ETH Price: $1,899.52 (-0.89%)

Transaction Decoder

Block:
20874801 at Oct-02-2024 02:23:23 AM +UTC
Transaction Fee:
0.000852585798893094 ETH $1.62
Gas Used:
136,362 Gas / 6.252370887 Gwei

Emitted Events:

214 TransparentUpgradeableProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000005ae97e4770b7034c7ca99ab7edc26a18a23cb412, 0x0000000000000000000000002d64b6f8efe8f6f925dbf55bf806d1c40d02dc8a, 0000000000000000000000000000000000000000000000005d693b027fae0000 )
215 DelegatedClaimCampaigns.UnlockedTokensClaimed( id=System.Byte[], claimer=[Sender] 0x2d64b6f8efe8f6f925dbf55bf806d1c40d02dc8a, amountClaimed=6730976000000000000, amountRemaining=326705593069001870000000 )

Account State Difference:

  Address   Before After State Difference Code
0x2D64B6f8...40d02dC8a
0.064349316859515895 Eth
Nonce: 98
0.063496731060622801 Eth
Nonce: 99
0.000852585798893094
0x5Ae97e47...8a23CB412
(beaverbuild)
17.741799244373912655 Eth17.741876728556000403 Eth0.000077484182087748
0xec53bF91...aB9061F83

Execution Trace

DelegatedClaimCampaigns.claimMultiple( campaignIds=[2C9mLZ3FTn6XA5SBO8Iuvg==], proofs=[[zsIrpfWqzM8SGMhLtXuXkPD7x1O7dDgC1xNBGsOM48s=, W0XOpCgLDE77MfDdhyk8H0YICQQV7gxMuzQUqVHeoBE=, pCXKyZiRDZEi+s0Yglo7VibViTuJWjvph7P15Q4L43A=, bk6Z5ba/1v+HLZhKuCOg9dOO8fvzdhmfwuUi5g6TVk4=, xIB7PejxuwfmjZyP+hXhddTC2GOlOSHwYmXmrQYhI3k=, jnQNadeEo51GjCR9P8LfqIp7YY6iq8nTcZ2kz5LFcNo=, SUpNdzDBLNqQPpmHJ29nuP+iLQHwK67tLWLbrvuPMPs=, TG+GcujflJjzBOiw74qck56FDY2guNYMms4tm7aRp6Q=, gUiyxveZbRUCrp/30cVSOUDaUGOIgZorXNtGRUhSR+k=, YHDflLm8TNEOFGRKylHXSenEVYQv9ggvDlBkOHAX+B8=, /IOsulWO14kyV9FsgA7eCEOTZnFSY3u9oxwAI4J1am0=, kKOKEXt6q6ALuGHK3L8UTsOg10T9Ic9KBqedkTl3Kwc=, wRwXgM8GSc93PhUWfDXOteqrf3AMNMJ9o15VlVbAgUY=, KhJTqkrrC4QJ/dWsKz9wayoykXIAY1d4AYJ9YbbBc2A=]], claimAmounts=[6730976000000000000] )
  • TransparentUpgradeableProxy.70a08231( )
    • Eigen.balanceOf( account=0x2D64B6f8eFE8f6F925dbf55Bf806d1C40d02dC8a ) => ( 0 )
    • TransparentUpgradeableProxy.a9059cbb( )
      • Eigen.transfer( to=0x2D64B6f8eFE8f6F925dbf55Bf806d1C40d02dC8a, amount=6730976000000000000 ) => ( True )
      • TransparentUpgradeableProxy.70a08231( )
        • Eigen.balanceOf( account=0x2D64B6f8eFE8f6F925dbf55Bf806d1C40d02dC8a ) => ( 6730976000000000000 )
          File 1 of 3: DelegatedClaimCampaigns
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
          pragma solidity ^0.8.20;
          interface IERC5267 {
              /**
               * @dev MAY be emitted to signal that the domain could have changed.
               */
              event EIP712DomainChanged();
              /**
               * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
               * signature.
               */
              function eip712Domain()
                  external
                  view
                  returns (
                      bytes1 fields,
                      string memory name,
                      string memory version,
                      uint256 chainId,
                      address verifyingContract,
                      bytes32 salt,
                      uint256[] memory extensions
                  );
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           *
           * ==== Security Considerations
           *
           * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
           * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
           * considered as an intention to spend the allowance in any specific way. The second is that because permits have
           * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
           * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
           * generally recommended is:
           *
           * ```solidity
           * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
           *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
           *     doThing(..., value);
           * }
           *
           * function doThing(..., uint256 value) public {
           *     token.safeTransferFrom(msg.sender, address(this), value);
           *     ...
           * }
           * ```
           *
           * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
           * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
           * {SafeERC20-safeTransferFrom}).
           *
           * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
           * contracts should have entry points that don't rely on permit.
           */
          interface IERC20Permit {
              /**
               * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
               * given ``owner``'s signed approval.
               *
               * IMPORTANT: The same issues {IERC20-approve} has related to transaction
               * ordering also apply here.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `deadline` must be a timestamp in the future.
               * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
               * over the EIP712-formatted function arguments.
               * - the signature must use ``owner``'s current nonce (see {nonces}).
               *
               * For more information on the signature format, see the
               * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
               * section].
               *
               * CAUTION: See Security Considerations above.
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external;
              /**
               * @dev Returns the current nonce for `owner`. This value must be
               * included whenever a signature is generated for {permit}.
               *
               * Every successful call to {permit} increases ``owner``'s nonce by one. This
               * prevents a signature from being used multiple times.
               */
              function nonces(address owner) external view returns (uint256);
              /**
               * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
              /**
               * @dev Returns the value of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the value of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves a `value` amount of tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 value) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
               * caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 value) external returns (bool);
              /**
               * @dev Moves a `value` amount of tokens from `from` to `to` using the
               * allowance mechanism. `value` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 value) external returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
          pragma solidity ^0.8.20;
          import {IERC20} from "../IERC20.sol";
          import {IERC20Permit} from "../extensions/IERC20Permit.sol";
          import {Address} from "../../../utils/Address.sol";
          /**
           * @title SafeERC20
           * @dev Wrappers around ERC20 operations that throw on failure (when the token
           * contract returns false). Tokens that return no value (and instead revert or
           * throw on failure) are also supported, non-reverting calls are assumed to be
           * successful.
           * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
           * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
           */
          library SafeERC20 {
              using Address for address;
              /**
               * @dev An operation with an ERC20 token failed.
               */
              error SafeERC20FailedOperation(address token);
              /**
               * @dev Indicates a failed `decreaseAllowance` request.
               */
              error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
              /**
               * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeTransfer(IERC20 token, address to, uint256 value) internal {
                  _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
              }
              /**
               * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
               * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
               */
              function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
                  _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
              }
              /**
               * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful.
               */
              function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
                  uint256 oldAllowance = token.allowance(address(this), spender);
                  forceApprove(token, spender, oldAllowance + value);
              }
              /**
               * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
               * value, non-reverting calls are assumed to be successful.
               */
              function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
                  unchecked {
                      uint256 currentAllowance = token.allowance(address(this), spender);
                      if (currentAllowance < requestedDecrease) {
                          revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                      }
                      forceApprove(token, spender, currentAllowance - requestedDecrease);
                  }
              }
              /**
               * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
               * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
               * to be set to zero before setting it to a non-zero value, such as USDT.
               */
              function forceApprove(IERC20 token, address spender, uint256 value) internal {
                  bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
                  if (!_callOptionalReturnBool(token, approvalCall)) {
                      _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                      _callOptionalReturn(token, approvalCall);
                  }
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               */
              function _callOptionalReturn(IERC20 token, bytes memory data) private {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
                  // the target address contains contract code and also asserts for success in the low-level call.
                  bytes memory returndata = address(token).functionCall(data);
                  if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
                      revert SafeERC20FailedOperation(address(token));
                  }
              }
              /**
               * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
               * on the return value: the return value is optional (but if data is returned, it must not be false).
               * @param token The token targeted by the call.
               * @param data The call data (encoded using abi.encode or one of its variants).
               *
               * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
               */
              function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
                  // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                  // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
                  // and not revert is the subcall reverts.
                  (bool success, bytes memory returndata) = address(token).call(data);
                  return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
          pragma solidity ^0.8.20;
          import {IERC165} from "../../utils/introspection/IERC165.sol";
          /**
           * @dev Required interface of an ERC721 compliant contract.
           */
          interface IERC721 is IERC165 {
              /**
               * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
               */
              event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
              /**
               * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
               */
              event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
              /**
               * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
               */
              event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
              /**
               * @dev Returns the number of tokens in ``owner``'s account.
               */
              function balanceOf(address owner) external view returns (uint256 balance);
              /**
               * @dev Returns the owner of the `tokenId` token.
               *
               * Requirements:
               *
               * - `tokenId` must exist.
               */
              function ownerOf(uint256 tokenId) external view returns (address owner);
              /**
               * @dev Safely transfers `tokenId` token from `from` to `to`.
               *
               * Requirements:
               *
               * - `from` cannot be the zero address.
               * - `to` cannot be the zero address.
               * - `tokenId` token must exist and be owned by `from`.
               * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
               * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
               *   a safe transfer.
               *
               * Emits a {Transfer} event.
               */
              function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
              /**
               * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
               * are aware of the ERC721 protocol to prevent tokens from being forever locked.
               *
               * Requirements:
               *
               * - `from` cannot be the zero address.
               * - `to` cannot be the zero address.
               * - `tokenId` token must exist and be owned by `from`.
               * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
               *   {setApprovalForAll}.
               * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
               *   a safe transfer.
               *
               * Emits a {Transfer} event.
               */
              function safeTransferFrom(address from, address to, uint256 tokenId) external;
              /**
               * @dev Transfers `tokenId` token from `from` to `to`.
               *
               * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
               * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
               * understand this adds an external call which potentially creates a reentrancy vulnerability.
               *
               * Requirements:
               *
               * - `from` cannot be the zero address.
               * - `to` cannot be the zero address.
               * - `tokenId` token must be owned by `from`.
               * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 tokenId) external;
              /**
               * @dev Gives permission to `to` to transfer `tokenId` token to another account.
               * The approval is cleared when the token is transferred.
               *
               * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
               *
               * Requirements:
               *
               * - The caller must own the token or be an approved operator.
               * - `tokenId` must exist.
               *
               * Emits an {Approval} event.
               */
              function approve(address to, uint256 tokenId) external;
              /**
               * @dev Approve or remove `operator` as an operator for the caller.
               * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
               *
               * Requirements:
               *
               * - The `operator` cannot be the address zero.
               *
               * Emits an {ApprovalForAll} event.
               */
              function setApprovalForAll(address operator, bool approved) external;
              /**
               * @dev Returns the account approved for `tokenId` token.
               *
               * Requirements:
               *
               * - `tokenId` must exist.
               */
              function getApproved(uint256 tokenId) external view returns (address operator);
              /**
               * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
               *
               * See {setApprovalForAll}
               */
              function isApprovedForAll(address owner, address operator) external view returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
          pragma solidity ^0.8.20;
          /**
           * @title ERC721 token receiver interface
           * @dev Interface for any contract that wants to support safeTransfers
           * from ERC721 asset contracts.
           */
          interface IERC721Receiver {
              /**
               * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
               * by `operator` from `from`, this function is called.
               *
               * It must return its Solidity selector to confirm the token transfer.
               * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
               * reverted.
               *
               * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
               */
              function onERC721Received(
                  address operator,
                  address from,
                  uint256 tokenId,
                  bytes calldata data
              ) external returns (bytes4);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol)
          pragma solidity ^0.8.20;
          import {IERC721Receiver} from "../IERC721Receiver.sol";
          /**
           * @dev Implementation of the {IERC721Receiver} interface.
           *
           * Accepts all token transfers.
           * Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or
           * {IERC721-setApprovalForAll}.
           */
          abstract contract ERC721Holder is IERC721Receiver {
              /**
               * @dev See {IERC721Receiver-onERC721Received}.
               *
               * Always returns `IERC721Receiver.onERC721Received.selector`.
               */
              function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
                  return this.onERC721Received.selector;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev The ETH balance of the account is not enough to perform the operation.
               */
              error AddressInsufficientBalance(address account);
              /**
               * @dev There's no code at `target` (it is not a contract).
               */
              error AddressEmptyCode(address target);
              /**
               * @dev A call to an address target failed. The target may have reverted.
               */
              error FailedInnerCall();
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  if (address(this).balance < amount) {
                      revert AddressInsufficientBalance(address(this));
                  }
                  (bool success, ) = recipient.call{value: amount}("");
                  if (!success) {
                      revert FailedInnerCall();
                  }
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason or custom error, it is bubbled
               * up by this function (like regular Solidity function calls). However, if
               * the call reverted with no returned reason, this function reverts with a
               * {FailedInnerCall} error.
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  if (address(this).balance < value) {
                      revert AddressInsufficientBalance(address(this));
                  }
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
               * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
               * unsuccessful call.
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata
              ) internal view returns (bytes memory) {
                  if (!success) {
                      _revert(returndata);
                  } else {
                      // only check if target is a contract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      if (returndata.length == 0 && target.code.length == 0) {
                          revert AddressEmptyCode(target);
                      }
                      return returndata;
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
               * revert reason or with a default {FailedInnerCall} error.
               */
              function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
                  if (!success) {
                      _revert(returndata);
                  } else {
                      return returndata;
                  }
              }
              /**
               * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
               */
              function _revert(bytes memory returndata) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert FailedInnerCall();
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
           *
           * These functions can be used to verify that a message was signed by the holder
           * of the private keys of a given address.
           */
          library ECDSA {
              enum RecoverError {
                  NoError,
                  InvalidSignature,
                  InvalidSignatureLength,
                  InvalidSignatureS
              }
              /**
               * @dev The signature derives the `address(0)`.
               */
              error ECDSAInvalidSignature();
              /**
               * @dev The signature has an invalid length.
               */
              error ECDSAInvalidSignatureLength(uint256 length);
              /**
               * @dev The signature has an S value that is in the upper half order.
               */
              error ECDSAInvalidSignatureS(bytes32 s);
              /**
               * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
               * return address(0) without also returning an error description. Errors are documented using an enum (error type)
               * and a bytes32 providing additional information about the error.
               *
               * If no error is returned, then the address can be used for verification purposes.
               *
               * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
               * this function rejects them by requiring the `s` value to be in the lower
               * half order, and the `v` value to be either 27 or 28.
               *
               * IMPORTANT: `hash` _must_ be the result of a hash operation for the
               * verification to be secure: it is possible to craft signatures that
               * recover to arbitrary addresses for non-hashed data. A safe way to ensure
               * this is by receiving a hash of the original message (which may otherwise
               * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
               *
               * Documentation for signature generation:
               * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
               * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
               */
              function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
                  if (signature.length == 65) {
                      bytes32 r;
                      bytes32 s;
                      uint8 v;
                      // ecrecover takes the signature parameters, and the only way to get them
                      // currently is to use assembly.
                      /// @solidity memory-safe-assembly
                      assembly {
                          r := mload(add(signature, 0x20))
                          s := mload(add(signature, 0x40))
                          v := byte(0, mload(add(signature, 0x60)))
                      }
                      return tryRecover(hash, v, r, s);
                  } else {
                      return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
                  }
              }
              /**
               * @dev Returns the address that signed a hashed message (`hash`) with
               * `signature`. This address can then be used for verification purposes.
               *
               * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
               * this function rejects them by requiring the `s` value to be in the lower
               * half order, and the `v` value to be either 27 or 28.
               *
               * IMPORTANT: `hash` _must_ be the result of a hash operation for the
               * verification to be secure: it is possible to craft signatures that
               * recover to arbitrary addresses for non-hashed data. A safe way to ensure
               * this is by receiving a hash of the original message (which may otherwise
               * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
               */
              function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                  (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
                  _throwError(error, errorArg);
                  return recovered;
              }
              /**
               * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
               *
               * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
               */
              function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
                  unchecked {
                      bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                      // We do not check for an overflow here since the shift operation results in 0 or 1.
                      uint8 v = uint8((uint256(vs) >> 255) + 27);
                      return tryRecover(hash, v, r, s);
                  }
              }
              /**
               * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
               */
              function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
                  (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
                  _throwError(error, errorArg);
                  return recovered;
              }
              /**
               * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
               * `r` and `s` signature fields separately.
               */
              function tryRecover(
                  bytes32 hash,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) internal pure returns (address, RecoverError, bytes32) {
                  // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                  // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                  // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                  // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                  //
                  // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                  // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                  // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                  // these malleable signatures as well.
                  if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                      return (address(0), RecoverError.InvalidSignatureS, s);
                  }
                  // If the signature is valid (and not malleable), return the signer address
                  address signer = ecrecover(hash, v, r, s);
                  if (signer == address(0)) {
                      return (address(0), RecoverError.InvalidSignature, bytes32(0));
                  }
                  return (signer, RecoverError.NoError, bytes32(0));
              }
              /**
               * @dev Overload of {ECDSA-recover} that receives the `v`,
               * `r` and `s` signature fields separately.
               */
              function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
                  (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
                  _throwError(error, errorArg);
                  return recovered;
              }
              /**
               * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
               */
              function _throwError(RecoverError error, bytes32 errorArg) private pure {
                  if (error == RecoverError.NoError) {
                      return; // no error: do nothing
                  } else if (error == RecoverError.InvalidSignature) {
                      revert ECDSAInvalidSignature();
                  } else if (error == RecoverError.InvalidSignatureLength) {
                      revert ECDSAInvalidSignatureLength(uint256(errorArg));
                  } else if (error == RecoverError.InvalidSignatureS) {
                      revert ECDSAInvalidSignatureS(errorArg);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)
          pragma solidity ^0.8.20;
          import {MessageHashUtils} from "./MessageHashUtils.sol";
          import {ShortStrings, ShortString} from "../ShortStrings.sol";
          import {IERC5267} from "../../interfaces/IERC5267.sol";
          /**
           * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
           *
           * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
           * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
           * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
           * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
           *
           * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
           * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
           * ({_hashTypedDataV4}).
           *
           * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
           * the chain id to protect against replay attacks on an eventual fork of the chain.
           *
           * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
           * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
           *
           * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
           * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
           * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
           *
           * @custom:oz-upgrades-unsafe-allow state-variable-immutable
           */
          abstract contract EIP712 is IERC5267 {
              using ShortStrings for *;
              bytes32 private constant TYPE_HASH =
                  keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
              // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
              // invalidate the cached domain separator if the chain id changes.
              bytes32 private immutable _cachedDomainSeparator;
              uint256 private immutable _cachedChainId;
              address private immutable _cachedThis;
              bytes32 private immutable _hashedName;
              bytes32 private immutable _hashedVersion;
              ShortString private immutable _name;
              ShortString private immutable _version;
              string private _nameFallback;
              string private _versionFallback;
              /**
               * @dev Initializes the domain separator and parameter caches.
               *
               * The meaning of `name` and `version` is specified in
               * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
               *
               * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
               * - `version`: the current major version of the signing domain.
               *
               * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
               * contract upgrade].
               */
              constructor(string memory name, string memory version) {
                  _name = name.toShortStringWithFallback(_nameFallback);
                  _version = version.toShortStringWithFallback(_versionFallback);
                  _hashedName = keccak256(bytes(name));
                  _hashedVersion = keccak256(bytes(version));
                  _cachedChainId = block.chainid;
                  _cachedDomainSeparator = _buildDomainSeparator();
                  _cachedThis = address(this);
              }
              /**
               * @dev Returns the domain separator for the current chain.
               */
              function _domainSeparatorV4() internal view returns (bytes32) {
                  if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
                      return _cachedDomainSeparator;
                  } else {
                      return _buildDomainSeparator();
                  }
              }
              function _buildDomainSeparator() private view returns (bytes32) {
                  return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
              }
              /**
               * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
               * function returns the hash of the fully encoded EIP712 message for this domain.
               *
               * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
               *
               * ```solidity
               * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
               *     keccak256("Mail(address to,string contents)"),
               *     mailTo,
               *     keccak256(bytes(mailContents))
               * )));
               * address signer = ECDSA.recover(digest, signature);
               * ```
               */
              function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                  return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
              }
              /**
               * @dev See {IERC-5267}.
               */
              function eip712Domain()
                  public
                  view
                  virtual
                  returns (
                      bytes1 fields,
                      string memory name,
                      string memory version,
                      uint256 chainId,
                      address verifyingContract,
                      bytes32 salt,
                      uint256[] memory extensions
                  )
              {
                  return (
                      hex"0f", // 01111
                      _EIP712Name(),
                      _EIP712Version(),
                      block.chainid,
                      address(this),
                      bytes32(0),
                      new uint256[](0)
                  );
              }
              /**
               * @dev The name parameter for the EIP712 domain.
