.
            uint256 public pending;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            ///         A gap size of 48 was chosen here, so that the first slot used in a child contract
            ///         would be a multiple of 50.
            uint256[48] private __gap;
            /// @notice Emitted when a new share price is set after a yield event.
            event NewPrice(uint256 price);
            error InvalidReporter();
            error DistributeFailed(uint256 count, uint256 pending);
            error PriceIsInitialized();
            /// @param _reporter Address of the approved yield reporter.
            constructor(address _reporter) {
                REPORTER = _reporter;
            }
            /// @notice Initializer.
            /// @param _price Initial share price.
            // solhint-disable-next-line func-name-mixedcase
            function __SharesBase_init(uint256 _price) internal onlyInitializing {
                if (price != 0) {
                    revert PriceIsInitialized();
                }
                price = _price;
            }
            /// @notice Get the total number of shares. Needs to be
            ///         overridden by the child contract.
            /// @return Total number of shares.
            function count() public view virtual returns (uint256);
            /// @notice Report a yield event and update the share price.
            /// @param value Amount of new yield
            function addValue(uint256 value) external {
                _addValue(value);
            }
            function _addValue(uint256 value) internal virtual {
                if (AddressAliasHelper.undoL1ToL2Alias(msg.sender) != REPORTER) {
                    revert InvalidReporter();
                }
                if (value > 0) {
                    pending += value;
                }
                _tryDistributePending();
            }
            /// @notice Attempt to distribute pending yields if there
            ///         are sufficient pending yields to increase the
            ///         share price.
            /// @return True if there were sufficient pending yields to
            ///         increase the share price.
            function _tryDistributePending() internal returns (bool) {
                if (pending < count() || count() == 0) {
                    return false;
                }
                price += pending / count();
                pending = pending % count();
                emit NewPrice(price);
                return true;
            }
        }
        /// @custom:predeploy 0x4300000000000000000000000000000000000000
        /// @title Shares
        /// @notice Integrated EVM contract to manage native ether share
        ///         rebasing from yield reports.
        contract Shares is SharesBase, Semver {
            /// @notice Total number of shares. This value is modified directly
            ///         by the sequencer EVM.
            uint256 private _count;
            /// @notice _reporter Address of approved yield reporter.
            constructor(address _reporter) SharesBase(_reporter) Semver(1, 0, 0) {
                _disableInitializers();
            }
            /// @notice Initializer.
            function initialize(uint256 _price) public initializer {
                __SharesBase_init({ _price: _price });
                Blast(Predeploys.BLAST).configureContract(
                    address(this),
                    YieldMode.VOID,
                    GasMode.VOID,
                    address(0xdead) /// don't set a governor
                );
            }
            /// @inheritdoc SharesBase
            function count() public view override returns (uint256) {
                return _count;
            }
            function _addValue(uint256 value) internal override {
                super._addValue(value);
                SharesBase(Predeploys.WETH_REBASING).addValue(value);
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        interface IDelegateCalls {
            function payInsurancePremium(uint256) external;
            function withdrawFromInsurance(uint256) external;
            function stake(uint256) external;
            function unstake(uint256) external returns (uint256, uint256);
            function preCommitYieldReportDelegateCallHook() external;
        }
        abstract contract DelegateCalls {
            function _delegatecall_payInsurancePremium(address provider, uint256 arg) internal {
                (bool success,) = provider.delegatecall(
                    abi.encodeCall(IDelegateCalls.payInsurancePremium, (arg))
                );
                require(success, "delegatecall failed");
            }
            function _delegatecall_withdrawFromInsurance(address provider, uint256 arg) internal {
                (bool success,) = provider.delegatecall(
                    abi.encodeCall(IDelegateCalls.withdrawFromInsurance, (arg))
                );
                require(success, "delegatecall failed");
            }
            function _delegatecall_stake(address provider, uint256 arg) internal {
                (bool success,) = provider.delegatecall(
                    abi.encodeCall(IDelegateCalls.stake, (arg))
                );
                require(success, "delegatecall failed");
            }
            function _delegatecall_unstake(address provider, uint256 arg) internal returns (uint256, uint256) {
                (bool success, bytes memory res) = provider.delegatecall(
                    abi.encodeCall(IDelegateCalls.unstake, (arg))
                );
                require(success, "delegatecall failed");
                return abi.decode(res, (uint256, uint256));
            }
            function _delegatecall_preCommitYieldReportDelegateCallHook(address provider) internal {
                (bool success,) = provider.delegatecall(
                    abi.encodeCall(IDelegateCalls.preCommitYieldReportDelegateCallHook, ())
                );
                require(success, "delegatecall failed");
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol";
        import { YieldManager } from "src/mainnet-bridge/YieldManager.sol";
        interface IUSDT {
            function approve(address spender, uint256 amount) external;
            function balanceOf(address) external view returns (uint256);
        }
        interface IDssPsm {
            function sellGem(address usr, uint256 gemAmt) external;
            function buyGem(address usr, uint256 gemAmt) external;
            function gemJoin() external view returns (address);
        }
        interface ICurve3Pool {
            function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy) external;
        }
        /// @title USDConversions
        /// @notice Stateless helper module for converting between USD tokens (DAI/USDC/USDT).
        ///
        ///         DAI and USDC are converted 1-to-1 using Maker's Peg Stability Mechanism.
        ///         All other tokens conversions are completed through Curve's 3Pool.
        library USDConversions {
            uint256 constant WAD_DECIMALS = 18;
            uint256 constant USD_DECIMALS = 6;
            int128 constant DAI_INDEX = 0;
            int128 constant USDC_INDEX = 1;
            int128 constant USDT_INDEX = 2;
            IERC20 constant DAI = IERC20(0x6B175474E89094C44Da98b954EedeAC495271d0F);
            IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
            IUSDT constant USDT = IUSDT(0xdAC17F958D2ee523a2206206994597C13D831ec7);
            IDssPsm constant PSM = IDssPsm(0x89B78CfA322F6C5dE0aBcEecab66Aee45393cC5A);
            ICurve3Pool constant CURVE_3POOL = ICurve3Pool(0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7);
            /// @notice immutable address of PSM's GemJoin contract
            address constant GEM_JOIN = 0x0A59649758aa4d66E25f08Dd01271e891fe52199;
            error InsufficientBalance();
            error MinimumAmountNotMet();
            error IncorrectInputAmountUsed();
            error UnsupportedToken();
            error InvalidExtraData();
            error InvalidTokenIndex();
            /// @notice Initializer
            function _init() internal {
                USDC.approve(address(CURVE_3POOL), type(uint256).max);
                USDC.approve(GEM_JOIN, type(uint256).max);
                USDT.approve(address(CURVE_3POOL), type(uint256).max);
                DAI.approve(address(CURVE_3POOL), type(uint256).max);
                DAI.approve(GEM_JOIN, type(uint256).max);
                DAI.approve(address(PSM), type(uint256).max);
            }
            /// @notice Convert between the 3 stablecoin tokens using Curve's 3Pool and Maker's
            ///         Peg Stability Mechanism.
            /// @param inputToken         Input token index.
            /// @param outputToken        Output token index.
            /// @param inputAmountWad     Input amount in WAD.
            /// @param minOutputAmountWad Minimum amount of output token accepted in WAD.
            /// @return amountReceived Amount of output token received in the token's
            ///         decimal representation.
            function _convert(int128 inputToken, int128 outputToken, uint256 inputAmountWad, uint256 minOutputAmountWad) internal returns (uint256 amountReceived) {
                require(inputToken >= 0 && inputToken < 3 && outputToken >= 0 && outputToken < 3);
                require(inputToken != outputToken);
                if (inputAmountWad > 0) {
                    uint256 inputAmount = _convertDecimals(inputAmountWad, inputToken);
                    uint256 minOutputAmount = _convertDecimals(minOutputAmountWad, outputToken);
                    if (_tokenBalance(inputToken) < inputAmount) {
                        revert InsufficientBalance();
                    }
                    uint256 beforeBalance = _tokenBalance(outputToken);
                    if (inputToken == USDC_INDEX && outputToken == DAI_INDEX) {
                        PSM.sellGem(address(this), inputAmount);
                    } else if (inputToken == DAI_INDEX && outputToken == USDC_INDEX) {
                        uint256 beforeInputBalance = _tokenBalance(inputToken);
                        PSM.buyGem(address(this), _wadToUSD(minOutputAmountWad)); // buyGem expects the input amount in USDC
                        uint256 amountSent = beforeInputBalance - _tokenBalance(inputToken);
                        if (amountSent != inputAmountWad) {
                            revert IncorrectInputAmountUsed();
                        }
                    } else {
                        CURVE_3POOL.exchange(
                            inputToken,
                            outputToken,
                            inputAmount,
                            minOutputAmount
                        );
                    }
                    amountReceived = _tokenBalance(outputToken) - beforeBalance;
                    if (amountReceived < minOutputAmount) {
                        revert MinimumAmountNotMet();
                    }
                }
            }
            /// @notice Convert between supported token pairs, reverting if not supported.
            /// @param inputTokenAddress  Address of the input token.
            /// @param outputTokenAddress Address of the output token.
            /// @param inputAmountWad     Amount of input token to convert in WAD.
            /// @param _extraData         Extra data containing the minimum amount of output token to receive in WAD.
            /// @return amountReceived Amount of output token received in WAD.
            function _convertTo(
                address inputTokenAddress,
                address outputTokenAddress,
                uint256 inputAmountWad,
                bytes memory _extraData
            ) internal returns (uint256 amountReceived) {
                if (inputTokenAddress == outputTokenAddress) {
                    return inputAmountWad;
                }
                if (outputTokenAddress == address(DAI)) {
                    return _convertToDAI(inputTokenAddress, inputAmountWad, _extraData);
                } else {
                    revert UnsupportedToken();
                }
            }
            /// @notice Convert USDC, USDT, and DAI to DAI. If the input token is DAI,
            ///         the input amount is returned without conversion.
            /// @param inputTokenAddress Address of the input token.
            /// @param inputAmountWad    Amount of input token to convert in WAD.
            /// @param _extraData        Extra data containing the minimum amount of USDB to be minted in WAD.
            ///                          Only needed for USDC and USDT. The expected format is: (uint256 minOutputAmountWad).
            /// @return amountReceived Amount of DAI received.
            function _convertToDAI(address inputTokenAddress, uint256 inputAmountWad, bytes memory _extraData) internal returns (uint256 amountReceived) {
                if (inputTokenAddress == address(DAI)) {
                    return inputAmountWad;
                }
                if (_extraData.length != 32) {
                    revert InvalidExtraData();
                }
                uint256 minOutputAmountWad = abi.decode(_extraData, (uint256));
                if (inputTokenAddress == address(USDC)) {
                    return USDConversions._convert(USDC_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
                } else if (inputTokenAddress == address(USDT)) {
                    return USDConversions._convert(USDT_INDEX, DAI_INDEX, inputAmountWad, minOutputAmountWad);
                } else {
                    revert UnsupportedToken();
                }
            }
            /// @notice Get the token address from the Curve token index.
            /// @param index Curve token index.
            /// @return Address of the token.
            function _token(int128 index) private pure returns (address) {
                if (index == USDC_INDEX) {
                    return address(USDC);
                } else if (index == USDT_INDEX) {
                    return address(USDT);
                } else if (index == DAI_INDEX) {
                    return address(DAI);
                } else {
                    revert InvalidTokenIndex();
                }
            }
            /// @notice Get the contract's token balance from the Curve token index.
            /// @param index Curve token index.
            /// @return Token balance.
            function _tokenBalance(int128 index) internal view returns (uint256) {
                if (_token(index) == YieldManager(address(this)).TOKEN()) {
                    return YieldManager(address(this)).availableBalance();
                } else {
                    return IERC20(_token(index)).balanceOf(address(this));
                }
            }
            /// @notice Convert WAD representation to the token's native decimal representation.
            ///         USDT and USDC are both 6 decimals and are converted.
            /// @param wad   Amount in WAD.
            /// @param index Curve 3Pool index of the token.
            /// @return result Amount in native decimals representation.
            function _convertDecimals(uint256 wad, int128 index) internal pure returns (uint256 result) {
                if (index == USDT_INDEX || index == USDC_INDEX) {
                    result = _wadToUSD(wad);
                } else {
                    result = wad;
                }
            }
            /// @notice Convert value in WAD (18 decimals) to USD (6 decimals).
            /// @param wad Amount to convert in WAD.
            /// @return Amount in USD.
            function _wadToUSD(uint256 wad) internal pure returns (uint256) {
                return _convertDecimals(wad, WAD_DECIMALS, USD_DECIMALS);
            }
            /// @notice Convert value in USD (6 decimals) to WAD (18 decimals).
            /// @param usd Amount to convert in USD.
            /// @return Amount in WAD.
            function _usdToWad(uint256 usd) internal pure returns (uint256) {
                return _convertDecimals(usd, USD_DECIMALS, WAD_DECIMALS);
            }
            /// @notice Convert value to desired output decimals representation.
            /// @param input          Input amount.
            /// @param inputDecimals  Number of decimals in the input.
            /// @param outputDecimals Desired number of decimals in the output.
