Transaction Hash:
Block:
20039014 at Jun-07-2024 09:19:47 AM +UTC
Transaction Fee:
0.00103394589061989 ETH
$2.50
Gas Used:
84,927 Gas / 12.17452507 Gwei
Emitted Events:
310 |
WBTC.Transfer( from=[Receiver] WalletSimple, to=0xECa3F33B796c4e9FC03bf760d3557A429D68290B, value=59095 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2260FAC5...93bc2C599 | |||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 7.514861302031547323 Eth | 7.514900161110429815 Eth | 0.000038859078882492 | |
0xD6F926D0...df4811c71 |
4.272142246105641088 Eth
Nonce: 1159
|
4.271108300215021198 Eth
Nonce: 1160
| 0.00103394589061989 | ||
0xE94aD792...b8DFfd688 |
Execution Trace
WalletSimple.sendMultiSigToken( toAddress=0xECa3F33B796c4e9FC03bf760d3557A429D68290B, value=59095, tokenContractAddress=0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599, expireTime=1718356771, sequenceId=1987, signature=0xC32A768DEDB12BE1E7F18BFEA8F83174A2A8CF0F650D3C61F248F072D22CCEE263D205F1B7DA6699A362B8BA28276055AEEC343D54B0D4FDF5ED4C871F8504FB1B )
WalletSimple.sendMultiSigToken( toAddress=0xECa3F33B796c4e9FC03bf760d3557A429D68290B, value=59095, tokenContractAddress=0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599, expireTime=1718356771, sequenceId=1987, signature=0xC32A768DEDB12BE1E7F18BFEA8F83174A2A8CF0F650D3C61F248F072D22CCEE263D205F1B7DA6699A362B8BA28276055AEEC343D54B0D4FDF5ED4C871F8504FB1B )
-
Null: 0x000...001.9c412418( )
-
WBTC.transfer( _to=0xECa3F33B796c4e9FC03bf760d3557A429D68290B, _value=59095 ) => ( True )
-
File 1 of 3: WalletSimple
File 2 of 3: WBTC
File 3 of 3: WalletSimple
{"ERC20Interface.sol":{"content":"// SPDX-License-Identifier: UNLICENSED\npragma solidity 0.7.5;\n\n/**\n * Contract that exposes the needed erc20 token functions\n */\n\nabstract contract ERC20Interface {\n // Send _value amount of tokens to address _to\n function transfer(address _to, uint256 _value)\n public\n virtual\n returns (bool success);\n\n // Get the account balance of another account with address _owner\n function balanceOf(address _owner)\n public\n virtual\n view\n returns (uint256 balance);\n}\n"},"Forwarder.sol":{"content":"// SPDX-License-Identifier: Apache-2.0\npragma solidity 0.7.5;\nimport \u0027./TransferHelper.sol\u0027;\nimport \u0027./ERC20Interface.sol\u0027;\n\n/**\n * Contract that will forward any incoming Ether to the creator of the contract\n *\n */\ncontract Forwarder {\n // Address to which any funds sent to this contract will be forwarded\n address public parentAddress;\n event ForwarderDeposited(address from, uint256 value, bytes data);\n\n /**\n * Initialize the contract, and sets the destination address to that of the creator\n */\n function init(address _parentAddress) external onlyUninitialized {\n parentAddress = _parentAddress;\n uint256 value = address(this).balance;\n\n if (value == 0) {\n return;\n }\n\n (bool success, ) = parentAddress.call{ value: value }(\u0027\u0027);\n require(success, \u0027Flush failed\u0027);\n // NOTE: since we are forwarding on initialization,\n // we don\u0027t have the context of the original sender.\n // We still emit an event about the forwarding but set\n // the sender to the forwarder itself\n emit ForwarderDeposited(address(this), value, msg.data);\n }\n\n /**\n * Modifier that will execute internal code block only if the sender is the parent address\n */\n modifier onlyParent {\n require(msg.sender == parentAddress, \u0027Only Parent\u0027);\n _;\n }\n\n /**\n * Modifier that will execute internal code block only if the contract has not been initialized yet\n */\n modifier onlyUninitialized {\n require(parentAddress == address(0x0), \u0027Already initialized\u0027);\n _;\n }\n\n /**\n * Default function; Gets called when data is sent but does not match any other function\n */\n fallback() external payable {\n flush();\n }\n\n /**\n * Default function; Gets called when Ether is deposited with no data, and forwards it to the parent address\n */\n receive() external payable {\n flush();\n }\n\n /**\n * Execute a token transfer of the full balance from the forwarder token to the parent address\n * @param tokenContractAddress the address of the erc20 token contract\n */\n function flushTokens(address tokenContractAddress) external onlyParent {\n ERC20Interface instance = ERC20Interface(tokenContractAddress);\n address forwarderAddress = address(this);\n uint256 forwarderBalance = instance.balanceOf(forwarderAddress);\n if (forwarderBalance == 0) {\n return;\n }\n\n TransferHelper.safeTransfer(\n tokenContractAddress,\n parentAddress,\n forwarderBalance\n );\n }\n\n /**\n * Flush the entire balance of the contract to the parent address.\n */\n function flush() public {\n uint256 value = address(this).balance;\n\n if (value == 0) {\n return;\n }\n\n (bool success, ) = parentAddress.call{ value: value }(\u0027\u0027);\n require(success, \u0027Flush failed\u0027);\n emit ForwarderDeposited(msg.sender, value, msg.data);\n }\n}\n"},"TransferHelper.sol":{"content":"// SPDX-License-Identifier: Apache-2.0\n\npragma solidity \u003e=0.7.5;\n\n// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false\nlibrary TransferHelper {\n function safeApprove(\n address token,\n address to,\n uint256 value\n ) internal {\n // bytes4(keccak256(bytes(\u0027approve(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));\n require(\n success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))),\n \u0027TransferHelper::safeApprove: approve failed\u0027\n );\n }\n\n function safeTransfer(\n address token,\n address to,\n uint256 value\n ) internal {\n // bytes4(keccak256(bytes(\u0027transfer(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));\n require(\n success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))),\n \u0027TransferHelper::safeTransfer: transfer failed\u0027\n );\n }\n\n function safeTransferFrom(\n address token,\n address from,\n address to,\n uint256 value\n ) internal {\n // bytes4(keccak256(bytes(\u0027transferFrom(address,address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));\n require(\n success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))),\n \u0027TransferHelper::transferFrom: transferFrom failed\u0027\n );\n }\n\n function safeTransferETH(address to, uint256 value) internal {\n (bool success, ) = to.call{value: value}(new bytes(0));\n require(success, \u0027TransferHelper::safeTransferETH: ETH transfer failed\u0027);\n }\n}\n"},"WalletSimple.sol":{"content":"// SPDX-License-Identifier: Apache-2.0\npragma solidity 0.7.5;\nimport \u0027./TransferHelper.sol\u0027;\nimport \u0027./Forwarder.sol\u0027;\nimport \u0027./ERC20Interface.sol\u0027;\n\n/**\n *\n * WalletSimple\n * ============\n *\n * Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are required to move funds.\n * Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.\n *\n * The first signature is created on the operation hash (see Data Formats) and passed to sendMultiSig/sendMultiSigToken\n * The signer is determined by verifyMultiSig().