Transaction Hash:
Block:
15498519 at Sep-08-2022 07:55:31 PM +UTC
Transaction Fee:
0.001073778 ETH
$2.61
Gas Used:
46,686 Gas / 23 Gwei
Emitted Events:
93 |
Merge.ApprovalForAll( owner=[Sender] 0xe0cb2355241552c0b1ec323b14c82be605333763, operator=0x1E004978...d54003c71, approved=True )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2DaA3596...79C930E5e
Miner
| (Poolin 2) | 1,291.368634881488750291 Eth | 1,291.368771215728608515 Eth | 0.000136334239858224 | |
0x95Cdb0FB...81329f727 | |||||
0xe0Cb2355...605333763 |
0.004175216 Eth
Nonce: 26
|
0.003101438 Eth
Nonce: 27
| 0.001073778 |
Execution Trace
Merge.setApprovalForAll( operator=0x1E0049783F008A0085193E00003D00cd54003c71, approved=True )
setApprovalForAll[ERC721A (ln:540)]
_msgSender[ERC721A (ln:545)]
ApproveToCaller[ERC721A (ln:545)]
_msgSender[ERC721A (ln:546)]
ApprovalForAll[ERC721A (ln:547)]
_msgSender[ERC721A (ln:547)]
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import './tokens/ERC721A.sol'; import './libraries/SSTORE2Map.sol'; import './SigmoidThreshold.sol'; import './RarityCompositingEngine.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; import '@openzeppelin/contracts/token/common/ERC2981.sol'; import '@openzeppelin/contracts/token/ERC721/IERC721.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; contract Merge is ERC721A, ERC2981, Ownable { using Strings for uint256; uint256 public MAX_MINTING_PER_BLOCK = 3; uint256 public deployDate; bool public isActive; SigmoidThreshold public curve; // Price Vars uint256 public a0; uint256 public b0; uint256 public c0; uint256 public d0; // Rarity Vars uint256 public a1; uint256 public b1; uint256 public c1; uint256 public d1; address public treasury; address public boostToken; // RCE RarityCompositingEngine public rce; uint256 public boostTokenBaseAmount = 1000; mapping(uint256 => uint256) public rarityTokenMap; // tokenID => rarityScore bool public emergencyShutdown = false; mapping(bytes32 => uint256) public blockMintingGuardMap; // hash(address + block number) => numMinted mapping(address => bool) public blacklistMap; // hash(address) => boolean event ChangedIsActive(bool isActive); event ChangedEmergencyShutdown(bool shutdown); struct DeployMergeNFTConfig { string name; string symbol; address treasury; address boostToken; address rce; address curve; uint256 a0; uint256 b0; uint256 c0; uint256 d0; uint256 a1; uint256 b1; uint256 c1; uint256 d1; } struct SetCurveParams { uint256 a0; uint256 b0; uint256 c0; uint256 d0; uint256 a1; uint256 b1; uint256 c1; uint256 d1; } constructor(DeployMergeNFTConfig memory config) ERC721A() { _name = config.name; _symbol = config.symbol; a0 = config.a0; b0 = config.b0; c0 = config.c0; d0 = config.d0; a1 = config.a1; b1 = config.b1; c1 = config.c1; d1 = config.d1; boostToken = config.boostToken; curve = SigmoidThreshold(config.curve); deployDate = block.timestamp; treasury = config.treasury; rce = RarityCompositingEngine(config.rce); //_transferOwnership(config.treasury); } function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721A, ERC2981) returns (bool) { return super.supportsInterface(interfaceId); } function getTokenBalance(address token, address userAddress) public view returns (uint256) { return IERC721(token).balanceOf(userAddress); } function currentIndex() public view returns (uint256) { return _currentIndex; } function setIsActive(bool _isActive) public onlyOwner { isActive = _isActive; emit ChangedIsActive(isActive); } function setEmergencyShutdown(bool shutdown) public onlyOwner { emergencyShutdown = shutdown; emit ChangedEmergencyShutdown(shutdown); } function setBlacklist(address[] memory _list) public onlyOwner { for (uint256 i = 0; i < _list.length; ++i) { blacklistMap[_list[i]] = true; } } function setRoyalty(uint96 newRoyaltyFraction) public onlyOwner { _setDefaultRoyalty(treasury, newRoyaltyFraction); } function setMaxMinting(uint256 _max) public onlyOwner { MAX_MINTING_PER_BLOCK = _max; } function setDeployDate(uint256 _date) public onlyOwner { deployDate = _date; } function setBoostToken(address _boostToken) public onlyOwner { boostToken = _boostToken; } function setBoostTokenBaseAmount(uint256 _amount) public onlyOwner { boostTokenBaseAmount = _amount; } function setTreasury(address _treasury) public onlyOwner { treasury = _treasury; } function setRCE(address _rce) public onlyOwner { rce = RarityCompositingEngine(_rce); } function setCurve(address _curve) public onlyOwner { curve = SigmoidThreshold(_curve); } function setCurveParams(SetCurveParams memory config) public onlyOwner { a0 = config.a0; b0 = config.b0; c0 = config.c0; a1 = config.a1; b1 = config.b1; c1 = config.c1; } // X variable in graph. Curve is tuned to function numSecondsSinceDeploy() public view returns (uint256) { return (block.timestamp - deployDate); } function isMergeByDifficulty() public view virtual returns (bool) { return (block.difficulty > (2**64)) || (block.difficulty == 0); } modifier onlyIsActive() { require(isActive, 'minting needs to be active to mint'); _; } modifier onlyIsNotShutdown() { require(!emergencyShutdown, 'emergency shutdown is in place'); _; } modifier onlyIsNotMerge() { require( !isMergeByDifficulty(), 'minting needs to be done before Proof of Stake' ); _; } function getBoostScore(address userAddress) external view returns (uint256) { uint256 balance = getTokenBalance(boostToken, userAddress); uint256 maxBalance = balance >= 16 ? 16 : balance; return maxBalance * boostTokenBaseAmount; } function getRarityScoreForToken(uint256 tokenId) public view returns (uint256) { uint256 curr = tokenId; if (_startTokenId() <= curr && curr < _currentIndex) { while (true) { if (rarityTokenMap[curr] != 0) { return rarityTokenMap[curr]; } curr--; } } revert OwnerQueryForNonexistentToken(); } function getCurrentRarityScore(address userAddress) public view returns (uint256) { SigmoidThreshold.CurveParams memory config; config._x = numSecondsSinceDeploy(); config.minX = a1; config.maxX = b1; config.minY = c1; config.maxY = d1; uint256 rarity = curve.getY(config); try this.getBoostScore(userAddress) returns (uint256 boost) { return rarity + boost; } catch { return rarity; } } function getCurrentPrice() public view returns (uint256) { SigmoidThreshold.CurveParams memory config; config._x = numSecondsSinceDeploy(); config.minX = a0; config.maxX = b0; config.minY = c0; config.maxY = d0; uint256 price = curve.getY(config); return price; // in GWEI } function contractURI() public view returns (string memory) { return string( abi.encodePacked( 'data:application/json;base64,', Base64.encode( abi.encodePacked( '{"name":"', _name, '", "description": "A Proof of Beauty project. Fully