            /// @return `input` in `outputDecimals`.
            function _convertDecimals(uint256 input, uint256 inputDecimals, uint256 outputDecimals) internal pure returns (uint256) {
                if (inputDecimals > outputDecimals) {
                    return input / (10 ** (inputDecimals - outputDecimals));
                } else {
                    return input * (10 ** (outputDecimals - inputDecimals));
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev String operations.
         */
        library Strings {
            bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
            uint8 private constant _ADDRESS_LENGTH = 20;
            /**
             * @dev Converts a `uint256` to its ASCII `string` decimal representation.
             */
            function toString(uint256 value) internal pure returns (string memory) {
                // Inspired by OraclizeAPI's implementation - MIT licence
                // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
                if (value == 0) {
                    return "0";
                }
                uint256 temp = value;
                uint256 digits;
                while (temp != 0) {
                    digits++;
                    temp /= 10;
                }
                bytes memory buffer = new bytes(digits);
                while (value != 0) {
                    digits -= 1;
                    buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
                    value /= 10;
                }
                return string(buffer);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
             */
            function toHexString(uint256 value) internal pure returns (string memory) {
                if (value == 0) {
                    return "0x00";
                }
                uint256 temp = value;
                uint256 length = 0;
                while (temp != 0) {
                    length++;
                    temp >>= 8;
                }
                return toHexString(value, length);
            }
            /**
             * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
             */
            function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                bytes memory buffer = new bytes(2 * length + 2);
                buffer[0] = "0";
                buffer[1] = "x";
                for (uint256 i = 2 * length + 1; i > 1; --i) {
                    buffer[i] = _HEX_SYMBOLS[value & 0xf];
                    value >>= 4;
                }
                require(value == 0, "Strings: hex length insufficient");
                return string(buffer);
            }
            /**
             * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
             */
            function toHexString(address addr) internal pure returns (string memory) {
                return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             *
             * Furthermore, `isContract` will also return true if the target contract within
             * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
             * which only has an effect at the end of a transaction.
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
             * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
             *
             * _Available since v4.8._
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                if (success) {
                    if (returndata.length == 0) {
                        // only check isContract if the call was successful and the return data is empty
                        // otherwise we already know that it was a contract
                        require(isContract(target), "Address: call to non-contract");
                    }
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason or using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    _revert(returndata, errorMessage);
                }
            }
            function _revert(bytes memory returndata, string memory errorMessage) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert(errorMessage);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
        pragma solidity ^0.8.0;
        import "../token/ERC20/IERC20.sol";
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
        pragma solidity ^0.8.0;
        import "../IERC20.sol";
        import "../extensions/draft-IERC20Permit.sol";
        import "../../../utils/Address.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20 {
            using Address for address;
            function safeTransfer(
                IERC20 token,
                address to,
                uint256 value
            ) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
            function safeTransferFrom(
                IERC20 token,
                address from,
                address to,
                uint256 value
            ) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
            /**
             * @dev Deprecated. This function has issues similar to the ones found in
             * {IERC20-approve}, and its usage is discouraged.
             *
             * Whenever possible, use {safeIncreaseAllowance} and
             * {safeDecreaseAllowance} instead.
             */
            function safeApprove(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                // safeApprove should only be called when setting an initial allowance,
                // or when resetting it to zero. To increase and decrease it, use
                // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                require(
                    (value == 0) || (token.allowance(address(this), spender) == 0),
                    "SafeERC20: approve from non-zero to non-zero allowance"
                );
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
            function safeIncreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                uint256 newAllowance = token.allowance(address(this), spender) + value;
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
            function safeDecreaseAllowance(
                IERC20 token,
                address spender,
                uint256 value
            ) internal {
                unchecked {
                    uint256 oldAllowance = token.allowance(address(this), spender);
                    require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                    uint256 newAllowance = oldAllowance - value;
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
            }
            function safePermit(
                IERC20Permit token,
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) internal {
                uint256 nonceBefore = token.nonces(owner);
                token.permit(owner, spender, value, deadline, v, r, s);
                uint256 nonceAfter = token.nonces(owner);
                require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             */
            function _callOptionalReturn(IERC20 token, bytes memory data) private {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                // the target address contains contract code and also asserts for success in the low-level call.
                bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                if (returndata.length > 0) {
                    // Return data is optional
                    require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { Semver } from "src/universal/Semver.sol";
        import { GasMode, IGas } from "src/L2/Gas.sol";
        enum YieldMode {
            AUTOMATIC,
            VOID,
            CLAIMABLE
        }
        interface IYield {
            function configure(address contractAddress, uint8 flags) external returns (uint256);
            function claim(address contractAddress, address recipientOfYield, uint256 desiredAmount) external returns (uint256);
            function getClaimableAmount(address contractAddress) external view returns (uint256);
            function getConfiguration(address contractAddress) external view returns (uint8);
        }
        interface IBlast{
            // configure
            function configureContract(address contractAddress, YieldMode _yield, GasMode gasMode, address governor) external;
            function configure(YieldMode _yield, GasMode gasMode, address governor) external;
            // base configuration options
            function configureClaimableYield() external;
            function configureClaimableYieldOnBehalf(address contractAddress) external;
            function configureAutomaticYield() external;
            function configureAutomaticYieldOnBehalf(address contractAddress) external;
            function configureVoidYield() external;
            function configureVoidYieldOnBehalf(address contractAddress) external;
            function configureClaimableGas() external;
            function configureClaimableGasOnBehalf(address contractAddress) external;
            function configureVoidGas() external;
            function configureVoidGasOnBehalf(address contractAddress) external;
            function configureGovernor(address _governor) external;
            function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external;
            // claim yield
            function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);
            function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);
            // claim gas
            function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256);
            // NOTE: can be off by 1 bip
            function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256);
            function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256);
            function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
            // read functions
            function readClaimableYield(address contractAddress) external view returns (uint256);
            function readYieldConfiguration(address contractAddress) external view returns (uint8);
            function readGasParams(address contractAddress) external view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode);
        }
        /// @custom:predeploy 0x4300000000000000000000000000000000000002
        /// @title Blast
        contract Blast is IBlast, Initializable, Semver {
            address public immutable YIELD_CONTRACT;
            address public immutable GAS_CONTRACT;
            mapping(address => address) public governorMap;
            constructor(address _gasContract, address _yieldContract) Semver(1, 0, 0) {
                GAS_CONTRACT = _gasContract;
                YIELD_CONTRACT = _yieldContract;
                _disableInitializers();
            }
            function initialize() public initializer {}
            /**
             * @notice Checks if the caller is the governor of the contract
             * @param contractAddress The address of the contract
             * @return A boolean indicating if the caller is the governor
             */
            function isGovernor(address contractAddress) public view returns (bool) {
                return msg.sender == governorMap[contractAddress];
            }
            /**
             * @notice Checks if the governor is not set for the contract
             * @param contractAddress The address of the contract
             * @return boolean indicating if the governor is not set
             */
            function governorNotSet(address contractAddress) internal view returns (bool) {
                return governorMap[contractAddress] == address(0);
            }
            /**
             * @notice Checks if the caller is authorized
             * @param contractAddress The address of the contract
             * @return A boolean indicating if the caller is authorized
             */
            function isAuthorized(address contractAddress) public view returns (bool) {
                return isGovernor(contractAddress) || (governorNotSet(contractAddress) && msg.sender == contractAddress);
            }
            /**
             * @notice contract configures its yield and gas modes and sets the governor. called by contract
             * @param _yieldMode The yield mode to be set
             * @param _gasMode The gas mode to be set
             * @param governor The address of the governor to be set
             */
            function configure(YieldMode _yieldMode, GasMode _gasMode, address governor) external {
                // requires that no governor is set for contract
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                // set governor
                governorMap[msg.sender] = governor;
                // set gas mode
                IGas(GAS_CONTRACT).setGasMode(msg.sender, _gasMode);
                // set yield mode
                IYield(YIELD_CONTRACT).configure(msg.sender, uint8(_yieldMode));
            }
            /**
             * @notice Configures the yield and gas modes and sets the governor for a specific contract. called by authorized user
             * @param contractAddress The address of the contract to be configured
             * @param _yieldMode The yield mode to be set
             * @param _gasMode The gas mode to be set
             * @param _newGovernor The address of the new governor to be set
             */
            function configureContract(address contractAddress, YieldMode _yieldMode, GasMode _gasMode, address _newGovernor) external {
                // only allow governor, or if no governor is set, the contract itself to configure
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                // set governor
                governorMap[contractAddress] = _newGovernor;
                // set gas mode
                IGas(GAS_CONTRACT).setGasMode(contractAddress, _gasMode);
                // set yield mode
                IYield(YIELD_CONTRACT).configure(contractAddress, uint8(_yieldMode));
            }
            /**
             * @notice Configures the yield mode to CLAIMABLE for the contract that calls this function
             */
            function configureClaimableYield() external {
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.CLAIMABLE));
            }
            /**
             * @notice Configures the yield mode to CLAIMABLE for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract to be configured
             */
            function configureClaimableYieldOnBehalf(address contractAddress) external {
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.CLAIMABLE));
            }
            /**
             * @notice Configures the yield mode to AUTOMATIC for the contract that calls this function
             */
            function configureAutomaticYield() external {
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.AUTOMATIC));
            }
            /**
             * @notice Configures the yield mode to AUTOMATIC for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract to be configured
             */
            function configureAutomaticYieldOnBehalf(address contractAddress) external {
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.AUTOMATIC));
            }
            /**
             * @notice Configures the yield mode to VOID for the contract that calls this function
             */
            function configureVoidYield() external {
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                IYield(YIELD_CONTRACT).configure(msg.sender, uint8(YieldMode.VOID));
            }
            /**
             * @notice Configures the yield mode to VOID for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract to be configured
             */
            function configureVoidYieldOnBehalf(address contractAddress) external {
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                IYield(YIELD_CONTRACT).configure(contractAddress, uint8(YieldMode.VOID));
            }
            /**
             * @notice Configures the gas mode to CLAIMABLE for the contract that calls this function
             */
            function configureClaimableGas() external {
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.CLAIMABLE);
            }
            /**
             * @notice Configures the gas mode to CLAIMABLE for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract to be configured
             */
            function configureClaimableGasOnBehalf(address contractAddress) external {
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.CLAIMABLE);
            }
            /**
             * @notice Configures the gas mode to VOID for the contract that calls this function
             */
            function configureVoidGas() external {
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                IGas(GAS_CONTRACT).setGasMode(msg.sender, GasMode.VOID);
            }
            /**
             * @notice Configures the gas mode to void for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract to be configured
             */
            function configureVoidGasOnBehalf(address contractAddress) external {
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                IGas(GAS_CONTRACT).setGasMode(contractAddress, GasMode.VOID);
            }
            /**
             * @notice Configures the governor for the contract that calls this function
             */
            function configureGovernor(address _governor) external {
                require(isAuthorized(msg.sender), "not authorized to configure contract");
                governorMap[msg.sender] = _governor;
            }
            /**
             * @notice Configures the governor for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract to be configured
             */
            function configureGovernorOnBehalf(address _newGovernor, address contractAddress) external {
                require(isAuthorized(contractAddress), "not authorized to configure contract");
                governorMap[contractAddress] = _newGovernor;
            }
            // claim methods
            /**
             * @notice Claims yield for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract for which yield is to be claimed
             * @param recipientOfYield The address of the recipient of the yield
             * @param amount The amount of yield to be claimed
             * @return The amount of yield that was claimed
             */
            function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256) {
                require(isAuthorized(contractAddress), "Not authorized to claim yield");
                return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
            }
            /**
             * @notice Claims all yield for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract for which all yield is to be claimed
             * @param recipientOfYield The address of the recipient of the yield
             * @return The amount of yield that was claimed
             */
            function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256) {
                require(isAuthorized(contractAddress), "Not authorized to claim yield");
                uint256 amount = IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
                return  IYield(YIELD_CONTRACT).claim(contractAddress, recipientOfYield, amount);
            }
            /**
             * @notice Claims all gas for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract for which all gas is to be claimed
             * @param recipientOfGas The address of the recipient of the gas
             * @return The amount of gas that was claimed
             */
            function claimAllGas(address contractAddress, address recipientOfGas) external returns (uint256) {
                require(isAuthorized(contractAddress), "Not allowed to claim all gas");
                return IGas(GAS_CONTRACT).claimAll(contractAddress, recipientOfGas);
            }
            /**
             * @notice Claims gas at a minimum claim rate for a specific contract, with error rate '1'. Called by an authorized user
             * @param contractAddress The address of the contract for which gas is to be claimed
             * @param recipientOfGas The address of the recipient of the gas
             * @param minClaimRateBips The minimum claim rate in basis points
             * @return The amount of gas that was claimed
             */
            function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) external returns (uint256) {
                require(isAuthorized(contractAddress), "Not allowed to claim gas at min claim rate");
                return IGas(GAS_CONTRACT).claimGasAtMinClaimRate(contractAddress, recipientOfGas, minClaimRateBips);
            }
            /**
             * @notice Claims gas available to be claimed at max claim rate for a specific contract. Called by an authorized user
             * @param contractAddress The address of the contract for which maximum gas is to be claimed
             * @param recipientOfGas The address of the recipient of the gas
             * @return The amount of gas that was claimed
             */
            function claimMaxGas(address contractAddress, address recipientOfGas) external returns (uint256) {
                require(isAuthorized(contractAddress), "Not allowed to claim max gas");
                return IGas(GAS_CONTRACT).claimMax(contractAddress, recipientOfGas);
            }
            /**
             * @notice Claims a specific amount of gas for a specific contract. claim rate governed by integral of gas over time
             * @param contractAddress The address of the contract for which gas is to be claimed
             * @param recipientOfGas The address of the recipient of the gas
             * @param gasToClaim The amount of gas to be claimed
             * @param gasSecondsToConsume The amount of gas seconds to consume
             * @return The amount of gas that was claimed
             */
            function claimGas(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256) {
                require(isAuthorized(contractAddress), "Not allowed to claim gas");
                return IGas(GAS_CONTRACT).claim(contractAddress, recipientOfGas, gasToClaim, gasSecondsToConsume);
            }
            /**
             * @notice Reads the claimable yield for a specific contract
             * @param contractAddress The address of the contract for which the claimable yield is to be read
             * @return claimable yield
             */
            function readClaimableYield(address contractAddress) public view returns (uint256) {
                return IYield(YIELD_CONTRACT).getClaimableAmount(contractAddress);
            }
            /**
             * @notice Reads the yield configuration for a specific contract
             * @param contractAddress The address of the contract for which the yield configuration is to be read
             * @return uint8 representing yield enum
             */
            function readYieldConfiguration(address contractAddress) public view returns (uint8) {
                return IYield(YIELD_CONTRACT).getConfiguration(contractAddress);
            }
            /**
             * @notice Reads the gas parameters for a specific contract
             * @param contractAddress The address of the contract for which the gas parameters are to be read
             * @return uint256 representing the accumulated ether seconds
             * @return uint256 representing ether balance
             * @return uint256 representing last update timestamp
             * @return GasMode representing the gas mode (VOID, CLAIMABLE)
             */
            function readGasParams(address contractAddress) public view returns (uint256, uint256, uint256, GasMode) {
                return IGas(GAS_CONTRACT).readGasParams(contractAddress);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `to`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address to, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `from` to `to` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) external returns (bool);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
         * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
         *
         * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
         * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
         * need to send a transaction, and thus is not required to hold Ether at all.