               *
               * NOTE: By default this function reads _name which is an immutable value.
               * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
               */
              // solhint-disable-next-line func-name-mixedcase
              function _EIP712Name() internal view returns (string memory) {
                  return _name.toStringWithFallback(_nameFallback);
              }
              /**
               * @dev The version parameter for the EIP712 domain.
               *
               * NOTE: By default this function reads _version which is an immutable value.
               * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
               */
              // solhint-disable-next-line func-name-mixedcase
              function _EIP712Version() internal view returns (string memory) {
                  return _version.toStringWithFallback(_versionFallback);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev These functions deal with verification of Merkle Tree proofs.
           *
           * The tree and the proofs can be generated using our
           * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
           * You will find a quickstart guide in the readme.
           *
           * WARNING: You should avoid using leaf values that are 64 bytes long prior to
           * hashing, or use a hash function other than keccak256 for hashing leaves.
           * This is because the concatenation of a sorted pair of internal nodes in
           * the Merkle tree could be reinterpreted as a leaf value.
           * OpenZeppelin's JavaScript library generates Merkle trees that are safe
           * against this attack out of the box.
           */
          library MerkleProof {
              /**
               *@dev The multiproof provided is not valid.
               */
              error MerkleProofInvalidMultiproof();
              /**
               * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
               * defined by `root`. For this, a `proof` must be provided, containing
               * sibling hashes on the branch from the leaf to the root of the tree. Each
               * pair of leaves and each pair of pre-images are assumed to be sorted.
               */
              function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                  return processProof(proof, leaf) == root;
              }
              /**
               * @dev Calldata version of {verify}
               */
              function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
                  return processProofCalldata(proof, leaf) == root;
              }
              /**
               * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
               * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
               * hash matches the root of the tree. When processing the proof, the pairs
               * of leafs & pre-images are assumed to be sorted.
               */
              function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
                  bytes32 computedHash = leaf;
                  for (uint256 i = 0; i < proof.length; i++) {
                      computedHash = _hashPair(computedHash, proof[i]);
                  }
                  return computedHash;
              }
              /**
               * @dev Calldata version of {processProof}
               */
              function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
                  bytes32 computedHash = leaf;
                  for (uint256 i = 0; i < proof.length; i++) {
                      computedHash = _hashPair(computedHash, proof[i]);
                  }
                  return computedHash;
              }
              /**
               * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
               * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
               *
               * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
               */
              function multiProofVerify(
                  bytes32[] memory proof,
                  bool[] memory proofFlags,
                  bytes32 root,
                  bytes32[] memory leaves
              ) internal pure returns (bool) {
                  return processMultiProof(proof, proofFlags, leaves) == root;
              }
              /**
               * @dev Calldata version of {multiProofVerify}
               *
               * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
               */
              function multiProofVerifyCalldata(
                  bytes32[] calldata proof,
                  bool[] calldata proofFlags,
                  bytes32 root,
                  bytes32[] memory leaves
              ) internal pure returns (bool) {
                  return processMultiProofCalldata(proof, proofFlags, leaves) == root;
              }
              /**
               * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
               * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
               * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
               * respectively.
               *
               * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
               * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
               * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
               */
              function processMultiProof(
                  bytes32[] memory proof,
                  bool[] memory proofFlags,
                  bytes32[] memory leaves
              ) internal pure returns (bytes32 merkleRoot) {
                  // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                  // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                  // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                  // the Merkle tree.
                  uint256 leavesLen = leaves.length;
                  uint256 proofLen = proof.length;
                  uint256 totalHashes = proofFlags.length;
                  // Check proof validity.
                  if (leavesLen + proofLen != totalHashes + 1) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                  // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                  bytes32[] memory hashes = new bytes32[](totalHashes);
                  uint256 leafPos = 0;
                  uint256 hashPos = 0;
                  uint256 proofPos = 0;
                  // At each step, we compute the next hash using two values:
                  // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                  //   get the next hash.
                  // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                  //   `proof` array.
                  for (uint256 i = 0; i < totalHashes; i++) {
                      bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                      bytes32 b = proofFlags[i]
                          ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                          : proof[proofPos++];
                      hashes[i] = _hashPair(a, b);
                  }
                  if (totalHashes > 0) {
                      if (proofPos != proofLen) {
                          revert MerkleProofInvalidMultiproof();
                      }
                      unchecked {
                          return hashes[totalHashes - 1];
                      }
                  } else if (leavesLen > 0) {
                      return leaves[0];
                  } else {
                      return proof[0];
                  }
              }
              /**
               * @dev Calldata version of {processMultiProof}.
               *
               * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
               */
              function processMultiProofCalldata(
                  bytes32[] calldata proof,
                  bool[] calldata proofFlags,
                  bytes32[] memory leaves
              ) internal pure returns (bytes32 merkleRoot) {
                  // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
                  // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
                  // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
                  // the Merkle tree.
                  uint256 leavesLen = leaves.length;
                  uint256 proofLen = proof.length;
                  uint256 totalHashes = proofFlags.length;
                  // Check proof validity.
                  if (leavesLen + proofLen != totalHashes + 1) {
                      revert MerkleProofInvalidMultiproof();
                  }
                  // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
                  // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
                  bytes32[] memory hashes = new bytes32[](totalHashes);
                  uint256 leafPos = 0;
                  uint256 hashPos = 0;
                  uint256 proofPos = 0;
                  // At each step, we compute the next hash using two values:
                  // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
                  //   get the next hash.
                  // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
                  //   `proof` array.
                  for (uint256 i = 0; i < totalHashes; i++) {
                      bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
                      bytes32 b = proofFlags[i]
                          ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                          : proof[proofPos++];
                      hashes[i] = _hashPair(a, b);
                  }
                  if (totalHashes > 0) {
                      if (proofPos != proofLen) {
                          revert MerkleProofInvalidMultiproof();
                      }
                      unchecked {
                          return hashes[totalHashes - 1];
                      }
                  } else if (leavesLen > 0) {
                      return leaves[0];
                  } else {
                      return proof[0];
                  }
              }
              /**
               * @dev Sorts the pair (a, b) and hashes the result.
               */
              function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
                  return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
              }
              /**
               * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
               */
              function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x00, a)
                      mstore(0x20, b)
                      value := keccak256(0x00, 0x40)
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)
          pragma solidity ^0.8.20;
          import {Strings} from "../Strings.sol";
          /**
           * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
           *
           * The library provides methods for generating a hash of a message that conforms to the
           * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
           * specifications.
           */
          library MessageHashUtils {
              /**
               * @dev Returns the keccak256 digest of an EIP-191 signed data with version
               * `0x45` (`personal_sign` messages).
               *
               * The digest is calculated by prefixing a bytes32 `messageHash` with
               * `"\\x19Ethereum Signed Message:\
          32"` and hashing the result. It corresponds with the
               * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
               *
               * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
               * keccak256, although any bytes32 value can be safely used because the final digest will
               * be re-hashed.
               *
               * See {ECDSA-recover}.
               */
              function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x00, "\\x19Ethereum Signed Message:\
          32") // 32 is the bytes-length of messageHash
                      mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
                      digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
                  }
              }
              /**
               * @dev Returns the keccak256 digest of an EIP-191 signed data with version
               * `0x45` (`personal_sign` messages).
               *
               * The digest is calculated by prefixing an arbitrary `message` with
               * `"\\x19Ethereum Signed Message:\
          " + len(message)` and hashing the result. It corresponds with the
               * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
               *
               * See {ECDSA-recover}.
               */
              function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
                  return
                      keccak256(bytes.concat("\\x19Ethereum Signed Message:\
          ", bytes(Strings.toString(message.length)), message));
              }
              /**
               * @dev Returns the keccak256 digest of an EIP-191 signed data with version
               * `0x00` (data with intended validator).
               *
               * The digest is calculated by prefixing an arbitrary `data` with `"\\x19\\x00"` and the intended
               * `validator` address. Then hashing the result.
               *
               * See {ECDSA-recover}.
               */
              function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked(hex"19_00", validator, data));
              }
              /**
               * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
               *
               * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
               * `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
               * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
               *
               * See {ECDSA-recover}.
               */
              function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let ptr := mload(0x40)
                      mstore(ptr, hex"19_01")
                      mstore(add(ptr, 0x02), domainSeparator)
                      mstore(add(ptr, 0x22), structHash)
                      digest := keccak256(ptr, 0x42)
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Interface of the ERC165 standard, as defined in the
           * https://eips.ethereum.org/EIPS/eip-165[EIP].
           *
           * Implementers can declare support of contract interfaces, which can then be
           * queried by others ({ERC165Checker}).
           *
           * For an implementation, see {ERC165}.
           */
          interface IERC165 {
              /**
               * @dev Returns true if this contract implements the interface defined by
               * `interfaceId`. See the corresponding
               * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
               * to learn more about how these ids are created.
               *
               * This function call must use less than 30 000 gas.
               */
              function supportsInterface(bytes4 interfaceId) external view returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              /**
               * @dev Muldiv operation overflow.
               */
              error MathOverflowedMulDiv();
              enum Rounding {
                  Floor, // Toward negative infinity
                  Ceil, // Toward positive infinity
                  Trunc, // Toward zero
                  Expand // Away from zero
              }
              /**
               * @dev Returns the addition of two unsigned integers, with an overflow flag.
               */
              function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  unchecked {
                      uint256 c = a + b;
                      if (c < a) return (false, 0);
                      return (true, c);
                  }
              }
              /**
               * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
               */
              function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  unchecked {
                      if (b > a) return (false, 0);
                      return (true, a - b);
                  }
              }
              /**
               * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
               */
              function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  unchecked {
                      // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                      // benefit is lost if 'b' is also tested.
                      // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                      if (a == 0) return (true, 0);
                      uint256 c = a * b;
                      if (c / a != b) return (false, 0);
                      return (true, c);
                  }
              }
              /**
               * @dev Returns the division of two unsigned integers, with a division by zero flag.
               */
              function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  unchecked {
                      if (b == 0) return (false, 0);
                      return (true, a / b);
                  }
              }
              /**
               * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
               */
              function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                  unchecked {
                      if (b == 0) return (false, 0);
                      return (true, a % b);
                  }
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds towards infinity instead
               * of rounding towards zero.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  if (b == 0) {
                      // Guarantee the same behavior as in a regular Solidity division.
                      return a / b;
                  }
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
               * denominator == 0.
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
               * Uniswap Labs also under MIT license.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0 = x * y; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                          // The surrounding unchecked block does not change this fact.
                          // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      if (denominator <= prod1) {
                          revert MathOverflowedMulDiv();
                      }
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                      // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
                      uint256 twos = denominator & (0 - denominator);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                      // works in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
               * towards zero.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  //
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                  //
                  // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                  // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                  // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                  //
                  // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1 << (log2(a) >> 1);
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = sqrt(a);
                      return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 2 of a positive value rounded towards zero.
               * Returns 0 if given 0.
               */
              function log2(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 128;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 64;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 32;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 16;
                      }
                      if (value >> 8 > 0) {
                          value >>= 8;
                          result += 8;
                      }
                      if (value >> 4 > 0) {
                          value >>= 4;
                          result += 4;
                      }
                      if (value >> 2 > 0) {
                          value >>= 2;
                          result += 2;
                      }
                      if (value >> 1 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log2(value);
                      return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 10 of a positive value rounded towards zero.
               * Returns 0 if given 0.
               */
              function log10(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >= 10 ** 64) {
                          value /= 10 ** 64;
                          result += 64;
                      }
                      if (value >= 10 ** 32) {
                          value /= 10 ** 32;
                          result += 32;
                      }
                      if (value >= 10 ** 16) {
                          value /= 10 ** 16;
                          result += 16;
                      }
                      if (value >= 10 ** 8) {
                          value /= 10 ** 8;
                          result += 8;
                      }
                      if (value >= 10 ** 4) {
                          value /= 10 ** 4;
                          result += 4;
                      }
                      if (value >= 10 ** 2) {
                          value /= 10 ** 2;
                          result += 2;
                      }
                      if (value >= 10 ** 1) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log10(value);
                      return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 256 of a positive value rounded towards zero.
               * Returns 0 if given 0.
               *
               * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
               */
              function log256(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 16;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 8;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 4;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 2;
                      }
                      if (value >> 8 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log256(value);
                      return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
                  }
              }
              /**
               * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
               */
              function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
                  return uint8(rounding) % 2 == 1;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMath {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Provides tracking nonces for addresses. Nonces will only increment.
           */
          abstract contract Nonces {
              /**
               * @dev The nonce used for an `account` is not the expected current nonce.
               */
              error InvalidAccountNonce(address account, uint256 currentNonce);
              mapping(address account => uint256) private _nonces;
              /**
               * @dev Returns the next unused nonce for an address.
               */
              function nonces(address owner) public view virtual returns (uint256) {
                  return _nonces[owner];
              }
              /**
               * @dev Consumes a nonce.
               *
               * Returns the current value and increments nonce.
               */
              function _useNonce(address owner) internal virtual returns (uint256) {
                  // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
                  // decremented or reset. This guarantees that the nonce never overflows.
                  unchecked {
                      // It is important to do x++ and not ++x here.
                      return _nonces[owner]++;
                  }
              }
              /**
               * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
               */
              function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
                  uint256 current = _useNonce(owner);
                  if (nonce != current) {
                      revert InvalidAccountNonce(owner, current);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
          pragma solidity ^0.8.20;
          /**
           * @dev Contract module that helps prevent reentrant calls to a function.
           *
           * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
           * available, which can be applied to functions to make sure there are no nested
           * (reentrant) calls to them.
           *
           * Note that because there is a single `nonReentrant` guard, functions marked as
           * `nonReentrant` may not call one another. This can be worked around by making
           * those functions `private`, and then adding `external` `nonReentrant` entry
           * points to them.
           *
           * TIP: If you would like to learn more about reentrancy and alternative ways
           * to protect against it, check out our blog post
           * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
           */
          abstract contract ReentrancyGuard {
              // Booleans are more expensive than uint256 or any type that takes up a full
              // word because each write operation emits an extra SLOAD to first read the
              // slot's contents, replace the bits taken up by the boolean, and then write
              // back. This is the compiler's defense against contract upgrades and
              // pointer aliasing, and it cannot be disabled.
              // The values being non-zero value makes deployment a bit more expensive,
              // but in exchange the refund on every call to nonReentrant will be lower in
              // amount. Since refunds are capped to a percentage of the total
              // transaction's gas, it is best to keep them low in cases like this one, to
              // increase the likelihood of the full refund coming into effect.
              uint256 private constant NOT_ENTERED = 1;
              uint256 private constant ENTERED = 2;
              uint256 private _status;
              /**
               * @dev Unauthorized reentrant call.
               */
              error ReentrancyGuardReentrantCall();
              constructor() {
                  _status = NOT_ENTERED;
              }
              /**
               * @dev Prevents a contract from calling itself, directly or indirectly.
               * Calling a `nonReentrant` function from another `nonReentrant`
               * function is not supported. It is possible to prevent this from happening
               * by making the `nonReentrant` function external, and making it call a
               * `private` function that does the actual work.
               */
              modifier nonReentrant() {
                  _nonReentrantBefore();
                  _;
                  _nonReentrantAfter();
              }
              function _nonReentrantBefore() private {
                  // On the first call to nonReentrant, _status will be NOT_ENTERED
                  if (_status == ENTERED) {
                      revert ReentrancyGuardReentrantCall();
                  }
                  // Any calls to nonReentrant after this point will fail
                  _status = ENTERED;
              }
              function _nonReentrantAfter() private {
                  // By storing the original value once again, a refund is triggered (see
                  // https://eips.ethereum.org/EIPS/eip-2200)
                  _status = NOT_ENTERED;
              }
              /**
               * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
               * `nonReentrant` function in the call stack.
               */
              function _reentrancyGuardEntered() internal view returns (bool) {
                  return _status == ENTERED;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)
          pragma solidity ^0.8.20;
          import {StorageSlot} from "./StorageSlot.sol";
          // | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
          // | length  | 0x                                                              BB |
          type ShortString is bytes32;
          /**
           * @dev This library provides functions to convert short memory strings
           * into a `ShortString` type that can be used as an immutable variable.
           *
           * Strings of arbitrary length can be optimized using this library if
           * they are short enough (up to 31 bytes) by packing them with their
           * length (1 byte) in a single EVM word (32 bytes). Additionally, a
           * fallback mechanism can be used for every other case.
           *
           * Usage example:
           *
           * ```solidity
           * contract Named {
           *     using ShortStrings for *;
           *
           *     ShortString private immutable _name;
           *     string private _nameFallback;
           *
           *     constructor(string memory contractName) {
           *         _name = contractName.toShortStringWithFallback(_nameFallback);
           *     }
           *
           *     function name() external view returns (string memory) {
           *         return _name.toStringWithFallback(_nameFallback);
           *     }
           * }
           * ```
           */
          library ShortStrings {
              // Used as an identifier for strings longer than 31 bytes.
              bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
              error StringTooLong(string str);
              error InvalidShortString();
              /**
               * @dev Encode a string of at most 31 chars into a `ShortString`.
               *
               * This will trigger a `StringTooLong` error is the input string is too long.
               */
              function toShortString(string memory str) internal pure returns (ShortString) {
                  bytes memory bstr = bytes(str);
                  if (bstr.length > 31) {
                      revert StringTooLong(str);
                  }
                  return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
              }
              /**
               * @dev Decode a `ShortString` back to a "normal" string.
               */
              function toString(ShortString sstr) internal pure returns (string memory) {
                  uint256 len = byteLength(sstr);
                  // using `new string(len)` would work locally but is not memory safe.
                  string memory str = new string(32);
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(str, len)
                      mstore(add(str, 0x20), sstr)
                  }
                  return str;
              }
              /**
               * @dev Return the length of a `ShortString`.
               */
              function byteLength(ShortString sstr) internal pure returns (uint256) {
                  uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
                  if (result > 31) {
                      revert InvalidShortString();
                  }
                  return result;
              }
              /**
               * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
               */
              function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
                  if (bytes(value).length < 32) {
                      return toShortString(value);
                  } else {
                      StorageSlot.getStringSlot(store).value = value;
                      return ShortString.wrap(FALLBACK_SENTINEL);
                  }
              }
              /**
               * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
               */
              function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
                  if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                      return toString(value);
                  } else {
                      return store;
                  }
              }
              /**
               * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
               * {setWithFallback}.
               *
               * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
               * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
               */
              function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
                  if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
                      return byteLength(value);
                  } else {
                      return bytes(store).length;
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
          // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
          pragma solidity ^0.8.20;
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```solidity
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(newImplementation.code.length > 0);
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
              struct BooleanSlot {
                  bool value;
              }
              struct Bytes32Slot {
                  bytes32 value;
              }
              struct Uint256Slot {
                  uint256 value;
              }
              struct StringSlot {
                  string value;
              }
              struct BytesSlot {
                  bytes value;
              }
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` with member `value` located at `slot`.
               */
              function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
               */
              function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` with member `value` located at `slot`.
               */
              function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
               */
              function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
          pragma solidity ^0.8.20;
          import {Math} from "./math/Math.sol";
          import {SignedMath} from "./math/SignedMath.sol";
          /**
           * @dev String operations.
           */
          library Strings {
              bytes16 private constant HEX_DIGITS = "0123456789abcdef";
              uint8 private constant ADDRESS_LENGTH = 20;
              /**
               * @dev The `value` string doesn't fit in the specified `length`.
               */
              error StringsInsufficientHexLength(uint256 value, uint256 length);
              /**
               * @dev Converts a `uint256` to its ASCII `string` decimal representation.
               */
              function toString(uint256 value) internal pure returns (string memory) {
                  unchecked {
                      uint256 length = Math.log10(value) + 1;
                      string memory buffer = new string(length);
                      uint256 ptr;
                      /// @solidity memory-safe-assembly
                      assembly {
                          ptr := add(buffer, add(32, length))
                      }
                      while (true) {
                          ptr--;
                          /// @solidity memory-safe-assembly
                          assembly {
                              mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                          }
                          value /= 10;
                          if (value == 0) break;
                      }
                      return buffer;
                  }
              }
              /**
               * @dev Converts a `int256` to its ASCII `string` decimal representation.
