Transaction Hash:
Block:
20280887 at Jul-11-2024 04:30:47 AM +UTC
Transaction Fee:
0.001053899847 ETH
$2.65
Gas Used:
240,123 Gas / 4.389 Gwei
Emitted Events:
53 |
WETH9.Deposit( dst=SynapseRouter, wad=608170000000000000 )
|
54 |
TransparentUpgradeableProxy.0x79c15604b92ef54d3f61f0c40caab8857927ca3d5092367163b4562c1699eb5f( 0x79c15604b92ef54d3f61f0c40caab8857927ca3d5092367163b4562c1699eb5f, 0x000000000000000000000000d5b68467c1d8086ec2a537b22b64ce8c5c093418, 0000000000000000000000000000000000000000000000000000000000013e31, 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2, 0000000000000000000000000000000000000000000000000870a7648d0ca000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000001, 00000000000000000000000000000000000000000000000008705dbd0d3e7781, 0000000000000000000000000000000000000000000000000000000066989a5f )
|
55 |
WETH9.Transfer( src=SynapseRouter, dst=TransparentUpgradeableProxy, wad=608170000000000000 )
|
56 |
SocketGateway.0x74594da9e31ee4068e17809037db37db496702bf7d8d63afe6f97949277d1609( 0x74594da9e31ee4068e17809037db37db496702bf7d8d63afe6f97949277d1609, 0000000000000000000000000000000000000000000000000870a7648d0ca000, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0000000000000000000000000000000000000000000000000000000000013e31, 47443678ca5bb8034d5e764a6f20d6e5cfcbb4a3912e12f8bae660cd0face530, 0000000000000000000000002f2dd99235cb728fc79af575f1325eaa270f0c99, 000000000000000000000000d5b68467c1d8086ec2a537b22b64ce8c5c093418, 0000000000000000000000000000000000000000000000000000000000000948 )
|
57 |
BKSwap.0xed4a98aef48242afba6c3bc19a382abe34a2203d433288aae55ecac3826b028b( 0xed4a98aef48242afba6c3bc19a382abe34a2203d433288aae55ecac3826b028b, 0x0000000000000000000000000000000000000000000000000000000000000001, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 0000000000000000000000000000000000000000000000000000000000000001, 0000000000000000000000000000000000000000000000000000000000013e31, 000000000000000000000000000000000000000000000000087727c4a0fd0000, 0000000000000000000000000000000000000000000000000870a7648d0ca000, 0000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000d5b68467c1d8086ec2a537b22b64ce8c5c093418, 000000000000000000000000000000000000000000000000084966d2446975dd, 0000000000000000000000000000000000000000000000000006806013f06000, 0000000000000000000000000000000000000000000000000000000000000180, 00000000000000000000000000000000000000000000000000000000000001e0, 0000000000000000000000000000000000000000000000000000000000000027, 4269744b65657020534f523a20427269646765204167677265676174696f6e20, 4665617475726500000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000003, 312e300000000000000000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x92c2eA2F...f1D4162fb | 10.340787875803274938 Eth | 10.342617875803274938 Eth | 0.00183 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 12.767973448468444023 Eth | 12.768420897106886244 Eth | 0.000447448638442221 | |
0xC02aaA39...83C756Cc2 | 2,730,025.322016202331502697 Eth | 2,730,025.930186202331502697 Eth | 0.60817 | ||
0xD5b68467...c5C093418 |
0.616411180217058517 Eth
Nonce: 72
|
0.005357280370058517 Eth
Nonce: 73
| 0.611053899847 | ||
0xE4DA6f98...bA7e67D8D |
Execution Trace
ETH 0.61
BKSwapRouter.swap( swapParams=[{name:fromTokenAddress, type:address, order:1, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:amountInTotal, type:uint256, order:2, indexed:false, value:610000000000000000, valueString:610000000000000000}, {name:data, type:bytes, order:3, indexed:false, value:0xB0DCE4DD000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000280000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000013E31000000000000000000000000000000000000000000000000087727C4A0FD00000000000000000000000000000000000000000000000000000870A7648D0CA0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000D5B68467C1D8086EC2A537B22B64CE8C5C093418000000000000000000000000000000000000000000000000084966D2446975DD313A14A75B93CB32FF7D60F279BA65A706907351F35919081E09073A5AE9809E0000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000004147A0277FFFA13DEC51A5C9F3B075166E9D4149F688643A20A085ED7FA5A040716755A6745795944C1DCE6CDD9B6A97685F08078E05F2F371D432AE648DB4AEEE1B000000000000000000000000000000000000000000000000000000000000000000000000000000000000003A23F943181408EAC424116AF7B7790C94CB97A50000000000000000000000003A23F943181408EAC424116AF7B7790C94CB97A5000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000003480000018575BBF1A20000000000000000000000000000000000000000000000000870A7648D0CA0000000000000000000000000000000000000000000000000000000000000000948000000000000000000000000D5B68467C1D8086EC2A537B22B64CE8C5C0934180000000000000000000000000000000000000000000000000000000000013E3100000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000002000000000000000000000000007E7A0E201FD38D3ADAA9523DA6C109A07118C96A000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000000000086C5523536C580000000000000000000000000000000000000000000000000000000000668F661F00000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF0000000000000000000000007E7A0E201FD38D3ADAA9523DA6C109A07118C96A000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE00000000000000000000000000000000000000000000000008705DBD0D3E77810000000000000000000000000000000000000000000000000000000066989A5F00000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999FCD13C54B26E02A6CCD185F71550B3A4641C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000, valueString:0xB0DCE4DD000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000280000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000013E31000000000000000000000000000000000000000000000000087727C4A0FD00000000000000000000000000000000000000000000000000000870A7648D0CA0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000D5B68467C1D8086EC2A537B22B64CE8C5C093418000000000000000000000000000000000000000000000000084966D2446975DD313A14A75B93CB32FF7D60F279BA65A706907351F35919081E09073A5AE9809E0000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000004147A0277FFFA13DEC51A5C9F3B075166E9D4149F688643A20A085ED7FA5A040716755A6745795944C1DCE6CDD9B6A97685F08078E05F2F371D432AE648DB4AEEE1B000000000000000000000000000000000000000000000000000000000000000000000000000000000000003A23F943181408EAC424116AF7B7790C94CB97A50000000000000000000000003A23F943181408EAC424116AF7B7790C94CB97A5000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000003480000018575BBF1A20000000000000000000000000000000000000000000000000870A7648D0CA0000000000000000000000000000000000000000000000000000000000000000948000000000000000000000000D5B68467C1D8086EC2A537B22B64CE8C5C0934180000000000000000000000000000000000000000000000000000000000013E3100000000000000000000000000000000000000000000000000000000000000C000000000000000000000000000000000000000000000000000000000000002000000000000000000000000007E7A0E201FD38D3ADAA9523DA6C109A07118C96A000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000000000000000000000000000086C5523536C580000000000000000000000000000000000000000000000000000000000668F661F00000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF0000000000000000000000007E7A0E201FD38D3ADAA9523DA6C109A07118C96A000000000000000000000000EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE00000000000000000000000000000000000000000000000008705DBD0D3E77810000000000000000000000000000000000000000000000000000000066989A5F00000000000000000000000000000000000000000000000000000000000000A000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999FCD13C54B26E02A6CCD185F71550B3A4641C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000}] )
ETH 0.61
BKSwap.b0dce4dd( )
-
BKRegistry.getFeature( _methodId=System.Byte[] ) => ( proxy=0x9e4A4f53a1a8344fb22568e2821CC60f94B2Ce7F, isLib=True )
ETH 0.61
0x9e4a4f53a1a8344fb22568e2821cc60f94b2ce7f.b0dce4dd( )
-
BKRegistry.isCallTarget( _methodId=System.Byte[], _target=0x3a23F943181408EAC424116Af7b7790c94Cb97a5 ) => ( True )
-
BKRegistry.isApproveTarget( _methodId=System.Byte[], _target=0x3a23F943181408EAC424116Af7b7790c94Cb97a5 ) => ( True )
BKFees.checkIsSigner( _nonceHash=7A91C303E18D5F305E6AC0A82C1133E65883977B304B41591619FBD793AFE981, _signature=0x47A0277FFFA13DEC51A5C9F3B075166E9D4149F688643A20A085ED7FA5A040716755A6745795944C1DCE6CDD9B6A97685F08078E05F2F371D432AE648DB4AEEE1B )
-
Null: 0x000...001.1bfdf60f( )
-
-
BKFees.STATICCALL( )
- ETH 0.00183
0x92c2ea2fafe891758da0ed2ec2978acf1d4162fb.CALL( )
ETH 0.60817
SocketGateway.00000185( )
ETH 0.60817
SynapseBridgeImpl.bridgeNativeTo( amount=608170000000000000, metadata=0000000000000000000000000000000000000000000000000000000000000948, receiverAddress=0xD5b68467c1D8086ec2a537B22B64cE8c5C093418, toChainId=81457, originQuery=[{name:swapAdapter, type:address, order:1, indexed:false, value:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a, valueString:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a}, {name:tokenOut, type:address, order:2, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:minAmountOut, type:uint256, order:3, indexed:false, value:606953660000000000, valueString:606953660000000000}, {name:deadline, type:uint256, order:4, indexed:false, value:1720673823, valueString:1720673823}, {name:rawParams, type:bytes, order:5, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF, valueString:0x0000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF}], destinationQuery=[{name:swapAdapter, type:address, order:1, indexed:false, value:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a, valueString:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a}, {name:tokenOut, type:address, order:2, indexed:false, value:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, valueString:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE}, {name:minAmountOut, type:uint256, order:3, indexed:false, value:608089016247416705, valueString:608089016247416705}, {name:deadline, type:uint256, order:4, indexed:false, value:1721277023, valueString:1721277023}, {name:rawParams, type:bytes, order:5, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999FCD13C54B26E02A6CCD185F71550B3A4641C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, valueString:0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999FCD13C54B26E02A6CCD185F71550B3A4641C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001}] )
ETH 0.60817
SynapseRouter.bridge( to=0xD5b68467c1D8086ec2a537B22B64cE8c5C093418, chainId=81457, token=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, amount=608170000000000000, originQuery=[{name:swapAdapter, type:address, order:1, indexed:false, value:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a, valueString:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a}, {name:tokenOut, type:address, order:2, indexed:false, value:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, valueString:0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2}, {name:minAmountOut, type:uint256, order:3, indexed:false, value:606953660000000000, valueString:606953660000000000}, {name:deadline, type:uint256, order:4, indexed:false, value:1720673823, valueString:1720673823}, {name:rawParams, type:bytes, order:5, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF, valueString:0x0000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF}], destQuery=[{name:swapAdapter, type:address, order:1, indexed:false, value:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a, valueString:0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a}, {name:tokenOut, type:address, order:2, indexed:false, value:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, valueString:0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE}, {name:minAmountOut, type:uint256, order:3, indexed:false, value:608089016247416705, valueString:608089016247416705}, {name:deadline, type:uint256, order:4, indexed:false, value:1721277023, valueString:1721277023}, {name:rawParams, type:bytes, order:5, indexed:false, value:0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999FCD13C54B26E02A6CCD185F71550B3A4641C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001, valueString:0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000999FCD13C54B26E02A6CCD185F71550B3A4641C000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001}] )
- ETH 0.60817
SynapseRouter.adapterSwap( to=0x7E7A0e201FD38d3ADAA9523Da6C109a07118C96a, tokenIn=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, amountIn=608170000000000000, tokenOut=0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, rawParams=0x0000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000FF00000000000000000000000000000000000000000000000000000000000000FF ) => ( amountOut=608170000000000000 )
-
TransparentUpgradeableProxy.a2a2af0b( )
- ETH 0.60817
-
-
swap[BKSwapRouter (ln:754)]
isETH[BKSwapRouter (ln:760)]
safeTransferFrom[BKSwapRouter (ln:761)]
call[TransferHelper (ln:853)]
encodeWithSelector[TransferHelper (ln:854)]
decode[TransferHelper (ln:862)]
SwapEthBalanceNotEnough[BKSwapRouter (ln:769)]
call[BKSwapRouter (ln:772)]
_revertWithData[BKSwapRouter (ln:776)]
File 1 of 9: BKSwapRouter
File 2 of 9: WETH9
File 3 of 9: TransparentUpgradeableProxy
File 4 of 9: SynapseRouter
File 5 of 9: SocketGateway
File 6 of 9: BKSwap
File 7 of 9: BKRegistry
File 8 of 9: BKFees
File 9 of 9: SynapseBridgeImpl
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "./interfaces/IBKErrors.sol"; contract BKCommon is IBKErrors, Ownable, Pausable, ReentrancyGuard { using SafeERC20 for IERC20; mapping(address => bool) isOperator; event RescueETH(address indexed recipient, uint256 amount); event RescueERC20(address indexed asset, address recipient); event SetOperator(address operator, bool isOperator); modifier onlyOperator() { require(isOperator[_msgSender()], "Operator: caller is not the operator"); _; } function setOperator(address[] calldata _operators, bool _isOperator) external onlyOwner { for(uint i = 0; i < _operators.length; i++) { isOperator[_operators[i]] = _isOperator; emit SetOperator(_operators[i], _isOperator); } } function pause() external onlyOperator { _pause(); } function unpause() external onlyOperator { _unpause(); } function rescueERC20(address asset, address recipient) external onlyOperator { IERC20(asset).safeTransfer( recipient, IERC20(asset).balanceOf(address(this)) ); emit RescueERC20(asset, recipient); } function rescueETH(address recipient) external onlyOperator { _transferEth(recipient, address(this).balance); } function _transferEth(address _to, uint256 _amount) internal { bool callStatus; assembly { // Transfer the ETH and store if it succeeded or not. callStatus := call(gas(), _to, _amount, 0, 0, 0, 0) } require(callStatus, "_transferEth: Eth transfer failed"); emit RescueETH(_to, _amount); } /// @dev Revert with arbitrary bytes. /// @param data Revert data. function _revertWithData(bytes memory data) internal pure { assembly { revert(add(data, 32), mload(data)) } } receive() external payable {} }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "./BKCommon.sol"; import "./utils/TransferHelper.sol"; import {BasicParams, AggregationParams, SwapType, OrderInfo} from "./interfaces/IBKStructsAndEnums.sol"; import {IBKErrors} from "./interfaces/IBKErrors.sol"; contract BKSwapRouter is BKCommon { address public immutable BKSWAP_V2; struct SwapParams { address fromTokenAddress; uint256 amountInTotal; bytes data; } constructor(address bkSwapAddress, address owner) { BKSWAP_V2 = bkSwapAddress; _transferOwnership(owner); } function swap(SwapParams calldata swapParams) external payable whenNotPaused nonReentrant { if (!TransferHelper.isETH(swapParams.fromTokenAddress)) { TransferHelper.safeTransferFrom( swapParams.fromTokenAddress, msg.sender, BKSWAP_V2, swapParams.amountInTotal ); } else { if (msg.value < swapParams.amountInTotal) { revert IBKErrors.SwapEthBalanceNotEnough(); } } (bool success, bytes memory resultData) = BKSWAP_V2.call{ value: msg.value }(swapParams.data); if (!success) { _revertWithData(resultData); } } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; interface IBKErrors { error InvalidMsgSig(); error InsufficientEtherSupplied(); error FeatureNotExist(); error FeatureInActive(); error InvalidCaller(); error InvalidSigner(); error InvalidNonce(bytes32 signMsg); error InvalidZeroAddress(); error InvalidFeeRate(uint256 feeRate); error SwapEthBalanceNotEnough(); error SwapTokenBalanceNotEnough(); error SwapTokenApproveNotEnough(); error SwapInsuffenceOutPut(); error SwapTypeNotAvailable(); error BurnToMuch(); error IllegalCallTarget(); error IllegalApproveTarget(); error InvalidSwapAddress(address); error CallException(address); }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; struct OrderInfo{ bytes transferId; uint dstChainId; address desireToken; address bridgeReceiver; } enum SwapType { FREE, ETH_TOKEN, TOKEN_ETH, TOKEN_TOKEN, TOKEN_TO_WHITE, WHITE_TO_TOKEN } struct SignParams { bytes32 nonceHash; bytes signature; } struct BasicParams { SignParams signParams; SwapType swapType; address fromTokenAddress; address toTokenAddress; uint amountInTotal; uint amountInForSwap; address receiver; uint minAmountOut; } struct AggregationParams { address approveTarget; address callTarget; bytes data; }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; library TransferHelper { using SafeERC20 for IERC20; /// @notice Transfers tokens from the targeted address to the given destination /// @notice Errors with 'STF' if transfer fails /// @param token The contract address of the token to be transferred /// @param from The originating address from which the tokens will be transferred /// @param to The destination address of the transfer /// @param value The amount to be transferred function safeTransferFrom( address token, address from, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector( IERC20.transferFrom.selector, from, to, value ) ); require( success && (data.length == 0 || abi.decode(data, (bool))), "STF" ); } /// @notice Transfers tokens from msg.sender to a recipient /// @dev Errors with ST if transfer fails /// @param token The contract address of the token which will be transferred /// @param to The recipient of the transfer /// @param value The value of the transfer function safeTransfer( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20.transfer.selector, to, value) ); require( success && (data.length == 0 || abi.decode(data, (bool))), "ST" ); } /// @notice Approves the stipulated contract to spend the given allowance in the given token /// @dev Errors with 'SA' if transfer fails /// @param token The contract address of the token to be approved /// @param to The target of the approval /// @param value The amount of the given token the target will be allowed to spend function safeApprove( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20.approve.selector, to, value) ); require( success && (data.length == 0 || abi.decode(data, (bool))), "SA" ); } /// @notice Transfers ETH to the recipient address /// @dev Fails with `STE` /// @param to The destination of the transfer /// @param value The value to be transferred function safeTransferETH(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(new bytes(0)); require(success, "STE"); } function approveMax( IERC20 _token, address _spender, uint256 _amount ) internal { uint256 allowance = _token.allowance(address(this), address(_spender)); if (allowance < _amount) { if (allowance > 0) { _token.safeApprove(address(_spender), 0); } _token.safeApprove(address(_spender), type(uint256).max); } } function isETH(address _tokenAddress) internal pure returns (bool) { return (_tokenAddress == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) || (_tokenAddress == 0x0000000000000000000000000000000000000000); } }
File 2 of 9: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 3 of 9: TransparentUpgradeableProxy
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal virtual view returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () payable external { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () payable external { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./UpgradeableProxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative inerface of your proxy. */ contract TransparentUpgradeableProxy is UpgradeableProxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}. */ constructor(address initialLogic, address initialAdmin, bytes memory _data) payable UpgradeableProxy(initialLogic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _setAdmin(initialAdmin); } /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _admin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address) { return _admin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address) { return _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external ifAdmin { require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address"); emit AdminChanged(_admin(), newAdmin); _setAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeTo(newImplementation); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeTo(newImplementation); // solhint-disable-next-line avoid-low-level-calls (bool success,) = newImplementation.delegatecall(data); require(success); } /** * @dev Returns the current admin. */ function _admin() internal view returns (address adm) { bytes32 slot = _ADMIN_SLOT; // solhint-disable-next-line no-inline-assembly assembly { adm := sload(slot) } } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { bytes32 slot = _ADMIN_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, newAdmin) } } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal override virtual { require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./Proxy.sol"; import "../utils/Address.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. * * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see * {TransparentUpgradeableProxy}. */ contract UpgradeableProxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _setImplementation(_logic); if(_data.length > 0) { // solhint-disable-next-line avoid-low-level-calls (bool success,) = _logic.delegatecall(_data); require(success); } } /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _implementation() internal override view returns (address impl) { bytes32 slot = _IMPLEMENTATION_SLOT; // solhint-disable-next-line no-inline-assembly assembly { impl := sload(slot) } } /** * @dev Upgrades the proxy to a new implementation. * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract"); bytes32 slot = _IMPLEMENTATION_SLOT; // solhint-disable-next-line no-inline-assembly assembly { sstore(slot, newImplementation) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
File 4 of 9: SynapseRouter
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; interface ISwap { // pool data view functions function getA() external view returns (uint256); function getAPrecise() external view returns (uint256); function getToken(uint8 index) external view returns (IERC20); function getTokenIndex(address tokenAddress) external view returns (uint8); function getTokenBalance(uint8 index) external view returns (uint256); function getVirtualPrice() external view returns (uint256); function swapStorage() external view returns ( uint256 initialA, uint256 futureA, uint256 initialATime, uint256 futureATime, uint256 swapFee, uint256 adminFee, address lpToken ); // min return calculation functions function calculateSwap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256); function calculateTokenAmount(uint256[] calldata amounts, bool deposit) external view returns (uint256); function calculateRemoveLiquidity(uint256 amount) external view returns (uint256[] memory); function calculateRemoveLiquidityOneToken(uint256 tokenAmount, uint8 tokenIndex) external view returns (uint256 availableTokenAmount); // state modifying functions function initialize( IERC20[] memory pooledTokens, uint8[] memory decimals, string memory lpTokenName, string memory lpTokenSymbol, uint256 a, uint256 fee, uint256 adminFee, address lpTokenTargetAddress ) external; function swap( uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx, uint256 minDy, uint256 deadline ) external returns (uint256); function addLiquidity( uint256[] calldata amounts, uint256 minToMint, uint256 deadline ) external returns (uint256); function removeLiquidity( uint256 amount, uint256[] calldata minAmounts, uint256 deadline ) external returns (uint256[] memory); function removeLiquidityOneToken( uint256 tokenAmount, uint8 tokenIndex, uint256 minAmount, uint256 deadline ) external returns (uint256); function removeLiquidityImbalance( uint256[] calldata amounts, uint256 maxBurnAmount, uint256 deadline ) external returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "../libraries/BridgeStructs.sol"; interface ISwapAdapter { /** * @notice Performs a tokenIn -> tokenOut swap, according to the provided params. * If tokenIn is ETH_ADDRESS, this method should be invoked with `msg.value = amountIn`. * If tokenIn is ERC20, the tokens should be already transferred to this contract (using `msg.value = 0`). * If tokenOut is ETH_ADDRESS, native ETH will be sent to the recipient (be aware of potential reentrancy). * If tokenOut is ERC20, the tokens will be transferred to the recipient. * @dev Contracts implementing {ISwapAdapter} interface are required to enforce the above restrictions. * On top of that, they must ensure that exactly `amountOut` worth of `tokenOut` is transferred to the recipient. * Swap deadline and slippage is checked outside of this contract. * @param to Address to receive the swapped token * @param tokenIn Token to sell (use ETH_ADDRESS to start from native ETH) * @param amountIn Amount of tokens to sell * @param tokenOut Token to buy (use ETH_ADDRESS to end with native ETH) * @param rawParams Additional swap parameters * @return amountOut Amount of bought tokens */ function adapterSwap( address to, address tokenIn, uint256 amountIn, address tokenOut, bytes calldata rawParams ) external payable returns (uint256); } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "../libraries/BridgeStructs.sol"; interface ISwapQuoter { function findConnectedTokens(LimitedToken[] memory tokensIn, address tokenOut) external view returns (uint256 amountFound, bool[] memory isConnected); function getAmountOut( LimitedToken memory tokenIn, address tokenOut, uint256 amountIn ) external view returns (SwapQuery memory query); function allPools() external view returns (Pool[] memory pools); function poolsAmount() external view returns (uint256 tokens); function poolInfo(address pool) external view returns (uint256 tokens, address lpToken); function poolTokens(address pool) external view returns (PoolToken[] memory tokens); function calculateAddLiquidity(address pool, uint256[] memory amounts) external view returns (uint256 amountOut); function calculateSwap( address pool, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256 amountOut); function calculateRemoveLiquidity(address pool, uint256 amount) external view returns (uint256[] memory amountsOut); function calculateWithdrawOneToken( address pool, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 amountOut); } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol"; interface ISynapseBridge { using SafeERC20 for IERC20; function deposit( address to, uint256 chainId, IERC20 token, uint256 amount ) external; function depositAndSwap( address to, uint256 chainId, IERC20 token, uint256 amount, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 minDy, uint256 deadline ) external; function redeem( address to, uint256 chainId, IERC20 token, uint256 amount ) external; function redeemv2( bytes32 to, uint256 chainId, IERC20 token, uint256 amount ) external; function redeemAndSwap( address to, uint256 chainId, IERC20 token, uint256 amount, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 minDy, uint256 deadline ) external; function redeemAndRemove( address to, uint256 chainId, IERC20 token, uint256 amount, uint8 liqTokenIndex, uint256 liqMinAmount, uint256 liqDeadline ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0; interface IWETH9 { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function balanceOf(address) external view returns (uint256); function allowance(address, address) external view returns (uint256); receive() external payable; function deposit() external payable; function withdraw(uint256 wad) external; function totalSupply() external view returns (uint256); function approve(address guy, uint256 wad) external returns (bool); function transfer(address dst, uint256 wad) external returns (bool); function transferFrom( address src, address dst, uint256 wad ) external returns (bool); } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; /// @notice Struct representing a request for SynapseRouter. /// @dev tokenIn is supplied separately. /// @param swapAdapter Adapter address that will perform the swap. Address(0) specifies a "no swap" query. /// @param tokenOut Token address to swap to. /// @param minAmountOut Minimum amount of tokens to receive after the swap, or tx will be reverted. /// @param deadline Latest timestamp for when the transaction needs to be executed, or tx will be reverted. /// @param rawParams ABI-encoded params for the swap that will be passed to `swapAdapter`. /// Should be SynapseParams for swaps via SynapseAdapter. struct SwapQuery { address swapAdapter; address tokenOut; uint256 minAmountOut; uint256 deadline; bytes rawParams; } /// @notice Struct representing parameters for swapping via SynapseAdapter. /// @param action Action that SynapseAdapter needs to perform. /// @param pool Liquidity pool that will be used for Swap/AddLiquidity/RemoveLiquidity actions. /// @param tokenIndexFrom Token index to swap from. Used for swap/addLiquidity actions. /// @param tokenIndexTo Token index to swap to. Used for swap/removeLiquidity actions. struct SynapseParams { Action action; address pool; uint8 tokenIndexFrom; uint8 tokenIndexTo; } /// @notice All possible actions that SynapseAdapter could perform. enum Action { Swap, // swap between two pools tokens AddLiquidity, // add liquidity in a form of a single pool token RemoveLiquidity, // remove liquidity in a form of a single pool token HandleEth // ETH <> WETH interaction } /// @notice Struct representing a token, and the available Actions for performing a swap. /// @param actionMask Bitmask representing what actions (see ActionLib) are available for swapping a token /// @param token Token address struct LimitedToken { uint256 actionMask; address token; } /// @notice Struct representing a bridge token. Used as the return value in view functions. /// @param symbol Bridge token symbol: unique token ID consistent among all chains /// @param token Bridge token address struct BridgeToken { string symbol; address token; } /// @notice Struct representing how pool tokens are stored by `SwapQuoter`. /// @param isWeth Whether the token represents Wrapped ETH. /// @param token Token address. struct PoolToken { bool isWeth; address token; } /// @notice Struct representing a request for a swap quote from a bridge token. /// @dev tokenOut is passed externally /// @param symbol Bridge token symbol: unique token ID consistent among all chains /// @param amountIn Amount of bridge token to start with, before the bridge fee is applied struct DestRequest { string symbol; uint256 amountIn; } /// @notice Struct representing a liquidity pool. Used as the return value in view functions. /// @param pool Pool address. /// @param lpToken Address of pool's LP token. /// @param tokens List of pool's tokens. struct Pool { address pool; address lpToken; PoolToken[] tokens; } /// @notice Library for dealing with bit masks, describing what Actions are available. library ActionLib { /// @notice Returns a bitmask with all possible actions set to True. function allActions() internal pure returns (uint256 actionMask) { actionMask = type(uint256).max; } /// @notice Returns whether the given action is set to True in the bitmask. function includes(uint256 actionMask, Action action) internal pure returns (bool) { return actionMask & mask(action) != 0; } /// @notice Returns a bitmask with only the given action set to True. function mask(Action action) internal pure returns (uint256) { return 1 << uint256(action); } /// @notice Returns a bitmask with only two given actions set to True. function mask(Action a, Action b) internal pure returns (uint256) { return mask(a) | mask(b); } } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; import "./BridgeStructs.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; /** * Library to unify handling of ETH/WETH and ERC20 tokens. */ library UniversalToken { using SafeERC20 for IERC20; address internal constant ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; uint256 private constant MAX_UINT = type(uint256).max; /// @notice Returns token balance for the given account. function universalBalanceOf(address token, address account) internal view returns (uint256) { if (token == ETH_ADDRESS) { return account.balance; } else { return IERC20(token).balanceOf(account); } } /// @notice Compares two tokens. ETH_ADDRESS and WETH are deemed equal. function universalEquals(address token, PoolToken memory poolToken) internal pure returns (bool) { if (token == ETH_ADDRESS) { return poolToken.isWeth; } else { return token == poolToken.token; } } function universalApproveInfinity(address token, address spender) internal { // ETH Chad doesn't require your approval if (token == ETH_ADDRESS) return; // No need to approve own tokens if (spender == address(this)) return; uint256 allowance = IERC20(token).allowance(address(this), spender); // Set allowance to MAX_UINT if needed if (allowance != MAX_UINT) { // if allowance is neither zero nor infinity, reset if first if (allowance != 0) { IERC20(token).safeApprove(spender, 0); } IERC20(token).safeApprove(spender, MAX_UINT); } } /// @notice Transfers tokens to the given account. Reverts if transfer is not successful. /// @dev This might trigger fallback, if ETH is transferred to the contract. /// Make sure this can not lead to reentrancy attacks. function universalTransfer( address token, address to, uint256 value ) internal { // Don't do anything, if need to send tokens to this address if (to == address(this)) return; if (token == ETH_ADDRESS) { /// @dev Note: this can potentially lead to executing code in `to`. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = to.call{value: value}(""); require(success, "ETH transfer failed"); } else { IERC20(token).safeTransfer(to, value); } } } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/EnumerableSet.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; abstract contract LocalBridgeConfig is Ownable { using EnumerableSet for EnumerableSet.AddressSet; using SafeMath for uint256; /** * @notice Indicates the type of the supported bridge token on the local chain. * - TokenType.Redeem: token is burnt in order to initiate a bridge tx (bridge.redeem) * - TokenType.Deposit: token is locked in order to initiate a bridge tx (bridge.deposit) */ enum TokenType { Redeem, Deposit } /** * @notice Config for a supported bridge token. * @dev Some of the tokens require a wrapper token to make them conform SynapseERC20 interface. * In these cases, `bridgeToken` will feature a different address. * Otherwise, the token address is saved. * @param tokenType Method of bridging for the token: Redeem or Deposit * @param bridgeToken Bridge token address */ struct TokenConfig { TokenType tokenType; address bridgeToken; } /** * @notice Fee structure for a supported bridge token, optimized to fit in a single storage word. * @param bridgeFee Fee % for bridging a token to this chain, multiplied by `FEE_DENOMINATOR` * @param minFee Minimum fee for bridging a token to this chain, in token decimals * @param maxFee Maximum fee for bridging a token to this chain, in token decimals */ struct FeeStructure { uint40 bridgeFee; uint104 minFee; uint112 maxFee; } /** * @notice Struct defining a supported bridge token. This is not supposed to be stored on-chain, * so this is not optimized in terms of storage words. * @param id ID for token used in BridgeConfigV3 * @param token "End" token, supported by SynapseBridge. This is the token user is receiving/sending. * @param decimals Amount ot decimals used for `token` * @param tokenType Method of bridging used for the token: Redeem or Deposit. * @param bridgeToken Actual token used for bridging `token`. This is the token bridge is burning/locking. * Might differ from `token`, if `token` does not conform to bridge-supported interface. * @param bridgeFee Fee % for bridging a token to this chain, multiplied by `FEE_DENOMINATOR` * @param minFee Minimum fee for bridging a token to this chain, in token decimals * @param maxFee Maximum fee for bridging a token to this chain, in token decimals */ struct BridgeTokenConfig { string id; address token; uint256 decimals; LocalBridgeConfig.TokenType tokenType; address bridgeToken; uint256 bridgeFee; uint256 minFee; uint256 maxFee; } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ CONSTANTS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @dev Denominator used to calculate the bridge fee: amount.mul(bridgeFee).div(FEE_DENOMINATOR) uint256 private constant FEE_DENOMINATOR = 10**10; /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ STORAGE ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @notice Config for each supported token. /// @dev If wrapper token is required for bridging, its address is stored in `.bridgeToken` /// i.e. for GMX: config[GMX].bridgeToken = GMXWrapper mapping(address => TokenConfig) public config; /// @notice Fee structure for each supported token. /// @dev If wrapper token is required for bridging, its underlying is used as key here mapping(address => FeeStructure) public fee; /// @notice Maps bridge token address into bridge token symbol mapping(address => string) public tokenToSymbol; /// @notice Maps bridge token symbol into bridge token address mapping(string => address) public symbolToToken; /// @dev A list of all supported bridge tokens EnumerableSet.AddressSet internal _bridgeTokens; /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ ONLY OWNER ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Adds a bridge token and its fee structure to the local config, if it was not added before. * @param token "End" token, supported by SynapseBridge. This is the token user is receiving/sending. * @param tokenType Method of bridging used for the token: Redeem or Deposit. * @param bridgeToken Actual token used for bridging `token`. This is the token bridge is burning/locking. * Might differ from `token`, if `token` does not conform to bridge-supported interface. * @param bridgeFee Fee % for bridging a token to this chain, multiplied by `FEE_DENOMINATOR` * @param minFee Minimum fee for bridging a token to this chain, in token decimals * @param maxFee Maximum fee for bridging a token to this chain, in token decimals * @return wasAdded True, if token was added to the config */ function addToken( string memory symbol, address token, TokenType tokenType, address bridgeToken, uint256 bridgeFee, uint256 minFee, uint256 maxFee ) external onlyOwner returns (bool wasAdded) { wasAdded = _addToken(symbol, token, tokenType, bridgeToken, bridgeFee, minFee, maxFee); } /// @notice Adds a bunch of bridge tokens and their fee structure to the local config, if it was not added before. function addTokens(BridgeTokenConfig[] memory tokens) external onlyOwner { uint256 amount = tokens.length; for (uint256 i = 0; i < amount; ++i) { BridgeTokenConfig memory token = tokens[i]; _addToken( token.id, token.token, token.tokenType, token.bridgeToken, token.bridgeFee, token.minFee, token.maxFee ); } } /** * @notice Updates the bridge config for an already added bridge token. * @dev Will revert if token was not added before. * @param token "End" token, supported by SynapseBridge. This is the token user is receiving/sending. * @param tokenType Method of bridging used for the token: Redeem or Deposit. * @param bridgeToken Actual token used for bridging `token`. This is the token bridge is burning/locking. * Might differ from `token`, if `token` does not conform to bridge-supported interface. */ function setTokenConfig( address token, TokenType tokenType, address bridgeToken ) external onlyOwner { require(config[token].bridgeToken != address(0), "Unknown token"); _setTokenConfig(token, tokenType, bridgeToken); } /** * @notice Updates the fee structure for an already added bridge token. * @dev Will revert if token was not added before. * @param token "End" token, supported by SynapseBridge. This is the token user is receiving/sending. * @param bridgeFee Fee % for bridging a token to this chain, multiplied by `FEE_DENOMINATOR` * @param minFee Minimum fee for bridging a token to this chain, in token decimals * @param maxFee Maximum fee for bridging a token to this chain, in token decimals */ function setTokenFee( address token, uint256 bridgeFee, uint256 minFee, uint256 maxFee ) external onlyOwner { require(config[token].bridgeToken != address(0), "Unknown token"); _setTokenFee(token, bridgeFee, minFee, maxFee); } /** * @notice Removes tokens from the local config, and deletes the associated bridge fee structure. * @dev If a token requires a bridge wrapper token, use the underlying token address for removing. * @param token "End" token, supported by SynapseBridge. This is the token user is receiving/sending. * @return wasRemoved True, if token was removed from the config */ function removeToken(address token) external onlyOwner returns (bool wasRemoved) { wasRemoved = _removeToken(token); } /** * @notice Removes a list of tokens from the local config, and deletes their associated bridge fee structure. * @dev If a token requires a bridge wrapper token, use the underlying token address for removing. * @param tokens List of "end" tokens, supported by SynapseBridge. These are the tokens user is receiving/sending. */ function removeTokens(address[] calldata tokens) external onlyOwner { uint256 amount = tokens.length; for (uint256 i = 0; i < amount; ++i) { _removeToken(tokens[i]); } } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ VIEWS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @notice Returns a list of all supported bridge tokens. function bridgeTokens() external view returns (address[] memory tokens) { uint256 amount = bridgeTokensAmount(); tokens = new address[](amount); for (uint256 i = 0; i < amount; ++i) { tokens[i] = _bridgeTokens.at(i); } } /// @notice Returns the amount of the supported bridge tokens. function bridgeTokensAmount() public view returns (uint256 amount) { amount = _bridgeTokens.length(); } /** * @notice Calculates a fee for bridging a token to this chain. * @dev If a token requires a bridge wrapper token, use the underlying token address for getting a fee quote. * @param token "End" token, supported by SynapseBridge. This is the token user is receiving/sending. * @param amount Amount of tokens to bridge to this chain. */ function calculateBridgeFee(address token, uint256 amount) external view returns (uint256 feeAmount) { feeAmount = _calculateBridgeFee(token, amount); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ INTERNAL: ADD & REMOVE BRIDGE TOKENS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @dev Adds a bridge token config, if it's not present and updates its fee structure. /// Child contract could implement additional logic upon adding a token. function _addToken( string memory _symbol, address token, TokenType tokenType, address bridgeToken, uint256 bridgeFee, uint256 minFee, uint256 maxFee ) internal virtual returns (bool wasAdded) { wasAdded = _bridgeTokens.add(token); if (wasAdded) { // Need to save config only once. Need to use "end user" address for symbol mappings. _setTokenSymbol(_symbol, token); _setTokenConfig(token, tokenType, bridgeToken); _setTokenFee(token, bridgeFee, minFee, maxFee); } } /// @dev Sets the symbol for the bridge token function _setTokenSymbol(string memory symbol, address token) internal { // tokenToSymbol[token] is guaranteed to be empty, as token was just added require(bytes(symbol).length != 0, "Empty symbol"); require(symbolToToken[symbol] == address(0), "Symbol already in use"); symbolToToken[symbol] = token; tokenToSymbol[token] = symbol; } /// @dev Updates the token config for an already known bridge token. function _setTokenConfig( address token, TokenType tokenType, address bridgeToken ) internal { // Sanity checks for the provided token values require(token != address(0) && bridgeToken != address(0), "Token can't be zero address"); config[token] = TokenConfig(tokenType, bridgeToken); } /// @dev Updates the fee structure for an already known bridge token. function _setTokenFee( address token, uint256 bridgeFee, uint256 minFee, uint256 maxFee ) internal { // Sanity checks for the provided fee values require(bridgeFee < FEE_DENOMINATOR, "bridgeFee >= 100%"); require(minFee <= maxFee, "minFee > maxFee"); fee[token] = FeeStructure(uint40(bridgeFee), uint104(minFee), uint112(maxFee)); } /// @dev Removes a bridge token config along with its fee structure. /// Child contract could implement additional logic upon removing a token. function _removeToken(address token) internal virtual returns (bool wasRemoved) { wasRemoved = _bridgeTokens.remove(token); if (wasRemoved) { string memory symbol = tokenToSymbol[token]; delete tokenToSymbol[token]; delete symbolToToken[symbol]; delete config[token]; delete fee[token]; } } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ INTERNAL: VIEWS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @dev Returns the amount of tokens received after applying the bridge fee. /// Will return 0, if bridged amount is lower than a minimum bridge fee. function _calculateBridgeAmountOut(address token, uint256 amount) internal view returns (uint256 amountOut) { uint256 feeAmount = _calculateBridgeFee(token, amount); if (feeAmount < amount) { // No need for SafeMath here amountOut = amount - feeAmount; } // Return 0, if fee amount >= amount } /// @dev Returns the fee for bridging a given token to this chain. function _calculateBridgeFee(address token, uint256 amount) internal view returns (uint256 feeAmount) { require(config[token].bridgeToken != address(0), "Token not supported"); FeeStructure memory tokenFee = fee[token]; feeAmount = amount.mul(tokenFee.bridgeFee).div(FEE_DENOMINATOR); if (feeAmount < tokenFee.minFee) { feeAmount = tokenFee.minFee; } else if (feeAmount > tokenFee.maxFee) { feeAmount = tokenFee.maxFee; } } } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "../interfaces/ISwap.sol"; import "../interfaces/ISwapAdapter.sol"; import "../interfaces/ISwapQuoter.sol"; import "../interfaces/IWETH9.sol"; import "../libraries/UniversalToken.sol"; import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; abstract contract SynapseAdapter is Ownable, ISwapAdapter { using SafeERC20 for IERC20; using UniversalToken for address; uint256 internal constant MAX_UINT = type(uint256).max; /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ STORAGE ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @notice Address of the local SwapQuoter contract ISwapQuoter public swapQuoter; /// @notice Receive function to enable unwrapping ETH into this contract receive() external payable {} // solhint-disable-line no-empty-blocks /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ OWNER ONLY ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @notice Sets the Swap Quoter address to get the swap quotes from. function setSwapQuoter(ISwapQuoter _swapQuoter) external onlyOwner { swapQuoter = _swapQuoter; } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ EXTERNAL FUNCTIONS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Performs a tokenIn -> tokenOut swap, according to the provided params. * If tokenIn is ETH_ADDRESS, this method should be invoked with `msg.value = amountIn`. * If tokenIn is ERC20, the tokens should be already transferred to this contract (using `msg.value = 0`). * If tokenOut is ETH_ADDRESS, native ETH will be sent to the recipient (be aware of potential reentrancy). * If tokenOut is ERC20, the tokens will be transferred to the recipient. * @dev Contracts implementing {ISwapAdapter} interface are required to enforce the above restrictions. * On top of that, they must ensure that exactly `amountOut` worth of `tokenOut` is transferred to the recipient. * Swap deadline and slippage is checked outside of this contract. * @dev Applied to SynapseAdapter only: * Use `params.pool = address(this)` for ETH handling without swaps: * 1. For wrapping ETH: tokenIn = ETH_ADDRESS, tokenOut = WETH, params.pool = address(this) * 2. For unwrapping WETH: tokenIn = WETH, tokenOut = ETH_ADDRESS, params.pool = address(this) * If `params.pool != address(this)`, and ETH_ADDRESS was supplied as tokenIn or tokenOut, * a corresponding pool token will be treated as WETH. * @param to Address to receive the swapped token * @param tokenIn Token to sell (use ETH_ADDRESS to start from native ETH) * @param amountIn Amount of tokens to sell * @param tokenOut Token to buy (use ETH_ADDRESS to end with native ETH) * @param rawParams Additional swap parameters * @return amountOut Amount of bought tokens */ function adapterSwap( address to, address tokenIn, uint256 amountIn, address tokenOut, bytes calldata rawParams ) external payable override returns (uint256 amountOut) { // We define a few phases for the whole swap process. // (?) means the phase is optional. // (!) means the phase is mandatory. // ============================== PHASE 0(!): CHECK ALL THE PARAMS ========================= require(tokenIn != tokenOut, "Swap tokens should differ"); // Decode params for swapping via a Synapse pool SynapseParams memory params = abi.decode(rawParams, (SynapseParams)); // Swap pool should exist, if action other than HandleEth was requested require(params.pool != address(0) || params.action == Action.HandleEth, "!pool"); // ============================== PHASE 1(?): WRAP RECEIVED ETH ============================ // tokenIn was already transferred to this contract, check if we start from native ETH if (tokenIn == UniversalToken.ETH_ADDRESS) { // Determine WETH address: this is either tokenOut (if no swap is needed), // or a pool token with index `tokenIndexFrom` (if swap is needed). tokenIn = _deriveWethAddress({token: tokenOut, params: params, isWethIn: true}); // Wrap ETH into WETH and leave it in this contract _wrapETH(tokenIn, amountIn); } else { // For ERC20 tokens msg.value should be zero require(msg.value == 0, "Incorrect tokenIn for ETH swap"); } // Either way, this contract has `amountIn` worth of `tokenIn`; tokenIn != ETH_ADDRESS // ============================== PHASE 2(?): PREPARE TO UNWRAP SWAPPED WETH =============== address tokenSwapTo = tokenOut; // Check if swap to native ETH was requested if (tokenOut == UniversalToken.ETH_ADDRESS) { // Determine WETH address: this is either tokenIn (if no swap is needed), // or a pool token with index `tokenIndexTo` (if swap is needed). tokenSwapTo = _deriveWethAddress({token: tokenIn, params: params, isWethIn: false}); } // Either way, we need to perform tokenIn -> tokenSwapTo swap. // Then we need to send tokenOut to the recipient. // The last step includes WETH unwrapping, if tokenOut is ETH_ADDRESS // ============================== PHASE 3(?): PERFORM A REQUESTED SWAP ===================== // Determine if we need to perform a swap if (params.action == Action.HandleEth) { // If no swap is required, amountOut doesn't change amountOut = amountIn; } else { // Approve token for spending if needed tokenIn.universalApproveInfinity(params.pool); if (params.action == Action.Swap) { // Perform a swap through the pool amountOut = _swap(ISwap(params.pool), params, amountIn, tokenSwapTo); } else if (params.action == Action.AddLiquidity) { // Add liquidity to the pool amountOut = _addLiquidity(ISwap(params.pool), params, amountIn, tokenSwapTo); } else { // Remove liquidity to the pool amountOut = _removeLiquidity(ISwap(params.pool), params, amountIn, tokenSwapTo); } } // Either way, this contract has `amountOut` worth of `tokenSwapTo` // ============================== PHASE 4(?): UNWRAP SWAPPED WETH ========================== // Check if swap to native ETH was requested if (tokenOut == UniversalToken.ETH_ADDRESS) { // We stored WETH address in `tokenSwapTo` previously, let's unwrap it _unwrapETH(tokenSwapTo, amountOut); } // Either way, we need to transfer `amountOut` worth of `tokenOut` // ============================== PHASE 5(!): TRANSFER SWAPPED TOKENS ====================== tokenOut.universalTransfer(to, amountOut); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ VIEWS: QUOTES ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Finds the best pool for tokenIn -> tokenOut swap from the list of supported pools. * Returns the `SwapQuery` struct, that can be used on SynapseRouter. * minAmountOut and deadline fields will need to be adjusted based on the swap settings. */ function getAmountOut( address tokenIn, address tokenOut, uint256 amountIn ) external view returns (SwapQuery memory) { // All actions are allowed by default LimitedToken memory _tokenIn = LimitedToken(ActionLib.allActions(), tokenIn); return swapQuoter.getAmountOut(_tokenIn, tokenOut, amountIn); } /** * @notice Returns the exact quote for adding liquidity to a given pool * in a form of a single token. * @param pool The pool to add tokens to * @param amounts An array of token amounts to deposit. * The amount should be in each pooled token's native precision. * If a token charges a fee on transfers, use the amount that gets transferred after the fee. * @return LP token amount the user will receive */ function calculateAddLiquidity(address pool, uint256[] memory amounts) external view returns (uint256) { return swapQuoter.calculateAddLiquidity(pool, amounts); } /** * @notice Returns the exact quote for swapping between two given tokens. * @param pool The pool to use for the swap * @param tokenIndexFrom The token the user wants to sell * @param tokenIndexTo The token the user wants to buy * @param dx The amount of tokens the user wants to sell. If the token charges a fee on transfers, * use the amount that gets transferred after the fee. * @return amountOut amount of tokens the user will receive */ function calculateSwap( address pool, uint8 tokenIndexFrom, uint8 tokenIndexTo, uint256 dx ) external view returns (uint256 amountOut) { amountOut = swapQuoter.calculateSwap(pool, tokenIndexFrom, tokenIndexTo, dx); } /** * @notice Returns the exact quote for withdrawing pools tokens in a balanced way. * @param pool The pool to withdraw tokens from * @param amount The amount of LP tokens that would be burned on withdrawal * @return amountsOut Array of token balances that the user will receive */ function calculateRemoveLiquidity(address pool, uint256 amount) external view returns (uint256[] memory amountsOut) { amountsOut = swapQuoter.calculateRemoveLiquidity(pool, amount); } /** * @notice Returns the exact quote for withdrawing a single pool token. * @param pool The pool to withdraw a token from * @param tokenAmount The amount of LP token to burn * @param tokenIndex Index of which token will be withdrawn * @return amountOut Calculated amount of underlying token available to withdraw */ function calculateWithdrawOneToken( address pool, uint256 tokenAmount, uint8 tokenIndex ) external view returns (uint256 amountOut) { amountOut = swapQuoter.calculateWithdrawOneToken(pool, tokenAmount, tokenIndex); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ VIEWS: POOLS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Returns a list of all supported pools. */ function allPools() public view returns (Pool[] memory pools) { pools = swapQuoter.allPools(); } /** * @notice Returns the amount of tokens the given pool supports and the pool's LP token. */ function poolInfo(address pool) public view returns (uint256, address) { return swapQuoter.poolInfo(pool); } /** * @notice Returns a list of pool tokens for the given pool. */ function poolTokens(address pool) public view returns (PoolToken[] memory tokens) { tokens = swapQuoter.poolTokens(pool); } /** * @notice Returns the amount of supported pools. */ function poolsAmount() public view returns (uint256 amount) { amount = swapQuoter.poolsAmount(); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ INTERNAL HELPERS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Performs a swap through the given pool. * The pool token is already approved for spending. */ function _swap( ISwap pool, SynapseParams memory params, uint256 amountIn, address tokenOut ) internal returns (uint256 amountOut) { // tokenOut should match the "swap to" token require(pool.getToken(params.tokenIndexTo) == IERC20(tokenOut), "!tokenOut"); // amountOut and deadline are not checked in SwapAdapter amountOut = pool.swap({ tokenIndexFrom: params.tokenIndexFrom, tokenIndexTo: params.tokenIndexTo, dx: amountIn, minDy: 0, deadline: MAX_UINT }); } /** * @notice Adds liquidity in a form of a single token to the given pool. * The pool token is already approved for spending. */ function _addLiquidity( ISwap pool, SynapseParams memory params, uint256 amountIn, address tokenOut ) internal returns (uint256 amountOut) { (uint256 tokens, address lpToken) = swapQuoter.poolInfo(address(pool)); // tokenOut should match the LP token require(tokenOut == lpToken, "!tokenOut"); uint256[] memory amounts = new uint256[](tokens); amounts[params.tokenIndexFrom] = amountIn; // amountOut and deadline are not checked in SwapAdapter amountOut = pool.addLiquidity({amounts: amounts, minToMint: 0, deadline: MAX_UINT}); } /** * @notice Removes liquidity in a form of a single token from the given pool. * The pool LP token is already approved for spending. */ function _removeLiquidity( ISwap pool, SynapseParams memory params, uint256 amountIn, address tokenOut ) internal returns (uint256 amountOut) { // tokenOut should match the "swap to" token require(pool.getToken(params.tokenIndexTo) == IERC20(tokenOut), "!tokenOut"); // amountOut and deadline are not checked in SwapAdapter amountOut = pool.removeLiquidityOneToken({ tokenAmount: amountIn, tokenIndex: params.tokenIndexTo, minAmount: 0, deadline: MAX_UINT }); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ INTERNAL: WETH LOGIC ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @dev Derives WETH address from swap parameters. function _deriveWethAddress( address token, SynapseParams memory params, bool isWethIn ) internal view returns (address weth) { if (params.action == Action.HandleEth) { // If we only need to wrap/unwrap ETH, WETH address should be specified as the other token weth = token; } else { // Otherwise, we need to get WETH address from the liquidity pool weth = address(ISwap(params.pool).getToken(isWethIn ? params.tokenIndexFrom : params.tokenIndexTo)); } } /// @dev Wraps ETH into WETH. function _wrapETH(address weth, uint256 amount) internal { require(msg.value == amount, "!msg.value"); // Deposit in order to have WETH in this contract IWETH9(payable(weth)).deposit{value: amount}(); } /// @dev Unwraps WETH into ETH. function _unwrapETH(address weth, uint256 amount) internal { // Withdraw ETH to this contract IWETH9(payable(weth)).withdraw(amount); } } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "../interfaces/ISynapseBridge.sol"; import "./LocalBridgeConfig.sol"; import "./SynapseAdapter.sol"; import "../utils/MulticallView.sol"; /** * @notice SynapseRouter contract that can be used together with SynapseBridge on any chain. * On every supported chain: * - SynapseRouter and SwapQuoter contracts need to be deployed. * - Chain pools that are present in the global BridgeConfig should be added to SwapQuoter. * - All supported bridge tokens should be added to SynapseRouter contract. * - router.setSwapQuoter(swapQuoter) should be executed to link these contracts. * * @dev Bridging workflow with SynapseRouter contract. * Initial assumptions: * - `routerOrigin` and `routerDest` are SynapseRouter deployments on origin and destination chain respectively. * - User wants to send `tokenIn` on origin chain, and receive `tokenOut` on destination chain. * - The amount of `tokenIn` tokens user wishes to send is `amountIn`. * - User wants to receives tokens to `userDest` address on destination chain. * - User has no idea what bridge tokens are supported on origin and destination chains. * * Under the hood, the cross-chain swap from `tokenIn` to `tokenOut` is: * 1. [*] `tokenIn` gets swapped to `bridgeToken` on origin chain. `bridgeToken` is a token supported by Synapse:Bridge. * 2. `bridgeToken` gets bridged from origin to destination chain * 3. [**] `bridgeToken` gets swapped to `tokenOut` on destination chain. * 4. `tokenOut` is transferred to the user on destination chain. * [*] : "origin swap" is skipped, if `tokenIn == bridgeToken` on origin chain. * [**]: "destination swap" is skipped, if `tokenOut == bridgeToken` on destination chain. * * Following set of actions is required (be aware, provided code is a pseudo code): * 1. Determine the set of bridge tokens that could fulfill "receive tokenOut on destination chain": * // This will return a list of (string symbol, address token) tuples. * bridgeTokens = routerDest.getConnectedBridgeTokens(tokenOut); * 2. Get the list of symbols for these tokens * symbols = bridgeTokens.map(token => token.symbol); * 3. Get the list of structs with instructions for possible "origin swap": * // This will return queries for all possible (tokenIn -> symbols[i]) swaps * originQueries = routerOrigin.getOriginAmountOut(tokenIn, symbols, amountIn); * 4. Form the list of requests for the "destination swap" quotes: * // Use symbols[i] and originQueries[i].minAmountOut to form a "request": * requests = zipWith(symbols, originQueries, (symbol, query) => { return [symbol, query.minAmountOut] }); * 5. Get the list of structs with instructions for possible "destination swap": * // This will return quotes for all (symbols[i] => tokenOut) swaps * // This will also take into account the bridge fee for getting a token to destination chain * destQueries = routerDest.getDestinationAmountOut(requests, tokenOut); * 6. Pick any pair of (originQuery, destQuery): * // For instance pick the one with the best destQuery.minAmountOut * maxIndex = destQueries.indexOf(destQueries.maxBy, (query) => { return query.minAmountOut }); * originQuery = originQueries[maxIndex]; * // destQuery.minAmountOut is the full quote for tokenIn => tokenOut cross-chain swap * destQuery = destQueries[maxIndex]; * 7. Apply slippage, and set deadlines as per user settings: * originQuery = applyUserSettings(originQuery); * destQuery = applyUserSettings(destQuery); * 8. Call SynapseRouter using the obtained structs: * // Check if user wants to send native ETH * amountETH = (tokenIn == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE) ? amountIn : 0; * routerOrigin.bridge{value: amountETH}(userDest, chainIdDest, tokenIn, amountIn, originQuery, destQuery); */ contract SynapseRouter is LocalBridgeConfig, SynapseAdapter, MulticallView { // SynapseRouter is also the Adapter for the Synapse pools (this reduces the amount of token transfers). // SynapseRouter address will be used as swapAdapter in SwapQueries returned by a local SwapQuoter. using SafeERC20 for IERC20; /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ CONSTANTS & IMMUTABLES ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @notice Synapse:Bridge address ISynapseBridge public immutable synapseBridge; /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ CONSTRUCTOR & INITIALIZER ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Deploys a Synapse Router implementation, saves local Synapse:Bridge address and transfers ownership. */ constructor(address _synapseBridge, address owner_) public { synapseBridge = ISynapseBridge(_synapseBridge); transferOwnership(owner_); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ OWNER ONLY ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Sets a custom allowance for the given token. * @dev To be used for the wrapper token setups. */ function setAllowance( IERC20 token, address spender, uint256 amount ) external onlyOwner { token.safeApprove(spender, amount); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ BRIDGE & SWAP ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Initiate a bridge transaction with an optional swap on both origin and destination chains. * @dev Note that method is payable. * If token is ETH_ADDRESS, this method should be invoked with `msg.value = amountIn`. * If token is ERC20, the tokens will be pulled from msg.sender (use `msg.value = 0`). * Make sure to approve this contract for spending `token` beforehand. * originQuery.tokenOut