on-chain generative statues to remember the MERGE.', '", "external_link": "https://merge.pob.studio/', '", "image": "https://merge.pob.studio/assets/logo.png" }' ) ) ) ); } function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), 'URI query for nonexistent token'); uint256 rarityScore = getRarityScoreForToken(tokenId); bytes memory seed = abi.encodePacked(rarityScore, tokenId); (, uint16[] memory attributeIndexes) = rce.getRarity(rarityScore, seed); string memory image = rce.getRender(attributeIndexes); return string( abi.encodePacked( 'data:application/json;base64,', Base64.encode( abi.encodePacked( '{"name": "Statue #', tokenId.toString(), '", "description": "', 'A Proof of Beauty project. Fully on-chain generative statues to remember the MERGE.', '", "image": "', image, '", "aspect_ratio": "1', '", "attributes": ', rce.getAttributesJSON(attributeIndexes), '}' ) ) ) ); } function mint(address to, uint256 numMints) public payable onlyIsActive onlyIsNotMerge onlyIsNotShutdown { bytes32 blockNumHash = keccak256(abi.encode(block.number, msg.sender)); require( blockMintingGuardMap[blockNumHash] + numMints <= MAX_MINTING_PER_BLOCK, 'exceeded max number of mints' ); require(!blacklistMap[msg.sender], 'caller is blacklisted'); uint256 totalPrice = getCurrentPrice() * numMints; require(totalPrice <= msg.value, 'insufficient funds to pay for mint'); uint256 currentRarityScore = getCurrentRarityScore(msg.sender); rarityTokenMap[_currentIndex] = currentRarityScore; blockMintingGuardMap[blockNumHash] = blockMintingGuardMap[blockNumHash] + numMints; _mint(to, numMints, '', false); treasury.call{value: totalPrice}(''); payable(msg.sender).transfer(msg.value - totalPrice); } } // SPDX-License-Identifier: MIT // Creator: Chiru Labs pragma solidity ^0.8.4; import '@openzeppelin/contracts/token/ERC721/IERC721.sol'; import '@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol'; import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol'; import '@openzeppelin/contracts/utils/Address.sol'; import '@openzeppelin/contracts/utils/Context.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; import '@openzeppelin/contracts/utils/introspection/ERC165.sol'; error ApprovalCallerNotOwnerNorApproved(); error ApprovalQueryForNonexistentToken(); error ApproveToCaller(); error ApprovalToCurrentOwner(); error BalanceQueryForZeroAddress(); error MintToZeroAddress(); error MintZeroQuantity(); error OwnerQueryForNonexistentToken(); error TransferCallerNotOwnerNorApproved(); error TransferFromIncorrectOwner(); error TransferToNonERC721ReceiverImplementer(); error TransferToZeroAddress(); error URIQueryForNonexistentToken(); /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension. Built to optimize for lower gas during batch mints. * * Assumes serials are sequentially minted starting at _startTokenId() (defaults to 0, e.g. 0, 1, 2, 3..). * * Assumes that an owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * * Assumes that the maximum token id cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Compiler will pack this into a single 256bit word. struct TokenOwnership { // The address of the owner. address addr; // Keeps track of the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; } // Compiler will pack this into a single 256bit word. struct AddressData { // Realistically, 2**64-1 is more than enough. uint64 balance; // Keeps track of mint count with minimal overhead for tokenomics. uint64 numberMinted; // Keeps track of burn count with minimal overhead for tokenomics. uint64 numberBurned; // For miscellaneous variable(s) pertaining to the address // (e.g. number of whitelist mint slots used). // If there are multiple variables, please pack them into a uint64. uint64 aux; } // The tokenId of the next token to be minted. uint256 internal _currentIndex; // The number of tokens burned. uint256 internal _burnCounter; // Token name string internal _name; // Token symbol string internal _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. See _ownershipOf implementation for details. mapping(uint256 => TokenOwnership) internal _ownerships; // Mapping owner address to address data mapping(address => AddressData) private _addressData; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; constructor() { _currentIndex = _startTokenId(); } /** * To change the starting tokenId, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Burned tokens are calculated here, use _totalMinted() if you want to count just minted tokens. */ function totalSupply() public view returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than _currentIndex - _startTokenId() times unchecked { return _currentIndex - _burnCounter - _startTokenId(); } } /** * Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view returns (uint256) { // Counter underflow is impossible as _currentIndex does not decrement, // and it is initialized to _startTokenId() unchecked { return _currentIndex - _startTokenId(); } } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return uint256(_addressData[owner].balance); } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return uint256(_addressData[owner].numberMinted); } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return uint256(_addressData[owner].numberBurned); } /** * Returns the auxillary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return _addressData[owner].aux; } /** * Sets the auxillary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal { _addressData[owner].aux = aux; } /** * Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around in the collection over time. */ function _ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) { uint256 curr = tokenId; unchecked { if (_startTokenId() <= curr && curr < _currentIndex) { TokenOwnership memory ownership = _ownerships[curr]; if (!ownership.burned) { if (ownership.addr != address(0)) { return ownership; } // Invariant: // There will always be an ownership that has an address and is not burned // before an ownership that does not have an address and is not burned. // Hence, curr will not underflow. while (true) { curr--; ownership = _ownerships[curr]; if (ownership.addr != address(0)) { return ownership; } } } } } revert OwnerQueryForNonexistentToken(); } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view override returns (address) { return _ownershipOf(tokenId).addr; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overriden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public override { address owner = ERC721A.ownerOf(tokenId); if (to == owner) revert ApprovalToCurrentOwner(); if (_msgSender() != owner && !isApprovedForAll(owner, _msgSender())) { revert ApprovalCallerNotOwnerNorApproved(); } _approve(to, tokenId, owner); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { if (operator == _msgSender()) revert ApproveToCaller(); _operatorApprovals[_msgSender()][operator] = approved; emit ApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public virtual override { _transfer(from, to, tokenId); if ( to.isContract() && !