               */
              function toStringSigned(int256 value) internal pure returns (string memory) {
                  return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
               */
              function toHexString(uint256 value) internal pure returns (string memory) {
                  unchecked {
                      return toHexString(value, Math.log256(value) + 1);
                  }
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
               */
              function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                  uint256 localValue = value;
                  bytes memory buffer = new bytes(2 * length + 2);
                  buffer[0] = "0";
                  buffer[1] = "x";
                  for (uint256 i = 2 * length + 1; i > 1; --i) {
                      buffer[i] = HEX_DIGITS[localValue & 0xf];
                      localValue >>= 4;
                  }
                  if (localValue != 0) {
                      revert StringsInsufficientHexLength(value, length);
                  }
                  return string(buffer);
              }
              /**
               * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
               * representation.
               */
              function toHexString(address addr) internal pure returns (string memory) {
                  return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
              }
              /**
               * @dev Returns true if the two strings are equal.
               */
              function equal(string memory a, string memory b) internal pure returns (bool) {
                  return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
              }
          }
          // SPDX-License-Identifier: BUSL-1.1
          pragma solidity 0.8.24;
          import './libraries/TransferHelper.sol';
          import './interfaces/IVestingPlans.sol';
          import './interfaces/ILockupPlans.sol';
          import './interfaces/IDelegatePlan.sol';
          import './interfaces/IERC20Votes.sol';
          import '@openzeppelin/contracts/utils/ReentrancyGuard.sol';
          import '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
          import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
          import '@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol';
          import '@openzeppelin/contracts/utils/cryptography/EIP712.sol';
          import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
          import '@openzeppelin/contracts/utils/Nonces.sol';
          /// @title ClaimCampaigns - The smart contract to distribute your tokens to the community via claims
          /// @notice This tool allows token projects to safely, securely and efficiently distribute your tokens in large scale to your community, whereby they can claim them based on your criteria of wallet address and amount.
          contract DelegatedClaimCampaigns is ERC721Holder, ReentrancyGuard, EIP712, Nonces {
            /// @dev this claimhash is used for EIP712 signing of the claim functions
            bytes32 private constant CLAIM_TYPEHASH =
              keccak256('Claim(bytes16 campaignId,address claimer,uint256 claimAmount,uint256 nonce,uint256 expiry)');
            bytes32 private constant MULITCLAIM_TYPEHASH =
              keccak256(
                'MultiClaim(bytes16 campaignId,address claimer,uint256 claimAmount,uint256 nonce,uint256 expiry,uint256 numberOfClaims)'
              );
            bytes32 private constant DELEGATINGCLAIM_TYPEHASH =
              keccak256(
                'DelegatingClaim(bytes16 campaignId,address claimer,uint256 claimAmount,address delegatee,uint256 nonce,uint256 expiry)'
              );
            mapping(address => bool) public tokenLockers;
            /// @dev an enum defining the different types of claims to be made
            /// @param Unlocked means that tokens claimed are liquid and not locked at all
            /// @param Locked means that the tokens claimed will be locked inside a TokenLockups plan
            /// @param Vesting means the tokens claimed will be locked inside a TokenVesting plan
            enum TokenLockup {
              Unlocked,
              Locked,
              Vesting
            }
            /// @notice the struct that defines the Locked and Vesting parameters for each vesting
            /// @dev this can be ignored for Unlocked claim campaigns
            /// @param tokenLocker is the address of the TokenLockup or TokenVesting plans contract that will lock the tokens
            /// @param start is the start date when the unlock / vesting begins
            /// @param cliff is the single cliff date for unlocking and vesting plans, when all tokens prior to the cliff remained locked and unvested
            /// @param period is the amount of seconds in each discrete period.
            /// @param periods is the total number of periods that the tokens will be locked or vested for
            struct ClaimLockup {
              address tokenLocker;
              uint256 start;
              uint256 cliff;
              uint256 period;
              uint256 periods;
            }
            /// @notice Campaign is the struct that defines a claim campaign in general. The Campaign is related to a one time use, related to a merkle tree that pre defines all of the wallets and amounts those wallets can claim
            /// once the amount is 0, the campaign is ended. The campaign can also be terminated at any time.
            /// @param manager is the address of the campaign manager who is in charge of cancelling the campaign - AND if the campaign is setup for vesting, this address will be used as the vestingAdmin wallet for all of the vesting plans created
            /// the manager is typically the msg.sender wallet, but can be defined as something else in case.
            /// @param token is the address of the token to be claimed by the wallets, which is pulled into the contract during the campaign
            /// @param amount is the total amount of tokens left in the Campaign. this starts out as the entire amount in the campaign, and gets reduced each time a claim is made
            /// @param start is the start time of the campaign when ppl can begin claiming their tokens
            /// @param end is a unix time that can be used as a safety mechanism to put a hard end date for a campaign, this can also be far far in the future to effectively be forever claims
            /// @param tokenLockup is the enum (uint8) that describes how and if the tokens will be locked or vesting when they are claimed. If set to unlocked, claimants will just get the tokens, but if they are Locked / vesting, they will receive the NFT Tokenlockup plan or vesting plan
            /// @param root is the root of the merkle tree used for the claims.
            /// @param delegating is a boolean defining whether the claims need to be delegated when claimed or not
            struct Campaign {
              address manager;
              address token;
              uint256 amount;
              uint256 start;
              uint256 end;
              TokenLockup tokenLockup;
              bytes32 root;
              bool delegating;
            }
            /// @dev this is for the EIP712 signatures used for claiming tokens on behalf of users
            /// @param nonce is the nonce of the claimer, which is used to prevent replay attacks
            /// @param expiry is the expiry time of the claim, which is used to prevent replay attacks
            /// @param v is the v value of the signature
            /// @param r is the r value of the signature
            /// @param s is the s value of the signature
            struct SignatureParams {
              uint256 nonce;
              uint256 expiry;
              uint8 v;
              bytes32 r;
              bytes32 s;
            }
            /// @dev we use UUIDs or CIDs to map to a specific unique campaign. The UUID or CID is typically generated when the merkle tree is created, and then that id or cid is the identifier of the file in S3 or IPFS
            mapping(bytes16 => Campaign) public campaigns;
            /// @dev the same UUID is maped to the ClaimLockup details for the specific campaign
            mapping(bytes16 => ClaimLockup) public claimLockups;
            /// @dev this maps the UUID that have already been used, so that a campaign cannot be duplicated
            mapping(bytes16 => bool) public usedIds;
            mapping(bytes16 => uint256) private _campaignBlockNumber;
            //maps campaign id to a wallet address, which is flipped to true when claimed
            mapping(bytes16 => mapping(address => bool)) public claimed;
            //maps campaign id to the vesting admin address when the campaign is a vesting campaign
            mapping(bytes16 => address) private _vestingAdmins;
            // events
            event CampaignStarted(bytes16 indexed id, Campaign campaign, uint256 totalClaimers);
            event ClaimLockupCreated(bytes16 indexed id, ClaimLockup claimLockup);
            event CampaignCancelled(bytes16 indexed id);
            event LockedTokensClaimed(
              bytes16 indexed id,
              address indexed claimer,
              uint256 indexed tokenId,
              uint256 amountClaimed,
              uint256 amountRemaining
            );
            event UnlockedTokensClaimed(
              bytes16 indexed id,
              address indexed claimer,
              uint256 amountClaimed,
              uint256 amountRemaining
            );
            event Claimed(address indexed recipient, uint256 indexed amount);
            /// @notice the constructor of the contract, which sets the name and version of the EIP712 contract
            constructor(string memory name, string memory version, address[] memory _tokenLockups) EIP712(name, version) {
              for (uint256 i = 0; i < _tokenLockups.length; i++) {
                tokenLockers[_tokenLockups[i]] = true;
              }
            }
            /**********EXTERNAL CREATE& CANCEL CLAIMS FUNCTIONS********************************************************************************************/
            /// @notice primary function for creating an unlocked claims campaign. This function will pull the amount of tokens in the campaign struct, and map the campaign to the id.
            /// @dev the merkle tree needs to be pre-generated, so that you can upload the root and the uuid for the function
            /// @param id is the uuid or CID of the file that stores the merkle tree
            /// @param campaign is the struct of the campaign info, including the total amount tokens to be distributed via claims, and the root of the merkle tree
            /// @param totalClaimers is the total number of claimers that can claim from the campaign
            function createUnlockedCampaign(bytes16 id, Campaign memory campaign, uint256 totalClaimers) external nonReentrant {
              require(!usedIds[id], 'in use');
              require(id != bytes16(0), '0_id');
              usedIds[id] = true;
              require(campaign.token != address(0), '0_address');
              require(campaign.manager != address(0), '0_manager');
              require(campaign.amount > 0, '0_amount');
              require(campaign.end > block.timestamp && campaign.end > campaign.start, 'end error');
              require(campaign.tokenLockup == TokenLockup.Unlocked, 'locked');
              if (campaign.delegating) {
                require(IERC20Votes(campaign.token).delegates(address(this)) == address(0), '!erc20votes');
              }
              TransferHelper.transferTokens(campaign.token, msg.sender, address(this), campaign.amount);
              campaigns[id] = campaign;
              _campaignBlockNumber[id] = block.number;
              emit CampaignStarted(id, campaign, totalClaimers);
            }
            /// @notice primary function for creating an locked or vesting claims campaign. This function will pull the amount of tokens in the campaign struct, and map the campaign and claimLockup to the id.
            /// additionally it will check that the lockup details are valid, and perform an allowance increase to the contract for when tokens are claimed they can be pulled.
            /// @dev the merkle tree needs to be pre-generated, so that you can upload the root and the uuid for the function
            /// @param id is the uuid or CID of the file that stores the merkle tree
            /// @param campaign is the struct of the campaign info, including the total amount tokens to be distributed via claims, and the root of the merkle tree, plus the lockup type of either 1 (lockup) or 2 (vesting)
            /// @param claimLockup is the struct that defines the characteristics of the lockup for each token claimed.
            /// @param vestingAdmin is the address of the vesting admin, which is used for the vesting plans, and is typically the msg.sender
            function createLockedCampaign(
              bytes16 id,
              Campaign memory campaign,
              ClaimLockup memory claimLockup,
              address vestingAdmin,
              uint256 totalClaimers
            ) external nonReentrant {
              require(!usedIds[id], 'in use');
              require(id != bytes16(0), '0_id');
              usedIds[id] = true;
              require(campaign.token != address(0), '0_address');
              require(campaign.manager != address(0), '0_manager');
              require(campaign.amount > 0, '0_amount');
              require(campaign.end > block.timestamp && campaign.end > campaign.start, 'end error');
              require(campaign.tokenLockup != TokenLockup.Unlocked, '!locked');
              require(claimLockup.periods > 0, '0_periods');
              require(claimLockup.period > 0, '0_period');
              require(tokenLockers[claimLockup.tokenLocker], 'invalid locker');
              if (campaign.delegating) {
                require(IERC20Votes(campaign.token).delegates(address(this)) == address(0), '!erc20votes');
              }
              if (campaign.tokenLockup == TokenLockup.Vesting) {
                require(vestingAdmin != address(0), '0_admin');
                _vestingAdmins[id] = vestingAdmin;
              }
              require(claimLockup.tokenLocker != address(0), 'invalide locker');
              TransferHelper.transferTokens(campaign.token, msg.sender, address(this), campaign.amount);
              claimLockups[id] = claimLockup;
              campaigns[id] = campaign;
              _campaignBlockNumber[id] = block.number;
              emit ClaimLockupCreated(id, claimLockup);
              emit CampaignStarted(id, campaign, totalClaimers);
            }
            /// @notice this function allows the campaign manager to cancel an ongoing campaign at anytime. Cancelling a campaign will return any unclaimed tokens, and then prevent anyone from claiming additional tokens
            /// @param campaignIds is the id of the campaign to be cancelled
            function cancelCampaigns(bytes16[] memory campaignIds) external nonReentrant {
              for (uint256 i = 0; i < campaignIds.length; i++) {
                Campaign memory campaign = campaigns[campaignIds[i]];
                require(campaign.manager == msg.sender, '!manager');
                require(_campaignBlockNumber[campaignIds[i]] < block.number, 'same block');
                require((IERC20(campaign.token).allowance(address(this), claimLockups[campaignIds[i]].tokenLocker)) == 0, 'allowance error');
                delete campaigns[campaignIds[i]];
                delete claimLockups[campaignIds[i]];
                TransferHelper.withdrawTokens(campaign.token, msg.sender, campaign.amount);
                emit CampaignCancelled(campaignIds[i]);
              }
            }
            /***************EXTERNAL CLAIMING FUNCTIONS***************************************************************************************************/
            /// @notice the primary function for claiming tokens from a campaign if there is no delegation requirement
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimAmount is the amount of tokens to claim
            /// @dev the function checks that the claimer has not already claimed, and that the campaign is not delegating, and then calls the internal claim function
            function claim(bytes16 campaignId, bytes32[] calldata proof, uint256 claimAmount) external nonReentrant {
              require(!claimed[campaignId][msg.sender], 'already claimed');
              require(!campaigns[campaignId].delegating, 'must delegate');
              if (campaigns[campaignId].tokenLockup == TokenLockup.Unlocked) {
                _claimUnlockedTokens(campaignId, proof, msg.sender, claimAmount);
              } else {
                _claimLockedTokens(campaignId, proof, msg.sender, claimAmount);
              }
            }
            /// @notice function to claim tokens from multiple campaigns assuming none of them require delegation
            /// @param campaignIds is the id of the campaign to claim from
            /// @param proofs is the proof of the leaf in the merkle tree
            /// @param claimAmounts is the amount of tokens to claim
            function claimMultiple(
              bytes16[] calldata campaignIds,
              bytes32[][] calldata proofs,
              uint256[] calldata claimAmounts
            ) external nonReentrant {
              require(campaignIds.length == proofs.length, 'length mismatch');
              require(campaignIds.length == claimAmounts.length, 'length mismatch');
              uint256 claimNum = campaignIds.length;
              for (uint256 i; i < claimNum; ++i) {
                require(!claimed[campaignIds[i]][msg.sender], 'already claimed');
                require(!campaigns[campaignIds[i]].delegating, 'must delegate');
                if (campaigns[campaignIds[i]].tokenLockup == TokenLockup.Unlocked) {
                  _claimUnlockedTokens(campaignIds[i], proofs[i], msg.sender, claimAmounts[i]);
                } else {
                  _claimLockedTokens(campaignIds[i], proofs[i], msg.sender, claimAmounts[i]);
                }
              }
            }
            /// @notice function to claim tokens using the EIP712 signature for claiming on behalf of a user
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimer is the address of the beneficial owner of the claim
            /// @param claimAmount is the amount of tokens to claim
            /// @param claimSignature is the signature provided by the beneficial owner (the claimer) to the user of the function to claim on their behalf
            function claimWithSig(
              bytes16 campaignId,
              bytes32[] calldata proof,
              address claimer,
              uint256 claimAmount,
              SignatureParams memory claimSignature
            ) external nonReentrant {
              require(!claimed[campaignId][claimer], 'already claimed');
              require(!campaigns[campaignId].delegating, 'must delegate');
              require(claimSignature.expiry > block.timestamp, 'claim expired');
              address signer = ECDSA.recover(
                _hashTypedDataV4(
                  keccak256(
                    abi.encode(CLAIM_TYPEHASH, campaignId, claimer, claimAmount, claimSignature.nonce, claimSignature.expiry)
                  )
                ),
                claimSignature.v,
                claimSignature.r,
                claimSignature.s
              );
              require(signer == claimer, 'invalid claim signature');
              _useCheckedNonce(claimer, claimSignature.nonce);
              if (campaigns[campaignId].tokenLockup == TokenLockup.Unlocked) {
                _claimUnlockedTokens(campaignId, proof, claimer, claimAmount);
              } else {
                _claimLockedTokens(campaignId, proof, claimer, claimAmount);
              }
            }
            function claimMultipleWithSig(
              bytes16[] calldata campaignIds,
              bytes32[][] calldata proofs,
              address claimer,
              uint256[] calldata claimAmounts,
              SignatureParams memory claimSignature
            ) external nonReentrant {
              require(campaignIds.length == proofs.length, 'length mismatch');
              require(campaignIds.length == claimAmounts.length, 'length mismatch');
              require(claimSignature.expiry > block.timestamp, 'claim expired');
              address signer = ECDSA.recover(
                _hashTypedDataV4(
                  keccak256(
                    abi.encode(
                      MULITCLAIM_TYPEHASH,
                      campaignIds[0],
                      claimer,
                      claimAmounts[0],
                      claimSignature.nonce,
                      claimSignature.expiry,
                      campaignIds.length
                    )
                  )
                ),
                claimSignature.v,
                claimSignature.r,
                claimSignature.s
              );
              require(signer == claimer, 'invalid claim signature');
              _useCheckedNonce(claimer, claimSignature.nonce);
              uint256 claimNum = campaignIds.length;
              for (uint256 i; i < claimNum; ++i) {
                require(!claimed[campaignIds[i]][claimer], 'already claimed');
                require(!campaigns[campaignIds[i]].delegating, 'must delegate');
                if (campaigns[campaignIds[i]].tokenLockup == TokenLockup.Unlocked) {
                  _claimUnlockedTokens(campaignIds[i], proofs[i], claimer, claimAmounts[i]);
                } else {
                  _claimLockedTokens(campaignIds[i], proofs[i], claimer, claimAmounts[i]);
                }
              }
            }
            /// @notice function to claim and delegate tokens in a single transaction. This is required when a claim is delegating, but can also be used for a claim not requiring it, but if the end user wants to claim and delegate in a single transaction
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimAmount is the amount of tokens to claim
            /// @param delegatee is the address of the wallet to delegate the claim to
            /// @param delegationSignature is a signature required Only if the user is claiming unlocked tokens, used to call the delegateWithSig function on the ERC20Votes token contract
            /// @dev the delegation signature is not require and empty entries can be passed in if the campaign is locked or vesting
            function claimAndDelegate(
              bytes16 campaignId,
              bytes32[] memory proof,
              uint256 claimAmount,
              address delegatee,
              SignatureParams memory delegationSignature
            ) external nonReentrant {
              require(delegatee != address(0), '0_delegatee');
              require(!claimed[campaignId][msg.sender], 'already claimed');
              if (campaigns[campaignId].tokenLockup == TokenLockup.Unlocked) {
                _claimUnlockedAndDelegate(
                  campaignId,
                  proof,
                  msg.sender,
                  claimAmount,
                  delegatee,
                  delegationSignature.nonce,
                  delegationSignature.expiry,
                  delegationSignature.v,
                  delegationSignature.r,
                  delegationSignature.s
                );
              } else {
                _claimLockedAndDelegate(campaignId, proof, msg.sender, claimAmount, delegatee);
              }
            }
            /// @notice function to claim and delegate tokens using the EIP712 signature for claiming on behalf of a user
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimer is the address of the beneficial owner of the claim
            /// @param claimAmount is the amount of tokens to claim
            /// @param claimSignature is the signature provided by the beneficial owner (the claimer) to the user of the function to claim on their behalf
            /// @param delegatee is the address of the wallet to delegate the claim to
            /// @param delegationSignature is a signature required Only if the user is claiming unlocked tokens, used to call the delegateWithSig function on the ERC20Votes token contract
            /// @dev the delegation signature is not require and empty entries can be passed in if the campaign is locked or vesting
            function claimAndDelegateWithSig(
              bytes16 campaignId,
              bytes32[] memory proof,
              address claimer,
              uint256 claimAmount,
              SignatureParams memory claimSignature,
              address delegatee,
              SignatureParams memory delegationSignature
            ) external nonReentrant {
              require(delegatee != address(0), '0_delegatee');
              require(!claimed[campaignId][claimer], 'already claimed');
              require(claimSignature.expiry > block.timestamp, 'claim expired');
              address signer = ECDSA.recover(
                _hashTypedDataV4(
                  keccak256(
                    abi.encode(
                      DELEGATINGCLAIM_TYPEHASH,
                      campaignId,
                      claimer,
                      claimAmount,
                      delegatee,
                      claimSignature.nonce,
                      claimSignature.expiry
                    )
                  )
                ),
                claimSignature.v,
                claimSignature.r,
                claimSignature.s
              );
              require(signer == claimer, 'invalid claim signature');
              _useCheckedNonce(claimer, claimSignature.nonce);
              if (campaigns[campaignId].tokenLockup == TokenLockup.Unlocked) {
                _claimUnlockedAndDelegate(
                  campaignId,
                  proof,
                  claimer,
                  claimAmount,
                  delegatee,
                  delegationSignature.nonce,
                  delegationSignature.expiry,
                  delegationSignature.v,
                  delegationSignature.r,
                  delegationSignature.s
                );
              } else {
                _claimLockedAndDelegate(campaignId, proof, claimer, claimAmount, delegatee);
              }
            }
            /*****INTERNAL CLAIMINIG FUNCTIONS**********************************************************************************************/
            /// @notice internal function to claim unlocked tokens without delegation
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimer is the address of the beneficial owner of the claim
            /// @param claimAmount is the amount of tokens to claim
            /// @dev the function assumes that signature validation has already been completed, so no need to check that the one claiming is the claimer - as tokens will be delivered to the claimer regardless
            /// the function checks that the campaign has started, that it has not ended, that the proof is valid with the inputs of root, proof, claimer, and claim amount
            /// it checks that the campaign is funded - though this require statement should never be triggered its here as an extra layer of security
            /// it checks that the token lockup type is unlocked
            /// then the function will set the claimed mapping to true so that the claimer cannot claim again
            /// it will reduce the amount of tokens in the campaign by the claim amount
            /// if the campaign amount is 0, then the campaign is deleted as it is complete and over
            /// then the tokens are transferred to the claimer
            function _claimUnlockedTokens(
              bytes16 campaignId,
              bytes32[] memory proof,
              address claimer,
              uint256 claimAmount
            ) internal returns (address token) {
              Campaign memory campaign = campaigns[campaignId];
              require(campaign.start <= block.timestamp, '!started');
              require(campaign.end > block.timestamp, 'campaign ended');
              require(verify(campaign.root, proof, claimer, claimAmount), '!eligible');
              require(campaign.amount >= claimAmount, 'campaign unfunded');
              require(campaign.tokenLockup == TokenLockup.Unlocked, '!unlocked');
              claimed[campaignId][claimer] = true;
              campaigns[campaignId].amount -= claimAmount;
              if (campaigns[campaignId].amount == 0) {
                delete campaigns[campaignId];
              }
              TransferHelper.withdrawTokens(campaign.token, claimer, claimAmount);
              emit UnlockedTokensClaimed(campaignId, claimer, claimAmount, campaigns[campaignId].amount);
              return campaign.token;
            }
            /// @notice internal function to claim unlocked tokens and delegate
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimer is the address of the beneficial owner of the claim