should never be ETH_ADDRESS, bridge only works with ERC20 tokens. * * `token` is always a token user is sending. In case token requires a wrapper token to be bridge, * use underlying address for `token` instead of the wrapper one. * * `originQuery` contains instructions for the swap on origin chain. As above, originQuery.tokenOut * should always use the underlying address. In other words, the concept of wrapper token is fully * abstracted away from the end user. * * `originQuery` is supposed to be fetched using SynapseRouter.getOriginAmountOut(). * Alternatively one could use an external adapter for more complex swaps on the origin chain. * * `destQuery` is supposed to be fetched using SynapseRouter.getDestinationAmountOut(). * Complex swaps on destination chain are not supported for the time being. * Check contract description above for more details. * * @param to Address to receive tokens on destination chain * @param chainId Destination chain id * @param token Initial token for the bridge transaction to be pulled from the user * @param amount Amount of the initial tokens for the bridge transaction * @param originQuery Origin swap query. Empty struct indicates no swap is required * @param destQuery Destination swap query. Empty struct indicates no swap is required */ function bridge( address to, uint256 chainId, address token, uint256 amount, SwapQuery memory originQuery, SwapQuery memory destQuery ) external payable { if (_hasAdapter(originQuery)) { // Perform a swap using the swap adapter, transfer the swapped tokens to this contract (token, amount) = _adapterSwap(address(this), token, amount, originQuery); } else { // Pull initial token from the user to this contract _pullToken(address(this), token, amount); } // Either way, this contract has `amount` worth of `token` TokenConfig memory _config = config[token]; require(_config.bridgeToken != address(0), "Token not supported"); token = _config.bridgeToken; // Decode params for swapping via a Synapse pool on the destination chain, if they were requested. SynapseParams memory destParams; if (_hasAdapter(destQuery)) destParams = abi.decode(destQuery.rawParams, (SynapseParams)); // Check if Swap/RemoveLiquidity Action on destination chain is required. // Swap adapter needs to be specified. // HandleETH action is done automatically by SynapseBridge. if (_hasAdapter(destQuery) && destParams.action != Action.HandleEth) { if (_config.tokenType == TokenType.Deposit) { require(destParams.action == Action.Swap, "Unsupported dest action"); // Case 1: token needs to be deposited on origin chain. // We need to perform AndSwap() on destination chain. synapseBridge.depositAndSwap({ to: to, chainId: chainId, token: IERC20(token), amount: amount, tokenIndexFrom: destParams.tokenIndexFrom, tokenIndexTo: destParams.tokenIndexTo, minDy: destQuery.minAmountOut, deadline: destQuery.deadline }); } else if (destParams.action == Action.Swap) { // Case 2: token needs to be redeemed on origin chain. // We need to perform AndSwap() on destination chain. synapseBridge.redeemAndSwap({ to: to, chainId: chainId, token: IERC20(token), amount: amount, tokenIndexFrom: destParams.tokenIndexFrom, tokenIndexTo: destParams.tokenIndexTo, minDy: destQuery.minAmountOut, deadline: destQuery.deadline }); } else { require(destParams.action == Action.RemoveLiquidity, "Unsupported dest action"); // Case 3: token needs to be redeemed on origin chain. // We need to perform AndRemove() on destination chain. synapseBridge.redeemAndRemove({ to: to, chainId: chainId, token: IERC20(token), amount: amount, liqTokenIndex: destParams.tokenIndexTo, liqMinAmount: destQuery.minAmountOut, liqDeadline: destQuery.deadline }); } } else { if (_config.tokenType == TokenType.Deposit) { // Case 1 (Deposit): token needs to be deposited on origin chain synapseBridge.deposit(to, chainId, IERC20(token), amount); } else { // Case 2 (Redeem): token needs to be redeemed on origin chain synapseBridge.redeem(to, chainId, IERC20(token), amount); } } } /** * @notice Perform a swap using the supplied parameters. * @dev Note that method is payable. * If token is ETH_ADDRESS, this method should be invoked with `msg.value = amountIn`. * If token is ERC20, the tokens will be pulled from msg.sender (use `msg.value = 0`). * Make sure to approve this contract for spending `token` beforehand. * If query.tokenOut is ETH_ADDRESS, native ETH will be sent to the recipient (be aware of potential reentrancy). * If query.tokenOut is ERC20, the tokens will be transferred to the recipient. * @param to Address to receive swapped tokens * @param token Token to swap * @param amount Amount of tokens to swap * @param query Query with the swap parameters (see BridgeStructs.sol) * @return amountOut Amount of swapped tokens received by the user */ function swap( address to, address token, uint256 amount, SwapQuery memory query ) external payable returns (uint256 amountOut) { require(to != address(0), "!recipient: zero address"); require(to != address(this), "!recipient: router address"); require(_hasAdapter(query), "!swapAdapter"); // Perform a swap through the Adapter. Adapter will be the one handling ETH/WETH interactions. (, amountOut) = _adapterSwap(to, token, amount, query); } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ VIEWS: BRIDGE QUOTES ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Finds the best path between `tokenIn` and every supported bridge token from the given list, * treating the swap as "origin swap", without putting any restrictions on the swap. * @dev Will NOT revert if any of the tokens are not supported, instead will return an empty query for that symbol. * Check (query.minAmountOut != 0): this is true only if the swap is possible and bridge token is supported. * The returned queries with minAmountOut != 0 could be used as `originQuery` with SynapseRouter. * Note: it is possible to form a SwapQuery off-chain using alternative SwapAdapter for the origin swap. * @param tokenIn Initial token that user wants to bridge/swap * @param tokenSymbols List of symbols representing bridge tokens * @param amountIn Amount of tokens user wants to bridge/swap * @return originQueries List of structs that could be used as `originQuery` in SynapseRouter. * minAmountOut and deadline fields will need to be adjusted based on the user settings. */ function getOriginAmountOut( address tokenIn, string[] memory tokenSymbols, uint256 amountIn ) external view returns (SwapQuery[] memory originQueries) { uint256 length = tokenSymbols.length; originQueries = new SwapQuery[](length); for (uint256 i = 0; i < length; ++i) { // Check if token with given symbol is supported on this chain address bridgeToken = symbolToToken[tokenSymbols[i]]; // Skip not supported tokens if (bridgeToken == address(0)) continue; // Every possible action is supported for origin swap LimitedToken memory _tokenIn = LimitedToken(ActionLib.allActions(), tokenIn); originQueries[i] = swapQuoter.getAmountOut(_tokenIn, bridgeToken, amountIn); } } /** * @notice Finds the best path between every supported bridge token from the given list and `tokenOut`, * treating the swap as "destination swap", limiting possible actions to those available for every bridge token. * @dev Will NOT revert if any of the tokens are not supported, instead will return an empty query for that symbol. * Note: it is NOT possible to form a SwapQuery off-chain using alternative SwapAdapter for the destination swap. * For the time being, only swaps through the Synapse-supported pools are available on destination chain. * @param requests List of structs with following information: * - symbol: unique token ID consistent among all chains * - amountIn: amount of bridge token to start with, before the bridge fee is applied * @param tokenOut Token user wants to receive on destination chain * @return destQueries List of structs that could be used as `destQuery` in SynapseRouter. * minAmountOut and deadline fields will need to be adjusted based on the user settings. */ function getDestinationAmountOut(DestRequest[] memory requests, address tokenOut) external view returns (SwapQuery[] memory destQueries) { uint256 length = requests.length; destQueries = new SwapQuery[](length); for (uint256 i = 0; i < length; ++i) { address token = symbolToToken[requests[i].symbol]; // Skip if token is not supported if (token == address(0)) continue; // token is confirmed to be a supported bridge token at this point uint256 amountIn = _calculateBridgeAmountOut(token, requests[i].amountIn); // Skip if fee is greater than amountIn if (amountIn == 0) continue; TokenType bridgeTokenType = config[token].tokenType; // See what kind of "Actions" are available for the given bridge token: LimitedToken memory tokenIn = LimitedToken(_bridgeTokenActions(bridgeTokenType), token); destQueries[i] = swapQuoter.getAmountOut(tokenIn, tokenOut, amountIn); } } /** * @notice Gets the list of all bridge tokens (and their symbols), such that destination swap * from a bridge token to `tokenOut` is possible. * @param tokenOut Token address to swap to on destination chain * @return tokens List of structs with following information: * - symbol: unique token ID consistent among all chains * - token: bridge token address */ function getConnectedBridgeTokens(address tokenOut) external view returns (BridgeToken[] memory tokens) { uint256 amount = bridgeTokensAmount(); // Try connecting every supported bridge token to tokenOut LimitedToken[] memory allTokens = new LimitedToken[](amount); for (uint256 i = 0; i < amount; ++i) { address token = _bridgeTokens.at(i); // Make sure only "supported actions" for destination swap are included allTokens[i].actionMask = _bridgeTokenActions(config[token].tokenType); allTokens[i].token = token; } (uint256 amountFound, bool[] memory isConnected) = swapQuoter.findConnectedTokens(allTokens, tokenOut); tokens = new BridgeToken[](amountFound); // This will now track amount of found connected tokens so far during the next for loop amountFound = 0; for (uint256 i = 0; i < amount; ++i) { if (isConnected[i]) { // Record the connected token address token = allTokens[i].token; tokens[amountFound].symbol = tokenToSymbol[token]; tokens[amountFound].token = token; // Increase the counter ++amountFound; } } } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ INTERNAL: SWAP ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /** * @notice Performs a swap from `token` using the provided query, * which includes the swap adapter, tokenOut and the swap execution parameters. * Swapped token is transferred to the specified recipient. */ function _adapterSwap( address recipient, address token, uint256 amount, SwapQuery memory query ) internal returns (address tokenOut, uint256 amountOut) { // First, check the deadline for the swap // solhint-disable-next-line not-rely-on-time require(block.timestamp <= query.deadline, "Deadline not met"); // Pull initial token from the user to specified swap adapter _pullToken(query.swapAdapter, token, amount); tokenOut = query.tokenOut; // If swapAdapter is this contract (which is the case for the supported Synapse pools), // this will be an external call to address(this), which we are fine with. // The external call is used because additional Adapters will be established in the future. // We are forwarding `msg.value` and are expecting the Adapter to handle ETH/WETH interactions. amountOut = ISwapAdapter(query.swapAdapter).adapterSwap{value: msg.value}({ to: recipient, tokenIn: token, amountIn: amount, tokenOut: tokenOut, rawParams: query.rawParams }); // We can trust the supported adapters to return the exact swapped amount // Finally, check that the recipient received at least as much as they wanted require(amountOut >= query.minAmountOut, "Swap didn't result in min tokens"); } /** * Pulls a requested token from the user to the requested recipient. * Or, if msg.value was provided, check that ETH_ADDRESS was used and msg.value is correct. */ function _pullToken( address recipient, address token, uint256 amount ) internal { if (msg.value == 0) { // Token needs to be pulled only if msg.value is zero // This way user can specify WETH as the origin asset IERC20(token).safeTransferFrom(msg.sender, recipient, amount); } else { // Otherwise, we need to check that ETH was specified require(token == UniversalToken.ETH_ADDRESS, "!eth"); // And that amount matches msg.value require(msg.value == amount, "!msg.value"); // We will forward msg.value in the external call to the recipient } } /** * @notice Checks whether the swap adapter was specified in the query. * Query without a swap adapter specifies that no action needs to be taken. */ function _hasAdapter(SwapQuery memory query) internal pure returns (bool) { return query.swapAdapter != address(0); } function _bridgeTokenActions(TokenType tokenType) internal pure returns (uint256 actionMask) { if (tokenType == TokenType.Redeem) { // For tokens that are minted on destination chain // possible bridge functions are mint() and mintAndSwap(). Thus: // Swap: available via mintAndSwap() // (Add/Remove)Liquidity is unavailable // HandleETH is unavailable, as WETH could only be withdrawn by SynapseBridge actionMask = ActionLib.mask(Action.Swap); } else { // For tokens that are withdrawn on destination chain // possible bridge functions are withdraw() and withdrawAndRemove(). // Swap/AddLiquidity: not available // RemoveLiquidity: available via withdrawAndRemove() // HandleETH: available via withdraw(). SwapQuoter will check if the bridge token is WETH or not. actionMask = ActionLib.mask(Action.RemoveLiquidity, Action.HandleEth); } } /*╔══════════════════════════════════════════════════════════════════════╗*\\ ▏*║ INTERNAL: ADD & REMOVE BRIDGE TOKENS ║*▕ \\*╚══════════════════════════════════════════════════════════════════════╝*/ /// @dev Adds a bridge token config and its fee structure, if it's not present. /// If a token was added, approves it for spending by SynapseBridge. function _addToken( string memory symbol, address token, TokenType tokenType, address bridgeToken, uint256 bridgeFee, uint256 minFee, uint256 maxFee ) internal override returns (bool wasAdded) { // Add token and its fee structure wasAdded = LocalBridgeConfig._addToken(symbol, token, tokenType, bridgeToken, bridgeFee, minFee, maxFee); if (wasAdded) { // Approve token only if it wasn't previously added // Underlying token should always implement allowance(), approve() if (token == bridgeToken) token.universalApproveInfinity(address(synapseBridge)); // Use {setAllowance} for custom wrapper token setups } } } // SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; /// @notice Multicall utility for view/pure functions. Inspired by Multicall3: /// https://github.com/mds1/multicall/blob/master/src/Multicall3.sol abstract contract MulticallView { struct Result { bool success; bytes returnData; } /// @notice Aggregates a few static calls to this contract into one multicall. /// Any of the calls could revert without having impact on other calls. That includes the scenario, /// where a data for state modifying call was supplied, which would lead to one of the calls being reverted. function multicallView(bytes[] memory data) external view returns (Result[] memory callResults) { uint256 amount = data.length; callResults = new Result[](amount); for (uint256 i = 0; i < amount; ++i) { // We perform a static call to ourselves here. This will record `success` as false, // should the static call be reverted. The other calls will still be performed regardless. // Note: `success` will be set to false, if data for state modifying call was supplied. // No data will be modified, as this is a view function. (callResults[i].success, callResults[i].returnData) = address(this).staticcall(data[i]); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/Context.sol"; import "./ERC20.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { using SafeMath for uint256; /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance"); _approve(account, _msgSender(), decreasedAllowance); _burn(account, amount); } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } }
File 5 of 9: SocketGateway
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/across.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ACROSS} from "../../static/RouteIdentifiers.sol"; /** * @title Across-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Across-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AcrossImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract AcrossImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AcrossIdentifier = ACROSS; /// @notice Function-selector for ERC20-token bridging on Across-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ACROSS_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,uint32,uint64)" ) ); /// @notice Function-selector for Native bridging on Across-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable ACROSS_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(uint256,uint256,bytes32,address,uint32,uint64)" ) ); bytes4 public immutable ACROSS_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,uint32,uint64,bytes32))" ) ); /// @notice spokePool Contract instance used to deposit ERC20 and Native on to Across-Bridge /// @dev contract instance is to be initialized in the constructor using the spokePoolAddress passed as constructor argument SpokePool public immutable spokePool; address public immutable spokePoolAddress; /// @notice address of WETH token to be initialised in constructor address public immutable WETH; /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AcrossBridgeDataNoToken { uint256 toChainId; address receiverAddress; uint32 quoteTimestamp; uint64 relayerFeePct; bytes32 metadata; } struct AcrossBridgeData { uint256 toChainId; address receiverAddress; address token; uint32 quoteTimestamp; uint64 relayerFeePct; bytes32 metadata; } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure spokepool, weth-address are set properly for the chainId in which the contract is being deployed constructor( address _spokePool, address _wethAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { spokePool = SpokePool(_spokePool); spokePoolAddress = _spokePool; WETH = _wethAddress; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AcrossBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AcrossBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AcrossBridgeData memory acrossBridgeData = abi.decode( bridgeData, (AcrossBridgeData) ); if (acrossBridgeData.token == NATIVE_TOKEN_ADDRESS) { spokePool.deposit{value: amount}( acrossBridgeData.receiverAddress, WETH, amount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } else { spokePool.deposit( acrossBridgeData.receiverAddress, acrossBridgeData.token, amount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } emit SocketBridge( amount, acrossBridgeData.token, acrossBridgeData.toChainId, AcrossIdentifier, msg.sender, acrossBridgeData.receiverAddress, acrossBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AcrossBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param acrossBridgeData encoded data for AcrossBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AcrossBridgeDataNoToken calldata acrossBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { spokePool.deposit{value: bridgeAmount}( acrossBridgeData.receiverAddress, WETH, bridgeAmount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } else { spokePool.deposit( acrossBridgeData.receiverAddress, token, bridgeAmount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp ); } emit SocketBridge( bridgeAmount, token, acrossBridgeData.toChainId, AcrossIdentifier, msg.sender, acrossBridgeData.receiverAddress, acrossBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Across-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param quoteTimestamp timestamp for quote and this is to be used by Across-Bridge contract * @param relayerFeePct feePct that will be relayed by the Bridge to the relayer */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, uint32 quoteTimestamp, uint64 relayerFeePct ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); spokePool.deposit( receiverAddress, address(token), amount, toChainId, relayerFeePct, quoteTimestamp ); emit SocketBridge( amount, token, toChainId, AcrossIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Across-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param quoteTimestamp timestamp for quote and this is to be used by Across-Bridge contract * @param relayerFeePct feePct that will be relayed by the Bridge to the relayer */ function bridgeNativeTo( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, uint32 quoteTimestamp, uint64 relayerFeePct ) external payable { spokePool.deposit{value: amount}( receiverAddress, WETH, amount, toChainId, relayerFeePct, quoteTimestamp ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, AcrossIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice interface with functions to interact with SpokePool contract of Across-Bridge interface SpokePool { /************************************** * DEPOSITOR FUNCTIONS * **************************************/ /** * @notice Called by user to bridge funds from origin to destination chain. Depositor will effectively lock * tokens in this contract and receive a destination token on the destination chain. The origin => destination * token mapping is stored on the L1 HubPool. * @notice The caller must first approve this contract to spend amount of originToken. * @notice The originToken => destinationChainId must be enabled. * @notice This method is payable because the caller is able to deposit native token if the originToken is * wrappedNativeToken and this function will handle wrapping the native token to wrappedNativeToken. * @param recipient Address to receive funds at on destination chain. * @param originToken Token to lock into this contract to initiate deposit. * @param amount Amount of tokens to deposit. Will be amount of tokens to receive less fees. * @param destinationChainId Denotes network where user will receive funds from SpokePool by a relayer. * @param relayerFeePct % of deposit amount taken out to incentivize a fast relayer. * @param quoteTimestamp Timestamp used by relayers to compute this deposit's realizedLPFeePct which is paid * to LP pool on HubPool. */ function deposit( address recipient, address originToken, uint256 amount, uint256 destinationChainId, uint64 relayerFeePct, uint32 quoteTimestamp ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {ANYSWAP} from "../../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V4-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L1 implementation, so this is used when transferring from l1 to supported l1s or L1. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ /// @notice Interface to interact with AnyswapV4-Router Implementation interface AnyswapV4Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; } contract AnyswapImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); /// @notice AnSwapV4Router Contract instance used to deposit ERC20 on to Anyswap-Bridge /// @dev contract instance is to be initialized in the constructor using the router-address passed as constructor argument AnyswapV4Router public immutable router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap 4 router is immutable. so no setter function required. */ constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV4Router(_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); ERC20(anyswapBridgeData.token).safeApprove(address(router), amount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove(address(router), bridgeAmount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {ANYSWAP} from "../../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V4-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L2 implementation, so this is used when transferring from l2. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ interface AnyswapV4Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; } contract AnyswapL2Impl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); // polygon router multichain router v4 AnyswapV4Router public immutable router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap v4 router is immutable. so no setter function required. */ constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV4Router(_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); ERC20(anyswapBridgeData.token).safeApprove(address(router), amount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove(address(router), bridgeAmount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity >=0.8.0; /** * @title L1gatewayRouter for native-arbitrum */ interface L1GatewayRouter { /** * @notice outbound function to bridge ERC20 via NativeArbitrum-Bridge * @param _token address of token being bridged via GatewayRouter * @param _to recipient of the token on arbitrum chain * @param _amount amount of ERC20 token being bridged * @param _maxGas a depositParameter for bridging the token * @param _gasPriceBid a depositParameter for bridging the token * @param _data a depositParameter for bridging the token * @return calldata returns the output of transactioncall made on gatewayRouter */ function outboundTransfer( address _token, address _to, uint256 _amount, uint256 _maxGas, uint256 _gasPriceBid, bytes calldata _data ) external payable returns (bytes calldata); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {L1GatewayRouter} from "../interfaces/arbitrum.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {NATIVE_ARBITRUM} from "../../../static/RouteIdentifiers.sol"; /** * @title Native Arbitrum-Route Implementation * @notice Route implementation with functions to bridge ERC20 via NativeArbitrum-Bridge * @notice Called via SocketGateway if the routeId in the request maps to the routeId of NativeArbitrum-Implementation * @notice This is used when transferring from ethereum chain to arbitrum via their native bridge. * @notice Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * @notice RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract NativeArbitrumImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable NativeArbitrumIdentifier = NATIVE_ARBITRUM; uint256 public constant DESTINATION_CHAIN_ID = 42161; /// @notice Function-selector for ERC20-token bridging on NativeArbitrum /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_ARBITRUM_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,uint256,uint256,bytes32,address,address,address,bytes)" ) ); bytes4 public immutable NATIVE_ARBITRUM_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,uint256,uint256,address,address,bytes32,bytes))" ) ); /// @notice router address of NativeArbitrum Bridge /// @notice GatewayRouter looks up ERC20Token's gateway, and finding that it's Standard ERC20 gateway (the L1ERC20Gateway contract). address public immutable router; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router-address are set properly for the chainId in which the contract is being deployed constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = _router; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct NativeArbitrumBridgeDataNoToken { uint256 value; /// @notice maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 maxGas; /// @notice gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 gasPriceBid; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of Gateway which handles the token bridging for the token /// @notice gatewayAddress is unique for each token address gatewayAddress; /// @notice socket offchain created hash bytes32 metadata; /// @notice data is a depositParameter derived from erc20Bridger of nativeArbitrum bytes data; } struct NativeArbitrumBridgeData { uint256 value; /// @notice maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 maxGas; /// @notice gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 gasPriceBid; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of Gateway which handles the token bridging for the token /// @notice gatewayAddress is unique for each token address gatewayAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; /// @notice data is a depositParameter derived from erc20Bridger of nativeArbitrum bytes data; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativeArbitrumBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for NativeArbitrumBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { NativeArbitrumBridgeData memory nativeArbitrumBridgeData = abi.decode( bridgeData, (NativeArbitrumBridgeData) ); ERC20(nativeArbitrumBridgeData.token).safeApprove( nativeArbitrumBridgeData.gatewayAddress, amount ); L1GatewayRouter(router).outboundTransfer{ value: nativeArbitrumBridgeData.value }( nativeArbitrumBridgeData.token, nativeArbitrumBridgeData.receiverAddress, amount, nativeArbitrumBridgeData.maxGas, nativeArbitrumBridgeData.gasPriceBid, nativeArbitrumBridgeData.data ); emit SocketBridge( amount, nativeArbitrumBridgeData.token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, nativeArbitrumBridgeData.receiverAddress, nativeArbitrumBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativeArbitrumBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param nativeArbitrumBridgeData encoded data for NativeArbitrumBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, NativeArbitrumBridgeDataNoToken calldata nativeArbitrumBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove( nativeArbitrumBridgeData.gatewayAddress, bridgeAmount ); L1GatewayRouter(router).outboundTransfer{ value: nativeArbitrumBridgeData.value }( token, nativeArbitrumBridgeData.receiverAddress, bridgeAmount, nativeArbitrumBridgeData.maxGas, nativeArbitrumBridgeData.gasPriceBid, nativeArbitrumBridgeData.data ); emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, nativeArbitrumBridgeData.receiverAddress, nativeArbitrumBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via NativeArbitrum-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param value value * @param maxGas maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum * @param gasPriceBid gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param gatewayAddress address of Gateway which handles the token bridging for the token, gatewayAddress is unique for each token * @param data data is a depositParameter derived from erc20Bridger of nativeArbitrum */ function bridgeERC20To( uint256 amount, uint256 value, uint256 maxGas, uint256 gasPriceBid, bytes32 metadata, address receiverAddress, address token, address gatewayAddress, bytes memory data ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(gatewayAddress, amount); L1GatewayRouter(router).outboundTransfer{value: value}( token, receiverAddress, amount, maxGas, gasPriceBid, data ); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; import {OnlySocketGatewayOwner, OnlySocketDeployer} from "../errors/SocketErrors.sol"; /** * @title Abstract Implementation Contract. * @notice All Bridge Implementation will follow this interface. */ abstract contract BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; /// @notice immutable variable to store the socketGateway address address public immutable socketDeployFactory; /// @notice immutable variable with instance of SocketRoute to access route functions ISocketRoute public immutable socketRoute; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /**************************************** * EVENTS * ****************************************/ event SocketBridge( uint256 amount, address token, uint256 toChainId, bytes32 bridgeName, address sender, address receiver, bytes32 metadata ); /** * @notice Construct the base for all BridgeImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. * @param _socketDeployFactory Socket Deploy Factory address, an immutable variable to set. */ constructor(address _socketGateway, address _socketDeployFactory) { socketGateway = _socketGateway; socketDeployFactory = _socketDeployFactory; socketRoute = ISocketRoute(_socketGateway); } /**************************************** * MODIFIERS * ****************************************/ /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketDeployFactory() { if (msg.sender != socketDeployFactory) { revert OnlySocketDeployer(); } _; } /**************************************** * RESTRICTED FUNCTIONS * ****************************************/ /** * @notice function to rescue the ERC20 tokens in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } function killme() external isSocketDeployFactory { selfdestruct(payable(msg.sender)); } /****************************** * VIRTUAL FUNCTIONS * *****************************/ /** * @notice function to bridge which is succeeding the swap function * @notice this function is to be used only when bridging as a succeeding step * @notice All bridge implementation contracts must implement this function * @notice bridge-implementations will have a bridge specific struct with properties used in bridging * @param bridgeData encoded value of properties in the bridgeData Struct */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../../libraries/Pb.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/cbridge.sol"; import "./interfaces/ICelerStorageWrapper.sol"; import {TransferIdExists, InvalidCelerRefund, CelerAlreadyRefunded, CelerRefundNotReady} from "../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {CBRIDGE} from "../../static/RouteIdentifiers.sol"; /** * @title Celer-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Celer-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of CelerImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract CelerImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable CBridgeIdentifier = CBRIDGE; /// @notice Utility to perform operation on Buffer using Pb for Pb.Buffer; /// @notice Function-selector for ERC20-token bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge ERC20 tokens bytes4 public immutable CELER_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,uint256,bytes32,uint64,uint64,uint32)" ) ); /// @notice Function-selector for Native bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable CELER_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,uint256,bytes32,uint64,uint64,uint32)" ) ); bytes4 public immutable CELER_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,uint64,uint32,uint64,bytes32))" ) ); /// @notice router Contract instance used to deposit ERC20 and Native on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the routerAddress passed as constructor argument ICBridge public immutable router; /// @notice celerStorageWrapper Contract instance used to store the transferId generated during ERC20 and Native bridge on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the celerStorageWrapperAddress passed as constructor argument ICelerStorageWrapper public immutable celerStorageWrapper; /// @notice WETH token address address public immutable weth; /// @notice chainId used during generation of transferId generated while bridging ERC20 and Native on to Celer-Bridge /// @dev this is to be initialised in the constructor uint64 public immutable chainId; struct WithdrawMsg { uint64 chainid; // tag: 1 uint64 seqnum; // tag: 2 address receiver; // tag: 3 address token; // tag: 4 uint256 amount; // tag: 5 bytes32 refid; // tag: 6 } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure routerAddress, weth-address, celerStorageWrapperAddress are set properly for the chainId in which the contract is being deployed constructor( address _routerAddress, address _weth, address _celerStorageWrapperAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = ICBridge(_routerAddress); celerStorageWrapper = ICelerStorageWrapper(_celerStorageWrapperAddress); weth = _weth; chainId = uint64(block.chainid); } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct CelerBridgeDataNoToken { address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } struct CelerBridgeData { address token; address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for CelerBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { CelerBridgeData memory celerBridgeData = abi.decode( bridgeData, (CelerBridgeData) ); if (celerBridgeData.token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( celerBridgeData.receiverAddress, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( amount, celerBridgeData.token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param celerBridgeData encoded data for CelerBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, CelerBridgeDataNoToken calldata celerBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: bridgeAmount}( celerBridgeData.receiverAddress, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( bridgeAmount, token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param token address of token being bridged * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeERC20To( address receiverAddress, address token, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { /// @notice transferId is generated using the request-params and nonce of the account /// @notice transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, token, amount, toChainId, nonce, chainId ) ); /// @notice stored in the CelerStorageWrapper contract celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); router.send( receiverAddress, token, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, token, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeNativeTo( address receiverAddress, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, weth, amount, toChainId, nonce, chainId ) ); celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( receiverAddress, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle refund from CelerBridge-Router * @param _request request data generated offchain using the celer-SDK * @param _sigs generated offchain using the celer-SDK * @param _signers generated offchain using the celer-SDK * @param _powers generated offchain using the celer-SDK */ function refundCelerUser( bytes calldata _request, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external payable { WithdrawMsg memory request = decWithdrawMsg(_request); bytes32 transferId = keccak256( abi.encodePacked( request.chainid, request.seqnum, request.receiver, request.token, request.amount ) ); uint256 _initialNativeBalance = address(this).balance; uint256 _initialTokenBalance = ERC20(request.token).balanceOf( address(this) ); if (!router.withdraws(transferId)) { router.withdraw(_request, _sigs, _signers, _powers); } if (request.receiver != socketGateway) { revert InvalidCelerRefund(); } address _receiver = celerStorageWrapper.getAddressFromTransferId( request.refid ); celerStorageWrapper.deleteTransferId(request.refid); if (_receiver == address(0)) { revert CelerAlreadyRefunded(); } uint256 _nativeBalanceAfter = address(this).balance; uint256 _tokenBalanceAfter = ERC20(request.token).balanceOf( address(this) ); if (_nativeBalanceAfter > _initialNativeBalance) { if ((_nativeBalanceAfter - _initialNativeBalance) != request.amount) revert CelerRefundNotReady(); payable(_receiver).transfer(request.amount); return; } if (_tokenBalanceAfter > _initialTokenBalance) { if ((_tokenBalanceAfter - _initialTokenBalance) != request.amount) revert CelerRefundNotReady(); ERC20(request.token).safeTransfer(_receiver, request.amount); return; } revert CelerRefundNotReady(); } function decWithdrawMsg( bytes memory raw ) internal pure returns (WithdrawMsg memory m) { Pb.Buffer memory buf = Pb.fromBytes(raw); uint256 tag; Pb.WireType wire; while (buf.hasMore()) { (tag, wire) = buf.decKey(); if (false) {} // solidity has no switch/case else if (tag == 1) { m.chainid = uint64(buf.decVarint()); } else if (tag == 2) { m.seqnum = uint64(buf.decVarint()); } else if (tag == 3) { m.receiver = Pb._address(buf.decBytes()); } else if (tag == 4) { m.token = Pb._address(buf.decBytes()); } else if (tag == 5) { m.amount = Pb._uint256(buf.decBytes()); } else if (tag == 6) { m.refid = Pb._bytes32(buf.decBytes()); } else { buf.skipValue(wire); } // skip value of unknown tag } } // end decoder WithdrawMsg } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; import {OnlySocketGateway, TransferIdExists, TransferIdDoesnotExist} from "../../errors/SocketErrors.sol"; /** * @title CelerStorageWrapper * @notice handle storageMappings used while bridging ERC20 and native on CelerBridge * @dev all functions ehich mutate the storage are restricted to Owner of SocketGateway * @author Socket dot tech. */ contract CelerStorageWrapper { /// @notice Socketgateway-address to be set in the constructor of CelerStorageWrapper address public immutable socketGateway; /// @notice mapping to store the transferId generated during bridging on Celer to message-sender mapping(bytes32 => address) private transferIdMapping; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor(address _socketGateway) { socketGateway = _socketGateway; } /** * @notice function to store the transferId and message-sender of a bridging activity * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @param transferIdAddress message sender who is making the bridging on CelerBridge */ function setAddressForTransferId( bytes32 transferId, address transferIdAddress ) external { if (msg.sender != socketGateway) { revert OnlySocketGateway(); } if (transferIdMapping[transferId] != address(0)) { revert TransferIdExists(); } transferIdMapping[transferId] = transferIdAddress; } /** * @notice function to delete the transferId when the celer bridge processes a refund. * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge */ function deleteTransferId(bytes32 transferId) external { if (msg.sender != socketGateway) { revert OnlySocketGateway(); } if (transferIdMapping[transferId] == address(0)) { revert TransferIdDoesnotExist(); } delete transferIdMapping[transferId]; } /** * @notice function to lookup the address mapped to the transferId * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @return address of account mapped to transferId */ function getAddressFromTransferId( bytes32 transferId ) external view returns (address) { return transferIdMapping[transferId]; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface ICBridge { function send( address _receiver, address _token, uint256 _amount, uint64 _dstChinId, uint64 _nonce, uint32 _maxSlippage ) external; function sendNative( address _receiver, uint256 _amount, uint64 _dstChinId, uint64 _nonce, uint32 _maxSlippage ) external payable; function withdraws(bytes32 withdrawId) external view returns (bool); function withdraw( bytes calldata _wdmsg, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external; } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /** * @title Celer-StorageWrapper interface * @notice Interface to handle storageMappings used while bridging ERC20 and native on CelerBridge * @dev all functions ehich mutate the storage are restricted to Owner of SocketGateway * @author Socket dot tech. */ interface ICelerStorageWrapper { /** * @notice function to store the transferId and message-sender of a bridging activity * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @param transferIdAddress message sender who is making the bridging on CelerBridge */ function setAddressForTransferId( bytes32 transferId, address transferIdAddress ) external; /** * @notice function to store the transferId and message-sender of a bridging activity * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge */ function deleteTransferId(bytes32 transferId) external; /** * @notice function to lookup the address mapped to the transferId * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @return address of account mapped to transferId */ function getAddressFromTransferId( bytes32 transferId ) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /** * @title HopAMM * @notice Interface to handle the token bridging to L2 chains. */ interface HopAMM { /** * @notice To send funds L2->L1 or L2->L2, call the swapAndSend on the L2 AMM Wrapper contract * @param chainId chainId of the L2 contract * @param recipient receiver address * @param amount amount is the amount the user wants to send plus the Bonder fee * @param bonderFee fees * @param amountOutMin minimum amount * @param deadline deadline for bridging * @param destinationAmountOutMin minimum amount expected to be bridged on L2 * @param destinationDeadline destination time before which token is to be bridged on L2 */ function swapAndSend( uint256 chainId, address recipient, uint256 amount, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 destinationAmountOutMin, uint256 destinationDeadline ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title L1Bridge Hop Interface * @notice L1 Hop Bridge, Used to transfer from L1 to L2s. */ interface IHopL1Bridge { /** * @notice `amountOutMin` and `deadline` should be 0 when no swap is intended at the destination. * @notice `amount` is the total amount the user wants to send including the relayer fee * @dev Send tokens to a supported layer-2 to mint hToken and optionally swap the hToken in the * AMM at the destination. * @param chainId The chainId of the destination chain * @param recipient The address receiving funds at the destination * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination * AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no * swap is intended. * @param relayer The address of the relayer at the destination. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. */ function sendToL2( uint256 chainId, address recipient, uint256 amount, uint256 amountOutMin, uint256 deadline, address relayer, uint256 relayerFee ) external payable; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "../interfaces/IHopL1Bridge.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L1 Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hop-Bridge from L1 to Supported L2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,address,uint256,uint256,uint256,uint256,(uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L1-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,address,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,address,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopDataNoToken { // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopERC20Data { uint256 deadline; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopData memory hopData = abi.decode(bridgeData, (HopData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { ERC20(hopData.token).safeApprove(hopData.l1bridgeAddr, amount); // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { ERC20(token).safeApprove(hopData.l1bridgeAddr, bridgeAmount); // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param hopData extra data needed to build the tx */ function bridgeERC20To( address receiverAddress, address token, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, HopERC20Data calldata hopData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(l1bridgeAddr, amount); // perform bridging IHopL1Bridge(l1bridgeAddr).sendToL2( toChainId, receiverAddress, amount, amountOutMin, hopData.deadline, relayer, relayerFee ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. */ function bridgeNativeTo( address receiverAddress, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, uint256 deadline, bytes32 metadata ) external payable { IHopL1Bridge(l1bridgeAddr).sendToL2{value: amount}( toChainId, receiverAddress, amount, amountOutMin, deadline, relayer, relayerFee ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../interfaces/amm.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L2 Route Implementation * @notice This is the L2 implementation, so this is used when transferring from l2 to supported l2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopL2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L2-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint256,uint256,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L2_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint256,uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used as a input parameter for Bridging tokens via Hop-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct HopBridgeRequestData { // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopBridgeDataNoToken { // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } struct HopBridgeData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L2-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopBridgeData memory hopData = abi.decode(bridgeData, (HopBridgeData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopBridgeDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param hopBridgeRequestData extraData for Bridging across Hop-L2 */ function bridgeERC20To( address receiverAddress, address token, address hopAMM, uint256 amount, uint256 toChainId, HopBridgeRequestData calldata hopBridgeRequestData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); HopAMM(hopAMM).swapAndSend( toChainId, receiverAddress, amount, hopBridgeRequestData.bonderFee, hopBridgeRequestData.amountOutMin, hopBridgeRequestData.deadline, hopBridgeRequestData.amountOutMinDestination, hopBridgeRequestData.deadlineDestination ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopBridgeRequestData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param bonderFee fees passed to relayer * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. * @param amountOutMinDestination Minimum amount expected to be received or bridged to destination * @param deadlineDestination deadline for bridging to destination */ function bridgeNativeTo( address receiverAddress, address hopAMM, uint256 amount, uint256 toChainId, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 amountOutMinDestination, uint256 deadlineDestination, bytes32 metadata ) external payable { // token address might not be indication thats why passed through extraData // perform bridging HopAMM(hopAMM).swapAndSend{value: amount}( toChainId, receiverAddress, amount, bonderFee, amountOutMin, deadline, amountOutMinDestination, deadlineDestination ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/hyphen.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {HYPHEN} from "../../static/RouteIdentifiers.sol"; /** * @title Hyphen-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hyphen-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of HyphenImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HyphenImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HyphenIdentifier = HYPHEN; /// @notice Function-selector for ERC20-token bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HYPHEN_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256("bridgeERC20To(uint256,bytes32,address,address,uint256)") ); /// @notice Function-selector for Native bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable HYPHEN_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address,uint256)")); bytes4 public immutable HYPHEN_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,bytes,(address,uint256,bytes32))") ); /// @notice liquidityPoolManager - liquidityPool Manager of Hyphen used to bridge ERC20 and native /// @dev this is to be initialized in constructor with a valid deployed address of hyphen-liquidityPoolManager HyphenLiquidityPoolManager public immutable liquidityPoolManager; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure liquidityPoolManager-address are set properly for the chainId in which the contract is being deployed constructor( address _liquidityPoolManager, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { liquidityPoolManager = HyphenLiquidityPoolManager( _liquidityPoolManager ); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HyphenData { /// @notice address of token being bridged address token; /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice socket offchain created hash bytes32 metadata; } struct HyphenDataNoToken { /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice chainId of destination bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for HyphenBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HyphenData memory hyphenData = abi.decode(bridgeData, (HyphenData)); if (hyphenData.token == NATIVE_TOKEN_ADDRESS) { liquidityPoolManager.depositNative{value: amount}( hyphenData.receiverAddress, hyphenData.toChainId, "SOCKET" ); } else { ERC20(hyphenData.token).safeApprove( address(liquidityPoolManager), amount ); liquidityPoolManager.depositErc20( hyphenData.toChainId, hyphenData.token, hyphenData.receiverAddress, amount, "SOCKET" ); } emit SocketBridge( amount, hyphenData.token, hyphenData.toChainId, HyphenIdentifier, msg.sender, hyphenData.receiverAddress, hyphenData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hyphenData encoded data for hyphenData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HyphenDataNoToken calldata hyphenData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { liquidityPoolManager.depositNative{value: bridgeAmount}( hyphenData.receiverAddress, hyphenData.toChainId, "SOCKET" ); } else { ERC20(token).safeApprove( address(liquidityPoolManager), bridgeAmount ); liquidityPoolManager.depositErc20( hyphenData.toChainId, token, hyphenData.receiverAddress, bridgeAmount, "SOCKET" ); } emit SocketBridge( bridgeAmount, token, hyphenData.toChainId, HyphenIdentifier, msg.sender, hyphenData.receiverAddress, hyphenData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param token address of token being bridged * @param toChainId chainId of destination */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token, uint256 toChainId ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(liquidityPoolManager), amount); liquidityPoolManager.depositErc20( toChainId, token, receiverAddress, amount, "SOCKET" ); emit SocketBridge( amount, token, toChainId, HyphenIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param toChainId chainId of destination */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress, uint256 toChainId ) external payable { liquidityPoolManager.depositNative{value: amount}( receiverAddress, toChainId, "SOCKET" ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HyphenIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /** * @title HyphenLiquidityPoolManager * @notice interface with functions to bridge ERC20 and Native via Hyphen-Bridge * @author Socket dot tech. */ interface HyphenLiquidityPoolManager { /** * @dev Function used to deposit tokens into pool to initiate a cross chain token transfer. * @param toChainId Chain id where funds needs to be transfered * @param tokenAddress ERC20 Token address that needs to be transfered * @param receiver Address on toChainId where tokens needs to be transfered * @param amount Amount of token being transfered */ function depositErc20( uint256 toChainId, address tokenAddress, address receiver, uint256 amount, string calldata tag ) external; /** * @dev Function used to deposit native token into pool to initiate a cross chain token transfer. * @param receiver Address on toChainId where tokens needs to be transfered * @param toChainId Chain id where funds needs to be transfered */ function depositNative( address receiver, uint256 toChainId, string calldata tag ) external payable; } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface L1StandardBridge { /** * @dev Performs the logic for deposits by storing the ETH and informing the L2 ETH Gateway of * the deposit. * @param _to Account to give the deposit to on L2. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositETHTo( address _to, uint32 _l2Gas, bytes calldata _data ) external payable; /** * @dev deposit an amount of ERC20 to a recipient's balance on L2. * @param _l1Token Address of the L1 ERC20 we are depositing * @param _l2Token Address of the L1 respective L2 ERC20 * @param _to L2 address to credit the withdrawal to. * @param _amount Amount of the ERC20 to deposit. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external; } interface OldL1TokenGateway { /** * @dev Transfer SNX to L2 First, moves the SNX into the deposit escrow * * @param _to Account to give the deposit to on L2 * @param _amount Amount of the ERC20 to deposit. */ function depositTo(address _to, uint256 _amount) external; /** * @dev Transfer SNX to L2 First, moves the SNX into the deposit escrow * * @param currencyKey currencyKey for the SynthToken * @param destination Account to give the deposit to on L2 * @param amount Amount of the ERC20 to deposit. */ function initiateSynthTransfer( bytes32 currencyKey, address destination, uint256 amount ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/optimism.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {UnsupportedInterfaceId} from "../../../errors/SocketErrors.sol"; import {NATIVE_OPTIMISM} from "../../../static/RouteIdentifiers.sol"; /** * @title NativeOptimism-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via NativeOptimism-Bridge * Tokens are bridged from Ethereum to Optimism Chain. * Called via SocketGateway if the routeId in the request maps to the routeId of NativeOptimism-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract NativeOptimismImpl is BridgeImplBase { using SafeTransferLib for ERC20; bytes32 public immutable NativeOptimismIdentifier = NATIVE_OPTIMISM; uint256 public constant DESTINATION_CHAIN_ID = 10; /// @notice Function-selector for ERC20-token bridging on Native-Optimism-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_OPTIMISM_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint32,(bytes32,bytes32),uint256,uint256,address,bytes)" ) ); /// @notice Function-selector for Native bridging on Native-Optimism-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native balance bytes4 public immutable NATIVE_OPTIMISM_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint32,uint256,bytes32,bytes)" ) ); bytes4 public immutable NATIVE_OPTIMISM_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,bytes32,bytes32,address,address,uint32,address,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct OptimismBridgeDataNoToken { // interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) uint256 interfaceId; // currencyKey of the token beingBridged bytes32 currencyKey; // socket offchain created hash bytes32 metadata; // address of receiver of bridged tokens address receiverAddress; /** * OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) */ address customBridgeAddress; // Gas limit required to complete the deposit on L2. uint32 l2Gas; // Address of the L1 respective L2 ERC20 address l2Token; // additional data , for ll contracts this will be 0x data or empty data bytes data; } struct OptimismBridgeData { // interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) uint256 interfaceId; // currencyKey of the token beingBridged bytes32 currencyKey; // socket offchain created hash bytes32 metadata; // address of receiver of bridged tokens address receiverAddress; /** * OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) */ address customBridgeAddress; /// @notice address of token being bridged address token; // Gas limit required to complete the deposit on L2. uint32 l2Gas; // Address of the L1 respective L2 ERC20 address l2Token; // additional data , for ll contracts this will be 0x data or empty data bytes data; } struct OptimismERC20Data { bytes32 currencyKey; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in OptimismBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Optimism-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { OptimismBridgeData memory optimismBridgeData = abi.decode( bridgeData, (OptimismBridgeData) ); emit SocketBridge( amount, optimismBridgeData.token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, optimismBridgeData.receiverAddress, optimismBridgeData.metadata ); if (optimismBridgeData.token == NATIVE_TOKEN_ADDRESS) { L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositETHTo{value: amount}( optimismBridgeData.receiverAddress, optimismBridgeData.l2Gas, optimismBridgeData.data ); } else { if (optimismBridgeData.interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20(optimismBridgeData.token).safeApprove( optimismBridgeData.customBridgeAddress, amount ); if (optimismBridgeData.interfaceId == 1) { // deposit into standard bridge L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositERC20To( optimismBridgeData.token, optimismBridgeData.l2Token, optimismBridgeData.receiverAddress, amount, optimismBridgeData.l2Gas, optimismBridgeData.data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (optimismBridgeData.interfaceId == 2) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .depositTo(optimismBridgeData.receiverAddress, amount); return; } if (optimismBridgeData.interfaceId == 3) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .initiateSynthTransfer( optimismBridgeData.currencyKey, optimismBridgeData.receiverAddress, amount ); return; } } } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in OptimismBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param optimismBridgeData encoded data for OptimismBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, OptimismBridgeDataNoToken calldata optimismBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, optimismBridgeData.receiverAddress, optimismBridgeData.metadata ); if (token == NATIVE_TOKEN_ADDRESS) { L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositETHTo{value: bridgeAmount}( optimismBridgeData.receiverAddress, optimismBridgeData.l2Gas, optimismBridgeData.data ); } else { if (optimismBridgeData.interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20(token).safeApprove( optimismBridgeData.customBridgeAddress, bridgeAmount ); if (optimismBridgeData.interfaceId == 1) { // deposit into standard bridge L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositERC20To( token, optimismBridgeData.l2Token, optimismBridgeData.receiverAddress, bridgeAmount, optimismBridgeData.l2Gas, optimismBridgeData.data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (optimismBridgeData.interfaceId == 2) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .depositTo( optimismBridgeData.receiverAddress, bridgeAmount ); return; } if (optimismBridgeData.interfaceId == 3) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .initiateSynthTransfer( optimismBridgeData.currencyKey, optimismBridgeData.receiverAddress, bridgeAmount ); return; } } } /** * @notice function to handle ERC20 bridging to receipent via NativeOptimism-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param receiverAddress address of receiver of bridged tokens * @param customBridgeAddress OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * @param l2Gas Gas limit required to complete the deposit on L2. * @param optimismData extra data needed for optimism bridge * @param amount amount being bridged * @param interfaceId interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) * @param l2Token Address of the L1 respective L2 ERC20 * @param data additional data , for ll contracts this will be 0x data or empty data */ function bridgeERC20To( address token, address receiverAddress, address customBridgeAddress, uint32 l2Gas, OptimismERC20Data calldata optimismData, uint256 amount, uint256 interfaceId, address l2Token, bytes calldata data ) external payable { if (interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(customBridgeAddress, amount); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, receiverAddress, optimismData.metadata ); if (interfaceId == 1) { // deposit into standard bridge L1StandardBridge(customBridgeAddress).depositERC20To( token, l2Token, receiverAddress, amount, l2Gas, data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (interfaceId == 2) { OldL1TokenGateway(customBridgeAddress).depositTo( receiverAddress, amount ); return; } if (interfaceId == 3) { OldL1TokenGateway(customBridgeAddress).initiateSynthTransfer( optimismData.currencyKey, receiverAddress, amount ); return; } } /** * @notice function to handle native balance bridging to receipent via NativeOptimism-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of receiver of bridged tokens * @param customBridgeAddress OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * @param l2Gas Gas limit required to complete the deposit on L2. * @param amount amount being bridged * @param data additional data , for ll contracts this will be 0x data or empty data */ function bridgeNativeTo( address receiverAddress, address customBridgeAddress, uint32 l2Gas, uint256 amount, bytes32 metadata, bytes calldata data ) external payable { L1StandardBridge(customBridgeAddress).depositETHTo{value: amount}( receiverAddress, l2Gas, data ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /** * @title RootChain Manager Interface for Polygon Bridge. */ interface IRootChainManager { /** * @notice Move ether from root to child chain, accepts ether transfer * Keep in mind this ether cannot be used to pay gas on child chain * Use Matic tokens deposited using plasma mechanism for that * @param user address of account that should receive WETH on child chain */ function depositEtherFor(address user) external payable; /** * @notice Move tokens from root to child chain * @dev This mechanism supports arbitrary tokens as long as its predicate has been registered and the token is mapped * @param sender address of account that should receive this deposit on child chain * @param token address of token that is being deposited * @param extraData bytes data that is sent to predicate and child token contracts to handle deposit */ function depositFor( address sender, address token, bytes memory extraData ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/polygon.