\n *\n * The second signature is created by the submitter of the transaction and determined by msg.signer.\n *\n * Data Formats\n * ============\n *\n * The signature is created with ethereumjs-util.ecsign(operationHash).\n * Like the eth_sign RPC call, it packs the values as a 65-byte array of [r, s, v].\n * Unlike eth_sign, the message is not prefixed.\n *\n * The operationHash the result of keccak256(prefix, toAddress, value, data, expireTime).\n * For ether transactions, `prefix` is \"ETHER\".\n * For token transaction, `prefix` is \"ERC20\" and `data` is the tokenContractAddress.\n *\n *\n */\ncontract WalletSimple {\n // Events\n event Deposited(address from, uint256 value, bytes data);\n event SafeModeActivated(address msgSender);\n event Transacted(\n address msgSender, // Address of the sender of the message initiating the transaction\n address otherSigner, // Address of the signer (second signature) used to initiate the transaction\n bytes32 operation, // Operation hash (see Data Formats)\n address toAddress, // The address the transaction was sent to\n uint256 value, // Amount of Wei sent to the address\n bytes data // Data sent when invoking the transaction\n );\n\n event BatchTransfer(address sender, address recipient, uint256 value);\n // this event shows the other signer and the operation hash that they signed\n // specific batch transfer events are emitted in Batcher\n event BatchTransacted(\n address msgSender, // Address of the sender of the message initiating the transaction\n address otherSigner, // Address of the signer (second signature) used to initiate the transaction\n bytes32 operation // Operation hash (see Data Formats)\n );\n\n // Public fields\n mapping(address =\u003e bool) public signers; // The addresses that can co-sign transactions on the wallet\n bool public safeMode = false; // When active, wallet may only send to signer addresses\n bool public initialized = false; // True if the contract has been initialized\n\n // Internal fields\n uint256 private constant MAX_SEQUENCE_ID_INCREASE = 10000;\n uint256 constant SEQUENCE_ID_WINDOW_SIZE = 10;\n uint256[SEQUENCE_ID_WINDOW_SIZE] recentSequenceIds;\n\n /**\n * Set up a simple multi-sig wallet by specifying the signers allowed to be used on this wallet.\n * 2 signers will be required to send a transaction from this wallet.\n * Note: The sender is NOT automatically added to the list of signers.\n * Signers CANNOT be changed once they are set\n *\n * @param allowedSigners An array of signers on the wallet\n */\n function init(address[] calldata allowedSigners) external onlyUninitialized {\n require(allowedSigners.length == 3, \u0027Invalid number of signers\u0027);\n\n for (uint8 i = 0; i \u003c allowedSigners.length; i++) {\n require(allowedSigners[i] != address(0), \u0027Invalid signer\u0027);\n signers[allowedSigners[i]] = true;\n }\n initialized = true;\n }\n\n /**\n * Get the network identifier that signers must sign over\n * This provides protection signatures being replayed on other chains\n * This must be a virtual function because chain-specific contracts will need\n * to override with their own network ids. It also can\u0027t be a field\n * to allow this contract to be used by proxy with delegatecall, which will\n * not pick up on state variables\n */\n function getNetworkId() internal virtual pure returns (string memory) {\n return \u0027ETHER\u0027;\n }\n\n /**\n * Get the network identifier that signers must sign over for token transfers\n * This provides protection signatures being replayed on other chains\n * This must be a virtual function because chain-specific contracts will need\n * to override with their own network ids. It also can\u0027t be a field\n * to allow this contract to be used by proxy with delegatecall, which will\n * not pick up on state variables\n */\n function getTokenNetworkId() internal virtual pure returns (string memory) {\n return \u0027ERC20\u0027;\n }\n\n /**\n * Get the network identifier that signers must sign over for batch transfers\n * This provides protection signatures being replayed on other chains\n * This must be a virtual function because chain-specific contracts will need\n * to override with their own network ids. It also can\u0027t be a field\n * to allow this contract to be used by proxy with delegatecall, which will\n * not pick up on state variables\n */\n function getBatchNetworkId() internal virtual pure returns (string memory) {\n return \u0027ETHER-Batch\u0027;\n }\n\n /**\n * Determine if an address is a signer on this wallet\n * @param signer address to check\n * returns boolean indicating whether address is signer or not\n */\n function isSigner(address signer) public view returns (bool) {\n return signers[signer];\n }\n\n /**\n * Modifier that will execute internal code block only if the sender is an authorized signer on this wallet\n */\n modifier onlySigner {\n require(isSigner(msg.sender), \u0027Non-signer in onlySigner method\u0027);\n _;\n }\n\n /**\n * Modifier that will execute internal code block only if the contract has not been initialized yet\n */\n modifier onlyUninitialized {\n require(!initialized, \u0027Contract already initialized\u0027);\n _;\n }\n\n /**\n * Gets called when a transaction is received with data that does not match any other method\n */\n fallback() external payable {\n if (msg.value \u003e 0) {\n // Fire deposited event if we are receiving funds\n Deposited(msg.sender, msg.value, msg.data);\n }\n }\n\n /**\n * Gets called when a transaction is received with ether and no data\n */\n receive() external payable {\n if (msg.value \u003e 0) {\n // Fire deposited event if we are receiving funds\n Deposited(msg.sender, msg.value, msg.data);\n }\n }\n\n /**\n * Execute a multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.\n * Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.\n *\n * @param toAddress the destination address to send an outgoing transaction\n * @param value the amount in Wei to be sent\n * @param data the data to send to the toAddress when invoking the transaction\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * @param signature see Data Formats\n */\n function sendMultiSig(\n address toAddress,\n uint256 value,\n bytes calldata data,\n uint256 expireTime,\n uint256 sequenceId,\n bytes calldata signature\n ) external onlySigner {\n // Verify the other signer\n bytes32 operationHash = keccak256(\n abi.encodePacked(\n getNetworkId(),\n toAddress,\n value,\n data,\n expireTime,\n sequenceId\n )\n );\n\n address otherSigner = verifyMultiSig(\n toAddress,\n operationHash,\n signature,\n expireTime,\n sequenceId\n );\n\n // Success, send the transaction\n (bool success, ) = toAddress.call{ value: value }(data);\n require(success, \u0027Call execution failed\u0027);\n\n emit Transacted(\n msg.sender,\n otherSigner,\n operationHash,\n toAddress,\n value,\n data\n );\n }\n\n /**\n * Execute a batched multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.