         */
        interface IERC20Permit {
            /**
             * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
             * given ``owner``'s signed approval.
             *
             * IMPORTANT: The same issues {IERC20-approve} has related to transaction
             * ordering also apply here.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `deadline` must be a timestamp in the future.
             * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
             * over the EIP712-formatted function arguments.
             * - the signature must use ``owner``'s current nonce (see {nonces}).
             *
             * For more information on the signature format, see the
             * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
             * section].
             */
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) external;
            /**
             * @dev Returns the current nonce for `owner`. This value must be
             * included whenever a signature is generated for {permit}.
             *
             * Every successful call to {permit} increases ``owner``'s nonce by one. This
             * prevents a signature from being used multiple times.
             */
            function nonces(address owner) external view returns (uint256);
            /**
             * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
             */
            // solhint-disable-next-line func-name-mixedcase
            function DOMAIN_SEPARATOR() external view returns (bytes32);
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { SafeTransferLib } from "solmate/utils/SafeTransferLib.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
        import { Semver } from "src/universal/Semver.sol";
        enum GasMode {
            VOID,
            CLAIMABLE
        }
        interface IGas {
            function readGasParams(address contractAddress) external view returns (uint256, uint256, uint256, GasMode);
            function setGasMode(address contractAddress, GasMode mode) external;
            function claimGasAtMinClaimRate(address contractAddress, address recipient, uint256 minClaimRateBips) external returns (uint256);
            function claimAll(address contractAddress, address recipient) external returns (uint256);
            function claimMax(address contractAddress, address recipient) external returns (uint256);
            function claim(address contractAddress, address recipient, uint256 gasToClaim, uint256 gasSecondsToConsume) external returns (uint256);
        }
        /// @custom:predeploy 0x4300000000000000000000000000000000000001
        /// @title Gas
        contract Gas is IGas, Initializable, Semver {
            address public immutable admin;
            // Blast.sol --> controls all dAPP accesses to Gas.sol
            address public immutable blastConfigurationContract;
            // BaseFeeVault.sol -> fees from gas claims directed here
            address public immutable blastFeeVault;
            // zero claim rate in bps -> percent of gas user is able to claim
            // without consuming any gas seconds
            uint256 public zeroClaimRate; // bps
            // base claim rate in bps -> percent of gas user is able to claim
            // by consuming base gas seconds
            uint256 public baseGasSeconds;
            uint256 public baseClaimRate; // bps
            // ceil claim rate in bps -> percent of gas user is able to claim
            // by consuming ceil gas seconds or more
            uint256 public ceilGasSeconds;
            uint256 public ceilClaimRate; // bps
            /**
             * @notice Constructs the blast gas contract.
             * @param _admin The address of the admin.
             * @param _blastConfigurationContract The address of the Blast configuration contract.
             * @param _blastFeeVault The address of the Blast fee vault.
            */
            constructor (
                address _admin,
                address _blastConfigurationContract,
                address _blastFeeVault
            ) Semver(1, 0, 0) {
                admin =  _admin;
                blastConfigurationContract = _blastConfigurationContract;
                blastFeeVault = _blastFeeVault;
                _disableInitializers();
            }
            /**
             * @notice Initializer.
             * @param _zeroClaimRate The zero claim rate.
             * @param _baseGasSeconds The base gas seconds.
             * @param _baseClaimRate The base claim rate.
             * @param _ceilGasSeconds The ceiling gas seconds.
             * @param _ceilClaimRate The ceiling claim rate.
             */
            function initialize(
                uint256 _zeroClaimRate,
                uint256 _baseGasSeconds,
                uint256 _baseClaimRate,
                uint256 _ceilGasSeconds,
                uint256 _ceilClaimRate
            ) public initializer {
                require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
                require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
                require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
                require(_baseGasSeconds > 0, "base gas seconds must be > 0");
                require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
                // admin vars
                zeroClaimRate = _zeroClaimRate;
                baseGasSeconds = _baseGasSeconds;
                baseClaimRate = _baseClaimRate;
                ceilGasSeconds = _ceilGasSeconds;
                ceilClaimRate = _ceilClaimRate;
            }
            /**
             * @notice Allows only the admin to call a function
             */
            modifier onlyAdmin() {
                require(msg.sender == admin, "Caller is not the admin");
                _;
            }
            /**
             * @notice Allows only the Blast Configuration Contract to call a function
             */
            modifier onlyBlastConfigurationContract() {
                require(msg.sender == blastConfigurationContract, "Caller must be blast configuration contract");
                _;
            }
            /**
             * @notice Allows the admin to update the parameters
             * @param _zeroClaimRate The new zero claim rate
             * @param _baseGasSeconds The new base gas seconds
             * @param _baseClaimRate The new base claim rate
             * @param _ceilGasSeconds The new ceiling gas seconds
             * @param _ceilClaimRate The new ceiling claim rate
             */
            function updateAdminParameters(
                uint256 _zeroClaimRate,
                uint256 _baseGasSeconds,
                uint256 _baseClaimRate,
                uint256 _ceilGasSeconds,
                uint256 _ceilClaimRate
            ) external onlyAdmin {
                require(_zeroClaimRate < _baseClaimRate, "zero claim rate must be < base claim rate");
                require(_baseClaimRate < _ceilClaimRate, "base claim rate must be < ceil claim rate");
                require(_baseGasSeconds < _ceilGasSeconds, "base gas seconds must be < ceil gas seconds");
                require(_baseGasSeconds > 0, "base gas seconds must be > 0");
                require(_ceilClaimRate <= 10000, "ceil claim rate must be less than or equal to 10_000 bips");
                zeroClaimRate = _zeroClaimRate;
                baseGasSeconds = _baseGasSeconds;
                baseClaimRate = _baseClaimRate;
                ceilGasSeconds = _ceilGasSeconds;
                ceilClaimRate = _ceilClaimRate;
            }
            /**
             * @notice Allows the admin to claim the gas of any address
             * @param contractAddress The address of the contract
             * @return The amount of ether balance claimed
             */
            function adminClaimGas(address contractAddress) external onlyAdmin returns (uint256) {
                (, uint256 etherBalance,,) = readGasParams(contractAddress);
                _updateGasParams(contractAddress, 0, 0, GasMode.VOID);
                SafeTransferLib.safeTransferETH(blastFeeVault, etherBalance);
                return etherBalance;
            }
            /**
             * @notice Allows an authorized user to set the gas mode for a contract via the BlastConfigurationContract
             * @param contractAddress The address of the contract
             * @param mode The new gas mode for the contract
             */
            function setGasMode(address contractAddress, GasMode mode) external onlyBlastConfigurationContract {
                // retrieve gas params
                (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
                _updateGasParams(contractAddress, etherSeconds, etherBalance, mode);
            }
            /**
             * @notice Allows a user to claim gas at a minimum claim rate (error = 1 bip)
             * @param contractAddress The address of the contract
             * @param recipientOfGas The address of the recipient of the gas
             * @param minClaimRateBips The minimum claim rate in basis points
             * @return The amount of gas claimed
             */
            function claimGasAtMinClaimRate(address contractAddress, address recipientOfGas, uint256 minClaimRateBips) public returns (uint256) {
                require(minClaimRateBips <= ceilClaimRate, "desired claim rate exceeds maximum");
                (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
                if (minClaimRateBips <= zeroClaimRate) {
                    return claimAll(contractAddress, recipientOfGas);
                }
                // set minClaimRate to baseClaimRate in this case
                if (minClaimRateBips < baseClaimRate) {
                    minClaimRateBips = baseClaimRate;
                }
                uint256 bipsDiff = minClaimRateBips - baseClaimRate;
                uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
                uint256 rateDiff = ceilClaimRate - baseClaimRate;
                uint256 minSecondsStaked = baseGasSeconds + Math.ceilDiv(bipsDiff * secondsDiff, rateDiff);
                uint256 maxEtherClaimable = etherSeconds / minSecondsStaked;
                if (maxEtherClaimable > etherBalance)  {
                    maxEtherClaimable = etherBalance;
                }
                uint256 secondsToConsume = maxEtherClaimable * minSecondsStaked;
                return claim(contractAddress, recipientOfGas, maxEtherClaimable, secondsToConsume);
            }
            /**
             * @notice Allows a contract to claim all gas
             * @param contractAddress The address of the contract
             * @param recipientOfGas The address of the recipient of the gas
             * @return The amount of gas claimed
             */
            function claimAll(address contractAddress, address recipientOfGas) public returns (uint256) {
                (uint256 etherSeconds, uint256 etherBalance,,) = readGasParams(contractAddress);
                return claim(contractAddress, recipientOfGas, etherBalance, etherSeconds);
            }
            /**
             * @notice Allows a contract to claim all gas at the highest possible claim rate
             * @param contractAddress The address of the contract
             * @param recipientOfGas The address of the recipient of the gas
             * @return The amount of gas claimed
             */
            function claimMax(address contractAddress, address recipientOfGas) public returns (uint256) {
                return claimGasAtMinClaimRate(contractAddress, recipientOfGas, ceilClaimRate);
            }
            /**
             * @notice Allows a contract to claim a specified amount of gas, at a claim rate set by the number of gas seconds
             * @param contractAddress The address of the contract
             * @param recipientOfGas The address of the recipient of the gas
             * @param gasToClaim The amount of gas to claim
             * @param gasSecondsToConsume The amount of gas seconds to consume
             * @return The amount of gas claimed (gasToClaim - penalty)
             */
            function claim(address contractAddress, address recipientOfGas, uint256 gasToClaim, uint256 gasSecondsToConsume) public onlyBlastConfigurationContract() returns (uint256)  {
                // retrieve gas params
                (uint256 etherSeconds, uint256 etherBalance,, GasMode mode) = readGasParams(contractAddress);
                // check validity requirements
                require(gasToClaim > 0, "must withdraw non-zero amount");
                require(gasToClaim <= etherBalance, "too much to withdraw");
                require(gasSecondsToConsume <= etherSeconds, "not enough gas seconds");
                // get claim rate
                (uint256 claimRate, uint256 gasSecondsToConsumeNormalized) = getClaimRateBps(gasSecondsToConsume, gasToClaim);
                // calculate tax
                uint256 userEther = gasToClaim * claimRate / 10_000;
                uint256 penalty = gasToClaim - userEther;
                _updateGasParams(contractAddress, etherSeconds - gasSecondsToConsumeNormalized, etherBalance - gasToClaim, mode);
                SafeTransferLib.safeTransferETH(recipientOfGas, userEther);
                if (penalty > 0) {
                    SafeTransferLib.safeTransferETH(blastFeeVault, penalty);
                }
                return userEther;
            }
            /**
             * @notice Calculates the claim rate in basis points based on gasSeconds, gasToClaim
             * @param gasSecondsToConsume The amount of gas seconds to consume
             * @param gasToClaim The amount of gas to claim
             * @return claimRate The calculated claim rate in basis points
             * @return gasSecondsToConsume The normalized gas seconds to consume (<= gasSecondsToConsume)
             */
            function getClaimRateBps(uint256 gasSecondsToConsume, uint256 gasToClaim) public view returns (uint256, uint256) {
                uint256 secondsStaked = gasSecondsToConsume / gasToClaim;
                if (secondsStaked < baseGasSeconds) {
                    return (zeroClaimRate, 0);
                }
                if (secondsStaked >= ceilGasSeconds) {
                    uint256 gasToConsumeNormalized = gasToClaim * ceilGasSeconds;
                    return (ceilClaimRate, gasToConsumeNormalized);
                }
                uint256 rateDiff = ceilClaimRate - baseClaimRate;
                uint256 secondsDiff = ceilGasSeconds - baseGasSeconds;
                uint256 secondsStakedDiff = secondsStaked - baseGasSeconds;
                uint256 additionalClaimRate = rateDiff * secondsStakedDiff / secondsDiff;
                uint256 claimRate = baseClaimRate + additionalClaimRate;
                return (claimRate, gasSecondsToConsume);
            }
            /**
             * @notice Reads the gas parameters for a given user
             * @param user The address of the user
             * @return etherSeconds The integral of ether over time (ether * seconds vested)
             * @return etherBalance The total ether balance for the user
             * @return lastUpdated The last updated timestamp for the user's gas parameters
             * @return mode The current gas mode for the user
             */
             function readGasParams(address user) public view returns (uint256 etherSeconds, uint256 etherBalance, uint256 lastUpdated, GasMode mode) {
                bytes32 paramsHash = keccak256(abi.encodePacked(user, "parameters"));
                bytes32 packedParams;
                // read params
                assembly {
                    packedParams := sload(paramsHash)
                }
                // unpack params
                // - The first byte (most significant byte) represents the mode
                // - The next 12 bytes represent the etherBalance
                // - The following 15 bytes represent the etherSeconds
                // - The last 4 bytes (least significant bytes) represent the lastUpdated timestamp
                mode         = GasMode(uint8(packedParams[0]));
                etherBalance = uint256((packedParams << (1             * 8)) >> ((32 - 12) * 8));
                etherSeconds = uint256((packedParams << ((1 + 12)      * 8)) >> ((32 - 15) * 8));
                lastUpdated  = uint256((packedParams << ((1 + 12 + 15) * 8)) >> ((32 -  4) * 8));
                // update ether seconds
                etherSeconds = etherSeconds + etherBalance * (block.timestamp - lastUpdated);
            }
            /**
             * @notice Updates the gas parameters for a given contract address
             * @param contractAddress The address of the contract
             * @param etherSeconds The integral of ether over time (ether * seconds vested)
             * @param etherBalance The total ether balance for the contract
             */
            function _updateGasParams(address contractAddress, uint256 etherSeconds, uint256 etherBalance, GasMode mode) internal {
                if (