            /// @param claimAmount is the amount of tokens to claim
            /// @param delegatee is the address of the wallet to delegate the claim to
            /// @param nonce is the nonce of the claimer, which is used to prevent replay attacks
            /// @param expiry is the expiry time of the claim, which is used to prevent replay attacks
            /// @param v is the v value of the signature
            /// @param r is the r value of the signature
            /// @param s is the s value of the signature
            /// @dev this function calls the above internal function to claimUnlockedTokens and then now that the tokens are in the claimers wallet
            /// it uses the delegatebySig function on ERC20Votes to delegate the claimers wallet to the delegatee
            /// it checks that the actual delegation was completed correctly and reverts if not
            /// @dev if the token does not conform to the ERC20Votes interface with the delegateBySig function then it will revert
            function _claimUnlockedAndDelegate(
              bytes16 campaignId,
              bytes32[] memory proof,
              address claimer,
              uint256 claimAmount,
              address delegatee,
              uint256 nonce,
              uint256 expiry,
              uint8 v,
              bytes32 r,
              bytes32 s
            ) internal {
              address token = _claimUnlockedTokens(campaignId, proof, claimer, claimAmount);
              address delegatedTo = IERC20Votes(token).delegates(claimer);
              if (delegatedTo != delegatee) {
                IERC20Votes(token).delegateBySig(delegatee, nonce, expiry, v, r, s);
                delegatedTo = IERC20Votes(token).delegates(claimer);
                require(delegatedTo == delegatee, 'delegation failed');
              }
              emit Claimed(claimer, claimAmount);
            }
            /// @notice internal function to claim locked tokens without delegation
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimer is the address of the beneficial owner of the claim
            /// @param claimAmount is the amount of tokens to claim
            /// @dev the function checks that the campaign has started, that it has not ended, that the proof is valid with the inputs of root, proof, claimer, and claim amount
            /// it checks that the campaign is funded - though this require statement should never be triggered its here as an extra layer of security, and then it reduces the campaign amount by the claim amount
            /// if the campaign amount is 0, then the campaign is deleted as it is complete and over
            /// the function calculates the rate to be used for the lockup or vesting plan based on the number of periods and the claim amount
            /// then it creates a lockup plan or vesting plan based on the tokenLockup type in the campaign struct
            function _claimLockedTokens(
              bytes16 campaignId,
              bytes32[] memory proof,
              address claimer,
              uint256 claimAmount
            ) internal {
              Campaign memory campaign = campaigns[campaignId];
              ClaimLockup memory c = claimLockups[campaignId];
              require(campaign.start <= block.timestamp, '!started');
              require(campaign.end > block.timestamp, 'campaign ended');
              require(verify(campaign.root, proof, claimer, claimAmount), '!eligible');
              require(campaign.amount >= claimAmount, 'campaign unfunded');
              claimed[campaignId][claimer] = true;
              campaigns[campaignId].amount -= claimAmount;
              if (campaigns[campaignId].amount == 0) {
                delete campaigns[campaignId];
                delete claimLockups[campaignId];
              }
              uint256 rate;
              if (claimAmount % c.periods == 0) {
                rate = claimAmount / c.periods;
              } else {
                rate = claimAmount / c.periods + 1;
              }
              uint256 start = c.start == 0 ? block.timestamp : c.start;
              uint256 tokenId;
              SafeERC20.safeIncreaseAllowance(IERC20(campaign.token), c.tokenLocker, claimAmount);
              if (campaign.tokenLockup == TokenLockup.Locked) {
                tokenId = ILockupPlans(c.tokenLocker).createPlan(
                  claimer,
                  campaign.token,
                  claimAmount,
                  start,
                  c.cliff,
                  rate,
                  c.period
                );
              } else {
                tokenId = IVestingPlans(c.tokenLocker).createPlan(
                  claimer,
                  campaign.token,
                  claimAmount,
                  start,
                  c.cliff,
                  rate,
                  c.period,
                  _vestingAdmins[campaignId],
                  true
                );
              }
              require((IERC20(campaign.token).allowance(address(this), c.tokenLocker)) == 0, 'allowance error');
              emit LockedTokensClaimed(campaignId, claimer, tokenId, claimAmount, campaigns[campaignId].amount);
            }
            /// @notice internal function to claim locked tokens and delegate
            /// @param campaignId is the id of the campaign to claim from
            /// @param proof is the proof of the leaf in the merkle tree
            /// @param claimer is the address of the beneficial owner of the claim
            /// @param claimAmount is the amount of tokens to claim
            /// @param delegatee is the address of the wallet to delegate the claim to
            /// @dev the function checks that the campaign has started, that it has not ended, that the proof is valid with the inputs of root, proof, claimer, and claim amount
            /// it checks that the campaign is funded - though this require statement should never be triggered its here as an extra layer of security
            /// it checks that the token is an ERC20Votes type token to save gas if it is not
            /// it sets the claimed mapping to true so that the claimer cannot claim again
            /// it reduces the campaign amount by the claim amount
            /// if the campaign amount is 0, then the campaign is deleted as it is complete and over
            /// the function calculates the rate to be used for the lockup or vesting plan based on the number of periods and the claim amount
            /// then it creates a lockup plan or vesting plan based on the tokenLockup type in the campaign struct.
            /// the lockup or vesting plan is issued to this contract address - since only the owner can delegate the plan, and then it delegates the plan to the delegatee
            /// after delegation is complete, then it transfers the plan to the claimer
            /// and for vesting it transfers the vesting admin to the vesting admin
            function _claimLockedAndDelegate(
              bytes16 campaignId,
              bytes32[] memory proof,
              address claimer,
              uint256 claimAmount,
              address delegatee
            ) internal {
              Campaign memory campaign = campaigns[campaignId];
              ClaimLockup memory c = claimLockups[campaignId];
              require(campaign.start <= block.timestamp, '!started');
              require(campaign.end > block.timestamp, 'campaign ended');
              require(verify(campaign.root, proof, claimer, claimAmount), '!eligible');
              require(campaign.amount >= claimAmount, 'campaign unfunded');
              claimed[campaignId][claimer] = true;
              campaigns[campaignId].amount -= claimAmount;
              if (campaigns[campaignId].amount == 0) {
                delete campaigns[campaignId];
                delete claimLockups[campaignId];
              }
              uint256 rate;
              if (claimAmount % c.periods == 0) {
                rate = claimAmount / c.periods;
              } else {
                rate = claimAmount / c.periods + 1;
              }
              uint256 start = c.start == 0 ? block.timestamp : c.start;
              uint256 tokenId;
              SafeERC20.safeIncreaseAllowance(IERC20(campaign.token), c.tokenLocker, claimAmount);
              if (campaign.tokenLockup == TokenLockup.Locked) {
                tokenId = ILockupPlans(c.tokenLocker).createPlan(
                  address(this),
                  campaign.token,
                  claimAmount,
                  start,
                  c.cliff,
                  rate,
                  c.period
                );
                IDelegatePlan(c.tokenLocker).delegate(tokenId, delegatee);
                IERC721(c.tokenLocker).transferFrom(address(this), claimer, tokenId);
              } else {
                tokenId = IVestingPlans(c.tokenLocker).createPlan(
                  address(this),
                  campaign.token,
                  claimAmount,
                  start,
                  c.cliff,
                  rate,
                  c.period,
                  address(this),
                  true
                );
                IDelegatePlan(c.tokenLocker).delegate(tokenId, delegatee);
                IERC721(c.tokenLocker).transferFrom(address(this), claimer, tokenId);
                IVestingPlans(c.tokenLocker).changeVestingPlanAdmin(tokenId, _vestingAdmins[campaignId]);
              }
              require((IERC20(campaign.token).allowance(address(this), c.tokenLocker)) == 0, 'allowance error');
              emit Claimed(claimer, claimAmount);
              emit LockedTokensClaimed(campaignId, claimer, tokenId, claimAmount, campaigns[campaignId].amount);
            }
            /// @dev the internal verify function from the open zepellin library.
            /// this function inputs the root, proof, wallet address of the claimer, and amount of tokens, and then computes the validity of the leaf with the proof and root.
            /// @param root is the root of the merkle tree
            /// @param proof is the proof for the specific leaf
            /// @param claimer is the address of the claimer used in making the leaf
            /// @param amount is the amount of tokens to be claimed, the other piece of data in the leaf
            function verify(bytes32 root, bytes32[] memory proof, address claimer, uint256 amount) public pure returns (bool) {
              bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(claimer, amount))));
              require(MerkleProof.verify(proof, root, leaf), 'Invalid proof');
              return true;
            }
          }
          // SPDX-License-Identifier: BUSL-1.1
          pragma solidity 0.8.24;
          interface IDelegatePlan {
            function delegate(uint256 planId, address delegatee) external;
          }// SPDX-License-Identifier: BUSL-1.1
          pragma solidity 0.8.24;
          interface IERC20Votes {
            function delegate(address delegatee) external;
            function delegates(address wallet) external view returns (address delegate);
            function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
          }// SPDX-License-Identifier: BUSL-1.1
          pragma solidity 0.8.24;
          interface ILockupPlans {
            function createPlan(
              address recipient,
              address token,
              uint256 amount,
              uint256 start,
              uint256 cliff,
              uint256 rate,
              uint256 period
            ) external returns (uint256);
          }
          // SPDX-License-Identifier: BUSL-1.1
          pragma solidity 0.8.24;
          interface IVestingPlans {
              function createPlan(
              address recipient,
              address token,
              uint256 amount,
              uint256 start,
              uint256 cliff,
              uint256 rate,
              uint256 period,
              address vestingAdmin,
              bool adminTransferOBO
            ) external returns (uint256);
            function changeVestingPlanAdmin(uint256 planId, address newVestingAdmin) external;
          }// SPDX-License-Identifier: BUSL-1.1
          pragma solidity 0.8.24;
          import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
          import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
          library TransferHelper {
            using SafeERC20 for IERC20;
            /// @notice Internal function used for standard ERC20 transferFrom method
            /// @notice it contains a pre and post balance check
            /// @notice as well as a check on the msg.senders balance
            /// @param token is the address of the ERC20 being transferred
            /// @param from is the remitting address
            /// @param to is the location where they are being delivered
            function transferTokens(
              address token,
              address from,
              address to,
              uint256 amount
            ) internal {
              uint256 priorBalance = IERC20(token).balanceOf(address(to));
              require(IERC20(token).balanceOf(from) >= amount, 'THL01');
              SafeERC20.safeTransferFrom(IERC20(token), from, to, amount);
              uint256 postBalance = IERC20(token).balanceOf(address(to));
              require(postBalance - priorBalance == amount, 'THL02');
            }
            /// @notice Internal function is used with standard ERC20 transfer method
            /// @notice this function ensures that the amount received is the amount sent with pre and post balance checking
            /// @param token is the ERC20 contract address that is being transferred
            /// @param to is the address of the recipient
            /// @param amount is the amount of tokens that are being transferred
            function withdrawTokens(
              address token,
              address to,
              uint256 amount
            ) internal {
              uint256 priorBalance = IERC20(token).balanceOf(address(to));
              SafeERC20.safeTransfer(IERC20(token), to, amount);
              uint256 postBalance = IERC20(token).balanceOf(address(to));
              require(postBalance - priorBalance == amount, 'THL02');
            }
          }
          

          File 2 of 3: TransparentUpgradeableProxy
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (proxy/transparent/TransparentUpgradeableProxy.sol)
          pragma solidity ^0.8.0;
          import "../ERC1967/ERC1967Proxy.sol";
          /**
           * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
           * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
           * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
           * include them in the ABI so this interface must be used to interact with it.
           */
          interface ITransparentUpgradeableProxy is IERC1967 {
              function admin() external view returns (address);
              function implementation() external view returns (address);
              function changeAdmin(address) external;
              function upgradeTo(address) external;
              function upgradeToAndCall(address, bytes memory) external payable;
          }
          /**
           * @dev This contract implements a proxy that is upgradeable by an admin.
           *
           * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
           * clashing], which can potentially be used in an attack, this contract uses the
           * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
           * things that go hand in hand:
           *
           * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
           * that call matches one of the admin functions exposed by the proxy itself.
           * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
           * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
           * "admin cannot fallback to proxy target".
           *
           * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
           * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
           * to sudden errors when trying to call a function from the proxy implementation.
           *
           * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
           * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
           *
           * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
           * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
           * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
           * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
           * implementation.
           *
           * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
           * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
           * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
           * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
           */
          contract TransparentUpgradeableProxy is ERC1967Proxy {
              /**
               * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
               * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
               */
              constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                  _changeAdmin(admin_);
              }
              /**
               * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
               *
               * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
               * implementation provides a function with the same selector.
               */
              modifier ifAdmin() {
                  if (msg.sender == _getAdmin()) {
                      _;
                  } else {
                      _fallback();
                  }
              }
              /**
               * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
               */
              function _fallback() internal virtual override {
                  if (msg.sender == _getAdmin()) {
                      bytes memory ret;
                      bytes4 selector = msg.sig;
                      if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                          ret = _dispatchUpgradeTo();
                      } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                          ret = _dispatchUpgradeToAndCall();
                      } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                          ret = _dispatchChangeAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                          ret = _dispatchAdmin();
                      } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                          ret = _dispatchImplementation();
                      } else {
                          revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                      }
                      assembly {
                          return(add(ret, 0x20), mload(ret))
                      }
                  } else {
                      super._fallback();
                  }
              }
              /**
               * @dev Returns the current admin.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
               */
              function _dispatchAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address admin = _getAdmin();
                  return abi.encode(admin);
              }
              /**
               * @dev Returns the current implementation.
               *
               * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
               * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
               * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
               */
              function _dispatchImplementation() private returns (bytes memory) {
                  _requireZeroValue();
                  address implementation = _implementation();
                  return abi.encode(implementation);
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _dispatchChangeAdmin() private returns (bytes memory) {
                  _requireZeroValue();
                  address newAdmin = abi.decode(msg.data[4:], (address));
                  _changeAdmin(newAdmin);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy.
               */
              function _dispatchUpgradeTo() private returns (bytes memory) {
                  _requireZeroValue();
                  address newImplementation = abi.decode(msg.data[4:], (address));
                  _upgradeToAndCall(newImplementation, bytes(""), false);
                  return "";
              }
              /**
               * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
               * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
               * proxied contract.
               */
              function _dispatchUpgradeToAndCall() private returns (bytes memory) {
                  (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                  _upgradeToAndCall(newImplementation, data, true);
                  return "";
              }
              /**
               * @dev Returns the current admin.
               *
               * CAUTION: This function is deprecated. Use {ERC1967Upgrade-_getAdmin} instead.
               */
              function _admin() internal view virtual returns (address) {
                  return _getAdmin();
              }
              /**
               * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
               * emulate some proxy functions being non-payable while still allowing value to pass through.
               */
              function _requireZeroValue() private {
                  require(msg.value == 0);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
          pragma solidity ^0.8.0;
          import "../Proxy.sol";
          import "./ERC1967Upgrade.sol";
          /**
           * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
           * implementation address that can be changed. This address is stored in storage in the location specified by
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
           * implementation behind the proxy.
           */
          contract ERC1967Proxy is Proxy, ERC1967Upgrade {
              /**
               * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
               *
               * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
               * function call, and allows initializing the storage of the proxy like a Solidity constructor.
               */
              constructor(address _logic, bytes memory _data) payable {
                  _upgradeToAndCall(_logic, _data, false);
              }
              /**
               * @dev Returns the current implementation address.
               */
              function _implementation() internal view virtual override returns (address impl) {
                  return ERC1967Upgrade._getImplementation();
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
           * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
           * be specified by overriding the virtual {_implementation} function.
           *
           * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
           * different contract through the {_delegate} function.
           *
           * The success and return data of the delegated call will be returned back to the caller of the proxy.
           */
          abstract contract Proxy {
              /**
               * @dev Delegates the current call to `implementation`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _delegate(address implementation) internal virtual {
                  assembly {
                      // Copy msg.data. We take full control of memory in this inline assembly
                      // block because it will not return to Solidity code. We overwrite the
                      // Solidity scratch pad at memory position 0.
                      calldatacopy(0, 0, calldatasize())
                      // Call the implementation.
                      // out and outsize are 0 because we don't know the size yet.
                      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                      // Copy the returned data.
                      returndatacopy(0, 0, returndatasize())
                      switch result
                      // delegatecall returns 0 on error.
                      case 0 {
                          revert(0, returndatasize())
                      }
                      default {
                          return(0, returndatasize())
                      }
                  }
              }
              /**
               * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
               * and {_fallback} should delegate.
               */
              function _implementation() internal view virtual returns (address);
              /**
               * @dev Delegates the current call to the address returned by `_implementation()`.
               *
               * This function does not return to its internal call site, it will return directly to the external caller.
               */
              function _fallback() internal virtual {
                  _beforeFallback();
                  _delegate(_implementation());
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
               * function in the contract matches the call data.
               */
              fallback() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
               * is empty.
               */
              receive() external payable virtual {
                  _fallback();
              }
              /**
               * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
               * call, or as part of the Solidity `fallback` or `receive` functions.
               *
               * If overridden should call `super._beforeFallback()`.
               */
              function _beforeFallback() internal virtual {}
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)
          pragma solidity ^0.8.2;
          import "../beacon/IBeacon.sol";
          import "../../interfaces/IERC1967.sol";
          import "../../interfaces/draft-IERC1822.sol";
          import "../../utils/Address.sol";
          import "../../utils/StorageSlot.sol";
          /**
           * @dev This abstract contract provides getters and event emitting update functions for
           * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
           *
           * _Available since v4.1._
           */
          abstract contract ERC1967Upgrade is IERC1967 {
              // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
              bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
              /**
               * @dev Storage slot with the address of the current implementation.
               * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /**
               * @dev Returns the current implementation address.
               */
              function _getImplementation() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 implementation slot.
               */
              function _setImplementation(address newImplementation) private {
                  require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                  StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
              }
              /**
               * @dev Perform implementation upgrade
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeTo(address newImplementation) internal {
                  _setImplementation(newImplementation);
                  emit Upgraded(newImplementation);
              }
              /**
               * @dev Perform implementation upgrade with additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                  _upgradeTo(newImplementation);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(newImplementation, data);
                  }
              }
              /**
               * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
               *
               * Emits an {Upgraded} event.
               */
              function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
                  // Upgrades from old implementations will perform a rollback test. This test requires the new
                  // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
                  // this special case will break upgrade paths from old UUPS implementation to new ones.
                  if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                      _setImplementation(newImplementation);
                  } else {
                      try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                          require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                      } catch {
                          revert("ERC1967Upgrade: new implementation is not UUPS");
                      }
                      _upgradeToAndCall(newImplementation, data, forceCall);
                  }
              }
              /**
               * @dev Storage slot with the admin of the contract.
               * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
               * validated in the constructor.
               */
              bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /**
               * @dev Returns the current admin.
               */
              function _getAdmin() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
              }
              /**
               * @dev Stores a new address in the EIP1967 admin slot.
               */
              function _setAdmin(address newAdmin) private {
                  require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                  StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
              }
              /**
               * @dev Changes the admin of the proxy.
               *
               * Emits an {AdminChanged} event.
               */
              function _changeAdmin(address newAdmin) internal {
                  emit AdminChanged(_getAdmin(), newAdmin);
                  _setAdmin(newAdmin);
              }
              /**
               * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
               * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
               */
              bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
              /**
               * @dev Returns the current beacon.
               */
              function _getBeacon() internal view returns (address) {
                  return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
              }
              /**
               * @dev Stores a new beacon in the EIP1967 beacon slot.
               */
              function _setBeacon(address newBeacon) private {
                  require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
                  require(
                      Address.isContract(IBeacon(newBeacon).implementation()),
                      "ERC1967: beacon implementation is not a contract"
                  );
                  StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
              }
              /**
               * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
               * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
               *
               * Emits a {BeaconUpgraded} event.
               */
              function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                  _setBeacon(newBeacon);
                  emit BeaconUpgraded(newBeacon);
                  if (data.length > 0 || forceCall) {
                      Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev This is the interface that {BeaconProxy} expects of its beacon.
           */
          interface IBeacon {
              /**
               * @dev Must return an address that can be used as a delegate call target.
               *
               * {BeaconProxy} will check that this address is a contract.
               */
              function implementation() external view returns (address);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
           *
           * _Available since v4.8.3._
           */
          interface IERC1967 {
              /**
               * @dev Emitted when the implementation is upgraded.
               */
              event Upgraded(address indexed implementation);
              /**
               * @dev Emitted when the admin account has changed.
               */
              event AdminChanged(address previousAdmin, address newAdmin);
              /**
               * @dev Emitted when the beacon is changed.
               */
              event BeaconUpgraded(address indexed beacon);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
           * proxy whose upgrades are fully controlled by the current implementation.
           */
          interface IERC1822Proxiable {
              /**
               * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
               * address.
               *
               * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
               * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
               * function revert if invoked through a proxy.
               */
              function proxiableUUID() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
          // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
          pragma solidity ^0.8.0;
          /**
           * @dev Library for reading and writing primitive types to specific storage slots.
           *
           * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
           * This library helps with reading and writing to such slots without the need for inline assembly.
           *
           * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
           *
           * Example usage to set ERC1967 implementation slot:
           * ```solidity
           * contract ERC1967 {
           *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
           *
           *     function _getImplementation() internal view returns (address) {
           *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
           *     }
           *
           *     function _setImplementation(address newImplementation) internal {
           *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
           *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
           *     }
           * }
           * ```
           *
           * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
           * _Available since v4.9 for `string`, `bytes`._
           */
          library StorageSlot {
              struct AddressSlot {
                  address value;
              }
              struct BooleanSlot {
                  bool value;
              }
              struct Bytes32Slot {
                  bytes32 value;
              }
              struct Uint256Slot {
                  uint256 value;
              }
              struct StringSlot {
                  string value;
              }
              struct BytesSlot {
                  bytes value;
              }
              /**
               * @dev Returns an `AddressSlot` with member `value` located at `slot`.
               */
              function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
               */
              function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
               */
              function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
               */
              function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` with member `value` located at `slot`.
               */
              function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
               */
              function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` with member `value` located at `slot`.
               */
              function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := slot
                  }
              }
              /**
               * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
               */
              function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      r.slot := store.slot
                  }
              }
          }
          

          File 3 of 3: Eigen
          // SPDX-License-Identifier: BUSL-1.1
          pragma solidity ^0.8.12;
          import "@openzeppelin-v4.9.0/contracts/token/ERC20/IERC20.sol";
          import "@openzeppelin-upgrades-v4.9.0/contracts/token/ERC20/extensions/ERC20VotesUpgradeable.sol";
          import "@openzeppelin-upgrades-v4.9.0/contracts/access/OwnableUpgradeable.sol";
          contract Eigen is OwnableUpgradeable, ERC20VotesUpgradeable {
              /// CONSTANTS & IMMUTABLES
              /// @notice the address of the backing Eigen token bEIGEN
              IERC20 public immutable bEIGEN;
              /// STORAGE
              /// @notice mapping of minter addresses to the timestamp after which they are allowed to mint
              mapping(address => uint256) public mintAllowedAfter;
              /// @notice mapping of minter addresses to the amount of tokens they are allowed to mint
              mapping(address => uint256) public mintingAllowance;
              /// @notice the timestamp after which transfer restrictions are disabled
              uint256 public transferRestrictionsDisabledAfter;
              /// @notice mapping of addresses that are allowed to transfer tokens to any address
              mapping(address => bool) public allowedFrom;
              /// @notice mapping of addresses that are allowed to receive tokens from any address
              mapping(address => bool) public allowedTo;
              /// @notice event emitted when the allowedFrom status of an address is set
              event SetAllowedFrom(address indexed from, bool isAllowedFrom);
              /// @notice event emitted when the allowedTo status of an address is set
              event SetAllowedTo(address indexed to, bool isAllowedTo);
              /// @notice event emitted when a minter mints
              event Mint(address indexed minter, uint256 amount);
              /// @notice event emitted when the transfer restrictions disabled
              event TransferRestrictionsDisabled();
              constructor(IERC20 _bEIGEN) {
                  bEIGEN = _bEIGEN;
                  _disableInitializers();
              }
              /**
               * @notice An initializer function that sets initial values for the contract's state variables.
               * @param minters the addresses that are allowed to mint
               * @param mintingAllowances the amount of tokens that each minter is allowed to mint
               */
              function initialize(
                  address initialOwner,
                  address[] memory minters,
                  uint256[] memory mintingAllowances,
                  uint256[] memory mintAllowedAfters
              ) public initializer {
                  __Ownable_init();
                  __ERC20_init("Eigen", "EIGEN");
                  _transferOwnership(initialOwner);
                  __ERC20Permit_init("EIGEN");
                  require(
                      minters.length == mintingAllowances.length,
                      "Eigen.initialize: minters and mintingAllowances must be the same length"
                  );
                  require(
                      minters.length == mintAllowedAfters.length,
                      "Eigen.initialize: minters and mintAllowedAfters must be the same length"
                  );
                  // set minting allowances for each minter
                  for (uint256 i = 0; i < minters.length; i++) {
                      mintingAllowance[minters[i]] = mintingAllowances[i];
                      mintAllowedAfter[minters[i]] = mintAllowedAfters[i];
                      // allow each minter to transfer tokens
                      allowedFrom[minters[i]] = true;
                      emit SetAllowedFrom(minters[i], true);
                  }
                  // set transfer restrictions to be disabled at type(uint256).max to be set down later
                  transferRestrictionsDisabledAfter = type(uint256).max;
              }
              /**
               * @notice This function allows the owner to set the allowedFrom status of an address
               * @param from the address whose allowedFrom status is being set
               * @param isAllowedFrom the new allowedFrom status
               */
              function setAllowedFrom(address from, bool isAllowedFrom) external onlyOwner {
                  allowedFrom[from] = isAllowedFrom;
                  emit SetAllowedFrom(from, isAllowedFrom);
              }
              /**
               * @notice This function allows the owner to set the allowedTo status of an address
               * @param to the address whose allowedTo status is being set
               * @param isAllowedTo the new allowedTo status
               */
              function setAllowedTo(address to, bool isAllowedTo) external onlyOwner {
                  allowedTo[to] = isAllowedTo;
                  emit SetAllowedTo(to, isAllowedTo);
              }
              /**
               * @notice Allows the owner to disable transfer restrictions
               */
              function disableTransferRestrictions() external onlyOwner {
                  require(
                      transferRestrictionsDisabledAfter == type(uint256).max,
                      "Eigen.disableTransferRestrictions: transfer restrictions are already disabled"
                  );
                  transferRestrictionsDisabledAfter = 0;
                  emit TransferRestrictionsDisabled();
              }
              /**
               * @notice This function allows minter to mint tokens
               */
              function mint() external {
                  require(mintingAllowance[msg.sender] > 0, "Eigen.mint: msg.sender has no minting allowance");
                  require(block.timestamp > mintAllowedAfter[msg.sender], "Eigen.mint: msg.sender is not allowed to mint yet");
                  uint256 amount = mintingAllowance[msg.sender];
                  mintingAllowance[msg.sender] = 0;
                  _mint(msg.sender, amount);
                  emit Mint(msg.sender, amount);
              }
              /**
               * @notice This function allows bEIGEN holders to wrap their tokens into Eigen
               */
              function wrap(uint256 amount) external {
                  require(bEIGEN.transferFrom(msg.sender, address(this), amount), "Eigen.wrap: bEIGEN transfer failed");
                  _mint(msg.sender, amount);
              }
              /**
               * @notice This function allows Eigen holders to unwrap their tokens into bEIGEN
               */
              function unwrap(uint256 amount) external {
                  _burn(msg.sender, amount);
                  require(bEIGEN.transfer(msg.sender, amount), "Eigen.unwrap: bEIGEN transfer failed");
              }
              /**
               * @notice Allows the sender to transfer tokens to multiple addresses in a single transaction
               */
              function multisend(address[] calldata receivers, uint256[] calldata amounts) public {
                  require(receivers.length == amounts.length, "Eigen.multisend: receivers and amounts must be the same length");
                  for (uint256 i = 0; i < receivers.length; i++) {
                      _transfer(msg.sender, receivers[i], amounts[i]);
                  }
              }
              /**
               * @notice Overrides the beforeTokenTransfer function to enforce transfer restrictions
               * @param from the address tokens are being transferred from
               * @param to the address tokens are being transferred to
               * @param amount the amount of tokens being transferred
               */
              function _beforeTokenTransfer(address from, address to, uint256 amount) internal override {
                  // if transfer restrictions are enabled
                  if (block.timestamp <= transferRestrictionsDisabledAfter) {
                      // if both from and to are not whitelisted
                      require(
                          from == address(0) || to == address(0) || allowedFrom[from] || allowedTo[to],
                          "Eigen._beforeTokenTransfer: from or to must be whitelisted"
                      );
                  }
                  super._beforeTokenTransfer(from, to, amount);
              }
              /**
               * @notice Overridden to return the total bEIGEN supply instead.
               * @dev The issued supply of EIGEN should match the bEIGEN balance of this contract,
               * less any bEIGEN tokens that were sent directly to the contract (rather than being wrapped)
               */
              function totalSupply() public view override returns (uint256) {
                  return bEIGEN.totalSupply();
              }
              /**
               * @dev Clock used for flagging checkpoints. Has been overridden to implement timestamp based
               * checkpoints (and voting).
               */
              function clock() public view override returns (uint48) {
                  return SafeCastUpgradeable.toUint48(block.timestamp);
              }
              /**
               * @dev Machine-readable description of the clock as specified in EIP-6372.
               * Has been overridden to inform callers that this contract uses timestamps instead of block numbers, to match `clock()`
               */
              // solhint-disable-next-line func-name-mixedcase
              function CLOCK_MODE() public pure override returns (string memory) {
                  return "mode=timestamp";
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20 {
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `from` to `to` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 amount) external returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Votes.sol)
          pragma solidity ^0.8.0;
          import "./ERC20PermitUpgradeable.sol";
          import "../../../interfaces/IERC5805Upgradeable.sol";
          import "../../../utils/math/MathUpgradeable.sol";
          import "../../../utils/math/SafeCastUpgradeable.sol";
          import "../../../utils/cryptography/ECDSAUpgradeable.sol";
          import "../../../proxy/utils/Initializable.sol";
          /**
           * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
           * and supports token supply up to 2^224^ - 1, while COMP is limited to 2^96^ - 1.
           *
           * NOTE: If exact COMP compatibility is required, use the {ERC20VotesComp} variant of this module.
           *
           * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
           * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
           * power can be queried through the public accessors {getVotes} and {getPastVotes}.
           *
           * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
           * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
           *
           * _Available since v4.2._
           */
          abstract contract ERC20VotesUpgradeable is Initializable, ERC20PermitUpgradeable, IERC5805Upgradeable {
              function __ERC20Votes_init() internal onlyInitializing {
              }
              function __ERC20Votes_init_unchained() internal onlyInitializing {
              }
              struct Checkpoint {
                  uint32 fromBlock;
                  uint224 votes;
              }
              bytes32 private constant _DELEGATION_TYPEHASH =
                  keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
              mapping(address => address) private _delegates;
              mapping(address => Checkpoint[]) private _checkpoints;
              Checkpoint[] private _totalSupplyCheckpoints;
              /**
               * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
               */
              function clock() public view virtual override returns (uint48) {
                  return SafeCastUpgradeable.toUint48(block.number);
              }
              /**
               * @dev Description of the clock
               */
              // solhint-disable-next-line func-name-mixedcase
              function CLOCK_MODE() public view virtual override returns (string memory) {
                  // Check that the clock was not modified
                  require(clock() == block.number, "ERC20Votes: broken clock mode");
                  return "mode=blocknumber&from=default";
              }
              /**
               * @dev Get the `pos`-th checkpoint for `account`.
               */
              function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoint memory) {
                  return _checkpoints[account][pos];
              }
              /**
               * @dev Get number of checkpoints for `account`.
               */
              function numCheckpoints(address account) public view virtual returns (uint32) {
                  return SafeCastUpgradeable.toUint32(_checkpoints[account].length);
              }
              /**
               * @dev Get the address `account` is currently delegating to.
               */
              function delegates(address account) public view virtual override returns (address) {
                  return _delegates[account];
              }
              /**
               * @dev Gets the current votes balance for `account`
               */
              function getVotes(address account) public view virtual override returns (uint256) {
                  uint256 pos = _checkpoints[account].length;
                  unchecked {
                      return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes;
                  }
              }
              /**
               * @dev Retrieve the number of votes for `account` at the end of `timepoint`.
               *
               * Requirements:
               *
               * - `timepoint` must be in the past
               */
              function getPastVotes(address account, uint256 timepoint) public view virtual override returns (uint256) {
                  require(timepoint < clock(), "ERC20Votes: future lookup");
                  return _checkpointsLookup(_checkpoints[account], timepoint);
              }
              /**
               * @dev Retrieve the `totalSupply` at the end of `timepoint`. Note, this value is the sum of all balances.
               * It is NOT the sum of all the delegated votes!
               *
               * Requirements:
               *
               * - `timepoint` must be in the past
               */
              function getPastTotalSupply(uint256 timepoint) public view virtual override returns (uint256) {
                  require(timepoint < clock(), "ERC20Votes: future lookup");
                  return _checkpointsLookup(_totalSupplyCheckpoints, timepoint);
              }
              /**
               * @dev Lookup a value in a list of (sorted) checkpoints.
               */
              function _checkpointsLookup(Checkpoint[] storage ckpts, uint256 timepoint) private view returns (uint256) {
                  // We run a binary search to look for the last (most recent) checkpoint taken before (or at) `timepoint`.
                  //
                  // Initially we check if the block is recent to narrow the search range.
                  // During the loop, the index of the wanted checkpoint remains in the range [low-1, high).
                  // With each iteration, either `low` or `high` is moved towards the middle of the range to maintain the invariant.
                  // - If the middle checkpoint is after `timepoint`, we look in [low, mid)
                  // - If the middle checkpoint is before or equal to `timepoint`, we look in [mid+1, high)
                  // Once we reach a single value (when low == high), we've found the right checkpoint at the index high-1, if not
                  // out of bounds (in which case we're looking too far in the past and the result is 0).
                  // Note that if the latest checkpoint available is exactly for `timepoint`, we end up with an index that is
                  // past the end of the array, so we technically don't find a checkpoint after `timepoint`, but it works out
                  // the same.
                  uint256 length = ckpts.length;
                  uint256 low = 0;
                  uint256 high = length;
                  if (length > 5) {
                      uint256 mid = length - MathUpgradeable.sqrt(length);
                      if (_unsafeAccess(ckpts, mid).fromBlock > timepoint) {
                          high = mid;
                      } else {
                          low = mid + 1;
                      }
                  }
                  while (low < high) {
                      uint256 mid = MathUpgradeable.average(low, high);
                      if (_unsafeAccess(ckpts, mid).fromBlock > timepoint) {
                          high = mid;
                      } else {
                          low = mid + 1;
                      }
                  }
                  unchecked {
                      return high == 0 ? 0 : _unsafeAccess(ckpts, high - 1).votes;
                  }
              }
              /**
               * @dev Delegate votes from the sender to `delegatee`.
               */
              function delegate(address delegatee) public virtual override {
                  _delegate(_msgSender(), delegatee);
              }
              /**
               * @dev Delegates votes from signer to `delegatee`
               */
              function delegateBySig(
                  address delegatee,
                  uint256 nonce,
                  uint256 expiry,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) public virtual override {
                  require(block.timestamp <= expiry, "ERC20Votes: signature expired");
                  address signer = ECDSAUpgradeable.recover(
                      _hashTypedDataV4(keccak256(abi.encode(_DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
                      v,
                      r,
                      s
                  );
                  require(nonce == _useNonce(signer), "ERC20Votes: invalid nonce");
                  _delegate(signer, delegatee);
              }
              /**
               * @dev Maximum token supply. Defaults to `type(uint224).max` (2^224^ - 1).
               */
              function _maxSupply() internal view virtual returns (uint224) {
                  return type(uint224).max;
              }
              /**
               * @dev Snapshots the totalSupply after it has been increased.
               */
              function _mint(address account, uint256 amount) internal virtual override {
                  super._mint(account, amount);
                  require(totalSupply() <= _maxSupply(), "ERC20Votes: total supply risks overflowing votes");
                  _writeCheckpoint(_totalSupplyCheckpoints, _add, amount);
              }
              /**
               * @dev Snapshots the totalSupply after it has been decreased.
               */
              function _burn(address account, uint256 amount) internal virtual override {
                  super._burn(account, amount);
                  _writeCheckpoint(_totalSupplyCheckpoints, _subtract, amount);
              }
              /**
               * @dev Move voting power when tokens are transferred.
               *
               * Emits a {IVotes-DelegateVotesChanged} event.
               */
              function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual override {
                  super._afterTokenTransfer(from, to, amount);
                  _moveVotingPower(delegates(from), delegates(to), amount);
              }
              /**
               * @dev Change delegation for `delegator` to `delegatee`.
               *
               * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
               */
              function _delegate(address delegator, address delegatee) internal virtual {
                  address currentDelegate = delegates(delegator);
                  uint256 delegatorBalance = balanceOf(delegator);
                  _delegates[delegator] = delegatee;
                  emit DelegateChanged(delegator, currentDelegate, delegatee);
                  _moveVotingPower(currentDelegate, delegatee, delegatorBalance);
              }
              function _moveVotingPower(address src, address dst, uint256 amount) private {
                  if (src != dst && amount > 0) {
                      if (src != address(0)) {
                          (uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[src], _subtract, amount);
                          emit DelegateVotesChanged(src, oldWeight, newWeight);
                      }
                      if (dst != address(0)) {
                          (uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[dst], _add, amount);
                          emit DelegateVotesChanged(dst, oldWeight, newWeight);
                      }
                  }
              }
              function _writeCheckpoint(
                  Checkpoint[] storage ckpts,
                  function(uint256, uint256) view returns (uint256) op,
                  uint256 delta
              ) private returns (uint256 oldWeight, uint256 newWeight) {
                  uint256 pos = ckpts.length;
                  unchecked {
                      Checkpoint memory oldCkpt = pos == 0 ? Checkpoint(0, 0) : _unsafeAccess(ckpts, pos - 1);
                      oldWeight = oldCkpt.votes;
                      newWeight = op(oldWeight, delta);
                      if (pos > 0 && oldCkpt.fromBlock == clock()) {
                          _unsafeAccess(ckpts, pos - 1).votes = SafeCastUpgradeable.toUint224(newWeight);
                      } else {
                          ckpts.push(Checkpoint({fromBlock: SafeCastUpgradeable.toUint32(clock()), votes: SafeCastUpgradeable.toUint224(newWeight)}));
                      }
                  }
              }
              function _add(uint256 a, uint256 b) private pure returns (uint256) {
                  return a + b;
              }
              function _subtract(uint256 a, uint256 b) private pure returns (uint256) {
                  return a - b;
              }
              /**
               * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
               */
              function _unsafeAccess(Checkpoint[] storage ckpts, uint256 pos) private pure returns (Checkpoint storage result) {
                  assembly {
                      mstore(0, ckpts.slot)
                      result.slot := add(keccak256(0, 0x20), pos)
                  }
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[47] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
          pragma solidity ^0.8.0;
          import "../utils/ContextUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              function __Ownable_init() internal onlyInitializing {
                  __Ownable_init_unchained();
              }
              function __Ownable_init_unchained() internal onlyInitializing {
                  _transferOwnership(_msgSender());
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  _checkOwner();
                  _;
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if the sender is not the owner.