\n * Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.\n * The recipients and values to send are encoded in two arrays, where for index i, recipients[i] will be sent values[i].\n *\n * @param recipients The list of recipients to send to\n * @param values The list of values to send to\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * @param signature see Data Formats\n */\n function sendMultiSigBatch(\n address[] calldata recipients,\n uint256[] calldata values,\n uint256 expireTime,\n uint256 sequenceId,\n bytes calldata signature\n ) external onlySigner {\n require(recipients.length != 0, \u0027Not enough recipients\u0027);\n require(\n recipients.length == values.length,\n \u0027Unequal recipients and values\u0027\n );\n require(recipients.length \u003c 256, \u0027Too many recipients, max 255\u0027);\n\n // Verify the other signer\n bytes32 operationHash = keccak256(\n abi.encodePacked(\n getBatchNetworkId(),\n recipients,\n values,\n expireTime,\n sequenceId\n )\n );\n\n // the first parameter (toAddress) is used to ensure transactions in safe mode only go to a signer\n // if in safe mode, we should use normal sendMultiSig to recover, so this check will always fail if in safe mode\n require(!safeMode, \u0027Batch in safe mode\u0027);\n address otherSigner = verifyMultiSig(\n address(0x0),\n operationHash,\n signature,\n expireTime,\n sequenceId\n );\n\n batchTransfer(recipients, values);\n emit BatchTransacted(msg.sender, otherSigner, operationHash);\n }\n\n /**\n * Transfer funds in a batch to each of recipients\n * @param recipients The list of recipients to send to\n * @param values The list of values to send to recipients.\n * The recipient with index i in recipients array will be sent values[i].\n * Thus, recipients and values must be the same length\n */\n function batchTransfer(\n address[] calldata recipients,\n uint256[] calldata values\n ) internal {\n for (uint256 i = 0; i \u003c recipients.length; i++) {\n require(address(this).balance \u003e= values[i], \u0027Insufficient funds\u0027);\n\n (bool success, ) = recipients[i].call{ value: values[i] }(\u0027\u0027);\n require(success, \u0027Call failed\u0027);\n\n emit BatchTransfer(msg.sender, recipients[i], values[i]);\n }\n }\n\n /**\n * Execute a multi-signature token transfer from this wallet using 2 signers: one from msg.sender and the other from ecrecover.\n * Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.\n *\n * @param toAddress the destination address to send an outgoing transaction\n * @param value the amount in tokens to be sent\n * @param tokenContractAddress the address of the erc20 token contract\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * @param signature see Data Formats\n */\n function sendMultiSigToken(\n address toAddress,\n uint256 value,\n address tokenContractAddress,\n uint256 expireTime,\n uint256 sequenceId,\n bytes calldata signature\n ) external onlySigner {\n // Verify the other signer\n bytes32 operationHash = keccak256(\n abi.encodePacked(\n getTokenNetworkId(),\n toAddress,\n value,\n tokenContractAddress,\n expireTime,\n sequenceId\n )\n );\n\n verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);\n\n TransferHelper.safeTransfer(tokenContractAddress, toAddress, value);\n }\n\n /**\n * Execute a token flush from one of the forwarder addresses. This transfer needs only a single signature and can be done by any signer\n *\n * @param forwarderAddress the address of the forwarder address to flush the tokens from\n * @param tokenContractAddress the address of the erc20 token contract\n */\n function flushForwarderTokens(\n address payable forwarderAddress,\n address tokenContractAddress\n ) external onlySigner {\n Forwarder forwarder = Forwarder(forwarderAddress);\n forwarder.flushTokens(tokenContractAddress);\n }\n\n /**\n * Do common multisig verification for both eth sends and erc20token transfers\n *\n * @param toAddress the destination address to send an outgoing transaction\n * @param operationHash see Data Formats\n * @param signature see Data Formats\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * returns address that has created the signature\n */\n function verifyMultiSig(\n address toAddress,\n bytes32 operationHash,\n bytes calldata signature,\n uint256 expireTime,\n uint256 sequenceId\n ) private returns (address) {\n address otherSigner = recoverAddressFromSignature(operationHash, signature);\n\n // Verify if we are in safe mode. In safe mode, the wallet can only send to signers\n require(!safeMode || isSigner(toAddress), \u0027External transfer in safe mode\u0027);\n\n // Verify that the transaction has not expired\n require(expireTime \u003e= block.timestamp, \u0027Transaction expired\u0027);\n\n // Try to insert the sequence ID. Will revert if the sequence id was invalid\n tryInsertSequenceId(sequenceId);\n\n require(isSigner(otherSigner), \u0027Invalid signer\u0027);\n\n require(otherSigner != msg.sender, \u0027Signers cannot be equal\u0027);\n\n return otherSigner;\n }\n\n /**\n * Irrevocably puts contract into safe mode. When in this mode, transactions may only be sent to signing addresses.\n */\n function activateSafeMode() external onlySigner {\n safeMode = true;\n SafeModeActivated(msg.sender);\n }\n\n /**\n * Gets signer\u0027s address using ecrecover\n * @param operationHash see Data Formats\n * @param signature see Data Formats\n * returns address recovered from the signature\n */\n function recoverAddressFromSignature(\n bytes32 operationHash,\n bytes memory signature\n ) private pure returns (address) {\n require(signature.length == 65, \u0027Invalid signature - wrong length\u0027);\n\n // We need to unpack the signature, which is given as an array of 65 bytes (like eth.sign)\n bytes32 r;\n bytes32 s;\n uint8 v;\n\n // solhint-disable-next-line\n assembly {\n r := mload(add(signature, 32))\n s := mload(add(signature, 64))\n v := and(mload(add(signature, 65)), 255)\n }\n if (v \u003c 27) {\n v += 27; // Ethereum versions are 27 or 28 as opposed to 0 or 1 which is submitted by some signing libs\n }\n\n // protect against signature malleability\n // S value must be in the lower half orader\n // reference: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/051d340171a93a3d401aaaea46b4b62fa81e5d7c/contracts/cryptography/ECDSA.sol#L53\n require(\n uint256(s) \u003c=\n 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,\n \"ECDSA: invalid signature \u0027s\u0027 value\"\n );\n\n // note that this returns 0 if the signature is invalid\n // Since 0x0 can never be a signer, when the recovered signer address\n // is checked against our signer list, that 0x0 will cause an invalid signer failure\n return ecrecover(operationHash, v, r, s);\n }\n\n /**\n * Verify that the sequence id has not been used before and inserts it. Throws if the sequence ID was not accepted.\n * We collect a window of up to 10 recent sequence ids, and allow any sequence id that is not in the window and\n * greater than the minimum element in the window.\n * @param sequenceId to insert into array of stored ids\n */\n function tryInsertSequenceId(uint256 sequenceId) private onlySigner {\n // Keep a pointer to the lowest value element in the window\n uint256 lowestValueIndex = 0;\n // fetch recentSequenceIds into memory for function context to avoid unnecessary sloads\n uint256[SEQUENCE_ID_WINDOW_SIZE] memory _recentSequenceIds = recentSequenceIds;\n for (uint256 i = 0; i \u003c SEQUENCE_ID_WINDOW_SIZE; i++) {\n require(_recentSequenceIds[i] != sequenceId, \u0027Sequence ID already used\u0027);\n\n if (_recentSequenceIds[i] \u003c _recentSequenceIds[lowestValueIndex]) {\n lowestValueIndex = i;\n }\n }\n\n // The sequence ID being used is lower than the lowest value in the window\n // so we cannot accept it as it may have been used before\n require(\n sequenceId \u003e _recentSequenceIds[lowestValueIndex],\n \u0027Sequence ID below window\u0027\n );\n\n // Block sequence IDs which are much higher than the lowest value\n // This prevents people blocking the contract by using very large sequence IDs quickly\n require(\n sequenceId \u003c=\n (_recentSequenceIds[lowestValueIndex] + MAX_SEQUENCE_ID_INCREASE),\n \u0027Sequence ID above maximum\u0027\n );\n\n recentSequenceIds[lowestValueIndex] = sequenceId;\n }\n\n /**\n * Gets the next available sequence ID for signing when using executeAndConfirm\n * returns the sequenceId one higher than the highest currently stored\n */\n function getNextSequenceId() public view returns (uint256) {\n uint256 highestSequenceId = 0;\n for (uint256 i = 0; i \u003c SEQUENCE_ID_WINDOW_SIZE; i++) {\n if (recentSequenceIds[i] \u003e highestSequenceId) {\n highestSequenceId = recentSequenceIds[i];\n }\n }\n return highestSequenceId + 1;\n }\n}\n"}}
File 2 of 3: WBTC
pragma solidity 0.4.24; // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Basic.sol /** * @title ERC20Basic * @dev Simpler version of ERC20 interface * See https://github.com/ethereum/EIPs/issues/179 */ contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address _who) public view returns (uint256); function transfer(address _to, uint256 _value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } // File: openzeppelin-solidity/contracts/math/SafeMath.sol /** * @title SafeMath * @dev Math operations with safety checks that throw on error */ library SafeMath { /** * @dev Multiplies two numbers, throws on overflow. */ function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { // Gas optimization: this is cheaper than asserting 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } /** * @dev Integer division of two numbers, truncating the quotient. */ function div(uint256 _a, uint256 _b) internal pure returns (uint256) { // assert(_b > 0); // Solidity automatically throws when dividing by 0 // uint256 c = _a / _b; // assert(_a == _b * c + _a % _b); // There is no case in which this doesn't hold return _a / _b; } /** * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } /** * @dev Adds two numbers, throws on overflow. */ function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } } // File: openzeppelin-solidity/contracts/token/ERC20/BasicToken.sol /** * @title Basic token * @dev Basic version of StandardToken, with no allowances. */ contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) internal balances; uint256 internal totalSupply_; /** * @dev Total number of tokens in existence */ function totalSupply() public view returns (uint256) { return totalSupply_; } /** * @dev Transfer token for a specified address * @param _to The address to transfer to. * @param _value The amount to be transferred. */ function transfer(address _to, uint256 _value) public returns (bool) { require(_value <= balances[msg.sender]); require(_to != address(0)); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } /** * @dev Gets the balance of the specified address. * @param _owner The address to query the the balance of. * @return An uint256 representing the amount owned by the passed address. */ function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } // File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ contract ERC20 is ERC20Basic { function allowance(address _owner, address _spender) public view returns (uint256); function transferFrom(address _from, address _to, uint256 _value) public returns (bool); function approve(address _spender, uint256 _value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } // File: openzeppelin-solidity/contracts/token/ERC20/StandardToken.sol /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * https://github.com/ethereum/EIPs/issues/20 * Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol */ contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; /** * @dev Transfer tokens from one address to another * @param _from address The address which you want to send tokens from * @param _to address The address which you want to transfer to * @param _value uint256 the amount of tokens to be transferred */ function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); require(_to != address(0)); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * @param _spender The address which will spend the funds. * @param _value The amount of tokens to be spent. */ function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } /** * @dev Function to check the amount of tokens that an owner allowed to a spender. * @param _owner address The address which owns the funds. * @param _spender address The address which will spend the funds. * @return A uint256 specifying the amount of tokens still available for the spender. */ function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when allowed[_spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * @param _spender The address which will spend the funds. * @param _addedValue The amount of tokens to increase the allowance by. */ function increaseApproval( address _spender, uint256 _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when allowed[_spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * @param _spender The address which will spend the funds. * @param _subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseApproval( address _spender, uint256 _subtractedValue ) public returns (bool) { uint256 oldValue = allowed[msg.sender][_spender]; if (_subtractedValue >= oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } // File: openzeppelin-solidity/contracts/token/ERC20/DetailedERC20.sol /** * @title DetailedERC20 token * @dev The decimals are only for visualization purposes. * All the operations are done using the smallest and indivisible token unit, * just as on Ethereum all the operations are done in wei. */ contract DetailedERC20 is ERC20 { string public name; string public symbol; uint8 public decimals; constructor(string _name, string _symbol, uint8 _decimals) public { name = _name; symbol = _symbol; decimals = _decimals; } } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner); _; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param _newOwner The address to transfer ownership to. */ function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param _newOwner The address to transfer ownership to. */ function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } // File: openzeppelin-solidity/contracts/token/ERC20/MintableToken.sol /** * @title Mintable token * @dev Simple ERC20 Token example, with mintable token creation * Based on code by TokenMarketNet: https://github.com/TokenMarketNet/ico/blob/master/contracts/MintableToken.sol */ contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } modifier hasMintPermission() { require(msg.sender == owner); _; } /** * @dev Function to mint tokens * @param _to The address that will receive the minted tokens. * @param _amount The amount of tokens to mint. * @return A boolean that indicates if the operation was successful. */ function mint( address _to, uint256 _amount ) public hasMintPermission canMint returns (bool) { totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); emit Mint(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } /** * @dev Function to stop minting new tokens. * @return True if the operation was successful. */ function finishMinting() public onlyOwner canMint returns (bool) { mintingFinished = true; emit MintFinished(); return true; } } // File: openzeppelin-solidity/contracts/token/ERC20/BurnableToken.sol /** * @title Burnable Token * @dev Token that can be irreversibly burned (destroyed). */ contract BurnableToken is BasicToken { event Burn(address indexed burner, uint256 value); /** * @dev Burns a specific amount of tokens. * @param _value The amount of token to be burned. */ function burn(uint256 _value) public { _burn(msg.sender, _value); } function _burn(address _who, uint256 _value) internal { require(_value <= balances[_who]); // no need to require value <= totalSupply, since that would imply the // sender's balance is greater than the totalSupply, which *should* be an assertion failure balances[_who] = balances[_who].sub(_value); totalSupply_ = totalSupply_.sub(_value); emit Burn(_who, _value); emit Transfer(_who, address(0), _value); } } // File: openzeppelin-solidity/contracts/lifecycle/Pausable.sol /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() public onlyOwner whenNotPaused { paused = true; emit Pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() public onlyOwner whenPaused { paused = false; emit Unpause(); } } // File: openzeppelin-solidity/contracts/token/ERC20/PausableToken.sol /** * @title Pausable token * @dev StandardToken modified with pausable transfers. **/ contract PausableToken is StandardToken, Pausable { function transfer( address _to, uint256 _value ) public whenNotPaused returns (bool) { return super.transfer(_to, _value); } function transferFrom( address _from, address _to, uint256 _value ) public whenNotPaused returns (bool) { return super.transferFrom(_from, _to, _value); } function approve( address _spender, uint256 _value ) public whenNotPaused returns (bool) { return super.approve(_spender, _value); } function increaseApproval( address _spender, uint _addedValue ) public whenNotPaused returns (bool success) { return super.increaseApproval(_spender, _addedValue); } function decreaseApproval( address _spender, uint _subtractedValue ) public whenNotPaused returns (bool success) { return super.decreaseApproval(_spender, _subtractedValue); } } // File: openzeppelin-solidity/contracts/ownership/Claimable.sol /** * @title Claimable * @dev Extension for the Ownable contract, where the ownership needs to be claimed. * This allows the new owner to accept the transfer. */ contract Claimable is Ownable { address public pendingOwner; /** * @dev Modifier throws if called by any account other than the pendingOwner. */ modifier onlyPendingOwner() { require(msg.sender == pendingOwner); _; } /** * @dev Allows the current owner to set the pendingOwner address. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { pendingOwner = newOwner; } /** * @dev Allows the pendingOwner address to finalize the transfer. */ function claimOwnership() public onlyPendingOwner { emit OwnershipTransferred(owner, pendingOwner); owner = pendingOwner; pendingOwner = address(0); } } // File: openzeppelin-solidity/contracts/token/ERC20/SafeERC20.sol /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure. * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { function safeTransfer( ERC20Basic _token, address _to, uint256 _value ) internal { require(_token.transfer(_to, _value)); } function safeTransferFrom( ERC20 _token, address _from, address _to, uint256 _value ) internal { require(_token.transferFrom(_from, _to, _value)); } function safeApprove( ERC20 _token, address _spender, uint256 _value ) internal { require(_token.approve(_spender, _value)); } } // File: openzeppelin-solidity/contracts/ownership/CanReclaimToken.sol /** * @title Contracts that should be able to recover tokens * @author SylTi * @dev This allow a contract to recover any ERC20 token received in a contract by transferring the balance to the contract owner. * This will prevent any accidental loss of tokens. */ contract CanReclaimToken is Ownable { using SafeERC20 for ERC20Basic; /** * @dev Reclaim all ERC20Basic compatible tokens * @param _token ERC20Basic The address of the token contract */ function reclaimToken(ERC20Basic _token) external onlyOwner { uint256 balance = _token.balanceOf(this); _token.safeTransfer(owner, balance); } } // File: contracts/utils/OwnableContract.sol // empty block is used as this contract just inherits others. contract OwnableContract is CanReclaimToken, Claimable { } /* solhint-disable-line no-empty-blocks */ // File: contracts/token/WBTC.sol contract WBTC is StandardToken, DetailedERC20("Wrapped BTC", "WBTC", 8), MintableToken, BurnableToken, PausableToken, OwnableContract { function burn(uint value) public onlyOwner { super.burn(value); } function finishMinting() public onlyOwner returns (bool) { return false; } function renounceOwnership() public onlyOwner { revert("renouncing ownership is blocked"); } }
File 3 of 3: WalletSimple
{"ERC20Interface.sol":{"content":"// SPDX-License-Identifier: UNLICENSED\npragma solidity 0.7.5;\n\n/**\n * Contract that exposes the needed erc20 token functions\n */\n\nabstract contract ERC20Interface {\n // Send _value amount of tokens to address _to\n function transfer(address _to, uint256 _value)\n public\n virtual\n returns (bool success);\n\n // Get the account balance of another account with address _owner\n function balanceOf(address _owner)\n public\n virtual\n view\n returns (uint256 balance);\n}\n"},"Forwarder.sol":{"content":"// SPDX-License-Identifier: Apache-2.0\npragma solidity 0.7.5;\nimport \u0027./TransferHelper.sol\u0027;\nimport \u0027./ERC20Interface.sol\u0027;\n\n/**\n * Contract that will forward any incoming Ether to the creator of the contract\n *\n */\ncontract Forwarder {\n // Address to which any funds sent to this contract will be forwarded\n address public parentAddress;\n event ForwarderDeposited(address from, uint256 value, bytes data);\n\n /**\n * Initialize the contract, and sets the destination address to that of the creator\n */\n function init(address _parentAddress) external onlyUninitialized {\n parentAddress = _parentAddress;\n uint256 value = address(this).balance;\n\n if (value == 0) {\n return;\n }\n\n (bool success, ) = parentAddress.call{ value: value }(\u0027\u0027);\n require(success, \u0027Flush failed\u0027);\n // NOTE: since we are forwarding on initialization,\n // we don\u0027t have the context of the original sender.\n // We still emit an event about the forwarding but set\n // the sender to the forwarder itself\n emit ForwarderDeposited(address(this), value, msg.data);\n }\n\n /**\n * Modifier that will execute internal code block only if the sender is the parent address\n */\n modifier onlyParent {\n require(msg.sender == parentAddress, \u0027Only Parent\u0027);\n _;\n }\n\n /**\n * Modifier that will execute internal code block only if the contract has not been initialized yet\n */\n modifier onlyUninitialized {\n require(parentAddress == address(0x0), \u0027Already initialized\u0027);\n _;\n }\n\n /**\n * Default function; Gets called when data is sent but does not match any other function\n */\n fallback() external payable {\n flush();\n }\n\n /**\n * Default function; Gets called when Ether is deposited with no data, and forwards it to the parent address\n */\n receive() external payable {\n flush();\n }\n\n /**\n * Execute a token transfer of the full balance from the forwarder token to the parent address\n * @param tokenContractAddress the address of the erc20 token contract\n */\n function flushTokens(address tokenContractAddress) external onlyParent {\n ERC20Interface instance = ERC20Interface(tokenContractAddress);\n address forwarderAddress = address(this);\n uint256 forwarderBalance = instance.balanceOf(forwarderAddress);\n if (forwarderBalance == 0) {\n return;\n }\n\n TransferHelper.safeTransfer(\n tokenContractAddress,\n parentAddress,\n forwarderBalance\n );\n }\n\n /**\n * Flush the entire balance of the contract to the parent address.\n */\n function flush() public {\n uint256 value = address(this).balance;\n\n if (value == 0) {\n return;\n }\n\n (bool success, ) = parentAddress.call{ value: value }(\u0027\u0027);\n require(success, \u0027Flush failed\u0027);\n emit ForwarderDeposited(msg.sender, value, msg.data);\n }\n}\n"},"TransferHelper.sol":{"content":"// SPDX-License-Identifier: Apache-2.0\n\npragma solidity \u003e=0.7.5;\n\n// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/false\nlibrary TransferHelper {\n function safeApprove(\n address token,\n address to,\n uint256 value\n ) internal {\n // bytes4(keccak256(bytes(\u0027approve(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));\n require(\n success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))),\n \u0027TransferHelper::safeApprove: approve failed\u0027\n );\n }\n\n function safeTransfer(\n address token,\n address to,\n uint256 value\n ) internal {\n // bytes4(keccak256(bytes(\u0027transfer(address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));\n require(\n success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))),\n \u0027TransferHelper::safeTransfer: transfer failed\u0027\n );\n }\n\n function safeTransferFrom(\n address token,\n address from,\n address to,\n uint256 value\n ) internal {\n // bytes4(keccak256(bytes(\u0027transferFrom(address,address,uint256)\u0027)));\n (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));\n require(\n success \u0026\u0026 (data.length == 0 || abi.decode(data, (bool))),\n \u0027TransferHelper::transferFrom: transferFrom failed\u0027\n );\n }\n\n function safeTransferETH(address to, uint256 value) internal {\n (bool success, ) = to.call{value: value}(new bytes(0));\n require(success, \u0027TransferHelper::safeTransferETH: ETH transfer failed\u0027);\n }\n}\n"},"WalletSimple.sol":{"content":"// SPDX-License-Identifier: Apache-2.0\npragma solidity 0.7.5;\nimport \u0027./TransferHelper.sol\u0027;\nimport \u0027./Forwarder.sol\u0027;\nimport \u0027./ERC20Interface.sol\u0027;\n\n/**\n *\n * WalletSimple\n * ============\n *\n * Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are required to move funds.\n * Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.\n *\n * The first signature is created on the operation hash (see Data Formats) and passed to sendMultiSig/sendMultiSigToken\n * The signer is determined by verifyMultiSig().\n *\n * The second signature is created by the submitter of the transaction and determined by msg.signer.\n *\n * Data Formats\n * ============\n *\n * The signature is created with ethereumjs-util.ecsign(operationHash).\n * Like the eth_sign RPC call, it packs the values as a 65-byte array of [r, s, v].\n * Unlike eth_sign, the message is not prefixed.\n *\n * The operationHash the result of keccak256(prefix, toAddress, value, data, expireTime).\n * For ether transactions, `prefix` is \"ETHER\".\n * For token transaction, `prefix` is \"ERC20\" and `data` is the tokenContractAddress.\n *\n *\n */\ncontract WalletSimple {\n // Events\n event Deposited(address from, uint256 value, bytes data);\n event SafeModeActivated(address msgSender);\n event Transacted(\n address msgSender, // Address of the sender of the message initiating the transaction\n address otherSigner, // Address of the signer (second signature) used to initiate the transaction\n bytes32 operation, // Operation hash (see Data Formats)\n address toAddress, // The address the transaction was sent to\n uint256 value, // Amount of Wei sent to the address\n bytes data // Data sent when invoking the transaction\n );\n\n event BatchTransfer(address sender, address recipient, uint256 value);\n // this event shows the other signer and the operation hash that they signed\n // specific batch transfer events are emitted in Batcher\n event BatchTransacted(\n address msgSender, // Address of the sender of the message initiating the transaction\n address otherSigner, // Address of the signer (second signature) used to initiate the transaction\n bytes32 operation // Operation hash (see Data Formats)\n );\n\n // Public fields\n mapping(address =\u003e bool) public signers; // The addresses that can co-sign transactions on the wallet\n bool public safeMode = false; // When active, wallet may only send to signer addresses\n bool public initialized = false; // True if the contract has been initialized\n\n // Internal fields\n uint256 private constant MAX_SEQUENCE_ID_INCREASE = 10000;\n uint256 constant SEQUENCE_ID_WINDOW_SIZE = 10;\n uint256[SEQUENCE_ID_WINDOW_SIZE] recentSequenceIds;\n\n /**\n * Set up a simple multi-sig wallet by specifying the signers allowed to be used on this wallet.\n * 2 signers will be required to send a transaction from this wallet.\n * Note: The sender is NOT automatically added to the list of signers.\n * Signers CANNOT be changed once they are set\n *\n * @param allowedSigners An array of signers on the wallet\n */\n function init(address[] calldata allowedSigners) external onlyUninitialized {\n require(allowedSigners.length == 3, \u0027Invalid number of signers\u0027);\n\n for (uint8 i = 0; i \u003c allowedSigners.length; i++) {\n require(allowedSigners[i] != address(0), \u0027Invalid signer\u0027);\n signers[allowedSigners[i]] = true;\n }\n initialized = true;\n }\n\n /**\n * Get the network identifier that signers must sign over\n * This provides protection signatures being replayed on other chains\n * This must be a virtual function because chain-specific contracts will need\n * to override with their own network ids. It also can\u0027t be a field\n * to allow this contract to be used by proxy with delegatecall, which will\n * not pick up on state variables\n */\n function getNetworkId() internal virtual pure returns (string memory) {\n return \u0027ETHER\u0027;\n }\n\n /**\n * Get the network identifier that signers must sign over for token transfers\n * This provides protection signatures being replayed on other chains\n * This must be a virtual function because chain-specific contracts will need\n * to override with their own network ids. It also can\u0027t be a field\n * to allow this contract to be used by proxy with delegatecall, which will\n * not pick up on state variables\n */\n function getTokenNetworkId() internal virtual pure returns (string memory) {\n return \u0027ERC20\u0027;\n }\n\n /**\n * Get the network identifier that signers must sign over for batch transfers\n * This provides protection signatures being replayed on other chains\n * This must be a virtual function because chain-specific contracts will need\n * to override with their own network ids. It also can\u0027t be a field\n * to allow this contract to be used by proxy with delegatecall, which will\n * not pick up on state variables\n */\n function getBatchNetworkId() internal virtual pure returns (string memory) {\n return \u0027ETHER-Batch\u0027;\n }\n\n /**\n * Determine if an address is a signer on this wallet\n * @param signer address to check\n * returns boolean indicating whether address is signer or not\n */\n function isSigner(address signer) public view returns (bool) {\n return signers[signer];\n }\n\n /**\n * Modifier that will execute internal code block only if the sender is an authorized signer on this wallet\n */\n modifier onlySigner {\n require(isSigner(msg.sender), \u0027Non-signer in onlySigner method\u0027);\n _;\n }\n\n /**\n * Modifier that will execute internal code block only if the contract has not been initialized yet\n */\n modifier onlyUninitialized {\n require(!initialized, \u0027Contract already initialized\u0027);\n _;\n }\n\n /**\n * Gets called when a transaction is received with data that does not match any other method\n */\n fallback() external payable {\n if (msg.value \u003e 0) {\n // Fire deposited event if we are receiving funds\n Deposited(msg.sender, msg.value, msg.data);\n }\n }\n\n /**\n * Gets called when a transaction is received with ether and no data\n */\n receive() external payable {\n if (msg.value \u003e 0) {\n // Fire deposited event if we are receiving funds\n Deposited(msg.sender, msg.value, msg.data);\n }\n }\n\n /**\n * Execute a multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.\n * Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.\n *\n * @param toAddress the destination address to send an outgoing transaction\n * @param value the amount in Wei to be sent\n * @param data the data to send to the toAddress when invoking the transaction\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * @param signature see Data Formats\n */\n function sendMultiSig(\n address toAddress,\n uint256 value,\n bytes calldata data,\n uint256 expireTime,\n uint256 sequenceId,\n bytes calldata signature\n ) external onlySigner {\n // Verify the other signer\n bytes32 operationHash = keccak256(\n abi.encodePacked(\n getNetworkId(),\n toAddress,\n value,\n data,\n expireTime,\n sequenceId\n )\n );\n\n address otherSigner = verifyMultiSig(\n toAddress,\n operationHash,\n signature,\n expireTime,\n sequenceId\n );\n\n // Success, send the transaction\n (bool success, ) = toAddress.call{ value: value }(data);\n require(success, \u0027Call execution failed\u0027);\n\n emit Transacted(\n msg.sender,\n otherSigner,\n operationHash,\n toAddress,\n value,\n data\n );\n }\n\n /**\n * Execute a batched multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.\n * Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.\n * The recipients and values to send are encoded in two arrays, where for index i, recipients[i] will be sent values[i].\n *\n * @param recipients The list of recipients to send to\n * @param values The list of values to send to\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * @param signature see Data Formats\n */\n function sendMultiSigBatch(\n address[] calldata recipients,\n uint256[] calldata values,\n uint256 expireTime,\n uint256 sequenceId,\n bytes calldata signature\n ) external onlySigner {\n require(recipients.length != 0, \u0027Not enough recipients\u0027);\n require(\n recipients.length == values.length,\n \u0027Unequal recipients and values\u0027\n );\n require(recipients.length \u003c 256, \u0027Too many recipients, max 255\u0027);\n\n // Verify the other signer\n bytes32 operationHash = keccak256(\n abi.encodePacked(\n getBatchNetworkId(),\n recipients,\n values,\n expireTime,\n sequenceId\n )\n );\n\n // the first parameter (toAddress) is used to ensure transactions in safe mode only go to a signer\n // if in safe mode, we should use normal sendMultiSig to recover, so this check will always fail if in safe mode\n require(!safeMode, \u0027Batch in safe mode\u0027);\n address otherSigner = verifyMultiSig(\n address(0x0),\n operationHash,\n signature,\n expireTime,\n sequenceId\n );\n\n batchTransfer(recipients, values);\n emit BatchTransacted(msg.sender, otherSigner, operationHash);\n }\n\n /**\n * Transfer funds in a batch to each of recipients\n * @param recipients The list of recipients to send to\n * @param values The list of values to send to recipients.\n * The recipient with index i in recipients array will be sent values[i].