                    etherBalance >= 1 << (12 * 8) ||
                    etherSeconds >= 1 << (15 * 8)
                ) {
                    revert("Unexpected packing issue due to overflow");
                }
                uint256 updatedTimestamp = block.timestamp; // Known to fit in 4 bytes
                bytes32 paramsHash = keccak256(abi.encodePacked(contractAddress, "parameters"));
                bytes32 packedParams;
                packedParams = (
                    (bytes32(uint256(mode)) << ((12 + 15 + 4) * 8)) | // Shift mode to the most significant byte
                    (bytes32(etherBalance)  << ((15 + 4) * 8))      | // Shift etherBalance to start after 1 byte of mode
                    (bytes32(etherSeconds)  << (4 * 8))             | // Shift etherSeconds to start after mode and etherBalance
                    bytes32(updatedTimestamp)                         // Keep updatedTimestamp in the least significant bytes
                );
                assembly {
                    sstore(paramsHash, packedParams)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        import {ERC20} from "../tokens/ERC20.sol";
        /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
        /// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
        library SafeTransferLib {
            /*//////////////////////////////////////////////////////////////
                                     ETH OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function safeTransferETH(address to, uint256 amount) internal {
                bool success;
                assembly {
                    // Transfer the ETH and store if it succeeded or not.
                    success := call(gas(), to, amount, 0, 0, 0, 0)
                }
                require(success, "ETH_TRANSFER_FAILED");
            }
            /*//////////////////////////////////////////////////////////////
                                    ERC20 OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function safeTransferFrom(
                ERC20 token,
                address from,
                address to,
                uint256 amount
            ) internal {
                bool success;
                assembly {
                    // We'll write our calldata to this slot below, but restore it later.
                    let memPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(0, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
                    mstore(4, from) // Append the "from" argument.
                    mstore(36, to) // Append the "to" argument.
                    mstore(68, amount) // Append the "amount" argument.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 100 because that's the total length of our calldata (4 + 32 * 3)
                        // Counterintuitively, this call() must be positioned after the or() in the
                        // surrounding and() because and() evaluates its arguments from right to left.
                        call(gas(), token, 0, 0, 100, 0, 32)
                    )
                    mstore(0x60, 0) // Restore the zero slot to zero.
                    mstore(0x40, memPointer) // Restore the memPointer.
                }
                require(success, "TRANSFER_FROM_FAILED");
            }
            function safeTransfer(
                ERC20 token,
                address to,
                uint256 amount
            ) internal {
                bool success;
                assembly {
                    // We'll write our calldata to this slot below, but restore it later.
                    let memPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(0, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
                    mstore(4, to) // Append the "to" argument.
                    mstore(36, amount) // Append the "amount" argument.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                        // Counterintuitively, this call() must be positioned after the or() in the
                        // surrounding and() because and() evaluates its arguments from right to left.
                        call(gas(), token, 0, 0, 68, 0, 32)
                    )
                    mstore(0x60, 0) // Restore the zero slot to zero.
                    mstore(0x40, memPointer) // Restore the memPointer.
                }
                require(success, "TRANSFER_FAILED");
            }
            function safeApprove(
                ERC20 token,
                address to,
                uint256 amount
            ) internal {
                bool success;
                assembly {
                    // We'll write our calldata to this slot below, but restore it later.
                    let memPointer := mload(0x40)
                    // Write the abi-encoded calldata into memory, beginning with the function selector.
                    mstore(0, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
                    mstore(4, to) // Append the "to" argument.
                    mstore(36, amount) // Append the "amount" argument.
                    success := and(
                        // Set success to whether the call reverted, if not we check it either
                        // returned exactly 1 (can't just be non-zero data), or had no return data.
                        or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                        // We use 68 because that's the total length of our calldata (4 + 32 * 2)
                        // Counterintuitively, this call() must be positioned after the or() in the
                        // surrounding and() because and() evaluates its arguments from right to left.
                        call(gas(), token, 0, 0, 68, 0, 32)
                    )
                    mstore(0x60, 0) // Restore the zero slot to zero.
                    mstore(0x40, memPointer) // Restore the memPointer.
                }
                require(success, "APPROVE_FAILED");
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
        /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
        /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
        abstract contract ERC20 {
            /*//////////////////////////////////////////////////////////////
                                         EVENTS
            //////////////////////////////////////////////////////////////*/
            event Transfer(address indexed from, address indexed to, uint256 amount);
            event Approval(address indexed owner, address indexed spender, uint256 amount);
            /*//////////////////////////////////////////////////////////////
                                    METADATA STORAGE
            //////////////////////////////////////////////////////////////*/
            string public name;
            string public symbol;
            uint8 public immutable decimals;
            /*//////////////////////////////////////////////////////////////
                                      ERC20 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 public totalSupply;
            mapping(address => uint256) public balanceOf;
            mapping(address => mapping(address => uint256)) public allowance;
            /*//////////////////////////////////////////////////////////////
                                    EIP-2612 STORAGE
            //////////////////////////////////////////////////////////////*/
            uint256 internal immutable INITIAL_CHAIN_ID;
            bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
            mapping(address => uint256) public nonces;
            /*//////////////////////////////////////////////////////////////
                                       CONSTRUCTOR
            //////////////////////////////////////////////////////////////*/
            constructor(
                string memory _name,
                string memory _symbol,
                uint8 _decimals
            ) {
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                INITIAL_CHAIN_ID = block.chainid;
                INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
            }
            /*//////////////////////////////////////////////////////////////
                                       ERC20 LOGIC
            //////////////////////////////////////////////////////////////*/
            function approve(address spender, uint256 amount) public virtual returns (bool) {
                allowance[msg.sender][spender] = amount;
                emit Approval(msg.sender, spender, amount);
                return true;
            }
            function transfer(address to, uint256 amount) public virtual returns (bool) {
                balanceOf[msg.sender] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(msg.sender, to, amount);
                return true;
            }
            function transferFrom(
                address from,
                address to,
                uint256 amount
            ) public virtual returns (bool) {
                uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
                if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
                balanceOf[from] -= amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(from, to, amount);
                return true;
            }
            /*//////////////////////////////////////////////////////////////
                                     EIP-2612 LOGIC
            //////////////////////////////////////////////////////////////*/
            function permit(
                address owner,
                address spender,
                uint256 value,
                uint256 deadline,
                uint8 v,
                bytes32 r,
                bytes32 s
            ) public virtual {
                require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
                // Unchecked because the only math done is incrementing
                // the owner's nonce which cannot realistically overflow.
                unchecked {
                    address recoveredAddress = ecrecover(
                        keccak256(
                            abi.encodePacked(
                                "\\x19\\x01",
                                DOMAIN_SEPARATOR(),
                                keccak256(
                                    abi.encode(
                                        keccak256(
                                            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                        ),
                                        owner,
                                        spender,
                                        value,
                                        nonces[owner]++,
                                        deadline
                                    )
                                )
                            )
                        ),
                        v,
                        r,
                        s
                    );
                    require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
                    allowance[recoveredAddress][spender] = value;
                }
                emit Approval(owner, spender, value);
            }
            function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
                return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
            }
            function computeDomainSeparator() internal view virtual returns (bytes32) {
                return
                    keccak256(
                        abi.encode(
                            keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                            keccak256(bytes(name)),
                            keccak256("1"),
                            block.chainid,
                            address(this)
                        )
                    );
            }
            /*//////////////////////////////////////////////////////////////
                                INTERNAL MINT/BURN LOGIC
            //////////////////////////////////////////////////////////////*/
            function _mint(address to, uint256 amount) internal virtual {
                totalSupply += amount;
                // Cannot overflow because the sum of all user
                // balances can't exceed the max uint256 value.
                unchecked {
                    balanceOf[to] += amount;
                }
                emit Transfer(address(0), to, amount);
            }
            function _burn(address from, uint256 amount) internal virtual {
                balanceOf[from] -= amount;
                // Cannot underflow because a user's balance
                // will never be larger than the total supply.
                unchecked {
                    totalSupply -= amount;
                }
                emit Transfer(from, address(0), amount);
            }
        }
        

        File 3 of 4: Proxy
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Constants } from "src/libraries/Constants.sol";
        /// @title Proxy
        /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
        ///         if the caller is address(0), meaning that the call originated from an off-chain
        ///         simulation.
        contract Proxy {
            /// @notice An event that is emitted each time the implementation is changed. This event is part
            ///         of the EIP-1967 specification.
            /// @param implementation The address of the implementation contract
            event Upgraded(address indexed implementation);
            /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
            ///         EIP-1967 specification.
            /// @param previousAdmin The previous owner of the contract
            /// @param newAdmin      The new owner of the contract
            event AdminChanged(address previousAdmin, address newAdmin);
            /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
            ///         eth_call to interact with this proxy without needing to use low-level storage
            ///         inspection. We assume that nobody is able to trigger calls from address(0) during
            ///         normal EVM execution.
            modifier proxyCallIfNotAdmin() {
                if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                    _;
                } else {
                    // This WILL halt the call frame on completion.
                    _doProxyCall();
                }
            }
            /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
            ///         EIP-1967 admin storage slot so that accidental storage collision with the
            ///         implementation is not possible.
            /// @param _admin Address of the initial contract admin. Admin as the ability to access the
            ///               transparent proxy interface.
            constructor(address _admin) {
                _changeAdmin(_admin);
            }
            // slither-disable-next-line locked-ether
            receive() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            // slither-disable-next-line locked-ether
            fallback() external payable {
                // Proxy call by default.
                _doProxyCall();
            }
            /// @notice Set the implementation contract address. The code at the given address will execute
            ///         when this contract is called.
            /// @param _implementation Address of the implementation contract.
            function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                _setImplementation(_implementation);
            }
            /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
            ///         atomic execution of initialization-based upgrades.
            /// @param _implementation Address of the implementation contract.
            /// @param _data           Calldata to delegatecall the new implementation with.
            function upgradeToAndCall(
                address _implementation,
                bytes calldata _data
            )
                public
                payable
                virtual
                proxyCallIfNotAdmin
                returns (bytes memory)
            {
                _setImplementation(_implementation);
                (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                require(success, "Proxy: delegatecall to new implementation contract failed");
                return returndata;
            }
            /// @notice Changes the owner of the proxy contract. Only callable by the owner.
            /// @param _admin New owner of the proxy contract.
            function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                _changeAdmin(_admin);
            }
            /// @notice Gets the owner of the proxy contract.
            /// @return Owner address.
            function admin() public virtual proxyCallIfNotAdmin returns (address) {
                return _getAdmin();
            }
            //// @notice Queries the implementation address.