_checkContractOnERC721Received(from, to, tokenId, _data) ) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), */ function _exists(uint256 tokenId) internal view returns (bool) { return _startTokenId() <= tokenId && tokenId < _currentIndex && !_ownerships[tokenId].burned; } function _safeMint(address to, uint256 quantity) internal { _safeMint(to, quantity, ''); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * Emits a {Transfer} event. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal { _mint(to, quantity, _data, true); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event. */ function _mint( address to, uint256 quantity, bytes memory _data, bool safe ) internal { uint256 startTokenId = _currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // balance or numberMinted overflow if current value of either + quantity > 1.8e19 (2**64) - 1 // updatedIndex overflows if _currentIndex + quantity > 1.2e77 (2**256) - 1 unchecked { _addressData[to].balance += uint64(quantity); _addressData[to].numberMinted += uint64(quantity); _ownerships[startTokenId].addr = to; _ownerships[startTokenId].startTimestamp = uint64(block.timestamp); uint256 updatedIndex = startTokenId; uint256 end = updatedIndex + quantity; if (safe && to.isContract()) { do { emit Transfer(address(0), to, updatedIndex); if ( !_checkContractOnERC721Received( address(0), to, updatedIndex++, _data ) ) { revert TransferToNonERC721ReceiverImplementer(); } } while (updatedIndex != end); // Reentrancy protection if (_currentIndex != startTokenId) revert(); } else { do { emit Transfer(address(0), to, updatedIndex++); } while (updatedIndex != end); } _currentIndex = updatedIndex; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) private { TokenOwnership memory prevOwnership = _ownershipOf(tokenId); if (prevOwnership.addr != from) revert TransferFromIncorrectOwner(); bool isApprovedOrOwner = (_msgSender() == from || isApprovedForAll(from, _msgSender()) || getApproved(tokenId) == _msgSender()); if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner _approve(address(0), tokenId, from); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256. unchecked { _addressData[from].balance -= 1; _addressData[to].balance += 1; TokenOwnership storage currSlot = _ownerships[tokenId]; currSlot.addr = to; currSlot.startTimestamp = uint64(block.timestamp); // If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it. // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. uint256 nextTokenId = tokenId + 1; TokenOwnership storage nextSlot = _ownerships[nextTokenId]; if (nextSlot.addr == address(0)) { // This will suffice for checking _exists(nextTokenId), // as a burned slot cannot contain the zero address. if (nextTokenId != _currentIndex) { nextSlot.addr = from; nextSlot.startTimestamp = prevOwnership.startTimestamp; } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev This is equivalent to _burn(tokenId, false) */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { TokenOwnership memory prevOwnership = _ownershipOf(tokenId); address from = prevOwnership.addr; if (approvalCheck) { bool isApprovedOrOwner = (_msgSender() == from || isApprovedForAll(from, _msgSender()) || getApproved(tokenId) == _msgSender()); if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner _approve(address(0), tokenId, from); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as tokenId would have to be 2**256. unchecked { AddressData storage addressData = _addressData[from]; addressData.balance -= 1; addressData.numberBurned += 1; // Keep track of who burned the token, and the timestamp of burning. TokenOwnership storage currSlot = _ownerships[tokenId]; currSlot.addr = from; currSlot.startTimestamp = uint64(block.timestamp); currSlot.burned = true; // If the ownership slot of tokenId+1 is not explicitly set, that means the burn initiator owns it. // Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. uint256 nextTokenId = tokenId + 1; TokenOwnership storage nextSlot = _ownerships[nextTokenId]; if (nextSlot.addr == address(0)) { // This will suffice for checking _exists(nextTokenId), // as a burned slot cannot contain the zero address. if (nextTokenId != _currentIndex) { nextSlot.addr = from; nextSlot.startTimestamp = prevOwnership.startTimestamp; } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { _burnCounter++; } } /** * @dev Approve `to` to operate on `tokenId` * * Emits a {Approval} event. */ function _approve( address to, uint256 tokenId, address owner ) private { _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) { return retval == IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } /** * @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting. * And also called before burning one token. * * startTokenId - the first token id to be transferred * quantity - the amount to be transferred * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes * minting. * And also called after one token has been burned. * * startTokenId - the first token id to be transferred * quantity - the amount to be transferred * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import './Create3.sol'; import './Bytecode.sol'; /** @title A write-once key-value storage for storing chunks of data with a lower write & read cost. @author Agustin Aguilar <[email protected]> Readme: https://github.com/0xsequence/sstore2#readme */ library SSTORE2Map { error WriteError(); // keccak256(bytes('@0xSequence.SSTORE2Map.slot')) bytes32 private constant SLOT_KEY_PREFIX = 0xd351a9253491dfef66f53115e9e3afda3b5fdef08a1de6937da91188ec553be5; function internalKey(bytes32 _key) internal pure returns (bytes32) { // Mutate the key so it doesn't collide // if the contract is also using CREATE3 for other things return keccak256(abi.encode(SLOT_KEY_PREFIX, _key)); } /** @notice Stores `_data` and returns `pointer` as key for later retrieval @dev The pointer is a contract address with `_data` as code @param _data To be written @param _key unique string key for accessing the written data (can only be used once) @return pointer Pointer to the written `_data` */ function write(string memory _key, bytes memory _data) internal returns (address pointer) { return write(keccak256(bytes(_key)), _data); } /** @notice Stores `_data` and returns `pointer` as