\n * Thus, recipients and values must be the same length\n */\n function batchTransfer(\n address[] calldata recipients,\n uint256[] calldata values\n ) internal {\n for (uint256 i = 0; i \u003c recipients.length; i++) {\n require(address(this).balance \u003e= values[i], \u0027Insufficient funds\u0027);\n\n (bool success, ) = recipients[i].call{ value: values[i] }(\u0027\u0027);\n require(success, \u0027Call failed\u0027);\n\n emit BatchTransfer(msg.sender, recipients[i], values[i]);\n }\n }\n\n /**\n * Execute a multi-signature token transfer from this wallet using 2 signers: one from msg.sender and the other from ecrecover.\n * Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.\n *\n * @param toAddress the destination address to send an outgoing transaction\n * @param value the amount in tokens to be sent\n * @param tokenContractAddress the address of the erc20 token contract\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * @param signature see Data Formats\n */\n function sendMultiSigToken(\n address toAddress,\n uint256 value,\n address tokenContractAddress,\n uint256 expireTime,\n uint256 sequenceId,\n bytes calldata signature\n ) external onlySigner {\n // Verify the other signer\n bytes32 operationHash = keccak256(\n abi.encodePacked(\n getTokenNetworkId(),\n toAddress,\n value,\n tokenContractAddress,\n expireTime,\n sequenceId\n )\n );\n\n verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);\n\n TransferHelper.safeTransfer(tokenContractAddress, toAddress, value);\n }\n\n /**\n * Execute a token flush from one of the forwarder addresses. This transfer needs only a single signature and can be done by any signer\n *\n * @param forwarderAddress the address of the forwarder address to flush the tokens from\n * @param tokenContractAddress the address of the erc20 token contract\n */\n function flushForwarderTokens(\n address payable forwarderAddress,\n address tokenContractAddress\n ) external onlySigner {\n Forwarder forwarder = Forwarder(forwarderAddress);\n forwarder.flushTokens(tokenContractAddress);\n }\n\n /**\n * Do common multisig verification for both eth sends and erc20token transfers\n *\n * @param toAddress the destination address to send an outgoing transaction\n * @param operationHash see Data Formats\n * @param signature see Data Formats\n * @param expireTime the number of seconds since 1970 for which this transaction is valid\n * @param sequenceId the unique sequence id obtainable from getNextSequenceId\n * returns address that has created the signature\n */\n function verifyMultiSig(\n address toAddress,\n bytes32 operationHash,\n bytes calldata signature,\n uint256 expireTime,\n uint256 sequenceId\n ) private returns (address) {\n address otherSigner = recoverAddressFromSignature(operationHash, signature);\n\n // Verify if we are in safe mode. In safe mode, the wallet can only send to signers\n require(!safeMode || isSigner(toAddress), \u0027External transfer in safe mode\u0027);\n\n // Verify that the transaction has not expired\n require(expireTime \u003e= block.timestamp, \u0027Transaction expired\u0027);\n\n // Try to insert the sequence ID. Will revert if the sequence id was invalid\n tryInsertSequenceId(sequenceId);\n\n require(isSigner(otherSigner), \u0027Invalid signer\u0027);\n\n require(otherSigner != msg.sender, \u0027Signers cannot be equal\u0027);\n\n return otherSigner;\n }\n\n /**\n * Irrevocably puts contract into safe mode. When in this mode, transactions may only be sent to signing addresses.\n */\n function activateSafeMode() external onlySigner {\n safeMode = true;\n SafeModeActivated(msg.sender);\n }\n\n /**\n * Gets signer\u0027s address using ecrecover\n * @param operationHash see Data Formats\n * @param signature see Data Formats\n * returns address recovered from the signature\n */\n function recoverAddressFromSignature(\n bytes32 operationHash,\n bytes memory signature\n ) private pure returns (address) {\n require(signature.length == 65, \u0027Invalid signature - wrong length\u0027);\n\n // We need to unpack the signature, which is given as an array of 65 bytes (like eth.sign)\n bytes32 r;\n bytes32 s;\n uint8 v;\n\n // solhint-disable-next-line\n assembly {\n r := mload(add(signature, 32))\n s := mload(add(signature, 64))\n v := and(mload(add(signature, 65)), 255)\n }\n if (v \u003c 27) {\n v += 27; // Ethereum versions are 27 or 28 as opposed to 0 or 1 which is submitted by some signing libs\n }\n\n // protect against signature malleability\n // S value must be in the lower half orader\n // reference: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/051d340171a93a3d401aaaea46b4b62fa81e5d7c/contracts/cryptography/ECDSA.sol#L53\n require(\n uint256(s) \u003c=\n 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,\n \"ECDSA: invalid signature \u0027s\u0027 value\"\n );\n\n // note that this returns 0 if the signature is invalid\n // Since 0x0 can never be a signer, when the recovered signer address\n // is checked against our signer list, that 0x0 will cause an invalid signer failure\n return ecrecover(operationHash, v, r, s);\n }\n\n /**\n * Verify that the sequence id has not been used before and inserts it. Throws if the sequence ID was not accepted.\n * We collect a window of up to 10 recent sequence ids, and allow any sequence id that is not in the window and\n * greater than the minimum element in the window.\n * @param sequenceId to insert into array of stored ids\n */\n function tryInsertSequenceId(uint256 sequenceId) private onlySigner {\n // Keep a pointer to the lowest value element in the window\n uint256 lowestValueIndex = 0;\n // fetch recentSequenceIds into memory for function context to avoid unnecessary sloads\n uint256[SEQUENCE_ID_WINDOW_SIZE] memory _recentSequenceIds = recentSequenceIds;\n for (uint256 i = 0; i \u003c SEQUENCE_ID_WINDOW_SIZE; i++) {\n require(_recentSequenceIds[i] != sequenceId, \u0027Sequence ID already used\u0027);\n\n if (_recentSequenceIds[i] \u003c _recentSequenceIds[lowestValueIndex]) {\n lowestValueIndex = i;\n }\n }\n\n // The sequence ID being used is lower than the lowest value in the window\n // so we cannot accept it as it may have been used before\n require(\n sequenceId \u003e _recentSequenceIds[lowestValueIndex],\n \u0027Sequence ID below window\u0027\n );\n\n // Block sequence IDs which are much higher than the lowest value\n // This prevents people blocking the contract by using very large sequence IDs quickly\n require(\n sequenceId \u003c=\n (_recentSequenceIds[lowestValueIndex] + MAX_SEQUENCE_ID_INCREASE),\n \u0027Sequence ID above maximum\u0027\n );\n\n recentSequenceIds[lowestValueIndex] = sequenceId;\n }\n\n /**\n * Gets the next available sequence ID for signing when using executeAndConfirm\n * returns the sequenceId one higher than the highest currently stored\n */\n function getNextSequenceId() public view returns (uint256) {\n uint256 highestSequenceId = 0;\n for (uint256 i = 0; i \u003c SEQUENCE_ID_WINDOW_SIZE; i++) {\n if (recentSequenceIds[i] \u003e highestSequenceId) {\n highestSequenceId = recentSequenceIds[i];\n }\n }\n return highestSequenceId + 1;\n }\n}\n"}}