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {NATIVE_POLYGON} from "../../static/RouteIdentifiers.sol"; /** * @title NativePolygon-Route Implementation * @notice This is the L1 implementation, so this is used when transferring from ethereum to polygon via their native bridge. * @author Socket dot tech. */ contract NativePolygonImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable NativePolyonIdentifier = NATIVE_POLYGON; /// @notice destination-chain-Id for this router is always arbitrum uint256 public constant DESTINATION_CHAIN_ID = 137; /// @notice Function-selector for ERC20-token bridging on NativePolygon-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_POLYGON_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeERC20To(uint256,bytes32,address,address)")); /// @notice Function-selector for Native bridging on NativePolygon-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable NATIVE_POLYGON_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address)")); bytes4 public immutable NATIVE_POLYGON_SWAP_BRIDGE_SELECTOR = bytes4(keccak256("swapAndBridge(uint32,address,bytes32,bytes)")); /// @notice root chain manager proxy on the ethereum chain /// @dev to be initialised in the constructor IRootChainManager public immutable rootChainManagerProxy; /// @notice ERC20 Predicate proxy on the ethereum chain /// @dev to be initialised in the constructor address public immutable erc20PredicateProxy; /** * // @notice We set all the required addresses in the constructor while deploying the contract. * // These will be constant addresses. * // @dev Please use the Proxy addresses and not the implementation addresses while setting these * // @param _rootChainManagerProxy address of the root chain manager proxy on the ethereum chain * // @param _erc20PredicateProxy address of the ERC20 Predicate proxy on the ethereum chain. * // @param _socketGateway address of the socketGateway contract that calls this contract */ constructor( address _rootChainManagerProxy, address _erc20PredicateProxy, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { rootChainManagerProxy = IRootChainManager(_rootChainManagerProxy); erc20PredicateProxy = _erc20PredicateProxy; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativePolygon-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for NativePolygon-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { (address token, address receiverAddress, bytes32 metadata) = abi.decode( bridgeData, (address, address, bytes32) ); if (token == NATIVE_TOKEN_ADDRESS) { IRootChainManager(rootChainManagerProxy).depositEtherFor{ value: amount }(receiverAddress); } else { ERC20(token).safeApprove(erc20PredicateProxy, amount); // deposit into rootchain manager IRootChainManager(rootChainManagerProxy).depositFor( receiverAddress, token, abi.encodePacked(amount) ); } emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativePolygon-BridgeData struct * @param swapId routeId for the swapImpl * @param receiverAddress address of the receiver * @param swapData encoded data for swap */ function swapAndBridge( uint32 swapId, address receiverAddress, bytes32 metadata, bytes calldata swapData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IRootChainManager(rootChainManagerProxy).depositEtherFor{ value: bridgeAmount }(receiverAddress); } else { ERC20(token).safeApprove(erc20PredicateProxy, bridgeAmount); // deposit into rootchain manager IRootChainManager(rootChainManagerProxy).depositFor( receiverAddress, token, abi.encodePacked(bridgeAmount) ); } emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle ERC20 bridging to receipent via NativePolygon-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of tokens being bridged * @param receiverAddress recipient address * @param token address of token being bridged */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token ) external payable { ERC20 tokenInstance = ERC20(token); // set allowance for erc20 predicate tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(erc20PredicateProxy, amount); // deposit into rootchain manager rootChainManagerProxy.depositFor( receiverAddress, token, abi.encodePacked(amount) ); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via NativePolygon-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of tokens being bridged * @param receiverAddress recipient address */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress ) external payable { rootChainManagerProxy.depositEtherFor{value: amount}(receiverAddress); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /// @notice interface with functions to interact with Refuel contract interface IRefuel { /** * @notice function to deposit nativeToken to Destination-address on destinationChain * @param destinationChainId chainId of the Destination chain * @param _to recipient address */ function depositNativeToken( uint256 destinationChainId, address _to ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/refuel.sol"; import "../BridgeImplBase.sol"; import {REFUEL} from "../../static/RouteIdentifiers.sol"; /** * @title Refuel-Route Implementation * @notice Route implementation with functions to bridge Native via Refuel-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of RefuelImplementation * @author Socket dot tech. */ contract RefuelBridgeImpl is BridgeImplBase { bytes32 public immutable RefuelIdentifier = REFUEL; /// @notice refuelBridge-Contract address used to deposit Native on Refuel-Bridge address public immutable refuelBridge; /// @notice Function-selector for Native bridging via Refuel-Bridge /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable REFUEL_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,address,uint256,bytes32)")); bytes4 public immutable REFUEL_NATIVE_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,address,uint256,bytes32,bytes)") ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure _refuelBridge are set properly for the chainId in which the contract is being deployed constructor( address _refuelBridge, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { refuelBridge = _refuelBridge; } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct RefuelBridgeData { address receiverAddress; uint256 toChainId; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in RefuelBridgeData struct * @param amount amount of tokens being bridged. this must be only native * @param bridgeData encoded data for RefuelBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { RefuelBridgeData memory refuelBridgeData = abi.decode( bridgeData, (RefuelBridgeData) ); IRefuel(refuelBridge).depositNativeToken{value: amount}( refuelBridgeData.toChainId, refuelBridgeData.receiverAddress ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, refuelBridgeData.toChainId, RefuelIdentifier, msg.sender, refuelBridgeData.receiverAddress, refuelBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in RefuelBridgeData struct * @param swapId routeId for the swapImpl * @param receiverAddress receiverAddress * @param toChainId toChainId * @param swapData encoded data for swap */ function swapAndBridge( uint32 swapId, address receiverAddress, uint256 toChainId, bytes32 metadata, bytes calldata swapData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, ) = abi.decode(result, (uint256, address)); IRefuel(refuelBridge).depositNativeToken{value: bridgeAmount}( toChainId, receiverAddress ); emit SocketBridge( bridgeAmount, NATIVE_TOKEN_ADDRESS, toChainId, RefuelIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Refuel-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of native being refuelled to destination chain * @param receiverAddress recipient address of the refuelled native * @param toChainId destinationChainId */ function bridgeNativeTo( uint256 amount, address receiverAddress, uint256 toChainId, bytes32 metadata ) external payable { IRefuel(refuelBridge).depositNativeToken{value: amount}( toChainId, receiverAddress ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, RefuelIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity >=0.8.0; /** * @title IBridgeStargate Interface Contract. * @notice Interface used by Stargate-L1 and L2 Router implementations * @dev router and routerETH addresses will be distinct for L1 and L2 */ interface IBridgeStargate { // @notice Struct to hold the additional-data for bridging ERC20 token struct lzTxObj { // gas limit to bridge the token in Stargate to destinationChain uint256 dstGasForCall; // destination nativeAmount, this is always set as 0 uint256 dstNativeAmount; // destination nativeAddress, this is always set as 0x bytes dstNativeAddr; } /// @notice function in stargate bridge which is used to bridge ERC20 tokens to recipient on destinationChain function swap( uint16 _dstChainId, uint256 _srcPoolId, uint256 _dstPoolId, address payable _refundAddress, uint256 _amountLD, uint256 _minAmountLD, lzTxObj memory _lzTxParams, bytes calldata _to, bytes calldata _payload ) external payable; /// @notice function in stargate bridge which is used to bridge native tokens to recipient on destinationChain function swapETH( uint16 _dstChainId, // destination Stargate chainId address payable _refundAddress, // refund additional messageFee to this address bytes calldata _toAddress, // the receiver of the destination ETH uint256 _amountLD, // the amount, in Local Decimals, to be swapped uint256 _minAmountLD // the minimum amount accepted out on destination ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/stargate.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {STARGATE} from "../../../static/RouteIdentifiers.sol"; /** * @title Stargate-L1-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Stargate-L1-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of Stargate-L1-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract StargateImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable StargateIdentifier = STARGATE; /// @notice Function-selector for ERC20-token bridging on Stargate-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable STARGATE_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,bytes32,bytes,uint16))" ) ); /// @notice Function-selector for Native bridging on Stargate-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable STARGATE_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint16,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable STARGATE_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint16,uint256,uint256,uint256,uint256,uint256,uint256,bytes32,bytes))" ) ); /// @notice Stargate Router to bridge ERC20 tokens IBridgeStargate public immutable router; /// @notice Stargate Router to bridge native tokens IBridgeStargate public immutable routerETH; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router, routerEth are set properly for the chainId in which the contract is being deployed constructor( address _router, address _routerEth, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IBridgeStargate(_router); routerETH = IBridgeStargate(_routerEth); } struct StargateBridgeExtraData { uint256 srcPoolId; uint256 dstPoolId; uint256 destinationGasLimit; uint256 minReceivedAmt; bytes32 metadata; bytes destinationPayload; uint16 stargateDstChainId; // stargate defines chain id in its way } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct StargateBridgeDataNoToken { address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } struct StargateBridgeData { address token; address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Stargate-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { StargateBridgeData memory stargateBridgeData = abi.decode( bridgeData, (StargateBridgeData) ); if (stargateBridgeData.token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + stargateBridgeData.optionalValue}( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), amount, stargateBridgeData.minReceivedAmt ); } else { ERC20(stargateBridgeData.token).safeApprove( address(router), amount ); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract amount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( amount, stargateBridgeData.token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param stargateBridgeData encoded data for StargateBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, StargateBridgeDataNoToken calldata stargateBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{ value: bridgeAmount + stargateBridgeData.optionalValue }( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), bridgeAmount, stargateBridgeData.minReceivedAmt ); } else { ERC20(token).safeApprove(address(router), bridgeAmount); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract bridgeAmount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( bridgeAmount, token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param senderAddress address of sender * @param receiverAddress address of recipient * @param amount amount of token being bridge * @param value value * @param stargateBridgeExtraData stargate bridge extradata */ function bridgeERC20To( address token, address senderAddress, address receiverAddress, uint256 amount, uint256 value, StargateBridgeExtraData calldata stargateBridgeExtraData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); { router.swap{value: value}( stargateBridgeExtraData.stargateDstChainId, stargateBridgeExtraData.srcPoolId, stargateBridgeExtraData.dstPoolId, payable(senderAddress), // default to refund to main contract amount, stargateBridgeExtraData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeExtraData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(receiverAddress), stargateBridgeExtraData.destinationPayload ); } emit SocketBridge( amount, token, stargateBridgeExtraData.stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, stargateBridgeExtraData.metadata ); } /** * @notice function to handle Native bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of receipient * @param senderAddress address of sender * @param stargateDstChainId stargate defines chain id in its way * @param amount amount of token being bridge * @param minReceivedAmt defines the slippage, the min qty you would accept on the destination * @param optionalValue optionalValue Native amount */ function bridgeNativeTo( address receiverAddress, address senderAddress, uint16 stargateDstChainId, uint256 amount, uint256 minReceivedAmt, uint256 optionalValue, bytes32 metadata ) external payable { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, minReceivedAmt ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/stargate.sol"; import "../../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {STARGATE} from "../../../static/RouteIdentifiers.sol"; /** * @title Stargate-L2-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Stargate-L2-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of Stargate-L2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract StargateImplL2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable StargateIdentifier = STARGATE; /// @notice Function-selector for ERC20-token bridging on Stargate-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable STARGATE_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,uint256,(uint256,uint256,uint256,uint256,bytes32,bytes,uint16))" ) ); bytes4 public immutable STARGATE_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint16,uint256,uint256,uint256,uint256,uint256,uint256,bytes32,bytes))" ) ); /// @notice Function-selector for Native bridging on Stargate-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable STARGATE_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint16,uint256,uint256,uint256,bytes32)" ) ); /// @notice Stargate Router to bridge ERC20 tokens IBridgeStargate public immutable router; /// @notice Stargate Router to bridge native tokens IBridgeStargate public immutable routerETH; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router, routerEth are set properly for the chainId in which the contract is being deployed constructor( address _router, address _routerEth, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IBridgeStargate(_router); routerETH = IBridgeStargate(_routerEth); } /// @notice Struct to be used as a input parameter for Bridging tokens via Stargate-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct StargateBridgeExtraData { uint256 srcPoolId; uint256 dstPoolId; uint256 destinationGasLimit; uint256 minReceivedAmt; bytes32 metadata; bytes destinationPayload; uint16 stargateDstChainId; // stargate defines chain id in its way } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct StargateBridgeDataNoToken { address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } struct StargateBridgeData { address token; address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Stargate-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { StargateBridgeData memory stargateBridgeData = abi.decode( bridgeData, (StargateBridgeData) ); if (stargateBridgeData.token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + stargateBridgeData.optionalValue}( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), amount, stargateBridgeData.minReceivedAmt ); } else { ERC20(stargateBridgeData.token).safeApprove( address(router), amount ); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract amount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( amount, stargateBridgeData.token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to bridge tokens after swapping. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param stargateBridgeData encoded data for StargateBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, StargateBridgeDataNoToken calldata stargateBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { routerETH.swapETH{ value: bridgeAmount + stargateBridgeData.optionalValue }( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), bridgeAmount, stargateBridgeData.minReceivedAmt ); } else { ERC20(token).safeApprove(address(router), bridgeAmount); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract bridgeAmount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, "0x" ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( bridgeAmount, token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param senderAddress address of sender * @param receiverAddress address of recipient * @param amount amount of token being bridge * @param value value * @param optionalValue optionalValue * @param stargateBridgeExtraData stargate bridge extradata */ function bridgeERC20To( address token, address senderAddress, address receiverAddress, uint256 amount, uint256 value, uint256 optionalValue, StargateBridgeExtraData calldata stargateBridgeExtraData ) external payable { // token address might not be indication thats why passed through extraData if (token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateBridgeExtraData.stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, stargateBridgeExtraData.minReceivedAmt ); } else { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); { router.swap{value: value}( stargateBridgeExtraData.stargateDstChainId, stargateBridgeExtraData.srcPoolId, stargateBridgeExtraData.dstPoolId, payable(senderAddress), // default to refund to main contract amount, stargateBridgeExtraData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeExtraData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(receiverAddress), stargateBridgeExtraData.destinationPayload ); } } emit SocketBridge( amount, token, stargateBridgeExtraData.stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, stargateBridgeExtraData.metadata ); } function bridgeNativeTo( address receiverAddress, address senderAddress, uint16 stargateDstChainId, uint256 amount, uint256 minReceivedAmt, uint256 optionalValue, bytes32 metadata ) external payable { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, minReceivedAmt ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; /// @title BaseController Controller /// @notice Base contract for all controller contracts abstract contract BaseController { /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice Address used to identify if it is a Zero address address public immutable NULL_ADDRESS = address(0); /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice immutable variable to store the socketGateway address address public immutable socketGatewayAddress; /// @notice immutable variable with instance of SocketRoute to access route functions ISocketRoute public immutable socketRoute; /** * @notice Construct the base for all controllers. * @param _socketGatewayAddress Socketgateway address, an immutable variable to set. * @notice initialize the immutable variables of SocketRoute, SocketGateway */ constructor(address _socketGatewayAddress) { socketGatewayAddress = _socketGatewayAddress; socketRoute = ISocketRoute(_socketGatewayAddress); } /** * @notice Construct the base for all BridgeImplementations. * @param routeId routeId mapped to the routrImplementation * @param data transactionData generated with arguments of bridgeRequest (offchain or by caller) * @return returns the bytes response of the route execution (bridging, refuel or swap executions) */ function _executeRoute( uint32 routeId, bytes memory data ) internal returns (bytes memory) { (bool success, bytes memory result) = socketRoute .getRoute(routeId) .delegatecall(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BaseController} from "./BaseController.sol"; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; /** * @title FeesTaker-Controller Implementation * @notice Controller with composed actions to deduct-fees followed by Refuel, Swap and Bridge * to be executed Sequentially and this is atomic * @author Socket dot tech. */ contract FeesTakerController is BaseController { using SafeTransferLib for ERC20; /// @notice event emitted upon fee-deduction to fees-taker address event SocketFeesDeducted( uint256 fees, address feesToken, address feesTaker ); /// @notice Function-selector to invoke deduct-fees and swap token /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_SWAP_FUNCTION_SELECTOR = bytes4( keccak256("takeFeesAndSwap((address,address,uint256,uint32,bytes))") ); /// @notice Function-selector to invoke deduct-fees and bridge token /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeesAndBridge((address,address,uint256,uint32,bytes))" ) ); /// @notice Function-selector to invoke deduct-fees and bridge multiple tokens /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_MULTI_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeesAndMultiBridge((address,address,uint256,uint32[],bytes[]))" ) ); /// @notice Function-selector to invoke deduct-fees followed by swapping of a token and bridging the swapped bridge /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeeAndSwapAndBridge((address,address,uint256,uint32,bytes,uint32,bytes))" ) ); /// @notice Function-selector to invoke deduct-fees refuel /// @notice followed by swapping of a token and bridging the swapped bridge /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeeAndRefuelAndSwapAndBridge((address,address,uint256,uint32,bytes,uint32,bytes,uint32,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BaseController constructor( address _socketGatewayAddress ) BaseController(_socketGatewayAddress) {} /** * @notice function to deduct-fees to fees-taker address on source-chain and swap token * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftsRequest feesTakerSwapRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_SWAP_FUNCTION_SELECTOR * @return output bytes from the swap operation (last operation in the composed actions) */ function takeFeesAndSwap( ISocketRequest.FeesTakerSwapRequest calldata ftsRequest ) external payable returns (bytes memory) { if (ftsRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftsRequest.feesTakerAddress).transfer( ftsRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftsRequest.feesToken).safeTransferFrom( msg.sender, ftsRequest.feesTakerAddress, ftsRequest.feesAmount ); } emit SocketFeesDeducted( ftsRequest.feesAmount, ftsRequest.feesTakerAddress, ftsRequest.feesToken ); //call bridge function (executeRoute for the swapRequestData) return _executeRoute(ftsRequest.routeId, ftsRequest.swapRequestData); } /** * @notice function to deduct-fees to fees-taker address on source-chain and bridge amount to destinationChain * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftbRequest feesTakerBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_BRIDGE_FUNCTION_SELECTOR * @return output bytes from the bridge operation (last operation in the composed actions) */ function takeFeesAndBridge( ISocketRequest.FeesTakerBridgeRequest calldata ftbRequest ) external payable returns (bytes memory) { if (ftbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftbRequest.feesTakerAddress).transfer( ftbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftbRequest.feesToken).safeTransferFrom( msg.sender, ftbRequest.feesTakerAddress, ftbRequest.feesAmount ); } emit SocketFeesDeducted( ftbRequest.feesAmount, ftbRequest.feesTakerAddress, ftbRequest.feesToken ); //call bridge function (executeRoute for the bridgeData) return _executeRoute(ftbRequest.routeId, ftbRequest.bridgeRequestData); } /** * @notice function to deduct-fees to fees-taker address on source-chain and bridge amount to destinationChain * @notice multiple bridge-requests are to be generated and sequence and number of routeIds should match with the bridgeData array * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftmbRequest feesTakerMultiBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_MULTI_BRIDGE_FUNCTION_SELECTOR */ function takeFeesAndMultiBridge( ISocketRequest.FeesTakerMultiBridgeRequest calldata ftmbRequest ) external payable { if (ftmbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftmbRequest.feesTakerAddress).transfer( ftmbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftmbRequest.feesToken).safeTransferFrom( msg.sender, ftmbRequest.feesTakerAddress, ftmbRequest.feesAmount ); } emit SocketFeesDeducted( ftmbRequest.feesAmount, ftmbRequest.feesTakerAddress, ftmbRequest.feesToken ); // multiple bridge-requests are to be generated and sequence and number of routeIds should match with the bridgeData array for ( uint256 index = 0; index < ftmbRequest.bridgeRouteIds.length; ++index ) { //call bridge function (executeRoute for the bridgeData) _executeRoute( ftmbRequest.bridgeRouteIds[index], ftmbRequest.bridgeRequestDataItems[index] ); } } /** * @notice function to deduct-fees to fees-taker address on source-chain followed by swap the amount on sourceChain followed by * bridging the swapped amount to destinationChain * @dev while generating implData for swap and bridgeRequests, ensure correct function selector is used * bridge action corresponds to the bridgeAfterSwap function of the bridgeImplementation * @param fsbRequest feesTakerSwapBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_SWAP_BRIDGE_FUNCTION_SELECTOR */ function takeFeeAndSwapAndBridge( ISocketRequest.FeesTakerSwapBridgeRequest calldata fsbRequest ) external payable returns (bytes memory) { if (fsbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(fsbRequest.feesTakerAddress).transfer( fsbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(fsbRequest.feesToken).safeTransferFrom( msg.sender, fsbRequest.feesTakerAddress, fsbRequest.feesAmount ); } emit SocketFeesDeducted( fsbRequest.feesAmount, fsbRequest.feesTakerAddress, fsbRequest.feesToken ); // execute swap operation bytes memory swapResponseData = _executeRoute( fsbRequest.swapRouteId, fsbRequest.swapData ); uint256 swapAmount = abi.decode(swapResponseData, (uint256)); // swapped amount is to be bridged to the recipient on destinationChain bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, fsbRequest.bridgeData ); // execute bridge operation and return the byte-data from response of bridge operation return _executeRoute(fsbRequest.bridgeRouteId, bridgeImpldata); } /** * @notice function to deduct-fees to fees-taker address on source-chain followed by refuel followed by * swap the amount on sourceChain followed by bridging the swapped amount to destinationChain * @dev while generating implData for refuel, swap and bridge Requests, ensure correct function selector is used * bridge action corresponds to the bridgeAfterSwap function of the bridgeImplementation * @param frsbRequest feesTakerRefuelSwapBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR */ function takeFeeAndRefuelAndSwapAndBridge( ISocketRequest.FeesTakerRefuelSwapBridgeRequest calldata frsbRequest ) external payable returns (bytes memory) { if (frsbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(frsbRequest.feesTakerAddress).transfer( frsbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(frsbRequest.feesToken).safeTransferFrom( msg.sender, frsbRequest.feesTakerAddress, frsbRequest.feesAmount ); } emit SocketFeesDeducted( frsbRequest.feesAmount, frsbRequest.feesTakerAddress, frsbRequest.feesToken ); // refuel is also done via bridge execution via refuelRouteImplementation identified by refuelRouteId _executeRoute(frsbRequest.refuelRouteId, frsbRequest.refuelData); // execute swap operation bytes memory swapResponseData = _executeRoute( frsbRequest.swapRouteId, frsbRequest.swapData ); uint256 swapAmount = abi.decode(swapResponseData, (uint256)); // swapped amount is to be bridged to the recipient on destinationChain bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, frsbRequest.bridgeData ); // execute bridge operation and return the byte-data from response of bridge operation return _executeRoute(frsbRequest.bridgeRouteId, bridgeImpldata); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; import {BaseController} from "./BaseController.sol"; /** * @title RefuelSwapAndBridge Controller Implementation * @notice Controller with composed actions for Refuel,Swap and Bridge to be executed Sequentially and this is atomic * @author Socket dot tech. */ contract RefuelSwapAndBridgeController is BaseController { /// @notice Function-selector to invoke refuel-swap-bridge function /// @dev This function selector is to be used while buidling transaction-data bytes4 public immutable REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "refuelAndSwapAndBridge((uint32,bytes,uint32,bytes,uint32,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BaseController constructor( address _socketGatewayAddress ) BaseController(_socketGatewayAddress) {} /** * @notice function to handle refuel followed by Swap and Bridge actions * @notice This method is payable because the caller is doing token transfer and briding operation * @param rsbRequest Request with data to execute refuel followed by swap and bridge * @return output data from bridging operation */ function refuelAndSwapAndBridge( ISocketRequest.RefuelSwapBridgeRequest calldata rsbRequest ) public payable returns (bytes memory) { _executeRoute(rsbRequest.refuelRouteId, rsbRequest.refuelData); // refuel is also a bridging activity via refuel-route-implementation bytes memory swapResponseData = _executeRoute( rsbRequest.swapRouteId, rsbRequest.swapData ); uint256 swapAmount = abi.decode(swapResponseData, (uint256)); //sequence of arguments for implData: amount, token, data // Bridging the swapAmount received in the preceeding step bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, rsbRequest.bridgeData ); return _executeRoute(rsbRequest.bridgeRouteId, bridgeImpldata); } } //SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {OnlySocketGatewayOwner} from "../errors/SocketErrors.sol"; contract DisabledSocketRoute { using SafeTransferLib for ERC20; /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; error RouteDisabled(); /** * @notice Construct the base for all BridgeImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. */ constructor(address _socketGateway) { socketGateway = _socketGateway; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /** * @notice function to rescue the ERC20 tokens in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } /** * @notice Handle route function calls gracefully. */ fallback() external payable { revert RouteDisabled(); } /** * @notice Support receiving ether to handle refunds etc. */ receive() external payable {} } //SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketBridgeBase} from "../interfaces/ISocketBridgeBase.sol"; /** * @dev In the constructor, set up the initialization code for socket * contracts as well as the keccak256 hash of the given initialization code. * that will be used to deploy any transient contracts, which will deploy any * socket contracts that require the use of a constructor. * * Socket contract initialization code (29 bytes): * * 0x5860208158601c335a63aaf10f428752fa158151803b80938091923cf3 * * Description: * * pc|op|name | [stack] | <memory> * * ** set the first stack item to zero - used later ** * 00 58 getpc [0] <> * * ** set second stack item to 32, length of word returned from staticcall ** * 01 60 push1 * 02 20 outsize [0, 32] <> * * ** set third stack item to 0, position of word returned from staticcall ** * 03 81 dup2 [0, 32, 0] <> * * ** set fourth stack item to 4, length of selector given to staticcall ** * 04 58 getpc [0, 32, 0, 4] <> * * ** set fifth stack item to 28, position of selector given to staticcall ** * 05 60 push1 * 06 1c inpos [0, 32, 0, 4, 28] <> * * ** set the sixth stack item to msg.sender, target address for staticcall ** * 07 33 caller [0, 32, 0, 4, 28, caller] <> * * ** set the seventh stack item to msg.gas, gas to forward for staticcall ** * 08 5a gas [0, 32, 0, 4, 28, caller, gas] <> * * ** set the eighth stack item to selector, "what" to store via mstore ** * 09 63 push4 * 10 aaf10f42 selector [0, 32, 0, 4, 28, caller, gas, 0xaaf10f42] <> * * ** set the ninth stack item to 0, "where" to store via mstore *** * 11 87 dup8 [0, 32, 0, 4, 28, caller, gas, 0xaaf10f42, 0] <> * * ** call mstore, consume 8 and 9 from the stack, place selector in memory ** * 12 52 mstore [0, 32, 0, 4, 0, caller, gas] <0xaaf10f42> * * ** call staticcall, consume items 2 through 7, place address in memory ** * 13 fa staticcall [0, 1 (if successful)] <address> * * ** flip success bit in second stack item to set to 0 ** * 14 15 iszero [0, 0] <address> * * ** push a third 0 to the stack, position of address in memory ** * 15 81 dup2 [0, 0, 0] <address> * * ** place address from position in memory onto third stack item ** * 16 51 mload [0, 0, address] <> * * ** place address to fourth stack item for extcodesize to consume ** * 17 80 dup1 [0, 0, address, address] <> * * ** get extcodesize on fourth stack item for extcodecopy ** * 18 3b extcodesize [0, 0, address, size] <> * * ** dup and swap size for use by return at end of init code ** * 19 80 dup1 [0, 0, address, size, size] <> * 20 93 swap4 [size, 0, address, size, 0] <> * * ** push code position 0 to stack and reorder stack items for extcodecopy ** * 21 80 dup1 [size, 0, address, size, 0, 0] <> * 22 91 swap2 [size, 0, address, 0, 0, size] <> * 23 92 swap3 [size, 0, size, 0, 0, address] <> * * ** call extcodecopy, consume four items, clone runtime code to memory ** * 24 3c extcodecopy [size, 0] <code> * * ** return to deploy final code in memory ** * 25 f3 return [] *deployed!* */ contract SocketDeployFactory is Ownable { using SafeTransferLib for ERC20; address public immutable disabledRouteAddress; mapping(address => address) _implementations; mapping(uint256 => bool) isDisabled; mapping(uint256 => bool) isRouteDeployed; mapping(address => bool) canDisableRoute; event Deployed(address _addr); event DisabledRoute(address _addr); event Destroyed(address _addr); error ContractAlreadyDeployed(); error NothingToDestroy(); error AlreadyDisabled(); error CannotBeDisabled(); error OnlyDisabler(); constructor(address _owner, address disabledRoute) Ownable(_owner) { disabledRouteAddress = disabledRoute; canDisableRoute[_owner] = true; } modifier onlyDisabler() { if (!canDisableRoute[msg.sender]) { revert OnlyDisabler(); } _; } function addDisablerAddress(address disabler) external onlyOwner { canDisableRoute[disabler] = true; } function removeDisablerAddress(address disabler) external onlyOwner { canDisableRoute[disabler] = false; } /** * @notice Deploys a route contract at predetermined location * @notice Caller must first deploy the route contract at another location and pass its address as implementation. * @param routeId route identifier * @param implementationContract address of deployed route contract. Its byte code will be copied to predetermined location. */ function deploy( uint256 routeId, address implementationContract ) external onlyOwner returns (address) { // assign the initialization code for the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (isRouteDeployed[routeId]) { revert ContractAlreadyDeployed(); } isRouteDeployed[routeId] = true; //first we deploy the code we want to deploy on a separate address // store the implementation to be retrieved by the socket contract. _implementations[routeContractAddress] = implementationContract; address addr; assembly { let encoded_data := add(0x20, initCode) // load initialization code. let encoded_size := mload(initCode) // load init code's length. addr := create2(0, encoded_data, encoded_size, routeId) // routeId is used as salt } require( addr == routeContractAddress, "Failed to deploy the new socket contract." ); emit Deployed(addr); return addr; } /** * @notice Destroy the route deployed at a location. * @param routeId route identifier to be destroyed. */ function destroy(uint256 routeId) external onlyDisabler { // determine the address of the socket contract. _destroy(routeId); } /** * @notice Deploy a disabled contract at destroyed route to handle it gracefully. * @param routeId route identifier to be disabled. */ function disableRoute( uint256 routeId ) external onlyDisabler returns (address) { return _disableRoute(routeId); } /** * @notice Destroy a list of routeIds * @param routeIds array of routeIds to be destroyed. */ function multiDestroy(uint256[] calldata routeIds) external onlyDisabler { for (uint32 index = 0; index < routeIds.length; ) { _destroy(routeIds[index]); unchecked { ++index; } } } /** * @notice Deploy a disabled contract at list of routeIds. * @param routeIds array of routeIds to be disabled. */ function multiDisableRoute( uint256[] calldata routeIds ) external onlyDisabler { for (uint32 index = 0; index < routeIds.length; ) { _disableRoute(routeIds[index]); unchecked { ++index; } } } /** * @dev External view function for calculating a socket contract address * given a particular routeId. */ function getContractAddress( uint256 routeId ) external view returns (address) { // determine the address of the socket contract. return _getContractAddress(routeId); } //those two functions are getting called by the socket Contract function getImplementation() external view returns (address implementation) { return _implementations[msg.sender]; } function _disableRoute(uint256 routeId) internal returns (address) { // assign the initialization code for the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (!isRouteDeployed[routeId]) { revert CannotBeDisabled(); } if (isDisabled[routeId]) { revert AlreadyDisabled(); } isDisabled[routeId] = true; //first we deploy the code we want to deploy on a separate address // store the implementation to be retrieved by the socket contract. _implementations[routeContractAddress] = disabledRouteAddress; address addr; assembly { let encoded_data := add(0x20, initCode) // load initialization code. let encoded_size := mload(initCode) // load init code's length. addr := create2(0, encoded_data, encoded_size, routeId) // routeId is used as salt. } require( addr == routeContractAddress, "Failed to deploy the new socket contract." ); emit Deployed(addr); return addr; } function _destroy(uint256 routeId) internal { // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (!isRouteDeployed[routeId]) { revert NothingToDestroy(); } ISocketBridgeBase(routeContractAddress).killme(); emit Destroyed(routeContractAddress); } /** * @dev Internal view function for calculating a socket contract address * given a particular routeId. */ function _getContractAddress( uint256 routeId ) internal view returns (address) { // determine the address of the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); return address( uint160( // downcast to match the address type. uint256( // convert to uint to truncate upper digits. keccak256( // compute the CREATE2 hash using 4 inputs. abi.encodePacked( // pack all inputs to the hash together. hex"ff", // start with 0xff to distinguish from RLP. address(this), // this contract will be the caller. routeId, // the routeId is used as salt. keccak256(abi.encodePacked(initCode)) // the init code hash. ) ) ) ) ); } /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; error CelerRefundNotReady(); error OnlySocketDeployer(); error OnlySocketGatewayOwner(); error OnlySocketGateway(); error OnlyOwner(); error OnlyNominee(); error TransferIdExists(); error TransferIdDoesnotExist(); error Address0Provided(); error SwapFailed(); error UnsupportedInterfaceId(); error InvalidCelerRefund(); error CelerAlreadyRefunded(); error IncorrectBridgeRatios(); error ZeroAddressNotAllowed(); error ArrayLengthMismatch(); // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ISocketBridgeBase { function killme() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketController * @notice Interface for SocketController functions. * @dev functions can be added here for invocation from external contracts or off-chain * only restriction is that this should have functions to manage controllers * @author Socket dot tech. */ interface ISocketController { /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param _controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address _controllerAddress ) external returns (uint32); /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param _controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 _controllerId) external; /** * @notice Get controllerImplementation address mapped to the controllerId * @param _controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 _controllerId) external returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketGateway * @notice Interface for SocketGateway functions. * @dev functions can be added here for invocation from external contracts or off-chain * @author Socket dot tech. */ interface ISocketGateway { /** * @notice Request-struct for controllerRequests * @dev ensure the value for data is generated using the function-selectors defined in the controllerImplementation contracts */ struct SocketControllerRequest { // controllerId is the id mapped to the controllerAddress uint32 controllerId; // transactionImplData generated off-chain or by caller using function-selector of the controllerContract bytes data; } // @notice view to get owner-address function owner() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketRoute * @notice Interface with Request DataStructures to invoke controller functions. * @author Socket dot tech. */ interface ISocketRequest { struct SwapMultiBridgeRequest { uint32 swapRouteId; bytes swapImplData; uint32[] bridgeRouteIds; bytes[] bridgeImplDataItems; uint256[] bridgeRatios; bytes[] eventDataItems; } // Datastructure for Refuel-Swap-Bridge function struct RefuelSwapBridgeRequest { uint32 refuelRouteId; bytes refuelData; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } // Datastructure for DeductFees-Swap function struct FeesTakerSwapRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 routeId; bytes swapRequestData; } // Datastructure for DeductFees-Bridge function struct FeesTakerBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 routeId; bytes bridgeRequestData; } // Datastructure for DeductFees-MultiBridge function struct FeesTakerMultiBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32[] bridgeRouteIds; bytes[] bridgeRequestDataItems; } // Datastructure for DeductFees-Swap-Bridge function struct FeesTakerSwapBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } // Datastructure for DeductFees-Refuel-Swap-Bridge function struct FeesTakerRefuelSwapBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 refuelRouteId; bytes refuelData; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketRoute * @notice Interface for routeManagement functions in SocketGateway. * @author Socket dot tech. */ interface ISocketRoute { /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute(address routeAddress) external returns (uint256); /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external; /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; // Functions taken out from https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol library LibBytes { // solhint-disable no-inline-assembly // LibBytes specific errors error SliceOverflow(); error SliceOutOfBounds(); error AddressOutOfBounds(); error UintOutOfBounds(); // ------------------------- function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { if (_length + 31 < _length) { revert SliceOverflow(); } if (_bytes.length < _start + _length) { revert SliceOutOfBounds(); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./LibBytes.sol"; /// @title LibUtil library /// @notice library with helper functions to operate on bytes-data and addresses /// @author socket dot tech library LibUtil { /// @notice LibBytes library to handle operations on bytes using LibBytes for bytes; /// @notice function to extract revertMessage from bytes data /// @dev use the revertMessage and then further revert with a custom revert and message /// @param _res bytes data received from the transaction call function getRevertMsg( bytes memory _res ) internal pure returns (string memory) { // If the _res length is less than 68, then the transaction failed silently (without a revert message) if (_res.length < 68) { return "Transaction reverted silently"; } bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes return abi.decode(revertData, (string)); // All that remains is the revert string } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.4; // runtime proto sol library library Pb { enum WireType { Varint, Fixed64, LengthDelim, StartGroup, EndGroup, Fixed32 } struct Buffer { uint256 idx; // the start index of next read. when idx=b.length, we're done bytes b; // hold serialized proto msg, readonly } // create a new in-memory Buffer object from raw msg bytes function fromBytes( bytes memory raw ) internal pure returns (Buffer memory buf) { buf.b = raw; buf.idx = 0; } // whether there are unread bytes function hasMore(Buffer memory buf) internal pure returns (bool) { return buf.idx < buf.b.length; } // decode current field number and wiretype function decKey( Buffer memory buf ) internal pure returns (uint256 tag, WireType wiretype) { uint256 v = decVarint(buf); tag = v / 8; wiretype = WireType(v & 7); } // read varint from current buf idx, move buf.idx to next read, return the int value function decVarint(Buffer memory buf) internal pure returns (uint256 v) { bytes10 tmp; // proto int is at most 10 bytes (7 bits can be used per byte) bytes memory bb = buf.b; // get buf.b mem addr to use in assembly v = buf.idx; // use v to save one additional uint variable assembly { tmp := mload(add(add(bb, 32), v)) // load 10 bytes from buf.b[buf.idx] to tmp } uint256 b; // store current byte content v = 0; // reset to 0 for return value for (uint256 i = 0; i < 10; i++) { assembly { b := byte(i, tmp) // don't use tmp[i] because it does bound check and costs extra } v |= (b & 0x7F) << (i * 7); if (b & 0x80 == 0) { buf.idx += i + 1; return v; } } revert(); // i=10, invalid varint stream } // read length delimited field and return bytes function decBytes( Buffer memory buf ) internal pure returns (bytes memory b) { uint256 len = decVarint(buf); uint256 end = buf.idx + len; require(end <= buf.b.length); // avoid overflow b = new bytes(len); bytes memory bufB = buf.b; // get buf.b mem addr to use in assembly uint256 bStart; uint256 bufBStart = buf.idx; assembly { bStart := add(b, 32) bufBStart := add(add(bufB, 32), bufBStart) } for (uint256 i = 0; i < len; i += 32) { assembly { mstore(add(bStart, i), mload(add(bufBStart, i))) } } buf.idx = end; } // move idx pass current value field, to beginning of next tag or msg end function skipValue(Buffer memory buf, WireType wire) internal pure { if (wire == WireType.Varint) { decVarint(buf); } else if (wire == WireType.LengthDelim) { uint256 len = decVarint(buf); buf.idx += len; // skip len bytes value data require(buf.idx <= buf.b.length); // avoid overflow } else { revert(); } // unsupported wiretype } function _uint256(bytes memory b) internal pure returns (uint256 v) { require(b.length <= 32); // b's length must be smaller than or equal to 32 assembly { v := mload(add(b, 32)) } // load all 32bytes to v v = v >> (8 * (32 - b.length)); // only first b.length is valid } function _address(bytes memory b) internal pure returns (address v) { v = _addressPayable(b); } function _addressPayable( bytes memory b ) internal pure returns (address payable v) { require(b.length == 20); //load 32bytes then shift right 12 bytes assembly { v := div(mload(add(b, 32)), 0x1000000000000000000000000) } } function _bytes32(bytes memory b) internal pure returns (bytes32 v) { require(b.length == 32); assembly { v := mload(add(b, 32)) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; pragma experimental ABIEncoderV2; import "./utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {LibUtil} from "./libraries/LibUtil.sol"; import "./libraries/LibBytes.sol"; import {ISocketRoute} from "./interfaces/ISocketRoute.sol"; import {ISocketRequest} from "./interfaces/ISocketRequest.sol"; import {ISocketGateway} from "./interfaces/ISocketGateway.sol"; import {IncorrectBridgeRatios, ZeroAddressNotAllowed, ArrayLengthMismatch} from "./errors/SocketErrors.sol"; /// @title SocketGatewayContract /// @notice Socketgateway is a contract with entrypoint functions for all interactions with socket liquidity layer /// @author Socket Team contract SocketGatewayTemplate is Ownable { using LibBytes for bytes; using LibBytes for bytes4; using SafeTransferLib for ERC20; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice storage variable to keep track of total number of routes registered in socketgateway uint32 public routesCount = 385; /// @notice storage variable to keep track of total number of controllers registered in socketgateway uint32 public controllerCount; address public immutable disabledRouteAddress; uint256 public constant CENT_PERCENT = 100e18; /// @notice storage mapping for route implementation addresses mapping(uint32 => address) public routes; /// storage mapping for controller implemenation addresses mapping(uint32 => address) public controllers; // Events -------------------------------------------------------------------------------------------------------> /// @notice Event emitted when a router is added to socketgateway event NewRouteAdded(uint32 indexed routeId, address indexed route); /// @notice Event emitted when a route is disabled event RouteDisabled(uint32 indexed routeId); /// @notice Event emitted when ownership transfer is requested by socket-gateway-owner event OwnershipTransferRequested( address indexed _from, address indexed _to ); /// @notice Event emitted when a controller is added to socketgateway event ControllerAdded( uint32 indexed controllerId, address indexed controllerAddress ); /// @notice Event emitted when a controller is disabled event ControllerDisabled(uint32 indexed controllerId); constructor(address _owner, address _disabledRoute) Ownable(_owner) { disabledRouteAddress = _disabledRoute; } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} /******************************************* * EXTERNAL AND PUBLIC FUNCTIONS * *******************************************/ /** * @notice executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in routeData to be built using the function-selector defined as a * constant in the route implementation contract * @param routeId route identifier * @param routeData functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoute( uint32 routeId, bytes calldata routeData ) external payable returns (bytes memory) { (bool success, bytes memory result) = addressAt(routeId).delegatecall( routeData ); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice swaps a token on sourceChain and split it across multiple bridge-recipients * @notice The caller must first approve this contract to spend amount of ERC20-Token being swapped * @dev ensure the swap-data and bridge-data is generated using the function-selector defined as a constant in the implementation address * @param swapMultiBridgeRequest request */ function swapAndMultiBridge( ISocketRequest.SwapMultiBridgeRequest calldata swapMultiBridgeRequest ) external payable { uint256 requestLength = swapMultiBridgeRequest.bridgeRouteIds.length; if ( requestLength != swapMultiBridgeRequest.bridgeImplDataItems.length ) { revert ArrayLengthMismatch(); } uint256 ratioAggregate; for (uint256 index = 0; index < requestLength; ) { ratioAggregate += swapMultiBridgeRequest.bridgeRatios[index]; } if (ratioAggregate != CENT_PERCENT) { revert IncorrectBridgeRatios(); } (bool swapSuccess, bytes memory swapResult) = addressAt( swapMultiBridgeRequest.swapRouteId ).delegatecall(swapMultiBridgeRequest.swapImplData); if (!swapSuccess) { assembly { revert(add(swapResult, 32), mload(swapResult)) } } uint256 amountReceivedFromSwap = abi.decode(swapResult, (uint256)); uint256 bridgedAmount; for (uint256 index = 0; index < requestLength; ) { uint256 bridgingAmount; // if it is the last bridge request, bridge the remaining amount if (index == requestLength - 1) { bridgingAmount = amountReceivedFromSwap - bridgedAmount; } else { // bridging amount is the multiplication of bridgeRatio and amountReceivedFromSwap bridgingAmount = (amountReceivedFromSwap * swapMultiBridgeRequest.bridgeRatios[index]) / (CENT_PERCENT); } // update the bridged amount, this would be used for computation for last bridgeRequest bridgedAmount += bridgingAmount; bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, bridgingAmount, swapMultiBridgeRequest.bridgeImplDataItems[index] ); (bool bridgeSuccess, bytes memory bridgeResult) = addressAt( swapMultiBridgeRequest.bridgeRouteIds[index] ).delegatecall(bridgeImpldata); if (!bridgeSuccess) { assembly { revert(add(bridgeResult, 32), mload(bridgeResult)) } } unchecked { ++index; } } } /** * @notice sequentially executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each dataItem to be built using the function-selector defined as a * constant in the route implementation contract * @param routeIds a list of route identifiers * @param dataItems a list of functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoutes( uint32[] calldata routeIds, bytes[] calldata dataItems ) external payable { uint256 routeIdslength = routeIds.length; if (routeIdslength != dataItems.length) revert ArrayLengthMismatch(); for (uint256 index = 0; index < routeIdslength; ) { (bool success, bytes memory result) = addressAt(routeIds[index]) .delegatecall(dataItems[index]); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /** * @notice execute a controller function identified using the controllerId in the request * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in request to be built using the function-selector defined as a * constant in the controller implementation contract * @param socketControllerRequest socketControllerRequest with controllerId to identify the * controllerAddress and byteData constructed using functionSelector * of the function being invoked * @return bytes data received from the call delegated to controller */ function executeController( ISocketGateway.SocketControllerRequest calldata socketControllerRequest ) external payable returns (bytes memory) { (bool success, bytes memory result) = controllers[ socketControllerRequest.controllerId ].delegatecall(socketControllerRequest.data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice sequentially executes all controller requests * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each controller-request to be built using the function-selector defined as a * constant in the controller implementation contract * @param controllerRequests a list of socketControllerRequest * Each controllerRequest contains controllerId to identify the controllerAddress and * byteData constructed using functionSelector of the function being invoked */ function executeControllers( ISocketGateway.SocketControllerRequest[] calldata controllerRequests ) external payable { for (uint32 index = 0; index < controllerRequests.length; ) { (bool success, bytes memory result) = controllers[ controllerRequests[index].controllerId ].delegatecall(controllerRequests[index].data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /************************************** * ADMIN FUNCTIONS * **************************************/ /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute( address routeAddress ) external onlyOwner returns (uint32) { uint32 routeId = routesCount; routes[routeId] = routeAddress; routesCount += 1; emit NewRouteAdded(routeId, routeAddress); return routeId; } /** * @notice Give Infinite or 0 approval to bridgeRoute for the tokenAddress This is a restricted function to be called by only socketGatewayOwner */ function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external onlyOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).approve( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address controllerAddress ) external onlyOwner returns (uint32) { uint32 controllerId = controllerCount; controllers[controllerId] = controllerAddress; controllerCount += 1; emit ControllerAdded(controllerId, controllerAddress); return controllerId; } /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 controllerId) public onlyOwner { controllers[controllerId] = disabledRouteAddress; emit ControllerDisabled(controllerId); } /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external onlyOwner { routes[routeId] = disabledRouteAddress; emit RouteDisabled(routeId); } /******************************************* * RESTRICTED RESCUE FUNCTIONS * *******************************************/ /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } /******************************************* * VIEW FUNCTIONS * *******************************************/ /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) public view returns (address) { return addressAt(routeId); } /** * @notice Get controllerImplementation address mapped to the controllerId * @param controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 controllerId) public view returns (address) { return controllers[controllerId]; } function addressAt(uint32 routeId) public view returns (address) { if (routeId < 385) { if (routeId < 257) { if (routeId < 129) { if (routeId < 65) { if (routeId < 33) { if (routeId < 17) { if (routeId < 9) { if (routeId < 5) { if (routeId < 3) { if (routeId == 1) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 3) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 7) { if (routeId == 5) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 7) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 13) { if (routeId < 11) { if (routeId == 9) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 11) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 15) { if (routeId == 13) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 15) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 25) { if (routeId < 21) { if (routeId < 19) { if (routeId == 17) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 19) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 23) { if (routeId == 21) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 23) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 29) { if (routeId < 27) { if (routeId == 25) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 27) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 31) { if (routeId == 29) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 31) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 49) { if (routeId < 41) { if (routeId < 37) { if (routeId < 35) { if (routeId == 33) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 35) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 39) { if (routeId == 37) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 39) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 45) { if (routeId < 43) { if (routeId == 41) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 43) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 47) { if (routeId == 45) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 47) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 57) { if (routeId < 53) { if (routeId < 51) { if (routeId == 49) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 51) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 55) { if (routeId == 53) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 55) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 61) { if (routeId < 59) { if (routeId == 57) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 59) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 63) { if (routeId == 61) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 63) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 97) { if (routeId < 81) { if (routeId < 73) { if (routeId < 69) { if (routeId < 67) { if (routeId == 65) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 67) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 71) { if (routeId == 69) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 71) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 77) { if (routeId < 75) { if (routeId == 73) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 75) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 79) { if (routeId == 77) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 79) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 89) { if (routeId < 85) { if (routeId < 83) { if (routeId == 81) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 83) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 87) { if (routeId == 85) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 87) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 93) { if (routeId < 91) { if (routeId == 89) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 91) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 95) { if (routeId == 93) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 95) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 113) { if (routeId < 105) { if (routeId < 101) { if (routeId < 99) { if (routeId == 97) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 99) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 103) { if (routeId == 101) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 103) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 109) { if (routeId < 107) { if (routeId == 105) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 107) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 111) { if (routeId == 109) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 111) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 121) { if (routeId < 117) { if (routeId < 115) { if (routeId == 113) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 115) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 119) { if (routeId == 117) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 119) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 125) { if (routeId < 123) { if (routeId == 121) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 123) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 127) { if (routeId == 125) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 127) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } else { if (routeId < 193) { if (routeId < 