key for later retrieval @dev The pointer is a contract address with `_data` as code @param _data to be written @param _key unique bytes32 key for accessing the written data (can only be used once) @return pointer Pointer to the written `_data` */ function write(bytes32 _key, bytes memory _data) internal returns (address pointer) { // Append 00 to _data so contract can't be called // Build init code bytes memory code = Bytecode.creationCodeFor( abi.encodePacked(hex'00', _data) ); // Deploy contract using create3 pointer = Create3.create3(internalKey(_key), code); } /** @notice Reads the contents for a given `_key`, it maps to a contract code as data, skips the first byte @dev The function is intended for reading pointers first written by `write` @param _key string key that constains the data @return data read from contract associated with `_key` */ function read(string memory _key) internal view returns (bytes memory) { return read(keccak256(bytes(_key))); } /** @notice Reads the contents for a given `_key`, it maps to a contract code as data, skips the first byte @dev The function is intended for reading pointers first written by `write` @param _key string key that constains the data @param _start number of bytes to skip @return data read from contract associated with `_key` */ function read(string memory _key, uint256 _start) internal view returns (bytes memory) { return read(keccak256(bytes(_key)), _start); } /** @notice Reads the contents for a given `_key`, it maps to a contract code as data, skips the first byte @dev The function is intended for reading pointers first written by `write` @param _key string key that constains the data @param _start number of bytes to skip @param _end index before which to end extraction @return data read from contract associated with `_key` */ function read( string memory _key, uint256 _start, uint256 _end ) internal view returns (bytes memory) { return read(keccak256(bytes(_key)), _start, _end); } /** @notice Reads the contents for a given `_key`, it maps to a contract code as data, skips the first byte @dev The function is intended for reading pointers first written by `write` @param _key bytes32 key that constains the data @return data read from contract associated with `_key` */ function read(bytes32 _key) internal view returns (bytes memory) { return Bytecode.codeAt( Create3.addressOf(internalKey(_key)), 1, type(uint256).max ); } /** @notice Reads the contents for a given `_key`, it maps to a contract code as data, skips the first byte @dev The function is intended for reading pointers first written by `write` @param _key bytes32 key that constains the data @param _start number of bytes to skip @return data read from contract associated with `_key` */ function read(bytes32 _key, uint256 _start) internal view returns (bytes memory) { return Bytecode.codeAt( Create3.addressOf(internalKey(_key)), _start + 1, type(uint256).max ); } /** @notice Reads the contents for a given `_key`, it maps to a contract code as data, skips the first byte @dev The function is intended for reading pointers first written by `write` @param _key bytes32 key that constains the data @param _start number of bytes to skip @param _end index before which to end extraction @return data read from contract associated with `_key` */ function read( bytes32 _key, uint256 _start, uint256 _end ) internal view returns (bytes memory) { return Bytecode.codeAt( Create3.addressOf(internalKey(_key)), _start + 1, _end + 1 ); } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.4; import '@openzeppelin/contracts/utils/math/Math.sol'; import '@openzeppelin/contracts/utils/math/SafeMath.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; contract SigmoidThreshold { using SafeMath for uint256; using SafeMath for uint64; struct CurveParams { uint256 _x; uint256 minX; uint256 maxX; uint256 minY; uint256 maxY; } uint256[23] private slots; constructor() { slots[0] = 1000000000000000000; slots[1] = 994907149075715143; slots[2] = 988513057369406817; slots[3] = 982013790037908452; slots[4] = 970687769248643639; slots[5] = 952574126822433143; slots[6] = 924141819978756551; slots[7] = 880797077977882314; slots[8] = 817574476193643651; slots[9] = 731058578630004896; slots[10] = 622459331201854593; slots[11] = 500000000000000000; slots[12] = 377540668798145407; slots[13] = 268941421369995104; slots[14] = 182425523806356349; slots[15] = 119202922022117574; slots[16] = 75858180021243560; slots[17] = 47425873177566788; slots[18] = 29312230751356326; slots[19] = 17986209962091562; slots[20] = 11486942630593183; slots[21] = 5092850924284857; slots[22] = 0; } function getY(CurveParams memory config) public view returns (uint256) { if (config._x <= config.minX) { return config.minY; } if (config._x >= config.maxX) { return config.maxY; } uint256 slotWidth = config.maxX.sub(config.minX).div(slots.length); uint256 xa = config._x.sub(config.minX).div(slotWidth); uint256 xb = Math.min(xa.add(1), slots.length.sub(1)); uint256 slope = slots[xa].sub(slots[xb]).mul(1e18).div(slotWidth); uint256 wy = slots[xa].add(slope.mul(slotWidth.mul(xa)).div(1e18)); uint256 percentage = 0; if (wy > slope.mul(config._x).div(1e18)) { percentage = wy.sub(slope.mul(config._x).div(1e18)); } else { percentage = slope.mul(config._x).div(1e18).sub(wy); } uint256 result = config.minY.add( config.maxY.sub(config.minY).mul(percentage).div(1e18) ); return config.maxY.sub(result); // inverse curve to be LOW => HIGH } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import './RendererPropsStorage.sol'; import './ChunkedDataStorage.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; import '@openzeppelin/contracts/utils/Base64.