               */
              function _checkOwner() internal view virtual {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby disabling any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _transferOwnership(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _transferOwnership(newOwner);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Internal function without access restriction.
               */
              function _transferOwnership(address newOwner) internal virtual {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)
          pragma solidity ^0.8.0;
          import "./IERC20PermitUpgradeable.sol";
          import "../ERC20Upgradeable.sol";
          import "../../../utils/cryptography/ECDSAUpgradeable.sol";
          import "../../../utils/cryptography/EIP712Upgradeable.sol";
          import "../../../utils/CountersUpgradeable.sol";
          import "../../../proxy/utils/Initializable.sol";
          /**
           * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           *
           * _Available since v3.4._
           *
           * @custom:storage-size 51
           */
          abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable {
              using CountersUpgradeable for CountersUpgradeable.Counter;
              mapping(address => CountersUpgradeable.Counter) private _nonces;
              // solhint-disable-next-line var-name-mixedcase
              bytes32 private constant _PERMIT_TYPEHASH =
                  keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
              /**
               * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
               * However, to ensure consistency with the upgradeable transpiler, we will continue
               * to reserve a slot.
               * @custom:oz-renamed-from _PERMIT_TYPEHASH
               */
              // solhint-disable-next-line var-name-mixedcase
              bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
              /**
               * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
               *
               * It's a good idea to use the same `name` that is defined as the ERC20 token name.
               */
              function __ERC20Permit_init(string memory name) internal onlyInitializing {
                  __EIP712_init_unchained(name, "1");
              }
              function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}
              /**
               * @dev See {IERC20Permit-permit}.
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) public virtual override {
                  require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
                  bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
                  bytes32 hash = _hashTypedDataV4(structHash);
                  address signer = ECDSAUpgradeable.recover(hash, v, r, s);
                  require(signer == owner, "ERC20Permit: invalid signature");
                  _approve(owner, spender, value);
              }
              /**
               * @dev See {IERC20Permit-nonces}.
               */
              function nonces(address owner) public view virtual override returns (uint256) {
                  return _nonces[owner].current();
              }
              /**
               * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view override returns (bytes32) {
                  return _domainSeparatorV4();
              }
              /**
               * @dev "Consume a nonce": return the current value and increment.
               *
               * _Available since v4.1._
               */
              function _useNonce(address owner) internal virtual returns (uint256 current) {
                  CountersUpgradeable.Counter storage nonce = _nonces[owner];
                  current = nonce.current();
                  nonce.increment();
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5805.sol)
          pragma solidity ^0.8.0;
          import "../governance/utils/IVotesUpgradeable.sol";
          import "./IERC6372Upgradeable.sol";
          interface IERC5805Upgradeable is IERC6372Upgradeable, IVotesUpgradeable {}
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library MathUpgradeable {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                          // The surrounding unchecked block does not change this fact.
                          // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1, "Math: mulDiv overflow");
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  //
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
                  //
                  // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
                  // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
                  // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
                  //
                  // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1 << (log2(a) >> 1);
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = sqrt(a);
                      return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 2, rounded down, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 128;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 64;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 32;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 16;
                      }
                      if (value >> 8 > 0) {
                          value >>= 8;
                          result += 8;
                      }
                      if (value >> 4 > 0) {
                          value >>= 4;
                          result += 4;
                      }
                      if (value >> 2 > 0) {
                          value >>= 2;
                          result += 2;
                      }
                      if (value >> 1 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log2(value);
                      return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 10, rounded down, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >= 10 ** 64) {
                          value /= 10 ** 64;
                          result += 64;
                      }
                      if (value >= 10 ** 32) {
                          value /= 10 ** 32;
                          result += 32;
                      }
                      if (value >= 10 ** 16) {
                          value /= 10 ** 16;
                          result += 16;
                      }
                      if (value >= 10 ** 8) {
                          value /= 10 ** 8;
                          result += 8;
                      }
                      if (value >= 10 ** 4) {
                          value /= 10 ** 4;
                          result += 4;
                      }
                      if (value >= 10 ** 2) {
                          value /= 10 ** 2;
                          result += 2;
                      }
                      if (value >= 10 ** 1) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log10(value);
                      return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
                  }
              }
              /**
               * @dev Return the log in base 256, rounded down, of a positive value.
               * Returns 0 if given 0.
               *
               * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
               */
              function log256(uint256 value) internal pure returns (uint256) {
                  uint256 result = 0;
                  unchecked {
                      if (value >> 128 > 0) {
                          value >>= 128;
                          result += 16;
                      }
                      if (value >> 64 > 0) {
                          value >>= 64;
                          result += 8;
                      }
                      if (value >> 32 > 0) {
                          value >>= 32;
                          result += 4;
                      }
                      if (value >> 16 > 0) {
                          value >>= 16;
                          result += 2;
                      }
                      if (value >> 8 > 0) {
                          result += 1;
                      }
                  }
                  return result;
              }
              /**
               * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
               * Returns 0 if given 0.
               */
              function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
                  unchecked {
                      uint256 result = log256(value);
                      return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
          // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
          pragma solidity ^0.8.0;
          /**
           * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
           * checks.
           *
           * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
           * easily result in undesired exploitation or bugs, since developers usually
           * assume that overflows raise errors. `SafeCast` restores this intuition by
           * reverting the transaction when such an operation overflows.
           *
           * Using this library instead of the unchecked operations eliminates an entire
           * class of bugs, so it's recommended to use it always.
           *
           * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
           * all math on `uint256` and `int256` and then downcasting.
           */
          library SafeCastUpgradeable {
              /**
               * @dev Returns the downcasted uint248 from uint256, reverting on
               * overflow (when the input is greater than largest uint248).
               *
               * Counterpart to Solidity's `uint248` operator.
               *
               * Requirements:
               *
               * - input must fit into 248 bits
               *
               * _Available since v4.7._
               */
              function toUint248(uint256 value) internal pure returns (uint248) {
                  require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits");
                  return uint248(value);
              }
              /**
               * @dev Returns the downcasted uint240 from uint256, reverting on
               * overflow (when the input is greater than largest uint240).
               *
               * Counterpart to Solidity's `uint240` operator.
               *
               * Requirements:
               *
               * - input must fit into 240 bits
               *
               * _Available since v4.7._
               */
              function toUint240(uint256 value) internal pure returns (uint240) {
                  require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits");
                  return uint240(value);
              }
              /**
               * @dev Returns the downcasted uint232 from uint256, reverting on
               * overflow (when the input is greater than largest uint232).
               *
               * Counterpart to Solidity's `uint232` operator.
               *
               * Requirements:
               *
               * - input must fit into 232 bits
               *
               * _Available since v4.7._
               */
              function toUint232(uint256 value) internal pure returns (uint232) {
                  require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits");
                  return uint232(value);
              }
              /**
               * @dev Returns the downcasted uint224 from uint256, reverting on
               * overflow (when the input is greater than largest uint224).
               *
               * Counterpart to Solidity's `uint224` operator.
               *
               * Requirements:
               *
               * - input must fit into 224 bits
               *
               * _Available since v4.2._
               */
              function toUint224(uint256 value) internal pure returns (uint224) {
                  require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
                  return uint224(value);
              }
              /**
               * @dev Returns the downcasted uint216 from uint256, reverting on
               * overflow (when the input is greater than largest uint216).
               *
               * Counterpart to Solidity's `uint216` operator.
               *
               * Requirements:
               *
               * - input must fit into 216 bits
               *
               * _Available since v4.7._
               */
              function toUint216(uint256 value) internal pure returns (uint216) {
                  require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits");
                  return uint216(value);
              }
              /**
               * @dev Returns the downcasted uint208 from uint256, reverting on
               * overflow (when the input is greater than largest uint208).
               *
               * Counterpart to Solidity's `uint208` operator.
               *
               * Requirements:
               *
               * - input must fit into 208 bits
               *
               * _Available since v4.7._
               */
              function toUint208(uint256 value) internal pure returns (uint208) {
                  require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits");
                  return uint208(value);
              }
              /**
               * @dev Returns the downcasted uint200 from uint256, reverting on
               * overflow (when the input is greater than largest uint200).
               *
               * Counterpart to Solidity's `uint200` operator.
               *
               * Requirements:
               *
               * - input must fit into 200 bits
               *
               * _Available since v4.7._
               */
              function toUint200(uint256 value) internal pure returns (uint200) {
                  require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits");
                  return uint200(value);
              }
              /**
               * @dev Returns the downcasted uint192 from uint256, reverting on
               * overflow (when the input is greater than largest uint192).
               *
               * Counterpart to Solidity's `uint192` operator.
               *
               * Requirements:
               *
               * - input must fit into 192 bits
               *
               * _Available since v4.7._
               */
              function toUint192(uint256 value) internal pure returns (uint192) {
                  require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits");
                  return uint192(value);
              }
              /**
               * @dev Returns the downcasted uint184 from uint256, reverting on
               * overflow (when the input is greater than largest uint184).
               *
               * Counterpart to Solidity's `uint184` operator.
               *
               * Requirements:
               *
               * - input must fit into 184 bits
               *
               * _Available since v4.7._
               */
              function toUint184(uint256 value) internal pure returns (uint184) {
                  require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits");
                  return uint184(value);
              }
              /**
               * @dev Returns the downcasted uint176 from uint256, reverting on
               * overflow (when the input is greater than largest uint176).
               *
               * Counterpart to Solidity's `uint176` operator.
               *
               * Requirements:
               *
               * - input must fit into 176 bits
               *
               * _Available since v4.7._
               */
              function toUint176(uint256 value) internal pure returns (uint176) {
                  require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits");
                  return uint176(value);
              }
              /**
               * @dev Returns the downcasted uint168 from uint256, reverting on
               * overflow (when the input is greater than largest uint168).
               *
               * Counterpart to Solidity's `uint168` operator.
               *
               * Requirements:
               *
               * - input must fit into 168 bits
               *
               * _Available since v4.7._
               */
              function toUint168(uint256 value) internal pure returns (uint168) {
                  require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits");
                  return uint168(value);
              }
              /**
               * @dev Returns the downcasted uint160 from uint256, reverting on
               * overflow (when the input is greater than largest uint160).
               *
               * Counterpart to Solidity's `uint160` operator.
               *
               * Requirements:
               *
               * - input must fit into 160 bits
               *
               * _Available since v4.7._
               */
              function toUint160(uint256 value) internal pure returns (uint160) {
                  require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits");
                  return uint160(value);
              }
              /**
               * @dev Returns the downcasted uint152 from uint256, reverting on
               * overflow (when the input is greater than largest uint152).
               *
               * Counterpart to Solidity's `uint152` operator.
               *
               * Requirements:
               *
               * - input must fit into 152 bits
               *
               * _Available since v4.7._
               */
              function toUint152(uint256 value) internal pure returns (uint152) {
                  require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits");
                  return uint152(value);
              }
              /**
               * @dev Returns the downcasted uint144 from uint256, reverting on
               * overflow (when the input is greater than largest uint144).
               *
               * Counterpart to Solidity's `uint144` operator.
               *
               * Requirements:
               *
               * - input must fit into 144 bits
               *
               * _Available since v4.7._
               */
              function toUint144(uint256 value) internal pure returns (uint144) {
                  require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits");
                  return uint144(value);
              }
              /**
               * @dev Returns the downcasted uint136 from uint256, reverting on
               * overflow (when the input is greater than largest uint136).
               *
               * Counterpart to Solidity's `uint136` operator.
               *
               * Requirements:
               *
               * - input must fit into 136 bits
               *
               * _Available since v4.7._
               */
              function toUint136(uint256 value) internal pure returns (uint136) {
                  require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits");
                  return uint136(value);
              }
              /**
               * @dev Returns the downcasted uint128 from uint256, reverting on
               * overflow (when the input is greater than largest uint128).
               *
               * Counterpart to Solidity's `uint128` operator.
               *
               * Requirements:
               *
               * - input must fit into 128 bits
               *
               * _Available since v2.5._
               */
              function toUint128(uint256 value) internal pure returns (uint128) {
                  require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
                  return uint128(value);
              }
              /**
               * @dev Returns the downcasted uint120 from uint256, reverting on
               * overflow (when the input is greater than largest uint120).
               *
               * Counterpart to Solidity's `uint120` operator.
               *
               * Requirements:
               *
               * - input must fit into 120 bits
               *
               * _Available since v4.7._
               */
              function toUint120(uint256 value) internal pure returns (uint120) {
                  require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits");
                  return uint120(value);
              }
              /**
               * @dev Returns the downcasted uint112 from uint256, reverting on
               * overflow (when the input is greater than largest uint112).
               *
               * Counterpart to Solidity's `uint112` operator.
               *
               * Requirements:
               *
               * - input must fit into 112 bits
               *
               * _Available since v4.7._
               */
              function toUint112(uint256 value) internal pure returns (uint112) {
                  require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits");
                  return uint112(value);
              }
              /**
               * @dev Returns the downcasted uint104 from uint256, reverting on
               * overflow (when the input is greater than largest uint104).
               *
               * Counterpart to Solidity's `uint104` operator.
               *
               * Requirements:
               *
               * - input must fit into 104 bits
               *
               * _Available since v4.7._
               */
              function toUint104(uint256 value) internal pure returns (uint104) {
                  require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits");
                  return uint104(value);
              }
              /**
               * @dev Returns the downcasted uint96 from uint256, reverting on
               * overflow (when the input is greater than largest uint96).
               *
               * Counterpart to Solidity's `uint96` operator.
               *
               * Requirements:
               *
               * - input must fit into 96 bits
               *
               * _Available since v4.2._
               */
              function toUint96(uint256 value) internal pure returns (uint96) {
                  require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
                  return uint96(value);
              }
              /**
               * @dev Returns the downcasted uint88 from uint256, reverting on
               * overflow (when the input is greater than largest uint88).
               *
               * Counterpart to Solidity's `uint88` operator.
               *
               * Requirements:
               *
               * - input must fit into 88 bits
               *
               * _Available since v4.7._
               */
              function toUint88(uint256 value) internal pure returns (uint88) {
                  require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits");
                  return uint88(value);
              }
              /**
               * @dev Returns the downcasted uint80 from uint256, reverting on
               * overflow (when the input is greater than largest uint80).
               *
               * Counterpart to Solidity's `uint80` operator.
               *
               * Requirements:
               *
               * - input must fit into 80 bits
               *
               * _Available since v4.7._
               */
              function toUint80(uint256 value) internal pure returns (uint80) {
                  require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits");
                  return uint80(value);
              }
              /**
               * @dev Returns the downcasted uint72 from uint256, reverting on
               * overflow (when the input is greater than largest uint72).
               *
               * Counterpart to Solidity's `uint72` operator.
               *
               * Requirements:
               *
               * - input must fit into 72 bits
               *
               * _Available since v4.7._
               */
              function toUint72(uint256 value) internal pure returns (uint72) {
                  require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits");
                  return uint72(value);
              }
              /**
               * @dev Returns the downcasted uint64 from uint256, reverting on
               * overflow (when the input is greater than largest uint64).
               *
               * Counterpart to Solidity's `uint64` operator.
               *
               * Requirements:
               *
               * - input must fit into 64 bits
               *
               * _Available since v2.5._
               */
              function toUint64(uint256 value) internal pure returns (uint64) {
                  require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
                  return uint64(value);
              }
              /**
               * @dev Returns the downcasted uint56 from uint256, reverting on
               * overflow (when the input is greater than largest uint56).
               *
               * Counterpart to Solidity's `uint56` operator.
               *
               * Requirements:
               *
               * - input must fit into 56 bits
               *
               * _Available since v4.7._
               */
              function toUint56(uint256 value) internal pure returns (uint56) {
                  require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits");
                  return uint56(value);
              }
              /**
               * @dev Returns the downcasted uint48 from uint256, reverting on
               * overflow (when the input is greater than largest uint48).
               *
               * Counterpart to Solidity's `uint48` operator.
               *
               * Requirements:
               *
               * - input must fit into 48 bits
               *
               * _Available since v4.7._
               */
              function toUint48(uint256 value) internal pure returns (uint48) {
                  require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits");
                  return uint48(value);
              }
              /**
               * @dev Returns the downcasted uint40 from uint256, reverting on
               * overflow (when the input is greater than largest uint40).
               *
               * Counterpart to Solidity's `uint40` operator.
               *
               * Requirements:
               *
               * - input must fit into 40 bits
               *
               * _Available since v4.7._
               */
              function toUint40(uint256 value) internal pure returns (uint40) {
                  require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits");
                  return uint40(value);
              }
              /**
               * @dev Returns the downcasted uint32 from uint256, reverting on
               * overflow (when the input is greater than largest uint32).
               *
               * Counterpart to Solidity's `uint32` operator.
               *
               * Requirements:
               *
               * - input must fit into 32 bits
               *
               * _Available since v2.5._
               */
              function toUint32(uint256 value) internal pure returns (uint32) {
                  require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
                  return uint32(value);
              }
              /**
               * @dev Returns the downcasted uint24 from uint256, reverting on
               * overflow (when the input is greater than largest uint24).
               *
               * Counterpart to Solidity's `uint24` operator.
               *
               * Requirements:
               *
               * - input must fit into 24 bits
               *
               * _Available since v4.7._
               */
              function toUint24(uint256 value) internal pure returns (uint24) {
                  require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits");
                  return uint24(value);
              }
              /**
               * @dev Returns the downcasted uint16 from uint256, reverting on
               * overflow (when the input is greater than largest uint16).
               *
               * Counterpart to Solidity's `uint16` operator.
               *
               * Requirements:
               *
               * - input must fit into 16 bits
               *
               * _Available since v2.5._
               */
              function toUint16(uint256 value) internal pure returns (uint16) {
                  require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
                  return uint16(value);
              }
              /**
               * @dev Returns the downcasted uint8 from uint256, reverting on
               * overflow (when the input is greater than largest uint8).
               *
               * Counterpart to Solidity's `uint8` operator.
               *
               * Requirements:
               *
               * - input must fit into 8 bits
               *
               * _Available since v2.5._
               */
              function toUint8(uint256 value) internal pure returns (uint8) {
                  require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
                  return uint8(value);
              }
              /**
               * @dev Converts a signed int256 into an unsigned uint256.
               *
               * Requirements:
               *
               * - input must be greater than or equal to 0.
               *
               * _Available since v3.0._
               */
              function toUint256(int256 value) internal pure returns (uint256) {
                  require(value >= 0, "SafeCast: value must be positive");
                  return uint256(value);
              }
              /**
               * @dev Returns the downcasted int248 from int256, reverting on
               * overflow (when the input is less than smallest int248 or
               * greater than largest int248).
               *
               * Counterpart to Solidity's `int248` operator.
               *
               * Requirements:
               *
               * - input must fit into 248 bits
               *
               * _Available since v4.7._
               */
              function toInt248(int256 value) internal pure returns (int248 downcasted) {
                  downcasted = int248(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
              }
              /**
               * @dev Returns the downcasted int240 from int256, reverting on
               * overflow (when the input is less than smallest int240 or
               * greater than largest int240).
               *
               * Counterpart to Solidity's `int240` operator.
               *
               * Requirements:
               *
               * - input must fit into 240 bits
               *
               * _Available since v4.7._
               */
              function toInt240(int256 value) internal pure returns (int240 downcasted) {
                  downcasted = int240(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
              }
              /**
               * @dev Returns the downcasted int232 from int256, reverting on
               * overflow (when the input is less than smallest int232 or
               * greater than largest int232).
               *
               * Counterpart to Solidity's `int232` operator.
               *
               * Requirements:
               *
               * - input must fit into 232 bits
               *
               * _Available since v4.7._
               */
              function toInt232(int256 value) internal pure returns (int232 downcasted) {
                  downcasted = int232(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
              }
              /**
               * @dev Returns the downcasted int224 from int256, reverting on
               * overflow (when the input is less than smallest int224 or
               * greater than largest int224).
               *
               * Counterpart to Solidity's `int224` operator.