161) { if (routeId < 145) { if (routeId < 137) { if (routeId < 133) { if (routeId < 131) { if (routeId == 129) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 131) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 135) { if (routeId == 133) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 135) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 141) { if (routeId < 139) { if (routeId == 137) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 139) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 143) { if (routeId == 141) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 143) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 153) { if (routeId < 149) { if (routeId < 147) { if (routeId == 145) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 147) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 151) { if (routeId == 149) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 151) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 157) { if (routeId < 155) { if (routeId == 153) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 155) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 159) { if (routeId == 157) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 159) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 177) { if (routeId < 169) { if (routeId < 165) { if (routeId < 163) { if (routeId == 161) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 163) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 167) { if (routeId == 165) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 167) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 173) { if (routeId < 171) { if (routeId == 169) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 171) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 175) { if (routeId == 173) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 175) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 185) { if (routeId < 181) { if (routeId < 179) { if (routeId == 177) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 179) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 183) { if (routeId == 181) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 183) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 189) { if (routeId < 187) { if (routeId == 185) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 187) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 191) { if (routeId == 189) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 191) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 225) { if (routeId < 209) { if (routeId < 201) { if (routeId < 197) { if (routeId < 195) { if (routeId == 193) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 195) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 199) { if (routeId == 197) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 199) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 205) { if (routeId < 203) { if (routeId == 201) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 203) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 207) { if (routeId == 205) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 207) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 217) { if (routeId < 213) { if (routeId < 211) { if (routeId == 209) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 211) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 215) { if (routeId == 213) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 215) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 221) { if (routeId < 219) { if (routeId == 217) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 219) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 223) { if (routeId == 221) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 223) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 241) { if (routeId < 233) { if (routeId < 229) { if (routeId < 227) { if (routeId == 225) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 227) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 231) { if (routeId == 229) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 231) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 237) { if (routeId < 235) { if (routeId == 233) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 235) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 239) { if (routeId == 237) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 239) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 249) { if (routeId < 245) { if (routeId < 243) { if (routeId == 241) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 243) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 247) { if (routeId == 245) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 247) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 253) { if (routeId < 251) { if (routeId == 249) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 251) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 255) { if (routeId == 253) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 255) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } } else { if (routeId < 321) { if (routeId < 289) { if (routeId < 273) { if (routeId < 265) { if (routeId < 261) { if (routeId < 259) { if (routeId == 257) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 259) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 263) { if (routeId == 261) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 263) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 269) { if (routeId < 267) { if (routeId == 265) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 267) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 271) { if (routeId == 269) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 271) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 281) { if (routeId < 277) { if (routeId < 275) { if (routeId == 273) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 275) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 279) { if (routeId == 277) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 279) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 285) { if (routeId < 283) { if (routeId == 281) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 283) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 287) { if (routeId == 285) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 287) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 305) { if (routeId < 297) { if (routeId < 293) { if (routeId < 291) { if (routeId == 289) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 291) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 295) { if (routeId == 293) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 295) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 301) { if (routeId < 299) { if (routeId == 297) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 299) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 303) { if (routeId == 301) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 303) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 313) { if (routeId < 309) { if (routeId < 307) { if (routeId == 305) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 307) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 311) { if (routeId == 309) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 311) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 317) { if (routeId < 315) { if (routeId == 313) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 315) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 319) { if (routeId == 317) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 319) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 353) { if (routeId < 337) { if (routeId < 329) { if (routeId < 325) { if (routeId < 323) { if (routeId == 321) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 323) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 327) { if (routeId == 325) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 327) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 333) { if (routeId < 331) { if (routeId == 329) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 331) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 335) { if (routeId == 333) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 335) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 345) { if (routeId < 341) { if (routeId < 339) { if (routeId == 337) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 339) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 343) { if (routeId == 341) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 343) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 349) { if (routeId < 347) { if (routeId == 345) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 347) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 351) { if (routeId == 349) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 351) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 369) { if (routeId < 361) { if (routeId < 357) { if (routeId < 355) { if (routeId == 353) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 355) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 359) { if (routeId == 357) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 359) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 365) { if (routeId < 363) { if (routeId == 361) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 363) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 367) { if (routeId == 365) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 367) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 377) { if (routeId < 373) { if (routeId < 371) { if (routeId == 369) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 371) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 375) { if (routeId == 373) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 375) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 381) { if (routeId < 379) { if (routeId == 377) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 379) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 383) { if (routeId == 381) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 383) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } } if (routes[routeId] == address(0)) revert ZeroAddressNotAllowed(); return routes[routeId]; } /// @notice fallback function to handle swap, bridge execution /// @dev ensure routeId is converted to bytes4 and sent as msg.sig in the transaction fallback() external payable { address routeAddress = addressAt(uint32(msg.sig)); bytes memory result; assembly { // copy function selector and any arguments calldatacopy(0, 4, sub(calldatasize(), 4)) // execute function call using the facet result := delegatecall( gas(), routeAddress, 0, sub(calldatasize(), 4), 0, 0 ) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; pragma experimental ABIEncoderV2; import "./utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {LibUtil} from "./libraries/LibUtil.sol"; import "./libraries/LibBytes.sol"; import {ISocketRoute} from "./interfaces/ISocketRoute.sol"; import {ISocketRequest} from "./interfaces/ISocketRequest.sol"; import {ISocketGateway} from "./interfaces/ISocketGateway.sol"; import {IncorrectBridgeRatios, ZeroAddressNotAllowed, ArrayLengthMismatch} from "./errors/SocketErrors.sol"; /// @title SocketGatewayContract /// @notice Socketgateway is a contract with entrypoint functions for all interactions with socket liquidity layer /// @author Socket Team contract SocketGateway is Ownable { using LibBytes for bytes; using LibBytes for bytes4; using SafeTransferLib for ERC20; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice storage variable to keep track of total number of routes registered in socketgateway uint32 public routesCount = 385; /// @notice storage variable to keep track of total number of controllers registered in socketgateway uint32 public controllerCount; address public immutable disabledRouteAddress; uint256 public constant CENT_PERCENT = 100e18; /// @notice storage mapping for route implementation addresses mapping(uint32 => address) public routes; /// storage mapping for controller implemenation addresses mapping(uint32 => address) public controllers; // Events -------------------------------------------------------------------------------------------------------> /// @notice Event emitted when a router is added to socketgateway event NewRouteAdded(uint32 indexed routeId, address indexed route); /// @notice Event emitted when a route is disabled event RouteDisabled(uint32 indexed routeId); /// @notice Event emitted when ownership transfer is requested by socket-gateway-owner event OwnershipTransferRequested( address indexed _from, address indexed _to ); /// @notice Event emitted when a controller is added to socketgateway event ControllerAdded( uint32 indexed controllerId, address indexed controllerAddress ); /// @notice Event emitted when a controller is disabled event ControllerDisabled(uint32 indexed controllerId); constructor(address _owner, address _disabledRoute) Ownable(_owner) { disabledRouteAddress = _disabledRoute; } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} /******************************************* * EXTERNAL AND PUBLIC FUNCTIONS * *******************************************/ /** * @notice executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in routeData to be built using the function-selector defined as a * constant in the route implementation contract * @param routeId route identifier * @param routeData functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoute( uint32 routeId, bytes calldata routeData ) external payable returns (bytes memory) { (bool success, bytes memory result) = addressAt(routeId).delegatecall( routeData ); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice swaps a token on sourceChain and split it across multiple bridge-recipients * @notice The caller must first approve this contract to spend amount of ERC20-Token being swapped * @dev ensure the swap-data and bridge-data is generated using the function-selector defined as a constant in the implementation address * @param swapMultiBridgeRequest request */ function swapAndMultiBridge( ISocketRequest.SwapMultiBridgeRequest calldata swapMultiBridgeRequest ) external payable { uint256 requestLength = swapMultiBridgeRequest.bridgeRouteIds.length; if ( requestLength != swapMultiBridgeRequest.bridgeImplDataItems.length ) { revert ArrayLengthMismatch(); } uint256 ratioAggregate; for (uint256 index = 0; index < requestLength; ) { ratioAggregate += swapMultiBridgeRequest.bridgeRatios[index]; } if (ratioAggregate != CENT_PERCENT) { revert IncorrectBridgeRatios(); } (bool swapSuccess, bytes memory swapResult) = addressAt( swapMultiBridgeRequest.swapRouteId ).delegatecall(swapMultiBridgeRequest.swapImplData); if (!swapSuccess) { assembly { revert(add(swapResult, 32), mload(swapResult)) } } uint256 amountReceivedFromSwap = abi.decode(swapResult, (uint256)); uint256 bridgedAmount; for (uint256 index = 0; index < requestLength; ) { uint256 bridgingAmount; // if it is the last bridge request, bridge the remaining amount if (index == requestLength - 1) { bridgingAmount = amountReceivedFromSwap - bridgedAmount; } else { // bridging amount is the multiplication of bridgeRatio and amountReceivedFromSwap bridgingAmount = (amountReceivedFromSwap * swapMultiBridgeRequest.bridgeRatios[index]) / (CENT_PERCENT); } // update the bridged amount, this would be used for computation for last bridgeRequest bridgedAmount += bridgingAmount; bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, bridgingAmount, swapMultiBridgeRequest.bridgeImplDataItems[index] ); (bool bridgeSuccess, bytes memory bridgeResult) = addressAt( swapMultiBridgeRequest.bridgeRouteIds[index] ).delegatecall(bridgeImpldata); if (!bridgeSuccess) { assembly { revert(add(bridgeResult, 32), mload(bridgeResult)) } } unchecked { ++index; } } } /** * @notice sequentially executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each dataItem to be built using the function-selector defined as a * constant in the route implementation contract * @param routeIds a list of route identifiers * @param dataItems a list of functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoutes( uint32[] calldata routeIds, bytes[] calldata dataItems ) external payable { uint256 routeIdslength = routeIds.length; if (routeIdslength != dataItems.length) revert ArrayLengthMismatch(); for (uint256 index = 0; index < routeIdslength; ) { (bool success, bytes memory result) = addressAt(routeIds[index]) .delegatecall(dataItems[index]); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /** * @notice execute a controller function identified using the controllerId in the request * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in request to be built using the function-selector defined as a * constant in the controller implementation contract * @param socketControllerRequest socketControllerRequest with controllerId to identify the * controllerAddress and byteData constructed using functionSelector * of the function being invoked * @return bytes data received from the call delegated to controller */ function executeController( ISocketGateway.SocketControllerRequest calldata socketControllerRequest ) external payable returns (bytes memory) { (bool success, bytes memory result) = controllers[ socketControllerRequest.controllerId ].delegatecall(socketControllerRequest.data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice sequentially executes all controller requests * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each controller-request to be built using the function-selector defined as a * constant in the controller implementation contract * @param controllerRequests a list of socketControllerRequest * Each controllerRequest contains controllerId to identify the controllerAddress and * byteData constructed using functionSelector of the function being invoked */ function executeControllers( ISocketGateway.SocketControllerRequest[] calldata controllerRequests ) external payable { for (uint32 index = 0; index < controllerRequests.length; ) { (bool success, bytes memory result) = controllers[ controllerRequests[index].controllerId ].delegatecall(controllerRequests[index].data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /************************************** * ADMIN FUNCTIONS * **************************************/ /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute( address routeAddress ) external onlyOwner returns (uint32) { uint32 routeId = routesCount; routes[routeId] = routeAddress; routesCount += 1; emit NewRouteAdded(routeId, routeAddress); return routeId; } /** * @notice Give Infinite or 0 approval to bridgeRoute for the tokenAddress This is a restricted function to be called by only socketGatewayOwner */ function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external onlyOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).approve( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address controllerAddress ) external onlyOwner returns (uint32) { uint32 controllerId = controllerCount; controllers[controllerId] = controllerAddress; controllerCount += 1; emit ControllerAdded(controllerId, controllerAddress); return controllerId; } /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 controllerId) public onlyOwner { controllers[controllerId] = disabledRouteAddress; emit ControllerDisabled(controllerId); } /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external onlyOwner { routes[routeId] = disabledRouteAddress; emit RouteDisabled(routeId); } /******************************************* * RESTRICTED RESCUE FUNCTIONS * *******************************************/ /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } /******************************************* * VIEW FUNCTIONS * *******************************************/ /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) public view returns (address) { return addressAt(routeId); } /** * @notice Get controllerImplementation address mapped to the controllerId * @param controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 controllerId) public view returns (address) { return controllers[controllerId]; } function addressAt(uint32 routeId) public view returns (address) { if (routeId < 385) { if (routeId < 257) { if (routeId < 129) { if (routeId < 65) { if (routeId < 33) { if (routeId < 17) { if (routeId < 9) { if (routeId < 5) { if (routeId < 3) { if (routeId == 1) { return 0x8cd6BaCDAe46B449E2e5B34e348A4eD459c84D50; } else { return 0x31524750Cd865fF6A3540f232754Fb974c18585C; } } else { if (routeId == 3) { return 0xEd9b37342BeC8f3a2D7b000732ec87498aA6EC6a; } else { return 0xE8704Ef6211F8988Ccbb11badC89841808d66890; } } } else { if (routeId < 7) { if (routeId == 5) { return 0x9aFF58C460a461578C433e11C4108D1c4cF77761; } else { return 0x2D1733886cFd465B0B99F1492F40847495f334C5; } } else { if (routeId == 7) { return 0x715497Be4D130F04B8442F0A1F7a9312D4e54FC4; } else { return 0x90C8a40c38E633B5B0e0d0585b9F7FA05462CaaF; } } } } else { if (routeId < 13) { if (routeId < 11) { if (routeId == 9) { return 0xa402b70FCfF3F4a8422B93Ef58E895021eAdE4F6; } else { return 0xc1B718522E15CD42C4Ac385a929fc2B51f5B892e; } } else { if (routeId == 11) { return 0xa97bf2f7c26C43c010c349F52f5eA5dC49B2DD38; } else { return 0x969423d71b62C81d2f28d707364c9Dc4a0764c53; } } } else { if (routeId < 15) { if (routeId == 13) { return 0xF86729934C083fbEc8C796068A1fC60701Ea1207; } else { return 0xD7cC2571F5823caCA26A42690D2BE7803DD5393f; } } else { if (routeId == 15) { return 0x7c8837a279bbbf7d8B93413763176de9F65d5bB9; } else { return 0x13b81C27B588C07D04458ed7dDbdbD26D1e39bcc; } } } } } else { if (routeId < 25) { if (routeId < 21) { if (routeId < 19) { if (routeId == 17) { return 0x52560Ac678aFA1345D15474287d16Dc1eA3F78aE; } else { return 0x1E31e376551459667cd7643440c1b21CE69065A0; } } else { if (routeId == 19) { return 0xc57D822CB3288e7b97EF8f8af0EcdcD1B783529B; } else { return 0x2197A1D9Af24b4d6a64Bff95B4c29Fcd3Ff28C30; } } } else { if (routeId < 23) { if (routeId == 21) { return 0xE3700feAa5100041Bf6b7AdBA1f72f647809Fd00; } else { return 0xc02E8a0Fdabf0EeFCEA025163d90B5621E2b9948; } } else { if (routeId == 23) { return 0xF5144235E2926cAb3c69b30113254Fa632f72d62; } else { return 0xBa3F92313B00A1f7Bc53b2c24EB195c8b2F57682; } } } } else { if (routeId < 29) { if (routeId < 27) { if (routeId == 25) { return 0x77a6856fe1fFA5bEB55A1d2ED86E27C7c482CB76; } else { return 0x4826Ff4e01E44b1FCEFBfb38cd96687Eb7786b44; } } else { if (routeId == 27) { return 0x55FF3f5493cf5e80E76DEA7E327b9Cd8440Af646; } else { return 0xF430Db544bE9770503BE4aa51997aA19bBd5BA4f; } } } else { if (routeId < 31) { if (routeId == 29) { return 0x0f166446ce1484EE3B0663E7E67DF10F5D240115; } else { return 0x6365095D92537f242Db5EdFDd572745E72aC33d9; } } else { if (routeId == 31) { return 0x5c7BC93f06ce3eAe75ADf55E10e23d2c1dE5Bc65; } else { return 0xe46383bAD90d7A08197ccF08972e9DCdccCE9BA4; } } } } } } else { if (routeId < 49) { if (routeId < 41) { if (routeId < 37) { if (routeId < 35) { if (routeId == 33) { return 0xf0f21710c071E3B728bdc4654c3c0b873aAaa308; } else { return 0x63Bc9ed3AcAAeB0332531C9fB03b0a2352E9Ff25; } } else { if (routeId == 35) { return 0xd1CE808625CB4007a1708824AE82CdB0ece57De9; } else { return 0x57BbB148112f4ba224841c3FE018884171004661; } } } else { if (routeId < 39) { if (routeId == 37) { return 0x037f7d6933036F34DFabd40Ff8e4D789069f92e3; } else { return 0xeF978c280915CfF3Dca4EDfa8932469e40ADA1e1; } } else { if (routeId == 39) { return 0x92ee9e071B13f7ecFD62B7DED404A16CBc223CD3; } else { return 0x94Ae539c186e41ed762271338Edf140414D1E442; } } } } else { if (routeId < 45) { if (routeId < 43) { if (routeId == 41) { return 0x30A64BBe4DdBD43dA2368EFd1eB2d80C10d84DAb; } else { return 0x3aEABf81c1Dc4c1b73d5B2a95410f126426FB596; } } else { if (routeId == 43) { return 0x25b08aB3D0C8ea4cC9d967b79688C6D98f3f563a; } else { return 0xea40cB15C9A3BBd27af6474483886F7c0c9AE406; } } } else { if (routeId < 47) { if (routeId == 45) { return 0x9580113Cc04e5a0a03359686304EF3A80b936Dd3; } else { return 0xD211c826d568957F3b66a3F4d9c5f68cCc66E619; } } else { if (routeId == 47) { return 0xCEE24D0635c4C56315d133b031984d4A6f509476; } else { return 0x3922e6B987983229798e7A20095EC372744d4D4c; } } } } } else { if (routeId < 57) { if (routeId < 53) { if (routeId < 51) { if (routeId == 49) { return 0x2d92D03413d296e1F31450479349757187F2a2b7; } else { return 0x0fe5308eE90FC78F45c89dB6053eA859097860CA; } } else { if (routeId == 51) { return 0x08Ba68e067C0505bAF0C1311E0cFB2B1B59b969c; } else { return 0x9bee5DdDF75C24897374f92A534B7A6f24e97f4a; } } } else { if (routeId < 55) { if (routeId == 53) { return 0x1FC5A90B232208704B930c1edf82FFC6ACc02734; } else { return 0x5b1B0417cb44c761C2a23ee435d011F0214b3C85; } } else { if (routeId == 55) { return 0x9d70cDaCA12A738C283020760f449D7816D592ec; } else { return 0x95a23b9CB830EcCFDDD5dF56A4ec665e3381Fa12; } } } } else { if (routeId < 61) { if (routeId < 59) { if (routeId == 57) { return 0x483a957Cf1251c20e096C35c8399721D1200A3Fc; } else { return 0xb4AD39Cb293b0Ec7FEDa743442769A7FF04987CD; } } else { if (routeId == 59) { return 0x4C543AD78c1590D81BAe09Fc5B6Df4132A2461d0; } else { return 0x471d5E5195c563902781734cfe1FF3981F8B6c86; } } } else { if (routeId < 63) { if (routeId == 61) { return 0x1B12a54B5E606D95B8B8D123c9Cb09221Ee37584; } else { return 0xE4127cC550baC433646a7D998775a84daC16c7f3; } } else { if (routeId == 63) { return 0xecb1b55AB12E7dd788D585c6C5cD61B5F87be836; } else { return 0xf91ef487C5A1579f70601b6D347e19756092eEBf; } } } } } } } else { if (routeId < 97) { if (routeId < 81) { if (routeId < 73) { if (routeId < 69) { if (routeId < 67) { if (routeId == 65) { return 0x34a16a7e9BADEEFD4f056310cbE0b1423Fa1b760; } else { return 0x60E10E80c7680f429dBbC232830BEcd3D623c4CF; } } else { if (routeId == 67) { return 0x66465285B8D65362A1d86CE00fE2bE949Fd6debF; } else { return 0x5aB231B7e1A3A74a48f67Ab7bde5Cdd4267022E0; } } } else { if (routeId < 71) { if (routeId == 69) { return 0x3A1C3633eE79d43366F5c67802a746aFD6b162Ba; } else { return 0x0C4BfCbA8dC3C811437521a80E81e41DAF479039; } } else { if (routeId == 71) { return 0x6caf25d2e139C5431a1FA526EAf8d73ff2e6252C; } else { return 0x74ad21e09FDa68638CE14A3009A79B6D16574257; } } } } else { if (routeId < 77) { if (routeId < 75) { if (routeId == 73) { return 0xD4923A61008894b99cc1CD3407eF9524f02aA0Ca; } else { return 0x6F159b5EB823BD415886b9271aA2A723a00a1987; } } else { if (routeId == 75) { return 0x742a8aA42E7bfB4554dE30f4Fb07FFb6f2068863; } else { return 0x4AE9702d3360400E47B446e76DE063ACAb930101; } } } else { if (routeId < 79) { if (routeId == 77) { return 0x0E19a0a44ddA7dAD854ec5Cc867d16869c4E80F4; } else { return 0xE021A51968f25148F726E326C88d2556c5647557; } } else { if (routeId == 79) { return 0x64287BDDDaeF4d94E4599a3D882bed29E6Ada4B6; } else { return 0xcBB57Fd2e19cc7e9D444d5b4325A2F1047d0C73f; } } } } } else { if (routeId < 89) { if (routeId < 85) { if (routeId < 83) { if (routeId == 81) { return 0x373DE80DF7D82cFF6D76F29581b360C56331e957; } else { return 0x0466356E131AD61596a51F86BAd1C03A328960D8; } } else { if (routeId == 83) { return 0x01726B960992f1b74311b248E2a922fC707d43A6; } else { return 0x2E21bdf9A4509b89795BCE7E132f248a75814CEc; } } } else { if (routeId < 87) { if (routeId == 85) { return 0x769512b23aEfF842379091d3B6E4B5456F631D42; } else { return 0xe7eD9be946a74Ec19325D39C6EEb57887ccB2B0D; } } else { if (routeId == 87) { return 0xc4D01Ec357c2b511d10c15e6b6974380F0E62e67; } else { return 0x5bC49CC9dD77bECF2fd3A3C55611e84E69AFa3AE; } } } } else { if (routeId < 93) { if (routeId < 91) { if (routeId == 89) { return 0x48bcD879954fA14e7DbdAeb56F79C1e9DDcb69ec; } else { return 0xE929bDde21b462572FcAA4de6F49B9D3246688D0; } } else { if (routeId == 91) { return 0x85Aae300438222f0e3A9Bc870267a5633A9438bd; } else { return 0x51f72E1096a81C55cd142d66d39B688C657f9Be8; } } } else { if (routeId < 95) { if (routeId == 93) { return 0x3A8a05BF68ac54B01E6C0f492abF97465F3d15f9; } else { return 0x145aA67133F0c2C36b9771e92e0B7655f0D59040; } } else { if (routeId == 95) { return 0xa030315d7DB11F9892758C9e7092D841e0ADC618; } else { return 0xdF1f8d81a3734bdDdEfaC6Ca1596E081e57c3044; } } } } } } else { if (routeId < 113) { if (routeId < 105) { if (routeId < 101) { if (routeId < 99) { if (routeId == 97) { return 0xFF2833123B58aa05d04D7fb99f5FB768B2b435F8; } else { return 0xc8f09c1fD751C570233765f71b0e280d74e6e743; } } else { if (routeId == 99) { return 0x3026DA6Ceca2E5A57A05153653D9212FFAaA49d8; } else { return 0xdE68Ee703dE0D11f67B0cE5891cB4a903de6D160; } } } else { if (routeId < 103) { if (routeId == 101) { return 0xE23a7730e81FB4E87A6D0bd9f63EE77ac86C3DA4; } else { return 0x8b1DBe04aD76a7d8bC079cACd3ED4D99B897F4a0; } } else { if (routeId == 103) { return 0xBB227240FA459b69C6889B2b8cb1BE76F118061f; } else { return 0xC062b9b3f0dB28BB8afAfcD4d075729344114ffe; } } } } else { if (routeId < 109) { if (routeId < 107) { if (routeId == 105) { return 0x553188Aa45f5FDB83EC4Ca485982F8fC082480D1; } else { return 0x0109d83D746EaCb6d4014953D9E12d6ca85e330b; } } else { if (routeId == 107) { return 0x45B1bEd29812F5bf6711074ACD180B2aeB783AD9; } else { return 0xdA06eC8c19aea31D77F60299678Cba40E743e1aD; } } } else { if (routeId < 111) { if (routeId == 109) { return 0x3cC5235c97d975a9b4FD4501B3446c981ea3D855; } else { return 0xa1827267d6Bd989Ff38580aE3d9deff6Acf19163; } } else { if (routeId == 111) { return 0x3663CAA0433A3D4171b3581Cf2410702840A735A; } else { return 0x7575D0a7614F655BA77C74a72a43bbd4fA6246a3; } } } } } else { if (routeId < 121) { if (routeId < 117) { if (routeId < 115) { if (routeId == 113) { return 0x2516Defc18bc07089c5dAFf5eafD7B0EF64611E2; } else { return 0xfec5FF08E20fbc107a97Af2D38BD0025b84ee233; } } else { if (routeId == 115) { return 0x0FB5763a87242B25243e23D73f55945fE787523A; } else { return 0xe4C00db89678dBf8391f430C578Ca857Dd98aDE1; } } } else { if (routeId < 119) { if (routeId == 117) { return 0x8F2A22061F9F35E64f14523dC1A5f8159e6a21B7; } else { return 0x18e4b838ae966917E20E9c9c5Ad359cDD38303bB; } } else { if (routeId == 119) { return 0x61ACb1d3Dcb3e3429832A164Cc0fC9849fb75A4a; } else { return 0x7681e3c8e7A41DCA55C257cc0d1Ae757f5530E65; } } } } else { if (routeId < 125) { if (routeId < 123) { if (routeId == 121) { return 0x806a2AB9748C3D1DB976550890E3f528B7E8Faec; } else { return 0xBDb8A5DD52C2c239fbC31E9d43B763B0197028FF; } } else { if (routeId == 123) { return 0x474EC9203706010B9978D6bD0b105D36755e4848; } else { return 0x8dfd0D829b303F2239212E591a0F92a32880f36E; } } } else { if (routeId < 127) { if (routeId == 125) { return 0xad4BcE9745860B1adD6F1Bd34a916f050E4c82C2; } else { return 0xBC701115b9fe14bC8CC5934cdC92517173e308C4; } } else { if (routeId == 127) { return 0x0D1918d786Db8546a11aDeD475C98370E06f255E; } else { return 0xee44f57cD6936DB55B99163f3Df367B01EdA785a; } } } } } } } } else { if (routeId < 193) { if (routeId < 161) { if (routeId < 145) { if (routeId < 137) { if (routeId < 133) { if (routeId < 131) { if (routeId == 129) { return 0x63044521fe5a1e488D7eD419cD0e35b7C24F2aa7; } else { return 0x410085E73BD85e90d97b84A68C125aDB9F91f85b; } } else { if (routeId == 131) { return 0x7913fe97E07C7A397Ec274Ab1d4E2622C88EC5D1; } else { return 0x977f9fE93c064DCf54157406DaABC3a722e8184C; } } } else { if (routeId < 135) { if (routeId == 133) { return 0xCD2236468722057cFbbABad2db3DEA9c20d5B01B; } else { return 0x17c7287A491cf5Ff81E2678cF2BfAE4333F6108c; } } else { if (routeId == 135) { return 0x354D9a5Dbf96c71B79a265F03B595C6Fdc04dadd; } else { return 0xb4e409EB8e775eeFEb0344f9eee884cc7ed21c69; } } } } else { if (routeId < 141) { if (routeId < 139) { if (routeId == 137) { return 0xa1a3c4670Ad69D9be4ab2D39D1231FEC2a63b519; } else { return 0x4589A22199870729C1be5CD62EE93BeD858113E6; } } else { if (routeId == 139) { return 0x8E7b864dB26Bd6C798C38d4Ba36EbA0d6602cF11; } else { return 0xA2D17C7260a4CB7b9854e89Fc367E80E87872a2d; } } } else { if (routeId < 143) { if (routeId == 141) { return 0xC7F0EDf0A1288627b0432304918A75e9084CBD46; } else { return 0xE4B4EF1f9A4aBFEdB371fA7a6143993B15d4df25; } } else { if (routeId == 143) { return 0xfe3D84A2Ef306FEBb5452441C9BDBb6521666F6A; } else { return 0x8A12B6C64121920110aE58F7cd67DfEc21c6a4C3; } } } } } else { if (routeId < 153) { if (routeId < 149) { if (routeId < 147) { if (routeId == 145) { return 0x76c4d9aFC4717a2BAac4e5f26CccF02351f7a3DA; } else { return 0xd4719BA550E397aeAcca1Ad2201c1ba69024FAAf; } } else { if (routeId == 147) { return 0x9646126Ce025224d1682C227d915a386efc0A1Fb; } else { return 0x4DD8Af2E3F2044842f0247920Bc4BABb636915ea; } } } else { if (routeId < 151) { if (routeId == 149) { return 0x8e8a327183Af0cf8C2ece9F0ed547C42A160D409; } else { return 0x9D49614CaE1C685C71678CA6d8CDF7584bfd0740; } } else { if (routeId == 151) { return 0x5a00ef257394cbc31828d48655E3d39e9c11c93d; } else { return 0xC9a2751b38d3dDD161A41Ca0135C5C6c09EC1d56; } } } } else { if (routeId < 157) { if (routeId < 155) { if (routeId == 153) { return 0x7e1c261640a525C94Ca4f8c25b48CF754DD83590; } else { return 0x409Fe24ba6F6BD5aF31C1aAf8059b986A3158233; } } else { if (routeId == 155) { return 0x704Cf5BFDADc0f55fDBb53B6ed8B582E018A72A2; } else { return 0x3982bF65d7d6E77E3b6661cd6F6468c247512737; } } } else { if (routeId < 159) { if (routeId == 157) { return 0x3982b9f26FFD67a13Ee371e2C0a9Da338BA70E7f; } else { return 0x6D834AB385900c1f49055D098e90264077FbC4f2; } } else { if (routeId == 159) { return 0x11FE5F70779A094B7166B391e1Fb73d422eF4e4d; } else { return 0xD347e4E47280d21F13B73D89c6d16f867D50DD13; } } } } } } else { if (routeId < 177) { if (routeId < 169) { if (routeId < 165) { if (routeId < 163) { if (routeId == 161) { return 0xb6035eDD53DDA28d8B69b4ae9836E40C80306CD7; } else { return 0x54c884e6f5C7CcfeCA990396c520C858c922b6CA; } } else { if (routeId == 163) { return 0x5eA93E240b083d686558Ed607BC013d88057cE46; } else { return 0x4C7131eE812De685cBe4e2cCb033d46ecD46612E; } } } else { if (routeId < 167) { if (routeId == 165) { return 0xc1a5Be9F0c33D8483801D702111068669f81fF91; } else { return 0x9E5fAb91455Be5E5b2C05967E73F456c8118B1Fc; } } else { if (routeId == 167) { return 0x3d9A05927223E0DC2F382831770405885e22F0d8; } else { return 0x6303A011fB6063f5B1681cb5a9938EA278dc6128; } } } } else { if (routeId < 173) { if (routeId < 171) { if (routeId == 169) { return 0xe9c60795c90C66797e4c8E97511eA07CdAda32bE; } else { return 0xD56cC98e69A1e13815818b466a8aA6163d84234A; } } else { if (routeId == 171) { return 0x47EbB9D36a6e40895316cD894E4860D774E2c531; } else { return 0xA5EB293629410065d14a7B1663A67829b0618292; } } } else { if (routeId < 175) { if (routeId == 173) { return 0x1b3B4C8146F939cE00899db8B3ddeF0062b7E023; } else { return 0x257Bbc11653625EbfB6A8587eF4f4FBe49828EB3; } } else { if (routeId == 175) { return 0x44cc979C01b5bB1eAC21301E73C37200dFD06F59; } else { return 0x2972fDF43352225D82754C0174Ff853819D1ef2A; } } } } } else { if (routeId < 185) { if (routeId < 181) { if (routeId < 179) { if (routeId == 177) { return 0x3e54144f032648A04D62d79f7B4b93FF3aC2333b; } else { return 0x444016102dB8adbE73C3B6703a1ea7F2f75A510D; } } else { if (routeId == 179) { return 0xac079143f98a6eb744Fde34541ebF243DF5B5dED; } else { return 0xAe9010767Fb112d29d35CEdfba2b372Ad7A308d3; } } } else { if (routeId < 183) { if (routeId == 181) { return 0xfE0BCcF9cCC2265D5fB3450743f17DfE57aE1e56; } else { return 0x04ED8C0545716119437a45386B1d691C63234C7D; } } else { if (routeId == 183) { return 0x636c14013e531A286Bc4C848da34585f0bB73d59; } else { return 0x2Fa67fc7ECC5cAA01C653d3BFeA98ecc5db9C42A; } } } } else { if (routeId < 189) { if (routeId < 187) { if (routeId == 185) { return 0x23e9a0FC180818aA872D2079a985217017E97bd9; } else { return 0x79A95c3Ef81b3ae64ee03A9D5f73e570495F164E; } } else { if (routeId == 187) { return 0xa7EA0E88F04a84ba0ad1E396cb07Fa3fDAD7dF6D; } else { return 0xd23cA1278a2B01a3C0Ca1a00d104b11c1Ebe6f42; } } } else { if (routeId < 191) { if (routeId == 189) { return 0x707bc4a9FA2E349AED5df4e9f5440C15aA9D14Bd; } else { return 0x7E290F2dd539Ac6CE58d8B4C2B944931a1fD3612; } } else { if (routeId == 191) { return 0x707AA5503088Ce06Ba450B6470A506122eA5c8eF; } else { return 0xFbB3f7BF680deeb149f4E7BC30eA3DDfa68F3C3f; } } } } } } } else { if (routeId < 225) { if (routeId < 209) { if (routeId < 201) { if (routeId < 197) { if (routeId < 195) { if (routeId == 193) { return 0xDE74aD8cCC3dbF14992f49Cf24f36855912f4934; } else { return 0x409BA83df7777F070b2B50a10a41DE2468d2a3B3; } } else { if (routeId == 195) { return 0x5CB7Be90A5DD7CfDa54e87626e254FE8C18255B4; } else { return 0x0A684fE12BC64fb72B59d0771a566F49BC090356; } } } else { if (routeId < 199) { if (routeId == 197) { return 0xDf30048d91F8FA2bCfC54952B92bFA8e161D3360; } else { return 0x050825Fff032a547C47061CF0696FDB0f65AEa5D; } } else { if (routeId == 199) { return 0xd55e671dAC1f03d366d8535073ada5DB2Aab1Ea2; } else { return 0x9470C704A9616c8Cd41c595Fcd2181B6fe2183C2; } } } } else { if (routeId < 205) { if (routeId < 203) { if (routeId == 201) { return 0x2D9ffD275181F5865d5e11CbB4ced1521C4dF9f1; } else { return 0x816d28Dec10ec95DF5334f884dE85cA6215918d8; } } else { if (routeId == 203) { return 0xd1f87267c4A43835E666dd69Df077e578A3b6299; } else { return 0x39E89Bde9DACbe5468C025dE371FbDa12bDeBAB1; } } } else { if (routeId < 207) { if (routeId == 205) { return 0x7b40A3207956ecad6686E61EfcaC48912FcD0658; } else { return 0x090cF10D793B1Efba9c7D76115878814B663859A; } } else { if (routeId == 207) { return 0x312A59c06E41327878F2063eD0e9c282C1DA3AfC; } else { return 0x4F1188f46236DD6B5de11Ebf2a9fF08716E7DeB6; } } } } } else { if (routeId < 217) { if (routeId < 213) { if (routeId < 211) { if (routeId == 209) { return 0x0A6F9a3f4fA49909bBfb4339cbE12B42F53BbBeD; } else { return 0x01d13d7aCaCbB955B81935c80ffF31e14BdFa71f; } } else { if (routeId == 211) { return 0x691a14Fa6C7360422EC56dF5876f84d4eDD7f00A; } else { return 0x97Aad18d886d181a9c726B3B6aE15a0A69F5aF73; } } } else { if (routeId < 215) { if (routeId == 213) { return 0x2917241371D2099049Fa29432DC46735baEC33b4; } else { return 0x5F20F20F7890c2e383E29D4147C9695A371165f5; } } else { if (routeId == 215) { return 0xeC0a60e639958335662C5219A320cCEbb56C6077; } else { return 0x96d63CF5062975C09845d17ec672E10255866053; } } } } else { if (routeId < 221) { if (routeId < 219) { if (routeId == 217) { return 0xFF57429e57D383939CAB50f09ABBfB63C0e6c9AD; } else { return 0x18E393A7c8578fb1e235C242076E50013cDdD0d7; } } else { if (routeId == 219) { return 0xE7E5238AF5d61f52E9B4ACC025F713d1C0216507; } else { return 0x428401D4d0F25A2EE1DA4d5366cB96Ded425D9bD; } } } else { if (routeId < 223) { if (routeId == 221) { return 0x42E5733551ff1Ee5B48Aa9fc2B61Af9b58C812E6; } else { return 0x64Df9c7A0551B056d860Bc2419Ca4c1EF75320bE; } } else { if (routeId == 223) { return 0x46006925506145611bBf0263243D8627dAf26B0F; } else { return 0x8D64BE884314662804eAaB884531f5C50F4d500c; } } } } } } else { if (routeId < 241) { if (routeId < 233) { if (routeId < 229) { if (routeId < 227) { if (routeId == 225) { return 0x157a62D92D07B5ce221A5429645a03bBaCE85373; } else { return 0xaF037D33e1F1F2F87309B425fe8a9d895Ef3722B; } } else { if (routeId == 227) { return 0x921D1154E494A2f7218a37ad7B17701f94b4B40e; } else { return 0xF282b4555186d8Dea51B8b3F947E1E0568d09bc4; } } } else { if (routeId < 231) { if (routeId == 229) { return 0xa794E2E1869765a4600b3DFd8a4ebcF16350f6B6; } else { return 0xFEFb048e20c5652F7940A49B1980E0125Ec4D358; } } else { if (routeId == 231) { return 0x220104b641971e9b25612a8F001bf48AbB23f1cF; } else { return 0xcB9D373Bb54A501B35dd3be5bF4Ba43cA31F7035; } } } } else { if (routeId < 237) { if (routeId < 235) { if (routeId == 233) { return 0x37D627F56e3FF36aC316372109ea82E03ac97DAc; } else { return 0x4E81355FfB4A271B4EA59ff78da2b61c7833161f; } } else { if (routeId == 235) { return 0xADd8D65cAF6Cc9ad73127B49E16eA7ac29d91e87; } else { return 0x630F9b95626487dfEAe3C97A44DB6C59cF35d996; } } } else { if (routeId < 239) { if (routeId == 237) { return 0x78CE2BC8238B679680A67FCB98C5A60E4ec17b2D; } else { return 0xA38D776028eD1310b9A6b086f67F788201762E21; } } else { if (routeId == 239) { return 0x7Bb5178827B76B86753Ed62a0d662c72cEcb1bD3; } else { return 0x4faC26f61C76eC5c3D43b43eDfAFF0736Ae0e3da; } } } } } else { if (routeId < 249) { if (routeId < 245) { if (routeId < 243) { if (routeId == 241) { return 0x791Bb49bfFA7129D6889FDB27744422Ac4571A85; } else { return 0x26766fFEbb5fa564777913A6f101dF019AB32afa; } } else { if (routeId == 243) { return 0x05e98E5e95b4ECBbbAf3258c3999Cc81ed8048Be; } else { return 0xC5c4621e52f1D6A1825A5ed4F95855401a3D9C6b; } } } else { if (routeId < 247) { if (routeId == 245) { return 0xfcb15f909BA7FC7Ea083503Fb4c1020203c107EB; } else { return 0xbD27603279d969c74f2486ad14E71080829DFd38; } } else { if (routeId == 247) { return 0xff2f756BcEcC1A55BFc09a30cc5F64720458cFCB; } else { return 0x3bfB968FEbC12F4e8420B2d016EfcE1E615f7246; } } } } else { if (routeId < 253) { if (routeId < 251) { if (routeId == 249) { return 0x982EE9Ffe23051A2ec945ed676D864fa8345222b; } else { return 0xe101899100785E74767d454FFF0131277BaD48d9; } } else { if (routeId == 251) { return 0x4F730C0c6b3B5B7d06ca511379f4Aa5BfB2E9525; } else { return 0x5499c36b365795e4e0Ef671aF6C2ce26D7c78265; } } } else { if (routeId < 255) { if (routeId == 253) { return 0x8AF51F7237Fc8fB2fc3E700488a94a0aC6Ad8b5a; } else { return 0xda8716df61213c0b143F2849785FB85928084857; } } else { if (routeId == 255) { return 0xF040Cf9b1ebD11Bf28e04e80740DF3DDe717e4f5; } else { return 0xB87ba32f759D14023C7520366B844dF7f0F036C2; } } } } } } } } } else { if (routeId < 321) { if (routeId < 289) { if (routeId < 273) { if (routeId < 265) { if (routeId < 261) { if (routeId < 259) { if (routeId == 257) { return 0x0Edde681b8478F0c3194f468EdD2dB5e75c65CDD; } else { return 0x59C70900Fca06eE2aCE1BDd5A8D0Af0cc3BBA720; } } else { if (routeId == 259) { return 0x8041F0f180D17dD07087199632c45E17AeB0BAd5; } else { return 0x4fB4727064BA595995DD516b63b5921Df9B93aC6; } } } else { if (routeId < 263) { if (routeId == 261) { return 0x86e98b594565857eD098864F560915C0dAfd6Ea1; } else { return 0x70f8818E8B698EFfeCd86A513a4c87c0c380Bef6; } } else { if (routeId == 263) { return 0x78Ed227c8A897A21Da2875a752142dd80d865158; } else { return 0xd02A30BB5C3a8C51d2751A029a6fcfDE2Af9fbc6; } } } } else { if (routeId < 269) { if (routeId < 267) { if (routeId == 265) { return 0x0F00d5c5acb24e975e2a56730609f7F40aa763b8; } else { return 0xC3e2091edc2D3D9D98ba09269138b617B536834A; } } else { if (routeId == 267) { return 0xa6FbaF7F30867C9633908998ea8C3da28920E75C; } else { return 0xE6dDdcD41E2bBe8122AE32Ac29B8fbAB79CD21d9; } } } else { if (routeId < 271) { if (routeId == 269) { return 0x537aa8c1Ef6a8Eaf039dd6e1Eb67694a48195cE4; } else { return 0x96ABAC485fd2D0B03CF4a10df8BD58b8dED28300; } } else { if (routeId == 271) { return 0xda8e7D46d04Bd4F62705Cd80355BDB6d441DafFD; } else { return 0xbE50018E7a5c67E2e5f5414393e971CC96F293f2; } } } } } else { if (routeId < 281) { if (routeId < 277) { if (routeId < 275) { if (routeId == 273) { return 0xa1b3907D6CB542a4cbe2eE441EfFAA909FAb62C3; } else { return 0x6d08ee8511C0237a515013aC389e7B3968Cb1753; } } else { if (routeId == 275) { return 0x22faa5B5Fe43eAdbB52745e35a5cdA8bD5F96bbA; } else { return 0x7a673eB74D79e4868D689E7852abB5f93Ec2fD4b; } } } else { if (routeId < 279) { if (routeId == 277) { return 0x0b8531F8AFD4190b76F3e10deCaDb84c98b4d419; } else { return 0x78eABC743A93583DeE403D6b84795490e652216B; } } else { if (routeId == 279) { return 0x3A95D907b2a7a8604B59BccA08585F58Afe0Aa64; } else { return 0xf4271f0C8c9Af0F06A80b8832fa820ccE64FAda8; } } } } else { if (routeId < 285) { if (routeId < 283) { if (routeId == 281) { return 0x74b2DF841245C3748c0d31542e1335659a25C33b; } else { return 0xdFC99Fd0Ad7D16f30f295a5EEFcE029E04d0fa65; } } else { if (routeId == 283) { return 0xE992416b6aC1144eD8148a9632973257839027F6; } else { return 0x54ce55ba954E981BB1fd9399054B35Ce1f2C0816; } } } else { if (routeId < 287) { if (routeId == 285) { return 0xD4AB52f9e7E5B315Bd7471920baD04F405Ab1c38; } else { return 0x3670C990994d12837e95eE127fE2f06FD3E2104B; } } else { if (routeId == 287) { return 0xDcf190B09C47E4f551E30BBb79969c3FdEA1e992; } else { return 0xa65057B967B59677237e57Ab815B209744b9bc40; } } } } } } else { if (routeId < 305) { if (routeId < 297) { if (routeId < 293) { if (routeId < 291) { if (routeId == 289) { return 0x6Efc86B40573e4C7F28659B13327D55ae955C483; } else { return 0x06BcC25CF8e0E72316F53631b3aA7134E9f73Ae0; } } else { if (routeId == 291) { return 0x710b6414E1D53882b1FCD3A168aD5Ccd435fc6D0; } else { return 0x5Ebb2C3d78c4e9818074559e7BaE7FCc99781DC1; } } } else { if (routeId < 295) { if (routeId == 293) { return 0xAf0a409c3AEe0bD08015cfb29D89E90b6e89A88F; } else { return 0x522559d8b99773C693B80cE06DF559036295Ce44; } } else { if (routeId == 295) { return 0xB65290A5Bae838aaa7825c9ECEC68041841a1B64; } else { return 0x801b8F2068edd5Bcb659E6BDa0c425909043C420; } } } } else { if (routeId < 301) { if (routeId < 299) { if (routeId == 297) { return 0x29b5F00515d093627E0B7bd0b5c8E84F6b4cDb87; } else { return 0x652839Ae74683cbF9f1293F1019D938F87464D3E; } } else { if (routeId == 299) { return 0x5Bc95dCebDDE9B79F2b6DC76121BC7936eF8D666; } else { return 0x90db359CEA62E53051158Ab5F99811C0a07Fe686; } } } else { if (routeId < 303) { if (routeId == 301) { return 0x2c3625EedadbDcDbB5330eb0d17b3C39ff269807; } else { return 0xC3f0324471b5c9d415acD625b8d8694a4e48e001; } } else { if (routeId == 303) { return 0x8C60e7E05fa0FfB6F720233736f245134685799d; } else { return 0x98fAF2c09aa4EBb995ad0B56152993E7291a500e; } } } } } else { if (routeId < 313) { if (routeId < 309) { if (routeId < 307) { if (routeId == 305) { return 0x802c1063a861414dFAEc16bacb81429FC0d40D6e; } else { return 0x11C4AeFCC0dC156f64195f6513CB1Fb3Be0Ae056; } } else { if (routeId == 307) { return 0xEff1F3258214E31B6B4F640b4389d55715C3Be2B; } else { return 0x47e379Abe8DDFEA4289aBa01235EFF7E93758fd7; } } } else { if (routeId < 311) { if (routeId == 309) { return 0x3CC26384c3eA31dDc8D9789e8872CeA6F20cD3ff; } else { return 0xEdd9EFa6c69108FAA4611097d643E20Ba0Ed1634; } } else { if (routeId == 311) { return 0xCb93525CA5f3D371F74F3D112bC19526740717B8; } else { return 0x7071E0124EB4438137e60dF1b8DD8Af1BfB362cF; } } } } else { if (routeId < 317) { if (routeId < 315) { if (routeId == 313) { return 0x4691096EB0b78C8F4b4A8091E5B66b18e1835c10; } else { return 0x8d953c9b2d1C2137CF95992079f3A77fCd793272; } } else { if (routeId == 315) { return 0xbdCc2A3Bf6e3Ba49ff86595e6b2b8D70d8368c92; } else { return 0x95E6948aB38c61b2D294E8Bd896BCc4cCC0713cf; } } } else { if (routeId < 319) { if (routeId == 317) { return 0x607b27C881fFEE4Cb95B1c5862FaE7224ccd0b4A; } else { return 0x09D28aFA166e566A2Ee1cB834ea8e78C7E627eD2; } } else { if (routeId == 319) { return 0x9c01449b38bDF0B263818401044Fb1401B29fDfA; } else { return 0x1F7723599bbB658c051F8A39bE2688388d22ceD6; } } } } } } } else { if (routeId < 353) { if (routeId < 337) { if (routeId < 329) { if (routeId < 325) { if (routeId < 323) { if (routeId == 321) { return 0x52B71603f7b8A5d15B4482e965a0619aa3210194; } else { return 0x01c0f072CB210406653752FecFA70B42dA9173a2; } } else { if (routeId == 323) { return 0x3021142f021E943e57fc1886cAF58D06147D09A6; } else { return 0xe6f2AF38e76AB09Db59225d97d3E770942D3D842; } } } else { if (routeId < 327) { if (routeId == 325) { return 0x06a25554e5135F08b9e2eD1DEC1fc3CEd52e0B48; } else { return 0x71d75e670EE3511C8290C705E0620126B710BF8D; } } else { if (routeId == 327) { return 0x8b9cE142b80FeA7c932952EC533694b1DF9B3c54; } else { return 0xd7Be24f32f39231116B3fDc483C2A12E1521f73B; } } } } else { if (routeId < 333) { if (routeId < 331) { if (routeId == 329) { return 0xb40cafBC4797d4Ff64087E087F6D2e661f954CbE; } else { return 0xBdDCe7771EfEe81893e838f62204A4c76D72757e; } } else { if (routeId == 331) { return 0x5d3D299EA7Fd4F39AcDb336E26631Dfee41F9287; } else { return 0x6BfEE09E1Fc0684e0826A9A0dC1352a14B136FAC; } } } else { if (routeId < 335) { if (routeId == 333) { return 0xd0001bB8E2Cb661436093f96458a4358B5156E3c; } else { return 0x1867c6485CfD1eD448988368A22bfB17a7747293; } } else { if (routeId == 335) { return 0x8997EF9F95dF24aB67703AB6C262aABfeEBE33bD; } else { return 0x1e39E9E601922deD91BCFc8F78836302133465e2; } } } } } else { if (routeId < 345) { if (routeId < 341) { if (routeId < 339) { if (routeId == 337) { return 0x8A8ec6CeacFf502a782216774E5AF3421562C6ff; } else { return 0x3B8FC561df5415c8DC01e97Ee6E38435A8F9C40A; } } else { if (routeId == 339) { return 0xD5d5f5B37E67c43ceA663aEDADFFc3a93a2065B0; } else { return 0xCC8F55EC43B4f25013CE1946FBB740c43Be5B96D; } } } else { if (routeId < 343) { if (routeId == 341) { return 0x18f586E816eEeDbb57B8011239150367561B58Fb; } else { return 0xd0CD802B19c1a52501cb2f07d656e3Cd7B0Ce124; } } else { if (routeId == 343) { return 0xe0AeD899b39C6e4f2d83e4913a1e9e0cf6368abE; } else { return 0x0606e1b6c0f1A398C38825DCcc4678a7Cbc2737c; } } } } else { if (routeId < 349) { if (routeId < 347) { if (routeId == 345) { return 0x2d188e85b27d18EF80f16686EA1593ABF7Ed2A63; } else { return 0x64412292fA4A135a3300E24366E99ff59Db2eAc1; } } else { if (routeId == 347) { return 0x38b74c173f3733E8b90aAEf0e98B89791266149F; } else { return 0x36DAA49A79aaEF4E7a217A11530D3cCD84414124; } } } else { if (routeId < 351) { if (routeId == 349) { return 0x10f088FE2C88F90270E4449c46c8B1b232511d58; } else { return 0x4FeDbd25B58586838ABD17D10272697dF1dC3087; } } else { if (routeId == 351) { return 0x685278209248CB058E5cEe93e37f274A80Faf6eb; } else { return 0xDd9F8F1eeC3955f78168e2Fb2d1e808fa8A8f15b; } } } } } } else { if (routeId < 369) { if (routeId < 361) { if (routeId < 357) { if (routeId < 355) { if (routeId == 353) { return 0x7392aEeFD5825aaC28817031dEEBbFaAA20983D9; } else { return 0x0Cc182555E00767D6FB8AD161A10d0C04C476d91; } } else { if (routeId == 355) { return 0x90E52837d56715c79FD592E8D58bFD20365798b2; } else { return 0x6F4451DE14049B6770ad5BF4013118529e68A40C; } } } else { if (routeId < 359) { if (routeId == 357) { return 0x89B97ef2aFAb9ed9c7f0FDb095d02E6840b52d9c; } else { return 0x92A5cC5C42d94d3e23aeB1214fFf43Db2B97759E; } } else { if (routeId == 359) { return 0x63ddc52F135A1dcBA831EAaC11C63849F018b739; } else { return 0x692A691533B571C2c54C1D7F8043A204b3d8120E; } } } } else { if (routeId < 365) { if (routeId < 363) { if (routeId == 361) { return 0x97c7492CF083969F61C6f302d45c8270391b921c; } else { return 0xDeFD2B8643553dAd19548eB14fd94A57F4B9e543; } } else { if (routeId == 363) { return 0x30645C04205cA3f670B67b02F971B088930ACB8C; } else { return 0xA6f80ed2d607Cd67aEB4109B64A0BEcc4D7d03CF; } } } else { if (routeId < 367) { if (routeId == 365) { return 0xBbbbC6c276eB3F7E674f2D39301509236001c42f; } else { return 0xC20E77d349FB40CE88eB01824e2873ad9f681f3C; } } else { if (routeId == 367) { return 0x5fCfD9a962De19294467C358C1FA55082285960b; } else { return 0x4D87BD6a0E4E5cc6332923cb3E85fC71b287F58A; } } } } } else { if (routeId < 377) { if (routeId < 373) { if (routeId < 371) { if (routeId == 369) { return 0x3AA5B757cd6Dde98214E56D57Dde7fcF0F7aB04E; } else { return 0xe28eFCE7192e11a2297f44059113C1fD6967b2d4; } } else { if (routeId == 371) { return 0x3251cAE10a1Cf246e0808D76ACC26F7B5edA0eE5; } else { return 0xbA2091cc9357Cf4c4F25D64F30d1b4Ba3A5a174B; } } } else { if (routeId < 375) { if (routeId == 373) { return 0x49c8e1Da9693692096F63C82D11b52d738566d55; } else { return 0xA0731615aB5FFF451031E9551367A4F7dB27b39c; } } else { if (routeId == 375) { return 0xFb214541888671AE1403CecC1D59763a12fc1609; } else { return 0x1D6bCB17642E2336405df73dF22F07688cAec020; } } } } else { if (routeId < 381) { if (routeId < 379) { if (routeId == 377) { return 0xfC9c0C7bfe187120fF7f4E21446161794A617a9e; } else { return 0xBa5bF37678EeE2dAB17AEf9D898153258252250E; } } else { if (routeId == 379) { return 0x7c55690bd2C9961576A32c02f8EB29ed36415Ec7; } else { return 0xcA40073E868E8Bc611aEc8Fe741D17E68Fe422f6; } } } else { if (routeId < 383) { if (routeId == 381) { return 0x31641bAFb87E9A58f78835050a7BE56921986339; } else { return 0xA54766424f6dA74b45EbCc5Bf0Bd1D74D2CCcaAB; } } else { if (routeId == 383) { return 0xc7bBa57F8C179EDDBaa62117ddA360e28f3F8252; } else { return 0x5e663ED97ea77d393B8858C90d0683bF180E0ffd; } } } } } } } } } if (routes[routeId] == address(0)) revert ZeroAddressNotAllowed(); return routes[routeId]; } /// @notice fallback function to handle swap, bridge execution /// @dev ensure routeId is converted to bytes4 and sent as msg.sig in the transaction fallback() external payable { address routeAddress = addressAt(uint32(msg.sig)); bytes memory result; assembly { // copy function selector and any arguments calldatacopy(0, 4, sub(calldatasize(), 4)) // execute function call using the facet result := delegatecall( gas(), routeAddress, 0, sub(calldatasize(), 4), 0, 0 ) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; bytes32 constant ACROSS = keccak256("Across"); bytes32 constant ANYSWAP = keccak256("Anyswap"); bytes32 constant CBRIDGE = keccak256("CBridge"); bytes32 constant HOP = keccak256("Hop"); bytes32 constant HYPHEN = keccak256("Hyphen"); bytes32 constant NATIVE_OPTIMISM = keccak256("NativeOptimism"); bytes32 constant NATIVE_ARBITRUM = keccak256("NativeArbitrum"); bytes32 constant NATIVE_POLYGON = keccak256("NativePolygon"); bytes32 constant REFUEL = keccak256("Refuel"); bytes32 constant STARGATE = keccak256("Stargate"); bytes32 constant ONEINCH = keccak256("OneInch"); bytes32 constant ZEROX = keccak256("Zerox"); bytes32 constant RAINBOW = keccak256("Rainbow"); // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {SwapFailed} from "../../errors/SocketErrors.sol"; import {ONEINCH} from "../../static/RouteIdentifiers.sol"; /** * @title OneInch-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via OneInch-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of OneInchImplementation * @author Socket dot tech. */ contract OneInchImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable OneInchIdentifier = ONEINCH; /// @notice address of OneInchAggregator to swap the tokens on Chain address public immutable ONEINCH_AGGREGATOR; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @dev ensure _oneinchAggregator are set properly for the chainId in which the contract is being deployed constructor( address _oneinchAggregator, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { ONEINCH_AGGREGATOR = _oneinchAggregator; } /** * @notice function to swap tokens on the chain and transfer to receiver address * via OneInch-Middleware-Aggregator * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param receiverAddress address of toToken recipient * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { uint256 returnAmount; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(ONEINCH_AGGREGATOR, amount); { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call( swapExtraData ); token.safeApprove(ONEINCH_AGGREGATOR, 0); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } } else { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call{ value: amount }(swapExtraData); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, OneInchIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * via OneInch-Middleware-Aggregator * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { uint256 returnAmount; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(ONEINCH_AGGREGATOR, amount); { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call( swapExtraData ); token.safeApprove(ONEINCH_AGGREGATOR, 0); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } } else { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call{ value: amount }(swapExtraData); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, OneInchIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {Address0Provided, SwapFailed} from "../../errors/SocketErrors.sol"; import {RAINBOW} from "../../static/RouteIdentifiers.sol"; /** * @title Rainbow-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via Rainbow-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of RainbowImplementation * @author Socket dot tech. */ contract RainbowSwapImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable RainbowIdentifier = RAINBOW; /// @notice unique name to identify the router, used to emit event upon successful bridging bytes32 public immutable NAME = keccak256("Rainbow-Router"); /// @notice address of rainbow-swap-aggregator to swap the tokens on Chain address payable public immutable rainbowSwapAggregator; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @notice rainbow swap aggregator contract is payable to allow ethereum swaps /// @dev ensure _rainbowSwapAggregator are set properly for the chainId in which the contract is being deployed constructor( address _rainbowSwapAggregator, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { rainbowSwapAggregator = payable(_rainbowSwapAggregator); } receive() external payable {} fallback() external payable {} /** * @notice function to swap tokens on the chain and transfer to receiver address * @notice This method is payable because the caller is doing token transfer and swap operation * @param fromToken address of token being Swapped * @param toToken address of token that recipient will receive after swap * @param amount amount of fromToken being swapped * @param receiverAddress recipient-address * @param swapExtraData additional Data to perform Swap via Rainbow-Aggregator * @return swapped amount (in toToken Address) */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 toTokenERC20 = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(rainbowSwapAggregator, amount); // solhint-disable-next-line (bool success, ) = rainbowSwapAggregator.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(rainbowSwapAggregator, 0); } else { (bool success, ) = rainbowSwapAggregator.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; if (toToken == NATIVE_TOKEN_ADDRESS) { payable(receiverAddress).transfer(returnAmount); } else { toTokenERC20.transfer(receiverAddress, returnAmount); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, RainbowIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 toTokenERC20 = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(rainbowSwapAggregator, amount); // solhint-disable-next-line (bool success, ) = rainbowSwapAggregator.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(rainbowSwapAggregator, 0); } else { (bool success, ) = rainbowSwapAggregator.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, RainbowIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {OnlySocketGatewayOwner, OnlySocketDeployer} from "../errors/SocketErrors.sol"; /** * @title Abstract Implementation Contract. * @notice All Swap Implementation will follow this interface. * @author Socket dot tech. */ abstract contract SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; /// @notice immutable variable to store the socketGateway address address public immutable socketDeployFactory; /// @notice FunctionSelector used to delegatecall to the performAction function of swap-router-implementation bytes4 public immutable SWAP_FUNCTION_SELECTOR = bytes4( keccak256("performAction(address,address,uint256,address,bytes)") ); /// @notice FunctionSelector used to delegatecall to the performActionWithIn function of swap-router-implementation bytes4 public immutable SWAP_WITHIN_FUNCTION_SELECTOR = bytes4(keccak256("performActionWithIn(address,address,uint256,bytes)")); /**************************************** * EVENTS * ****************************************/ event SocketSwapTokens( address fromToken, address toToken, uint256 buyAmount, uint256 sellAmount, bytes32 routeName, address receiver ); /** * @notice Construct the base for all SwapImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. */ constructor(address _socketGateway, address _socketDeployFactory) { socketGateway = _socketGateway; socketDeployFactory = _socketDeployFactory; } /**************************************** * MODIFIERS * ****************************************/ /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketDeployFactory() { if (msg.sender != socketDeployFactory) { revert OnlySocketDeployer(); } _; } /**************************************** * RESTRICTED FUNCTIONS * ****************************************/ /** * @notice function to rescue the ERC20 tokens in the Swap-Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the Swap-Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } function killme() external isSocketDeployFactory { selfdestruct(payable(msg.sender)); } /****************************** * VIRTUAL FUNCTIONS * *****************************/ /** * @notice function to swap tokens on the chain * All swap implementation contracts must implement this function * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param receiverAddress recipient address of toToken * @param data encoded value of properties in the swapData Struct */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes memory data ) external payable virtual returns (uint256); /** * @notice function to swapWith - swaps tokens on the chain to socketGateway as recipient * All swap implementation contracts must implement this function * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes memory swapExtraData ) external payable virtual returns (uint256, address); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {Address0Provided, SwapFailed} from "../../errors/SocketErrors.sol"; import {ZEROX} from "../../static/RouteIdentifiers.sol"; /** * @title ZeroX-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via ZeroX-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of ZeroX-Swap-Implementation * @author Socket dot tech. */ contract ZeroXSwapImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable ZeroXIdentifier = ZEROX; /// @notice unique name to identify the router, used to emit event upon successful bridging bytes32 public immutable NAME = keccak256("Zerox-Router"); /// @notice address of ZeroX-Exchange-Proxy to swap the tokens on Chain address payable public immutable zeroXExchangeProxy; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @notice ZeroXExchangeProxy contract is payable to allow ethereum swaps /// @dev ensure _zeroXExchangeProxy are set properly for the chainId in which the contract is being deployed constructor( address _zeroXExchangeProxy, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { zeroXExchangeProxy = payable(_zeroXExchangeProxy); } receive() external payable {} fallback() external payable {} /** * @notice function to swap tokens on the chain and transfer to receiver address * @dev This is called only when there is a request for a swap. * @param fromToken token to be swapped * @param toToken token to which fromToken is to be swapped * @param amount amount to be swapped * @param receiverAddress address of toToken recipient * @param swapExtraData data required for zeroX Exchange to get the swap done */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 erc20ToToken = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, address(this), amount); token.safeApprove(zeroXExchangeProxy, amount); // solhint-disable-next-line (bool success, ) = zeroXExchangeProxy.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(zeroXExchangeProxy, 0); } else { (bool success, ) = zeroXExchangeProxy.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; if (toToken == NATIVE_TOKEN_ADDRESS) { payable(receiverAddress).transfer(returnAmount); } else { erc20ToToken.transfer(receiverAddress, returnAmount); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, ZeroXIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { if (fromToken == address(0)) { revert Address0Provided(); } bytes memory swapCallData = abi.decode(swapExtraData, (bytes)); uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 erc20ToToken = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, address(this), amount); token.safeApprove(zeroXExchangeProxy, amount); // solhint-disable-next-line (bool success, ) = zeroXExchangeProxy.call(swapCallData); if (!success) { revert SwapFailed(); } token.safeApprove(zeroXExchangeProxy, 0); } else { (bool success, ) = zeroXExchangeProxy.call{value: amount}( swapCallData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = erc20ToToken.balanceOf(address(this)); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, ZeroXIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.4; import {OnlyOwner, OnlyNominee} from "../errors/SocketErrors.sol"; abstract contract Ownable { address private _owner; address private _nominee; event OwnerNominated(address indexed nominee); event OwnerClaimed(address indexed claimer); constructor(address owner_) { _claimOwner(owner_); } modifier onlyOwner() { if (msg.sender != _owner) { revert OnlyOwner(); } _; } function owner() public view returns (address) { return _owner; } function nominee() public view returns (address) { return _nominee; } function nominateOwner(address nominee_) external { if (msg.sender != _owner) { revert OnlyOwner(); } _nominee = nominee_; emit OwnerNominated(_nominee); } function claimOwner() external { if (msg.sender != _nominee) { revert OnlyNominee(); } _claimOwner(msg.sender); } function _claimOwner(address claimer_) internal { _owner = claimer_; _nominee = address(0); emit OwnerClaimed(claimer_); } }
File 6 of 9: BKSwap
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "./interfaces/IBKErrors.sol"; contract BKCommon is IBKErrors, Ownable, Pausable, ReentrancyGuard { using SafeERC20 for IERC20; mapping(address => bool) isOperator; event RescueETH(address indexed recipient, uint256 amount); event RescueERC20(address indexed asset, address recipient); event SetOperator(address operator, bool isOperator); modifier onlyOperator() { require(isOperator[_msgSender()], "Operator: caller is not the operator"); _; } function setOperator(address[] calldata _operators, bool _isOperator) external onlyOwner { for(uint i = 0; i < _operators.length; i++) { isOperator[_operators[i]] = _isOperator; emit SetOperator(_operators[i], _isOperator); } } function pause() external onlyOperator { _pause(); } function unpause() external onlyOperator { _unpause(); } function rescueERC20(address asset, address recipient) external onlyOperator { IERC20(asset).safeTransfer( recipient, IERC20(asset).balanceOf(address(this)) ); emit RescueERC20(asset, recipient); } function rescueETH(address recipient) external onlyOperator { _transferEth(recipient, address(this).balance); } function _transferEth(address _to, uint256 _amount) internal { bool callStatus; assembly { // Transfer the ETH and store if it succeeded or not. callStatus := call(gas(), _to, _amount, 0, 0, 0, 0) } require(callStatus, "_transferEth: Eth transfer failed"); emit RescueETH(_to, _amount); } /// @dev Revert with arbitrary bytes. /// @param data Revert data. function _revertWithData(bytes memory data) internal pure { assembly { revert(add(data, 32), mload(data)) } } receive() external payable {} }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "./BKCommon.sol"; import "./interfaces/IBKRegistry.sol"; contract BKSwap is BKCommon { address public bkRegistry; mapping(address => bool) public isCaller; event ManagerCaller(address operator, address caller, bool isCaller); event SetRegistry(address operator, address bkRegistry); constructor(address _bkRegistry, address _owner) { bkRegistry = _bkRegistry; emit SetRegistry(msg.sender, _bkRegistry); _transferOwnership(_owner); } function setRegistry(address _bkRegistry) external whenNotPaused onlyOwner { bkRegistry = _bkRegistry; emit SetRegistry(msg.sender, _bkRegistry); } function managerCaller(address _caller, bool _isCaller) external onlyOwner { isCaller[_caller] = _isCaller; emit ManagerCaller(msg.sender, _caller, _isCaller); } fallback() external payable whenNotPaused nonReentrant { if(!isCaller[msg.sender]) { revert InvalidCaller(); } if (msg.sig.length != 4) { revert InvalidMsgSig(); } (address proxy, bool isLib) = IBKRegistry(bkRegistry).getFeature(msg.sig); (bool success, bytes memory resultData) = isLib ? proxy.delegatecall(msg.data) : proxy.call{value: msg.value}(msg.data); if (!success) { _revertWithData(resultData); } } }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; interface IBKErrors { error InvalidMsgSig(); error InsufficientEtherSupplied(); error FeatureNotExist(); error FeatureInActive(); error InvalidCaller(); error InvalidSigner(); error InvalidNonce(bytes32 signMsg); error InvalidZeroAddress(); error InvalidFeeRate(uint256 feeRate); error SwapEthBalanceNotEnough(); error SwapTokenBalanceNotEnough(); error SwapTokenApproveNotEnough(); error SwapInsuffenceOutPut(); error SwapTypeNotAvailable(); error BurnToMuch(); error IllegalCallTarget(); error IllegalApproveTarget(); error InvalidSwapAddress(address); error CallException(address); }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; interface IBKRegistry { function setFeature( bytes4 _methodId, address _proxy, bool _isLib, bool _isActive) external; function getFeature(bytes4 _methodId) external view returns(address proxy, bool isLib); function setCallTarget(bytes4 _methodId, address [] memory _targets, bool _isEnable) external; function isCallTarget(bytes4 _methodId, address _target) external view returns(bool); function setApproveTarget(bytes4 _methodId, address [] memory _targets, bool _isEnable) external; function isApproveTarget(bytes4 _methodId, address _target) external view returns(bool); }
File 7 of 9: BKRegistry
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "./interfaces/IBKErrors.sol"; contract BKCommon is IBKErrors, Ownable, Pausable, ReentrancyGuard { using SafeERC20 for IERC20; mapping(address => bool) isOperator; event RescueETH(address indexed recipient, uint256 amount); event RescueERC20(address indexed asset, address recipient); event SetOperator(address operator, bool isOperator); modifier onlyOperator() { require(isOperator[_msgSender()], "Operator: caller is not the operator"); _; } function setOperator(address[] calldata _operators, bool _isOperator) external onlyOwner { for(uint i = 0; i < _operators.length; i++) { isOperator[_operators[i]] = _isOperator; emit SetOperator(_operators[i], _isOperator); } } function pause() external onlyOperator { _pause(); } function unpause() external onlyOperator { _unpause(); } function rescueERC20(address asset, address recipient) external onlyOperator { IERC20(asset).safeTransfer( recipient, IERC20(asset).balanceOf(address(this)) ); emit RescueERC20(asset, recipient); } function rescueETH(address recipient) external onlyOperator { _transferEth(recipient, address(this).balance); } function _transferEth(address _to, uint256 _amount) internal { bool callStatus; assembly { // Transfer the ETH and store if it succeeded or not. callStatus := call(gas(), _to, _amount, 0, 0, 0, 0) } require(callStatus, "_transferEth: Eth transfer failed"); emit RescueETH(_to, _amount); } /// @dev Revert with arbitrary bytes. /// @param data Revert data. function _revertWithData(bytes memory data) internal pure { assembly { revert(add(data, 32), mload(data)) } } receive() external payable {} }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "./BKCommon.sol"; contract BKRegistry is BKCommon { struct Feature { address proxy; bool isLib; bool isActive; } mapping(bytes4 => Feature) private features; mapping(bytes4 => mapping(address => bool)) private isCallTargets; mapping(bytes4 => mapping(address => bool)) private isApproveTargets; event SetFeature(address operator, bytes4 methodId, address proxy, bool isLib, bool isActive); event SetCallTarget(address operator, bytes4 methodId, address target, bool isEnable); event SetApproveTarget(address operator, bytes4 methodId, address target, bool isEnable); constructor(address _owner) { _transferOwnership(_owner); } function setFeature( bytes4 _methodId, address _proxy, bool _isLib, bool _isActive ) external onlyOwner whenNotPaused { Feature memory feat = Feature({ proxy : _proxy, isLib : _isLib, isActive : _isActive }); features[_methodId] = feat; emit SetFeature(msg.sender, _methodId, _proxy, _isLib, _isActive); } function getFeature(bytes4 _methodId) external view returns (address proxy, bool isLib) { Feature memory feat = features[_methodId]; _checkFeatureStatus(feat); proxy = feat.proxy; isLib = feat.isLib; } function setCallTarget( bytes4 _methodId, address [] calldata _targets, bool _isEnable ) external onlyOwner whenNotPaused { Feature memory feat = features[_methodId]; _checkFeatureStatus(feat); for (uint256 i = 0; i < _targets.length; i++) { isCallTargets[_methodId][_targets[i]] = _isEnable; emit SetCallTarget(msg.sender, _methodId, _targets[i], _isEnable); } } function isCallTarget(bytes4 _methodId, address _target) external view returns (bool) { Feature memory feat = features[_methodId]; _checkFeatureStatus(feat); return isCallTargets[_methodId][_target]; } function setApproveTarget( bytes4 _methodId, address [] calldata _targets, bool _isEnable ) external onlyOwner whenNotPaused { Feature memory feat = features[_methodId]; _checkFeatureStatus(feat); for (uint256 i = 0; i < _targets.length; i++) { isApproveTargets[_methodId][_targets[i]] = _isEnable; emit SetApproveTarget(msg.sender, _methodId, _targets[i], _isEnable); } } function isApproveTarget(bytes4 _methodId, address _target) external view returns (bool) { Feature memory feat = features[_methodId]; _checkFeatureStatus(feat); return isApproveTargets[_methodId][_target]; } function _checkFeatureStatus(Feature memory _feat) internal pure { if (_feat.proxy == address(0)) { revert FeatureNotExist(); } if (!_feat.isActive) { revert FeatureInActive(); } } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; interface IBKErrors { error InvalidMsgSig(); error InsufficientEtherSupplied(); error FeatureNotExist(); error FeatureInActive(); error InvalidCaller(); error InvalidSigner(); error InvalidNonce(bytes32 signMsg); error InvalidZeroAddress(); error InvalidFeeRate(uint256 feeRate); error SwapEthBalanceNotEnough(); error SwapTokenBalanceNotEnough(); error SwapTokenApproveNotEnough(); error SwapInsuffenceOutPut(); error SwapTypeNotAvailable(); error BurnToMuch(); error IllegalCallTarget(); error IllegalApproveTarget(); error InvalidSwapAddress(address); error CallException(address); }
File 8 of 9: BKFees
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.3) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } else if (error == RecoverError.InvalidSignatureV) { revert("ECDSA: invalid signature 'v' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignatureV); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ 32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\ ", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash)); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/security/Pausable.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import "./interfaces/IBKErrors.sol"; contract BKCommon is IBKErrors, Ownable, Pausable, ReentrancyGuard { using SafeERC20 for IERC20; mapping(address => bool) isOperator; event RescueETH(address indexed recipient, uint256 amount); event RescueERC20(address indexed asset, address recipient); event SetOperator(address operator, bool isOperator); modifier onlyOperator() { require(isOperator[_msgSender()], "Operator: caller is not the operator"); _; } function setOperator(address[] calldata _operators, bool _isOperator) external onlyOwner { for(uint i = 0; i < _operators.length; i++) { isOperator[_operators[i]] = _isOperator; emit SetOperator(_operators[i], _isOperator); } } function pause() external onlyOperator { _pause(); } function unpause() external onlyOperator { _unpause(); } function rescueERC20(address asset, address recipient) external onlyOperator { IERC20(asset).safeTransfer( recipient, IERC20(asset).balanceOf(address(this)) ); emit RescueERC20(asset, recipient); } function rescueETH(address recipient) external onlyOperator { _transferEth(recipient, address(this).balance); } function _transferEth(address _to, uint256 _amount) internal { bool callStatus; assembly { // Transfer the ETH and store if it succeeded or not. callStatus := call(gas(), _to, _amount, 0, 0, 0, 0) } require(callStatus, "_transferEth: Eth transfer failed"); emit RescueETH(_to, _amount); } /// @dev Revert with arbitrary bytes. /// @param data Revert data. function _revertWithData(bytes memory data) internal pure { assembly { revert(add(data, 32), mload(data)) } } receive() external payable {} }//SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "./BKCommon.sol"; contract BKFees is BKCommon { using ECDSA for bytes32; address payable private feeTo; address payable private altcoinsFeeTo; uint private feeRate; address private signer; mapping (bytes32 => bool) private executed; event SetFeeTo( address operator, address payable feeTo, address payable altcoinsFeeTo, uint feeRate ); event SetSigner(address operator, address newSigner); constructor ( address _signer, address payable _feeTo, address payable _altcoinsFeeTo, uint _feeRate, address _owner ) { if (_signer == address(0) || _feeTo == address(0) || _altcoinsFeeTo == address(0)) { revert InvalidZeroAddress(); } if (_feeRate < 10 || _feeRate > 50) { revert InvalidFeeRate(_feeRate); } signer = _signer; feeTo = _feeTo; altcoinsFeeTo = _altcoinsFeeTo; feeRate = _feeRate; emit SetFeeTo(msg.sender, _feeTo, _altcoinsFeeTo, _feeRate); _transferOwnership(_owner); } function setFeeTo ( address payable _feeTo, address payable _altcoinsFeeTo, uint _feeRate ) external onlyOwner whenNotPaused { if ( _feeTo == address(0) || _altcoinsFeeTo == address(0)) { revert InvalidZeroAddress(); } if (_feeRate < 10 || _feeRate > 50) { revert InvalidFeeRate(_feeRate); } feeTo = _feeTo; altcoinsFeeTo = _altcoinsFeeTo; feeRate = _feeRate; emit SetFeeTo(msg.sender, _feeTo, _altcoinsFeeTo, _feeRate); } function getFeeTo () external view returns( address payable _feeTo, address payable _altcoinsFeeTo, uint _feeRate ){ _feeTo = feeTo; _altcoinsFeeTo = altcoinsFeeTo; _feeRate = feeRate; } function setSigner(address _signer) external onlyOwner whenNotPaused { if ( _signer == address(0)) { revert InvalidZeroAddress(); } signer = _signer; emit SetSigner(msg.sender, _signer); } function getSigner() external view returns(address){ return signer; } function checkIsSigner(bytes32 _nonceHash, bytes calldata _signature) external { bytes32 msgHash = keccak256(abi.encodePacked(_nonceHash, block.chainid, address(this))); bytes32 finalMsgHash = msgHash.toEthSignedMessageHash(); if (executed[finalMsgHash]) { revert IBKErrors.InvalidNonce(finalMsgHash); } else { executed[finalMsgHash] = true; } address signer_ = finalMsgHash.recover(_signature); if(signer_ != signer){ revert IBKErrors.InvalidSigner(); } } } //SPDX-License-Identifier: Unlicense pragma solidity ^0.8.17; interface IBKErrors { error InvalidMsgSig(); error InsufficientEtherSupplied(); error FeatureNotExist(); error FeatureInActive(); error InvalidCaller(); error InvalidSigner(); error InvalidNonce(bytes32 signMsg); error InvalidZeroAddress(); error InvalidFeeRate(uint256 feeRate); error SwapEthBalanceNotEnough(); error SwapTokenBalanceNotEnough(); error SwapTokenApproveNotEnough(); error SwapInsuffenceOutPut(); error SwapTypeNotAvailable(); error BurnToMuch(); error IllegalCallTarget(); error IllegalApproveTarget(); error InvalidSwapAddress(address); error CallException(address); }
File 9 of 9: SynapseBridgeImpl
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern and gas efficient ERC20 + EIP-2612 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol) /// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it. abstract contract ERC20 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); /*////////////////////////////////////////////////////////////// METADATA STORAGE //////////////////////////////////////////////////////////////*/ string public name; string public symbol; uint8 public immutable decimals; /*////////////////////////////////////////////////////////////// ERC20 STORAGE //////////////////////////////////////////////////////////////*/ uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; /*////////////////////////////////////////////////////////////// EIP-2612 STORAGE //////////////////////////////////////////////////////////////*/ uint256 internal immutable INITIAL_CHAIN_ID; bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR; mapping(address => uint256) public nonces; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor( string memory _name, string memory _symbol, uint8 _decimals ) { name = _name; symbol = _symbol; decimals = _decimals; INITIAL_CHAIN_ID = block.chainid; INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator(); } /*////////////////////////////////////////////////////////////// ERC20 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 amount) public virtual returns (bool) { allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { balanceOf[msg.sender] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool) { uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals. if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount; balanceOf[from] -= amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } /*////////////////////////////////////////////////////////////// EIP-2612 LOGIC //////////////////////////////////////////////////////////////*/ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED"); // Unchecked because the only math done is incrementing // the owner's nonce which cannot realistically overflow. unchecked { address recoveredAddress = ecrecover( keccak256( abi.encodePacked( "\\x19\\x01", DOMAIN_SEPARATOR(), keccak256( abi.encode( keccak256( "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)" ), owner, spender, value, nonces[owner]++, deadline ) ) ) ), v, r, s ); require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER"); allowance[recoveredAddress][spender] = value; } emit Approval(owner, spender, value); } function DOMAIN_SEPARATOR() public view virtual returns (bytes32) { return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator(); } function computeDomainSeparator() internal view virtual returns (bytes32) { return keccak256( abi.encode( keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256("1"), block.chainid, address(this) ) ); } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 amount) internal virtual { totalSupply += amount; // Cannot overflow because the sum of all user // balances can't exceed the max uint256 value. unchecked { balanceOf[to] += amount; } emit Transfer(address(0), to, amount); } function _burn(address from, uint256 amount) internal virtual { balanceOf[from] -= amount; // Cannot underflow because a user's balance // will never be larger than the total supply. unchecked { totalSupply -= amount; } emit Transfer(from, address(0), amount); } } // SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; import {ERC20} from "../tokens/ERC20.sol"; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer. /// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller. library SafeTransferLib { /*////////////////////////////////////////////////////////////// ETH OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferETH(address to, uint256 amount) internal { bool success; /// @solidity memory-safe-assembly assembly { // Transfer the ETH and store if it succeeded or not. success := call(gas(), to, amount, 0, 0, 0, 0) } require(success, "ETH_TRANSFER_FAILED"); } /*////////////////////////////////////////////////////////////// ERC20 OPERATIONS //////////////////////////////////////////////////////////////*/ function safeTransferFrom( ERC20 token, address from, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument. mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 100, 0, 32) ) } require(success, "TRANSFER_FROM_FAILED"); } function safeTransfer( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "TRANSFER_FAILED"); } function safeApprove( ERC20 token, address to, uint256 amount ) internal { bool success; /// @solidity memory-safe-assembly assembly { // Get a pointer to some free memory. let freeMemoryPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument. mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. success := and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())), // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2. // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space. // Counterintuitively, this call must be positioned second to the or() call in the // surrounding and() call or else returndatasize() will be zero during the computation. call(gas(), token, 0, freeMemoryPointer, 68, 0, 32) ) } require(success, "APPROVE_FAILED"); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/across.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ACROSS} from "../../static/RouteIdentifiers.sol"; /** * @title Across-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Across-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AcrossImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract AcrossImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AcrossIdentifier = ACROSS; uint256 public immutable UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on Across-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ACROSS_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,uint32,int64)" ) ); /// @notice Function-selector for Native bridging on Across-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable ACROSS_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(uint256,uint256,bytes32,address,uint32,int64)" ) ); bytes4 public immutable ACROSS_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,uint32,int64,bytes32))" ) ); /// @notice spokePool Contract instance used to deposit ERC20 and Native on to Across-Bridge /// @dev contract instance is to be initialized in the constructor using the spokePoolAddress passed as constructor argument SpokePool public immutable spokePool; address public immutable spokePoolAddress; /// @notice address of WETH token to be initialised in constructor address public immutable WETH; /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AcrossBridgeDataNoToken { uint256 toChainId; address receiverAddress; uint32 quoteTimestamp; int64 relayerFeePct; bytes32 metadata; } struct AcrossBridgeData { uint256 toChainId; address receiverAddress; address token; uint32 quoteTimestamp; int64 relayerFeePct; bytes32 metadata; } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure spokepool, weth-address are set properly for the chainId in which the contract is being deployed constructor( address _spokePool, address _wethAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { spokePool = SpokePool(_spokePool); spokePoolAddress = _spokePool; WETH = _wethAddress; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AcrossBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AcrossBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AcrossBridgeData memory acrossBridgeData = abi.decode( bridgeData, (AcrossBridgeData) ); if (acrossBridgeData.token == NATIVE_TOKEN_ADDRESS) { spokePool.deposit{value: amount}( acrossBridgeData.receiverAddress, WETH, amount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp, "", UINT256_MAX ); } else { if ( amount > ERC20(acrossBridgeData.token).allowance( address(this), address(spokePoolAddress) ) ) { ERC20(acrossBridgeData.token).safeApprove( address(spokePoolAddress), UINT256_MAX ); } spokePool.deposit( acrossBridgeData.receiverAddress, acrossBridgeData.token, amount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp, "", UINT256_MAX ); } emit SocketBridge( amount, acrossBridgeData.token, acrossBridgeData.toChainId, AcrossIdentifier, msg.sender, acrossBridgeData.receiverAddress, acrossBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AcrossBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param acrossBridgeData encoded data for AcrossBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AcrossBridgeDataNoToken calldata acrossBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { spokePool.deposit{value: bridgeAmount}( acrossBridgeData.receiverAddress, WETH, bridgeAmount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp, "", UINT256_MAX ); } else { if ( bridgeAmount > ERC20(token).allowance(address(this), address(spokePoolAddress)) ) { ERC20(token).safeApprove( address(spokePoolAddress), UINT256_MAX ); } spokePool.deposit( acrossBridgeData.receiverAddress, token, bridgeAmount, acrossBridgeData.toChainId, acrossBridgeData.relayerFeePct, acrossBridgeData.quoteTimestamp, "", UINT256_MAX ); } emit SocketBridge( bridgeAmount, token, acrossBridgeData.toChainId, AcrossIdentifier, msg.sender, acrossBridgeData.receiverAddress, acrossBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Across-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param quoteTimestamp timestamp for quote and this is to be used by Across-Bridge contract * @param relayerFeePct feePct that will be relayed by the Bridge to the relayer */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, uint32 quoteTimestamp, int64 relayerFeePct ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); if ( amount > ERC20(token).allowance(address(this), address(spokePoolAddress)) ) { ERC20(token).safeApprove(address(spokePoolAddress), UINT256_MAX); } spokePool.deposit( receiverAddress, address(token), amount, toChainId, relayerFeePct, quoteTimestamp, "", UINT256_MAX ); emit SocketBridge( amount, token, toChainId, AcrossIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Across-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param quoteTimestamp timestamp for quote and this is to be used by Across-Bridge contract * @param relayerFeePct feePct that will be relayed by the Bridge to the relayer */ function bridgeNativeTo( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, uint32 quoteTimestamp, int64 relayerFeePct ) external payable { spokePool.deposit{value: amount}( receiverAddress, WETH, amount, toChainId, relayerFeePct, quoteTimestamp, "", UINT256_MAX ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, AcrossIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice interface with functions to interact with SpokePool contract of Across-Bridge interface SpokePool { /************************************** * DEPOSITOR FUNCTIONS * **************************************/ /** * @notice Called by user to bridge funds from origin to destination chain. Depositor will effectively lock * tokens in this contract and receive a destination token on the destination chain. The origin => destination * token mapping is stored on the L1 HubPool. * @notice The caller must first approve this contract to spend amount of originToken. * @notice The originToken => destinationChainId must be enabled. * @notice This method is payable because the caller is able to deposit native token if the originToken is * wrappedNativeToken and this function will handle wrapping the native token to wrappedNativeToken. * @param recipient Address to receive funds at on destination chain. * @param originToken Token to lock into this contract to initiate deposit. * @param amount Amount of tokens to deposit. Will be amount of tokens to receive less fees. * @param destinationChainId Denotes network where user will receive funds from SpokePool by a relayer. * @param relayerFeePct % of deposit amount taken out to incentivize a fast relayer. * @param quoteTimestamp Timestamp used by relayers to compute this deposit's realizedLPFeePct which is paid * to LP pool on HubPool. */ function deposit( address recipient, address originToken, uint256 amount, uint256 destinationChainId, int64 relayerFeePct, uint32 quoteTimestamp, bytes memory message, uint256 maxCount ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {ANYSWAP} from "../../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V4-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L1 implementation, so this is used when transferring from l1 to supported l1s or L1. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ /// @notice Interface to interact with AnyswapV4-Router Implementation interface AnyswapV4Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; } contract AnyswapImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); /// @notice AnSwapV4Router Contract instance used to deposit ERC20 on to Anyswap-Bridge /// @dev contract instance is to be initialized in the constructor using the router-address passed as constructor argument AnyswapV4Router public immutable router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap 4 router is immutable. so no setter function required. */ constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV4Router(_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); ERC20(anyswapBridgeData.token).safeApprove(address(router), amount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); ERC20(token).safeApprove(address(router), bridgeAmount); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {ANYSWAP} from "../../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V4-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L2 implementation, so this is used when transferring from l2. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ interface AnyswapV4Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; } contract AnyswapL2Impl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); // polygon router multichain router v4 AnyswapV4Router public immutable router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap v4 router is immutable. so no setter function required. */ constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV4Router(_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {ANYSWAP} from "../../static/RouteIdentifiers.sol"; /** * @title Anyswap-V6-Route L1 Implementation * @notice Route implementation with functions to bridge ERC20 via Anyswap-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of AnyswapImplementation * This is the L2 implementation, so this is used when transferring from l2. * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ interface AnyswapV6Router { function anySwapOutUnderlying( address token, address to, uint256 amount, uint256 toChainID ) external; function anySwapOutNative( address token, address to, uint256 toChainID ) external payable; } contract AnyswapV6L2Impl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable AnyswapIdentifier = ANYSWAP; /// @notice Function-selector for ERC20-token bridging on Anyswap-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable ANYSWAP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,bytes32,address,address,address)" ) ); bytes4 public immutable ANYSWAP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,address,address,bytes32))" ) ); // Router multichain router v6 AnyswapV6Router public immutable router; // Non EVM Router multichain router v6 AnyswapV6Router public immutable nonevm_router; /** * @notice Constructor sets the router address and socketGateway address. * @dev anyswap v6 router is immutable. so no setter function required. */ constructor( address _router, address _nonevm_router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = AnyswapV6Router(_router); nonevm_router = AnyswapV6Router(_nonevm_router); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeDataNoToken { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice isEvm bool isEvm; /// @notice socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct AnyswapBridgeData { /// @notice destination ChainId uint256 toChainId; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of wrapperToken, WrappedVersion of the token being bridged address wrapperTokenAddress; /// @notice address of token being bridged address token; /// @notice isEvm bool isEvm; /// @notice socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { AnyswapBridgeData memory anyswapBridgeData = abi.decode( bridgeData, (AnyswapBridgeData) ); AnyswapV6Router _router = anyswapBridgeData.isEvm ? router : nonevm_router; if (anyswapBridgeData.token == NATIVE_TOKEN_ADDRESS) { _router.anySwapOutNative{value: amount}( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, anyswapBridgeData.toChainId ); } else { _router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, amount, anyswapBridgeData.toChainId ); } emit SocketBridge( amount, anyswapBridgeData.token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param anyswapBridgeData encoded data for AnyswapBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, AnyswapBridgeDataNoToken calldata anyswapBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); AnyswapV6Router _router = anyswapBridgeData.isEvm ? router : nonevm_router; if (token == NATIVE_TOKEN_ADDRESS) { _router.anySwapOutNative{value: bridgeAmount}( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, anyswapBridgeData.toChainId ); } else { _router.anySwapOutUnderlying( anyswapBridgeData.wrapperTokenAddress, anyswapBridgeData.receiverAddress, bridgeAmount, anyswapBridgeData.toChainId ); } emit SocketBridge( bridgeAmount, token, anyswapBridgeData.toChainId, AnyswapIdentifier, msg.sender, anyswapBridgeData.receiverAddress, anyswapBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeERC20To( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address token, address wrapperTokenAddress, bool isEvm ) external payable { ERC20(token).safeTransferFrom(msg.sender, socketGateway, amount); AnyswapV6Router _router = isEvm ? router : nonevm_router; _router.anySwapOutUnderlying( wrapperTokenAddress, receiverAddress, amount, toChainId ); emit SocketBridge( amount, token, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle native token bridging to receipent via Anyswap-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param metadata offchain created bytes32 hash * @param toChainId destination ChainId * @param receiverAddress address of receiver of bridged tokens * @param wrapperTokenAddress address of wrapperToken, WrappedVersion of the token being bridged */ function bridgeNativeTo( uint256 amount, uint256 toChainId, bytes32 metadata, address receiverAddress, address wrapperTokenAddress, bool isEvm ) external payable { AnyswapV6Router _router = isEvm ? router : nonevm_router; _router.anySwapOutNative{value: amount}( wrapperTokenAddress, receiverAddress, toChainId ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, AnyswapIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 /* * Copyright 2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity >=0.8.0; /** * @title L1gatewayRouter for native-arbitrum */ interface L1GatewayRouter { /** * @notice outbound function to bridge ERC20 via NativeArbitrum-Bridge * @param _token address of token being bridged via GatewayRouter * @param _to recipient of the token on arbitrum chain * @param _amount amount of ERC20 token being bridged * @param _maxGas a depositParameter for bridging the token * @param _gasPriceBid a depositParameter for bridging the token * @param _data a depositParameter for bridging the token * @return calldata returns the output of transactioncall made on gatewayRouter */ function outboundTransfer( address _token, address _to, uint256 _amount, uint256 _maxGas, uint256 _gasPriceBid, bytes calldata _data ) external payable returns (bytes calldata); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {L1GatewayRouter} from "../interfaces/arbitrum.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {NATIVE_ARBITRUM} from "../../../static/RouteIdentifiers.sol"; /** * @title Native Arbitrum-Route Implementation * @notice Route implementation with functions to bridge ERC20 via NativeArbitrum-Bridge * @notice Called via SocketGateway if the routeId in the request maps to the routeId of NativeArbitrum-Implementation * @notice This is used when transferring from ethereum chain to arbitrum via their native bridge. * @notice Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * @notice RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract NativeArbitrumImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable NativeArbitrumIdentifier = NATIVE_ARBITRUM; uint256 public constant DESTINATION_CHAIN_ID = 42161; /// @notice max value for uint256 uint256 public constant UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on NativeArbitrum /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_ARBITRUM_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,uint256,uint256,bytes32,address,address,address,bytes)" ) ); bytes4 public immutable NATIVE_ARBITRUM_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,uint256,uint256,address,address,bytes32,bytes))" ) ); /// @notice router address of NativeArbitrum Bridge /// @notice GatewayRouter looks up ERC20Token's gateway, and finding that it's Standard ERC20 gateway (the L1ERC20Gateway contract). address public immutable router; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router-address are set properly for the chainId in which the contract is being deployed constructor( address _router, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = _router; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct NativeArbitrumBridgeDataNoToken { uint256 value; /// @notice maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 maxGas; /// @notice gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 gasPriceBid; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of Gateway which handles the token bridging for the token /// @notice gatewayAddress is unique for each token address gatewayAddress; /// @notice socket offchain created hash bytes32 metadata; /// @notice data is a depositParameter derived from erc20Bridger of nativeArbitrum bytes data; } struct NativeArbitrumBridgeData { uint256 value; /// @notice maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 maxGas; /// @notice gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum uint256 gasPriceBid; /// @notice address of receiver of bridged tokens address receiverAddress; /// @notice address of Gateway which handles the token bridging for the token /// @notice gatewayAddress is unique for each token address gatewayAddress; /// @notice address of token being bridged address token; /// @notice socket offchain created hash bytes32 metadata; /// @notice data is a depositParameter derived from erc20Bridger of nativeArbitrum bytes data; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativeArbitrumBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for NativeArbitrumBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { NativeArbitrumBridgeData memory nativeArbitrumBridgeData = abi.decode( bridgeData, (NativeArbitrumBridgeData) ); if ( amount > ERC20(nativeArbitrumBridgeData.token).allowance( address(this), nativeArbitrumBridgeData.gatewayAddress ) ) { ERC20(nativeArbitrumBridgeData.token).safeApprove( nativeArbitrumBridgeData.gatewayAddress, UINT256_MAX ); } L1GatewayRouter(router).outboundTransfer{ value: nativeArbitrumBridgeData.value }( nativeArbitrumBridgeData.token, nativeArbitrumBridgeData.receiverAddress, amount, nativeArbitrumBridgeData.maxGas, nativeArbitrumBridgeData.gasPriceBid, nativeArbitrumBridgeData.data ); emit SocketBridge( amount, nativeArbitrumBridgeData.token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, nativeArbitrumBridgeData.receiverAddress, nativeArbitrumBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativeArbitrumBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param nativeArbitrumBridgeData encoded data for NativeArbitrumBridge */ function swapAndBridge( uint32 swapId, bytes calldata swapData, NativeArbitrumBridgeDataNoToken calldata nativeArbitrumBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if ( bridgeAmount > ERC20(token).allowance( address(this), nativeArbitrumBridgeData.gatewayAddress ) ) { ERC20(token).safeApprove( nativeArbitrumBridgeData.gatewayAddress, UINT256_MAX ); } L1GatewayRouter(router).outboundTransfer{ value: nativeArbitrumBridgeData.value }( token, nativeArbitrumBridgeData.receiverAddress, bridgeAmount, nativeArbitrumBridgeData.maxGas, nativeArbitrumBridgeData.gasPriceBid, nativeArbitrumBridgeData.data ); emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, nativeArbitrumBridgeData.receiverAddress, nativeArbitrumBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via NativeArbitrum-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount being bridged * @param value value * @param maxGas maxGas is a depositParameter derived from erc20Bridger of nativeArbitrum * @param gasPriceBid gasPriceBid is a depositParameter derived from erc20Bridger of nativeArbitrum * @param receiverAddress address of receiver of bridged tokens * @param token address of token being bridged * @param gatewayAddress address of Gateway which handles the token bridging for the token, gatewayAddress is unique for each token * @param data data is a depositParameter derived from erc20Bridger of nativeArbitrum */ function bridgeERC20To( uint256 amount, uint256 value, uint256 maxGas, uint256 gasPriceBid, bytes32 metadata, address receiverAddress, address token, address gatewayAddress, bytes memory data ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); if (amount > ERC20(token).allowance(address(this), gatewayAddress)) { ERC20(token).safeApprove(gatewayAddress, UINT256_MAX); } L1GatewayRouter(router).outboundTransfer{value: value}( token, receiverAddress, amount, maxGas, gasPriceBid, data ); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativeArbitrumIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; import {OnlySocketGatewayOwner, OnlySocketDeployer} from "../errors/SocketErrors.sol"; /** * @title Abstract Implementation Contract. * @notice All Bridge Implementation will follow this interface. */ abstract contract BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; /// @notice immutable variable to store the socketGateway address address public immutable socketDeployFactory; /// @notice immutable variable with instance of SocketRoute to access route functions ISocketRoute public immutable socketRoute; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /**************************************** * EVENTS * ****************************************/ event SocketBridge( uint256 amount, address token, uint256 toChainId, bytes32 bridgeName, address sender, address receiver, bytes32 metadata ); /** * @notice Construct the base for all BridgeImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. * @param _socketDeployFactory Socket Deploy Factory address, an immutable variable to set. */ constructor(address _socketGateway, address _socketDeployFactory) { socketGateway = _socketGateway; socketDeployFactory = _socketDeployFactory; socketRoute = ISocketRoute(_socketGateway); } /**************************************** * MODIFIERS * ****************************************/ /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketDeployFactory() { if (msg.sender != socketDeployFactory) { revert OnlySocketDeployer(); } _; } /**************************************** * RESTRICTED FUNCTIONS * ****************************************/ /** * @notice function to rescue the ERC20 tokens in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } function killme() external isSocketDeployFactory { selfdestruct(payable(msg.sender)); } /****************************** * VIRTUAL FUNCTIONS * *****************************/ /** * @notice function to bridge which is succeeding the swap function * @notice this function is to be used only when bridging as a succeeding step * @notice All bridge implementation contracts must implement this function * @notice bridge-implementations will have a bridge specific struct with properties used in bridging * @param bridgeData encoded value of properties in the bridgeData Struct */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../../libraries/Pb.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/cbridge.sol"; import "./interfaces/ICelerStorageWrapper.sol"; import {TransferIdExists, InvalidCelerRefund, CelerAlreadyRefunded, CelerRefundNotReady} from "../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {CBRIDGE} from "../../static/RouteIdentifiers.sol"; /** * @title Celer-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Celer-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of CelerImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract CelerImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable CBridgeIdentifier = CBRIDGE; /// @notice Utility to perform operation on Buffer using Pb for Pb.Buffer; /// @notice Function-selector for ERC20-token bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge ERC20 tokens bytes4 public immutable CELER_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,uint256,bytes32,uint64,uint64,uint32)" ) ); /// @notice Function-selector for Native bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable CELER_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,uint256,bytes32,uint64,uint64,uint32)" ) ); bytes4 public immutable CELER_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,uint64,uint32,uint64,bytes32))" ) ); /// @notice router Contract instance used to deposit ERC20 and Native on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the routerAddress passed as constructor argument ICBridge public immutable router; /// @notice celerStorageWrapper Contract instance used to store the transferId generated during ERC20 and Native bridge on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the celerStorageWrapperAddress passed as constructor argument ICelerStorageWrapper public immutable celerStorageWrapper; /// @notice WETH token address address public immutable weth; /// @notice chainId used during generation of transferId generated while bridging ERC20 and Native on to Celer-Bridge /// @dev this is to be initialised in the constructor uint64 public immutable chainId; struct WithdrawMsg { uint64 chainid; // tag: 1 uint64 seqnum; // tag: 2 address receiver; // tag: 3 address token; // tag: 4 uint256 amount; // tag: 5 bytes32 refid; // tag: 6 } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure routerAddress, weth-address, celerStorageWrapperAddress are set properly for the chainId in which the contract is being deployed constructor( address _routerAddress, address _weth, address _celerStorageWrapperAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = ICBridge(_routerAddress); celerStorageWrapper = ICelerStorageWrapper(_celerStorageWrapperAddress); weth = _weth; chainId = uint64(block.chainid); } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct CelerBridgeDataNoToken { address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } struct CelerBridgeData { address token; address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for CelerBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { CelerBridgeData memory celerBridgeData = abi.decode( bridgeData, (CelerBridgeData) ); if (celerBridgeData.token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( celerBridgeData.receiverAddress, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( amount, celerBridgeData.token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param celerBridgeData encoded data for CelerBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, CelerBridgeDataNoToken calldata celerBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: bridgeAmount}( celerBridgeData.receiverAddress, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( bridgeAmount, token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param token address of token being bridged * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeERC20To( address receiverAddress, address token, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { /// @notice transferId is generated using the request-params and nonce of the account /// @notice transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, token, amount, toChainId, nonce, chainId ) ); /// @notice stored in the CelerStorageWrapper contract celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); router.send( receiverAddress, token, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, token, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeNativeTo( address receiverAddress, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, weth, amount, toChainId, nonce, chainId ) ); celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( receiverAddress, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle refund from CelerBridge-Router * @param _request request data generated offchain using the celer-SDK * @param _sigs generated offchain using the celer-SDK * @param _signers generated offchain using the celer-SDK * @param _powers generated offchain using the celer-SDK */ function refundCelerUser( bytes calldata _request, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external payable { WithdrawMsg memory request = decWithdrawMsg(_request); bytes32 transferId = keccak256( abi.encodePacked( request.chainid, request.seqnum, request.receiver, request.token, request.amount ) ); uint256 _initialNativeBalance = address(this).balance; uint256 _initialTokenBalance = ERC20(request.token).balanceOf( address(this) ); if (!router.withdraws(transferId)) { router.withdraw(_request, _sigs, _signers, _powers); } if (request.receiver != socketGateway) { revert InvalidCelerRefund(); } address _receiver = celerStorageWrapper.getAddressFromTransferId( request.refid ); celerStorageWrapper.deleteTransferId(request.refid); if (_receiver == address(0)) { revert CelerAlreadyRefunded(); } uint256 _nativeBalanceAfter = address(this).balance; uint256 _tokenBalanceAfter = ERC20(request.token).balanceOf( address(this) ); if (_nativeBalanceAfter > _initialNativeBalance) { if ((_nativeBalanceAfter - _initialNativeBalance) != request.amount) revert CelerRefundNotReady(); payable(_receiver).transfer(request.amount); return; } if (_tokenBalanceAfter > _initialTokenBalance) { if ((_tokenBalanceAfter - _initialTokenBalance) != request.amount) revert CelerRefundNotReady(); ERC20(request.token).safeTransfer(_receiver, request.amount); return; } revert CelerRefundNotReady(); } function decWithdrawMsg( bytes memory raw ) internal pure returns (WithdrawMsg memory m) { Pb.Buffer memory buf = Pb.fromBytes(raw); uint256 tag; Pb.WireType wire; while (buf.hasMore()) { (tag, wire) = buf.decKey(); if (false) {} // solidity has no switch/case else if (tag == 1) { m.chainid = uint64(buf.decVarint()); } else if (tag == 2) { m.seqnum = uint64(buf.decVarint()); } else if (tag == 3) { m.receiver = Pb._address(buf.decBytes()); } else if (tag == 4) { m.token = Pb._address(buf.decBytes()); } else if (tag == 5) { m.amount = Pb._uint256(buf.decBytes()); } else if (tag == 6) { m.refid = Pb._bytes32(buf.decBytes()); } else { buf.skipValue(wire); } // skip value of unknown tag } } // end decoder WithdrawMsg } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../../libraries/Pb.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/cbridge.sol"; import "./interfaces/ICelerStorageWrapper.sol"; import {TransferIdExists, InvalidCelerRefund, CelerAlreadyRefunded, CelerRefundNotReady} from "../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {CBRIDGE} from "../../static/RouteIdentifiers.sol"; /** * @title Celer-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Celer-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of CelerImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract CelerV2Impl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable CBridgeIdentifier = CBRIDGE; /// @notice Utility to perform operation on Buffer using Pb for Pb.Buffer; /// @notice Function-selector for ERC20-token bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge ERC20 tokens bytes4 public immutable CELER_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,uint256,bytes32,uint64,uint64,uint32)" ) ); /// @notice Function-selector for Native bridging on Celer-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable CELER_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,uint256,bytes32,uint64,uint64,uint32)" ) ); bytes4 public immutable CELER_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,uint64,uint32,uint64,bytes32))" ) ); /// @notice router Contract instance used to deposit ERC20 and Native on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the routerAddress passed as constructor argument ICBridge public immutable router; /// @notice celerStorageWrapper Contract instance used to store the transferId generated during ERC20 and Native bridge on to Celer-Bridge /// @dev contract instance is to be initialized in the constructor using the celerStorageWrapperAddress passed as constructor argument ICelerStorageWrapper public immutable celerStorageWrapper; /// @notice WETH token address address public immutable weth; /// @notice chainId used during generation of transferId generated while bridging ERC20 and Native on to Celer-Bridge /// @dev this is to be initialised in the constructor uint64 public immutable chainId; struct WithdrawMsg { uint64 chainid; // tag: 1 uint64 seqnum; // tag: 2 address receiver; // tag: 3 address token; // tag: 4 uint256 amount; // tag: 5 bytes32 refid; // tag: 6 } /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure routerAddress, weth-address, celerStorageWrapperAddress are set properly for the chainId in which the contract is being deployed constructor( address _routerAddress, address _weth, address _celerStorageWrapperAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = ICBridge(_routerAddress); weth = _weth; chainId = uint64(block.chainid); celerStorageWrapper = ICelerStorageWrapper(_celerStorageWrapperAddress); } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct CelerBridgeDataNoToken { address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } struct CelerBridgeData { address token; address receiverAddress; uint64 toChainId; uint32 maxSlippage; uint64 nonce; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for CelerBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { CelerBridgeData memory celerBridgeData = abi.decode( bridgeData, (CelerBridgeData) ); if (celerBridgeData.token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( celerBridgeData.receiverAddress, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, celerBridgeData.token, amount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( amount, celerBridgeData.token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param celerBridgeData encoded data for CelerBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, CelerBridgeDataNoToken calldata celerBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, weth, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: bridgeAmount}( celerBridgeData.receiverAddress, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } else { // transferId is generated using the request-params and nonce of the account // transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, chainId ) ); // transferId is stored in CelerStorageWrapper with in a mapping where key is transferId and value is the msg-sender celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.send( celerBridgeData.receiverAddress, token, bridgeAmount, celerBridgeData.toChainId, celerBridgeData.nonce, celerBridgeData.maxSlippage ); } emit SocketBridge( bridgeAmount, token, celerBridgeData.toChainId, CBridgeIdentifier, msg.sender, celerBridgeData.receiverAddress, celerBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param token address of token being bridged * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeERC20To( address receiverAddress, address token, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { /// @notice transferId is generated using the request-params and nonce of the account /// @notice transferId should be unique for each request and this is used while handling refund from celerBridge bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, token, amount, toChainId, nonce, chainId ) ); /// @notice stored in the CelerStorageWrapper contract celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); router.send( receiverAddress, token, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, token, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Celer-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of recipient * @param amount amount of token for bridging * @param toChainId destination ChainId * @param nonce nonce of the sender-account address * @param maxSlippage maximum Slippage for the bridging */ function bridgeNativeTo( address receiverAddress, uint256 amount, bytes32 metadata, uint64 toChainId, uint64 nonce, uint32 maxSlippage ) external payable { bytes32 transferId = keccak256( abi.encodePacked( address(this), receiverAddress, weth, amount, toChainId, nonce, chainId ) ); celerStorageWrapper.setAddressForTransferId(transferId, msg.sender); router.sendNative{value: amount}( receiverAddress, amount, toChainId, nonce, maxSlippage ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, CBridgeIdentifier, msg.sender, receiverAddress, metadata ); } // function bridgeNativeToOptimised() external payable { router.sendNative{value: msg.value}( address(bytes20(msg.data[4:24])), // receiver address msg.value, uint64(uint32(bytes4(msg.data[24:28]))), // toChainId uint64(uint32(bytes4(msg.data[28:32]))), // nonce uint32(bytes4(msg.data[32:36])) // max slippage ); emit SocketBridge( msg.value, NATIVE_TOKEN_ADDRESS, uint64(uint32(bytes4(msg.data[24:28]))), CBridgeIdentifier, msg.sender, address(bytes20(msg.data[4:24])), hex"01" // metadata ); } function bridgeERC20ToOptimised() external payable { ERC20(address(bytes20(msg.data[24:44]))).safeTransferFrom( msg.sender, socketGateway, uint256(uint128(bytes16(msg.data[44:60]))) ); router.send( address(bytes20(msg.data[4:24])), // receiver address address(bytes20(msg.data[24:44])), // token uint256(uint128(bytes16(msg.data[44:60]))), // amount uint64(uint32(bytes4(msg.data[60:64]))), // toChainId uint64(uint32(bytes4(msg.data[64:68]))), // nonce uint32(bytes4(msg.data[68:72])) // max slippage ); emit SocketBridge( uint256(uint128(bytes16(msg.data[44:60]))), address(bytes20(msg.data[24:44])), uint64(uint32(bytes4(msg.data[60:64]))), CBridgeIdentifier, msg.sender, address(bytes20(msg.data[4:24])), hex"01" // metadata ); } /** * @notice function to handle refund from CelerBridge-Router * @param _receiver address that the refund should be sent back to * @param _request request data generated offchain using the celer-SDK * @param _sigs generated offchain using the celer-SDK * @param _signers generated offchain using the celer-SDK * @param _powers generated offchain using the celer-SDK */ function refundCelerUserAdmin( address _receiver, bytes calldata _request, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external payable isSocketGatewayOwner { WithdrawMsg memory request = decWithdrawMsg(_request); bytes32 transferId = keccak256( abi.encodePacked( request.chainid, request.seqnum, request.receiver, request.token, request.amount ) ); uint256 _initialNativeBalance = address(this).balance; uint256 _initialTokenBalance = ERC20(request.token).balanceOf( address(this) ); if (!router.withdraws(transferId)) { router.withdraw(_request, _sigs, _signers, _powers); } if (request.receiver != socketGateway) { revert InvalidCelerRefund(); } if ( celerStorageWrapper.getAddressFromTransferId(request.refid) != address(0) ) { revert InvalidCelerRefund(); } uint256 _nativeBalanceAfter = address(this).balance; uint256 _tokenBalanceAfter = ERC20(request.token).balanceOf( address(this) ); if (_nativeBalanceAfter > _initialNativeBalance) { if ((_nativeBalanceAfter - _initialNativeBalance) != request.amount) revert CelerRefundNotReady(); payable(_receiver).transfer(request.amount); return; } if (_tokenBalanceAfter > _initialTokenBalance) { if ((_tokenBalanceAfter - _initialTokenBalance) != request.amount) revert CelerRefundNotReady(); ERC20(request.token).safeTransfer(_receiver, request.amount); return; } revert CelerRefundNotReady(); } /** * @notice function to handle refund from CelerBridge-Router * @param _request request data generated offchain using the celer-SDK * @param _sigs generated offchain using the celer-SDK * @param _signers generated offchain using the celer-SDK * @param _powers generated offchain using the celer-SDK */ function refundCelerUser( bytes calldata _request, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external payable { WithdrawMsg memory request = decWithdrawMsg(_request); bytes32 transferId = keccak256( abi.encodePacked( request.chainid, request.seqnum, request.receiver, request.token, request.amount ) ); uint256 _initialNativeBalance = address(this).balance; uint256 _initialTokenBalance = ERC20(request.token).balanceOf( address(this) ); if (!router.withdraws(transferId)) { router.withdraw(_request, _sigs, _signers, _powers); } if (request.receiver != socketGateway) { revert InvalidCelerRefund(); } address _receiver = celerStorageWrapper.getAddressFromTransferId( request.refid ); celerStorageWrapper.deleteTransferId(request.refid); if (_receiver == address(0)) { revert CelerAlreadyRefunded(); } uint256 _nativeBalanceAfter = address(this).balance; uint256 _tokenBalanceAfter = ERC20(request.token).balanceOf( address(this) ); if (_nativeBalanceAfter > _initialNativeBalance) { if ((_nativeBalanceAfter - _initialNativeBalance) != request.amount) revert CelerRefundNotReady(); payable(_receiver).transfer(request.amount); return; } if (_tokenBalanceAfter > _initialTokenBalance) { if ((_tokenBalanceAfter - _initialTokenBalance) != request.amount) revert CelerRefundNotReady(); ERC20(request.token).safeTransfer(_receiver, request.amount); return; } revert CelerRefundNotReady(); } function decWithdrawMsg( bytes memory raw ) internal pure returns (WithdrawMsg memory m) { Pb.Buffer memory buf = Pb.fromBytes(raw); uint256 tag; Pb.WireType wire; while (buf.hasMore()) { (tag, wire) = buf.decKey(); if (false) {} // solidity has no switch/case else if (tag == 1) { m.chainid = uint64(buf.decVarint()); } else if (tag == 2) { m.seqnum = uint64(buf.decVarint()); } else if (tag == 3) { m.receiver = Pb._address(buf.decBytes()); } else if (tag == 4) { m.token = Pb._address(buf.decBytes()); } else if (tag == 5) { m.amount = Pb._uint256(buf.decBytes()); } else if (tag == 6) { m.refid = Pb._bytes32(buf.decBytes()); } else { buf.skipValue(wire); } // skip value of unknown tag } } // end decoder WithdrawMsg } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; import {OnlySocketGateway, TransferIdExists, TransferIdDoesnotExist} from "../../errors/SocketErrors.sol"; /** * @title CelerStorageWrapper * @notice handle storageMappings used while bridging ERC20 and native on CelerBridge * @dev all functions ehich mutate the storage are restricted to Owner of SocketGateway * @author Socket dot tech. */ contract CelerStorageWrapper { /// @notice Socketgateway-address to be set in the constructor of CelerStorageWrapper address public immutable socketGateway; /// @notice mapping to store the transferId generated during bridging on Celer to message-sender mapping(bytes32 => address) private transferIdMapping; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor(address _socketGateway) { socketGateway = _socketGateway; } /** * @notice function to store the transferId and message-sender of a bridging activity * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @param transferIdAddress message sender who is making the bridging on CelerBridge */ function setAddressForTransferId( bytes32 transferId, address transferIdAddress ) external { if (msg.sender != socketGateway) { revert OnlySocketGateway(); } if (transferIdMapping[transferId] != address(0)) { revert TransferIdExists(); } transferIdMapping[transferId] = transferIdAddress; } /** * @notice function to delete the transferId when the celer bridge processes a refund. * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge */ function deleteTransferId(bytes32 transferId) external { if (msg.sender != socketGateway) { revert OnlySocketGateway(); } if (transferIdMapping[transferId] == address(0)) { revert TransferIdDoesnotExist(); } delete transferIdMapping[transferId]; } /** * @notice function to lookup the address mapped to the transferId * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @return address of account mapped to transferId */ function getAddressFromTransferId( bytes32 transferId ) external view returns (address) { return transferIdMapping[transferId]; } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface ICBridge { function send( address _receiver, address _token, uint256 _amount, uint64 _dstChinId, uint64 _nonce, uint32 _maxSlippage ) external; function sendNative( address _receiver, uint256 _amount, uint64 _dstChinId, uint64 _nonce, uint32 _maxSlippage ) external payable; function withdraws(bytes32 withdrawId) external view returns (bool); function withdraw( bytes calldata _wdmsg, bytes[] calldata _sigs, address[] calldata _signers, uint256[] calldata _powers ) external; } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /** * @title Celer-StorageWrapper interface * @notice Interface to handle storageMappings used while bridging ERC20 and native on CelerBridge * @dev all functions ehich mutate the storage are restricted to Owner of SocketGateway * @author Socket dot tech. */ interface ICelerStorageWrapper { /** * @notice function to store the transferId and message-sender of a bridging activity * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @param transferIdAddress message sender who is making the bridging on CelerBridge */ function setAddressForTransferId( bytes32 transferId, address transferIdAddress ) external; /** * @notice function to store the transferId and message-sender of a bridging activity * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in CelerBridgeData struct * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge */ function deleteTransferId(bytes32 transferId) external; /** * @notice function to lookup the address mapped to the transferId * @param transferId transferId generated during the bridging of ERC20 or native on CelerBridge * @return address of account mapped to transferId */ function getAddressFromTransferId( bytes32 transferId ) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/cctp.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {CCTP} from "../../static/RouteIdentifiers.sol"; /** * @title CCTP-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hyphen-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of HyphenImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract CctpImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable cctpIndentifier = CCTP; /// @notice Function-selector for ERC20-token bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable CCTP_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,bytes32,address,address,uint256,uint32,uint256)" ) ); bytes4 public immutable CCTP_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,uint32,uint256,uint256,bytes32))" ) ); TokenMessenger public immutable tokenMessenger; address public immutable feeCollector; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure liquidityPoolManager-address are set properly for the chainId in which the contract is being deployed constructor( address _tokenMessenger, address _feeCollector, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { tokenMessenger = TokenMessenger(_tokenMessenger); feeCollector = _feeCollector; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct CctpData { /// @notice address of token being bridged address token; /// @notice address of receiver address receiverAddress; uint32 destinationDomain; /// @notice chainId of destination uint256 toChainId; /// @notice destinationDomain uint256 feeAmount; /// @notice socket offchain created hash bytes32 metadata; } struct CctoDataNoToken { address receiverAddress; uint32 destinationDomain; uint256 toChainId; uint256 feeAmount; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for HyphenBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { CctpData memory cctpData = abi.decode(bridgeData, (CctpData)); if (cctpData.token == NATIVE_TOKEN_ADDRESS) { revert("Native token not supported"); } else { ERC20(cctpData.token).transfer(feeCollector, cctpData.feeAmount); tokenMessenger.depositForBurn( amount - cctpData.feeAmount, cctpData.destinationDomain, bytes32(uint256(uint160(cctpData.receiverAddress))), cctpData.token ); } emit SocketBridge( amount, cctpData.token, cctpData.toChainId, cctpIndentifier, msg.sender, cctpData.receiverAddress, cctpData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param cctpData encoded data for cctpData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, CctoDataNoToken calldata cctpData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { revert("Native token not supported"); } else { ERC20(token).transfer(feeCollector, cctpData.feeAmount); tokenMessenger.depositForBurn( bridgeAmount - cctpData.feeAmount, cctpData.destinationDomain, bytes32(uint256(uint160(cctpData.receiverAddress))), token ); } emit SocketBridge( bridgeAmount, token, cctpData.toChainId, cctpIndentifier, msg.sender, cctpData.receiverAddress, cctpData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param token address of token being bridged * @param toChainId chainId of destination */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token, uint256 toChainId, uint32 destinationDomain, uint256 feeAmount ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.transfer(feeCollector, feeAmount); tokenMessenger.depositForBurn( amount - feeAmount, destinationDomain, bytes32(uint256(uint160(receiverAddress))), token ); emit SocketBridge( amount, token, toChainId, cctpIndentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface TokenMessenger { function depositForBurn( uint256 amount, uint32 destinationDomain, bytes32 mintRecipient, address burnToken ) external returns (uint64 _nonce); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {CONNEXT} from "../../static/RouteIdentifiers.sol"; interface IConnextHandler { function xcall( uint32 destination, address recipient, address tokenAddress, address delegate, uint256 amount, uint256 slippage, bytes memory callData ) external payable returns (bytes32); function xcall( uint32 _destination, address _to, address _asset, address _delegate, uint256 _amount, uint256 _slippage, bytes calldata _callData, uint256 _relayerFee ) external returns (bytes32); } interface WETH { function deposit() external payable; } contract ConnextImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable connextIndetifier = CONNEXT; address public immutable wethAddress; /// @notice max value for uint256 uint256 public constant UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on Connext-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable CONNEXT_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(uint256,uint256,uint256,uint256,uint32,address,address,bytes32,bytes)" ) ); bytes4 public immutable CONNECT_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(uint256,uint256,uint256,uint256,uint32,address,bytes32,bytes)" ) ); bytes4 public immutable CONNEXT_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,uint256,uint256,uint32,address,bytes32,bytes))" ) ); /// @notice Connext Contract instance used to deposit ERC20 on to Connext-Bridge /// @dev contract instance is to be initialized in the constructor using the router-address passed as constructor argument IConnextHandler public immutable router; constructor( address _router, address _wethAddress, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IConnextHandler(_router); wethAddress = _wethAddress; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct ConnextBridgeNoTokenData { uint256 toChainId; uint256 slippage; uint256 relayerFee; uint32 dstChainDomain; address receiverAddress; bytes32 metadata; bytes callData; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct ConnextBridgeData { uint256 toChainId; uint256 slippage; uint256 relayerFee; uint32 dstChainDomain; address token; address receiverAddress; bytes32 metadata; bytes callData; } /** * @notice function to bridge tokens after swap. This is used after swap function call * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in AnyswapBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for AnyswapBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { ConnextBridgeData memory connextBridgeData = abi.decode( bridgeData, (ConnextBridgeData) ); if (connextBridgeData.token == NATIVE_TOKEN_ADDRESS) { WETH(wethAddress).deposit{value: amount}(); } if ( amount > ERC20(connextBridgeData.token).allowance( address(this), address(router) ) ) { ERC20(connextBridgeData.token).safeApprove( address(router), UINT256_MAX ); } router.xcall( connextBridgeData.dstChainDomain, connextBridgeData.receiverAddress, connextBridgeData.token, msg.sender, amount - connextBridgeData.relayerFee, connextBridgeData.slippage, connextBridgeData.callData, connextBridgeData.relayerFee ); emit SocketBridge( amount, connextBridgeData.token, connextBridgeData.toChainId, connextIndetifier, msg.sender, connextBridgeData.receiverAddress, connextBridgeData.metadata ); } function swapAndBridge( uint32 swapId, bytes calldata swapData, ConnextBridgeNoTokenData calldata connextBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { WETH(wethAddress).deposit{value: bridgeAmount}(); } if ( bridgeAmount > ERC20(token).allowance(address(this), address(router)) ) { ERC20(token).safeApprove(address(router), UINT256_MAX); } router.xcall( connextBridgeData.dstChainDomain, connextBridgeData.receiverAddress, token, msg.sender, bridgeAmount - connextBridgeData.relayerFee, connextBridgeData.slippage, connextBridgeData.callData, connextBridgeData.relayerFee ); emit SocketBridge( bridgeAmount, token, connextBridgeData.toChainId, connextIndetifier, msg.sender, connextBridgeData.receiverAddress, connextBridgeData.metadata ); } function bridgeERC20To( uint256 amount, uint256 toChainId, uint256 slippage, uint256 relayerFee, uint32 dstChainDomain, address receiverAddress, address token, bytes32 metadata, bytes memory callData ) external payable { ERC20(token).safeTransferFrom(msg.sender, socketGateway, amount); if (amount > ERC20(token).allowance(address(this), address(router))) { ERC20(token).safeApprove(address(router), UINT256_MAX); } router.xcall( dstChainDomain, receiverAddress, token, msg.sender, amount - relayerFee, slippage, callData, relayerFee ); emit SocketBridge( amount, token, toChainId, connextIndetifier, msg.sender, receiverAddress, metadata ); } function bridgeNativeTo( uint256 amount, uint256 toChainId, uint256 slippage, uint256 relayerFee, uint32 dstChainDomain, address receiverAddress, bytes32 metadata, bytes memory callData ) external payable { WETH(wethAddress).deposit{value: amount}(); if ( amount > ERC20(wethAddress).allowance(address(this), address(router)) ) { ERC20(wethAddress).safeApprove(address(router), UINT256_MAX); } router.xcall( dstChainDomain, receiverAddress, wethAddress, msg.sender, amount - relayerFee, slippage, callData, relayerFee ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, connextIndetifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /** * @title HopAMM * @notice Interface to handle the token bridging to L2 chains. */ interface HopAMM { /** * @notice To send funds L2->L1 or L2->L2, call the swapAndSend on the L2 AMM Wrapper contract * @param chainId chainId of the L2 contract * @param recipient receiver address * @param amount amount is the amount the user wants to send plus the Bonder fee * @param bonderFee fees * @param amountOutMin minimum amount * @param deadline deadline for bridging * @param destinationAmountOutMin minimum amount expected to be bridged on L2 * @param destinationDeadline destination time before which token is to be bridged on L2 */ function swapAndSend( uint256 chainId, address recipient, uint256 amount, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 destinationAmountOutMin, uint256 destinationDeadline ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title L1Bridge Hop Interface * @notice L1 Hop Bridge, Used to transfer from L1 to L2s. */ interface IHopL1Bridge { /** * @notice `amountOutMin` and `deadline` should be 0 when no swap is intended at the destination. * @notice `amount` is the total amount the user wants to send including the relayer fee * @dev Send tokens to a supported layer-2 to mint hToken and optionally swap the hToken in the * AMM at the destination. * @param chainId The chainId of the destination chain * @param recipient The address receiving funds at the destination * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination * AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no * swap is intended. * @param relayer The address of the relayer at the destination. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. */ function sendToL2( uint256 chainId, address recipient, uint256 amount, uint256 amountOutMin, uint256 deadline, address relayer, uint256 relayerFee ) external payable; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "../interfaces/IHopL1Bridge.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L1 Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hop-Bridge from L1 to Supported L2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,address,uint256,uint256,uint256,uint256,(uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L1-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,address,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,address,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopDataNoToken { // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopERC20Data { uint256 deadline; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopData memory hopData = abi.decode(bridgeData, (HopData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param hopData extra data needed to build the tx */ function bridgeERC20To( address receiverAddress, address token, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, HopERC20Data calldata hopData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); // perform bridging IHopL1Bridge(l1bridgeAddr).sendToL2( toChainId, receiverAddress, amount, amountOutMin, hopData.deadline, relayer, relayerFee ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. */ function bridgeNativeTo( address receiverAddress, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, uint256 deadline, bytes32 metadata ) external payable { IHopL1Bridge(l1bridgeAddr).sendToL2{value: amount}( toChainId, receiverAddress, amount, amountOutMin, deadline, relayer, relayerFee ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import "../interfaces/IHopL1Bridge.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L1 Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hop-Bridge from L1 to Supported L2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL1V2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,address,uint256,uint256,uint256,uint256,(uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L1-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,address,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,address,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopDataNoToken { // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // address of the Hop-L1-Bridge to handle bridging the tokens address l1bridgeAddr; // relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. address relayer; // The chainId of the destination chain uint256 toChainId; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The amount distributed to the relayer at the destination. This is subtracted from the `amount`. uint256 relayerFee; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // socket offchain created hash bytes32 metadata; } struct HopERC20Data { uint256 deadline; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopData memory hopData = abi.decode(bridgeData, (HopData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, amount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IHopL1Bridge(hopData.l1bridgeAddr).sendToL2{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } else { // perform bridging IHopL1Bridge(hopData.l1bridgeAddr).sendToL2( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.amountOutMin, hopData.deadline, hopData.relayer, hopData.relayerFee ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param hopData extra data needed to build the tx */ function bridgeERC20To( address receiverAddress, address token, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, HopERC20Data calldata hopData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); // perform bridging IHopL1Bridge(l1bridgeAddr).sendToL2( toChainId, receiverAddress, amount, amountOutMin, hopData.deadline, relayer, relayerFee ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param l1bridgeAddr address of the Hop-L1-Bridge to handle bridging the tokens * @param relayer The amount distributed to the relayer at the destination. This is subtracted from the `_amount`. * @param toChainId The chainId of the destination chain * @param amount The amount being sent * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param relayerFee The amount distributed to the relayer at the destination. This is subtracted from the `amount`. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. */ function bridgeNativeTo( address receiverAddress, address l1bridgeAddr, address relayer, uint256 toChainId, uint256 amount, uint256 amountOutMin, uint256 relayerFee, uint256 deadline, bytes32 metadata ) external payable { IHopL1Bridge(l1bridgeAddr).sendToL2{value: amount}( toChainId, receiverAddress, amount, amountOutMin, deadline, relayer, relayerFee ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } function bridgeERC20ToOptimised() external payable { ERC20(address(bytes20(msg.data[4:24]))).safeTransferFrom( msg.sender, socketGateway, uint256(uint128(bytes16(msg.data[68:84]))) ); // perform bridging IHopL1Bridge(address(bytes20(msg.data[24:44]))).sendToL2( // l1 bridge address uint256(uint32(bytes4(msg.data[64:68]))), // to chainId address(bytes20(msg.data[44:64])), // receiver address uint256(uint128(bytes16(msg.data[68:84]))), // amount uint256(uint128(bytes16(msg.data[84:100]))), // amount out min block.timestamp + 7 * 24 * 60 * 60, // deadline address(0), // relayer address 0 // relayer fee ); emit SocketBridge( uint256(uint128(bytes16(msg.data[68:84]))), //amount address(bytes20(msg.data[4:24])), // token uint256(uint32(bytes4(msg.data[64:68]))), // to chain HopIdentifier, msg.sender, address(bytes20(msg.data[44:64])), // receiver address hex"01" // metadata ); } function bridgeNativeToOptimised() external payable { IHopL1Bridge(address(bytes20(msg.data[4:24]))).sendToL2{ value: msg.value }( uint256(uint32(bytes4(msg.data[24:28]))), address(bytes20(msg.data[28:48])), msg.value, uint256(uint128(bytes16(msg.data[48:64]))), block.timestamp + 7 * 24 * 60 * 60, address(0), 0 ); emit SocketBridge( msg.value, NATIVE_TOKEN_ADDRESS, uint64(uint32(bytes4(msg.data[24:28]))), HopIdentifier, msg.sender, address(bytes20(msg.data[28:48])), hex"01" ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../interfaces/amm.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L2 Route Implementation * @notice This is the L2 implementation, so this is used when transferring from l2 to supported l2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopL2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L2-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint256,uint256,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L2_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint256,uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used as a input parameter for Bridging tokens via Hop-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct HopBridgeRequestData { // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopBridgeDataNoToken { // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } struct HopBridgeData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L2-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopBridgeData memory hopData = abi.decode(bridgeData, (HopBridgeData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopBridgeDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param hopBridgeRequestData extraData for Bridging across Hop-L2 */ function bridgeERC20To( address receiverAddress, address token, address hopAMM, uint256 amount, uint256 toChainId, HopBridgeRequestData calldata hopBridgeRequestData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); HopAMM(hopAMM).swapAndSend( toChainId, receiverAddress, amount, hopBridgeRequestData.bonderFee, hopBridgeRequestData.amountOutMin, hopBridgeRequestData.deadline, hopBridgeRequestData.amountOutMinDestination, hopBridgeRequestData.deadlineDestination ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopBridgeRequestData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param bonderFee fees passed to relayer * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. * @param amountOutMinDestination Minimum amount expected to be received or bridged to destination * @param deadlineDestination deadline for bridging to destination */ function bridgeNativeTo( address receiverAddress, address hopAMM, uint256 amount, uint256 toChainId, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 amountOutMinDestination, uint256 deadlineDestination, bytes32 metadata ) external payable { // token address might not be indication thats why passed through extraData // perform bridging HopAMM(hopAMM).swapAndSend{value: amount}( toChainId, receiverAddress, amount, bonderFee, amountOutMin, deadline, amountOutMinDestination, deadlineDestination ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../interfaces/amm.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {HOP} from "../../../static/RouteIdentifiers.sol"; /** * @title Hop-L2 Route Implementation * @notice This is the L2 implementation, so this is used when transferring from l2 to supported l2s * Called via SocketGateway if the routeId in the request maps to the routeId of HopL2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HopImplL2V2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HopIdentifier = HOP; /// @notice Function-selector for ERC20-token bridging on Hop-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HOP_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice Function-selector for Native bridging on Hop-L2-Route /// @dev This function selector is to be used while building transaction-data to bridge Native tokens bytes4 public immutable HOP_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint256,uint256,uint256,uint256,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable HOP_L2_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint256,uint256,uint256,uint256,uint256,uint256,bytes32))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used as a input parameter for Bridging tokens via Hop-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct HopBridgeRequestData { // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HopBridgeDataNoToken { // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } struct HopBridgeData { /// @notice address of token being bridged address token; // The address receiving funds at the destination address receiverAddress; // AMM address of Hop on L2 address hopAMM; // The chainId of the destination chain uint256 toChainId; // fees passed to relayer uint256 bonderFee; // The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. uint256 amountOutMin; // The deadline for swapping in the destination AMM market. 0 if no swap is intended. uint256 deadline; // Minimum amount expected to be received or bridged to destination uint256 amountOutMinDestination; // deadline for bridging to destination uint256 deadlineDestination; // socket offchain created hash bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Hop-L2-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HopBridgeData memory hopData = abi.decode(bridgeData, (HopBridgeData)); if (hopData.token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: amount}( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, amount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( amount, hopData.token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HopBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hopData encoded data for HopData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HopBridgeDataNoToken calldata hopData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { HopAMM(hopData.hopAMM).swapAndSend{value: bridgeAmount}( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } else { // perform bridging HopAMM(hopData.hopAMM).swapAndSend( hopData.toChainId, hopData.receiverAddress, bridgeAmount, hopData.bonderFee, hopData.amountOutMin, hopData.deadline, hopData.amountOutMinDestination, hopData.deadlineDestination ); } emit SocketBridge( bridgeAmount, token, hopData.toChainId, HopIdentifier, msg.sender, hopData.receiverAddress, hopData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param token token being bridged * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param hopBridgeRequestData extraData for Bridging across Hop-L2 */ function bridgeERC20To( address receiverAddress, address token, address hopAMM, uint256 amount, uint256 toChainId, HopBridgeRequestData calldata hopBridgeRequestData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); HopAMM(hopAMM).swapAndSend( toChainId, receiverAddress, amount, hopBridgeRequestData.bonderFee, hopBridgeRequestData.amountOutMin, hopBridgeRequestData.deadline, hopBridgeRequestData.amountOutMinDestination, hopBridgeRequestData.deadlineDestination ); emit SocketBridge( amount, token, toChainId, HopIdentifier, msg.sender, receiverAddress, hopBridgeRequestData.metadata ); } /** * @notice function to handle Native bridging to receipent via Hop-L2-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress The address receiving funds at the destination * @param hopAMM AMM address of Hop on L2 * @param amount The amount being bridged * @param toChainId The chainId of the destination chain * @param bonderFee fees passed to relayer * @param amountOutMin The minimum amount received after attempting to swap in the destination AMM market. 0 if no swap is intended. * @param deadline The deadline for swapping in the destination AMM market. 0 if no swap is intended. * @param amountOutMinDestination Minimum amount expected to be received or bridged to destination * @param deadlineDestination deadline for bridging to destination */ function bridgeNativeTo( address receiverAddress, address hopAMM, uint256 amount, uint256 toChainId, uint256 bonderFee, uint256 amountOutMin, uint256 deadline, uint256 amountOutMinDestination, uint256 deadlineDestination, bytes32 metadata ) external payable { // token address might not be indication thats why passed through extraData // perform bridging HopAMM(hopAMM).swapAndSend{value: amount}( toChainId, receiverAddress, amount, bonderFee, amountOutMin, deadline, amountOutMinDestination, deadlineDestination ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HopIdentifier, msg.sender, receiverAddress, metadata ); } function bridgeERC20ToOptimised() external payable { ERC20(address(bytes20(msg.data[4:24]))).safeTransferFrom( msg.sender, socketGateway, uint256(uint128(bytes16(msg.data[64:80]))) ); uint256 deadline = block.timestamp + 60 * 20; HopAMM(address(bytes20(msg.data[24:44]))).swapAndSend( uint256(uint32(bytes4(msg.data[128:132]))), address(bytes20(msg.data[44:64])), uint256(uint128(bytes16(msg.data[64:80]))), uint256(uint128(bytes16(msg.data[80:96]))), uint256(uint128(bytes16(msg.data[96:112]))), deadline, uint256(uint128(bytes16(msg.data[112:128]))), deadline ); emit SocketBridge( uint256(uint128(bytes16(msg.data[64:80]))), address(bytes20(msg.data[4:24])), uint256(uint32(bytes4(msg.data[128:132]))), HopIdentifier, msg.sender, address(bytes20(msg.data[44:64])), hex"01" ); } function bridgeERC20ToOptimisedToL1() external payable { ERC20(address(bytes20(msg.data[4:24]))).safeTransferFrom( msg.sender, socketGateway, uint256(uint128(bytes16(msg.data[64:80]))) ); HopAMM(address(bytes20(msg.data[24:44]))).swapAndSend( uint256(uint32(bytes4(msg.data[128:132]))), address(bytes20(msg.data[44:64])), uint256(uint128(bytes16(msg.data[64:80]))), uint256(uint128(bytes16(msg.data[80:96]))), uint256(uint128(bytes16(msg.data[96:112]))), block.timestamp, uint256(uint128(bytes16(msg.data[112:128]))), 0 ); emit SocketBridge( uint256(uint128(bytes16(msg.data[64:80]))), address(bytes20(msg.data[4:24])), uint256(uint32(bytes4(msg.data[128:132]))), HopIdentifier, msg.sender, address(bytes20(msg.data[44:64])), hex"01" ); } function bridgeNativeToOptimised() external payable { uint256 deadline = block.timestamp + 60 * 20; HopAMM(address(bytes20(msg.data[4:24]))).swapAndSend{value: msg.value}( // hop amm uint256(uint32(bytes4(msg.data[24:28]))), address(bytes20(msg.data[28:48])), msg.value, uint256(uint128(bytes16(msg.data[48:64]))), uint256(uint128(bytes16(msg.data[64:80]))), deadline, uint256(uint128(bytes16(msg.data[80:96]))), deadline ); emit SocketBridge( msg.value, NATIVE_TOKEN_ADDRESS, uint256(uint32(bytes4(msg.data[24:28]))), HopIdentifier, msg.sender, address(bytes20(msg.data[28:48])), hex"01" ); } function bridgeNativeToOptimisedToL1() external payable { HopAMM(address(bytes20(msg.data[4:24]))).swapAndSend{value: msg.value}( // hop amm uint256(uint32(bytes4(msg.data[24:28]))), address(bytes20(msg.data[28:48])), msg.value, uint256(uint128(bytes16(msg.data[48:64]))), uint256(uint128(bytes16(msg.data[64:80]))), block.timestamp, uint256(uint128(bytes16(msg.data[80:96]))), 0 ); emit SocketBridge( msg.value, NATIVE_TOKEN_ADDRESS, uint256(uint32(bytes4(msg.data[24:28]))), HopIdentifier, msg.sender, address(bytes20(msg.data[28:48])), hex"01" ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/hyphen.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {HYPHEN} from "../../static/RouteIdentifiers.sol"; /** * @title Hyphen-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Hyphen-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of HyphenImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract HyphenImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable HyphenIdentifier = HYPHEN; /// @notice Function-selector for ERC20-token bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable HYPHEN_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256("bridgeERC20To(uint256,bytes32,address,address,uint256)") ); /// @notice Function-selector for Native bridging on Hyphen-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable HYPHEN_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address,uint256)")); bytes4 public immutable HYPHEN_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,bytes,(address,uint256,bytes32))") ); /// @notice liquidityPoolManager - liquidityPool Manager of Hyphen used to bridge ERC20 and native /// @dev this is to be initialized in constructor with a valid deployed address of hyphen-liquidityPoolManager HyphenLiquidityPoolManager public immutable liquidityPoolManager; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure liquidityPoolManager-address are set properly for the chainId in which the contract is being deployed constructor( address _liquidityPoolManager, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { liquidityPoolManager = HyphenLiquidityPoolManager( _liquidityPoolManager ); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct HyphenData { /// @notice address of token being bridged address token; /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice socket offchain created hash bytes32 metadata; } struct HyphenDataNoToken { /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice chainId of destination bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for HyphenBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { HyphenData memory hyphenData = abi.decode(bridgeData, (HyphenData)); if (hyphenData.token == NATIVE_TOKEN_ADDRESS) { liquidityPoolManager.depositNative{value: amount}( hyphenData.receiverAddress, hyphenData.toChainId, "SOCKET" ); } else { liquidityPoolManager.depositErc20( hyphenData.toChainId, hyphenData.token, hyphenData.receiverAddress, amount, "SOCKET" ); } emit SocketBridge( amount, hyphenData.token, hyphenData.toChainId, HyphenIdentifier, msg.sender, hyphenData.receiverAddress, hyphenData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in HyphenBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param hyphenData encoded data for hyphenData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, HyphenDataNoToken calldata hyphenData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { liquidityPoolManager.depositNative{value: bridgeAmount}( hyphenData.receiverAddress, hyphenData.toChainId, "SOCKET" ); } else { liquidityPoolManager.depositErc20( hyphenData.toChainId, token, hyphenData.receiverAddress, bridgeAmount, "SOCKET" ); } emit SocketBridge( bridgeAmount, token, hyphenData.toChainId, HyphenIdentifier, msg.sender, hyphenData.receiverAddress, hyphenData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param token address of token being bridged * @param toChainId chainId of destination */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token, uint256 toChainId ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); liquidityPoolManager.depositErc20( toChainId, token, receiverAddress, amount, "SOCKET" ); emit SocketBridge( amount, token, toChainId, HyphenIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Hyphen-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param toChainId chainId of destination */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress, uint256 toChainId ) external payable { liquidityPoolManager.depositNative{value: amount}( receiverAddress, toChainId, "SOCKET" ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, HyphenIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /** * @title HyphenLiquidityPoolManager * @notice interface with functions to bridge ERC20 and Native via Hyphen-Bridge * @author Socket dot tech. */ interface HyphenLiquidityPoolManager { /** * @dev Function used to deposit tokens into pool to initiate a cross chain token transfer. * @param toChainId Chain id where funds needs to be transfered * @param tokenAddress ERC20 Token address that needs to be transfered * @param receiver Address on toChainId where tokens needs to be transfered * @param amount Amount of token being transfered */ function depositErc20( uint256 toChainId, address tokenAddress, address receiver, uint256 amount, string calldata tag ) external; /** * @dev Function used to deposit native token into pool to initiate a cross chain token transfer. * @param receiver Address on toChainId where tokens needs to be transfered * @param toChainId Chain id where funds needs to be transfered */ function depositNative( address receiver, uint256 toChainId, string calldata tag ) external payable; } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; interface L1StandardBridge { /** * @dev Performs the logic for deposits by storing the ETH and informing the L2 ETH Gateway of * the deposit. * @param _to Account to give the deposit to on L2. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositETHTo( address _to, uint32 _l2Gas, bytes calldata _data ) external payable; /** * @dev deposit an amount of ERC20 to a recipient's balance on L2. * @param _l1Token Address of the L1 ERC20 we are depositing * @param _l2Token Address of the L1 respective L2 ERC20 * @param _to L2 address to credit the withdrawal to. * @param _amount Amount of the ERC20 to deposit. * @param _l2Gas Gas limit required to complete the deposit on L2. * @param _data Optional data to forward to L2. This data is provided * solely as a convenience for external contracts. Aside from enforcing a maximum * length, these contracts provide no guarantees about its content. */ function depositERC20To( address _l1Token, address _l2Token, address _to, uint256 _amount, uint32 _l2Gas, bytes calldata _data ) external; } interface OldL1TokenGateway { /** * @dev Transfer SNX to L2 First, moves the SNX into the deposit escrow * * @param _to Account to give the deposit to on L2 * @param _amount Amount of the ERC20 to deposit. */ function depositTo(address _to, uint256 _amount) external; /** * @dev Transfer SNX to L2 First, moves the SNX into the deposit escrow * * @param currencyKey currencyKey for the SynthToken * @param destination Account to give the deposit to on L2 * @param amount Amount of the ERC20 to deposit. */ function initiateSynthTransfer( bytes32 currencyKey, address destination, uint256 amount ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/optimism.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {UnsupportedInterfaceId} from "../../../errors/SocketErrors.sol"; import {NATIVE_OPTIMISM} from "../../../static/RouteIdentifiers.sol"; /** * @title NativeOptimism-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via NativeOptimism-Bridge * Tokens are bridged from Ethereum to Optimism Chain. * Called via SocketGateway if the routeId in the request maps to the routeId of NativeOptimism-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract NativeOptimismImpl is BridgeImplBase { using SafeTransferLib for ERC20; bytes32 public immutable NativeOptimismIdentifier = NATIVE_OPTIMISM; uint256 public constant DESTINATION_CHAIN_ID = 10; uint256 public constant UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on Native-Optimism-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_OPTIMISM_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint32,(bytes32,bytes32),uint256,uint256,address,bytes)" ) ); /// @notice Function-selector for Native bridging on Native-Optimism-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native balance bytes4 public immutable NATIVE_OPTIMISM_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint32,uint256,bytes32,bytes)" ) ); bytes4 public immutable NATIVE_OPTIMISM_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(uint256,bytes32,bytes32,address,address,uint32,address,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase constructor( address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct OptimismBridgeDataNoToken { // interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) uint256 interfaceId; // currencyKey of the token beingBridged bytes32 currencyKey; // socket offchain created hash bytes32 metadata; // address of receiver of bridged tokens address receiverAddress; /** * OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) */ address customBridgeAddress; // Gas limit required to complete the deposit on L2. uint32 l2Gas; // Address of the L1 respective L2 ERC20 address l2Token; // additional data , for ll contracts this will be 0x data or empty data bytes data; } struct OptimismBridgeData { // interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) uint256 interfaceId; // currencyKey of the token beingBridged bytes32 currencyKey; // socket offchain created hash bytes32 metadata; // address of receiver of bridged tokens address receiverAddress; /** * OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) */ address customBridgeAddress; /// @notice address of token being bridged address token; // Gas limit required to complete the deposit on L2. uint32 l2Gas; // Address of the L1 respective L2 ERC20 address l2Token; // additional data , for ll contracts this will be 0x data or empty data bytes data; } struct OptimismERC20Data { bytes32 currencyKey; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in OptimismBridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Optimism-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { OptimismBridgeData memory optimismBridgeData = abi.decode( bridgeData, (OptimismBridgeData) ); emit SocketBridge( amount, optimismBridgeData.token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, optimismBridgeData.receiverAddress, optimismBridgeData.metadata ); if (optimismBridgeData.token == NATIVE_TOKEN_ADDRESS) { L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositETHTo{value: amount}( optimismBridgeData.receiverAddress, optimismBridgeData.l2Gas, optimismBridgeData.data ); } else { if (optimismBridgeData.interfaceId == 0) { revert UnsupportedInterfaceId(); } if ( amount > ERC20(optimismBridgeData.token).allowance( address(this), optimismBridgeData.customBridgeAddress ) ) { ERC20(optimismBridgeData.token).safeApprove( optimismBridgeData.customBridgeAddress, UINT256_MAX ); } if (optimismBridgeData.interfaceId == 1) { // deposit into standard bridge L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositERC20To( optimismBridgeData.token, optimismBridgeData.l2Token, optimismBridgeData.receiverAddress, amount, optimismBridgeData.l2Gas, optimismBridgeData.data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (optimismBridgeData.interfaceId == 2) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .depositTo(optimismBridgeData.receiverAddress, amount); return; } if (optimismBridgeData.interfaceId == 3) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .initiateSynthTransfer( optimismBridgeData.currencyKey, optimismBridgeData.receiverAddress, amount ); return; } } } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in OptimismBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param optimismBridgeData encoded data for OptimismBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, OptimismBridgeDataNoToken calldata optimismBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, optimismBridgeData.receiverAddress, optimismBridgeData.metadata ); if (token == NATIVE_TOKEN_ADDRESS) { L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositETHTo{value: bridgeAmount}( optimismBridgeData.receiverAddress, optimismBridgeData.l2Gas, optimismBridgeData.data ); } else { if (optimismBridgeData.interfaceId == 0) { revert UnsupportedInterfaceId(); } if ( bridgeAmount > ERC20(token).allowance( address(this), optimismBridgeData.customBridgeAddress ) ) { ERC20(token).safeApprove( optimismBridgeData.customBridgeAddress, UINT256_MAX ); } if (optimismBridgeData.interfaceId == 1) { // deposit into standard bridge L1StandardBridge(optimismBridgeData.customBridgeAddress) .depositERC20To( token, optimismBridgeData.l2Token, optimismBridgeData.receiverAddress, bridgeAmount, optimismBridgeData.l2Gas, optimismBridgeData.data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (optimismBridgeData.interfaceId == 2) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .depositTo( optimismBridgeData.receiverAddress, bridgeAmount ); return; } if (optimismBridgeData.interfaceId == 3) { OldL1TokenGateway(optimismBridgeData.customBridgeAddress) .initiateSynthTransfer( optimismBridgeData.currencyKey, optimismBridgeData.receiverAddress, bridgeAmount ); return; } } } /** * @notice function to handle ERC20 bridging to receipent via NativeOptimism-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param receiverAddress address of receiver of bridged tokens * @param customBridgeAddress OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * @param l2Gas Gas limit required to complete the deposit on L2. * @param optimismData extra data needed for optimism bridge * @param amount amount being bridged * @param interfaceId interfaceId to be set offchain which is used to select one of the 3 kinds of bridging (standard bridge / old standard / synthetic) * @param l2Token Address of the L1 respective L2 ERC20 * @param data additional data , for ll contracts this will be 0x data or empty data */ function bridgeERC20To( address token, address receiverAddress, address customBridgeAddress, uint32 l2Gas, OptimismERC20Data calldata optimismData, uint256 amount, uint256 interfaceId, address l2Token, bytes calldata data ) external payable { if (interfaceId == 0) { revert UnsupportedInterfaceId(); } ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); if ( amount > tokenInstance.allowance(address(this), customBridgeAddress) ) { tokenInstance.safeApprove(customBridgeAddress, UINT256_MAX); } emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, receiverAddress, optimismData.metadata ); if (interfaceId == 1) { // deposit into standard bridge L1StandardBridge(customBridgeAddress).depositERC20To( token, l2Token, receiverAddress, amount, l2Gas, data ); return; } // Deposit Using Old Standard - iOVM_L1TokenGateway(Example - SNX Token) if (interfaceId == 2) { OldL1TokenGateway(customBridgeAddress).depositTo( receiverAddress, amount ); return; } if (interfaceId == 3) { OldL1TokenGateway(customBridgeAddress).initiateSynthTransfer( optimismData.currencyKey, receiverAddress, amount ); return; } } /** * @notice function to handle native balance bridging to receipent via NativeOptimism-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of receiver of bridged tokens * @param customBridgeAddress OptimismBridge that Performs the logic for deposits by informing the L2 Deposited Token * contract of the deposit and calling a handler to lock the L1 funds. (e.g. transferFrom) * @param l2Gas Gas limit required to complete the deposit on L2. * @param amount amount being bridged * @param data additional data , for ll contracts this will be 0x data or empty data */ function bridgeNativeTo( address receiverAddress, address customBridgeAddress, uint32 l2Gas, uint256 amount, bytes32 metadata, bytes calldata data ) external payable { L1StandardBridge(customBridgeAddress).depositETHTo{value: amount}( receiverAddress, l2Gas, data ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, DESTINATION_CHAIN_ID, NativeOptimismIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /** * @title RootChain Manager Interface for Polygon Bridge. */ interface IRootChainManager { /** * @notice Move ether from root to child chain, accepts ether transfer * Keep in mind this ether cannot be used to pay gas on child chain * Use Matic tokens deposited using plasma mechanism for that * @param user address of account that should receive WETH on child chain */ function depositEtherFor(address user) external payable; /** * @notice Move tokens from root to child chain * @dev This mechanism supports arbitrary tokens as long as its predicate has been registered and the token is mapped * @param sender address of account that should receive this deposit on child chain * @param token address of token that is being deposited * @param extraData bytes data that is sent to predicate and child token contracts to handle deposit */ function depositFor( address sender, address token, bytes memory extraData ) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "./interfaces/polygon.sol"; import {BridgeImplBase} from "../BridgeImplBase.sol"; import {NATIVE_POLYGON} from "../../static/RouteIdentifiers.sol"; /** * @title NativePolygon-Route Implementation * @notice This is the L1 implementation, so this is used when transferring from ethereum to polygon via their native bridge. * @author Socket dot tech. */ contract NativePolygonImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable NativePolyonIdentifier = NATIVE_POLYGON; /// @notice destination-chain-Id for this router is always arbitrum uint256 public constant DESTINATION_CHAIN_ID = 137; /// @notice max value for uint256 uint256 public constant UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on NativePolygon-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable NATIVE_POLYGON_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeERC20To(uint256,bytes32,address,address)")); /// @notice Function-selector for Native bridging on NativePolygon-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable NATIVE_POLYGON_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address)")); bytes4 public immutable NATIVE_POLYGON_SWAP_BRIDGE_SELECTOR = bytes4(keccak256("swapAndBridge(uint32,address,bytes32,bytes)")); /// @notice root chain manager proxy on the ethereum chain /// @dev to be initialised in the constructor IRootChainManager public immutable rootChainManagerProxy; /// @notice ERC20 Predicate proxy on the ethereum chain /// @dev to be initialised in the constructor address public immutable erc20PredicateProxy; /** * // @notice We set all the required addresses in the constructor while deploying the contract. * // These will be constant addresses. * // @dev Please use the Proxy addresses and not the implementation addresses while setting these * // @param _rootChainManagerProxy address of the root chain manager proxy on the ethereum chain * // @param _erc20PredicateProxy address of the ERC20 Predicate proxy on the ethereum chain. * // @param _socketGateway address of the socketGateway contract that calls this contract */ constructor( address _rootChainManagerProxy, address _erc20PredicateProxy, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { rootChainManagerProxy = IRootChainManager(_rootChainManagerProxy); erc20PredicateProxy = _erc20PredicateProxy; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativePolygon-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for NativePolygon-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { (address token, address receiverAddress, bytes32 metadata) = abi.decode( bridgeData, (address, address, bytes32) ); if (token == NATIVE_TOKEN_ADDRESS) { IRootChainManager(rootChainManagerProxy).depositEtherFor{ value: amount }(receiverAddress); } else { if ( amount > ERC20(token).allowance(address(this), erc20PredicateProxy) ) { ERC20(token).safeApprove(erc20PredicateProxy, UINT256_MAX); } // deposit into rootchain manager IRootChainManager(rootChainManagerProxy).depositFor( receiverAddress, token, abi.encodePacked(amount) ); } emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in NativePolygon-BridgeData struct * @param swapId routeId for the swapImpl * @param receiverAddress address of the receiver * @param swapData encoded data for swap */ function swapAndBridge( uint32 swapId, address receiverAddress, bytes32 metadata, bytes calldata swapData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { IRootChainManager(rootChainManagerProxy).depositEtherFor{ value: bridgeAmount }(receiverAddress); } else { if ( bridgeAmount > ERC20(token).allowance(address(this), erc20PredicateProxy) ) { ERC20(token).safeApprove(erc20PredicateProxy, UINT256_MAX); } // deposit into rootchain manager IRootChainManager(rootChainManagerProxy).depositFor( receiverAddress, token, abi.encodePacked(bridgeAmount) ); } emit SocketBridge( bridgeAmount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle ERC20 bridging to receipent via NativePolygon-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of tokens being bridged * @param receiverAddress recipient address * @param token address of token being bridged */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token ) external payable { ERC20 tokenInstance = ERC20(token); // set allowance for erc20 predicate tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); if ( amount > ERC20(token).allowance(address(this), erc20PredicateProxy) ) { ERC20(token).safeApprove(erc20PredicateProxy, UINT256_MAX); } // deposit into rootchain manager rootChainManagerProxy.depositFor( receiverAddress, token, abi.encodePacked(amount) ); emit SocketBridge( amount, token, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via NativePolygon-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of tokens being bridged * @param receiverAddress recipient address */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress ) external payable { rootChainManagerProxy.depositEtherFor{value: amount}(receiverAddress); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, DESTINATION_CHAIN_ID, NativePolyonIdentifier, msg.sender, receiverAddress, metadata ); } function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external isSocketGatewayOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).safeApprove( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } } // SPDX-License-Identifier: Apache-2.0 pragma solidity >=0.8.0; /// @notice interface with functions to interact with Refuel contract interface IRefuel { /** * @notice function to deposit nativeToken to Destination-address on destinationChain * @param destinationChainId chainId of the Destination chain * @param _to recipient address */ function depositNativeToken( uint256 destinationChainId, address _to ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/refuel.sol"; import "../BridgeImplBase.sol"; import {REFUEL} from "../../static/RouteIdentifiers.sol"; /** * @title Refuel-Route Implementation * @notice Route implementation with functions to bridge Native via Refuel-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of RefuelImplementation * @author Socket dot tech. */ contract RefuelBridgeImpl is BridgeImplBase { bytes32 public immutable RefuelIdentifier = REFUEL; /// @notice refuelBridge-Contract address used to deposit Native on Refuel-Bridge address public immutable refuelBridge; /// @notice Function-selector for Native bridging via Refuel-Bridge /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable REFUEL_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,address,uint256,bytes32)")); bytes4 public immutable REFUEL_NATIVE_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,address,uint256,bytes32,bytes)") ); /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure _refuelBridge are set properly for the chainId in which the contract is being deployed constructor( address _refuelBridge, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { refuelBridge = _refuelBridge; } // Function to receive Ether. msg.data must be empty receive() external payable {} /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct RefuelBridgeData { address receiverAddress; uint256 toChainId; bytes32 metadata; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in RefuelBridgeData struct * @param amount amount of tokens being bridged. this must be only native * @param bridgeData encoded data for RefuelBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { RefuelBridgeData memory refuelBridgeData = abi.decode( bridgeData, (RefuelBridgeData) ); IRefuel(refuelBridge).depositNativeToken{value: amount}( refuelBridgeData.toChainId, refuelBridgeData.receiverAddress ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, refuelBridgeData.toChainId, RefuelIdentifier, msg.sender, refuelBridgeData.receiverAddress, refuelBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in RefuelBridgeData struct * @param swapId routeId for the swapImpl * @param receiverAddress receiverAddress * @param toChainId toChainId * @param swapData encoded data for swap */ function swapAndBridge( uint32 swapId, address receiverAddress, uint256 toChainId, bytes32 metadata, bytes calldata swapData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, ) = abi.decode(result, (uint256, address)); IRefuel(refuelBridge).depositNativeToken{value: bridgeAmount}( toChainId, receiverAddress ); emit SocketBridge( bridgeAmount, NATIVE_TOKEN_ADDRESS, toChainId, RefuelIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Refuel-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount of native being refuelled to destination chain * @param receiverAddress recipient address of the refuelled native * @param toChainId destinationChainId */ function bridgeNativeTo( uint256 amount, address receiverAddress, uint256 toChainId, bytes32 metadata ) external payable { IRefuel(refuelBridge).depositNativeToken{value: amount}( toChainId, receiverAddress ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, RefuelIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity >=0.8.0; /** * @title IBridgeStargate Interface Contract. * @notice Interface used by Stargate-L1 and L2 Router implementations * @dev router and routerETH addresses will be distinct for L1 and L2 */ interface IBridgeStargate { // @notice Struct to hold the additional-data for bridging ERC20 token struct lzTxObj { // gas limit to bridge the token in Stargate to destinationChain uint256 dstGasForCall; // destination nativeAmount, this is always set as 0 uint256 dstNativeAmount; // destination nativeAddress, this is always set as 0x bytes dstNativeAddr; } /// @notice function in stargate bridge which is used to bridge ERC20 tokens to recipient on destinationChain function swap( uint16 _dstChainId, uint256 _srcPoolId, uint256 _dstPoolId, address payable _refundAddress, uint256 _amountLD, uint256 _minAmountLD, lzTxObj memory _lzTxParams, bytes calldata _to, bytes calldata _payload ) external payable; /// @notice function in stargate bridge which is used to bridge native tokens to recipient on destinationChain function swapETH( uint16 _dstChainId, // destination Stargate chainId address payable _refundAddress, // refund additional messageFee to this address bytes calldata _toAddress, // the receiver of the destination ETH uint256 _amountLD, // the amount, in Local Decimals, to be swapped uint256 _minAmountLD // the minimum amount accepted out on destination ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/stargate.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {STARGATE} from "../../../static/RouteIdentifiers.sol"; /** * @title Stargate-L1-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Stargate-L1-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of Stargate-L1-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract StargateImplL1 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable StargateIdentifier = STARGATE; /// @notice Function-selector for ERC20-token bridging on Stargate-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable STARGATE_L1_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,bytes32,bytes,uint16))" ) ); /// @notice Function-selector for Native bridging on Stargate-L1-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable STARGATE_L1_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint16,uint256,uint256,uint256,bytes32)" ) ); bytes4 public immutable STARGATE_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint16,uint256,uint256,uint256,uint256,uint256,uint256,bytes32,bytes))" ) ); /// @notice Stargate Router to bridge ERC20 tokens IBridgeStargate public immutable router; /// @notice Stargate Router to bridge native tokens IBridgeStargate public immutable routerETH; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router, routerEth are set properly for the chainId in which the contract is being deployed constructor( address _router, address _routerEth, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IBridgeStargate(_router); routerETH = IBridgeStargate(_routerEth); } struct StargateBridgeExtraData { uint256 srcPoolId; uint256 dstPoolId; uint256 destinationGasLimit; uint256 minReceivedAmt; bytes32 metadata; bytes destinationPayload; uint16 stargateDstChainId; // stargate defines chain id in its way } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct StargateBridgeDataNoToken { address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } struct StargateBridgeData { address token; address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Stargate-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { StargateBridgeData memory stargateBridgeData = abi.decode( bridgeData, (StargateBridgeData) ); if (stargateBridgeData.token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + stargateBridgeData.optionalValue}( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), amount, stargateBridgeData.minReceivedAmt ); } else { ERC20(stargateBridgeData.token).safeApprove( address(router), amount ); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract amount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( amount, stargateBridgeData.token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param stargateBridgeData encoded data for StargateBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, StargateBridgeDataNoToken calldata stargateBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{ value: bridgeAmount + stargateBridgeData.optionalValue }( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), bridgeAmount, stargateBridgeData.minReceivedAmt ); } else { ERC20(token).safeApprove(address(router), bridgeAmount); { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract bridgeAmount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( bridgeAmount, token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param senderAddress address of sender * @param receiverAddress address of recipient * @param amount amount of token being bridge * @param value value * @param stargateBridgeExtraData stargate bridge extradata */ function bridgeERC20To( address token, address senderAddress, address receiverAddress, uint256 amount, uint256 value, StargateBridgeExtraData calldata stargateBridgeExtraData ) external payable { ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); tokenInstance.safeApprove(address(router), amount); { router.swap{value: value}( stargateBridgeExtraData.stargateDstChainId, stargateBridgeExtraData.srcPoolId, stargateBridgeExtraData.dstPoolId, payable(senderAddress), // default to refund to main contract amount, stargateBridgeExtraData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeExtraData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(receiverAddress), stargateBridgeExtraData.destinationPayload ); } emit SocketBridge( amount, token, stargateBridgeExtraData.stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, stargateBridgeExtraData.metadata ); } /** * @notice function to handle Native bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param receiverAddress address of receipient * @param senderAddress address of sender * @param stargateDstChainId stargate defines chain id in its way * @param amount amount of token being bridge * @param minReceivedAmt defines the slippage, the min qty you would accept on the destination * @param optionalValue optionalValue Native amount */ function bridgeNativeTo( address receiverAddress, address senderAddress, uint16 stargateDstChainId, uint256 amount, uint256 minReceivedAmt, uint256 optionalValue, bytes32 metadata ) external payable { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, minReceivedAmt ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../interfaces/stargate.sol"; import "../../../errors/SocketErrors.sol"; import {BridgeImplBase} from "../../BridgeImplBase.sol"; import {STARGATE} from "../../../static/RouteIdentifiers.sol"; /** * @title Stargate-L2-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Stargate-L2-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of Stargate-L2-Implementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract StargateImplL2 is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable StargateIdentifier = STARGATE; /// @notice max value for uint256 uint256 public constant UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on Stargate-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable STARGATE_L2_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeERC20To(address,address,address,uint256,uint256,(uint256,uint256,uint256,uint256,bytes32,bytes,uint16))" ) ); bytes4 public immutable STARGATE_L1_SWAP_BRIDGE_SELECTOR = bytes4( keccak256( "swapAndBridge(uint32,bytes,(address,address,uint16,uint256,uint256,uint256,uint256,uint256,uint256,bytes32,bytes))" ) ); /// @notice Function-selector for Native bridging on Stargate-L2-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable STARGATE_L2_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "bridgeNativeTo(address,address,uint16,uint256,uint256,uint256,bytes32)" ) ); /// @notice Stargate Router to bridge ERC20 tokens IBridgeStargate public immutable router; /// @notice Stargate Router to bridge native tokens IBridgeStargate public immutable routerETH; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure router, routerEth are set properly for the chainId in which the contract is being deployed constructor( address _router, address _routerEth, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { router = IBridgeStargate(_router); routerETH = IBridgeStargate(_routerEth); } /// @notice Struct to be used as a input parameter for Bridging tokens via Stargate-L2-route /// @dev while building transactionData,values should be set in this sequence of properties in this struct struct StargateBridgeExtraData { uint256 srcPoolId; uint256 dstPoolId; uint256 destinationGasLimit; uint256 minReceivedAmt; bytes32 metadata; bytes destinationPayload; uint16 stargateDstChainId; // stargate defines chain id in its way } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct StargateBridgeDataNoToken { address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } struct StargateBridgeData { address token; address receiverAddress; address senderAddress; uint16 stargateDstChainId; // stargate defines chain id in its way uint256 value; // a unique identifier that is uses to dedup transfers // this value is the a timestamp sent from frontend, but in theory can be any unique number uint256 srcPoolId; uint256 dstPoolId; uint256 minReceivedAmt; // defines the slippage, the min qty you would accept on the destination uint256 optionalValue; uint256 destinationGasLimit; bytes32 metadata; bytes destinationPayload; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for Stargate-L1-Bridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { StargateBridgeData memory stargateBridgeData = abi.decode( bridgeData, (StargateBridgeData) ); if (stargateBridgeData.token == NATIVE_TOKEN_ADDRESS) { // perform bridging routerETH.swapETH{value: amount + stargateBridgeData.optionalValue}( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), amount, stargateBridgeData.minReceivedAmt ); } else { if ( amount > ERC20(stargateBridgeData.token).allowance( address(this), address(router) ) ) { ERC20(stargateBridgeData.token).safeApprove( address(router), UINT256_MAX ); } { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract amount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( amount, stargateBridgeData.token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to bridge tokens after swapping. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in Stargate-BridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param stargateBridgeData encoded data for StargateBridgeData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, StargateBridgeDataNoToken calldata stargateBridgeData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { routerETH.swapETH{ value: bridgeAmount + stargateBridgeData.optionalValue }( stargateBridgeData.stargateDstChainId, payable(stargateBridgeData.senderAddress), abi.encodePacked(stargateBridgeData.receiverAddress), bridgeAmount, stargateBridgeData.minReceivedAmt ); } else { if ( bridgeAmount > ERC20(token).allowance(address(this), address(router)) ) { ERC20(token).safeApprove(address(router), UINT256_MAX); } { router.swap{value: stargateBridgeData.value}( stargateBridgeData.stargateDstChainId, stargateBridgeData.srcPoolId, stargateBridgeData.dstPoolId, payable(stargateBridgeData.senderAddress), // default to refund to main contract bridgeAmount, stargateBridgeData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeData.destinationGasLimit, 0, "0x" ), abi.encodePacked(stargateBridgeData.receiverAddress), stargateBridgeData.destinationPayload ); } } emit SocketBridge( bridgeAmount, token, stargateBridgeData.stargateDstChainId, StargateIdentifier, msg.sender, stargateBridgeData.receiverAddress, stargateBridgeData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Stargate-L1-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param token address of token being bridged * @param senderAddress address of sender * @param receiverAddress address of recipient * @param amount amount of token being bridge * @param optionalValue optionalValue * @param stargateBridgeExtraData stargate bridge extradata */ function bridgeERC20To( address token, address senderAddress, address receiverAddress, uint256 amount, uint256 optionalValue, StargateBridgeExtraData calldata stargateBridgeExtraData ) external payable { // token address might not be indication thats why passed through extraData ERC20 tokenInstance = ERC20(token); tokenInstance.safeTransferFrom(msg.sender, socketGateway, amount); if (amount > tokenInstance.allowance(address(this), address(router))) { tokenInstance.safeApprove(address(router), UINT256_MAX); } { router.swap{value: optionalValue}( stargateBridgeExtraData.stargateDstChainId, stargateBridgeExtraData.srcPoolId, stargateBridgeExtraData.dstPoolId, payable(senderAddress), // default to refund to main contract amount, stargateBridgeExtraData.minReceivedAmt, IBridgeStargate.lzTxObj( stargateBridgeExtraData.destinationGasLimit, 0, // zero amount since this is a ERC20 bridging "0x" //empty data since this is for only ERC20 ), abi.encodePacked(receiverAddress), stargateBridgeExtraData.destinationPayload ); } emit SocketBridge( amount, token, stargateBridgeExtraData.stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, stargateBridgeExtraData.metadata ); } function bridgeNativeTo( address receiverAddress, address senderAddress, uint16 stargateDstChainId, uint256 amount, uint256 minReceivedAmt, uint256 optionalValue, bytes32 metadata ) external payable { // perform bridging routerETH.swapETH{value: amount + optionalValue}( stargateDstChainId, payable(senderAddress), abi.encodePacked(receiverAddress), amount, minReceivedAmt ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, stargateDstChainId, StargateIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ISynapseRouter { struct SwapQuery { address swapAdapter; address tokenOut; uint256 minAmountOut; uint256 deadline; bytes rawParams; } function bridge( address to, uint256 chainId, address token, uint256 amount, SwapQuery memory originQuery, SwapQuery memory destQuery ) external payable; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./interfaces/ISynapseRouter.sol"; import "../BridgeImplBase.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {SYNAPSE} from "../../static/RouteIdentifiers.sol"; /** * @title Synapse-Route Implementation * @notice Route implementation with functions to bridge ERC20 and Native via Synapse-Bridge * Called via SocketGateway if the routeId in the request maps to the routeId of SynapseImplementation * Contains function to handle bridging as post-step i.e linked to a preceeding step for swap * RequestData is different to just bride and bridging chained with swap * @author Socket dot tech. */ contract SynapseBridgeImpl is BridgeImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable SynapseIdentifier = SYNAPSE; /// @notice max value for uint256 uint256 public constant UINT256_MAX = type(uint256).max; /// @notice Function-selector for ERC20-token bridging on Synapse-Route /// @dev This function selector is to be used while buidling transaction-data to bridge ERC20 tokens bytes4 public immutable SYNAPSE_ERC20_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256("bridgeERC20To(uint256,bytes32,address,address,uint256,(address,address,uint256,uint256,bytes),(address,address,uint256,uint256,bytes))") ); /// @notice Function-selector for Native bridging on Synapse-Route /// @dev This function selector is to be used while buidling transaction-data to bridge Native tokens bytes4 public immutable SYNAPSE_NATIVE_EXTERNAL_BRIDGE_FUNCTION_SELECTOR = bytes4(keccak256("bridgeNativeTo(uint256,bytes32,address,uint256,(address,address,uint256,uint256,bytes),(address,address,uint256,uint256,bytes))")); bytes4 public immutable SYNAPSE_SWAP_BRIDGE_SELECTOR = bytes4( keccak256("swapAndBridge(uint32,bytes,(address,uint256,bytes32,(address,address,uint256,uint256,bytes),(address,address,uint256,uint256,bytes)))") ); ISynapseRouter public immutable synapseRouter; /// @notice socketGatewayAddress to be initialised via storage variable BridgeImplBase /// @dev ensure liquidityPoolManager-address are set properly for the chainId in which the contract is being deployed constructor( address _synapseRouter, address _socketGateway, address _socketDeployFactory ) BridgeImplBase(_socketGateway, _socketDeployFactory) { synapseRouter = ISynapseRouter(_synapseRouter); } /// @notice Struct to be used in decode step from input parameter - a specific case of bridging after swap. /// @dev the data being encoded in offchain or by caller should have values set in this sequence of properties in this struct struct SynapseData { /// @notice address of token being bridged address token; /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice socket offchain created hash bytes32 metadata; /// @notice Struct representing a origin request for SynapseRouter ISynapseRouter.SwapQuery originQuery; /// @notice Struct representing a destination request for SynapseRouter ISynapseRouter.SwapQuery destinationQuery; } struct SynapseDataNoToken { /// @notice address of receiver address receiverAddress; /// @notice chainId of destination uint256 toChainId; /// @notice chainId of destination bytes32 metadata; /// @notice Struct representing a origin request for SynapseRouter ISynapseRouter.SwapQuery originQuery; /// @notice Struct representing a destination request for SynapseRouter ISynapseRouter.SwapQuery destinationQuery; } /** * @notice function to bridge tokens after swap. * @notice this is different from swapAndBridge, this function is called when the swap has already happened at a different place. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in SynapseData struct * @param amount amount of tokens being bridged. this can be ERC20 or native * @param bridgeData encoded data for SynapseBridge */ function bridgeAfterSwap( uint256 amount, bytes calldata bridgeData ) external payable override { SynapseData memory synapseData = abi.decode(bridgeData, (SynapseData)); if (synapseData.token == NATIVE_TOKEN_ADDRESS) { synapseRouter.bridge{value: amount}( synapseData.receiverAddress, synapseData.toChainId, NATIVE_TOKEN_ADDRESS, amount, synapseData.originQuery, synapseData.destinationQuery ); } else { if ( amount > ERC20(synapseData.token).allowance(address(this), address(synapseRouter)) ) { ERC20(synapseData.token).safeApprove(address(synapseRouter), UINT256_MAX); } synapseRouter.bridge( synapseData.receiverAddress, synapseData.toChainId, synapseData.token, amount, synapseData.originQuery, synapseData.destinationQuery ); } emit SocketBridge( amount, synapseData.token, synapseData.toChainId, SynapseIdentifier, msg.sender, synapseData.receiverAddress, synapseData.metadata ); } /** * @notice function to bridge tokens after swap. * @notice this is different from bridgeAfterSwap since this function holds the logic for swapping tokens too. * @notice This method is payable because the caller is doing token transfer and briding operation * @dev for usage, refer to controller implementations * encodedData for bridge should follow the sequence of properties in SynapseBridgeData struct * @param swapId routeId for the swapImpl * @param swapData encoded data for swap * @param synapseData encoded data for SynapseData */ function swapAndBridge( uint32 swapId, bytes calldata swapData, SynapseDataNoToken calldata synapseData ) external payable { (bool success, bytes memory result) = socketRoute .getRoute(swapId) .delegatecall(swapData); if (!success) { assembly { revert(add(result, 32), mload(result)) } } (uint256 bridgeAmount, address token) = abi.decode( result, (uint256, address) ); if (token == NATIVE_TOKEN_ADDRESS) { synapseRouter.bridge{value: bridgeAmount}( synapseData.receiverAddress, synapseData.toChainId, token, bridgeAmount, synapseData.originQuery, synapseData.destinationQuery ); } else { if ( bridgeAmount > ERC20(token).allowance(address(this), address(synapseRouter)) ) { ERC20(token).safeApprove(address(synapseRouter), UINT256_MAX); } synapseRouter.bridge( synapseData.receiverAddress, synapseData.toChainId, token, bridgeAmount, synapseData.originQuery, synapseData.destinationQuery ); } emit SocketBridge( bridgeAmount, token, synapseData.toChainId, SynapseIdentifier, msg.sender, synapseData.receiverAddress, synapseData.metadata ); } /** * @notice function to handle ERC20 bridging to receipent via Synapse-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param token address of token being bridged * @param toChainId chainId of destination */ function bridgeERC20To( uint256 amount, bytes32 metadata, address receiverAddress, address token, uint256 toChainId, ISynapseRouter.SwapQuery calldata originQuery, ISynapseRouter.SwapQuery calldata destinationQuery ) external payable { ERC20(token).safeTransferFrom(msg.sender, socketGateway, amount); if ( amount > ERC20(token).allowance(address(this), address(synapseRouter)) ) { ERC20(token).safeApprove(address(synapseRouter), UINT256_MAX); } synapseRouter.bridge( receiverAddress, toChainId, token, amount, originQuery, destinationQuery ); emit SocketBridge( amount, token, toChainId, SynapseIdentifier, msg.sender, receiverAddress, metadata ); } /** * @notice function to handle Native bridging to receipent via Synapse-Bridge * @notice This method is payable because the caller is doing token transfer and briding operation * @param amount amount to be sent * @param receiverAddress address of the token to bridged to the destination chain. * @param toChainId chainId of destination */ function bridgeNativeTo( uint256 amount, bytes32 metadata, address receiverAddress, uint256 toChainId, ISynapseRouter.SwapQuery calldata originQuery, ISynapseRouter.SwapQuery calldata destinationQuery ) external payable { synapseRouter.bridge{value: amount}( receiverAddress, toChainId, NATIVE_TOKEN_ADDRESS, amount, originQuery, destinationQuery ); emit SocketBridge( amount, NATIVE_TOKEN_ADDRESS, toChainId, SynapseIdentifier, msg.sender, receiverAddress, metadata ); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; /// @title BaseController Controller /// @notice Base contract for all controller contracts abstract contract BaseController { /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice Address used to identify if it is a Zero address address public immutable NULL_ADDRESS = address(0); /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice immutable variable to store the socketGateway address address public immutable socketGatewayAddress; /// @notice immutable variable with instance of SocketRoute to access route functions ISocketRoute public immutable socketRoute; /** * @notice Construct the base for all controllers. * @param _socketGatewayAddress Socketgateway address, an immutable variable to set. * @notice initialize the immutable variables of SocketRoute, SocketGateway */ constructor(address _socketGatewayAddress) { socketGatewayAddress = _socketGatewayAddress; socketRoute = ISocketRoute(_socketGatewayAddress); } /** * @notice Construct the base for all BridgeImplementations. * @param routeId routeId mapped to the routrImplementation * @param data transactionData generated with arguments of bridgeRequest (offchain or by caller) * @return returns the bytes response of the route execution (bridging, refuel or swap executions) */ function _executeRoute( uint32 routeId, bytes memory data ) internal returns (bytes memory) { (bool success, bytes memory result) = socketRoute .getRoute(routeId) .delegatecall(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {BaseController} from "./BaseController.sol"; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; /** * @title FeesTaker-Controller Implementation * @notice Controller with composed actions to deduct-fees followed by Refuel, Swap and Bridge * to be executed Sequentially and this is atomic * @author Socket dot tech. */ contract FeesTakerController is BaseController { using SafeTransferLib for ERC20; /// @notice event emitted upon fee-deduction to fees-taker address event SocketFeesDeducted( uint256 fees, address feesToken, address feesTaker ); /// @notice Function-selector to invoke deduct-fees and swap token /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_SWAP_FUNCTION_SELECTOR = bytes4( keccak256("takeFeesAndSwap((address,address,uint256,uint32,bytes))") ); /// @notice Function-selector to invoke deduct-fees and bridge token /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeesAndBridge((address,address,uint256,uint32,bytes))" ) ); /// @notice Function-selector to invoke deduct-fees and bridge multiple tokens /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_MULTI_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeesAndMultiBridge((address,address,uint256,uint32[],bytes[]))" ) ); /// @notice Function-selector to invoke deduct-fees followed by swapping of a token and bridging the swapped bridge /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeeAndSwapAndBridge((address,address,uint256,uint32,bytes,uint32,bytes))" ) ); /// @notice Function-selector to invoke deduct-fees refuel /// @notice followed by swapping of a token and bridging the swapped bridge /// @dev This function selector is to be used while building transaction-data bytes4 public immutable FEES_TAKER_REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "takeFeeAndRefuelAndSwapAndBridge((address,address,uint256,uint32,bytes,uint32,bytes,uint32,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BaseController constructor( address _socketGatewayAddress ) BaseController(_socketGatewayAddress) {} /** * @notice function to deduct-fees to fees-taker address on source-chain and swap token * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftsRequest feesTakerSwapRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_SWAP_FUNCTION_SELECTOR * @return output bytes from the swap operation (last operation in the composed actions) */ function takeFeesAndSwap( ISocketRequest.FeesTakerSwapRequest calldata ftsRequest ) external payable returns (bytes memory) { if (ftsRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftsRequest.feesTakerAddress).transfer( ftsRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftsRequest.feesToken).safeTransferFrom( msg.sender, ftsRequest.feesTakerAddress, ftsRequest.feesAmount ); } emit SocketFeesDeducted( ftsRequest.feesAmount, ftsRequest.feesTakerAddress, ftsRequest.feesToken ); //call bridge function (executeRoute for the swapRequestData) return _executeRoute(ftsRequest.routeId, ftsRequest.swapRequestData); } /** * @notice function to deduct-fees to fees-taker address on source-chain and bridge amount to destinationChain * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftbRequest feesTakerBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_BRIDGE_FUNCTION_SELECTOR * @return output bytes from the bridge operation (last operation in the composed actions) */ function takeFeesAndBridge( ISocketRequest.FeesTakerBridgeRequest calldata ftbRequest ) external payable returns (bytes memory) { if (ftbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftbRequest.feesTakerAddress).transfer( ftbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftbRequest.feesToken).safeTransferFrom( msg.sender, ftbRequest.feesTakerAddress, ftbRequest.feesAmount ); } emit SocketFeesDeducted( ftbRequest.feesAmount, ftbRequest.feesTakerAddress, ftbRequest.feesToken ); //call bridge function (executeRoute for the bridgeData) return _executeRoute(ftbRequest.routeId, ftbRequest.bridgeRequestData); } /** * @notice function to deduct-fees to fees-taker address on source-chain and bridge amount to destinationChain * @notice multiple bridge-requests are to be generated and sequence and number of routeIds should match with the bridgeData array * @dev ensure correct function selector is used to generate transaction-data for bridgeRequest * @param ftmbRequest feesTakerMultiBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_MULTI_BRIDGE_FUNCTION_SELECTOR */ function takeFeesAndMultiBridge( ISocketRequest.FeesTakerMultiBridgeRequest calldata ftmbRequest ) external payable { if (ftmbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(ftmbRequest.feesTakerAddress).transfer( ftmbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(ftmbRequest.feesToken).safeTransferFrom( msg.sender, ftmbRequest.feesTakerAddress, ftmbRequest.feesAmount ); } emit SocketFeesDeducted( ftmbRequest.feesAmount, ftmbRequest.feesTakerAddress, ftmbRequest.feesToken ); // multiple bridge-requests are to be generated and sequence and number of routeIds should match with the bridgeData array for ( uint256 index = 0; index < ftmbRequest.bridgeRouteIds.length; ++index ) { //call bridge function (executeRoute for the bridgeData) _executeRoute( ftmbRequest.bridgeRouteIds[index], ftmbRequest.bridgeRequestDataItems[index] ); } } /** * @notice function to deduct-fees to fees-taker address on source-chain followed by swap the amount on sourceChain followed by * bridging the swapped amount to destinationChain * @dev while generating implData for swap and bridgeRequests, ensure correct function selector is used * bridge action corresponds to the bridgeAfterSwap function of the bridgeImplementation * @param fsbRequest feesTakerSwapBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_SWAP_BRIDGE_FUNCTION_SELECTOR */ function takeFeeAndSwapAndBridge( ISocketRequest.FeesTakerSwapBridgeRequest calldata fsbRequest ) external payable returns (bytes memory) { if (fsbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(fsbRequest.feesTakerAddress).transfer( fsbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(fsbRequest.feesToken).safeTransferFrom( msg.sender, fsbRequest.feesTakerAddress, fsbRequest.feesAmount ); } emit SocketFeesDeducted( fsbRequest.feesAmount, fsbRequest.feesTakerAddress, fsbRequest.feesToken ); // execute swap operation bytes memory swapResponseData = _executeRoute( fsbRequest.swapRouteId, fsbRequest.swapData ); (uint256 swapAmount, ) = abi.decode( swapResponseData, (uint256, address) ); // swapped amount is to be bridged to the recipient on destinationChain bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, fsbRequest.bridgeData ); // execute bridge operation and return the byte-data from response of bridge operation return _executeRoute(fsbRequest.bridgeRouteId, bridgeImpldata); } /** * @notice function to deduct-fees to fees-taker address on source-chain followed by refuel followed by * swap the amount on sourceChain followed by bridging the swapped amount to destinationChain * @dev while generating implData for refuel, swap and bridge Requests, ensure correct function selector is used * bridge action corresponds to the bridgeAfterSwap function of the bridgeImplementation * @param frsbRequest feesTakerRefuelSwapBridgeRequest object generated either off-chain or the calling contract using * the function-selector FEES_TAKER_REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR */ function takeFeeAndRefuelAndSwapAndBridge( ISocketRequest.FeesTakerRefuelSwapBridgeRequest calldata frsbRequest ) external payable returns (bytes memory) { if (frsbRequest.feesToken == NATIVE_TOKEN_ADDRESS) { //transfer the native amount to the feeTakerAddress payable(frsbRequest.feesTakerAddress).transfer( frsbRequest.feesAmount ); } else { //transfer feesAmount to feesTakerAddress ERC20(frsbRequest.feesToken).safeTransferFrom( msg.sender, frsbRequest.feesTakerAddress, frsbRequest.feesAmount ); } emit SocketFeesDeducted( frsbRequest.feesAmount, frsbRequest.feesTakerAddress, frsbRequest.feesToken ); // refuel is also done via bridge execution via refuelRouteImplementation identified by refuelRouteId _executeRoute(frsbRequest.refuelRouteId, frsbRequest.refuelData); // execute swap operation bytes memory swapResponseData = _executeRoute( frsbRequest.swapRouteId, frsbRequest.swapData ); (uint256 swapAmount, ) = abi.decode( swapResponseData, (uint256, address) ); // swapped amount is to be bridged to the recipient on destinationChain bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, frsbRequest.bridgeData ); // execute bridge operation and return the byte-data from response of bridge operation return _executeRoute(frsbRequest.bridgeRouteId, bridgeImpldata); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ISocketRequest} from "../interfaces/ISocketRequest.sol"; import {ISocketRoute} from "../interfaces/ISocketRoute.sol"; import {BaseController} from "./BaseController.sol"; /** * @title RefuelSwapAndBridge Controller Implementation * @notice Controller with composed actions for Refuel,Swap and Bridge to be executed Sequentially and this is atomic * @author Socket dot tech. */ contract RefuelSwapAndBridgeController is BaseController { /// @notice Function-selector to invoke refuel-swap-bridge function /// @dev This function selector is to be used while buidling transaction-data bytes4 public immutable REFUEL_SWAP_BRIDGE_FUNCTION_SELECTOR = bytes4( keccak256( "refuelAndSwapAndBridge((uint32,bytes,uint32,bytes,uint32,bytes))" ) ); /// @notice socketGatewayAddress to be initialised via storage variable BaseController constructor( address _socketGatewayAddress ) BaseController(_socketGatewayAddress) {} /** * @notice function to handle refuel followed by Swap and Bridge actions * @notice This method is payable because the caller is doing token transfer and briding operation * @param rsbRequest Request with data to execute refuel followed by swap and bridge * @return output data from bridging operation */ function refuelAndSwapAndBridge( ISocketRequest.RefuelSwapBridgeRequest calldata rsbRequest ) public payable returns (bytes memory) { _executeRoute(rsbRequest.refuelRouteId, rsbRequest.refuelData); // refuel is also a bridging activity via refuel-route-implementation bytes memory swapResponseData = _executeRoute( rsbRequest.swapRouteId, rsbRequest.swapData ); (uint256 swapAmount, ) = abi.decode( swapResponseData, (uint256, address) ); //sequence of arguments for implData: amount, token, data // Bridging the swapAmount received in the preceeding step bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, swapAmount, rsbRequest.bridgeData ); return _executeRoute(rsbRequest.bridgeRouteId, bridgeImpldata); } } //SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {OnlySocketGatewayOwner} from "../errors/SocketErrors.sol"; contract DisabledSocketRoute { using SafeTransferLib for ERC20; /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; error RouteDisabled(); /** * @notice Construct the base for all BridgeImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. */ constructor(address _socketGateway) { socketGateway = _socketGateway; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /** * @notice function to rescue the ERC20 tokens in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the bridge Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } /** * @notice Handle route function calls gracefully. */ fallback() external payable { revert RouteDisabled(); } /** * @notice Support receiving ether to handle refunds etc. */ receive() external payable {} } //SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "../utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketBridgeBase} from "../interfaces/ISocketBridgeBase.sol"; /** * @dev In the constructor, set up the initialization code for socket * contracts as well as the keccak256 hash of the given initialization code. * that will be used to deploy any transient contracts, which will deploy any * socket contracts that require the use of a constructor. * * Socket contract initialization code (29 bytes): * * 0x5860208158601c335a63aaf10f428752fa158151803b80938091923cf3 * * Description: * * pc|op|name | [stack] | <memory> * * ** set the first stack item to zero - used later ** * 00 58 getpc [0] <> * * ** set second stack item to 32, length of word returned from staticcall ** * 01 60 push1 * 02 20 outsize [0, 32] <> * * ** set third stack item to 0, position of word returned from staticcall ** * 03 81 dup2 [0, 32, 0] <> * * ** set fourth stack item to 4, length of selector given to staticcall ** * 04 58 getpc [0, 32, 0, 4] <> * * ** set fifth stack item to 28, position of selector given to staticcall ** * 05 60 push1 * 06 1c inpos [0, 32, 0, 4, 28] <> * * ** set the sixth stack item to msg.sender, target address for staticcall ** * 07 33 caller [0, 32, 0, 4, 28, caller] <> * * ** set the seventh stack item to msg.gas, gas to forward for staticcall ** * 08 5a gas [0, 32, 0, 4, 28, caller, gas] <> * * ** set the eighth stack item to selector, "what" to store via mstore ** * 09 63 push4 * 10 aaf10f42 selector [0, 32, 0, 4, 28, caller, gas, 0xaaf10f42] <> * * ** set the ninth stack item to 0, "where" to store via mstore *** * 11 87 dup8 [0, 32, 0, 4, 28, caller, gas, 0xaaf10f42, 0] <> * * ** call mstore, consume 8 and 9 from the stack, place selector in memory ** * 12 52 mstore [0, 32, 0, 4, 0, caller, gas] <0xaaf10f42> * * ** call staticcall, consume items 2 through 7, place address in memory ** * 13 fa staticcall [0, 1 (if successful)] <address> * * ** flip success bit in second stack item to set to 0 ** * 14 15 iszero [0, 0] <address> * * ** push a third 0 to the stack, position of address in memory ** * 15 81 dup2 [0, 0, 0] <address> * * ** place address from position in memory onto third stack item ** * 16 51 mload [0, 0, address] <> * * ** place address to fourth stack item for extcodesize to consume ** * 17 80 dup1 [0, 0, address, address] <> * * ** get extcodesize on fourth stack item for extcodecopy ** * 18 3b extcodesize [0, 0, address, size] <> * * ** dup and swap size for use by return at end of init code ** * 19 80 dup1 [0, 0, address, size, size] <> * 20 93 swap4 [size, 0, address, size, 0] <> * * ** push code position 0 to stack and reorder stack items for extcodecopy ** * 21 80 dup1 [size, 0, address, size, 0, 0] <> * 22 91 swap2 [size, 0, address, 0, 0, size] <> * 23 92 swap3 [size, 0, size, 0, 0, address] <> * * ** call extcodecopy, consume four items, clone runtime code to memory ** * 24 3c extcodecopy [size, 0] <code> * * ** return to deploy final code in memory ** * 25 f3 return [] *deployed!* */ contract SocketDeployFactory is Ownable { using SafeTransferLib for ERC20; address public immutable disabledRouteAddress; mapping(address => address) _implementations; mapping(uint256 => bool) isDisabled; mapping(uint256 => bool) isRouteDeployed; mapping(address => bool) canDisableRoute; event Deployed(address _addr); event DisabledRoute(address _addr); event Destroyed(address _addr); error ContractAlreadyDeployed(); error NothingToDestroy(); error AlreadyDisabled(); error CannotBeDisabled(); error OnlyDisabler(); constructor(address _owner, address disabledRoute) Ownable(_owner) { disabledRouteAddress = disabledRoute; canDisableRoute[_owner] = true; } modifier onlyDisabler() { if (!canDisableRoute[msg.sender]) { revert OnlyDisabler(); } _; } function addDisablerAddress(address disabler) external onlyOwner { canDisableRoute[disabler] = true; } function removeDisablerAddress(address disabler) external onlyOwner { canDisableRoute[disabler] = false; } /** * @notice Deploys a route contract at predetermined location * @notice Caller must first deploy the route contract at another location and pass its address as implementation. * @param routeId route identifier * @param implementationContract address of deployed route contract. Its byte code will be copied to predetermined location. */ function deploy( uint256 routeId, address implementationContract ) external onlyOwner returns (address) { // assign the initialization code for the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (isRouteDeployed[routeId]) { revert ContractAlreadyDeployed(); } isRouteDeployed[routeId] = true; //first we deploy the code we want to deploy on a separate address // store the implementation to be retrieved by the socket contract. _implementations[routeContractAddress] = implementationContract; address addr; assembly { let encoded_data := add(0x20, initCode) // load initialization code. let encoded_size := mload(initCode) // load init code's length. addr := create2(0, encoded_data, encoded_size, routeId) // routeId is used as salt } require( addr == routeContractAddress, "Failed to deploy the new socket contract." ); emit Deployed(addr); return addr; } /** * @notice Destroy the route deployed at a location. * @param routeId route identifier to be destroyed. */ function destroy(uint256 routeId) external onlyDisabler { // determine the address of the socket contract. _destroy(routeId); } /** * @notice Deploy a disabled contract at destroyed route to handle it gracefully. * @param routeId route identifier to be disabled. */ function disableRoute( uint256 routeId ) external onlyDisabler returns (address) { return _disableRoute(routeId); } /** * @notice Destroy a list of routeIds * @param routeIds array of routeIds to be destroyed. */ function multiDestroy(uint256[] calldata routeIds) external onlyDisabler { for (uint32 index = 0; index < routeIds.length; ) { _destroy(routeIds[index]); unchecked { ++index; } } } /** * @notice Deploy a disabled contract at list of routeIds. * @param routeIds array of routeIds to be disabled. */ function multiDisableRoute( uint256[] calldata routeIds ) external onlyDisabler { for (uint32 index = 0; index < routeIds.length; ) { _disableRoute(routeIds[index]); unchecked { ++index; } } } /** * @dev External view function for calculating a socket contract address * given a particular routeId. */ function getContractAddress( uint256 routeId ) external view returns (address) { // determine the address of the socket contract. return _getContractAddress(routeId); } //those two functions are getting called by the socket Contract function getImplementation() external view returns (address implementation) { return _implementations[msg.sender]; } function _disableRoute(uint256 routeId) internal returns (address) { // assign the initialization code for the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (!isRouteDeployed[routeId]) { revert CannotBeDisabled(); } if (isDisabled[routeId]) { revert AlreadyDisabled(); } isDisabled[routeId] = true; //first we deploy the code we want to deploy on a separate address // store the implementation to be retrieved by the socket contract. _implementations[routeContractAddress] = disabledRouteAddress; address addr; assembly { let encoded_data := add(0x20, initCode) // load initialization code. let encoded_size := mload(initCode) // load init code's length. addr := create2(0, encoded_data, encoded_size, routeId) // routeId is used as salt. } require( addr == routeContractAddress, "Failed to deploy the new socket contract." ); emit Deployed(addr); return addr; } function _destroy(uint256 routeId) internal { // determine the address of the socket contract. address routeContractAddress = _getContractAddress(routeId); if (!isRouteDeployed[routeId]) { revert NothingToDestroy(); } ISocketBridgeBase(routeContractAddress).killme(); emit Destroyed(routeContractAddress); } /** * @dev Internal view function for calculating a socket contract address * given a particular routeId. */ function _getContractAddress( uint256 routeId ) internal view returns (address) { // determine the address of the socket contract. bytes memory initCode = ( hex"5860208158601c335a63aaf10f428752fa158151803b80938091923cf3" ); return address( uint160( // downcast to match the address type. uint256( // convert to uint to truncate upper digits. keccak256( // compute the CREATE2 hash using 4 inputs. abi.encodePacked( // pack all inputs to the hash together. hex"ff", // start with 0xff to distinguish from RLP. address(this), // this contract will be the caller. routeId, // the routeId is used as salt. keccak256(abi.encodePacked(initCode)) // the init code hash. ) ) ) ) ); } /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; error CelerRefundNotReady(); error OnlySocketDeployer(); error OnlySocketGatewayOwner(); error OnlySocketGateway(); error OnlyOwner(); error OnlyNominee(); error TransferIdExists(); error TransferIdDoesnotExist(); error Address0Provided(); error SwapFailed(); error UnsupportedInterfaceId(); error InvalidCelerRefund(); error CelerAlreadyRefunded(); error IncorrectBridgeRatios(); error ZeroAddressNotAllowed(); error ArrayLengthMismatch(); error PartialSwapsNotAllowed(); // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface ISocketBridgeBase { function killme() external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketController * @notice Interface for SocketController functions. * @dev functions can be added here for invocation from external contracts or off-chain * only restriction is that this should have functions to manage controllers * @author Socket dot tech. */ interface ISocketController { /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param _controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address _controllerAddress ) external returns (uint32); /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param _controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 _controllerId) external; /** * @notice Get controllerImplementation address mapped to the controllerId * @param _controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 _controllerId) external returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketGateway * @notice Interface for SocketGateway functions. * @dev functions can be added here for invocation from external contracts or off-chain * @author Socket dot tech. */ interface ISocketGateway { /** * @notice Request-struct for controllerRequests * @dev ensure the value for data is generated using the function-selectors defined in the controllerImplementation contracts */ struct SocketControllerRequest { // controllerId is the id mapped to the controllerAddress uint32 controllerId; // transactionImplData generated off-chain or by caller using function-selector of the controllerContract bytes data; } // @notice view to get owner-address function owner() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketRoute * @notice Interface with Request DataStructures to invoke controller functions. * @author Socket dot tech. */ interface ISocketRequest { struct SwapMultiBridgeRequest { uint32 swapRouteId; bytes swapImplData; uint32[] bridgeRouteIds; bytes[] bridgeImplDataItems; uint256[] bridgeRatios; bytes[] eventDataItems; } // Datastructure for Refuel-Swap-Bridge function struct RefuelSwapBridgeRequest { uint32 refuelRouteId; bytes refuelData; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } // Datastructure for DeductFees-Swap function struct FeesTakerSwapRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 routeId; bytes swapRequestData; } // Datastructure for DeductFees-Bridge function struct FeesTakerBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 routeId; bytes bridgeRequestData; } // Datastructure for DeductFees-MultiBridge function struct FeesTakerMultiBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32[] bridgeRouteIds; bytes[] bridgeRequestDataItems; } // Datastructure for DeductFees-Swap-Bridge function struct FeesTakerSwapBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } // Datastructure for DeductFees-Refuel-Swap-Bridge function struct FeesTakerRefuelSwapBridgeRequest { address feesTakerAddress; address feesToken; uint256 feesAmount; uint32 refuelRouteId; bytes refuelData; uint32 swapRouteId; bytes swapData; uint32 bridgeRouteId; bytes bridgeData; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /** * @title ISocketRoute * @notice Interface for routeManagement functions in SocketGateway. * @author Socket dot tech. */ interface ISocketRoute { /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute(address routeAddress) external returns (uint256); /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external; /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; // Functions taken out from https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol library LibBytes { // solhint-disable no-inline-assembly // LibBytes specific errors error SliceOverflow(); error SliceOutOfBounds(); error AddressOutOfBounds(); error UintOutOfBounds(); // ------------------------- function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { if (_length + 31 < _length) { revert SliceOverflow(); } if (_bytes.length < _start + _length) { revert SliceOutOfBounds(); } bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import "./LibBytes.sol"; /// @title LibUtil library /// @notice library with helper functions to operate on bytes-data and addresses /// @author socket dot tech library LibUtil { /// @notice LibBytes library to handle operations on bytes using LibBytes for bytes; /// @notice function to extract revertMessage from bytes data /// @dev use the revertMessage and then further revert with a custom revert and message /// @param _res bytes data received from the transaction call function getRevertMsg( bytes memory _res ) internal pure returns (string memory) { // If the _res length is less than 68, then the transaction failed silently (without a revert message) if (_res.length < 68) { return "Transaction reverted silently"; } bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes return abi.decode(revertData, (string)); // All that remains is the revert string } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.4; // runtime proto sol library library Pb { enum WireType { Varint, Fixed64, LengthDelim, StartGroup, EndGroup, Fixed32 } struct Buffer { uint256 idx; // the start index of next read. when idx=b.length, we're done bytes b; // hold serialized proto msg, readonly } // create a new in-memory Buffer object from raw msg bytes function fromBytes( bytes memory raw ) internal pure returns (Buffer memory buf) { buf.b = raw; buf.idx = 0; } // whether there are unread bytes function hasMore(Buffer memory buf) internal pure returns (bool) { return buf.idx < buf.b.length; } // decode current field number and wiretype function decKey( Buffer memory buf ) internal pure returns (uint256 tag, WireType wiretype) { uint256 v = decVarint(buf); tag = v / 8; wiretype = WireType(v & 7); } // read varint from current buf idx, move buf.idx to next read, return the int value function decVarint(Buffer memory buf) internal pure returns (uint256 v) { bytes10 tmp; // proto int is at most 10 bytes (7 bits can be used per byte) bytes memory bb = buf.b; // get buf.b mem addr to use in assembly v = buf.idx; // use v to save one additional uint variable assembly { tmp := mload(add(add(bb, 32), v)) // load 10 bytes from buf.b[buf.idx] to tmp } uint256 b; // store current byte content v = 0; // reset to 0 for return value for (uint256 i = 0; i < 10; i++) { assembly { b := byte(i, tmp) // don't use tmp[i] because it does bound check and costs extra } v |= (b & 0x7F) << (i * 7); if (b & 0x80 == 0) { buf.idx += i + 1; return v; } } revert(); // i=10, invalid varint stream } // read length delimited field and return bytes function decBytes( Buffer memory buf ) internal pure returns (bytes memory b) { uint256 len = decVarint(buf); uint256 end = buf.idx + len; require(end <= buf.b.length); // avoid overflow b = new bytes(len); bytes memory bufB = buf.b; // get buf.b mem addr to use in assembly uint256 bStart; uint256 bufBStart = buf.idx; assembly { bStart := add(b, 32) bufBStart := add(add(bufB, 32), bufBStart) } for (uint256 i = 0; i < len; i += 32) { assembly { mstore(add(bStart, i), mload(add(bufBStart, i))) } } buf.idx = end; } // move idx pass current value field, to beginning of next tag or msg end function skipValue(Buffer memory buf, WireType wire) internal pure { if (wire == WireType.Varint) { decVarint(buf); } else if (wire == WireType.LengthDelim) { uint256 len = decVarint(buf); buf.idx += len; // skip len bytes value data require(buf.idx <= buf.b.length); // avoid overflow } else { revert(); } // unsupported wiretype } function _uint256(bytes memory b) internal pure returns (uint256 v) { require(b.length <= 32); // b's length must be smaller than or equal to 32 assembly { v := mload(add(b, 32)) } // load all 32bytes to v v = v >> (8 * (32 - b.length)); // only first b.length is valid } function _address(bytes memory b) internal pure returns (address v) { v = _addressPayable(b); } function _addressPayable( bytes memory b ) internal pure returns (address payable v) { require(b.length == 20); //load 32bytes then shift right 12 bytes assembly { v := div(mload(add(b, 32)), 0x1000000000000000000000000) } } function _bytes32(bytes memory b) internal pure returns (bytes32 v) { require(b.length == 32); assembly { v := mload(add(b, 32)) } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; pragma experimental ABIEncoderV2; import "./utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {LibUtil} from "./libraries/LibUtil.sol"; import "./libraries/LibBytes.sol"; import {ISocketRoute} from "./interfaces/ISocketRoute.sol"; import {ISocketRequest} from "./interfaces/ISocketRequest.sol"; import {ISocketGateway} from "./interfaces/ISocketGateway.sol"; import {IncorrectBridgeRatios, ZeroAddressNotAllowed, ArrayLengthMismatch} from "./errors/SocketErrors.sol"; /// @title SocketGatewayContract /// @notice Socketgateway is a contract with entrypoint functions for all interactions with socket liquidity layer /// @author Socket Team contract SocketGatewayTemplate is Ownable { using LibBytes for bytes; using LibBytes for bytes4; using SafeTransferLib for ERC20; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice storage variable to keep track of total number of routes registered in socketgateway uint32 public routesCount = 385; /// @notice storage variable to keep track of total number of controllers registered in socketgateway uint32 public controllerCount; address public immutable disabledRouteAddress; uint256 public constant CENT_PERCENT = 100e18; /// @notice storage mapping for route implementation addresses mapping(uint32 => address) public routes; /// storage mapping for controller implemenation addresses mapping(uint32 => address) public controllers; // Events -------------------------------------------------------------------------------------------------------> /// @notice Event emitted when a router is added to socketgateway event NewRouteAdded(uint32 indexed routeId, address indexed route); /// @notice Event emitted when a route is disabled event RouteDisabled(uint32 indexed routeId); /// @notice Event emitted when ownership transfer is requested by socket-gateway-owner event OwnershipTransferRequested( address indexed _from, address indexed _to ); /// @notice Event emitted when a controller is added to socketgateway event ControllerAdded( uint32 indexed controllerId, address indexed controllerAddress ); /// @notice Event emitted when a controller is disabled event ControllerDisabled(uint32 indexed controllerId); constructor(address _owner, address _disabledRoute) Ownable(_owner) { disabledRouteAddress = _disabledRoute; } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} /******************************************* * EXTERNAL AND PUBLIC FUNCTIONS * *******************************************/ /** * @notice executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in routeData to be built using the function-selector defined as a * constant in the route implementation contract * @param routeId route identifier * @param routeData functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoute( uint32 routeId, bytes calldata routeData ) external payable returns (bytes memory) { (bool success, bytes memory result) = addressAt(routeId).delegatecall( routeData ); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice swaps a token on sourceChain and split it across multiple bridge-recipients * @notice The caller must first approve this contract to spend amount of ERC20-Token being swapped * @dev ensure the swap-data and bridge-data is generated using the function-selector defined as a constant in the implementation address * @param swapMultiBridgeRequest request */ function swapAndMultiBridge( ISocketRequest.SwapMultiBridgeRequest calldata swapMultiBridgeRequest ) external payable { uint256 requestLength = swapMultiBridgeRequest.bridgeRouteIds.length; if ( requestLength != swapMultiBridgeRequest.bridgeImplDataItems.length ) { revert ArrayLengthMismatch(); } uint256 ratioAggregate; for (uint256 index = 0; index < requestLength; ) { ratioAggregate += swapMultiBridgeRequest.bridgeRatios[index]; } if (ratioAggregate != CENT_PERCENT) { revert IncorrectBridgeRatios(); } (bool swapSuccess, bytes memory swapResult) = addressAt( swapMultiBridgeRequest.swapRouteId ).delegatecall(swapMultiBridgeRequest.swapImplData); if (!swapSuccess) { assembly { revert(add(swapResult, 32), mload(swapResult)) } } uint256 amountReceivedFromSwap = abi.decode(swapResult, (uint256)); uint256 bridgedAmount; for (uint256 index = 0; index < requestLength; ) { uint256 bridgingAmount; // if it is the last bridge request, bridge the remaining amount if (index == requestLength - 1) { bridgingAmount = amountReceivedFromSwap - bridgedAmount; } else { // bridging amount is the multiplication of bridgeRatio and amountReceivedFromSwap bridgingAmount = (amountReceivedFromSwap * swapMultiBridgeRequest.bridgeRatios[index]) / (CENT_PERCENT); } // update the bridged amount, this would be used for computation for last bridgeRequest bridgedAmount += bridgingAmount; bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, bridgingAmount, swapMultiBridgeRequest.bridgeImplDataItems[index] ); (bool bridgeSuccess, bytes memory bridgeResult) = addressAt( swapMultiBridgeRequest.bridgeRouteIds[index] ).delegatecall(bridgeImpldata); if (!bridgeSuccess) { assembly { revert(add(bridgeResult, 32), mload(bridgeResult)) } } unchecked { ++index; } } } /** * @notice sequentially executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each dataItem to be built using the function-selector defined as a * constant in the route implementation contract * @param routeIds a list of route identifiers * @param dataItems a list of functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoutes( uint32[] calldata routeIds, bytes[] calldata dataItems ) external payable { uint256 routeIdslength = routeIds.length; if (routeIdslength != dataItems.length) revert ArrayLengthMismatch(); for (uint256 index = 0; index < routeIdslength; ) { (bool success, bytes memory result) = addressAt(routeIds[index]) .delegatecall(dataItems[index]); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /** * @notice execute a controller function identified using the controllerId in the request * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in request to be built using the function-selector defined as a * constant in the controller implementation contract * @param socketControllerRequest socketControllerRequest with controllerId to identify the * controllerAddress and byteData constructed using functionSelector * of the function being invoked * @return bytes data received from the call delegated to controller */ function executeController( ISocketGateway.SocketControllerRequest calldata socketControllerRequest ) external payable returns (bytes memory) { (bool success, bytes memory result) = controllers[ socketControllerRequest.controllerId ].delegatecall(socketControllerRequest.data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice sequentially executes all controller requests * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each controller-request to be built using the function-selector defined as a * constant in the controller implementation contract * @param controllerRequests a list of socketControllerRequest * Each controllerRequest contains controllerId to identify the controllerAddress and * byteData constructed using functionSelector of the function being invoked */ function executeControllers( ISocketGateway.SocketControllerRequest[] calldata controllerRequests ) external payable { for (uint32 index = 0; index < controllerRequests.length; ) { (bool success, bytes memory result) = controllers[ controllerRequests[index].controllerId ].delegatecall(controllerRequests[index].data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /************************************** * ADMIN FUNCTIONS * **************************************/ /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute( address routeAddress ) external onlyOwner returns (uint32) { uint32 routeId = routesCount; routes[routeId] = routeAddress; routesCount += 1; emit NewRouteAdded(routeId, routeAddress); return routeId; } /** * @notice Give Infinite or 0 approval to bridgeRoute for the tokenAddress This is a restricted function to be called by only socketGatewayOwner */ function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external onlyOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).approve( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address controllerAddress ) external onlyOwner returns (uint32) { uint32 controllerId = controllerCount; controllers[controllerId] = controllerAddress; controllerCount += 1; emit ControllerAdded(controllerId, controllerAddress); return controllerId; } /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 controllerId) public onlyOwner { controllers[controllerId] = disabledRouteAddress; emit ControllerDisabled(controllerId); } /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external onlyOwner { routes[routeId] = disabledRouteAddress; emit RouteDisabled(routeId); } /******************************************* * RESTRICTED RESCUE FUNCTIONS * *******************************************/ /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } /******************************************* * VIEW FUNCTIONS * *******************************************/ /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) public view returns (address) { return addressAt(routeId); } /** * @notice Get controllerImplementation address mapped to the controllerId * @param controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 controllerId) public view returns (address) { return controllers[controllerId]; } function addressAt(uint32 routeId) public view returns (address) { if (routeId < 385) { if (routeId < 257) { if (routeId < 129) { if (routeId < 65) { if (routeId < 33) { if (routeId < 17) { if (routeId < 9) { if (routeId < 5) { if (routeId < 3) { if (routeId == 1) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 3) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 7) { if (routeId == 5) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 7) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 13) { if (routeId < 11) { if (routeId == 9) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 11) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 15) { if (routeId == 13) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 15) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 25) { if (routeId < 21) { if (routeId < 19) { if (routeId == 17) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 19) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 23) { if (routeId == 21) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 23) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 29) { if (routeId < 27) { if (routeId == 25) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 27) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 31) { if (routeId == 29) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 31) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 49) { if (routeId < 41) { if (routeId < 37) { if (routeId < 35) { if (routeId == 33) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 35) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 39) { if (routeId == 37) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 39) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 45) { if (routeId < 43) { if (routeId == 41) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 43) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 47) { if (routeId == 45) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 47) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 57) { if (routeId < 53) { if (routeId < 51) { if (routeId == 49) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 51) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 55) { if (routeId == 53) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 55) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 61) { if (routeId < 59) { if (routeId == 57) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 59) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 63) { if (routeId == 61) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 63) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 97) { if (routeId < 81) { if (routeId < 73) { if (routeId < 69) { if (routeId < 67) { if (routeId == 65) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 67) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 71) { if (routeId == 69) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 71) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 77) { if (routeId < 75) { if (routeId == 73) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 75) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 79) { if (routeId == 77) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 79) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 89) { if (routeId < 85) { if (routeId < 83) { if (routeId == 81) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 83) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 87) { if (routeId == 85) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 87) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 93) { if (routeId < 91) { if (routeId == 89) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 91) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 95) { if (routeId == 93) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 95) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 113) { if (routeId < 105) { if (routeId < 101) { if (routeId < 99) { if (routeId == 97) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 99) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 103) { if (routeId == 101) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 103) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 109) { if (routeId < 107) { if (routeId == 105) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 107) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 111) { if (routeId == 109) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 111) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 121) { if (routeId < 117) { if (routeId < 115) { if (routeId == 113) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 115) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 119) { if (routeId == 117) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 119) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 125) { if (routeId < 123) { if (routeId == 121) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 123) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 127) { if (routeId == 125) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 127) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } else { if (routeId < 193) { if (routeId < 161) { if (routeId < 145) { if (routeId < 137) { if (routeId < 133) { if (routeId < 131) { if (routeId == 129) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 131) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 135) { if (routeId == 133) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 135) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 141) { if (routeId < 139) { if (routeId == 137) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 139) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 143) { if (routeId == 141) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 143) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 153) { if (routeId < 149) { if (routeId < 147) { if (routeId == 145) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 147) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 151) { if (routeId == 149) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 151) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 157) { if (routeId < 155) { if (routeId == 153) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 155) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 159) { if (routeId == 157) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 159) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 177) { if (routeId < 169) { if (routeId < 165) { if (routeId < 163) { if (routeId == 161) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 163) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 167) { if (routeId == 165) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 167) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 173) { if (routeId < 171) { if (routeId == 169) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 171) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 175) { if (routeId == 173) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 175) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 185) { if (routeId < 181) { if (routeId < 179) { if (routeId == 177) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 179) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 183) { if (routeId == 181) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 183) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 189) { if (routeId < 187) { if (routeId == 185) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 187) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 191) { if (routeId == 189) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 191) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 225) { if (routeId < 209) { if (routeId < 201) { if (routeId < 197) { if (routeId < 195) { if (routeId == 193) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 195) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 199) { if (routeId == 197) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 199) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 205) { if (routeId < 203) { if (routeId == 201) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 203) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 207) { if (routeId == 205) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 207) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 217) { if (routeId < 213) { if (routeId < 211) { if (routeId == 209) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 211) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 215) { if (routeId == 213) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 215) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 221) { if (routeId < 219) { if (routeId == 217) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 219) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 223) { if (routeId == 221) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 223) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 241) { if (routeId < 233) { if (routeId < 229) { if (routeId < 227) { if (routeId == 225) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 227) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 231) { if (routeId == 229) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 231) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 237) { if (routeId < 235) { if (routeId == 233) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 235) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 239) { if (routeId == 237) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 239) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 249) { if (routeId < 245) { if (routeId < 243) { if (routeId == 241) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 243) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 247) { if (routeId == 245) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 247) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 253) { if (routeId < 251) { if (routeId == 249) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 251) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 255) { if (routeId == 253) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 255) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } } else { if (routeId < 321) { if (routeId < 289) { if (routeId < 273) { if (routeId < 265) { if (routeId < 261) { if (routeId < 259) { if (routeId == 257) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 259) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 263) { if (routeId == 261) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 263) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 269) { if (routeId < 267) { if (routeId == 265) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 267) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 271) { if (routeId == 269) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 271) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 281) { if (routeId < 277) { if (routeId < 275) { if (routeId == 273) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 275) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 279) { if (routeId == 277) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 279) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 285) { if (routeId < 283) { if (routeId == 281) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 283) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 287) { if (routeId == 285) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 287) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 305) { if (routeId < 297) { if (routeId < 293) { if (routeId < 291) { if (routeId == 289) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 291) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 295) { if (routeId == 293) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 295) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 301) { if (routeId < 299) { if (routeId == 297) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 299) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 303) { if (routeId == 301) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 303) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 313) { if (routeId < 309) { if (routeId < 307) { if (routeId == 305) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 307) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 311) { if (routeId == 309) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 311) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 317) { if (routeId < 315) { if (routeId == 313) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 315) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 319) { if (routeId == 317) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 319) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } else { if (routeId < 353) { if (routeId < 337) { if (routeId < 329) { if (routeId < 325) { if (routeId < 323) { if (routeId == 321) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 323) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 327) { if (routeId == 325) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 327) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 333) { if (routeId < 331) { if (routeId == 329) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 331) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 335) { if (routeId == 333) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 335) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 345) { if (routeId < 341) { if (routeId < 339) { if (routeId == 337) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 339) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 343) { if (routeId == 341) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 343) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 349) { if (routeId < 347) { if (routeId == 345) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 347) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 351) { if (routeId == 349) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 351) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } else { if (routeId < 369) { if (routeId < 361) { if (routeId < 357) { if (routeId < 355) { if (routeId == 353) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 355) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 359) { if (routeId == 357) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 359) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 365) { if (routeId < 363) { if (routeId == 361) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 363) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 367) { if (routeId == 365) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 367) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } else { if (routeId < 377) { if (routeId < 373) { if (routeId < 371) { if (routeId == 369) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 371) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 375) { if (routeId == 373) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 375) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } else { if (routeId < 381) { if (routeId < 379) { if (routeId == 377) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 379) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } else { if (routeId < 383) { if (routeId == 381) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } else { if (routeId == 383) { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } else { return 0x822D4B4e63499a576Ab1cc152B86D1CFFf794F4f; } } } } } } } } } if (routes[routeId] == address(0)) revert ZeroAddressNotAllowed(); return routes[routeId]; } /// @notice fallback function to handle swap, bridge execution /// @dev ensure routeId is converted to bytes4 and sent as msg.sig in the transaction fallback() external payable { address routeAddress = addressAt(uint32(msg.sig)); bytes memory result; assembly { // copy function selector and any arguments calldatacopy(0, 4, sub(calldatasize(), 4)) // execute function call using the facet result := delegatecall( gas(), routeAddress, 0, sub(calldatasize(), 4), 0, 0 ) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; pragma experimental ABIEncoderV2; import "./utils/Ownable.sol"; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {LibUtil} from "./libraries/LibUtil.sol"; import "./libraries/LibBytes.sol"; import {ISocketRoute} from "./interfaces/ISocketRoute.sol"; import {ISocketRequest} from "./interfaces/ISocketRequest.sol"; import {ISocketGateway} from "./interfaces/ISocketGateway.sol"; import {IncorrectBridgeRatios, ZeroAddressNotAllowed, ArrayLengthMismatch} from "./errors/SocketErrors.sol"; /// @title SocketGatewayContract /// @notice Socketgateway is a contract with entrypoint functions for all interactions with socket liquidity layer /// @author Socket Team contract SocketGateway is Ownable { using LibBytes for bytes; using LibBytes for bytes4; using SafeTransferLib for ERC20; /// @notice FunctionSelector used to delegatecall from swap to the function of bridge router implementation bytes4 public immutable BRIDGE_AFTER_SWAP_SELECTOR = bytes4(keccak256("bridgeAfterSwap(uint256,bytes)")); /// @notice storage variable to keep track of total number of routes registered in socketgateway uint32 public routesCount = 385; /// @notice storage variable to keep track of total number of controllers registered in socketgateway uint32 public controllerCount; address public immutable disabledRouteAddress; uint256 public constant CENT_PERCENT = 100e18; /// @notice storage mapping for route implementation addresses mapping(uint32 => address) public routes; /// storage mapping for controller implemenation addresses mapping(uint32 => address) public controllers; // Events -------------------------------------------------------------------------------------------------------> /// @notice Event emitted when a router is added to socketgateway event NewRouteAdded(uint32 indexed routeId, address indexed route); /// @notice Event emitted when a route is disabled event RouteDisabled(uint32 indexed routeId); /// @notice Event emitted when ownership transfer is requested by socket-gateway-owner event OwnershipTransferRequested( address indexed _from, address indexed _to ); /// @notice Event emitted when a controller is added to socketgateway event ControllerAdded( uint32 indexed controllerId, address indexed controllerAddress ); /// @notice Event emitted when a controller is disabled event ControllerDisabled(uint32 indexed controllerId); constructor(address _owner, address _disabledRoute) Ownable(_owner) { disabledRouteAddress = _disabledRoute; } // Able to receive ether // solhint-disable-next-line no-empty-blocks receive() external payable {} /******************************************* * EXTERNAL AND PUBLIC FUNCTIONS * *******************************************/ /** * @notice executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in routeData to be built using the function-selector defined as a * constant in the route implementation contract * @param routeId route identifier * @param routeData functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoute( uint32 routeId, bytes calldata routeData ) external payable returns (bytes memory) { (bool success, bytes memory result) = addressAt(routeId).delegatecall( routeData ); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice swaps a token on sourceChain and split it across multiple bridge-recipients * @notice The caller must first approve this contract to spend amount of ERC20-Token being swapped * @dev ensure the swap-data and bridge-data is generated using the function-selector defined as a constant in the implementation address * @param swapMultiBridgeRequest request */ function swapAndMultiBridge( ISocketRequest.SwapMultiBridgeRequest calldata swapMultiBridgeRequest ) external payable { uint256 requestLength = swapMultiBridgeRequest.bridgeRouteIds.length; if ( requestLength != swapMultiBridgeRequest.bridgeImplDataItems.length ) { revert ArrayLengthMismatch(); } uint256 ratioAggregate; for (uint256 index = 0; index < requestLength; ) { ratioAggregate += swapMultiBridgeRequest.bridgeRatios[index]; } if (ratioAggregate != CENT_PERCENT) { revert IncorrectBridgeRatios(); } (bool swapSuccess, bytes memory swapResult) = addressAt( swapMultiBridgeRequest.swapRouteId ).delegatecall(swapMultiBridgeRequest.swapImplData); if (!swapSuccess) { assembly { revert(add(swapResult, 32), mload(swapResult)) } } uint256 amountReceivedFromSwap = abi.decode(swapResult, (uint256)); uint256 bridgedAmount; for (uint256 index = 0; index < requestLength; ) { uint256 bridgingAmount; // if it is the last bridge request, bridge the remaining amount if (index == requestLength - 1) { bridgingAmount = amountReceivedFromSwap - bridgedAmount; } else { // bridging amount is the multiplication of bridgeRatio and amountReceivedFromSwap bridgingAmount = (amountReceivedFromSwap * swapMultiBridgeRequest.bridgeRatios[index]) / (CENT_PERCENT); } // update the bridged amount, this would be used for computation for last bridgeRequest bridgedAmount += bridgingAmount; bytes memory bridgeImpldata = abi.encodeWithSelector( BRIDGE_AFTER_SWAP_SELECTOR, bridgingAmount, swapMultiBridgeRequest.bridgeImplDataItems[index] ); (bool bridgeSuccess, bytes memory bridgeResult) = addressAt( swapMultiBridgeRequest.bridgeRouteIds[index] ).delegatecall(bridgeImpldata); if (!bridgeSuccess) { assembly { revert(add(bridgeResult, 32), mload(bridgeResult)) } } unchecked { ++index; } } } /** * @notice sequentially executes functions in the routes identified using routeId and functionSelectorData * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each dataItem to be built using the function-selector defined as a * constant in the route implementation contract * @param routeIds a list of route identifiers * @param dataItems a list of functionSelectorData generated using the function-selector defined in the route Implementation */ function executeRoutes( uint32[] calldata routeIds, bytes[] calldata dataItems ) external payable { uint256 routeIdslength = routeIds.length; if (routeIdslength != dataItems.length) revert ArrayLengthMismatch(); for (uint256 index = 0; index < routeIdslength; ) { (bool success, bytes memory result) = addressAt(routeIds[index]) .delegatecall(dataItems[index]); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /** * @notice execute a controller function identified using the controllerId in the request * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in request to be built using the function-selector defined as a * constant in the controller implementation contract * @param socketControllerRequest socketControllerRequest with controllerId to identify the * controllerAddress and byteData constructed using functionSelector * of the function being invoked * @return bytes data received from the call delegated to controller */ function executeController( ISocketGateway.SocketControllerRequest calldata socketControllerRequest ) external payable returns (bytes memory) { (bool success, bytes memory result) = controllers[ socketControllerRequest.controllerId ].delegatecall(socketControllerRequest.data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } return result; } /** * @notice sequentially executes all controller requests * @notice The caller must first approve this contract to spend amount of ERC20-Token being bridged/swapped * @dev ensure the data in each controller-request to be built using the function-selector defined as a * constant in the controller implementation contract * @param controllerRequests a list of socketControllerRequest * Each controllerRequest contains controllerId to identify the controllerAddress and * byteData constructed using functionSelector of the function being invoked */ function executeControllers( ISocketGateway.SocketControllerRequest[] calldata controllerRequests ) external payable { for (uint32 index = 0; index < controllerRequests.length; ) { (bool success, bytes memory result) = controllers[ controllerRequests[index].controllerId ].delegatecall(controllerRequests[index].data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } unchecked { ++index; } } } /************************************** * ADMIN FUNCTIONS * **************************************/ /** * @notice Add route to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure routeAddress is a verified bridge or middleware implementation address * @param routeAddress The address of bridge or middleware implementation contract deployed * @return Id of the route added to the routes-mapping in socketGateway storage */ function addRoute( address routeAddress ) external onlyOwner returns (uint32) { uint32 routeId = routesCount; routes[routeId] = routeAddress; routesCount += 1; emit NewRouteAdded(routeId, routeAddress); return routeId; } /** * @notice Give Infinite or 0 approval to bridgeRoute for the tokenAddress This is a restricted function to be called by only socketGatewayOwner */ function setApprovalForRouters( address[] memory routeAddresses, address[] memory tokenAddresses, bool isMax ) external onlyOwner { for (uint32 index = 0; index < routeAddresses.length; ) { ERC20(tokenAddresses[index]).approve( routeAddresses[index], isMax ? type(uint256).max : 0 ); unchecked { ++index; } } } /** * @notice Add controller to the socketGateway This is a restricted function to be called by only socketGatewayOwner * @dev ensure controllerAddress is a verified controller implementation address * @param controllerAddress The address of controller implementation contract deployed * @return Id of the controller added to the controllers-mapping in socketGateway storage */ function addController( address controllerAddress ) external onlyOwner returns (uint32) { uint32 controllerId = controllerCount; controllers[controllerId] = controllerAddress; controllerCount += 1; emit ControllerAdded(controllerId, controllerAddress); return controllerId; } /** * @notice disable controller by setting ZeroAddress to the entry in controllers-mapping identified by controllerId as key. This is a restricted function to be called by only socketGatewayOwner * @param controllerId The Id of controller-implementation in the controllers mapping */ function disableController(uint32 controllerId) public onlyOwner { controllers[controllerId] = disabledRouteAddress; emit ControllerDisabled(controllerId); } /** * @notice disable a route by setting ZeroAddress to the entry in routes-mapping identified by routeId as key. This is a restricted function to be called by only socketGatewayOwner * @param routeId The Id of route-implementation in the routes mapping */ function disableRoute(uint32 routeId) external onlyOwner { routes[routeId] = disabledRouteAddress; emit RouteDisabled(routeId); } /******************************************* * RESTRICTED RESCUE FUNCTIONS * *******************************************/ /** * @notice Rescues the ERC20 token to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param token address of the ERC20 token being rescued * @param userAddress address to which ERC20 is to be rescued * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external onlyOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice Rescues the native balance to an address this is a restricted function to be called by only socketGatewayOwner * @dev as this is a restricted to socketGatewayOwner, ensure the userAddress is a known address * @param userAddress address to which native-balance is to be rescued * @param amount amount of native-balance being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external onlyOwner { userAddress.transfer(amount); } /******************************************* * VIEW FUNCTIONS * *******************************************/ /** * @notice Get routeImplementation address mapped to the routeId * @param routeId routeId is the key in the mapping for routes * @return route-implementation address */ function getRoute(uint32 routeId) public view returns (address) { return addressAt(routeId); } /** * @notice Get controllerImplementation address mapped to the controllerId * @param controllerId controllerId is the key in the mapping for controllers * @return controller-implementation address */ function getController(uint32 controllerId) public view returns (address) { return controllers[controllerId]; } function addressAt(uint32 routeId) public view returns (address) { if (routeId < 385) { if (routeId < 257) { if (routeId < 129) { if (routeId < 65) { if (routeId < 33) { if (routeId < 17) { if (routeId < 9) { if (routeId < 5) { if (routeId < 3) { if (routeId == 1) { return 0x8cd6BaCDAe46B449E2e5B34e348A4eD459c84D50; } else { return 0x31524750Cd865fF6A3540f232754Fb974c18585C; } } else { if (routeId == 3) { return 0xEd9b37342BeC8f3a2D7b000732ec87498aA6EC6a; } else { return 0xE8704Ef6211F8988Ccbb11badC89841808d66890; } } } else { if (routeId < 7) { if (routeId == 5) { return 0x9aFF58C460a461578C433e11C4108D1c4cF77761; } else { return 0x2D1733886cFd465B0B99F1492F40847495f334C5; } } else { if (routeId == 7) { return 0x715497Be4D130F04B8442F0A1F7a9312D4e54FC4; } else { return 0x90C8a40c38E633B5B0e0d0585b9F7FA05462CaaF; } } } } else { if (routeId < 13) { if (routeId < 11) { if (routeId == 9) { return 0xa402b70FCfF3F4a8422B93Ef58E895021eAdE4F6; } else { return 0xc1B718522E15CD42C4Ac385a929fc2B51f5B892e; } } else { if (routeId == 11) { return 0xa97bf2f7c26C43c010c349F52f5eA5dC49B2DD38; } else { return 0x969423d71b62C81d2f28d707364c9Dc4a0764c53; } } } else { if (routeId < 15) { if (routeId == 13) { return 0xF86729934C083fbEc8C796068A1fC60701Ea1207; } else { return 0xD7cC2571F5823caCA26A42690D2BE7803DD5393f; } } else { if (routeId == 15) { return 0x7c8837a279bbbf7d8B93413763176de9F65d5bB9; } else { return 0x13b81C27B588C07D04458ed7dDbdbD26D1e39bcc; } } } } } else { if (routeId < 25) { if (routeId < 21) { if (routeId < 19) { if (routeId == 17) { return 0x52560Ac678aFA1345D15474287d16Dc1eA3F78aE; } else { return 0x1E31e376551459667cd7643440c1b21CE69065A0; } } else { if (routeId == 19) { return 0xc57D822CB3288e7b97EF8f8af0EcdcD1B783529B; } else { return 0x2197A1D9Af24b4d6a64Bff95B4c29Fcd3Ff28C30; } } } else { if (routeId < 23) { if (routeId == 21) { return 0xE3700feAa5100041Bf6b7AdBA1f72f647809Fd00; } else { return 0xc02E8a0Fdabf0EeFCEA025163d90B5621E2b9948; } } else { if (routeId == 23) { return 0xF5144235E2926cAb3c69b30113254Fa632f72d62; } else { return 0xBa3F92313B00A1f7Bc53b2c24EB195c8b2F57682; } } } } else { if (routeId < 29) { if (routeId < 27) { if (routeId == 25) { return 0x77a6856fe1fFA5bEB55A1d2ED86E27C7c482CB76; } else { return 0x4826Ff4e01E44b1FCEFBfb38cd96687Eb7786b44; } } else { if (routeId == 27) { return 0x55FF3f5493cf5e80E76DEA7E327b9Cd8440Af646; } else { return 0xF430Db544bE9770503BE4aa51997aA19bBd5BA4f; } } } else { if (routeId < 31) { if (routeId == 29) { return 0x0f166446ce1484EE3B0663E7E67DF10F5D240115; } else { return 0x6365095D92537f242Db5EdFDd572745E72aC33d9; } } else { if (routeId == 31) { return 0x5c7BC93f06ce3eAe75ADf55E10e23d2c1dE5Bc65; } else { return 0xe46383bAD90d7A08197ccF08972e9DCdccCE9BA4; } } } } } } else { if (routeId < 49) { if (routeId < 41) { if (routeId < 37) { if (routeId < 35) { if (routeId == 33) { return 0xf0f21710c071E3B728bdc4654c3c0b873aAaa308; } else { return 0x63Bc9ed3AcAAeB0332531C9fB03b0a2352E9Ff25; } } else { if (routeId == 35) { return 0xd1CE808625CB4007a1708824AE82CdB0ece57De9; } else { return 0x57BbB148112f4ba224841c3FE018884171004661; } } } else { if (routeId < 39) { if (routeId == 37) { return 0x037f7d6933036F34DFabd40Ff8e4D789069f92e3; } else { return 0xeF978c280915CfF3Dca4EDfa8932469e40ADA1e1; } } else { if (routeId == 39) { return 0x92ee9e071B13f7ecFD62B7DED404A16CBc223CD3; } else { return 0x94Ae539c186e41ed762271338Edf140414D1E442; } } } } else { if (routeId < 45) { if (routeId < 43) { if (routeId == 41) { return 0x30A64BBe4DdBD43dA2368EFd1eB2d80C10d84DAb; } else { return 0x3aEABf81c1Dc4c1b73d5B2a95410f126426FB596; } } else { if (routeId == 43) { return 0x25b08aB3D0C8ea4cC9d967b79688C6D98f3f563a; } else { return 0xea40cB15C9A3BBd27af6474483886F7c0c9AE406; } } } else { if (routeId < 47) { if (routeId == 45) { return 0x9580113Cc04e5a0a03359686304EF3A80b936Dd3; } else { return 0xD211c826d568957F3b66a3F4d9c5f68cCc66E619; } } else { if (routeId == 47) { return 0xCEE24D0635c4C56315d133b031984d4A6f509476; } else { return 0x3922e6B987983229798e7A20095EC372744d4D4c; } } } } } else { if (routeId < 57) { if (routeId < 53) { if (routeId < 51) { if (routeId == 49) { return 0x2d92D03413d296e1F31450479349757187F2a2b7; } else { return 0x0fe5308eE90FC78F45c89dB6053eA859097860CA; } } else { if (routeId == 51) { return 0x08Ba68e067C0505bAF0C1311E0cFB2B1B59b969c; } else { return 0x9bee5DdDF75C24897374f92A534B7A6f24e97f4a; } } } else { if (routeId < 55) { if (routeId == 53) { return 0x1FC5A90B232208704B930c1edf82FFC6ACc02734; } else { return 0x5b1B0417cb44c761C2a23ee435d011F0214b3C85; } } else { if (routeId == 55) { return 0x9d70cDaCA12A738C283020760f449D7816D592ec; } else { return 0x95a23b9CB830EcCFDDD5dF56A4ec665e3381Fa12; } } } } else { if (routeId < 61) { if (routeId < 59) { if (routeId == 57) { return 0x483a957Cf1251c20e096C35c8399721D1200A3Fc; } else { return 0xb4AD39Cb293b0Ec7FEDa743442769A7FF04987CD; } } else { if (routeId == 59) { return 0x4C543AD78c1590D81BAe09Fc5B6Df4132A2461d0; } else { return 0x471d5E5195c563902781734cfe1FF3981F8B6c86; } } } else { if (routeId < 63) { if (routeId == 61) { return 0x1B12a54B5E606D95B8B8D123c9Cb09221Ee37584; } else { return 0xE4127cC550baC433646a7D998775a84daC16c7f3; } } else { if (routeId == 63) { return 0xecb1b55AB12E7dd788D585c6C5cD61B5F87be836; } else { return 0xf91ef487C5A1579f70601b6D347e19756092eEBf; } } } } } } } else { if (routeId < 97) { if (routeId < 81) { if (routeId < 73) { if (routeId < 69) { if (routeId < 67) { if (routeId == 65) { return 0x34a16a7e9BADEEFD4f056310cbE0b1423Fa1b760; } else { return 0x60E10E80c7680f429dBbC232830BEcd3D623c4CF; } } else { if (routeId == 67) { return 0x66465285B8D65362A1d86CE00fE2bE949Fd6debF; } else { return 0x5aB231B7e1A3A74a48f67Ab7bde5Cdd4267022E0; } } } else { if (routeId < 71) { if (routeId == 69) { return 0x3A1C3633eE79d43366F5c67802a746aFD6b162Ba; } else { return 0x0C4BfCbA8dC3C811437521a80E81e41DAF479039; } } else { if (routeId == 71) { return 0x6caf25d2e139C5431a1FA526EAf8d73ff2e6252C; } else { return 0x74ad21e09FDa68638CE14A3009A79B6D16574257; } } } } else { if (routeId < 77) { if (routeId < 75) { if (routeId == 73) { return 0xD4923A61008894b99cc1CD3407eF9524f02aA0Ca; } else { return 0x6F159b5EB823BD415886b9271aA2A723a00a1987; } } else { if (routeId == 75) { return 0x742a8aA42E7bfB4554dE30f4Fb07FFb6f2068863; } else { return 0x4AE9702d3360400E47B446e76DE063ACAb930101; } } } else { if (routeId < 79) { if (routeId == 77) { return 0x0E19a0a44ddA7dAD854ec5Cc867d16869c4E80F4; } else { return 0xE021A51968f25148F726E326C88d2556c5647557; } } else { if (routeId == 79) { return 0x64287BDDDaeF4d94E4599a3D882bed29E6Ada4B6; } else { return 0xcBB57Fd2e19cc7e9D444d5b4325A2F1047d0C73f; } } } } } else { if (routeId < 89) { if (routeId < 85) { if (routeId < 83) { if (routeId == 81) { return 0x373DE80DF7D82cFF6D76F29581b360C56331e957; } else { return 0x0466356E131AD61596a51F86BAd1C03A328960D8; } } else { if (routeId == 83) { return 0x01726B960992f1b74311b248E2a922fC707d43A6; } else { return 0x2E21bdf9A4509b89795BCE7E132f248a75814CEc; } } } else { if (routeId < 87) { if (routeId == 85) { return 0x769512b23aEfF842379091d3B6E4B5456F631D42; } else { return 0xe7eD9be946a74Ec19325D39C6EEb57887ccB2B0D; } } else { if (routeId == 87) { return 0xc4D01Ec357c2b511d10c15e6b6974380F0E62e67; } else { return 0x5bC49CC9dD77bECF2fd3A3C55611e84E69AFa3AE; } } } } else { if (routeId < 93) { if (routeId < 91) { if (routeId == 89) { return 0x48bcD879954fA14e7DbdAeb56F79C1e9DDcb69ec; } else { return 0xE929bDde21b462572FcAA4de6F49B9D3246688D0; } } else { if (routeId == 91) { return 0x85Aae300438222f0e3A9Bc870267a5633A9438bd; } else { return 0x51f72E1096a81C55cd142d66d39B688C657f9Be8; } } } else { if (routeId < 95) { if (routeId == 93) { return 0x3A8a05BF68ac54B01E6C0f492abF97465F3d15f9; } else { return 0x145aA67133F0c2C36b9771e92e0B7655f0D59040; } } else { if (routeId == 95) { return 0xa030315d7DB11F9892758C9e7092D841e0ADC618; } else { return 0xdF1f8d81a3734bdDdEfaC6Ca1596E081e57c3044; } } } } } } else { if (routeId < 113) { if (routeId < 105) { if (routeId < 101) { if (routeId < 99) { if (routeId == 97) { return 0xFF2833123B58aa05d04D7fb99f5FB768B2b435F8; } else { return 0xc8f09c1fD751C570233765f71b0e280d74e6e743; } } else { if (routeId == 99) { return 0x3026DA6Ceca2E5A57A05153653D9212FFAaA49d8; } else { return 0xdE68Ee703dE0D11f67B0cE5891cB4a903de6D160; } } } else { if (routeId < 103) { if (routeId == 101) { return 0xE23a7730e81FB4E87A6D0bd9f63EE77ac86C3DA4; } else { return 0x8b1DBe04aD76a7d8bC079cACd3ED4D99B897F4a0; } } else { if (routeId == 103) { return 0xBB227240FA459b69C6889B2b8cb1BE76F118061f; } else { return 0xC062b9b3f0dB28BB8afAfcD4d075729344114ffe; } } } } else { if (routeId < 109) { if (routeId < 107) { if (routeId == 105) { return 0x553188Aa45f5FDB83EC4Ca485982F8fC082480D1; } else { return 0x0109d83D746EaCb6d4014953D9E12d6ca85e330b; } } else { if (routeId == 107) { return 0x45B1bEd29812F5bf6711074ACD180B2aeB783AD9; } else { return 0xdA06eC8c19aea31D77F60299678Cba40E743e1aD; } } } else { if (routeId < 111) { if (routeId == 109) { return 0x3cC5235c97d975a9b4FD4501B3446c981ea3D855; } else { return 0xa1827267d6Bd989Ff38580aE3d9deff6Acf19163; } } else { if (routeId == 111) { return 0x3663CAA0433A3D4171b3581Cf2410702840A735A; } else { return 0x7575D0a7614F655BA77C74a72a43bbd4fA6246a3; } } } } } else { if (routeId < 121) { if (routeId < 117) { if (routeId < 115) { if (routeId == 113) { return 0x2516Defc18bc07089c5dAFf5eafD7B0EF64611E2; } else { return 0xfec5FF08E20fbc107a97Af2D38BD0025b84ee233; } } else { if (routeId == 115) { return 0x0FB5763a87242B25243e23D73f55945fE787523A; } else { return 0xe4C00db89678dBf8391f430C578Ca857Dd98aDE1; } } } else { if (routeId < 119) { if (routeId == 117) { return 0x8F2A22061F9F35E64f14523dC1A5f8159e6a21B7; } else { return 0x18e4b838ae966917E20E9c9c5Ad359cDD38303bB; } } else { if (routeId == 119) { return 0x61ACb1d3Dcb3e3429832A164Cc0fC9849fb75A4a; } else { return 0x7681e3c8e7A41DCA55C257cc0d1Ae757f5530E65; } } } } else { if (routeId < 125) { if (routeId < 123) { if (routeId == 121) { return 0x806a2AB9748C3D1DB976550890E3f528B7E8Faec; } else { return 0xBDb8A5DD52C2c239fbC31E9d43B763B0197028FF; } } else { if (routeId == 123) { return 0x474EC9203706010B9978D6bD0b105D36755e4848; } else { return 0x8dfd0D829b303F2239212E591a0F92a32880f36E; } } } else { if (routeId < 127) { if (routeId == 125) { return 0xad4BcE9745860B1adD6F1Bd34a916f050E4c82C2; } else { return 0xBC701115b9fe14bC8CC5934cdC92517173e308C4; } } else { if (routeId == 127) { return 0x0D1918d786Db8546a11aDeD475C98370E06f255E; } else { return 0xee44f57cD6936DB55B99163f3Df367B01EdA785a; } } } } } } } } else { if (routeId < 193) { if (routeId < 161) { if (routeId < 145) { if (routeId < 137) { if (routeId < 133) { if (routeId < 131) { if (routeId == 129) { return 0x63044521fe5a1e488D7eD419cD0e35b7C24F2aa7; } else { return 0x410085E73BD85e90d97b84A68C125aDB9F91f85b; } } else { if (routeId == 131) { return 0x7913fe97E07C7A397Ec274Ab1d4E2622C88EC5D1; } else { return 0x977f9fE93c064DCf54157406DaABC3a722e8184C; } } } else { if (routeId < 135) { if (routeId == 133) { return 0xCD2236468722057cFbbABad2db3DEA9c20d5B01B; } else { return 0x17c7287A491cf5Ff81E2678cF2BfAE4333F6108c; } } else { if (routeId == 135) { return 0x354D9a5Dbf96c71B79a265F03B595C6Fdc04dadd; } else { return 0xb4e409EB8e775eeFEb0344f9eee884cc7ed21c69; } } } } else { if (routeId < 141) { if (routeId < 139) { if (routeId == 137) { return 0xa1a3c4670Ad69D9be4ab2D39D1231FEC2a63b519; } else { return 0x4589A22199870729C1be5CD62EE93BeD858113E6; } } else { if (routeId == 139) { return 0x8E7b864dB26Bd6C798C38d4Ba36EbA0d6602cF11; } else { return 0xA2D17C7260a4CB7b9854e89Fc367E80E87872a2d; } } } else { if (routeId < 143) { if (routeId == 141) { return 0xC7F0EDf0A1288627b0432304918A75e9084CBD46; } else { return 0xE4B4EF1f9A4aBFEdB371fA7a6143993B15d4df25; } } else { if (routeId == 143) { return 0xfe3D84A2Ef306FEBb5452441C9BDBb6521666F6A; } else { return 0x8A12B6C64121920110aE58F7cd67DfEc21c6a4C3; } } } } } else { if (routeId < 153) { if (routeId < 149) { if (routeId < 147) { if (routeId == 145) { return 0x76c4d9aFC4717a2BAac4e5f26CccF02351f7a3DA; } else { return 0xd4719BA550E397aeAcca1Ad2201c1ba69024FAAf; } } else { if (routeId == 147) { return 0x9646126Ce025224d1682C227d915a386efc0A1Fb; } else { return 0x4DD8Af2E3F2044842f0247920Bc4BABb636915ea; } } } else { if (routeId < 151) { if (routeId == 149) { return 0x8e8a327183Af0cf8C2ece9F0ed547C42A160D409; } else { return 0x9D49614CaE1C685C71678CA6d8CDF7584bfd0740; } } else { if (routeId == 151) { return 0x5a00ef257394cbc31828d48655E3d39e9c11c93d; } else { return 0xC9a2751b38d3dDD161A41Ca0135C5C6c09EC1d56; } } } } else { if (routeId < 157) { if (routeId < 155) { if (routeId == 153) { return 0x7e1c261640a525C94Ca4f8c25b48CF754DD83590; } else { return 0x409Fe24ba6F6BD5aF31C1aAf8059b986A3158233; } } else { if (routeId == 155) { return 0x704Cf5BFDADc0f55fDBb53B6ed8B582E018A72A2; } else { return 0x3982bF65d7d6E77E3b6661cd6F6468c247512737; } } } else { if (routeId < 159) { if (routeId == 157) { return 0x3982b9f26FFD67a13Ee371e2C0a9Da338BA70E7f; } else { return 0x6D834AB385900c1f49055D098e90264077FbC4f2; } } else { if (routeId == 159) { return 0x11FE5F70779A094B7166B391e1Fb73d422eF4e4d; } else { return 0xD347e4E47280d21F13B73D89c6d16f867D50DD13; } } } } } } else { if (routeId < 177) { if (routeId < 169) { if (routeId < 165) { if (routeId < 163) { if (routeId == 161) { return 0xb6035eDD53DDA28d8B69b4ae9836E40C80306CD7; } else { return 0x54c884e6f5C7CcfeCA990396c520C858c922b6CA; } } else { if (routeId == 163) { return 0x5eA93E240b083d686558Ed607BC013d88057cE46; } else { return 0x4C7131eE812De685cBe4e2cCb033d46ecD46612E; } } } else { if (routeId < 167) { if (routeId == 165) { return 0xc1a5Be9F0c33D8483801D702111068669f81fF91; } else { return 0x9E5fAb91455Be5E5b2C05967E73F456c8118B1Fc; } } else { if (routeId == 167) { return 0x3d9A05927223E0DC2F382831770405885e22F0d8; } else { return 0x6303A011fB6063f5B1681cb5a9938EA278dc6128; } } } } else { if (routeId < 173) { if (routeId < 171) { if (routeId == 169) { return 0xe9c60795c90C66797e4c8E97511eA07CdAda32bE; } else { return 0xD56cC98e69A1e13815818b466a8aA6163d84234A; } } else { if (routeId == 171) { return 0x47EbB9D36a6e40895316cD894E4860D774E2c531; } else { return 0xA5EB293629410065d14a7B1663A67829b0618292; } } } else { if (routeId < 175) { if (routeId == 173) { return 0x1b3B4C8146F939cE00899db8B3ddeF0062b7E023; } else { return 0x257Bbc11653625EbfB6A8587eF4f4FBe49828EB3; } } else { if (routeId == 175) { return 0x44cc979C01b5bB1eAC21301E73C37200dFD06F59; } else { return 0x2972fDF43352225D82754C0174Ff853819D1ef2A; } } } } } else { if (routeId < 185) { if (routeId < 181) { if (routeId < 179) { if (routeId == 177) { return 0x3e54144f032648A04D62d79f7B4b93FF3aC2333b; } else { return 0x444016102dB8adbE73C3B6703a1ea7F2f75A510D; } } else { if (routeId == 179) { return 0xac079143f98a6eb744Fde34541ebF243DF5B5dED; } else { return 0xAe9010767Fb112d29d35CEdfba2b372Ad7A308d3; } } } else { if (routeId < 183) { if (routeId == 181) { return 0xfE0BCcF9cCC2265D5fB3450743f17DfE57aE1e56; } else { return 0x04ED8C0545716119437a45386B1d691C63234C7D; } } else { if (routeId == 183) { return 0x636c14013e531A286Bc4C848da34585f0bB73d59; } else { return 0x2Fa67fc7ECC5cAA01C653d3BFeA98ecc5db9C42A; } } } } else { if (routeId < 189) { if (routeId < 187) { if (routeId == 185) { return 0x23e9a0FC180818aA872D2079a985217017E97bd9; } else { return 0x79A95c3Ef81b3ae64ee03A9D5f73e570495F164E; } } else { if (routeId == 187) { return 0xa7EA0E88F04a84ba0ad1E396cb07Fa3fDAD7dF6D; } else { return 0xd23cA1278a2B01a3C0Ca1a00d104b11c1Ebe6f42; } } } else { if (routeId < 191) { if (routeId == 189) { return 0x707bc4a9FA2E349AED5df4e9f5440C15aA9D14Bd; } else { return 0x7E290F2dd539Ac6CE58d8B4C2B944931a1fD3612; } } else { if (routeId == 191) { return 0x707AA5503088Ce06Ba450B6470A506122eA5c8eF; } else { return 0xFbB3f7BF680deeb149f4E7BC30eA3DDfa68F3C3f; } } } } } } } else { if (routeId < 225) { if (routeId < 209) { if (routeId < 201) { if (routeId < 197) { if (routeId < 195) { if (routeId == 193) { return 0xDE74aD8cCC3dbF14992f49Cf24f36855912f4934; } else { return 0x409BA83df7777F070b2B50a10a41DE2468d2a3B3; } } else { if (routeId == 195) { return 0x5CB7Be90A5DD7CfDa54e87626e254FE8C18255B4; } else { return 0x0A684fE12BC64fb72B59d0771a566F49BC090356; } } } else { if (routeId < 199) { if (routeId == 197) { return 0xDf30048d91F8FA2bCfC54952B92bFA8e161D3360; } else { return 0x050825Fff032a547C47061CF0696FDB0f65AEa5D; } } else { if (routeId == 199) { return 0xd55e671dAC1f03d366d8535073ada5DB2Aab1Ea2; } else { return 0x9470C704A9616c8Cd41c595Fcd2181B6fe2183C2; } } } } else { if (routeId < 205) { if (routeId < 203) { if (routeId == 201) { return 0x2D9ffD275181F5865d5e11CbB4ced1521C4dF9f1; } else { return 0x816d28Dec10ec95DF5334f884dE85cA6215918d8; } } else { if (routeId == 203) { return 0xd1f87267c4A43835E666dd69Df077e578A3b6299; } else { return 0x39E89Bde9DACbe5468C025dE371FbDa12bDeBAB1; } } } else { if (routeId < 207) { if (routeId == 205) { return 0x7b40A3207956ecad6686E61EfcaC48912FcD0658; } else { return 0x090cF10D793B1Efba9c7D76115878814B663859A; } } else { if (routeId == 207) { return 0x312A59c06E41327878F2063eD0e9c282C1DA3AfC; } else { return 0x4F1188f46236DD6B5de11Ebf2a9fF08716E7DeB6; } } } } } else { if (routeId < 217) { if (routeId < 213) { if (routeId < 211) { if (routeId == 209) { return 0x0A6F9a3f4fA49909bBfb4339cbE12B42F53BbBeD; } else { return 0x01d13d7aCaCbB955B81935c80ffF31e14BdFa71f; } } else { if (routeId == 211) { return 0x691a14Fa6C7360422EC56dF5876f84d4eDD7f00A; } else { return 0x97Aad18d886d181a9c726B3B6aE15a0A69F5aF73; } } } else { if (routeId < 215) { if (routeId == 213) { return 0x2917241371D2099049Fa29432DC46735baEC33b4; } else { return 0x5F20F20F7890c2e383E29D4147C9695A371165f5; } } else { if (routeId == 215) { return 0xeC0a60e639958335662C5219A320cCEbb56C6077; } else { return 0x96d63CF5062975C09845d17ec672E10255866053; } } } } else { if (routeId < 221) { if (routeId < 219) { if (routeId == 217) { return 0xFF57429e57D383939CAB50f09ABBfB63C0e6c9AD; } else { return 0x18E393A7c8578fb1e235C242076E50013cDdD0d7; } } else { if (routeId == 219) { return 0xE7E5238AF5d61f52E9B4ACC025F713d1C0216507; } else { return 0x428401D4d0F25A2EE1DA4d5366cB96Ded425D9bD; } } } else { if (routeId < 223) { if (routeId == 221) { return 0x42E5733551ff1Ee5B48Aa9fc2B61Af9b58C812E6; } else { return 0x64Df9c7A0551B056d860Bc2419Ca4c1EF75320bE; } } else { if (routeId == 223) { return 0x46006925506145611bBf0263243D8627dAf26B0F; } else { return 0x8D64BE884314662804eAaB884531f5C50F4d500c; } } } } } } else { if (routeId < 241) { if (routeId < 233) { if (routeId < 229) { if (routeId < 227) { if (routeId == 225) { return 0x157a62D92D07B5ce221A5429645a03bBaCE85373; } else { return 0xaF037D33e1F1F2F87309B425fe8a9d895Ef3722B; } } else { if (routeId == 227) { return 0x921D1154E494A2f7218a37ad7B17701f94b4B40e; } else { return 0xF282b4555186d8Dea51B8b3F947E1E0568d09bc4; } } } else { if (routeId < 231) { if (routeId == 229) { return 0xa794E2E1869765a4600b3DFd8a4ebcF16350f6B6; } else { return 0xFEFb048e20c5652F7940A49B1980E0125Ec4D358; } } else { if (routeId == 231) { return 0x220104b641971e9b25612a8F001bf48AbB23f1cF; } else { return 0xcB9D373Bb54A501B35dd3be5bF4Ba43cA31F7035; } } } } else { if (routeId < 237) { if (routeId < 235) { if (routeId == 233) { return 0x37D627F56e3FF36aC316372109ea82E03ac97DAc; } else { return 0x4E81355FfB4A271B4EA59ff78da2b61c7833161f; } } else { if (routeId == 235) { return 0xADd8D65cAF6Cc9ad73127B49E16eA7ac29d91e87; } else { return 0x630F9b95626487dfEAe3C97A44DB6C59cF35d996; } } } else { if (routeId < 239) { if (routeId == 237) { return 0x78CE2BC8238B679680A67FCB98C5A60E4ec17b2D; } else { return 0xA38D776028eD1310b9A6b086f67F788201762E21; } } else { if (routeId == 239) { return 0x7Bb5178827B76B86753Ed62a0d662c72cEcb1bD3; } else { return 0x4faC26f61C76eC5c3D43b43eDfAFF0736Ae0e3da; } } } } } else { if (routeId < 249) { if (routeId < 245) { if (routeId < 243) { if (routeId == 241) { return 0x791Bb49bfFA7129D6889FDB27744422Ac4571A85; } else { return 0x26766fFEbb5fa564777913A6f101dF019AB32afa; } } else { if (routeId == 243) { return 0x05e98E5e95b4ECBbbAf3258c3999Cc81ed8048Be; } else { return 0xC5c4621e52f1D6A1825A5ed4F95855401a3D9C6b; } } } else { if (routeId < 247) { if (routeId == 245) { return 0xfcb15f909BA7FC7Ea083503Fb4c1020203c107EB; } else { return 0xbD27603279d969c74f2486ad14E71080829DFd38; } } else { if (routeId == 247) { return 0xff2f756BcEcC1A55BFc09a30cc5F64720458cFCB; } else { return 0x3bfB968FEbC12F4e8420B2d016EfcE1E615f7246; } } } } else { if (routeId < 253) { if (routeId < 251) { if (routeId == 249) { return 0x982EE9Ffe23051A2ec945ed676D864fa8345222b; } else { return 0xe101899100785E74767d454FFF0131277BaD48d9; } } else { if (routeId == 251) { return 0x4F730C0c6b3B5B7d06ca511379f4Aa5BfB2E9525; } else { return 0x5499c36b365795e4e0Ef671aF6C2ce26D7c78265; } } } else { if (routeId < 255) { if (routeId == 253) { return 0x8AF51F7237Fc8fB2fc3E700488a94a0aC6Ad8b5a; } else { return 0xda8716df61213c0b143F2849785FB85928084857; } } else { if (routeId == 255) { return 0xF040Cf9b1ebD11Bf28e04e80740DF3DDe717e4f5; } else { return 0xB87ba32f759D14023C7520366B844dF7f0F036C2; } } } } } } } } } else { if (routeId < 321) { if (routeId < 289) { if (routeId < 273) { if (routeId < 265) { if (routeId < 261) { if (routeId < 259) { if (routeId == 257) { return 0x0Edde681b8478F0c3194f468EdD2dB5e75c65CDD; } else { return 0x59C70900Fca06eE2aCE1BDd5A8D0Af0cc3BBA720; } } else { if (routeId == 259) { return 0x8041F0f180D17dD07087199632c45E17AeB0BAd5; } else { return 0x4fB4727064BA595995DD516b63b5921Df9B93aC6; } } } else { if (routeId < 263) { if (routeId == 261) { return 0x86e98b594565857eD098864F560915C0dAfd6Ea1; } else { return 0x70f8818E8B698EFfeCd86A513a4c87c0c380Bef6; } } else { if (routeId == 263) { return 0x78Ed227c8A897A21Da2875a752142dd80d865158; } else { return 0xd02A30BB5C3a8C51d2751A029a6fcfDE2Af9fbc6; } } } } else { if (routeId < 269) { if (routeId < 267) { if (routeId == 265) { return 0x0F00d5c5acb24e975e2a56730609f7F40aa763b8; } else { return 0xC3e2091edc2D3D9D98ba09269138b617B536834A; } } else { if (routeId == 267) { return 0xa6FbaF7F30867C9633908998ea8C3da28920E75C; } else { return 0xE6dDdcD41E2bBe8122AE32Ac29B8fbAB79CD21d9; } } } else { if (routeId < 271) { if (routeId == 269) { return 0x537aa8c1Ef6a8Eaf039dd6e1Eb67694a48195cE4; } else { return 0x96ABAC485fd2D0B03CF4a10df8BD58b8dED28300; } } else { if (routeId == 271) { return 0xda8e7D46d04Bd4F62705Cd80355BDB6d441DafFD; } else { return 0xbE50018E7a5c67E2e5f5414393e971CC96F293f2; } } } } } else { if (routeId < 281) { if (routeId < 277) { if (routeId < 275) { if (routeId == 273) { return 0xa1b3907D6CB542a4cbe2eE441EfFAA909FAb62C3; } else { return 0x6d08ee8511C0237a515013aC389e7B3968Cb1753; } } else { if (routeId == 275) { return 0x22faa5B5Fe43eAdbB52745e35a5cdA8bD5F96bbA; } else { return 0x7a673eB74D79e4868D689E7852abB5f93Ec2fD4b; } } } else { if (routeId < 279) { if (routeId == 277) { return 0x0b8531F8AFD4190b76F3e10deCaDb84c98b4d419; } else { return 0x78eABC743A93583DeE403D6b84795490e652216B; } } else { if (routeId == 279) { return 0x3A95D907b2a7a8604B59BccA08585F58Afe0Aa64; } else { return 0xf4271f0C8c9Af0F06A80b8832fa820ccE64FAda8; } } } } else { if (routeId < 285) { if (routeId < 283) { if (routeId == 281) { return 0x74b2DF841245C3748c0d31542e1335659a25C33b; } else { return 0xdFC99Fd0Ad7D16f30f295a5EEFcE029E04d0fa65; } } else { if (routeId == 283) { return 0xE992416b6aC1144eD8148a9632973257839027F6; } else { return 0x54ce55ba954E981BB1fd9399054B35Ce1f2C0816; } } } else { if (routeId < 287) { if (routeId == 285) { return 0xD4AB52f9e7E5B315Bd7471920baD04F405Ab1c38; } else { return 0x3670C990994d12837e95eE127fE2f06FD3E2104B; } } else { if (routeId == 287) { return 0xDcf190B09C47E4f551E30BBb79969c3FdEA1e992; } else { return 0xa65057B967B59677237e57Ab815B209744b9bc40; } } } } } } else { if (routeId < 305) { if (routeId < 297) { if (routeId < 293) { if (routeId < 291) { if (routeId == 289) { return 0x6Efc86B40573e4C7F28659B13327D55ae955C483; } else { return 0x06BcC25CF8e0E72316F53631b3aA7134E9f73Ae0; } } else { if (routeId == 291) { return 0x710b6414E1D53882b1FCD3A168aD5Ccd435fc6D0; } else { return 0x5Ebb2C3d78c4e9818074559e7BaE7FCc99781DC1; } } } else { if (routeId < 295) { if (routeId == 293) { return 0xAf0a409c3AEe0bD08015cfb29D89E90b6e89A88F; } else { return 0x522559d8b99773C693B80cE06DF559036295Ce44; } } else { if (routeId == 295) { return 0xB65290A5Bae838aaa7825c9ECEC68041841a1B64; } else { return 0x801b8F2068edd5Bcb659E6BDa0c425909043C420; } } } } else { if (routeId < 301) { if (routeId < 299) { if (routeId == 297) { return 0x29b5F00515d093627E0B7bd0b5c8E84F6b4cDb87; } else { return 0x652839Ae74683cbF9f1293F1019D938F87464D3E; } } else { if (routeId == 299) { return 0x5Bc95dCebDDE9B79F2b6DC76121BC7936eF8D666; } else { return 0x90db359CEA62E53051158Ab5F99811C0a07Fe686; } } } else { if (routeId < 303) { if (routeId == 301) { return 0x2c3625EedadbDcDbB5330eb0d17b3C39ff269807; } else { return 0xC3f0324471b5c9d415acD625b8d8694a4e48e001; } } else { if (routeId == 303) { return 0x8C60e7E05fa0FfB6F720233736f245134685799d; } else { return 0x98fAF2c09aa4EBb995ad0B56152993E7291a500e; } } } } } else { if (routeId < 313) { if (routeId < 309) { if (routeId < 307) { if (routeId == 305) { return 0x802c1063a861414dFAEc16bacb81429FC0d40D6e; } else { return 0x11C4AeFCC0dC156f64195f6513CB1Fb3Be0Ae056; } } else { if (routeId == 307) { return 0xEff1F3258214E31B6B4F640b4389d55715C3Be2B; } else { return 0x47e379Abe8DDFEA4289aBa01235EFF7E93758fd7; } } } else { if (routeId < 311) { if (routeId == 309) { return 0x3CC26384c3eA31dDc8D9789e8872CeA6F20cD3ff; } else { return 0xEdd9EFa6c69108FAA4611097d643E20Ba0Ed1634; } } else { if (routeId == 311) { return 0xCb93525CA5f3D371F74F3D112bC19526740717B8; } else { return 0x7071E0124EB4438137e60dF1b8DD8Af1BfB362cF; } } } } else { if (routeId < 317) { if (routeId < 315) { if (routeId == 313) { return 0x4691096EB0b78C8F4b4A8091E5B66b18e1835c10; } else { return 0x8d953c9b2d1C2137CF95992079f3A77fCd793272; } } else { if (routeId == 315) { return 0xbdCc2A3Bf6e3Ba49ff86595e6b2b8D70d8368c92; } else { return 0x95E6948aB38c61b2D294E8Bd896BCc4cCC0713cf; } } } else { if (routeId < 319) { if (routeId == 317) { return 0x607b27C881fFEE4Cb95B1c5862FaE7224ccd0b4A; } else { return 0x09D28aFA166e566A2Ee1cB834ea8e78C7E627eD2; } } else { if (routeId == 319) { return 0x9c01449b38bDF0B263818401044Fb1401B29fDfA; } else { return 0x1F7723599bbB658c051F8A39bE2688388d22ceD6; } } } } } } } else { if (routeId < 353) { if (routeId < 337) { if (routeId < 329) { if (routeId < 325) { if (routeId < 323) { if (routeId == 321) { return 0x52B71603f7b8A5d15B4482e965a0619aa3210194; } else { return 0x01c0f072CB210406653752FecFA70B42dA9173a2; } } else { if (routeId == 323) { return 0x3021142f021E943e57fc1886cAF58D06147D09A6; } else { return 0xe6f2AF38e76AB09Db59225d97d3E770942D3D842; } } } else { if (routeId < 327) { if (routeId == 325) { return 0x06a25554e5135F08b9e2eD1DEC1fc3CEd52e0B48; } else { return 0x71d75e670EE3511C8290C705E0620126B710BF8D; } } else { if (routeId == 327) { return 0x8b9cE142b80FeA7c932952EC533694b1DF9B3c54; } else { return 0xd7Be24f32f39231116B3fDc483C2A12E1521f73B; } } } } else { if (routeId < 333) { if (routeId < 331) { if (routeId == 329) { return 0xb40cafBC4797d4Ff64087E087F6D2e661f954CbE; } else { return 0xBdDCe7771EfEe81893e838f62204A4c76D72757e; } } else { if (routeId == 331) { return 0x5d3D299EA7Fd4F39AcDb336E26631Dfee41F9287; } else { return 0x6BfEE09E1Fc0684e0826A9A0dC1352a14B136FAC; } } } else { if (routeId < 335) { if (routeId == 333) { return 0xd0001bB8E2Cb661436093f96458a4358B5156E3c; } else { return 0x1867c6485CfD1eD448988368A22bfB17a7747293; } } else { if (routeId == 335) { return 0x8997EF9F95dF24aB67703AB6C262aABfeEBE33bD; } else { return 0x1e39E9E601922deD91BCFc8F78836302133465e2; } } } } } else { if (routeId < 345) { if (routeId < 341) { if (routeId < 339) { if (routeId == 337) { return 0x8A8ec6CeacFf502a782216774E5AF3421562C6ff; } else { return 0x3B8FC561df5415c8DC01e97Ee6E38435A8F9C40A; } } else { if (routeId == 339) { return 0xD5d5f5B37E67c43ceA663aEDADFFc3a93a2065B0; } else { return 0xCC8F55EC43B4f25013CE1946FBB740c43Be5B96D; } } } else { if (routeId < 343) { if (routeId == 341) { return 0x18f586E816eEeDbb57B8011239150367561B58Fb; } else { return 0xd0CD802B19c1a52501cb2f07d656e3Cd7B0Ce124; } } else { if (routeId == 343) { return 0xe0AeD899b39C6e4f2d83e4913a1e9e0cf6368abE; } else { return 0x0606e1b6c0f1A398C38825DCcc4678a7Cbc2737c; } } } } else { if (routeId < 349) { if (routeId < 347) { if (routeId == 345) { return 0x2d188e85b27d18EF80f16686EA1593ABF7Ed2A63; } else { return 0x64412292fA4A135a3300E24366E99ff59Db2eAc1; } } else { if (routeId == 347) { return 0x38b74c173f3733E8b90aAEf0e98B89791266149F; } else { return 0x36DAA49A79aaEF4E7a217A11530D3cCD84414124; } } } else { if (routeId < 351) { if (routeId == 349) { return 0x10f088FE2C88F90270E4449c46c8B1b232511d58; } else { return 0x4FeDbd25B58586838ABD17D10272697dF1dC3087; } } else { if (routeId == 351) { return 0x685278209248CB058E5cEe93e37f274A80Faf6eb; } else { return 0xDd9F8F1eeC3955f78168e2Fb2d1e808fa8A8f15b; } } } } } } else { if (routeId < 369) { if (routeId < 361) { if (routeId < 357) { if (routeId < 355) { if (routeId == 353) { return 0x7392aEeFD5825aaC28817031dEEBbFaAA20983D9; } else { return 0x0Cc182555E00767D6FB8AD161A10d0C04C476d91; } } else { if (routeId == 355) { return 0x90E52837d56715c79FD592E8D58bFD20365798b2; } else { return 0x6F4451DE14049B6770ad5BF4013118529e68A40C; } } } else { if (routeId < 359) { if (routeId == 357) { return 0x89B97ef2aFAb9ed9c7f0FDb095d02E6840b52d9c; } else { return 0x92A5cC5C42d94d3e23aeB1214fFf43Db2B97759E; } } else { if (routeId == 359) { return 0x63ddc52F135A1dcBA831EAaC11C63849F018b739; } else { return 0x692A691533B571C2c54C1D7F8043A204b3d8120E; } } } } else { if (routeId < 365) { if (routeId < 363) { if (routeId == 361) { return 0x97c7492CF083969F61C6f302d45c8270391b921c; } else { return 0xDeFD2B8643553dAd19548eB14fd94A57F4B9e543; } } else { if (routeId == 363) { return 0x30645C04205cA3f670B67b02F971B088930ACB8C; } else { return 0xA6f80ed2d607Cd67aEB4109B64A0BEcc4D7d03CF; } } } else { if (routeId < 367) { if (routeId == 365) { return 0xBbbbC6c276eB3F7E674f2D39301509236001c42f; } else { return 0xC20E77d349FB40CE88eB01824e2873ad9f681f3C; } } else { if (routeId == 367) { return 0x5fCfD9a962De19294467C358C1FA55082285960b; } else { return 0x4D87BD6a0E4E5cc6332923cb3E85fC71b287F58A; } } } } } else { if (routeId < 377) { if (routeId < 373) { if (routeId < 371) { if (routeId == 369) { return 0x3AA5B757cd6Dde98214E56D57Dde7fcF0F7aB04E; } else { return 0xe28eFCE7192e11a2297f44059113C1fD6967b2d4; } } else { if (routeId == 371) { return 0x3251cAE10a1Cf246e0808D76ACC26F7B5edA0eE5; } else { return 0xbA2091cc9357Cf4c4F25D64F30d1b4Ba3A5a174B; } } } else { if (routeId < 375) { if (routeId == 373) { return 0x49c8e1Da9693692096F63C82D11b52d738566d55; } else { return 0xA0731615aB5FFF451031E9551367A4F7dB27b39c; } } else { if (routeId == 375) { return 0xFb214541888671AE1403CecC1D59763a12fc1609; } else { return 0x1D6bCB17642E2336405df73dF22F07688cAec020; } } } } else { if (routeId < 381) { if (routeId < 379) { if (routeId == 377) { return 0xfC9c0C7bfe187120fF7f4E21446161794A617a9e; } else { return 0xBa5bF37678EeE2dAB17AEf9D898153258252250E; } } else { if (routeId == 379) { return 0x7c55690bd2C9961576A32c02f8EB29ed36415Ec7; } else { return 0xcA40073E868E8Bc611aEc8Fe741D17E68Fe422f6; } } } else { if (routeId < 383) { if (routeId == 381) { return 0x31641bAFb87E9A58f78835050a7BE56921986339; } else { return 0xA54766424f6dA74b45EbCc5Bf0Bd1D74D2CCcaAB; } } else { if (routeId == 383) { return 0xc7bBa57F8C179EDDBaa62117ddA360e28f3F8252; } else { return 0x5e663ED97ea77d393B8858C90d0683bF180E0ffd; } } } } } } } } } if (routes[routeId] == address(0)) revert ZeroAddressNotAllowed(); return routes[routeId]; } /// @notice fallback function to handle swap, bridge execution /// @dev ensure routeId is converted to bytes4 and sent as msg.sig in the transaction fallback() external payable { address routeAddress = addressAt(uint32(msg.sig)); bytes memory result; assembly { // copy function selector and any arguments calldatacopy(0, 4, sub(calldatasize(), 4)) // execute function call using the facet result := delegatecall( gas(), routeAddress, 0, sub(calldatasize(), 4), 0, 0 ) // get any return value returndatacopy(0, 0, returndatasize()) // return any return value or error back to the caller switch result case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; bytes32 constant ACROSS = keccak256("Across"); bytes32 constant ANYSWAP = keccak256("Anyswap"); bytes32 constant CBRIDGE = keccak256("CBridge"); bytes32 constant HOP = keccak256("Hop"); bytes32 constant HYPHEN = keccak256("Hyphen"); bytes32 constant NATIVE_OPTIMISM = keccak256("NativeOptimism"); bytes32 constant NATIVE_ARBITRUM = keccak256("NativeArbitrum"); bytes32 constant NATIVE_POLYGON = keccak256("NativePolygon"); bytes32 constant REFUEL = keccak256("Refuel"); bytes32 constant STARGATE = keccak256("Stargate"); bytes32 constant ONEINCH = keccak256("OneInch"); bytes32 constant ZEROX = keccak256("Zerox"); bytes32 constant RAINBOW = keccak256("Rainbow"); bytes32 constant CCTP = keccak256("cctp"); bytes32 constant CONNEXT = keccak256("Connext"); bytes32 constant SYNAPSE = keccak256("Synapse"); // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {SwapFailed} from "../../errors/SocketErrors.sol"; import {ONEINCH} from "../../static/RouteIdentifiers.sol"; /** * @title OneInch-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via OneInch-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of OneInchImplementation * @author Socket dot tech. */ contract OneInchImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable OneInchIdentifier = ONEINCH; /// @notice address of OneInchAggregator to swap the tokens on Chain address public immutable ONEINCH_AGGREGATOR; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @dev ensure _oneinchAggregator are set properly for the chainId in which the contract is being deployed constructor( address _oneinchAggregator, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { ONEINCH_AGGREGATOR = _oneinchAggregator; } /** * @notice function to swap tokens on the chain and transfer to receiver address * via OneInch-Middleware-Aggregator * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param receiverAddress address of toToken recipient * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { uint256 returnAmount; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(ONEINCH_AGGREGATOR, amount); { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call( swapExtraData ); token.safeApprove(ONEINCH_AGGREGATOR, 0); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } } else { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call{ value: amount }(swapExtraData); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, OneInchIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * via OneInch-Middleware-Aggregator * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { uint256 returnAmount; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(ONEINCH_AGGREGATOR, amount); { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call( swapExtraData ); token.safeApprove(ONEINCH_AGGREGATOR, 0); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } } else { // additional data is generated in off-chain using the OneInch API which takes in // fromTokenAddress, toTokenAddress, amount, fromAddress, slippage, destReceiver, disableEstimate (bool success, bytes memory result) = ONEINCH_AGGREGATOR.call{ value: amount }(swapExtraData); if (!success) { revert SwapFailed(); } returnAmount = abi.decode(result, (uint256)); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, OneInchIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {Address0Provided, SwapFailed} from "../../errors/SocketErrors.sol"; import {RAINBOW} from "../../static/RouteIdentifiers.sol"; /** * @title Rainbow-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via Rainbow-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of RainbowImplementation * @author Socket dot tech. */ contract RainbowSwapImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable RainbowIdentifier = RAINBOW; /// @notice unique name to identify the router, used to emit event upon successful bridging bytes32 public immutable NAME = keccak256("Rainbow-Router"); /// @notice address of rainbow-swap-aggregator to swap the tokens on Chain address payable public immutable rainbowSwapAggregator; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @notice rainbow swap aggregator contract is payable to allow ethereum swaps /// @dev ensure _rainbowSwapAggregator are set properly for the chainId in which the contract is being deployed constructor( address _rainbowSwapAggregator, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { rainbowSwapAggregator = payable(_rainbowSwapAggregator); } receive() external payable {} fallback() external payable {} /** * @notice function to swap tokens on the chain and transfer to receiver address * @notice This method is payable because the caller is doing token transfer and swap operation * @param fromToken address of token being Swapped * @param toToken address of token that recipient will receive after swap * @param amount amount of fromToken being swapped * @param receiverAddress recipient-address * @param swapExtraData additional Data to perform Swap via Rainbow-Aggregator * @return swapped amount (in toToken Address) */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { if (fromToken == address(0)) { revert Address0Provided(); } uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 toTokenERC20 = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(rainbowSwapAggregator, amount); // solhint-disable-next-line (bool success, ) = rainbowSwapAggregator.call(swapExtraData); if (!success) { revert SwapFailed(); } token.safeApprove(rainbowSwapAggregator, 0); } else { (bool success, ) = rainbowSwapAggregator.call{value: amount}( swapExtraData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; if (toToken == NATIVE_TOKEN_ADDRESS) { payable(receiverAddress).transfer(returnAmount); } else { toTokenERC20.transfer(receiverAddress, returnAmount); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, RainbowIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { if (fromToken == address(0)) { revert Address0Provided(); } uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; ERC20 toTokenERC20 = ERC20(toToken); if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20 token = ERC20(fromToken); token.safeTransferFrom(msg.sender, socketGateway, amount); token.safeApprove(rainbowSwapAggregator, amount); // solhint-disable-next-line (bool success, ) = rainbowSwapAggregator.call(swapExtraData); if (!success) { revert SwapFailed(); } token.safeApprove(rainbowSwapAggregator, 0); } else { (bool success, ) = rainbowSwapAggregator.call{value: amount}( swapExtraData ); if (!success) { revert SwapFailed(); } } if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = toTokenERC20.balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, RainbowIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import {ISocketGateway} from "../interfaces/ISocketGateway.sol"; import {OnlySocketGatewayOwner, OnlySocketDeployer} from "../errors/SocketErrors.sol"; /** * @title Abstract Implementation Contract. * @notice All Swap Implementation will follow this interface. * @author Socket dot tech. */ abstract contract SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; /// @notice Address used to identify if it is a native token transfer or not address public immutable NATIVE_TOKEN_ADDRESS = address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); /// @notice immutable variable to store the socketGateway address address public immutable socketGateway; /// @notice immutable variable to store the socketGateway address address public immutable socketDeployFactory; /// @notice FunctionSelector used to delegatecall to the performAction function of swap-router-implementation bytes4 public immutable SWAP_FUNCTION_SELECTOR = bytes4( keccak256("performAction(address,address,uint256,address,bytes)") ); /// @notice FunctionSelector used to delegatecall to the performActionWithIn function of swap-router-implementation bytes4 public immutable SWAP_WITHIN_FUNCTION_SELECTOR = bytes4(keccak256("performActionWithIn(address,address,uint256,bytes)")); /**************************************** * EVENTS * ****************************************/ event SocketSwapTokens( address fromToken, address toToken, uint256 buyAmount, uint256 sellAmount, bytes32 routeName, address receiver ); /** * @notice Construct the base for all SwapImplementations. * @param _socketGateway Socketgateway address, an immutable variable to set. */ constructor(address _socketGateway, address _socketDeployFactory) { socketGateway = _socketGateway; socketDeployFactory = _socketDeployFactory; } /**************************************** * MODIFIERS * ****************************************/ /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketGatewayOwner() { if (msg.sender != ISocketGateway(socketGateway).owner()) { revert OnlySocketGatewayOwner(); } _; } /// @notice Implementing contract needs to make use of the modifier where restricted access is to be used modifier isSocketDeployFactory() { if (msg.sender != socketDeployFactory) { revert OnlySocketDeployer(); } _; } /**************************************** * RESTRICTED FUNCTIONS * ****************************************/ /** * @notice function to rescue the ERC20 tokens in the Swap-Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param token address of ERC20 token being rescued * @param userAddress receipient address to which ERC20 tokens will be rescued to * @param amount amount of ERC20 tokens being rescued */ function rescueFunds( address token, address userAddress, uint256 amount ) external isSocketGatewayOwner { ERC20(token).safeTransfer(userAddress, amount); } /** * @notice function to rescue the native-balance in the Swap-Implementation contract * @notice this is a function restricted to Owner of SocketGateway only * @param userAddress receipient address to which native-balance will be rescued to * @param amount amount of native balance tokens being rescued */ function rescueEther( address payable userAddress, uint256 amount ) external isSocketGatewayOwner { userAddress.transfer(amount); } function killme() external isSocketDeployFactory { selfdestruct(payable(msg.sender)); } /****************************** * VIRTUAL FUNCTIONS * *****************************/ /** * @notice function to swap tokens on the chain * All swap implementation contracts must implement this function * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param receiverAddress recipient address of toToken * @param data encoded value of properties in the swapData Struct */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes memory data ) external payable virtual returns (uint256); /** * @notice function to swapWith - swaps tokens on the chain to socketGateway as recipient * All swap implementation contracts must implement this function * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes memory swapExtraData ) external payable virtual returns (uint256, address); } // SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import {SafeTransferLib} from "lib/solmate/src/utils/SafeTransferLib.sol"; import {ERC20} from "lib/solmate/src/tokens/ERC20.sol"; import "../SwapImplBase.sol"; import {Address0Provided, SwapFailed, PartialSwapsNotAllowed} from "../../errors/SocketErrors.sol"; import {ZEROX} from "../../static/RouteIdentifiers.sol"; /** * @title ZeroX-Swap-Route Implementation * @notice Route implementation with functions to swap tokens via ZeroX-Swap * Called via SocketGateway if the routeId in the request maps to the routeId of ZeroX-Swap-Implementation * @author Socket dot tech. */ contract ZeroXSwapImpl is SwapImplBase { /// @notice SafeTransferLib - library for safe and optimised operations on ERC20 tokens using SafeTransferLib for ERC20; bytes32 public immutable ZeroXIdentifier = ZEROX; /// @notice unique name to identify the router, used to emit event upon successful bridging bytes32 public immutable NAME = keccak256("Zerox-Router"); /// @notice address of ZeroX-Exchange-Proxy to swap the tokens on Chain address payable public immutable zeroXExchangeProxy; /// @notice socketGatewayAddress to be initialised via storage variable SwapImplBase /// @notice ZeroXExchangeProxy contract is payable to allow ethereum swaps /// @dev ensure _zeroXExchangeProxy are set properly for the chainId in which the contract is being deployed constructor( address _zeroXExchangeProxy, address _socketGateway, address _socketDeployFactory ) SwapImplBase(_socketGateway, _socketDeployFactory) { zeroXExchangeProxy = payable(_zeroXExchangeProxy); } receive() external payable {} fallback() external payable {} /** * @notice function to swap tokens on the chain and transfer to receiver address * @dev This is called only when there is a request for a swap. * @param fromToken token to be swapped * @param toToken token to which fromToken is to be swapped * @param amount amount to be swapped * @param receiverAddress address of toToken recipient * @param swapExtraData data required for zeroX Exchange to get the swap done */ function performAction( address fromToken, address toToken, uint256 amount, address receiverAddress, bytes calldata swapExtraData ) external payable override returns (uint256) { uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; uint256 _initialBalanceTokenIn; uint256 _finalBalanceTokenIn; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20(fromToken).safeTransferFrom( msg.sender, socketGateway, amount ); ERC20(fromToken).safeApprove(zeroXExchangeProxy, amount); } if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = ERC20(toToken).balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenIn = ERC20(fromToken).balanceOf(socketGateway); } else { _initialBalanceTokenIn = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { // solhint-disable-next-line (bool success, ) = zeroXExchangeProxy.call(swapExtraData); if (!success) { revert SwapFailed(); } } else { (bool success, ) = zeroXExchangeProxy.call{value: amount}( swapExtraData ); if (!success) { revert SwapFailed(); } } if (fromToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenIn = ERC20(fromToken).balanceOf(socketGateway); } else { _finalBalanceTokenIn = address(this).balance; } if (_finalBalanceTokenIn > _initialBalanceTokenIn - amount) revert PartialSwapsNotAllowed(); if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = ERC20(toToken).balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; if (toToken == NATIVE_TOKEN_ADDRESS) { payable(receiverAddress).transfer(returnAmount); } else { ERC20(toToken).transfer(receiverAddress, returnAmount); } emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, ZeroXIdentifier, receiverAddress ); return returnAmount; } /** * @notice function to swapWithIn SocketGateway - swaps tokens on the chain to socketGateway as recipient * @param fromToken token to be swapped * @param toToken token to which fromToken has to be swapped * @param amount amount of fromToken being swapped * @param swapExtraData encoded value of properties in the swapData Struct * @return swapped amount (in toToken Address) */ function performActionWithIn( address fromToken, address toToken, uint256 amount, bytes calldata swapExtraData ) external payable override returns (uint256, address) { uint256 _initialBalanceTokenOut; uint256 _finalBalanceTokenOut; uint256 _initialBalanceTokenIn; uint256 _finalBalanceTokenIn; if (fromToken != NATIVE_TOKEN_ADDRESS) { ERC20(fromToken).safeTransferFrom( msg.sender, address(this), amount ); ERC20(fromToken).safeApprove(zeroXExchangeProxy, amount); } if (toToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenOut = ERC20(toToken).balanceOf(socketGateway); } else { _initialBalanceTokenOut = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { _initialBalanceTokenIn = ERC20(fromToken).balanceOf(socketGateway); } else { _initialBalanceTokenIn = address(this).balance; } if (fromToken != NATIVE_TOKEN_ADDRESS) { // solhint-disable-next-line (bool success, ) = zeroXExchangeProxy.call(swapExtraData); if (!success) { revert SwapFailed(); } } else { (bool success, ) = zeroXExchangeProxy.call{value: amount}( swapExtraData ); if (!success) { revert SwapFailed(); } } if (fromToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenIn = ERC20(fromToken).balanceOf(socketGateway); } else { _finalBalanceTokenIn = address(this).balance; } if (_finalBalanceTokenIn > _initialBalanceTokenIn - amount) revert PartialSwapsNotAllowed(); if (toToken != NATIVE_TOKEN_ADDRESS) { _finalBalanceTokenOut = ERC20(toToken).balanceOf(socketGateway); } else { _finalBalanceTokenOut = address(this).balance; } uint256 returnAmount = _finalBalanceTokenOut - _initialBalanceTokenOut; emit SocketSwapTokens( fromToken, toToken, returnAmount, amount, ZeroXIdentifier, socketGateway ); return (returnAmount, toToken); } } // SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.4; import {OnlyOwner, OnlyNominee} from "../errors/SocketErrors.sol"; abstract contract Ownable { address private _owner; address private _nominee; event OwnerNominated(address indexed nominee); event OwnerClaimed(address indexed claimer); constructor(address owner_) { _claimOwner(owner_); } modifier onlyOwner() { if (msg.sender != _owner) { revert OnlyOwner(); } _; } function owner() public view returns (address) { return _owner; } function nominee() public view returns (address) { return _nominee; } function nominateOwner(address nominee_) external { if (msg.sender != _owner) { revert OnlyOwner(); } _nominee = nominee_; emit OwnerNominated(_nominee); } function claimOwner() external { if (msg.sender != _nominee) { revert OnlyNominee(); } _claimOwner(msg.sender); } function _claimOwner(address claimer_) internal { _owner = claimer_; _nominee = address(0); emit OwnerClaimed(claimer_); } }