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; import '@abf-monorepo/protocol/contracts/renderers/LayerCompositeRenderer.sol'; import '@abf-monorepo/protocol/contracts/libraries/BytesUtils.sol'; contract RarityCompositingEngine is Ownable { uint256 public constant MAX_UINT_16 = 0xFFFF; uint256 public constant RARITY_DATA_TUPLE_NUM_BYTES = 4; address public immutable COMPOSITING_RENDERER; address public immutable ATTRIBUTE_RENDERER; uint256 public immutable MAX_LAYERS; bytes public GLOBAL_ATTRIBUTE_PREFIX; // storage contracts RendererPropsStorage public rendererPropsStorage; ChunkedDataStorage public layerStorage; ChunkedDataStorage public attributeStorage; uint256 constant NUM_DECIMALS = 2; // units are in bps uint256 constant ONE_UNIT = 10**NUM_DECIMALS; // represents 0.01x uint256 constant ONE_HUNDRED_PERCENT = 100 * ONE_UNIT; // represents 1.00x struct LayerData { uint8 layerType; bytes rarityData; } struct AttributeData { bool shouldShowInAttributes; bool shouldShowInRendererProps; uint16 rendererDataIndex; string key; string value; bytes prefix; } constructor( uint256 _maxLayers, address _compositingRenderer, address _attributeRenderer, bytes memory _globalAttributePrefix, address _rendererPropsStorage, address _layerStorage, address _attributeStorage ) { MAX_LAYERS = _maxLayers; COMPOSITING_RENDERER = _compositingRenderer; ATTRIBUTE_RENDERER = _attributeRenderer; GLOBAL_ATTRIBUTE_PREFIX = _globalAttributePrefix; rendererPropsStorage = RendererPropsStorage(_rendererPropsStorage); layerStorage = ChunkedDataStorage(_layerStorage); attributeStorage = ChunkedDataStorage(_attributeStorage); } function setRendererPropsStorage(address _rendererPropsStorage) public onlyOwner { rendererPropsStorage = RendererPropsStorage(_rendererPropsStorage); } function setLayerStorage(address _layerStorage) public onlyOwner { layerStorage = ChunkedDataStorage(_layerStorage); } function setAttributeStorage(address _attributeStorage) public onlyOwner { attributeStorage = ChunkedDataStorage(_attributeStorage); } function decodeLayerData(bytes memory data) public pure returns (LayerData memory ld) { if (data.length != 0) { ld.layerType = uint8(data[0]); ld.rarityData = BytesUtils.slice(data, 1, data.length - 1); } } function decodeAttributeData(bytes memory data) public pure returns (AttributeData memory ad) { if (data.length != 0) { ad.shouldShowInAttributes = uint8(data[0]) == 1; ad.shouldShowInRendererProps = uint8(data[1]) == 1; ad.rendererDataIndex = BytesUtils.toUint16(data, 2); uint8 keyLength = uint8(data[4]); ad.key = string(BytesUtils.slice(data, 5, keyLength)); uint8 valueLength = uint8(data[5 + keyLength]); ad.value = string(BytesUtils.slice(data, 6 + keyLength, valueLength)); ad.prefix = BytesUtils.slice( data, 6 + keyLength + valueLength, data.length - (6 + keyLength + valueLength) ); } } function resolveLayerIndex( uint16[] memory attributeIndexes, uint256 layerIndex ) public view returns (uint256) { require( layerIndex != 0, 'RarityCompositingEngine: layerIndex can not be zero' ); LayerData memory layerData = decodeLayerData( layerStorage.indexToData(layerIndex) ); if (layerData.layerType == 1) { uint16 rootAttributeIndex = attributeIndexes[ BytesUtils.toUint16(layerData.rarityData, 0) ]; require( rootAttributeIndex != 0, 'RarityCompositingEngine: Root attribute has not been set yet' ); uint256 dependentLayerIndex = 0; for (uint256 j = 2; j < layerData.rarityData.length; j += 4) { if ( BytesUtils.toUint16(layerData.rarityData, j) == rootAttributeIndex ) { dependentLayerIndex = BytesUtils.toUint16( layerData.rarityData, j + 2 ); break; } } require( dependentLayerIndex != 0, 'RarityCompositingEngine: No dependent layerIndex was found' ); return resolveLayerIndex(attributeIndexes, dependentLayerIndex); } else if (layerData.layerType == 0) { return layerIndex; } return 0; } function applyRarityMultiplier( uint256 rarityMultiplier, uint256[] memory rarityData ) public pure returns ( uint256 appliedRaritySum, uint256[] memory appliedRarityData, uint256[] memory rarityMultipliers ) { rarityMultipliers = new uint256[](rarityData.length); if (rarityData.length == 0) { return (0, rarityData, rarityMultipliers); } if (rarityData.length == 2) { return (rarityData[1], rarityData, rarityMultipliers); } // sum the current rarity values uint256 highestRarityWeight = rarityData[1]; uint256 lowestRarityWeight = rarityData[rarityData.length - 1]; if (highestRarityWeight - lowestRarityWeight == 0) { for (uint256 i = 1; i < rarityData.length; i += 2) { appliedRaritySum += rarityData[i]; } return (appliedRaritySum, rarityData, rarityMultipliers); } appliedRarityData = rarityData; uint256 a = (rarityMultiplier * ONE_UNIT) / ((highestRarityWeight - lowestRarityWeight)**2); for (uint256 i = 1; i < rarityData.length; i += 2) { uint256 scaledRarityMultiplier = (a * (highestRarityWeight - rarityData[i])**2) / ONE_UNIT; uint256 appliedRarity = ((ONE_HUNDRED_PERCENT + scaledRarityMultiplier) * rarityData[i]) / ONE_UNIT; rarityMultipliers[i] = scaledRarityMultiplier; appliedRarityData[i] = appliedRarity; appliedRaritySum += appliedRarityData[i]; } } function getRarity(uint256 rarityMultiplier, bytes memory seed) public view returns (uint256[] memory layerIndexes, uint16[] memory attributeIndexes) { // attributeIndexes are the keys to the actual visual output data for a specific layer index attributeIndexes = new uint16[](MAX_LAYERS); // layerIndexes are the keys to the actual layer and its corresponding rarity data layerIndexes = new uint256[](MAX_LAYERS); // set default layer indexes for (uint16 i = 0; i < MAX_LAYERS; ++i) { layerIndexes[i] = i + 1; } for (uint16 i = 0; i < MAX_LAYERS; ++i) { layerIndexes[i] = resolveLayerIndex(attributeIndexes, layerIndexes[i]); LayerData memory layerData = decodeLayerData( layerStorage.indexToData(layerIndexes[i]) ); uint256 randomSource = uint256(keccak256(abi.encodePacked(seed, i))); uint256[] memory rarityData = new uint256[]( (layerData.rarityData.length) / 2 ); for (uint256 j = 0; j < layerData.rarityData.length; j += 2) { rarityData[j / 2] = BytesUtils.toUint16(layerData.rarityData, j); } ( uint256 appliedRaritySum, uint256[] memory appliedRarityData, ) = applyRarityMultiplier(rarityMultiplier, rarityData); // get attribute for this layer uint16 attributeIndex = 0; uint256 rarityValue = randomSource % appliedRaritySum; uint256 acc = 0; for (uint256 j = 1; j < appliedRarityData.length; j += 2) { acc += appliedRarityData[j]; if (acc >= rarityValue) { attributeIndex = uint16(appliedRarityData[j - 1]); break; } } require( attributeIndex != 0, 'RarityCompositingEngine: No attribute was found for layer.' ); attributeIndexes[i] = attributeIndex; } } function getRendererProps(uint16[] memory attributeIndexes) public view returns (address[] memory renderers, bytes[] memory rendererProps) { uint256 numNonrendereredAttributes = 0; for (uint256 i = 0; i < attributeIndexes.length; ++i) { AttributeData memory ad = decodeAttributeData( attributeStorage.indexToData(attributeIndexes[i]) ); if (!ad.shouldShowInRendererProps) { numNonrendereredAttributes++; } } renderers = new address[]( attributeIndexes.length - numNonrendereredAttributes ); rendererProps = new bytes[]( attributeIndexes.length - numNonrendereredAttributes ); uint256 numRenderersStored = 0; for (uint256 i = 0; i < attributeIndexes.length; ++i) { AttributeData memory ad = decodeAttributeData( attributeStorage.indexToData(attributeIndexes[i]) ); if (ad.shouldShowInRendererProps) { uint256 rendererIndex = attributeIndexes.length - numNonrendereredAttributes - 1 - numRenderersStored; renderers[rendererIndex] = ATTRIBUTE_RENDERER; rendererProps[rendererIndex] = abi.encodePacked( GLOBAL_ATTRIBUTE_PREFIX, ad.prefix, rendererPropsStorage.indexToRendererProps(ad.rendererDataIndex) ); numRenderersStored++; } } } function getAttributesJSON(uint16[] memory attributeIndexes) public view returns (string memory) { bytes memory attributes = '['; for (uint256 i = 0; i < attributeIndexes.length; ++i) { AttributeData memory ad = decodeAttributeData( attributeStorage.indexToData(attributeIndexes[i]) ); if (ad.shouldShowInAttributes) { attributes = abi.encodePacked( attributes, (attributes.length == 1) ? '' : ',', '{"value":"', ad.value, '","trait_type":"', ad.key, '"}' ); } } attributes = abi.encodePacked(attributes, ']'); return string(attributes); } function getRender(uint16[] memory attributeIndexes) public view returns (string memory) { LayerCompositeRenderer renderer = LayerCompositeRenderer( COMPOSITING_RENDERER ); ( address[] memory renderers, bytes[] memory rendererProps ) = getRendererProps(attributeIndexes); return renderer.render(renderer.encodeProps(renderers, rendererProps)); } function getRenderRaw(uint16[] memory attributeIndexes) public view returns (bytes memory) { LayerCompositeRenderer renderer = LayerCompositeRenderer( COMPOSITING_RENDERER ); ( address[] memory renderers, bytes[] memory rendererProps ) = getRendererProps(attributeIndexes); return renderer.renderRaw(renderer.encodeProps(renderers, rendererProps)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/common/ERC2981.sol) pragma solidity ^0.8.0; import "../../interfaces/IERC2981.sol"; import "../../utils/introspection/ERC165.sol"; /** * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information. * * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first. * * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the * fee is specified in basis points by default. * * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported. * * _Available since v4.5._ */ abstract contract ERC2981 is IERC2981, ERC165 { struct RoyaltyInfo { address receiver; uint96 royaltyFraction; } RoyaltyInfo private _defaultRoyaltyInfo; mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) { return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId); } /** * @inheritdoc IERC2981 */ function royaltyInfo(uint256 _tokenId, uint256 _salePrice) public view virtual override returns (address, uint256) { RoyaltyInfo memory royalty = _tokenRoyaltyInfo[_tokenId]; if (royalty.receiver == address(0)) { royalty = _defaultRoyaltyInfo; } uint256 royaltyAmount = (_salePrice * royalty.royaltyFraction) / _feeDenominator(); return (royalty.receiver, royaltyAmount); } /** * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an * override. */ function _feeDenominator() internal pure virtual returns (uint96) { return 10000; } /** * @dev Sets the royalty information that all ids in this contract will default to. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator. */ function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual { require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice"); require(receiver != address(0), "ERC2981: invalid receiver"); _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator); } /** * @dev Removes default royalty information. */ function _deleteDefaultRoyalty() internal virtual { delete _defaultRoyaltyInfo; } /** * @dev Sets the royalty information for a specific token id, overriding the global default. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator. */ function _setTokenRoyalty( uint256 tokenId, address receiver, uint96 feeNumerator ) internal virtual { require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice"); require(receiver != address(0), "ERC2981: Invalid parameters"); _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator); } /** * @dev Resets royalty information for the token id back to the global default. */ function _resetTokenRoyalty(uint256 tokenId) internal virtual { delete _tokenRoyaltyInfo[tokenId]; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.4; /** @title A library for deploying contracts EIP-3171 style. @author Agustin Aguilar <[email protected]> */ library Create3 { error ErrorCreatingProxy(); error ErrorCreatingContract(); error TargetAlreadyExists(); /** @notice The bytecode for a contract that proxies the creation of another contract @dev If this code is deployed using CREATE2 it can be used to decouple `creationCode` from the child contract address 0x67363d3d37363d34f03d5260086018f3: 0x00 0x67 0x67XXXXXXXXXXXXXXXX PUSH8 bytecode 0x363d3d37363d34f0 0x01 0x3d 0x3d RETURNDATASIZE 0 0x363d3d37363d34f0 0x02 0x52 0x52 MSTORE 0x03 0x60 0x6008 PUSH1 08 8 0x04 0x60 0x6018 PUSH1 18 24 8 0x05 0xf3 0xf3 RETURN 0x363d3d37363d34f0: 0x00 0x36 0x36 CALLDATASIZE cds 0x01 0x3d 0x3d RETURNDATASIZE 0 cds 0x02 0x3d 0x3d RETURNDATASIZE 0 0 cds 0x03 0x37 0x37 CALLDATACOPY 0x04 0x36 0x36 CALLDATASIZE cds 0x05 0x3d 0x3d RETURNDATASIZE 0 cds 0x06 0x34 0x34 CALLVALUE val 0 cds 0x07 0xf0 0xf0 CREATE addr */ bytes internal constant PROXY_CHILD_BYTECODE = hex'67_36_3d_3d_37_36_3d_34_f0_3d_52_60_08_60_18_f3'; // KECCAK256_PROXY_CHILD_BYTECODE = keccak256(PROXY_CHILD_BYTECODE); bytes32 internal constant KECCAK256_PROXY_CHILD_BYTECODE = 0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f; /** @notice Returns the size of the code on a given address @param _addr Address that may or may not contain code @return size of the code on the given `_addr` */ function codeSize(address _addr) internal view returns (uint256 size) { assembly { size := extcodesize(_addr) } } /** @notice Creates a new contract with given `_creationCode` and `_salt` @param _salt Salt of the contract creation, resulting address will be derivated from this value only @param _creationCode Creation code (constructor) of the contract to be deployed, this value doesn't affect the resulting address @return addr of the deployed contract, reverts on error */ function create3(bytes32 _salt, bytes memory _creationCode) internal returns (address addr) { return create3(_salt, _creationCode, 0); } /** @notice Creates a new contract with given `_creationCode` and `_salt` @param _salt Salt of the contract creation, resulting address will be derivated from this value only @param _creationCode Creation code (constructor) of the contract to be deployed, this value doesn't affect the resulting address @param _value In WEI of ETH to be forwarded to child contract @return addr of the deployed contract, reverts on error */ function create3( bytes32 _salt, bytes memory _creationCode, uint256 _value ) internal returns (address addr) { // Creation code bytes memory creationCode = PROXY_CHILD_BYTECODE; // Get target final address addr = addressOf(_salt); if (codeSize(addr) != 0) revert TargetAlreadyExists(); // Create CREATE2 proxy address proxy; assembly { proxy := create2(0, add(creationCode, 32), mload(creationCode), _salt) } if (proxy == address(0)) revert ErrorCreatingProxy(); // Call proxy with final init code (bool success, ) = proxy.call{value: _value}(_creationCode); if (!success || codeSize(addr) == 0) revert ErrorCreatingContract(); } /** @notice Computes the resulting address of a contract deployed using address(this) and the given `_salt` @param _salt Salt of the contract creation, resulting address will be derivated from this value only @return addr of the deployed contract, reverts on error @dev The address creation formula is: keccak256(rlp([keccak256(0xff ++ address(this) ++ _salt ++ keccak256(childBytecode))[12:], 0x01])) */ function addressOf(bytes32 _salt) internal view returns (address) { address proxy = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', address(this), _salt, KECCAK256_PROXY_CHILD_BYTECODE ) ) ) ) ); return address( uint160( uint256(keccak256(abi.encodePacked(hex'd6_94', proxy, hex'01'))) ) ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; library Bytecode { error InvalidCodeAtRange(uint256 _size, uint256 _start, uint256 _end); /** @notice Generate a creation code that results on a contract with `_code` as bytecode @param _code The returning value of the resulting `creationCode` @return creationCode (constructor) for new contract */ function creationCodeFor(bytes memory _code) internal pure returns (bytes memory) { /* 0x00 0x63 0x63XXXXXX PUSH4 _code.length size 0x01 0x80 0x80 DUP1 size size 0x02 0x60 0x600e PUSH1 14 14 size size 0x03 0x60 0x6000 PUSH1 00 0 14 size size 0x04 0x39 0x39 CODECOPY size 0x05 0x60 0x6000 PUSH1 00 0 size 0x06 0xf3 0xf3 RETURN <CODE> */ return abi.encodePacked( hex'63', uint32(_code.length), hex'80_60_0E_60_00_39_60_00_F3', _code ); } /** @notice Returns the size of the code on a given address @param _addr Address that may or may not contain code @return size of the code on the given `_addr` */ function codeSize(address _addr) internal view returns (uint256 size) { assembly { size := extcodesize(_addr) } } /** @notice Returns the code of a given address @dev It will fail if `_end < _start` @param _addr Address that may or may not contain code @param _start number of bytes of code to skip on read @param _end index before which to end extraction @return oCode read from `_addr` deployed bytecode Forked from: https://gist.github.com/KardanovIR/fe98661df9338c842b4a30306d507fbd */ function codeAt( address _addr, uint256 _start, uint256 _end ) internal view returns (bytes memory oCode) { uint256 csize = codeSize(_addr); if (csize == 0) return bytes(''); if (_start > csize) return bytes(''); if (_end < _start) revert InvalidCodeAtRange(csize, _start, _end); unchecked { uint256 reqSize = _end - _start; uint256 maxSize = csize - _start; uint256 size = maxSize < reqSize ? maxSize : reqSize; assembly { // allocate output byte array - this could also be done without assembly // by using o_code = new bytes(size) oCode := mload(0x40) // new "memory end" including padding mstore(0x40, add(oCode, and(add(add(size, 0x20), 0x1f), not(0x1f)))) // store length in memory mstore(oCode, size) // actually retrieve the code, this needs assembly extcodecopy(_addr, add(oCode, 0x20), _start, size) } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import './libraries/SSTORE2Map.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; import '@openzeppelin/contracts/utils/Base64.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; import '@abf-monorepo/protocol/contracts/renderers/LayerCompositeRenderer.sol'; import '@abf-monorepo/protocol/contracts/libraries/BytesUtils.sol'; contract RendererPropsStorage is Ownable { uint256 public constant MAX_UINT_16 = 0xFFFF; // index starts from zero, useful to use the 0th index as a empty case. uint16 public currentMaxRendererPropsIndex = 0; constructor() {} function batchAddRendererProps(bytes[] calldata rendererProps) public onlyOwner { for (uint16 i = 0; i < rendererProps.length; ++i) { SSTORE2Map.write( bytes32(uint256(currentMaxRendererPropsIndex + i)), rendererProps[i] ); } currentMaxRendererPropsIndex += uint16(rendererProps.length); require( currentMaxRendererPropsIndex <= MAX_UINT_16, 'RendererPropsStorage: Exceeds storage limit' ); } function indexToRendererProps(uint16 index) public view returns (bytes memory) { return SSTORE2Map.read(bytes32(uint256(index))); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import './libraries/SSTORE2Map.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; import '@openzeppelin/contracts/utils/Base64.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; import '@abf-monorepo/protocol/contracts/libraries/BytesUtils.sol'; contract ChunkedDataStorage is Ownable { uint256 public constant MAX_UINT_16 = 0xFFFF; mapping(uint256 => uint256) public numLayerDataInChunk; uint256 public currentMaxChunksIndex = 0; constructor() {} function batchAddChunkedData(bytes[] calldata data) public onlyOwner { numLayerDataInChunk[currentMaxChunksIndex] = data.length; bytes memory chunkedLayerData = ''; for (uint256 i = 0; i < data.length; ++i) { require( data[i].length <= MAX_UINT_16, 'ChunkedDataStorage: data exceeds size of 0xFFFF' ); chunkedLayerData = abi.encodePacked( chunkedLayerData, uint16(data[i].length), data[i] ); } SSTORE2Map.write(bytes32(currentMaxChunksIndex), chunkedLayerData); currentMaxChunksIndex++; } function indexToData(uint256 index) public view returns (bytes memory) { uint256 currentChunkIndex = 0; uint256 currentIndex = 0; do { currentIndex += numLayerDataInChunk[currentChunkIndex]; currentChunkIndex++; if (numLayerDataInChunk[currentChunkIndex] == 0) { break; } } while (currentIndex <= index); currentChunkIndex--; currentIndex -= numLayerDataInChunk[currentChunkIndex]; uint256 localChunkIndex = index - currentIndex; bytes memory chunkedData = SSTORE2Map.read(bytes32(currentChunkIndex)); uint256 localChunkIndexPointer = 0; for (uint256 i = 0; i < chunkedData.length; i += 0) { if (localChunkIndexPointer == localChunkIndex) { return BytesUtils.slice( chunkedData, i + 2, BytesUtils.toUint16(chunkedData, i) ); } i += BytesUtils.toUint16(chunkedData, i) + 2; localChunkIndexPointer++; } return ''; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol) pragma solidity ^0.8.0; /** * @dev Provides a set of functions to operate with Base64 strings. * * _Available since v4.5._ */ library Base64 { /** * @dev Base64 Encoding/Decoding Table */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // Loads the table into memory string memory table = _TABLE; // Encoding takes 3 bytes chunks of binary data from `bytes` data parameter // and split into 4 numbers of 6 bits. // The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up // - `data.length + 2` -> Round up // - `/ 3` -> Number of 3-bytes chunks // - `4 *` -> 4 characters for each chunk string memory result = new string(4 * ((data.length + 2) / 3)); /// @solidity memory-safe-assembly assembly { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 32) // Run over the input, 3 bytes at a time for { let dataPtr := data let endPtr := add(data, mload(data)) } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 bytes (18 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F which is the number of // the previous character in the ASCII table prior to the Base64 Table // The result is then added to the table to get the character to write, // and finally write it in the result pointer but with a left shift // of 256 (1 byte) - 8 (1 ASCII char) = 248 bits mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } return result; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../interfaces/IRenderer.sol"; import "../libraries/BytesUtils.sol"; import "../libraries/SvgUtils.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import '@openzeppelin/contracts/utils/introspection/ERC165.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; import "@openzeppelin/contracts/utils/Base64.sol"; contract LayerCompositeRenderer is IRenderer, Ownable, ERC165 { using Strings for uint256; function owner() public override(Ownable, IRenderer) view returns (address) { return super.owner(); } function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IRenderer).interfaceId || super.supportsInterface(interfaceId); } function propsSize() external override pure returns (uint256) { return 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff; } function additionalMetadataURI() external override pure returns (string memory) { return "ipfs://bafkreigjwztwrolwcbkbz3ombzkvxg2767bckeobrfwdjfohvxgozbepv4"; } function renderAttributeKey() external override pure returns (string memory) { return "image"; } function name() public override pure returns (string memory) { return 'Layer Composite'; } function encodeProps(address[] memory renderers, bytes[] memory rendererProps) public pure returns (bytes memory output) { for (uint i = 0; i < renderers.length; ++i) { output = abi.encodePacked(output, renderers[i], rendererProps[i].length, rendererProps[i]); } } function renderRaw(bytes calldata props) public override view returns (bytes memory) { bytes memory backgroundImages; for (uint i = 0; i < props.length; i += 0) { IRenderer destinationRenderer = IRenderer(BytesUtils.toAddress(props, i)); uint start = i + 20 + 32; uint end = start + BytesUtils.toUint256(props, i + 20); backgroundImages = abi.encodePacked(backgroundImages, i == 0 ? '' : ',', 'url(', destinationRenderer.render(props[start:end]) ,')'); i = end; } return abi.encodePacked( '<svg xmlns="http://www.w3.org/2000/svg" width="1200" height="1200" style="', 'background-image:', backgroundImages, ';background-repeat:no-repeat;background-size:contain;background-position:center;image-rendering:-webkit-optimize-contrast;-ms-interpolation-mode:nearest-neighbor;image-rendering:-moz-crisp-edges;image-rendering:pixelated;">', '</svg>' ); } function render(bytes calldata props) external override view returns (string memory) { return string( abi.encodePacked( 'data:image/svg+xml;base64,', Base64.encode(renderRaw(props)) ) ); } function attributes(bytes calldata) external override pure returns (string memory) { return ""; } }// SPDX-License-Identifier: MIT /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity ^0.8.4; library BytesUtils { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } }// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import '@openzeppelin/contracts/utils/introspection/IERC165.sol'; interface IRenderer is IERC165 { function name() external view returns (string memory); function owner() external view returns (address); function propsSize() external view returns (uint256); function additionalMetadataURI() external view returns (string memory); function renderAttributeKey() external view returns (string memory); function renderRaw(bytes calldata props) external view returns (bytes memory); function render(bytes calldata props) external view returns (string memory); function attributes(bytes calldata props) external view returns (string memory); }// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "@openzeppelin/contracts/utils/Strings.sol"; library SvgUtils { using Strings for uint256; uint public constant DECIMALS = 4; uint public constant ONE_UNIT = 10 ** DECIMALS; function padZeros(string memory s, uint len) public pure returns (string memory) { uint local_len = bytes(s).length; string memory local_s = s; while(local_len < len) { local_s = string(abi.encodePacked('0', local_s)); local_len++; } return local_s; } function wholeNumber(uint n) public pure returns (uint) { return n / ONE_UNIT; } function decimals(uint n) public pure returns (uint) { return n % ONE_UNIT; } function toDecimalString(uint n) public pure returns (string memory s) { if (n == 0) return '0'; s = string(abi.encodePacked( (n / (ONE_UNIT)).toString(), '.' , padZeros((n % ONE_UNIT).toString(), DECIMALS) )); } function lerpWithDecimals(uint min, uint max, bytes1 scale) public pure returns (uint) { if (scale == 0x0) return min * ONE_UNIT; if (scale == 0xff) return max * ONE_UNIT; uint delta = ((max - min) * ONE_UNIT * uint(uint8(scale))) / 255; return (min * ONE_UNIT) + delta; } bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; function toColorHexString(uint256 value) public pure returns (string memory) { bytes memory buffer = new bytes(2 * 3 + 1); buffer[0] = "#"; for (uint256 i = 2 * 3; i > 0; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } function toColorHexStringByBytes(bytes1 r, bytes1 g, bytes1 b) public pure returns (string memory) { bytes memory buffer = new bytes(7); buffer[0] = "#"; buffer[2] = _HEX_SYMBOLS[uint8(r) & 0xf]; r >>= 4; buffer[1] = _HEX_SYMBOLS[uint8(r) & 0xf]; buffer[4] = _HEX_SYMBOLS[uint8(g) & 0xf]; g >>= 4; buffer[3] = _HEX_SYMBOLS[uint8(g) & 0xf]; buffer[6] = _HEX_SYMBOLS[uint8(b) & 0xf]; b >>= 4; buffer[5] = _HEX_SYMBOLS[uint8(b) & 0xf]; return string(buffer); } function toColorHexStringByBytes3(bytes3 rgb) public pure returns (string memory) { return toColorHexStringByBytes(rgb[0], rgb[1], rgb[2]); } }// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo(uint256 tokenId, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount); }