               *
               * Requirements:
               *
               * - input must fit into 224 bits
               *
               * _Available since v4.7._
               */
              function toInt224(int256 value) internal pure returns (int224 downcasted) {
                  downcasted = int224(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
              }
              /**
               * @dev Returns the downcasted int216 from int256, reverting on
               * overflow (when the input is less than smallest int216 or
               * greater than largest int216).
               *
               * Counterpart to Solidity's `int216` operator.
               *
               * Requirements:
               *
               * - input must fit into 216 bits
               *
               * _Available since v4.7._
               */
              function toInt216(int256 value) internal pure returns (int216 downcasted) {
                  downcasted = int216(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
              }
              /**
               * @dev Returns the downcasted int208 from int256, reverting on
               * overflow (when the input is less than smallest int208 or
               * greater than largest int208).
               *
               * Counterpart to Solidity's `int208` operator.
               *
               * Requirements:
               *
               * - input must fit into 208 bits
               *
               * _Available since v4.7._
               */
              function toInt208(int256 value) internal pure returns (int208 downcasted) {
                  downcasted = int208(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
              }
              /**
               * @dev Returns the downcasted int200 from int256, reverting on
               * overflow (when the input is less than smallest int200 or
               * greater than largest int200).
               *
               * Counterpart to Solidity's `int200` operator.
               *
               * Requirements:
               *
               * - input must fit into 200 bits
               *
               * _Available since v4.7._
               */
              function toInt200(int256 value) internal pure returns (int200 downcasted) {
                  downcasted = int200(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
              }
              /**
               * @dev Returns the downcasted int192 from int256, reverting on
               * overflow (when the input is less than smallest int192 or
               * greater than largest int192).
               *
               * Counterpart to Solidity's `int192` operator.
               *
               * Requirements:
               *
               * - input must fit into 192 bits
               *
               * _Available since v4.7._
               */
              function toInt192(int256 value) internal pure returns (int192 downcasted) {
                  downcasted = int192(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
              }
              /**
               * @dev Returns the downcasted int184 from int256, reverting on
               * overflow (when the input is less than smallest int184 or
               * greater than largest int184).
               *
               * Counterpart to Solidity's `int184` operator.
               *
               * Requirements:
               *
               * - input must fit into 184 bits
               *
               * _Available since v4.7._
               */
              function toInt184(int256 value) internal pure returns (int184 downcasted) {
                  downcasted = int184(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
              }
              /**
               * @dev Returns the downcasted int176 from int256, reverting on
               * overflow (when the input is less than smallest int176 or
               * greater than largest int176).
               *
               * Counterpart to Solidity's `int176` operator.
               *
               * Requirements:
               *
               * - input must fit into 176 bits
               *
               * _Available since v4.7._
               */
              function toInt176(int256 value) internal pure returns (int176 downcasted) {
                  downcasted = int176(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
              }
              /**
               * @dev Returns the downcasted int168 from int256, reverting on
               * overflow (when the input is less than smallest int168 or
               * greater than largest int168).
               *
               * Counterpart to Solidity's `int168` operator.
               *
               * Requirements:
               *
               * - input must fit into 168 bits
               *
               * _Available since v4.7._
               */
              function toInt168(int256 value) internal pure returns (int168 downcasted) {
                  downcasted = int168(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
              }
              /**
               * @dev Returns the downcasted int160 from int256, reverting on
               * overflow (when the input is less than smallest int160 or
               * greater than largest int160).
               *
               * Counterpart to Solidity's `int160` operator.
               *
               * Requirements:
               *
               * - input must fit into 160 bits
               *
               * _Available since v4.7._
               */
              function toInt160(int256 value) internal pure returns (int160 downcasted) {
                  downcasted = int160(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
              }
              /**
               * @dev Returns the downcasted int152 from int256, reverting on
               * overflow (when the input is less than smallest int152 or
               * greater than largest int152).
               *
               * Counterpart to Solidity's `int152` operator.
               *
               * Requirements:
               *
               * - input must fit into 152 bits
               *
               * _Available since v4.7._
               */
              function toInt152(int256 value) internal pure returns (int152 downcasted) {
                  downcasted = int152(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
              }
              /**
               * @dev Returns the downcasted int144 from int256, reverting on
               * overflow (when the input is less than smallest int144 or
               * greater than largest int144).
               *
               * Counterpart to Solidity's `int144` operator.
               *
               * Requirements:
               *
               * - input must fit into 144 bits
               *
               * _Available since v4.7._
               */
              function toInt144(int256 value) internal pure returns (int144 downcasted) {
                  downcasted = int144(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
              }
              /**
               * @dev Returns the downcasted int136 from int256, reverting on
               * overflow (when the input is less than smallest int136 or
               * greater than largest int136).
               *
               * Counterpart to Solidity's `int136` operator.
               *
               * Requirements:
               *
               * - input must fit into 136 bits
               *
               * _Available since v4.7._
               */
              function toInt136(int256 value) internal pure returns (int136 downcasted) {
                  downcasted = int136(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
              }
              /**
               * @dev Returns the downcasted int128 from int256, reverting on
               * overflow (when the input is less than smallest int128 or
               * greater than largest int128).
               *
               * Counterpart to Solidity's `int128` operator.
               *
               * Requirements:
               *
               * - input must fit into 128 bits
               *
               * _Available since v3.1._
               */
              function toInt128(int256 value) internal pure returns (int128 downcasted) {
                  downcasted = int128(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
              }
              /**
               * @dev Returns the downcasted int120 from int256, reverting on
               * overflow (when the input is less than smallest int120 or
               * greater than largest int120).
               *
               * Counterpart to Solidity's `int120` operator.
               *
               * Requirements:
               *
               * - input must fit into 120 bits
               *
               * _Available since v4.7._
               */
              function toInt120(int256 value) internal pure returns (int120 downcasted) {
                  downcasted = int120(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
              }
              /**
               * @dev Returns the downcasted int112 from int256, reverting on
               * overflow (when the input is less than smallest int112 or
               * greater than largest int112).
               *
               * Counterpart to Solidity's `int112` operator.
               *
               * Requirements:
               *
               * - input must fit into 112 bits
               *
               * _Available since v4.7._
               */
              function toInt112(int256 value) internal pure returns (int112 downcasted) {
                  downcasted = int112(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
              }
              /**
               * @dev Returns the downcasted int104 from int256, reverting on
               * overflow (when the input is less than smallest int104 or
               * greater than largest int104).
               *
               * Counterpart to Solidity's `int104` operator.
               *
               * Requirements:
               *
               * - input must fit into 104 bits
               *
               * _Available since v4.7._
               */
              function toInt104(int256 value) internal pure returns (int104 downcasted) {
                  downcasted = int104(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
              }
              /**
               * @dev Returns the downcasted int96 from int256, reverting on
               * overflow (when the input is less than smallest int96 or
               * greater than largest int96).
               *
               * Counterpart to Solidity's `int96` operator.
               *
               * Requirements:
               *
               * - input must fit into 96 bits
               *
               * _Available since v4.7._
               */
              function toInt96(int256 value) internal pure returns (int96 downcasted) {
                  downcasted = int96(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
              }
              /**
               * @dev Returns the downcasted int88 from int256, reverting on
               * overflow (when the input is less than smallest int88 or
               * greater than largest int88).
               *
               * Counterpart to Solidity's `int88` operator.
               *
               * Requirements:
               *
               * - input must fit into 88 bits
               *
               * _Available since v4.7._
               */
              function toInt88(int256 value) internal pure returns (int88 downcasted) {
                  downcasted = int88(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
              }
              /**
               * @dev Returns the downcasted int80 from int256, reverting on
               * overflow (when the input is less than smallest int80 or
               * greater than largest int80).
               *
               * Counterpart to Solidity's `int80` operator.
               *
               * Requirements:
               *
               * - input must fit into 80 bits
               *
               * _Available since v4.7._
               */
              function toInt80(int256 value) internal pure returns (int80 downcasted) {
                  downcasted = int80(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
              }
              /**
               * @dev Returns the downcasted int72 from int256, reverting on
               * overflow (when the input is less than smallest int72 or
               * greater than largest int72).
               *
               * Counterpart to Solidity's `int72` operator.
               *
               * Requirements:
               *
               * - input must fit into 72 bits
               *
               * _Available since v4.7._
               */
              function toInt72(int256 value) internal pure returns (int72 downcasted) {
                  downcasted = int72(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
              }
              /**
               * @dev Returns the downcasted int64 from int256, reverting on
               * overflow (when the input is less than smallest int64 or
               * greater than largest int64).
               *
               * Counterpart to Solidity's `int64` operator.
               *
               * Requirements:
               *
               * - input must fit into 64 bits
               *
               * _Available since v3.1._
               */
              function toInt64(int256 value) internal pure returns (int64 downcasted) {
                  downcasted = int64(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
              }
              /**
               * @dev Returns the downcasted int56 from int256, reverting on
               * overflow (when the input is less than smallest int56 or
               * greater than largest int56).
               *
               * Counterpart to Solidity's `int56` operator.
               *
               * Requirements:
               *
               * - input must fit into 56 bits
               *
               * _Available since v4.7._
               */
              function toInt56(int256 value) internal pure returns (int56 downcasted) {
                  downcasted = int56(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
              }
              /**
               * @dev Returns the downcasted int48 from int256, reverting on
               * overflow (when the input is less than smallest int48 or
               * greater than largest int48).
               *
               * Counterpart to Solidity's `int48` operator.
               *
               * Requirements:
               *
               * - input must fit into 48 bits
               *
               * _Available since v4.7._
               */
              function toInt48(int256 value) internal pure returns (int48 downcasted) {
                  downcasted = int48(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
              }
              /**
               * @dev Returns the downcasted int40 from int256, reverting on
               * overflow (when the input is less than smallest int40 or
               * greater than largest int40).
               *
               * Counterpart to Solidity's `int40` operator.
               *
               * Requirements:
               *
               * - input must fit into 40 bits
               *
               * _Available since v4.7._
               */
              function toInt40(int256 value) internal pure returns (int40 downcasted) {
                  downcasted = int40(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
              }
              /**
               * @dev Returns the downcasted int32 from int256, reverting on
               * overflow (when the input is less than smallest int32 or
               * greater than largest int32).
               *
               * Counterpart to Solidity's `int32` operator.
               *
               * Requirements:
               *
               * - input must fit into 32 bits
               *
               * _Available since v3.1._
               */
              function toInt32(int256 value) internal pure returns (int32 downcasted) {
                  downcasted = int32(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
              }
              /**
               * @dev Returns the downcasted int24 from int256, reverting on
               * overflow (when the input is less than smallest int24 or
               * greater than largest int24).
               *
               * Counterpart to Solidity's `int24` operator.
               *
               * Requirements:
               *
               * - input must fit into 24 bits
               *
               * _Available since v4.7._
               */
              function toInt24(int256 value) internal pure returns (int24 downcasted) {
                  downcasted = int24(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
              }
              /**
               * @dev Returns the downcasted int16 from int256, reverting on
               * overflow (when the input is less than smallest int16 or
               * greater than largest int16).
               *
               * Counterpart to Solidity's `int16` operator.
               *
               * Requirements:
               *
               * - input must fit into 16 bits
               *
               * _Available since v3.1._
               */
              function toInt16(int256 value) internal pure returns (int16 downcasted) {
                  downcasted = int16(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
              }
              /**
               * @dev Returns the downcasted int8 from int256, reverting on
               * overflow (when the input is less than smallest int8 or
               * greater than largest int8).
               *
               * Counterpart to Solidity's `int8` operator.
               *
               * Requirements:
               *
               * - input must fit into 8 bits
               *
               * _Available since v3.1._
               */
              function toInt8(int256 value) internal pure returns (int8 downcasted) {
                  downcasted = int8(value);
                  require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
              }
              /**
               * @dev Converts an unsigned uint256 into a signed int256.
               *
               * Requirements:
               *
               * - input must be less than or equal to maxInt256.
               *
               * _Available since v3.0._
               */
              function toInt256(uint256 value) internal pure returns (int256) {
                  // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
                  require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
                  return int256(value);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
          pragma solidity ^0.8.0;
          import "../StringsUpgradeable.sol";
          /**
           * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
           *
           * These functions can be used to verify that a message was signed by the holder
           * of the private keys of a given address.
           */
          library ECDSAUpgradeable {
              enum RecoverError {
                  NoError,
                  InvalidSignature,
                  InvalidSignatureLength,
                  InvalidSignatureS,
                  InvalidSignatureV // Deprecated in v4.8
              }
              function _throwError(RecoverError error) private pure {
                  if (error == RecoverError.NoError) {
                      return; // no error: do nothing
                  } else if (error == RecoverError.InvalidSignature) {
                      revert("ECDSA: invalid signature");
                  } else if (error == RecoverError.InvalidSignatureLength) {
                      revert("ECDSA: invalid signature length");
                  } else if (error == RecoverError.InvalidSignatureS) {
                      revert("ECDSA: invalid signature 's' value");
                  }
              }
              /**
               * @dev Returns the address that signed a hashed message (`hash`) with
               * `signature` or error string. This address can then be used for verification purposes.
               *
               * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
               * this function rejects them by requiring the `s` value to be in the lower
               * half order, and the `v` value to be either 27 or 28.
               *
               * IMPORTANT: `hash` _must_ be the result of a hash operation for the
               * verification to be secure: it is possible to craft signatures that
               * recover to arbitrary addresses for non-hashed data. A safe way to ensure
               * this is by receiving a hash of the original message (which may otherwise
               * be too long), and then calling {toEthSignedMessageHash} on it.
               *
               * Documentation for signature generation:
               * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
               * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
               *
               * _Available since v4.3._
               */
              function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
                  if (signature.length == 65) {
                      bytes32 r;
                      bytes32 s;
                      uint8 v;
                      // ecrecover takes the signature parameters, and the only way to get them
                      // currently is to use assembly.
                      /// @solidity memory-safe-assembly
                      assembly {
                          r := mload(add(signature, 0x20))
                          s := mload(add(signature, 0x40))
                          v := byte(0, mload(add(signature, 0x60)))
                      }
                      return tryRecover(hash, v, r, s);
                  } else {
                      return (address(0), RecoverError.InvalidSignatureLength);
                  }
              }
              /**
               * @dev Returns the address that signed a hashed message (`hash`) with
               * `signature`. This address can then be used for verification purposes.
               *
               * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
               * this function rejects them by requiring the `s` value to be in the lower
               * half order, and the `v` value to be either 27 or 28.
               *
               * IMPORTANT: `hash` _must_ be the result of a hash operation for the
               * verification to be secure: it is possible to craft signatures that
               * recover to arbitrary addresses for non-hashed data. A safe way to ensure
               * this is by receiving a hash of the original message (which may otherwise
               * be too long), and then calling {toEthSignedMessageHash} on it.
               */
              function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
                  (address recovered, RecoverError error) = tryRecover(hash, signature);
                  _throwError(error);
                  return recovered;
              }
              /**
               * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
               *
               * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
               *
               * _Available since v4.3._
               */
              function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
                  bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
                  uint8 v = uint8((uint256(vs) >> 255) + 27);
                  return tryRecover(hash, v, r, s);
              }
              /**
               * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
               *
               * _Available since v4.2._
               */
              function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
                  (address recovered, RecoverError error) = tryRecover(hash, r, vs);
                  _throwError(error);
                  return recovered;
              }
              /**
               * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
               * `r` and `s` signature fields separately.
               *
               * _Available since v4.3._
               */
              function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
                  // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
                  // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
                  // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
                  // signatures from current libraries generate a unique signature with an s-value in the lower half order.
                  //
                  // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
                  // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
                  // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
                  // these malleable signatures as well.
                  if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                      return (address(0), RecoverError.InvalidSignatureS);
                  }
                  // If the signature is valid (and not malleable), return the signer address
                  address signer = ecrecover(hash, v, r, s);
                  if (signer == address(0)) {
                      return (address(0), RecoverError.InvalidSignature);
                  }
                  return (signer, RecoverError.NoError);
              }
              /**
               * @dev Overload of {ECDSA-recover} that receives the `v`,
               * `r` and `s` signature fields separately.
               */
              function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
                  (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
                  _throwError(error);
                  return recovered;
              }
              /**
               * @dev Returns an Ethereum Signed Message, created from a `hash`. This
               * produces hash corresponding to the one signed with the
               * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
               * JSON-RPC method as part of EIP-191.
               *
               * See {recover}.
               */
              function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
                  // 32 is the length in bytes of hash,
                  // enforced by the type signature above
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x00, "\\x19Ethereum Signed Message:\
          32")
                      mstore(0x1c, hash)
                      message := keccak256(0x00, 0x3c)
                  }
              }
              /**
               * @dev Returns an Ethereum Signed Message, created from `s`. This
               * produces hash corresponding to the one signed with the
               * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
               * JSON-RPC method as part of EIP-191.
               *
               * See {recover}.
               */
              function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
          ", StringsUpgradeable.toString(s.length), s));
              }
              /**
               * @dev Returns an Ethereum Signed Typed Data, created from a
               * `domainSeparator` and a `structHash`. This produces hash corresponding
               * to the one signed with the
               * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
               * JSON-RPC method as part of EIP-712.
               *
               * See {recover}.
               */
              function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let ptr := mload(0x40)
                      mstore(ptr, "\\x19\\x01")
                      mstore(add(ptr, 0x02), domainSeparator)
                      mstore(add(ptr, 0x22), structHash)
                      data := keccak256(ptr, 0x42)
                  }
              }
              /**
               * @dev Returns an Ethereum Signed Data with intended validator, created from a
               * `validator` and `data` according to the version 0 of EIP-191.
               *
               * See {recover}.
               */
              function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
                  return keccak256(abi.encodePacked("\\x19\\x00", validator, data));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/AddressUpgradeable.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```solidity
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           *
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts.
               *
               * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
               * constructor.
               *
               * Emits an {Initialized} event.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * A reinitializer may be used after the original initialization step. This is essential to configure modules that
               * are added through upgrades and that require initialization.
               *
               * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
               * cannot be nested. If one is invoked in the context of another, execution will revert.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               *
               * WARNING: setting the version to 255 will prevent any future reinitialization.
               *
               * Emits an {Initialized} event.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               *
               * Emits an {Initialized} event the first time it is successfully executed.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized != type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
              /**
               * @dev Returns the highest version that has been initialized. See {reinitializer}.
               */
              function _getInitializedVersion() internal view returns (uint8) {
                  return _initialized;
              }
              /**
               * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
               */
              function _isInitializing() internal view returns (bool) {
                  return _initializing;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract ContextUpgradeable is Initializable {
              function __Context_init() internal onlyInitializing {
              }
              function __Context_init_unchained() internal onlyInitializing {
              }
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
           * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
           *
           * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
           * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
           * need to send a transaction, and thus is not required to hold Ether at all.
           */
          interface IERC20PermitUpgradeable {
              /**
               * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
               * given ``owner``'s signed approval.
               *
               * IMPORTANT: The same issues {IERC20-approve} has related to transaction
               * ordering also apply here.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `deadline` must be a timestamp in the future.
               * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
               * over the EIP712-formatted function arguments.
               * - the signature must use ``owner``'s current nonce (see {nonces}).
               *
               * For more information on the signature format, see the
               * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
               * section].
               */
              function permit(
                  address owner,
                  address spender,
                  uint256 value,
                  uint256 deadline,
                  uint8 v,
                  bytes32 r,
                  bytes32 s
              ) external;
              /**
               * @dev Returns the current nonce for `owner`. This value must be
               * included whenever a signature is generated for {permit}.
               *
               * Every successful call to {permit} increases ``owner``'s nonce by one. This
               * prevents a signature from being used multiple times.
               */
              function nonces(address owner) external view returns (uint256);
              /**
               * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
               */
              // solhint-disable-next-line func-name-mixedcase
              function DOMAIN_SEPARATOR() external view returns (bytes32);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
          pragma solidity ^0.8.0;
          import "./IERC20Upgradeable.sol";
          import "./extensions/IERC20MetadataUpgradeable.sol";
          import "../../utils/ContextUpgradeable.sol";
          import "../../proxy/utils/Initializable.sol";
          /**
           * @dev Implementation of the {IERC20} interface.
           *
           * This implementation is agnostic to the way tokens are created. This means
           * that a supply mechanism has to be added in a derived contract using {_mint}.
           * For a generic mechanism see {ERC20PresetMinterPauser}.
           *
           * TIP: For a detailed writeup see our guide
           * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
           * to implement supply mechanisms].
           *
           * The default value of {decimals} is 18. To change this, you should override
           * this function so it returns a different value.