            /// @return Implementation address.
            function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                return _getImplementation();
            }
            /// @notice Sets the implementation address.
            /// @param _implementation New implementation address.
            function _setImplementation(address _implementation) internal {
                bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                assembly {
                    sstore(proxyImplementation, _implementation)
                }
                emit Upgraded(_implementation);
            }
            /// @notice Changes the owner of the proxy contract.
            /// @param _admin New owner of the proxy contract.
            function _changeAdmin(address _admin) internal {
                address previous = _getAdmin();
                bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                assembly {
                    sstore(proxyOwner, _admin)
                }
                emit AdminChanged(previous, _admin);
            }
            /// @notice Performs the proxy call via a delegatecall.
            function _doProxyCall() internal {
                address impl = _getImplementation();
                require(impl != address(0), "Proxy: implementation not initialized");
                assembly {
                    // Copy calldata into memory at 0x0....calldatasize.
                    calldatacopy(0x0, 0x0, calldatasize())
                    // Perform the delegatecall, make sure to pass all available gas.
                    let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                    // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                    // overwrite the calldata that we just copied into memory but that doesn't really
                    // matter because we'll be returning in a second anyway.
                    returndatacopy(0x0, 0x0, returndatasize())
                    // Success == 0 means a revert. We'll revert too and pass the data up.
                    if iszero(success) { revert(0x0, returndatasize()) }
                    // Otherwise we'll just return and pass the data up.
                    return(0x0, returndatasize())
                }
            }
            /// @notice Queries the implementation address.
            /// @return Implementation address.
            function _getImplementation() internal view returns (address) {
                address impl;
                bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                assembly {
                    impl := sload(proxyImplementation)
                }
                return impl;
            }
            /// @notice Queries the owner of the proxy contract.
            /// @return Owner address.
            function _getAdmin() internal view returns (address) {
                address owner;
                bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                assembly {
                    owner := sload(proxyOwner)
                }
                return owner;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { ResourceMetering } from "../L1/ResourceMetering.sol";
        /// @title Constants
        /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
        ///         the stuff used in multiple contracts. Constants that only apply to a single contract
        ///         should be defined in that contract instead.
        library Constants {
            /// @notice Special address to be used as the tx origin for gas estimation calls in the
            ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
            ///         the minimum gas limit specified by the user is not actually enough to execute the
            ///         given message and you're attempting to estimate the actual necessary gas limit. We
            ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
            ///         never have any code on any EVM chain.
            address internal constant ESTIMATION_ADDRESS = address(1);
            /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
            ///         CrossDomainMessenger contracts before an actual sender is set. This value is
            ///         non-zero to reduce the gas cost of message passing transactions.
            address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
            /// @notice The storage slot that holds the address of a proxy implementation.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
            bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /// @notice The storage slot that holds the address of the owner.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
            bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /// @notice Returns the default values for the ResourceConfig. These are the recommended values
            ///         for a production network.
            function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                    maxResourceLimit: 20_000_000,
                    elasticityMultiplier: 10,
                    baseFeeMaxChangeDenominator: 8,
                    minimumBaseFee: 1 gwei,
                    systemTxMaxGas: 1_000_000,
                    maximumBaseFee: type(uint128).max
                });
                return config;
            }
            /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
            ///         each time that the contracts are deployed.
            uint8 internal constant INITIALIZER = 1;
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Burn } from "src/libraries/Burn.sol";
        import { Arithmetic } from "src/libraries/Arithmetic.sol";
        /// @custom:upgradeable
        /// @title ResourceMetering
        /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
        ///         updates automatically based on current demand.
        abstract contract ResourceMetering is Initializable {
            /// @notice Represents the various parameters that control the way in which resources are
            ///         metered. Corresponds to the EIP-1559 resource metering system.
            /// @custom:field prevBaseFee   Base fee from the previous block(s).
            /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
            /// @custom:field prevBlockNum  Last block number that the base fee was updated.
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
            ///         market. These values should be set with care as it is possible to set them in
            ///         a way that breaks the deposit gas market. The target resource limit is defined as
            ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
            ///         single word. There is additional space for additions in the future.
            /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
            ///                                            can be purchased per block.
            /// @custom:field elasticityMultiplier         Determines the target resource limit along with
            ///                                            the resource limit.
            /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
            /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
            ///                                            value.
            /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
            ///                                            transaction. This should be set to the same
            ///                                            number that the op-node sets as the gas limit
            ///                                            for the system transaction.
            /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
            ///                                            value.
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            /// @notice EIP-1559 style gas parameters.
            ResourceParams public params;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            uint256[48] private __gap;
            /// @notice Meters access to a function based an amount of a requested resource.
            /// @param _amount Amount of the resource requested.
            modifier metered(uint64 _amount) {
                // Record initial gas amount so we can refund for it later.
                uint256 initialGas = gasleft();
                // Run the underlying function.
                _;
                // Run the metering function.
                _metered(_amount, initialGas);
            }
            /// @notice An internal function that holds all of the logic for metering a resource.
            /// @param _amount     Amount of the resource requested.
            /// @param _initialGas The amount of gas before any modifier execution.
            function _metered(uint64 _amount, uint256 _initialGas) internal {
                // Update block number and base fee if necessary.
                uint256 blockDiff = block.number - params.prevBlockNum;
                ResourceConfig memory config = _resourceConfig();
                int256 targetResourceLimit =
                    int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                if (blockDiff > 0) {
                    // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                    // at which deposits can be created and therefore limit the potential for deposits to
                    // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                    int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                    int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                        / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                    // Update base fee by adding the base fee delta and clamp the resulting value between
                    // min and max.
                    int256 newBaseFee = Arithmetic.clamp({
                        _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                    // If we skipped more than one block, we also need to account for every empty block.
                    // Empty block means there was no demand for deposits in that block, so we should
                    // reflect this lack of demand in the fee.
                    if (blockDiff > 1) {
                        // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                        // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                        // between min and max.
                        newBaseFee = Arithmetic.clamp({
                            _value: Arithmetic.cdexp({
                                _coefficient: newBaseFee,
                                _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                _exponent: int256(blockDiff - 1)
                            }),
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                    }
                    // Update new base fee, reset bought gas, and update block number.
                    params.prevBaseFee = uint128(uint256(newBaseFee));
                    params.prevBoughtGas = 0;
                    params.prevBlockNum = uint64(block.number);
                }
                // Make sure we can actually buy the resource amount requested by the user.
                params.prevBoughtGas += _amount;
                require(
                    int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                    "ResourceMetering: cannot buy more gas than available gas limit"
                );
                // Determine the amount of ETH to be paid.
                uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                // during any 1 day period in the last 5 years, so should be fine.
                uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                // Give the user a refund based on the amount of gas they used to do all of the work up to
                // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                // effectively like a dynamic stipend (with a minimum value).
                uint256 usedGas = _initialGas - gasleft();
                if (gasCost > usedGas) {
                    Burn.gas(gasCost - usedGas);
                }
            }
            /// @notice Virtual function that returns the resource config.
            ///         Contracts that inherit this contract must implement this function.
            /// @return ResourceConfig
            function _resourceConfig() internal virtual returns (ResourceConfig memory);
            /// @notice Sets initial resource parameter values.
            ///         This function must either be called by the initializer function of an upgradeable
            ///         child contract.
            // solhint-disable-next-line func-name-mixedcase
            function __ResourceMetering_init() internal onlyInitializing {
                if (params.prevBlockNum == 0) {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        /// @title Burn
        /// @notice Utilities for burning stuff.
        library Burn {
            /// @notice Burns a given amount of ETH.
            /// @param _amount Amount of ETH to burn.
            function eth(uint256 _amount) internal {
                new Burner{ value: _amount }();
            }
            /// @notice Burns a given amount of gas.
            /// @param _amount Amount of gas to burn.
            function gas(uint256 _amount) internal view {
                uint256 i = 0;
                uint256 initialGas = gasleft();
                while (initialGas - gasleft() < _amount) {
                    ++i;
                }
            }
        }
        /// @title Burner
        /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
        ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
        ///         from the circulating supply.
        contract Burner {
            constructor() payable {
                selfdestruct(payable(address(this)));
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
        /// @title Arithmetic
        /// @notice Even more math than before.
        library Arithmetic {
            /// @notice Clamps a value between a minimum and maximum.
            /// @param _value The value to clamp.
            /// @param _min   The minimum value.
            /// @param _max   The maximum value.
            /// @return The clamped value.
            function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                return SignedMath.min(SignedMath.max(_value, _min), _max);
            }
            /// @notice (c)oefficient (d)enominator (exp)onentiation function.
            ///         Returns the result of: c * (1 - 1/d)^exp.
            /// @param _coefficient Coefficient of the function.
            /// @param _denominator Fractional denominator.
            /// @param _exponent    Power function exponent.
            /// @return Result of c * (1 - 1/d)^exp.
            function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*//////////////////////////////////////////////////////////////
                            SIMPLIFIED FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
            function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
            }
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
            }
            function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
            }
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
            }
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
            }
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is < 0.5 we return zero. This happens when
                    // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                    if (x <= -42139678854452767551) return 0;
                    // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                    // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                    if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                    // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5**18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // k is in the range [-61, 195].
                    // Evaluate using a (6, 7)-term rational approximation.
                    // p is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range (0.09, 0.25) * 2**96.
                    // We now need to multiply r by:
                    // * the scale factor s = ~6.031367120.
                    // * the 2**k factor from the range reduction.
                    // * the 1e18 / 2**96 factor for base conversion.
                    // We do this all at once, with an intermediate result in 2**213
                    // basis, so the final right shift is always by a positive amount.
                    r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                }
            }
            function lnWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    require(x > 0, "UNDEFINED");
                    // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                    // We do this by multiplying by 2**96 / 10**18. But since
                    // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                    // and add ln(2**96 / 10**18) at the end.
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    int256 k = int256(log2(uint256(x))) - 96;
                    x <<= uint256(159 - k);
                    x = int256(uint256(x) >> 159);
                    // Evaluate using a (8, 8)-term rational approximation.
                    // p is made monic, we will multiply by a scale factor later.
                    int256 p = x + 3273285459638523848632254066296;
                    p = ((p * x) >> 96) + 24828157081833163892658089445524;
                    p = ((p * x) >> 96) + 43456485725739037958740375743393;
                    p = ((p * x) >> 96) - 11111509109440967052023855526967;
                    p = ((p * x) >> 96) - 45023709667254063763336534515857;
                    p = ((p * x) >> 96) - 14706773417378608786704636184526;
                    p = p * x - (795164235651350426258249787498 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    // q is monic by convention.
                    int256 q = x + 5573035233440673466300451813936;
                    q = ((q * x) >> 96) + 71694874799317883764090561454958;
                    q = ((q * x) >> 96) + 283447036172924575727196451306956;
                    q = ((q * x) >> 96) + 401686690394027663651624208769553;
                    q = ((q * x) >> 96) + 204048457590392012362485061816622;
                    q = ((q * x) >> 96) + 31853899698501571402653359427138;
                    q = ((q * x) >> 96) + 909429971244387300277376558375;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial is known not to have zeros in the domain.
                        // No scaling required because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r is in the range (0, 0.125) * 2**96
                    // Finalization, we need to:
                    // * multiply by the scale factor s = 5.549…
                    // * add ln(2**96 / 10**18)
                    // * add k * ln(2)
                    // * multiply by 10**18 / 2**96 = 5**18 >> 78
                    // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                    r *= 1677202110996718588342820967067443963516166;
                    // add ln(2) * k * 5e18 * 2**192
                    r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                    // add ln(2**96 / 10**18) * 5e18 * 2**192
                    r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                    // base conversion: mul 2**18 / 2**192
                    r >>= 174;
                }
            }
            /*//////////////////////////////////////////////////////////////
                            LOW LEVEL FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function mulDivDown(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // Divide z by the denominator.
                    z := div(z, denominator)
                }
            }
            function mulDivUp(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // First, divide z - 1 by the denominator and add 1.
                    // We allow z - 1 to underflow if z is 0, because we multiply the
                    // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                    z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                }
            }
            function rpow(
                uint256 x,
                uint256 n,
                uint256 scalar
            ) internal pure returns (uint256 z) {
                assembly {
                    switch x
                    case 0 {
                        switch n
                        case 0 {
                            // 0 ** 0 = 1
                            z := scalar
                        }
                        default {
                            // 0 ** n = 0
                            z := 0
                        }
                    }
                    default {
                        switch mod(n, 2)
                        case 0 {
                            // If n is even, store scalar in z for now.
                            z := scalar
                        }
                        default {
                            // If n is odd, store x in z for now.
                            z := x
                        }
                        // Shifting right by 1 is like dividing by 2.
                        let half := shr(1, scalar)
                        for {
                            // Shift n right by 1 before looping to halve it.
                            n := shr(1, n)
                        } n {
                            // Shift n right by 1 each iteration to halve it.
                            n := shr(1, n)
                        } {
                            // Revert immediately if x ** 2 would overflow.
                            // Equivalent to iszero(eq(div(xx, x), x)) here.
                            if shr(128, x) {
                                revert(0, 0)
                            }
                            // Store x squared.
                            let xx := mul(x, x)
                            // Round to the nearest number.
                            let xxRound := add(xx, half)
                            // Revert if xx + half overflowed.
                            if lt(xxRound, xx) {
                                revert(0, 0)
                            }
                            // Set x to scaled xxRound.
                            x := div(xxRound, scalar)
                            // If n is even:
                            if mod(n, 2) {
                                // Compute z * x.
                                let zx := mul(z, x)
                                // If z * x overflowed:
                                if iszero(eq(div(zx, x), z)) {
                                    // Revert if x is non-zero.
                                    if iszero(iszero(x)) {
                                        revert(0, 0)
                                    }
                                }
                                // Round to the nearest number.
                                let zxRound := add(zx, half)
                                // Revert if zx + half overflowed.
                                if lt(zxRound, zx) {
                                    revert(0, 0)
                                }
                                // Return properly scaled zxRound.
                                z := div(zxRound, scalar)
                            }
                        }
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                GENERAL NUMBER UTILITIES
            //////////////////////////////////////////////////////////////*/
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                assembly {
                    let y := x // We start y at x, which will help us make our initial estimate.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // We check y >= 2^(k + 8) but shift right by k bits
                    // each branch to ensure that if x >= 256, then y >= 256.
                    if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                        y := shr(128, y)
                        z := shl(64, z)
                    }
                    if iszero(lt(y, 0x1000000000000000000)) {
                        y := shr(64, y)
                        z := shl(32, z)
                    }
                    if iszero(lt(y, 0x10000000000)) {
                        y := shr(32, y)
                        z := shl(16, z)
                    }
                    if iszero(lt(y, 0x1000000)) {
                        y := shr(16, y)
                        z := shl(8, z)
                    }
                    // Goal was to get z*z*y within a small factor of x. More iterations could
                    // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                    // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                    // That's not possible if x < 256 but we can just verify those cases exhaustively.
                    // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                    // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                    // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                    // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                    // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                    // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                    // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                    // There is no overflow risk here since y < 2^136 after the first branch above.
                    z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If x+1 is a perfect square, the Babylonian method cycles between
                    // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                    // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                    z := sub(z, lt(div(x, z), z))
                }
            }
            function log2(uint256 x) internal pure returns (uint256 r) {
                require(x > 0, "UNDEFINED");
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    r := or(r, shl(2, lt(0xf, shr(r, x))))
                    r := or(r, shl(1, lt(0x3, shr(r, x))))
                    r := or(r, lt(0x1, shr(r, x)))
                }
            }
        }
        

        File 4 of 4: L2OutputOracle
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { ISemver } from "src/universal/ISemver.sol";
        import { Types } from "src/libraries/Types.sol";
        import { Constants } from "src/libraries/Constants.sol";
        /// @custom:proxied
        /// @title L2OutputOracle
        /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
        ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
        ///         these outputs to verify information about the state of L2.
        contract L2OutputOracle is Initializable, ISemver {
            /// @notice The interval in L2 blocks at which checkpoints must be submitted.
            ///         Although this is immutable, it can safely be modified by upgrading the
            ///         implementation contract.
            ///         Public getter is legacy and will be removed in the future. Use `submissionInterval`
            ///         instead.
            /// @custom:legacy
            uint256 public immutable SUBMISSION_INTERVAL;
            /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
            ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime`
            ///         instead.
            /// @custom:legacy
            uint256 public immutable L2_BLOCK_TIME;
            /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
            ///         Public getter is legacy and will be removed in the future. Use
            //          `finalizationPeriodSeconds` instead.
            /// @custom:legacy
            uint256 public immutable FINALIZATION_PERIOD_SECONDS;
            /// @notice The number of the first L2 block recorded in this contract.
            uint256 public startingBlockNumber;
            /// @notice The timestamp of the first L2 block recorded in this contract.
            uint256 public startingTimestamp;
            /// @notice An array of L2 output proposals.
            Types.OutputProposal[] internal l2Outputs;
            /// @notice The address of the challenger. Can be updated via reinitialize.
            /// @custom:network-specific
            address public challenger;
            /// @notice The address of the proposer. Can be updated via reinitialize.
            /// @custom:network-specific
            address public proposer;
            /// @notice Emitted when an output is proposed.
            /// @param outputRoot    The output root.
            /// @param l2OutputIndex The index of the output in the l2Outputs array.
            /// @param l2BlockNumber The L2 block number of the output root.
            /// @param l1Timestamp   The L1 timestamp when proposed.
            event OutputProposed(
                bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
            );
            /// @notice Emitted when outputs are deleted.
            /// @param prevNextOutputIndex Next L2 output index before the deletion.
            /// @param newNextOutputIndex  Next L2 output index after the deletion.
            event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
            /// @notice Semantic version.
            /// @custom:semver 1.6.0
            string public constant version = "1.6.0";
            /// @notice Constructs the L2OutputOracle contract.
            /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
            /// @param _l2BlockTime         The time per L2 block, in seconds.
            /// @param _finalizationPeriodSeconds The amount of time that must pass for an output proposal
            //                                    to be considered canonical.
            constructor(uint256 _submissionInterval, uint256 _l2BlockTime, uint256 _finalizationPeriodSeconds) {
                require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                SUBMISSION_INTERVAL = _submissionInterval;
                L2_BLOCK_TIME = _l2BlockTime;
                FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
                initialize({ _startingBlockNumber: 0, _startingTimestamp: 0, _proposer: address(0), _challenger: address(0) });
            }
            /// @notice Initializer.
            /// @param _startingBlockNumber Block number for the first recoded L2 block.
            /// @param _startingTimestamp   Timestamp for the first recoded L2 block.
            /// @param _proposer            The address of the proposer.
            /// @param _challenger          The address of the challenger.
            function initialize(
                uint256 _startingBlockNumber,
                uint256 _startingTimestamp,
                address _proposer,
                address _challenger
            )
                public
                reinitializer(Constants.INITIALIZER)
            {
                require(
                    _startingTimestamp <= block.timestamp,
                    "L2OutputOracle: starting L2 timestamp must be less than current time"
                );
                startingTimestamp = _startingTimestamp;
                startingBlockNumber = _startingBlockNumber;
                proposer = _proposer;
                challenger = _challenger;
            }
            /// @notice Getter for the output proposal submission interval.
            function submissionInterval() external view returns (uint256) {
                return SUBMISSION_INTERVAL;
            }
            /// @notice Getter for the L2 block time.
            function l2BlockTime() external view returns (uint256) {
                return L2_BLOCK_TIME;
            }
            /// @notice Getter for the finalization period.
            function finalizationPeriodSeconds() external view returns (uint256) {
                return FINALIZATION_PERIOD_SECONDS;
            }
            /// @notice Getter for the challenger address. This will be removed
            ///         in the future, use `challenger` instead.
            /// @custom:legacy
            function CHALLENGER() external view returns (address) {
                return challenger;
            }
            /// @notice Getter for the proposer address. This will be removed in the
            ///         future, use `proposer` instead.
            /// @custom:legacy
            function PROPOSER() external view returns (address) {
                return proposer;
            }
            /// @notice Deletes all output proposals after and including the proposal that corresponds to
            ///         the given output index. Only the challenger address can delete outputs.
            /// @param _l2OutputIndex Index of the first L2 output to be deleted.
            ///                       All outputs after this output will also be deleted.
            // solhint-disable-next-line ordering
            function deleteL2Outputs(uint256 _l2OutputIndex) external {
                require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                // Make sure we're not *increasing* the length of the array.
                require(
                    _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                );
                // Do not allow deleting any outputs that have already been finalized.
                require(
                    block.timestamp - l2Outputs[_l2OutputIndex].timestamp < FINALIZATION_PERIOD_SECONDS,
                    "L2OutputOracle: cannot delete outputs that have already been finalized"
                );
                uint256 prevNextL2OutputIndex = nextOutputIndex();
                // Use assembly to delete the array elements because Solidity doesn't allow it.
                assembly {
                    sstore(l2Outputs.slot, _l2OutputIndex)
                }
                emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
            }
            /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
            ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
            ///         order to be accepted. This function may only be called by the Proposer.
            /// @param _outputRoot    The L2 output of the checkpoint block.
            /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
            /// @param _l1BlockHash   A block hash which must be included in the current chain.
            /// @param _l1BlockNumber The block number with the specified block hash.
            function proposeL2Output(
                bytes32 _outputRoot,
                uint256 _l2BlockNumber,
                bytes32 _l1BlockHash,
                uint256 _l1BlockNumber
            )
                external
                payable
            {
                require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                require(
                    _l2BlockNumber == nextBlockNumber(),
                    "L2OutputOracle: block number must be equal to next expected block number"
                );
                require(
                    computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                    "L2OutputOracle: cannot propose L2 output in the future"
                );
                require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                if (_l1BlockHash != bytes32(0)) {
                    // This check allows the proposer to propose an output based on a given L1 block,
                    // without fear that it will be reorged out.
                    // It will also revert if the blockheight provided is more than 256 blocks behind the
                    // chain tip (as the hash will return as zero). This does open the door to a griefing
                    // attack in which the proposer's submission is censored until the block is no longer
                    // retrievable, if the proposer is experiencing this attack it can simply leave out the
                    // blockhash value, and delay submission until it is confident that the L1 block is
                    // finalized.
                    require(
                        blockhash(_l1BlockNumber) == _l1BlockHash,
                        "L2OutputOracle: block hash does not match the hash at the expected height"
                    );
                }
                emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                l2Outputs.push(
                    Types.OutputProposal({
                        outputRoot: _outputRoot,
                        timestamp: uint128(block.timestamp),
                        l2BlockNumber: uint128(_l2BlockNumber)
                    })
                );
            }
            /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
            /// @param _l2OutputIndex Index of the output to return.
            /// @return The output at the given index.
            function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                return l2Outputs[_l2OutputIndex];
            }
            /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
            ///         Uses a binary search to find the first output greater than or equal to the given
            ///         block.
            /// @param _l2BlockNumber L2 block number to find a checkpoint for.
            /// @return Index of the first checkpoint that commits to the given L2 block number.
            function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                // Make sure an output for this block number has actually been proposed.
                require(
                    _l2BlockNumber <= latestBlockNumber(),
                    "L2OutputOracle: cannot get output for a block that has not been proposed"
                );
                // Make sure there's at least one output proposed.
                require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                // Find the output via binary search, guaranteed to exist.
                uint256 lo = 0;
                uint256 hi = l2Outputs.length;
                while (lo < hi) {
                    uint256 mid = (lo + hi) / 2;
                    if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                        lo = mid + 1;
                    } else {
                        hi = mid;
                    }
                }
                return lo;
            }
            /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
            ///         Uses a binary search to find the first output greater than or equal to the given
            ///         block.
            /// @param _l2BlockNumber L2 block number to find a checkpoint for.
            /// @return First checkpoint that commits to the given L2 block number.
            function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
            }
            /// @notice Returns the number of outputs that have been proposed.
            ///         Will revert if no outputs have been proposed yet.
            /// @return The number of outputs that have been proposed.
            function latestOutputIndex() external view returns (uint256) {
                return l2Outputs.length - 1;
            }
            /// @notice Returns the index of the next output to be proposed.
            /// @return The index of the next output to be proposed.
            function nextOutputIndex() public view returns (uint256) {
                return l2Outputs.length;
            }
            /// @notice Returns the block number of the latest submitted L2 output proposal.
            ///         If no proposals been submitted yet then this function will return the starting
            ///         block number.
            /// @return Latest submitted L2 block number.
            function latestBlockNumber() public view returns (uint256) {
                return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
            }
            /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
            /// @return Next L2 block number.
            function nextBlockNumber() public view returns (uint256) {
                return latestBlockNumber() + SUBMISSION_INTERVAL;
            }
            /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
            /// @param _l2BlockNumber The L2 block number of the target block.
            /// @return L2 timestamp of the given block.
            function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
        pragma solidity ^0.8.2;
        import "../../utils/Address.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
         * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
         * case an upgrade adds a module that needs to be initialized.
         *
         * For example:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * contract MyToken is ERC20Upgradeable {
         *     function initialize() initializer public {
         *         __ERC20_init("MyToken", "MTK");
         *     }
         * }
         * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
         *     function initializeV2() reinitializer(2) public {
         *         __ERC20Permit_init("MyToken");
         *     }
         * }
         * ```
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         *
         * [CAUTION]
         * ====
         * Avoid leaving a contract uninitialized.
         *
         * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
         * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
         * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
         *
         * [.hljs-theme-light.nopadding]
         * ```
         * /// @custom:oz-upgrades-unsafe-allow constructor
         * constructor() {
         *     _disableInitializers();
         * }
         * ```
         * ====
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             * @custom:oz-retyped-from bool
             */
            uint8 private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Triggered when the contract has been initialized or reinitialized.
             */
            event Initialized(uint8 version);
            /**
             * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
             * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
             */
            modifier initializer() {
                bool isTopLevelCall = !_initializing;
                require(
                    (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                    "Initializable: contract is already initialized"
                );
                _initialized = 1;
                if (isTopLevelCall) {
                    _initializing = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                    emit Initialized(1);
                }
            }
            /**
             * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
             * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
             * used to initialize parent contracts.
             *
             * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
             * initialization step. This is essential to configure modules that are added through upgrades and that require
             * initialization.
             *
             * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
             * a contract, executing them in the right order is up to the developer or operator.
             */
            modifier reinitializer(uint8 version) {
                require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                _initialized = version;
                _initializing = true;
                _;
                _initializing = false;
                emit Initialized(version);
            }
            /**
             * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
             * {initializer} and {reinitializer} modifiers, directly or indirectly.
             */
            modifier onlyInitializing() {
                require(_initializing, "Initializable: contract is not initializing");
                _;
            }
            /**
             * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
             * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
             * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
             * through proxies.
             */
            function _disableInitializers() internal virtual {
                require(!_initializing, "Initializable: contract is initializing");
                if (_initialized < type(uint8).max) {
                    _initialized = type(uint8).max;
                    emit Initialized(type(uint8).max);
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title ISemver
        /// @notice ISemver is a simple contract for ensuring that contracts are
        ///         versioned using semantic versioning.
        interface ISemver {
            /// @notice Getter for the semantic version of the contract. This is not
            ///         meant to be used onchain but instead meant to be used by offchain
            ///         tooling.
            /// @return Semver contract version as a string.
            function version() external view returns (string memory);
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        /// @title Types
        /// @notice Contains various types used throughout the Optimism contract system.
        library Types {
            /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
            ///         timestamp that the output root is posted. This timestamp is used to verify that the
            ///         finalization period has passed since the output root was submitted.
            /// @custom:field outputRoot    Hash of the L2 output.
            /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
            /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
            struct OutputProposal {
                bytes32 outputRoot;
                uint128 timestamp;
                uint128 l2BlockNumber;
            }
            /// @notice Struct representing the elements that are hashed together to generate an output root
            ///         which itself represents a snapshot of the L2 state.
            /// @custom:field version                  Version of the output root.
            /// @custom:field stateRoot                Root of the state trie at the block of this output.
            /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
            /// @custom:field latestBlockhash          Hash of the block this output was generated from.
            struct OutputRootProof {
                bytes32 version;
                bytes32 stateRoot;
                bytes32 messagePasserStorageRoot;
                bytes32 latestBlockhash;
            }
            /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
            ///         user (as opposed to a system deposit transaction generated by the system).
            /// @custom:field from        Address of the sender of the transaction.
            /// @custom:field to          Address of the recipient of the transaction.
            /// @custom:field isCreation  True if the transaction is a contract creation.
            /// @custom:field value       Value to send to the recipient.
            /// @custom:field mint        Amount of ETH to mint.
            /// @custom:field gasLimit    Gas limit of the transaction.
            /// @custom:field data        Data of the transaction.
            /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
            /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
            struct UserDepositTransaction {
                address from;
                address to;
                bool isCreation;
                uint256 value;
                uint256 mint;
                uint64 gasLimit;
                bytes data;
                bytes32 l1BlockHash;
                uint256 logIndex;
            }
            /// @notice Struct representing a withdrawal transaction.
            /// @custom:field nonce    Nonce of the withdrawal transaction
            /// @custom:field sender   Address of the sender of the transaction.
            /// @custom:field target   Address of the recipient of the transaction.
            /// @custom:field value    Value to send to the recipient.
            /// @custom:field gasLimit Gas limit of the transaction.
            /// @custom:field data     Data of the transaction.
            struct WithdrawalTransaction {
                uint256 nonce;
                address sender;
                address target;
                uint256 value;
                uint256 gasLimit;
                bytes data;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity ^0.8.0;
        import { ResourceMetering } from "../L1/ResourceMetering.sol";
        /// @title Constants
        /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
        ///         the stuff used in multiple contracts. Constants that only apply to a single contract
        ///         should be defined in that contract instead.
        library Constants {
            /// @notice Special address to be used as the tx origin for gas estimation calls in the
            ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
            ///         the minimum gas limit specified by the user is not actually enough to execute the
            ///         given message and you're attempting to estimate the actual necessary gas limit. We
            ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
            ///         never have any code on any EVM chain.
            address internal constant ESTIMATION_ADDRESS = address(1);
            /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
            ///         CrossDomainMessenger contracts before an actual sender is set. This value is
            ///         non-zero to reduce the gas cost of message passing transactions.
            address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
            /// @notice The storage slot that holds the address of a proxy implementation.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
            bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /// @notice The storage slot that holds the address of the owner.
            /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
            bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /// @notice Returns the default values for the ResourceConfig. These are the recommended values
            ///         for a production network.
            function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                    maxResourceLimit: 20_000_000,
                    elasticityMultiplier: 10,
                    baseFeeMaxChangeDenominator: 8,
                    minimumBaseFee: 1 gwei,
                    systemTxMaxGas: 1_000_000,
                    maximumBaseFee: type(uint128).max
                });
                return config;
            }
            /// @notice The `reinitailizer` input for upgradable contracts. This value must be updated
            ///         each time that the contracts are deployed.
            uint8 internal constant INITIALIZER = 1;
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
        pragma solidity ^0.8.1;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             *
             * [IMPORTANT]
             * ====
             * You shouldn't rely on `isContract` to protect against flash loan attacks!
             *
             * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
             * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
             * constructor.
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize/address.code.length, which returns 0
                // for contracts in construction, since the code is only stored at the end
                // of the constructor execution.
                return account.code.length > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                (bool success, ) = recipient.call{value: amount}("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value
            ) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(
                address target,
                bytes memory data,
                uint256 value,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(
                address target,
                bytes memory data,
                string memory errorMessage
            ) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
             * revert reason using the provided one.
             *
             * _Available since v4.3._
             */
            function verifyCallResult(
                bool success,
                bytes memory returndata,
                string memory errorMessage
            ) internal pure returns (bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        /// @solidity memory-safe-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
        import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
        import { Burn } from "src/libraries/Burn.sol";
        import { Arithmetic } from "src/libraries/Arithmetic.sol";
        /// @custom:upgradeable
        /// @title ResourceMetering
        /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
        ///         updates automatically based on current demand.
        abstract contract ResourceMetering is Initializable {
            /// @notice Represents the various parameters that control the way in which resources are
            ///         metered. Corresponds to the EIP-1559 resource metering system.
            /// @custom:field prevBaseFee   Base fee from the previous block(s).
            /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
            /// @custom:field prevBlockNum  Last block number that the base fee was updated.
            struct ResourceParams {
                uint128 prevBaseFee;
                uint64 prevBoughtGas;
                uint64 prevBlockNum;
            }
            /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
            ///         market. These values should be set with care as it is possible to set them in
            ///         a way that breaks the deposit gas market. The target resource limit is defined as
            ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
            ///         single word. There is additional space for additions in the future.
            /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
            ///                                            can be purchased per block.
            /// @custom:field elasticityMultiplier         Determines the target resource limit along with
            ///                                            the resource limit.
            /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
            /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
            ///                                            value.
            /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
            ///                                            transaction. This should be set to the same
            ///                                            number that the op-node sets as the gas limit
            ///                                            for the system transaction.
            /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
            ///                                            value.
            struct ResourceConfig {
                uint32 maxResourceLimit;
                uint8 elasticityMultiplier;
                uint8 baseFeeMaxChangeDenominator;
                uint32 minimumBaseFee;
                uint32 systemTxMaxGas;
                uint128 maximumBaseFee;
            }
            /// @notice EIP-1559 style gas parameters.
            ResourceParams public params;
            /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
            uint256[48] private __gap;
            /// @notice Meters access to a function based an amount of a requested resource.
            /// @param _amount Amount of the resource requested.
            modifier metered(uint64 _amount) {
                // Record initial gas amount so we can refund for it later.
                uint256 initialGas = gasleft();
                // Run the underlying function.
                _;
                // Run the metering function.
                _metered(_amount, initialGas);
            }
            /// @notice An internal function that holds all of the logic for metering a resource.
            /// @param _amount     Amount of the resource requested.
            /// @param _initialGas The amount of gas before any modifier execution.
            function _metered(uint64 _amount, uint256 _initialGas) internal {
                // Update block number and base fee if necessary.
                uint256 blockDiff = block.number - params.prevBlockNum;
                ResourceConfig memory config = _resourceConfig();
                int256 targetResourceLimit =
                    int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                if (blockDiff > 0) {
                    // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                    // at which deposits can be created and therefore limit the potential for deposits to
                    // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                    int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                    int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                        / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                    // Update base fee by adding the base fee delta and clamp the resulting value between
                    // min and max.
                    int256 newBaseFee = Arithmetic.clamp({
                        _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                        _min: int256(uint256(config.minimumBaseFee)),
                        _max: int256(uint256(config.maximumBaseFee))
                    });
                    // If we skipped more than one block, we also need to account for every empty block.
                    // Empty block means there was no demand for deposits in that block, so we should
                    // reflect this lack of demand in the fee.
                    if (blockDiff > 1) {
                        // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                        // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                        // between min and max.
                        newBaseFee = Arithmetic.clamp({
                            _value: Arithmetic.cdexp({
                                _coefficient: newBaseFee,
                                _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                _exponent: int256(blockDiff - 1)
                            }),
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                    }
                    // Update new base fee, reset bought gas, and update block number.
                    params.prevBaseFee = uint128(uint256(newBaseFee));
                    params.prevBoughtGas = 0;
                    params.prevBlockNum = uint64(block.number);
                }
                // Make sure we can actually buy the resource amount requested by the user.
                params.prevBoughtGas += _amount;
                require(
                    int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                    "ResourceMetering: cannot buy more gas than available gas limit"
                );
                // Determine the amount of ETH to be paid.
                uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                // during any 1 day period in the last 5 years, so should be fine.
                uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                // Give the user a refund based on the amount of gas they used to do all of the work up to
                // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                // effectively like a dynamic stipend (with a minimum value).
                uint256 usedGas = _initialGas - gasleft();
                if (gasCost > usedGas) {
                    Burn.gas(gasCost - usedGas);
                }
            }
            /// @notice Virtual function that returns the resource config.
            ///         Contracts that inherit this contract must implement this function.
            /// @return ResourceConfig
            function _resourceConfig() internal virtual returns (ResourceConfig memory);
            /// @notice Sets initial resource parameter values.
            ///         This function must either be called by the initializer function of an upgradeable
            ///         child contract.
            // solhint-disable-next-line func-name-mixedcase
            function __ResourceMetering_init() internal onlyInitializing {
                if (params.prevBlockNum == 0) {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library Math {
            enum Rounding {
                Down, // Toward negative infinity
                Up, // Toward infinity
                Zero // Toward zero
            }
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow.
                return (a & b) + (a ^ b) / 2;
            }
            /**
             * @dev Returns the ceiling of the division of two numbers.
             *
             * This differs from standard division with `/` in that it rounds up instead
             * of rounding down.
             */
            function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b - 1) / b can overflow on addition, so we distribute.
                return a == 0 ? 0 : (a - 1) / b + 1;
            }
            /**
             * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
             * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
             * with further edits by Uniswap Labs also under MIT license.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 result) {
                unchecked {
                    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                    // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                    // variables such that product = prod1 * 2^256 + prod0.
                    uint256 prod0; // Least significant 256 bits of the product
                    uint256 prod1; // Most significant 256 bits of the product
                    assembly {
                        let mm := mulmod(x, y, not(0))
                        prod0 := mul(x, y)
                        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                    }
                    // Handle non-overflow cases, 256 by 256 division.
                    if (prod1 == 0) {
                        return prod0 / denominator;
                    }
                    // Make sure the result is less than 2^256. Also prevents denominator == 0.
                    require(denominator > prod1);
                    ///////////////////////////////////////////////
                    // 512 by 256 division.
                    ///////////////////////////////////////////////
                    // Make division exact by subtracting the remainder from [prod1 prod0].
                    uint256 remainder;
                    assembly {
                        // Compute remainder using mulmod.
                        remainder := mulmod(x, y, denominator)
                        // Subtract 256 bit number from 512 bit number.
                        prod1 := sub(prod1, gt(remainder, prod0))
                        prod0 := sub(prod0, remainder)
                    }
                    // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                    // See https://cs.stackexchange.com/q/138556/92363.
                    // Does not overflow because the denominator cannot be zero at this stage in the function.
                    uint256 twos = denominator & (~denominator + 1);
                    assembly {
                        // Divide denominator by twos.
                        denominator := div(denominator, twos)
                        // Divide [prod1 prod0] by twos.
                        prod0 := div(prod0, twos)
                        // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                        twos := add(div(sub(0, twos), twos), 1)
                    }
                    // Shift in bits from prod1 into prod0.
                    prod0 |= prod1 * twos;
                    // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                    // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                    // four bits. That is, denominator * inv = 1 mod 2^4.
                    uint256 inverse = (3 * denominator) ^ 2;
                    // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                    // in modular arithmetic, doubling the correct bits in each step.
                    inverse *= 2 - denominator * inverse; // inverse mod 2^8
                    inverse *= 2 - denominator * inverse; // inverse mod 2^16
                    inverse *= 2 - denominator * inverse; // inverse mod 2^32
                    inverse *= 2 - denominator * inverse; // inverse mod 2^64
                    inverse *= 2 - denominator * inverse; // inverse mod 2^128
                    inverse *= 2 - denominator * inverse; // inverse mod 2^256
                    // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                    // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                    // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                    // is no longer required.
                    result = prod0 * inverse;
                    return result;
                }
            }
            /**
             * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
             */
            function mulDiv(
                uint256 x,
                uint256 y,
                uint256 denominator,
                Rounding rounding
            ) internal pure returns (uint256) {
                uint256 result = mulDiv(x, y, denominator);
                if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                    result += 1;
                }
                return result;
            }
            /**
             * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
             *
             * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
             */
            function sqrt(uint256 a) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                // `msb(a) <= a < 2*msb(a)`.
                // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                uint256 result = 1;
                uint256 x = a;
                if (x >> 128 > 0) {
                    x >>= 128;
                    result <<= 64;
                }
                if (x >> 64 > 0) {
                    x >>= 64;
                    result <<= 32;
                }
                if (x >> 32 > 0) {
                    x >>= 32;
                    result <<= 16;
                }
                if (x >> 16 > 0) {
                    x >>= 16;
                    result <<= 8;
                }
                if (x >> 8 > 0) {
                    x >>= 8;
                    result <<= 4;
                }
                if (x >> 4 > 0) {
                    x >>= 4;
                    result <<= 2;
                }
                if (x >> 2 > 0) {
                    result <<= 1;
                }
                // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                // into the expected uint128 result.
                unchecked {
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    result = (result + a / result) >> 1;
                    return min(result, a / result);
                }
            }
            /**
             * @notice Calculates sqrt(a), following the selected rounding direction.
             */
            function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                uint256 result = sqrt(a);
                if (rounding == Rounding.Up && result * result < a) {
                    result += 1;
                }
                return result;
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        /// @title Burn
        /// @notice Utilities for burning stuff.
        library Burn {
            /// @notice Burns a given amount of ETH.
            /// @param _amount Amount of ETH to burn.
            function eth(uint256 _amount) internal {
                new Burner{ value: _amount }();
            }
            /// @notice Burns a given amount of gas.
            /// @param _amount Amount of gas to burn.
            function gas(uint256 _amount) internal view {
                uint256 i = 0;
                uint256 initialGas = gasleft();
                while (initialGas - gasleft() < _amount) {
                    ++i;
                }
            }
        }
        /// @title Burner
        /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
        ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
        ///         from the circulating supply.
        contract Burner {
            constructor() payable {
                selfdestruct(payable(address(this)));
            }
        }
        // SPDX-License-Identifier: BSL 1.1 - Copyright 2024 MetaLayer Labs Ltd.
        pragma solidity 0.8.15;
        import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
        import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
        /// @title Arithmetic
        /// @notice Even more math than before.
        library Arithmetic {
            /// @notice Clamps a value between a minimum and maximum.
            /// @param _value The value to clamp.
            /// @param _min   The minimum value.
            /// @param _max   The maximum value.
            /// @return The clamped value.
            function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                return SignedMath.min(SignedMath.max(_value, _min), _max);
            }
            /// @notice (c)oefficient (d)enominator (exp)onentiation function.
            ///         Returns the result of: c * (1 - 1/d)^exp.
            /// @param _coefficient Coefficient of the function.
            /// @param _denominator Fractional denominator.
            /// @param _exponent    Power function exponent.
            /// @return Result of c * (1 - 1/d)^exp.
            function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
        pragma solidity ^0.8.0;
        /**
         * @dev Standard signed math utilities missing in the Solidity language.
         */
        library SignedMath {
            /**
             * @dev Returns the largest of two signed numbers.
             */
            function max(int256 a, int256 b) internal pure returns (int256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two signed numbers.
             */
            function min(int256 a, int256 b) internal pure returns (int256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two signed numbers without overflow.
             * The result is rounded towards zero.
             */
            function average(int256 a, int256 b) internal pure returns (int256) {
                // Formula from the book "Hacker's Delight"
                int256 x = (a & b) + ((a ^ b) >> 1);
                return x + (int256(uint256(x) >> 255) & (a ^ b));
            }
            /**
             * @dev Returns the absolute unsigned value of a signed value.
             */
            function abs(int256 n) internal pure returns (uint256) {
                unchecked {
                    // must be unchecked in order to support `n = type(int256).min`
                    return uint256(n >= 0 ? n : -n);
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.8.0;
        /// @notice Arithmetic library with operations for fixed-point numbers.
        /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
        library FixedPointMathLib {
            /*//////////////////////////////////////////////////////////////
                            SIMPLIFIED FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
            function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
            }
            function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
            }
            function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
            }
            function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
            }
            function powWad(int256 x, int256 y) internal pure returns (int256) {
                // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
            }
            function expWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    // When the result is < 0.5 we return zero. This happens when
                    // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                    if (x <= -42139678854452767551) return 0;
                    // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                    // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                    if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                    // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                    // for more intermediate precision and a binary basis. This base conversion
                    // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                    x = (x << 78) / 5**18;
                    // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                    // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                    // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                    int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                    x = x - k * 54916777467707473351141471128;
                    // k is in the range [-61, 195].
                    // Evaluate using a (6, 7)-term rational approximation.
                    // p is made monic, we'll multiply by a scale factor later.
                    int256 y = x + 1346386616545796478920950773328;
                    y = ((y * x) >> 96) + 57155421227552351082224309758442;
                    int256 p = y + x - 94201549194550492254356042504812;
                    p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                    p = p * x + (4385272521454847904659076985693276 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    int256 q = x - 2855989394907223263936484059900;
                    q = ((q * x) >> 96) + 50020603652535783019961831881945;
                    q = ((q * x) >> 96) - 533845033583426703283633433725380;
                    q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                    q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                    q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial won't have zeros in the domain as all its roots are complex.
                        // No scaling is necessary because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r should be in the range (0.09, 0.25) * 2**96.
                    // We now need to multiply r by:
                    // * the scale factor s = ~6.031367120.
                    // * the 2**k factor from the range reduction.
                    // * the 1e18 / 2**96 factor for base conversion.
                    // We do this all at once, with an intermediate result in 2**213
                    // basis, so the final right shift is always by a positive amount.
                    r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                }
            }
            function lnWad(int256 x) internal pure returns (int256 r) {
                unchecked {
                    require(x > 0, "UNDEFINED");
                    // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                    // We do this by multiplying by 2**96 / 10**18. But since
                    // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                    // and add ln(2**96 / 10**18) at the end.
                    // Reduce range of x to (1, 2) * 2**96
                    // ln(2^k * x) = k * ln(2) + ln(x)
                    int256 k = int256(log2(uint256(x))) - 96;
                    x <<= uint256(159 - k);
                    x = int256(uint256(x) >> 159);
                    // Evaluate using a (8, 8)-term rational approximation.
                    // p is made monic, we will multiply by a scale factor later.
                    int256 p = x + 3273285459638523848632254066296;
                    p = ((p * x) >> 96) + 24828157081833163892658089445524;
                    p = ((p * x) >> 96) + 43456485725739037958740375743393;
                    p = ((p * x) >> 96) - 11111509109440967052023855526967;
                    p = ((p * x) >> 96) - 45023709667254063763336534515857;
                    p = ((p * x) >> 96) - 14706773417378608786704636184526;
                    p = p * x - (795164235651350426258249787498 << 96);
                    // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                    // q is monic by convention.
                    int256 q = x + 5573035233440673466300451813936;
                    q = ((q * x) >> 96) + 71694874799317883764090561454958;
                    q = ((q * x) >> 96) + 283447036172924575727196451306956;
                    q = ((q * x) >> 96) + 401686690394027663651624208769553;
                    q = ((q * x) >> 96) + 204048457590392012362485061816622;
                    q = ((q * x) >> 96) + 31853899698501571402653359427138;
                    q = ((q * x) >> 96) + 909429971244387300277376558375;
                    assembly {
                        // Div in assembly because solidity adds a zero check despite the unchecked.
                        // The q polynomial is known not to have zeros in the domain.
                        // No scaling required because p is already 2**96 too large.
                        r := sdiv(p, q)
                    }
                    // r is in the range (0, 0.125) * 2**96
                    // Finalization, we need to:
                    // * multiply by the scale factor s = 5.549…
                    // * add ln(2**96 / 10**18)
                    // * add k * ln(2)
                    // * multiply by 10**18 / 2**96 = 5**18 >> 78
                    // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                    r *= 1677202110996718588342820967067443963516166;
                    // add ln(2) * k * 5e18 * 2**192
                    r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                    // add ln(2**96 / 10**18) * 5e18 * 2**192
                    r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                    // base conversion: mul 2**18 / 2**192
                    r >>= 174;
                }
            }
            /*//////////////////////////////////////////////////////////////
                            LOW LEVEL FIXED POINT OPERATIONS
            //////////////////////////////////////////////////////////////*/
            function mulDivDown(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // Divide z by the denominator.
                    z := div(z, denominator)
                }
            }
            function mulDivUp(
                uint256 x,
                uint256 y,
                uint256 denominator
            ) internal pure returns (uint256 z) {
                assembly {
                    // Store x * y in z for now.
                    z := mul(x, y)
                    // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                    if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                        revert(0, 0)
                    }
                    // First, divide z - 1 by the denominator and add 1.
                    // We allow z - 1 to underflow if z is 0, because we multiply the
                    // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                    z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                }
            }
            function rpow(
                uint256 x,
                uint256 n,
                uint256 scalar
            ) internal pure returns (uint256 z) {
                assembly {
                    switch x
                    case 0 {
                        switch n
                        case 0 {
                            // 0 ** 0 = 1
                            z := scalar
                        }
                        default {
                            // 0 ** n = 0
                            z := 0
                        }
                    }
                    default {
                        switch mod(n, 2)
                        case 0 {
                            // If n is even, store scalar in z for now.
                            z := scalar
                        }
                        default {
                            // If n is odd, store x in z for now.
                            z := x
                        }
                        // Shifting right by 1 is like dividing by 2.
                        let half := shr(1, scalar)
                        for {
                            // Shift n right by 1 before looping to halve it.
                            n := shr(1, n)
                        } n {
                            // Shift n right by 1 each iteration to halve it.
                            n := shr(1, n)
                        } {
                            // Revert immediately if x ** 2 would overflow.
                            // Equivalent to iszero(eq(div(xx, x), x)) here.
                            if shr(128, x) {
                                revert(0, 0)
                            }
                            // Store x squared.
                            let xx := mul(x, x)
                            // Round to the nearest number.
                            let xxRound := add(xx, half)
                            // Revert if xx + half overflowed.
                            if lt(xxRound, xx) {
                                revert(0, 0)
                            }
                            // Set x to scaled xxRound.
                            x := div(xxRound, scalar)
                            // If n is even:
                            if mod(n, 2) {
                                // Compute z * x.
                                let zx := mul(z, x)
                                // If z * x overflowed:
                                if iszero(eq(div(zx, x), z)) {
                                    // Revert if x is non-zero.
                                    if iszero(iszero(x)) {
                                        revert(0, 0)
                                    }
                                }
                                // Round to the nearest number.
                                let zxRound := add(zx, half)
                                // Revert if zx + half overflowed.
                                if lt(zxRound, zx) {
                                    revert(0, 0)
                                }
                                // Return properly scaled zxRound.
                                z := div(zxRound, scalar)
                            }
                        }
                    }
                }
            }
            /*//////////////////////////////////////////////////////////////
                                GENERAL NUMBER UTILITIES
            //////////////////////////////////////////////////////////////*/
            function sqrt(uint256 x) internal pure returns (uint256 z) {
                assembly {
                    let y := x // We start y at x, which will help us make our initial estimate.
                    z := 181 // The "correct" value is 1, but this saves a multiplication later.
                    // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                    // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                    // We check y >= 2^(k + 8) but shift right by k bits
                    // each branch to ensure that if x >= 256, then y >= 256.
                    if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                        y := shr(128, y)
                        z := shl(64, z)
                    }
                    if iszero(lt(y, 0x1000000000000000000)) {
                        y := shr(64, y)
                        z := shl(32, z)
                    }
                    if iszero(lt(y, 0x10000000000)) {
                        y := shr(32, y)
                        z := shl(16, z)
                    }
                    if iszero(lt(y, 0x1000000)) {
                        y := shr(16, y)
                        z := shl(8, z)
                    }
                    // Goal was to get z*z*y within a small factor of x. More iterations could
                    // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                    // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                    // That's not possible if x < 256 but we can just verify those cases exhaustively.
                    // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                    // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                    // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                    // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                    // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                    // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                    // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                    // There is no overflow risk here since y < 2^136 after the first branch above.
                    z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                    // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    z := shr(1, add(z, div(x, z)))
                    // If x+1 is a perfect square, the Babylonian method cycles between
                    // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                    // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                    // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                    // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                    z := sub(z, lt(div(x, z), z))
                }
            }
            function log2(uint256 x) internal pure returns (uint256 r) {
                require(x > 0, "UNDEFINED");
                assembly {
                    r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                    r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                    r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                    r := or(r, shl(4, lt(0xffff, shr(r, x))))
                    r := or(r, shl(3, lt(0xff, shr(r, x))))
                    r := or(r, shl(2, lt(0xf, shr(r, x))))
                    r := or(r, shl(1, lt(0x3, shr(r, x))))
                    r := or(r, lt(0x1, shr(r, x)))
                }
            }
        }