           *
           * We have followed general OpenZeppelin Contracts guidelines: functions revert
           * instead returning `false` on failure. This behavior is nonetheless
           * conventional and does not conflict with the expectations of ERC20
           * applications.
           *
           * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
           * This allows applications to reconstruct the allowance for all accounts just
           * by listening to said events. Other implementations of the EIP may not emit
           * these events, as it isn't required by the specification.
           *
           * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
           * functions have been added to mitigate the well-known issues around setting
           * allowances. See {IERC20-approve}.
           */
          contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
              mapping(address => uint256) private _balances;
              mapping(address => mapping(address => uint256)) private _allowances;
              uint256 private _totalSupply;
              string private _name;
              string private _symbol;
              /**
               * @dev Sets the values for {name} and {symbol}.
               *
               * All two of these values are immutable: they can only be set once during
               * construction.
               */
              function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
                  __ERC20_init_unchained(name_, symbol_);
              }
              function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
                  _name = name_;
                  _symbol = symbol_;
              }
              /**
               * @dev Returns the name of the token.
               */
              function name() public view virtual override returns (string memory) {
                  return _name;
              }
              /**
               * @dev Returns the symbol of the token, usually a shorter version of the
               * name.
               */
              function symbol() public view virtual override returns (string memory) {
                  return _symbol;
              }
              /**
               * @dev Returns the number of decimals used to get its user representation.
               * For example, if `decimals` equals `2`, a balance of `505` tokens should
               * be displayed to a user as `5.05` (`505 / 10 ** 2`).
               *
               * Tokens usually opt for a value of 18, imitating the relationship between
               * Ether and Wei. This is the default value returned by this function, unless
               * it's overridden.
               *
               * NOTE: This information is only used for _display_ purposes: it in
               * no way affects any of the arithmetic of the contract, including
               * {IERC20-balanceOf} and {IERC20-transfer}.
               */
              function decimals() public view virtual override returns (uint8) {
                  return 18;
              }
              /**
               * @dev See {IERC20-totalSupply}.
               */
              function totalSupply() public view virtual override returns (uint256) {
                  return _totalSupply;
              }
              /**
               * @dev See {IERC20-balanceOf}.
               */
              function balanceOf(address account) public view virtual override returns (uint256) {
                  return _balances[account];
              }
              /**
               * @dev See {IERC20-transfer}.
               *
               * Requirements:
               *
               * - `to` cannot be the zero address.
               * - the caller must have a balance of at least `amount`.
               */
              function transfer(address to, uint256 amount) public virtual override returns (bool) {
                  address owner = _msgSender();
                  _transfer(owner, to, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-allowance}.
               */
              function allowance(address owner, address spender) public view virtual override returns (uint256) {
                  return _allowances[owner][spender];
              }
              /**
               * @dev See {IERC20-approve}.
               *
               * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
               * `transferFrom`. This is semantically equivalent to an infinite approval.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function approve(address spender, uint256 amount) public virtual override returns (bool) {
                  address owner = _msgSender();
                  _approve(owner, spender, amount);
                  return true;
              }
              /**
               * @dev See {IERC20-transferFrom}.
               *
               * Emits an {Approval} event indicating the updated allowance. This is not
               * required by the EIP. See the note at the beginning of {ERC20}.
               *
               * NOTE: Does not update the allowance if the current allowance
               * is the maximum `uint256`.
               *
               * Requirements:
               *
               * - `from` and `to` cannot be the zero address.
               * - `from` must have a balance of at least `amount`.
               * - the caller must have allowance for ``from``'s tokens of at least
               * `amount`.
               */
              function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
                  address spender = _msgSender();
                  _spendAllowance(from, spender, amount);
                  _transfer(from, to, amount);
                  return true;
              }
              /**
               * @dev Atomically increases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               */
              function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                  address owner = _msgSender();
                  _approve(owner, spender, allowance(owner, spender) + addedValue);
                  return true;
              }
              /**
               * @dev Atomically decreases the allowance granted to `spender` by the caller.
               *
               * This is an alternative to {approve} that can be used as a mitigation for
               * problems described in {IERC20-approve}.
               *
               * Emits an {Approval} event indicating the updated allowance.
               *
               * Requirements:
               *
               * - `spender` cannot be the zero address.
               * - `spender` must have allowance for the caller of at least
               * `subtractedValue`.
               */
              function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                  address owner = _msgSender();
                  uint256 currentAllowance = allowance(owner, spender);
                  require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                  unchecked {
                      _approve(owner, spender, currentAllowance - subtractedValue);
                  }
                  return true;
              }
              /**
               * @dev Moves `amount` of tokens from `from` to `to`.
               *
               * This internal function is equivalent to {transfer}, and can be used to
               * e.g. implement automatic token fees, slashing mechanisms, etc.
               *
               * Emits a {Transfer} event.
               *
               * Requirements:
               *
               * - `from` cannot be the zero address.
               * - `to` cannot be the zero address.
               * - `from` must have a balance of at least `amount`.
               */
              function _transfer(address from, address to, uint256 amount) internal virtual {
                  require(from != address(0), "ERC20: transfer from the zero address");
                  require(to != address(0), "ERC20: transfer to the zero address");
                  _beforeTokenTransfer(from, to, amount);
                  uint256 fromBalance = _balances[from];
                  require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                  unchecked {
                      _balances[from] = fromBalance - amount;
                      // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
                      // decrementing then incrementing.
                      _balances[to] += amount;
                  }
                  emit Transfer(from, to, amount);
                  _afterTokenTransfer(from, to, amount);
              }
              /** @dev Creates `amount` tokens and assigns them to `account`, increasing
               * the total supply.
               *
               * Emits a {Transfer} event with `from` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               */
              function _mint(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: mint to the zero address");
                  _beforeTokenTransfer(address(0), account, amount);
                  _totalSupply += amount;
                  unchecked {
                      // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
                      _balances[account] += amount;
                  }
                  emit Transfer(address(0), account, amount);
                  _afterTokenTransfer(address(0), account, amount);
              }
              /**
               * @dev Destroys `amount` tokens from `account`, reducing the
               * total supply.
               *
               * Emits a {Transfer} event with `to` set to the zero address.
               *
               * Requirements:
               *
               * - `account` cannot be the zero address.
               * - `account` must have at least `amount` tokens.
               */
              function _burn(address account, uint256 amount) internal virtual {
                  require(account != address(0), "ERC20: burn from the zero address");
                  _beforeTokenTransfer(account, address(0), amount);
                  uint256 accountBalance = _balances[account];
                  require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                  unchecked {
                      _balances[account] = accountBalance - amount;
                      // Overflow not possible: amount <= accountBalance <= totalSupply.
                      _totalSupply -= amount;
                  }
                  emit Transfer(account, address(0), amount);
                  _afterTokenTransfer(account, address(0), amount);
              }
              /**
               * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
               *
               * This internal function is equivalent to `approve`, and can be used to
               * e.g. set automatic allowances for certain subsystems, etc.
               *
               * Emits an {Approval} event.
               *
               * Requirements:
               *
               * - `owner` cannot be the zero address.
               * - `spender` cannot be the zero address.
               */
              function _approve(address owner, address spender, uint256 amount) internal virtual {
                  require(owner != address(0), "ERC20: approve from the zero address");
                  require(spender != address(0), "ERC20: approve to the zero address");
                  _allowances[owner][spender] = amount;
                  emit Approval(owner, spender, amount);
              }
              /**
               * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
               *
               * Does not update the allowance amount in case of infinite allowance.
               * Revert if not enough allowance is available.
               *
               * Might emit an {Approval} event.
               */
              function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
                  uint256 currentAllowance = allowance(owner, spender);
                  if (currentAllowance != type(uint256).max) {
                      require(currentAllowance >= amount, "ERC20: insufficient allowance");
                      unchecked {
                          _approve(owner, spender, currentAllowance - amount);
                      }
                  }
              }
              /**
               * @dev Hook that is called before any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * will be transferred to `to`.
               * - when `from` is zero, `amount` tokens will be minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
              /**
               * @dev Hook that is called after any transfer of tokens. This includes
               * minting and burning.
               *
               * Calling conditions:
               *
               * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
               * has been transferred to `to`.
               * - when `from` is zero, `amount` tokens have been minted for `to`.
               * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
               * - `from` and `to` are never both zero.
               *
               * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
               */
              function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[45] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
          pragma solidity ^0.8.8;
          import "./ECDSAUpgradeable.sol";
          import "../../interfaces/IERC5267Upgradeable.sol";
          import "../../proxy/utils/Initializable.sol";
          /**
           * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
           *
           * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
           * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
           * they need in their contracts using a combination of `abi.encode` and `keccak256`.
           *
           * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
           * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
           * ({_hashTypedDataV4}).
           *
           * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
           * the chain id to protect against replay attacks on an eventual fork of the chain.
           *
           * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
           * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
           *
           * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
           * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
           * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
           *
           * _Available since v3.4._
           *
           * @custom:storage-size 52
           */
          abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
              bytes32 private constant _TYPE_HASH =
                  keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
              /// @custom:oz-renamed-from _HASHED_NAME
              bytes32 private _hashedName;
              /// @custom:oz-renamed-from _HASHED_VERSION
              bytes32 private _hashedVersion;
              string private _name;
              string private _version;
              /**
               * @dev Initializes the domain separator and parameter caches.
               *
               * The meaning of `name` and `version` is specified in
               * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
               *
               * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
               * - `version`: the current major version of the signing domain.
               *
               * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
               * contract upgrade].
               */
              function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
                  __EIP712_init_unchained(name, version);
              }
              function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
                  _name = name;
                  _version = version;
                  // Reset prior values in storage if upgrading
                  _hashedName = 0;
                  _hashedVersion = 0;
              }
              /**
               * @dev Returns the domain separator for the current chain.
               */
              function _domainSeparatorV4() internal view returns (bytes32) {
                  return _buildDomainSeparator();
              }
              function _buildDomainSeparator() private view returns (bytes32) {
                  return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
              }
              /**
               * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
               * function returns the hash of the fully encoded EIP712 message for this domain.
               *
               * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
               *
               * ```solidity
               * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
               *     keccak256("Mail(address to,string contents)"),
               *     mailTo,
               *     keccak256(bytes(mailContents))
               * )));
               * address signer = ECDSA.recover(digest, signature);
               * ```
               */
              function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
                  return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
              }
              /**
               * @dev See {EIP-5267}.
               *
               * _Available since v4.9._
               */
              function eip712Domain()
                  public
                  view
                  virtual
                  override
                  returns (
                      bytes1 fields,
                      string memory name,
                      string memory version,
                      uint256 chainId,
                      address verifyingContract,
                      bytes32 salt,
                      uint256[] memory extensions
                  )
              {
                  // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
                  // and the EIP712 domain is not reliable, as it will be missing name and version.
                  require(_hashedName == 0 && _hashedVersion == 0, "EIP712: Uninitialized");
                  return (
                      hex"0f", // 01111
                      _EIP712Name(),
                      _EIP712Version(),
                      block.chainid,
                      address(this),
                      bytes32(0),
                      new uint256[](0)
                  );
              }
              /**
               * @dev The name parameter for the EIP712 domain.
               *
               * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
               * are a concern.
               */
              function _EIP712Name() internal virtual view returns (string memory) {
                  return _name;
              }
              /**
               * @dev The version parameter for the EIP712 domain.
               *
               * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
               * are a concern.
               */
              function _EIP712Version() internal virtual view returns (string memory) {
                  return _version;
              }
              /**
               * @dev The hash of the name parameter for the EIP712 domain.
               *
               * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
               */
              function _EIP712NameHash() internal view returns (bytes32) {
                  string memory name = _EIP712Name();
                  if (bytes(name).length > 0) {
                      return keccak256(bytes(name));
                  } else {
                      // If the name is empty, the contract may have been upgraded without initializing the new storage.
                      // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
                      bytes32 hashedName = _hashedName;
                      if (hashedName != 0) {
                          return hashedName;
                      } else {
                          return keccak256("");
                      }
                  }
              }
              /**
               * @dev The hash of the version parameter for the EIP712 domain.
               *
               * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
               */
              function _EIP712VersionHash() internal view returns (bytes32) {
                  string memory version = _EIP712Version();
                  if (bytes(version).length > 0) {
                      return keccak256(bytes(version));
                  } else {
                      // If the version is empty, the contract may have been upgraded without initializing the new storage.
                      // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
                      bytes32 hashedVersion = _hashedVersion;
                      if (hashedVersion != 0) {
                          return hashedVersion;
                      } else {
                          return keccak256("");
                      }
                  }
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[48] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
          pragma solidity ^0.8.0;
          /**
           * @title Counters
           * @author Matt Condon (@shrugs)
           * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
           * of elements in a mapping, issuing ERC721 ids, or counting request ids.
           *
           * Include with `using Counters for Counters.Counter;`
           */
          library CountersUpgradeable {
              struct Counter {
                  // This variable should never be directly accessed by users of the library: interactions must be restricted to
                  // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
                  // this feature: see https://github.com/ethereum/solidity/issues/4637
                  uint256 _value; // default: 0
              }
              function current(Counter storage counter) internal view returns (uint256) {
                  return counter._value;
              }
              function increment(Counter storage counter) internal {
                  unchecked {
                      counter._value += 1;
                  }
              }
              function decrement(Counter storage counter) internal {
                  uint256 value = counter._value;
                  require(value > 0, "Counter: decrement overflow");
                  unchecked {
                      counter._value = value - 1;
                  }
              }
              function reset(Counter storage counter) internal {
                  counter._value = 0;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (governance/utils/IVotes.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
           *
           * _Available since v4.5._
           */
          interface IVotesUpgradeable {
              /**
               * @dev Emitted when an account changes their delegate.
               */
              event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);
              /**
               * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of votes.
               */
              event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance);
              /**
               * @dev Returns the current amount of votes that `account` has.
               */
              function getVotes(address account) external view returns (uint256);
              /**
               * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
               * configured to use block numbers, this will return the value at the end of the corresponding block.
               */
              function getPastVotes(address account, uint256 timepoint) external view returns (uint256);
              /**
               * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
               * configured to use block numbers, this will return the value at the end of the corresponding block.
               *
               * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
               * Votes that have not been delegated are still part of total supply, even though they would not participate in a
               * vote.
               */
              function getPastTotalSupply(uint256 timepoint) external view returns (uint256);
              /**
               * @dev Returns the delegate that `account` has chosen.
               */
              function delegates(address account) external view returns (address);
              /**
               * @dev Delegates votes from the sender to `delegatee`.
               */
              function delegate(address delegatee) external;
              /**
               * @dev Delegates votes from signer to `delegatee`.
               */
              function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC6372.sol)
          pragma solidity ^0.8.0;
          interface IERC6372Upgradeable {
              /**
               * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
               */
              function clock() external view returns (uint48);
              /**
               * @dev Description of the clock
               */
              // solhint-disable-next-line func-name-mixedcase
              function CLOCK_MODE() external view returns (string memory);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
          pragma solidity ^0.8.0;
          import "./math/MathUpgradeable.sol";
          import "./math/SignedMathUpgradeable.sol";
          /**
           * @dev String operations.
           */
          library StringsUpgradeable {
              bytes16 private constant _SYMBOLS = "0123456789abcdef";
              uint8 private constant _ADDRESS_LENGTH = 20;
              /**
               * @dev Converts a `uint256` to its ASCII `string` decimal representation.
               */
              function toString(uint256 value) internal pure returns (string memory) {
                  unchecked {
                      uint256 length = MathUpgradeable.log10(value) + 1;
                      string memory buffer = new string(length);
                      uint256 ptr;
                      /// @solidity memory-safe-assembly
                      assembly {
                          ptr := add(buffer, add(32, length))
                      }
                      while (true) {
                          ptr--;
                          /// @solidity memory-safe-assembly
                          assembly {
                              mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                          }
                          value /= 10;
                          if (value == 0) break;
                      }
                      return buffer;
                  }
              }
              /**
               * @dev Converts a `int256` to its ASCII `string` decimal representation.
               */
              function toString(int256 value) internal pure returns (string memory) {
                  return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
               */
              function toHexString(uint256 value) internal pure returns (string memory) {
                  unchecked {
                      return toHexString(value, MathUpgradeable.log256(value) + 1);
                  }
              }
              /**
               * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
               */
              function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
                  bytes memory buffer = new bytes(2 * length + 2);
                  buffer[0] = "0";
                  buffer[1] = "x";
                  for (uint256 i = 2 * length + 1; i > 1; --i) {
                      buffer[i] = _SYMBOLS[value & 0xf];
                      value >>= 4;
                  }
                  require(value == 0, "Strings: hex length insufficient");
                  return string(buffer);
              }
              /**
               * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
               */
              function toHexString(address addr) internal pure returns (string memory) {
                  return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
              }
              /**
               * @dev Returns true if the two strings are equal.
               */
              function equal(string memory a, string memory b) internal pure returns (bool) {
                  return keccak256(bytes(a)) == keccak256(bytes(b));
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library AddressUpgradeable {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               *
               * Furthermore, `isContract` will also return true if the target contract within
               * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
               * which only has an effect at the end of a transaction.
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResultFromTarget(target, success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
               * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
               *
               * _Available since v4.8._
               */
              function verifyCallResultFromTarget(
                  address target,
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  if (success) {
                      if (returndata.length == 0) {
                          // only check isContract if the call was successful and the return data is empty
                          // otherwise we already know that it was a contract
                          require(isContract(target), "Address: call to non-contract");
                      }
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              /**
               * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason or using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      _revert(returndata, errorMessage);
                  }
              }
              function _revert(bytes memory returndata, string memory errorMessage) private pure {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      /// @solidity memory-safe-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Interface of the ERC20 standard as defined in the EIP.
           */
          interface IERC20Upgradeable {
              /**
               * @dev Emitted when `value` tokens are moved from one account (`from`) to
               * another (`to`).
               *
               * Note that `value` may be zero.
               */
              event Transfer(address indexed from, address indexed to, uint256 value);
              /**
               * @dev Emitted when the allowance of a `spender` for an `owner` is set by
               * a call to {approve}. `value` is the new allowance.
               */
              event Approval(address indexed owner, address indexed spender, uint256 value);
              /**
               * @dev Returns the amount of tokens in existence.
               */
              function totalSupply() external view returns (uint256);
              /**
               * @dev Returns the amount of tokens owned by `account`.
               */
              function balanceOf(address account) external view returns (uint256);
              /**
               * @dev Moves `amount` tokens from the caller's account to `to`.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transfer(address to, uint256 amount) external returns (bool);
              /**
               * @dev Returns the remaining number of tokens that `spender` will be
               * allowed to spend on behalf of `owner` through {transferFrom}. This is
               * zero by default.
               *
               * This value changes when {approve} or {transferFrom} are called.
               */
              function allowance(address owner, address spender) external view returns (uint256);
              /**
               * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * IMPORTANT: Beware that changing an allowance with this method brings the risk
               * that someone may use both the old and the new allowance by unfortunate
               * transaction ordering. One possible solution to mitigate this race
               * condition is to first reduce the spender's allowance to 0 and set the
               * desired value afterwards:
               * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
               *
               * Emits an {Approval} event.
               */
              function approve(address spender, uint256 amount) external returns (bool);
              /**
               * @dev Moves `amount` tokens from `from` to `to` using the
               * allowance mechanism. `amount` is then deducted from the caller's
               * allowance.
               *
               * Returns a boolean value indicating whether the operation succeeded.
               *
               * Emits a {Transfer} event.
               */
              function transferFrom(address from, address to, uint256 amount) external returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
          pragma solidity ^0.8.0;
          import "../IERC20Upgradeable.sol";
          /**
           * @dev Interface for the optional metadata functions from the ERC20 standard.
           *
           * _Available since v4.1._
           */
          interface IERC20MetadataUpgradeable is IERC20Upgradeable {
              /**
               * @dev Returns the name of the token.
               */
              function name() external view returns (string memory);
              /**
               * @dev Returns the symbol of the token.
               */
              function symbol() external view returns (string memory);
              /**
               * @dev Returns the decimals places of the token.
               */
              function decimals() external view returns (uint8);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
          pragma solidity ^0.8.0;
          interface IERC5267Upgradeable {
              /**
               * @dev MAY be emitted to signal that the domain could have changed.
               */
              event EIP712DomainChanged();
              /**
               * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
               * signature.
               */
              function eip712Domain()
                  external
                  view
                  returns (
                      bytes1 fields,
                      string memory name,
                      string memory version,
                      uint256 chainId,
                      address verifyingContract,
                      bytes32 salt,
                      uint256[] memory extensions
                  );
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMathUpgradeable {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a > b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }