ETH Price: $2,344.26 (+7.55%)

Transaction Decoder

Block:
18016337 at Aug-28-2023 11:12:47 PM +UTC
Transaction Fee:
0.001447445516109528 ETH $3.39
Gas Used:
66,137 Gas / 21.885563544 Gwei

Emitted Events:

511 NounsAuctionHouseProxy.0x1159164c56f277e6fc99c11731bd380e0347deb969b75523398734c252706ea3( 0x1159164c56f277e6fc99c11731bd380e0347deb969b75523398734c252706ea3, 0x00000000000000000000000000000000000000000000000000000000000000c7, 0000000000000000000000002a31f0db0446dbf005cd25d1e642ca04f9cd0b6c, 000000000000000000000000000000000000000000000000039bb49f599a0000, 0000000000000000000000000000000000000000000000000000000000000000 )

Account State Difference:

  Address   Before After State Difference Code
0x2a31F0Db...4F9cD0B6c
0.793223075243962004 Eth
Nonce: 344
0.531775629727852476 Eth
Nonce: 345
0.261447445516109528
(beaverbuild)
17.401279815824052116 Eth17.401286429524052116 Eth0.0000066137
0x9d1e0eC3...Ef641Be38 0.25 Eth0.26 Eth0.01
0xcc1f0122...2B8A06B8b 0.218046309207458433 Eth0.468046309207458433 Eth0.25

Execution Trace

ETH 0.26 NounsAuctionHouseProxy.659dd2b4( )
  • ETH 0.26 NounsAuctionHouse.createBid( nounId=199 )
    • ETH 0.25 0xcc1f01220b9d9a2bcabb87da9cbc75e2b8a06b8b.CALL( )
      File 1 of 2: NounsAuctionHouseProxy
      // SPDX-License-Identifier: GPL-3.0
      /// @title The Nouns DAO auction house proxy
      /*********************************
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░██░░░████░░██░░░████░░░ *
       * ░░██████░░░████████░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       *********************************/
      pragma solidity ^0.8.6;
      import { TransparentUpgradeableProxy } from '@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol';
      contract NounsAuctionHouseProxy is TransparentUpgradeableProxy {
          constructor(
              address logic,
              address admin,
              bytes memory data
          ) TransparentUpgradeableProxy(logic, admin, data) {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (proxy/transparent/TransparentUpgradeableProxy.sol)
      pragma solidity ^0.8.0;
      import "../ERC1967/ERC1967Proxy.sol";
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       *
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       *
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
           */
          constructor(
              address _logic,
              address admin_,
              bytes memory _data
          ) payable ERC1967Proxy(_logic, _data) {
              assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
              _changeAdmin(admin_);
          }
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           */
          modifier ifAdmin() {
              if (msg.sender == _getAdmin()) {
                  _;
              } else {
                  _fallback();
              }
          }
          /**
           * @dev Returns the current admin.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function admin() external ifAdmin returns (address admin_) {
              admin_ = _getAdmin();
          }
          /**
           * @dev Returns the current implementation.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function implementation() external ifAdmin returns (address implementation_) {
              implementation_ = _implementation();
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
           */
          function changeAdmin(address newAdmin) external virtual ifAdmin {
              _changeAdmin(newAdmin);
          }
          /**
           * @dev Upgrade the implementation of the proxy.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
           */
          function upgradeTo(address newImplementation) external ifAdmin {
              _upgradeToAndCall(newImplementation, bytes(""), false);
          }
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           *
           * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
           */
          function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
              _upgradeToAndCall(newImplementation, data, true);
          }
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view virtual returns (address) {
              return _getAdmin();
          }
          /**
           * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
           */
          function _beforeFallback() internal virtual override {
              require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
              super._beforeFallback();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.0;
      import "../Proxy.sol";
      import "./ERC1967Upgrade.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializating the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
              _upgradeToAndCall(_logic, _data, false);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (proxy/Proxy.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internall call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive() external payable virtual {
              _fallback();
          }
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overriden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeacon.sol";
      import "../../utils/Address.sol";
      import "../../utils/StorageSlot.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       *
       * @custom:oz-upgrades-unsafe-allow delegatecall
       */
      abstract contract ERC1967Upgrade {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallSecure(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              address oldImplementation = _getImplementation();
              // Initial upgrade and setup call
              _setImplementation(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
              // Perform rollback test if not already in progress
              StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
              if (!rollbackTesting.value) {
                  // Trigger rollback using upgradeTo from the new implementation
                  rollbackTesting.value = true;
                  Address.functionDelegateCall(
                      newImplementation,
                      abi.encodeWithSignature("upgradeTo(address)", oldImplementation)
                  );
                  rollbackTesting.value = false;
                  // Check rollback was effective
                  require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                  // Finally reset to the new implementation and log the upgrade
                  _upgradeTo(newImplementation);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Emitted when the beacon is upgraded.
           */
          event BeaconUpgraded(address indexed beacon);
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(
              address newBeacon,
              bytes memory data,
              bool forceCall
          ) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (utils/Address.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize, which returns 0 for contracts in
              // construction, since the code is only stored at the end of the
              // constructor execution.
              uint256 size;
              assembly {
                  size := extcodesize(account)
              }
              return size > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              require(isContract(target), "Address: call to non-contract");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              require(isContract(target), "Address: static call to non-contract");
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(isContract(target), "Address: delegate call to non-contract");
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResult(success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (utils/StorageSlot.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              assembly {
                  r.slot := slot
              }
          }
      }
      

      File 2 of 2: NounsAuctionHouse
      // SPDX-License-Identifier: GPL-3.0
      /// @title The CNNouns DAO auction house
      /*********************************
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░██░░░████░░██░░░████░░░ *
       * ░░██████░░░████████░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       *********************************/
      // LICENSE
      // NounsAuctionHouse.sol is a modified version of Zora's AuctionHouse.sol:
      // https://github.com/ourzora/auction-house/blob/54a12ec1a6cf562e49f0a4917990474b11350a2d/contracts/AuctionHouse.sol
      //
      // AuctionHouse.sol source code Copyright Zora licensed under the GPL-3.0 license.
      // With modifications by Nounders DAO.
      // With modifications by CNNouns DAO.
      pragma solidity ^0.8.6;
      import { PausableUpgradeable } from '@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol';
      import { ReentrancyGuardUpgradeable } from '@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol';
      import { OwnableUpgradeable } from '@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol';
      import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
      import { ABDKMathQuad } from 'abdk-libraries-solidity/ABDKMathQuad.sol';
      import { INounsAuctionHouse } from './interfaces/INounsAuctionHouse.sol';
      import { INounsToken } from './interfaces/INounsToken.sol';
      import { IWETH } from './interfaces/IWETH.sol';
      contract NounsAuctionHouse is INounsAuctionHouse, PausableUpgradeable, ReentrancyGuardUpgradeable, OwnableUpgradeable {
          // The Nouns ERC721 token contract
          INounsToken public nouns;
          // The address of the WETH contract
          address public weth;
          // The minimum amount of time left in an auction after a new bid is created
          uint256 public timeBuffer;
          // The minimum price accepted in an auction
          uint256 public reservePrice;
          // The minimum percentage difference between the last bid amount and the current bid
          uint8 public minBidIncrementPercentage;
          // The base duration of a single auction
          uint256 public baseDuration;
          // The origin date for calculating duration
          uint256 public origin;
          // The active auction
          INounsAuctionHouse.Auction public auction;
          /**
           * @notice Initialize the auction house and base contracts,
           * populate configuration values, and pause the contract.
           * @dev This function can only be called once.
           */
          function initialize(
              INounsToken _nouns,
              address _weth,
              uint256 _timeBuffer,
              uint256 _reservePrice,
              uint8 _minBidIncrementPercentage,
              uint256 _baseDuration
          ) external initializer {
              __Pausable_init();
              __ReentrancyGuard_init();
              __Ownable_init();
              _pause();
              nouns = _nouns;
              weth = _weth;
              timeBuffer = _timeBuffer;
              reservePrice = _reservePrice;
              minBidIncrementPercentage = _minBidIncrementPercentage;
              baseDuration = _baseDuration;
              origin = block.timestamp;
          }
          /**
           * @notice Settle the current auction, mint a new Noun, and put it up for auction.
           */
          function settleCurrentAndCreateNewAuction() external override nonReentrant whenNotPaused {
              _settleAuction();
              _createAuction();
          }
          /**
           * @notice Settle the current auction.
           * @dev This function can only be called when the contract is paused.
           */
          function settleAuction() external override whenPaused nonReentrant {
              _settleAuction();
          }
          /**
           * @notice Create a bid for a Noun, with a given amount.
           * @dev This contract only accepts payment in ETH.
           */
          function createBid(uint256 nounId) external payable override nonReentrant {
              INounsAuctionHouse.Auction memory _auction = auction;
              require(_auction.nounId == nounId, 'Noun not up for auction');
              require(block.timestamp < _auction.endTime, 'Auction expired');
              require(msg.value >= reservePrice, 'Must send at least reservePrice');
              require(
                  msg.value >= _auction.amount + ((_auction.amount * minBidIncrementPercentage) / 100),
                  'Must send more than last bid by minBidIncrementPercentage amount'
              );
              address payable lastBidder = _auction.bidder;
              // Refund the last bidder, if applicable
              if (lastBidder != address(0)) {
                  _safeTransferETHWithFallback(lastBidder, _auction.amount);
              }
              auction.amount = msg.value;
              auction.bidder = payable(msg.sender);
              // Extend the auction if the bid was received within `timeBuffer` of the auction end time
              bool extended = _auction.endTime - block.timestamp < timeBuffer;
              if (extended) {
                  auction.endTime = _auction.endTime = block.timestamp + timeBuffer;
              }
              emit AuctionBid(_auction.nounId, msg.sender, msg.value, extended);
              if (extended) {
                  emit AuctionExtended(_auction.nounId, _auction.endTime);
              }
          }
          /**
           * @notice Pause the Nouns auction house.
           * @dev This function can only be called by the owner when the
           * contract is unpaused. While no new auctions can be started when paused,
           * anyone can settle an ongoing auction.
           */
          function pause() external override onlyOwner {
              _pause();
          }
          /**
           * @notice Unpause the Nouns auction house.
           * @dev This function can only be called by the owner when the
           * contract is paused. If required, this function will start a new auction.
           */
          function unpause() external override onlyOwner {
              _unpause();
              if (auction.startTime == 0 || auction.settled) {
                  _createAuction();
              }
          }
          /**
           * @notice Set the auction time buffer.
           * @dev Only callable by the owner.
           */
          function setTimeBuffer(uint256 _timeBuffer) external override onlyOwner {
              timeBuffer = _timeBuffer;
              emit AuctionTimeBufferUpdated(_timeBuffer);
          }
          /**
           * @notice Set the auction reserve price.
           * @dev Only callable by the owner.
           */
          function setReservePrice(uint256 _reservePrice) external override onlyOwner {
              reservePrice = _reservePrice;
              emit AuctionReservePriceUpdated(_reservePrice);
          }
          /**
           * @notice Set the auction minimum bid increment percentage.
           * @dev Only callable by the owner.
           */
          function setMinBidIncrementPercentage(uint8 _minBidIncrementPercentage) external override onlyOwner {
              minBidIncrementPercentage = _minBidIncrementPercentage;
              emit AuctionMinBidIncrementPercentageUpdated(_minBidIncrementPercentage);
          }
          /**
           * @notice Calculate a next auction duration.
           */
          function _calcDuration(uint256 _timestamp) internal view returns (uint256) {
              // It implements a geometric sequence that doubles in 4 years with
              // an upper limit of 1.4 years
              uint256 interval = _timestamp - origin;
              if (interval >= 1135296000) {
                  return 44236800;
              } else if (interval < 0) {
                  interval = 0;
              }
              bytes16 x = ABDKMathQuad.fromUInt(interval);
              x = ABDKMathQuad.div(x, ABDKMathQuad.fromUInt(1460 * 86400));
              x = ABDKMathQuad.pow_2(x);
              x = ABDKMathQuad.mul(x, ABDKMathQuad.fromUInt(baseDuration));
              return ABDKMathQuad.toUInt(x);
          }
          /**
           * @notice Create an auction.
           * @dev Store the auction details in the `auction` state variable and emit an AuctionCreated event.
           * If the mint reverts, the minter was updated without pausing this contract first. To remedy this,
           * catch the revert and pause this contract.
           */
          function _createAuction() internal {
              try nouns.mint() returns (uint256 nounId) {
                  uint256 startTime = block.timestamp;
                  uint256 endTime = startTime + _calcDuration(startTime);
                  auction = Auction({
                      nounId: nounId,
                      amount: 0,
                      startTime: startTime,
                      endTime: endTime,
                      bidder: payable(0),
                      settled: false
                  });
                  emit AuctionCreated(nounId, startTime, endTime);
              } catch Error(string memory) {
                  _pause();
              }
          }
          /**
           * @notice Settle an auction, finalizing the bid and paying out to the owner.
           * @dev If there are no bids, the Noun is burned.
           */
          function _settleAuction() internal {
              INounsAuctionHouse.Auction memory _auction = auction;
              require(_auction.startTime != 0, "Auction hasn't begun");
              require(!_auction.settled, 'Auction has already been settled');
              require(block.timestamp >= _auction.endTime, "Auction hasn't completed");
              auction.settled = true;
              if (_auction.bidder == address(0)) {
                  nouns.burn(_auction.nounId);
              } else {
                  nouns.transferFrom(address(this), _auction.bidder, _auction.nounId);
              }
              if (_auction.amount > 0) {
                  _safeTransferETHWithFallback(owner(), _auction.amount);
              }
              emit AuctionSettled(_auction.nounId, _auction.bidder, _auction.amount);
          }
          /**
           * @notice Transfer ETH. If the ETH transfer fails, wrap the ETH and try send it as WETH.
           */
          function _safeTransferETHWithFallback(address to, uint256 amount) internal {
              if (!_safeTransferETH(to, amount)) {
                  IWETH(weth).deposit{ value: amount }();
                  IERC20(weth).transfer(to, amount);
              }
          }
          /**
           * @notice Transfer ETH and return the success status.
           * @dev This function only forwards 30,000 gas to the callee.
           */
          function _safeTransferETH(address to, uint256 value) internal returns (bool) {
              (bool success, ) = to.call{ value: value, gas: 30_000 }(new bytes(0));
              return success;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (security/Pausable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which allows children to implement an emergency stop
       * mechanism that can be triggered by an authorized account.
       *
       * This module is used through inheritance. It will make available the
       * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
       * the functions of your contract. Note that they will not be pausable by
       * simply including this module, only once the modifiers are put in place.
       */
      abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
          /**
           * @dev Emitted when the pause is triggered by `account`.
           */
          event Paused(address account);
          /**
           * @dev Emitted when the pause is lifted by `account`.
           */
          event Unpaused(address account);
          bool private _paused;
          /**
           * @dev Initializes the contract in unpaused state.
           */
          function __Pausable_init() internal initializer {
              __Context_init_unchained();
              __Pausable_init_unchained();
          }
          function __Pausable_init_unchained() internal initializer {
              _paused = false;
          }
          /**
           * @dev Returns true if the contract is paused, and false otherwise.
           */
          function paused() public view virtual returns (bool) {
              return _paused;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          modifier whenNotPaused() {
              require(!paused(), "Pausable: paused");
              _;
          }
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          modifier whenPaused() {
              require(paused(), "Pausable: not paused");
              _;
          }
          /**
           * @dev Triggers stopped state.
           *
           * Requirements:
           *
           * - The contract must not be paused.
           */
          function _pause() internal virtual whenNotPaused {
              _paused = true;
              emit Paused(_msgSender());
          }
          /**
           * @dev Returns to normal state.
           *
           * Requirements:
           *
           * - The contract must be paused.
           */
          function _unpause() internal virtual whenPaused {
              _paused = false;
              emit Unpaused(_msgSender());
          }
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (security/ReentrancyGuard.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module that helps prevent reentrant calls to a function.
       *
       * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
       * available, which can be applied to functions to make sure there are no nested
       * (reentrant) calls to them.
       *
       * Note that because there is a single `nonReentrant` guard, functions marked as
       * `nonReentrant` may not call one another. This can be worked around by making
       * those functions `private`, and then adding `external` `nonReentrant` entry
       * points to them.
       *
       * TIP: If you would like to learn more about reentrancy and alternative ways
       * to protect against it, check out our blog post
       * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
       */
      abstract contract ReentrancyGuardUpgradeable is Initializable {
          // Booleans are more expensive than uint256 or any type that takes up a full
          // word because each write operation emits an extra SLOAD to first read the
          // slot's contents, replace the bits taken up by the boolean, and then write
          // back. This is the compiler's defense against contract upgrades and
          // pointer aliasing, and it cannot be disabled.
          // The values being non-zero value makes deployment a bit more expensive,
          // but in exchange the refund on every call to nonReentrant will be lower in
          // amount. Since refunds are capped to a percentage of the total
          // transaction's gas, it is best to keep them low in cases like this one, to
          // increase the likelihood of the full refund coming into effect.
          uint256 private constant _NOT_ENTERED = 1;
          uint256 private constant _ENTERED = 2;
          uint256 private _status;
          function __ReentrancyGuard_init() internal initializer {
              __ReentrancyGuard_init_unchained();
          }
          function __ReentrancyGuard_init_unchained() internal initializer {
              _status = _NOT_ENTERED;
          }
          /**
           * @dev Prevents a contract from calling itself, directly or indirectly.
           * Calling a `nonReentrant` function from another `nonReentrant`
           * function is not supported. It is possible to prevent this from happening
           * by making the `nonReentrant` function external, and making it call a
           * `private` function that does the actual work.
           */
          modifier nonReentrant() {
              // On the first call to nonReentrant, _notEntered will be true
              require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
              // Any calls to nonReentrant after this point will fail
              _status = _ENTERED;
              _;
              // By storing the original value once again, a refund is triggered (see
              // https://eips.ethereum.org/EIPS/eip-2200)
              _status = _NOT_ENTERED;
          }
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/ContextUpgradeable.sol";
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          function __Ownable_init() internal initializer {
              __Context_init_unchained();
              __Ownable_init_unchained();
          }
          function __Ownable_init_unchained() internal initializer {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
              _;
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
          uint256[49] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (token/ERC20/IERC20.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address sender,
              address recipient,
              uint256 amount
          ) external returns (bool);
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      // SPDX-License-Identifier: BSD-4-Clause
      /*
       * ABDK Math Quad Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
       * Author: Mikhail Vladimirov <[email protected]>
       */
      pragma solidity ^0.8.0;
      /**
       * Smart contract library of mathematical functions operating with IEEE 754
       * quadruple-precision binary floating-point numbers (quadruple precision
       * numbers).  As long as quadruple precision numbers are 16-bytes long, they are
       * represented by bytes16 type.
       */
      library ABDKMathQuad {
        /*
         * 0.
         */
        bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;
        /*
         * -0.
         */
        bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;
        /*
         * +Infinity.
         */
        bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000;
        /*
         * -Infinity.
         */
        bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000;
        /*
         * Canonical NaN value.
         */
        bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;
        /**
         * Convert signed 256-bit integer number into quadruple precision number.
         *
         * @param x signed 256-bit integer number
         * @return quadruple precision number
         */
        function fromInt (int256 x) internal pure returns (bytes16) {
          unchecked {
            if (x == 0) return bytes16 (0);
            else {
              // We rely on overflow behavior here
              uint256 result = uint256 (x > 0 ? x : -x);
              uint256 msb = mostSignificantBit (result);
              if (msb < 112) result <<= 112 - msb;
              else if (msb > 112) result >>= msb - 112;
              result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;
              if (x < 0) result |= 0x80000000000000000000000000000000;
              return bytes16 (uint128 (result));
            }
          }
        }
        /**
         * Convert quadruple precision number into signed 256-bit integer number
         * rounding towards zero.  Revert on overflow.
         *
         * @param x quadruple precision number
         * @return signed 256-bit integer number
         */
        function toInt (bytes16 x) internal pure returns (int256) {
          unchecked {
            uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
            require (exponent <= 16638); // Overflow
            if (exponent < 16383) return 0; // Underflow
            uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
              0x10000000000000000000000000000;
            if (exponent < 16495) result >>= 16495 - exponent;
            else if (exponent > 16495) result <<= exponent - 16495;
            if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
              require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
              return -int256 (result); // We rely on overflow behavior here
            } else {
              require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
              return int256 (result);
            }
          }
        }
        /**
         * Convert unsigned 256-bit integer number into quadruple precision number.
         *
         * @param x unsigned 256-bit integer number
         * @return quadruple precision number
         */
        function fromUInt (uint256 x) internal pure returns (bytes16) {
          unchecked {
            if (x == 0) return bytes16 (0);
            else {
              uint256 result = x;
              uint256 msb = mostSignificantBit (result);
              if (msb < 112) result <<= 112 - msb;
              else if (msb > 112) result >>= msb - 112;
              result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;
              return bytes16 (uint128 (result));
            }
          }
        }
        /**
         * Convert quadruple precision number into unsigned 256-bit integer number
         * rounding towards zero.  Revert on underflow.  Note, that negative floating
         * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
         * without error, because they are rounded to zero.
         *
         * @param x quadruple precision number
         * @return unsigned 256-bit integer number
         */
        function toUInt (bytes16 x) internal pure returns (uint256) {
          unchecked {
            uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
            if (exponent < 16383) return 0; // Underflow
            require (uint128 (x) < 0x80000000000000000000000000000000); // Negative
            require (exponent <= 16638); // Overflow
            uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
              0x10000000000000000000000000000;
            if (exponent < 16495) result >>= 16495 - exponent;
            else if (exponent > 16495) result <<= exponent - 16495;
            return result;
          }
        }
        /**
         * Convert signed 128.128 bit fixed point number into quadruple precision
         * number.
         *
         * @param x signed 128.128 bit fixed point number
         * @return quadruple precision number
         */
        function from128x128 (int256 x) internal pure returns (bytes16) {
          unchecked {
            if (x == 0) return bytes16 (0);
            else {
              // We rely on overflow behavior here
              uint256 result = uint256 (x > 0 ? x : -x);
              uint256 msb = mostSignificantBit (result);
              if (msb < 112) result <<= 112 - msb;
              else if (msb > 112) result >>= msb - 112;
              result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16255 + msb << 112;
              if (x < 0) result |= 0x80000000000000000000000000000000;
              return bytes16 (uint128 (result));
            }
          }
        }
        /**
         * Convert quadruple precision number into signed 128.128 bit fixed point
         * number.  Revert on overflow.
         *
         * @param x quadruple precision number
         * @return signed 128.128 bit fixed point number
         */
        function to128x128 (bytes16 x) internal pure returns (int256) {
          unchecked {
            uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
            require (exponent <= 16510); // Overflow
            if (exponent < 16255) return 0; // Underflow
            uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
              0x10000000000000000000000000000;
            if (exponent < 16367) result >>= 16367 - exponent;
            else if (exponent > 16367) result <<= exponent - 16367;
            if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
              require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
              return -int256 (result); // We rely on overflow behavior here
            } else {
              require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
              return int256 (result);
            }
          }
        }
        /**
         * Convert signed 64.64 bit fixed point number into quadruple precision
         * number.
         *
         * @param x signed 64.64 bit fixed point number
         * @return quadruple precision number
         */
        function from64x64 (int128 x) internal pure returns (bytes16) {
          unchecked {
            if (x == 0) return bytes16 (0);
            else {
              // We rely on overflow behavior here
              uint256 result = uint128 (x > 0 ? x : -x);
              uint256 msb = mostSignificantBit (result);
              if (msb < 112) result <<= 112 - msb;
              else if (msb > 112) result >>= msb - 112;
              result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16319 + msb << 112;
              if (x < 0) result |= 0x80000000000000000000000000000000;
              return bytes16 (uint128 (result));
            }
          }
        }
        /**
         * Convert quadruple precision number into signed 64.64 bit fixed point
         * number.  Revert on overflow.
         *
         * @param x quadruple precision number
         * @return signed 64.64 bit fixed point number
         */
        function to64x64 (bytes16 x) internal pure returns (int128) {
          unchecked {
            uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
            require (exponent <= 16446); // Overflow
            if (exponent < 16319) return 0; // Underflow
            uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
              0x10000000000000000000000000000;
            if (exponent < 16431) result >>= 16431 - exponent;
            else if (exponent > 16431) result <<= exponent - 16431;
            if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
              require (result <= 0x80000000000000000000000000000000);
              return -int128 (int256 (result)); // We rely on overflow behavior here
            } else {
              require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
              return int128 (int256 (result));
            }
          }
        }
        /**
         * Convert octuple precision number into quadruple precision number.
         *
         * @param x octuple precision number
         * @return quadruple precision number
         */
        function fromOctuple (bytes32 x) internal pure returns (bytes16) {
          unchecked {
            bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0;
            uint256 exponent = uint256 (x) >> 236 & 0x7FFFF;
            uint256 significand = uint256 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            if (exponent == 0x7FFFF) {
              if (significand > 0) return NaN;
              else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
            }
            if (exponent > 278526)
              return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
            else if (exponent < 245649)
              return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
            else if (exponent < 245761) {
              significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> 245885 - exponent;
              exponent = 0;
            } else {
              significand >>= 124;
              exponent -= 245760;
            }
            uint128 result = uint128 (significand | exponent << 112);
            if (negative) result |= 0x80000000000000000000000000000000;
            return bytes16 (result);
          }
        }
        /**
         * Convert quadruple precision number into octuple precision number.
         *
         * @param x quadruple precision number
         * @return octuple precision number
         */
        function toOctuple (bytes16 x) internal pure returns (bytes32) {
          unchecked {
            uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
            uint256 result = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN
            else if (exponent == 0) {
              if (result > 0) {
                uint256 msb = mostSignificantBit (result);
                result = result << 236 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                exponent = 245649 + msb;
              }
            } else {
              result <<= 124;
              exponent += 245760;
            }
            result |= exponent << 236;
            if (uint128 (x) >= 0x80000000000000000000000000000000)
              result |= 0x8000000000000000000000000000000000000000000000000000000000000000;
            return bytes32 (result);
          }
        }
        /**
         * Convert double precision number into quadruple precision number.
         *
         * @param x double precision number
         * @return quadruple precision number
         */
        function fromDouble (bytes8 x) internal pure returns (bytes16) {
          unchecked {
            uint256 exponent = uint64 (x) >> 52 & 0x7FF;
            uint256 result = uint64 (x) & 0xFFFFFFFFFFFFF;
            if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN
            else if (exponent == 0) {
              if (result > 0) {
                uint256 msb = mostSignificantBit (result);
                result = result << 112 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                exponent = 15309 + msb;
              }
            } else {
              result <<= 60;
              exponent += 15360;
            }
            result |= exponent << 112;
            if (x & 0x8000000000000000 > 0)
              result |= 0x80000000000000000000000000000000;
            return bytes16 (uint128 (result));
          }
        }
        /**
         * Convert quadruple precision number into double precision number.
         *
         * @param x quadruple precision number
         * @return double precision number
         */
        function toDouble (bytes16 x) internal pure returns (bytes8) {
          unchecked {
            bool negative = uint128 (x) >= 0x80000000000000000000000000000000;
            uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
            uint256 significand = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            if (exponent == 0x7FFF) {
              if (significand > 0) return 0x7FF8000000000000; // NaN
              else return negative ?
                  bytes8 (0xFFF0000000000000) : // -Infinity
                  bytes8 (0x7FF0000000000000); // Infinity
            }
            if (exponent > 17406)
              return negative ?
                  bytes8 (0xFFF0000000000000) : // -Infinity
                  bytes8 (0x7FF0000000000000); // Infinity
            else if (exponent < 15309)
              return negative ?
                  bytes8 (0x8000000000000000) : // -0
                  bytes8 (0x0000000000000000); // 0
            else if (exponent < 15361) {
              significand = (significand | 0x10000000000000000000000000000) >> 15421 - exponent;
              exponent = 0;
            } else {
              significand >>= 60;
              exponent -= 15360;
            }
            uint64 result = uint64 (significand | exponent << 52);
            if (negative) result |= 0x8000000000000000;
            return bytes8 (result);
          }
        }
        /**
         * Test whether given quadruple precision number is NaN.
         *
         * @param x quadruple precision number
         * @return true if x is NaN, false otherwise
         */
        function isNaN (bytes16 x) internal pure returns (bool) {
          unchecked {
            return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >
              0x7FFF0000000000000000000000000000;
          }
        }
        /**
         * Test whether given quadruple precision number is positive or negative
         * infinity.
         *
         * @param x quadruple precision number
         * @return true if x is positive or negative infinity, false otherwise
         */
        function isInfinity (bytes16 x) internal pure returns (bool) {
          unchecked {
            return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ==
              0x7FFF0000000000000000000000000000;
          }
        }
        /**
         * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
         * is positive.  Note that sign (-0) is zero.  Revert if x is NaN. 
         *
         * @param x quadruple precision number
         * @return sign of x
         */
        function sign (bytes16 x) internal pure returns (int8) {
          unchecked {
            uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
            if (absoluteX == 0) return 0;
            else if (uint128 (x) >= 0x80000000000000000000000000000000) return -1;
            else return 1;
          }
        }
        /**
         * Calculate sign (x - y).  Revert if either argument is NaN, or both
         * arguments are infinities of the same sign. 
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return sign (x - y)
         */
        function cmp (bytes16 x, bytes16 y) internal pure returns (int8) {
          unchecked {
            uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
            uint128 absoluteY = uint128 (y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            require (absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN
            // Not infinities of the same sign
            require (x != y || absoluteX < 0x7FFF0000000000000000000000000000);
            if (x == y) return 0;
            else {
              bool negativeX = uint128 (x) >= 0x80000000000000000000000000000000;
              bool negativeY = uint128 (y) >= 0x80000000000000000000000000000000;
              if (negativeX) {
                if (negativeY) return absoluteX > absoluteY ? -1 : int8 (1);
                else return -1; 
              } else {
                if (negativeY) return 1;
                else return absoluteX > absoluteY ? int8 (1) : -1;
              }
            }
          }
        }
        /**
         * Test whether x equals y.  NaN, infinity, and -infinity are not equal to
         * anything. 
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return true if x equals to y, false otherwise
         */
        function eq (bytes16 x, bytes16 y) internal pure returns (bool) {
          unchecked {
            if (x == y) {
              return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF <
                0x7FFF0000000000000000000000000000;
            } else return false;
          }
        }
        /**
         * Calculate x + y.  Special values behave in the following way:
         *
         * NaN + x = NaN for any x.
         * Infinity + x = Infinity for any finite x.
         * -Infinity + x = -Infinity for any finite x.
         * Infinity + Infinity = Infinity.
         * -Infinity + -Infinity = -Infinity.
         * Infinity + -Infinity = -Infinity + Infinity = NaN.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function add (bytes16 x, bytes16 y) internal pure returns (bytes16) {
          unchecked {
            uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
            uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;
            if (xExponent == 0x7FFF) {
              if (yExponent == 0x7FFF) { 
                if (x == y) return x;
                else return NaN;
              } else return x; 
            } else if (yExponent == 0x7FFF) return y;
            else {
              bool xSign = uint128 (x) >= 0x80000000000000000000000000000000;
              uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (xExponent == 0) xExponent = 1;
              else xSignifier |= 0x10000000000000000000000000000;
              bool ySign = uint128 (y) >= 0x80000000000000000000000000000000;
              uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (yExponent == 0) yExponent = 1;
              else ySignifier |= 0x10000000000000000000000000000;
              if (xSignifier == 0) return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
              else if (ySignifier == 0) return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
              else {
                int256 delta = int256 (xExponent) - int256 (yExponent);
        
                if (xSign == ySign) {
                  if (delta > 112) return x;
                  else if (delta > 0) ySignifier >>= uint256 (delta);
                  else if (delta < -112) return y;
                  else if (delta < 0) {
                    xSignifier >>= uint256 (-delta);
                    xExponent = yExponent;
                  }
        
                  xSignifier += ySignifier;
        
                  if (xSignifier >= 0x20000000000000000000000000000) {
                    xSignifier >>= 1;
                    xExponent += 1;
                  }
        
                  if (xExponent == 0x7FFF)
                    return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                  else {
                    if (xSignifier < 0x10000000000000000000000000000) xExponent = 0;
                    else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        
                    return bytes16 (uint128 (
                        (xSign ? 0x80000000000000000000000000000000 : 0) |
                        (xExponent << 112) |
                        xSignifier)); 
                  }
                } else {
                  if (delta > 0) {
                    xSignifier <<= 1;
                    xExponent -= 1;
                  } else if (delta < 0) {
                    ySignifier <<= 1;
                    xExponent = yExponent - 1;
                  }
                  if (delta > 112) ySignifier = 1;
                  else if (delta > 1) ySignifier = (ySignifier - 1 >> uint256 (delta - 1)) + 1;
                  else if (delta < -112) xSignifier = 1;
                  else if (delta < -1) xSignifier = (xSignifier - 1 >> uint256 (-delta - 1)) + 1;
                  if (xSignifier >= ySignifier) xSignifier -= ySignifier;
                  else {
                    xSignifier = ySignifier - xSignifier;
                    xSign = ySign;
                  }
                  if (xSignifier == 0)
                    return POSITIVE_ZERO;
                  uint256 msb = mostSignificantBit (xSignifier);
                  if (msb == 113) {
                    xSignifier = xSignifier >> 1 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    xExponent += 1;
                  } else if (msb < 112) {
                    uint256 shift = 112 - msb;
                    if (xExponent > shift) {
                      xSignifier = xSignifier << shift & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                      xExponent -= shift;
                    } else {
                      xSignifier <<= xExponent - 1;
                      xExponent = 0;
                    }
                  } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                  if (xExponent == 0x7FFF)
                    return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                  else return bytes16 (uint128 (
                      (xSign ? 0x80000000000000000000000000000000 : 0) |
                      (xExponent << 112) |
                      xSignifier));
                }
              }
            }
          }
        }
        /**
         * Calculate x - y.  Special values behave in the following way:
         *
         * NaN - x = NaN for any x.
         * Infinity - x = Infinity for any finite x.
         * -Infinity - x = -Infinity for any finite x.
         * Infinity - -Infinity = Infinity.
         * -Infinity - Infinity = -Infinity.
         * Infinity - Infinity = -Infinity - -Infinity = NaN.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function sub (bytes16 x, bytes16 y) internal pure returns (bytes16) {
          unchecked {
            return add (x, y ^ 0x80000000000000000000000000000000);
          }
        }
        /**
         * Calculate x * y.  Special values behave in the following way:
         *
         * NaN * x = NaN for any x.
         * Infinity * x = Infinity for any finite positive x.
         * Infinity * x = -Infinity for any finite negative x.
         * -Infinity * x = -Infinity for any finite positive x.
         * -Infinity * x = Infinity for any finite negative x.
         * Infinity * 0 = NaN.
         * -Infinity * 0 = NaN.
         * Infinity * Infinity = Infinity.
         * Infinity * -Infinity = -Infinity.
         * -Infinity * Infinity = -Infinity.
         * -Infinity * -Infinity = Infinity.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function mul (bytes16 x, bytes16 y) internal pure returns (bytes16) {
          unchecked {
            uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
            uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;
            if (xExponent == 0x7FFF) {
              if (yExponent == 0x7FFF) {
                if (x == y) return x ^ y & 0x80000000000000000000000000000000;
                else if (x ^ y == 0x80000000000000000000000000000000) return x | y;
                else return NaN;
              } else {
                if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                else return x ^ y & 0x80000000000000000000000000000000;
              }
            } else if (yExponent == 0x7FFF) {
                if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                else return y ^ x & 0x80000000000000000000000000000000;
            } else {
              uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (xExponent == 0) xExponent = 1;
              else xSignifier |= 0x10000000000000000000000000000;
              uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (yExponent == 0) yExponent = 1;
              else ySignifier |= 0x10000000000000000000000000000;
              xSignifier *= ySignifier;
              if (xSignifier == 0)
                return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
                    NEGATIVE_ZERO : POSITIVE_ZERO;
              xExponent += yExponent;
              uint256 msb =
                xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 :
                xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 :
                mostSignificantBit (xSignifier);
              if (xExponent + msb < 16496) { // Underflow
                xExponent = 0;
                xSignifier = 0;
              } else if (xExponent + msb < 16608) { // Subnormal
                if (xExponent < 16496)
                  xSignifier >>= 16496 - xExponent;
                else if (xExponent > 16496)
                  xSignifier <<= xExponent - 16496;
                xExponent = 0;
              } else if (xExponent + msb > 49373) {
                xExponent = 0x7FFF;
                xSignifier = 0;
              } else {
                if (msb > 112)
                  xSignifier >>= msb - 112;
                else if (msb < 112)
                  xSignifier <<= 112 - msb;
                xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                xExponent = xExponent + msb - 16607;
              }
              return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
                  xExponent << 112 | xSignifier));
            }
          }
        }
        /**
         * Calculate x / y.  Special values behave in the following way:
         *
         * NaN / x = NaN for any x.
         * x / NaN = NaN for any x.
         * Infinity / x = Infinity for any finite non-negative x.
         * Infinity / x = -Infinity for any finite negative x including -0.
         * -Infinity / x = -Infinity for any finite non-negative x.
         * -Infinity / x = Infinity for any finite negative x including -0.
         * x / Infinity = 0 for any finite non-negative x.
         * x / -Infinity = -0 for any finite non-negative x.
         * x / Infinity = -0 for any finite non-negative x including -0.
         * x / -Infinity = 0 for any finite non-negative x including -0.
         * 
         * Infinity / Infinity = NaN.
         * Infinity / -Infinity = -NaN.
         * -Infinity / Infinity = -NaN.
         * -Infinity / -Infinity = NaN.
         *
         * Division by zero behaves in the following way:
         *
         * x / 0 = Infinity for any finite positive x.
         * x / -0 = -Infinity for any finite positive x.
         * x / 0 = -Infinity for any finite negative x.
         * x / -0 = Infinity for any finite negative x.
         * 0 / 0 = NaN.
         * 0 / -0 = NaN.
         * -0 / 0 = NaN.
         * -0 / -0 = NaN.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function div (bytes16 x, bytes16 y) internal pure returns (bytes16) {
          unchecked {
            uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
            uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;
            if (xExponent == 0x7FFF) {
              if (yExponent == 0x7FFF) return NaN;
              else return x ^ y & 0x80000000000000000000000000000000;
            } else if (yExponent == 0x7FFF) {
              if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
              else return POSITIVE_ZERO | (x ^ y) & 0x80000000000000000000000000000000;
            } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
              if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
              else return POSITIVE_INFINITY | (x ^ y) & 0x80000000000000000000000000000000;
            } else {
              uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (yExponent == 0) yExponent = 1;
              else ySignifier |= 0x10000000000000000000000000000;
              uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (xExponent == 0) {
                if (xSignifier != 0) {
                  uint shift = 226 - mostSignificantBit (xSignifier);
                  xSignifier <<= shift;
                  xExponent = 1;
                  yExponent += shift - 114;
                }
              }
              else {
                xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114;
              }
              xSignifier = xSignifier / ySignifier;
              if (xSignifier == 0)
                return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
                    NEGATIVE_ZERO : POSITIVE_ZERO;
              assert (xSignifier >= 0x1000000000000000000000000000);
              uint256 msb =
                xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit (xSignifier) :
                xSignifier >= 0x40000000000000000000000000000 ? 114 :
                xSignifier >= 0x20000000000000000000000000000 ? 113 : 112;
              if (xExponent + msb > yExponent + 16497) { // Overflow
                xExponent = 0x7FFF;
                xSignifier = 0;
              } else if (xExponent + msb + 16380  < yExponent) { // Underflow
                xExponent = 0;
                xSignifier = 0;
              } else if (xExponent + msb + 16268  < yExponent) { // Subnormal
                if (xExponent + 16380 > yExponent)
                  xSignifier <<= xExponent + 16380 - yExponent;
                else if (xExponent + 16380 < yExponent)
                  xSignifier >>= yExponent - xExponent - 16380;
                xExponent = 0;
              } else { // Normal
                if (msb > 112)
                  xSignifier >>= msb - 112;
                xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                xExponent = xExponent + msb + 16269 - yExponent;
              }
              return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
                  xExponent << 112 | xSignifier));
            }
          }
        }
        /**
         * Calculate -x.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function neg (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            return x ^ 0x80000000000000000000000000000000;
          }
        }
        /**
         * Calculate |x|.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function abs (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          }
        }
        /**
         * Calculate square root of x.  Return NaN on negative x excluding -0.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function sqrt (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            if (uint128 (x) >  0x80000000000000000000000000000000) return NaN;
            else {
              uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
              if (xExponent == 0x7FFF) return x;
              else {
                uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (xExponent == 0) xExponent = 1;
                else xSignifier |= 0x10000000000000000000000000000;
                if (xSignifier == 0) return POSITIVE_ZERO;
                bool oddExponent = xExponent & 0x1 == 0;
                xExponent = xExponent + 16383 >> 1;
                if (oddExponent) {
                  if (xSignifier >= 0x10000000000000000000000000000)
                    xSignifier <<= 113;
                  else {
                    uint256 msb = mostSignificantBit (xSignifier);
                    uint256 shift = (226 - msb) & 0xFE;
                    xSignifier <<= shift;
                    xExponent -= shift - 112 >> 1;
                  }
                } else {
                  if (xSignifier >= 0x10000000000000000000000000000)
                    xSignifier <<= 112;
                  else {
                    uint256 msb = mostSignificantBit (xSignifier);
                    uint256 shift = (225 - msb) & 0xFE;
                    xSignifier <<= shift;
                    xExponent -= shift - 112 >> 1;
                  }
                }
                uint256 r = 0x10000000000000000000000000000;
                r = (r + xSignifier / r) >> 1;
                r = (r + xSignifier / r) >> 1;
                r = (r + xSignifier / r) >> 1;
                r = (r + xSignifier / r) >> 1;
                r = (r + xSignifier / r) >> 1;
                r = (r + xSignifier / r) >> 1;
                r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
                uint256 r1 = xSignifier / r;
                if (r1 < r) r = r1;
                return bytes16 (uint128 (xExponent << 112 | r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
              }
            }
          }
        }
        /**
         * Calculate binary logarithm of x.  Return NaN on negative x excluding -0.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function log_2 (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            if (uint128 (x) > 0x80000000000000000000000000000000) return NaN;
            else if (x == 0x3FFF0000000000000000000000000000) return POSITIVE_ZERO; 
            else {
              uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
              if (xExponent == 0x7FFF) return x;
              else {
                uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (xExponent == 0) xExponent = 1;
                else xSignifier |= 0x10000000000000000000000000000;
                if (xSignifier == 0) return NEGATIVE_INFINITY;
                bool resultNegative;
                uint256 resultExponent = 16495;
                uint256 resultSignifier;
                if (xExponent >= 0x3FFF) {
                  resultNegative = false;
                  resultSignifier = xExponent - 0x3FFF;
                  xSignifier <<= 15;
                } else {
                  resultNegative = true;
                  if (xSignifier >= 0x10000000000000000000000000000) {
                    resultSignifier = 0x3FFE - xExponent;
                    xSignifier <<= 15;
                  } else {
                    uint256 msb = mostSignificantBit (xSignifier);
                    resultSignifier = 16493 - msb;
                    xSignifier <<= 127 - msb;
                  }
                }
                if (xSignifier == 0x80000000000000000000000000000000) {
                  if (resultNegative) resultSignifier += 1;
                  uint256 shift = 112 - mostSignificantBit (resultSignifier);
                  resultSignifier <<= shift;
                  resultExponent -= shift;
                } else {
                  uint256 bb = resultNegative ? 1 : 0;
                  while (resultSignifier < 0x10000000000000000000000000000) {
                    resultSignifier <<= 1;
                    resultExponent -= 1;
        
                    xSignifier *= xSignifier;
                    uint256 b = xSignifier >> 255;
                    resultSignifier += b ^ bb;
                    xSignifier >>= 127 + b;
                  }
                }
                return bytes16 (uint128 ((resultNegative ? 0x80000000000000000000000000000000 : 0) |
                    resultExponent << 112 | resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
              }
            }
          }
        }
        /**
         * Calculate natural logarithm of x.  Return NaN on negative x excluding -0.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function ln (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            return mul (log_2 (x), 0x3FFE62E42FEFA39EF35793C7673007E5);
          }
        }
        /**
         * Calculate 2^x.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function pow_2 (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            bool xNegative = uint128 (x) > 0x80000000000000000000000000000000;
            uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
            uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            if (xExponent == 0x7FFF && xSignifier != 0) return NaN;
            else if (xExponent > 16397)
              return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
            else if (xExponent < 16255)
              return 0x3FFF0000000000000000000000000000;
            else {
              if (xExponent == 0) xExponent = 1;
              else xSignifier |= 0x10000000000000000000000000000;
              if (xExponent > 16367)
                xSignifier <<= xExponent - 16367;
              else if (xExponent < 16367)
                xSignifier >>= 16367 - xExponent;
              if (xNegative && xSignifier > 0x406E00000000000000000000000000000000)
                return POSITIVE_ZERO;
              if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                return POSITIVE_INFINITY;
              uint256 resultExponent = xSignifier >> 128;
              xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              if (xNegative && xSignifier != 0) {
                xSignifier = ~xSignifier;
                resultExponent += 1;
              }
              uint256 resultSignifier = 0x80000000000000000000000000000000;
              if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
              if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
              if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
              if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
              if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
              if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
              if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
              if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
              if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
              if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
              if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
              if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
              if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
              if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
              if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000162E525EE054754457D5995292026 >> 128;
              if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
              if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
              if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
              if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000162E43F4F831060E02D839A9D16D >> 128;
              if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
              if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
              if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
              if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
              if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
              if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
              if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
              if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
              if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
              if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
              if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
              if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
              if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
              if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
              if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
              if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000162E42FEFB2FED257559BDAA >> 128;
              if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
              if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
              if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
              if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
              if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000B17217F7D20CF927C8E94C >> 128;
              if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
              if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000002C5C85FDF477B662B26945 >> 128;
              if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000162E42FEFA3AE53369388C >> 128;
              if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000B17217F7D1D351A389D40 >> 128;
              if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
              if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
              if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000162E42FEFA39FE95583C2 >> 128;
              if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
              if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
              if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000002C5C85FDF473E242EA38 >> 128;
              if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000162E42FEFA39F02B772C >> 128;
              if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
              if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
              if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000002C5C85FDF473DEA871F >> 128;
              if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000162E42FEFA39EF44D91 >> 128;
              if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000B17217F7D1CF79E949 >> 128;
              if (xSignifier & 0x800000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
              if (xSignifier & 0x400000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
              if (xSignifier & 0x200000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000162E42FEFA39EF366F >> 128;
              if (xSignifier & 0x100000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000B17217F7D1CF79AFA >> 128;
              if (xSignifier & 0x80000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
              if (xSignifier & 0x40000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
              if (xSignifier & 0x20000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000162E42FEFA39EF358 >> 128;
              if (xSignifier & 0x10000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000B17217F7D1CF79AB >> 128;
              if (xSignifier & 0x8000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5 >> 128;
              if (xSignifier & 0x4000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000002C5C85FDF473DE6A >> 128;
              if (xSignifier & 0x2000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000162E42FEFA39EF34 >> 128;
              if (xSignifier & 0x1000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000B17217F7D1CF799 >> 128;
              if (xSignifier & 0x800000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000058B90BFBE8E7BCC >> 128;
              if (xSignifier & 0x400000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000002C5C85FDF473DE5 >> 128;
              if (xSignifier & 0x200000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000162E42FEFA39EF2 >> 128;
              if (xSignifier & 0x100000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000B17217F7D1CF78 >> 128;
              if (xSignifier & 0x80000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000058B90BFBE8E7BB >> 128;
              if (xSignifier & 0x40000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000002C5C85FDF473DD >> 128;
              if (xSignifier & 0x20000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000162E42FEFA39EE >> 128;
              if (xSignifier & 0x10000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000B17217F7D1CF6 >> 128;
              if (xSignifier & 0x8000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000058B90BFBE8E7A >> 128;
              if (xSignifier & 0x4000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000002C5C85FDF473C >> 128;
              if (xSignifier & 0x2000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000162E42FEFA39D >> 128;
              if (xSignifier & 0x1000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000B17217F7D1CE >> 128;
              if (xSignifier & 0x800000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000058B90BFBE8E6 >> 128;
              if (xSignifier & 0x400000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000002C5C85FDF472 >> 128;
              if (xSignifier & 0x200000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000162E42FEFA38 >> 128;
              if (xSignifier & 0x100000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000B17217F7D1B >> 128;
              if (xSignifier & 0x80000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000058B90BFBE8D >> 128;
              if (xSignifier & 0x40000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000002C5C85FDF46 >> 128;
              if (xSignifier & 0x20000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000162E42FEFA2 >> 128;
              if (xSignifier & 0x10000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000B17217F7D0 >> 128;
              if (xSignifier & 0x8000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000058B90BFBE7 >> 128;
              if (xSignifier & 0x4000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000002C5C85FDF3 >> 128;
              if (xSignifier & 0x2000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000162E42FEF9 >> 128;
              if (xSignifier & 0x1000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000B17217F7C >> 128;
              if (xSignifier & 0x800000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000058B90BFBD >> 128;
              if (xSignifier & 0x400000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000002C5C85FDE >> 128;
              if (xSignifier & 0x200000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000162E42FEE >> 128;
              if (xSignifier & 0x100000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000B17217F6 >> 128;
              if (xSignifier & 0x80000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000058B90BFA >> 128;
              if (xSignifier & 0x40000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000002C5C85FC >> 128;
              if (xSignifier & 0x20000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000162E42FD >> 128;
              if (xSignifier & 0x10000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000B17217E >> 128;
              if (xSignifier & 0x8000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000058B90BE >> 128;
              if (xSignifier & 0x4000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000002C5C85E >> 128;
              if (xSignifier & 0x2000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000162E42E >> 128;
              if (xSignifier & 0x1000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000B17216 >> 128;
              if (xSignifier & 0x800000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000058B90A >> 128;
              if (xSignifier & 0x400000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000002C5C84 >> 128;
              if (xSignifier & 0x200000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000162E41 >> 128;
              if (xSignifier & 0x100000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000B1720 >> 128;
              if (xSignifier & 0x80000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000058B8F >> 128;
              if (xSignifier & 0x40000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000002C5C7 >> 128;
              if (xSignifier & 0x20000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000162E3 >> 128;
              if (xSignifier & 0x10000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000B171 >> 128;
              if (xSignifier & 0x8000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000058B8 >> 128;
              if (xSignifier & 0x4000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000002C5B >> 128;
              if (xSignifier & 0x2000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000162D >> 128;
              if (xSignifier & 0x1000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000B16 >> 128;
              if (xSignifier & 0x800 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000058A >> 128;
              if (xSignifier & 0x400 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000002C4 >> 128;
              if (xSignifier & 0x200 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000161 >> 128;
              if (xSignifier & 0x100 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000000B0 >> 128;
              if (xSignifier & 0x80 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000057 >> 128;
              if (xSignifier & 0x40 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000002B >> 128;
              if (xSignifier & 0x20 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000015 >> 128;
              if (xSignifier & 0x10 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000000A >> 128;
              if (xSignifier & 0x8 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000004 >> 128;
              if (xSignifier & 0x4 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000001 >> 128;
              if (!xNegative) {
                resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                resultExponent += 0x3FFF;
              } else if (resultExponent <= 0x3FFE) {
                resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                resultExponent = 0x3FFF - resultExponent;
              } else {
                resultSignifier = resultSignifier >> resultExponent - 16367;
                resultExponent = 0;
              }
              return bytes16 (uint128 (resultExponent << 112 | resultSignifier));
            }
          }
        }
        /**
         * Calculate e^x.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function exp (bytes16 x) internal pure returns (bytes16) {
          unchecked {
            return pow_2 (mul (x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
          }
        }
        /**
         * Get index of the most significant non-zero bit in binary representation of
         * x.  Reverts if x is zero.
         *
         * @return index of the most significant non-zero bit in binary representation
         *         of x
         */
        function mostSignificantBit (uint256 x) private pure returns (uint256) {
          unchecked {
            require (x > 0);
            uint256 result = 0;
            if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; }
            if (x >= 0x10000000000000000) { x >>= 64; result += 64; }
            if (x >= 0x100000000) { x >>= 32; result += 32; }
            if (x >= 0x10000) { x >>= 16; result += 16; }
            if (x >= 0x100) { x >>= 8; result += 8; }
            if (x >= 0x10) { x >>= 4; result += 4; }
            if (x >= 0x4) { x >>= 2; result += 2; }
            if (x >= 0x2) result += 1; // No need to shift x anymore
            return result;
          }
        }
      }
      // SPDX-License-Identifier: GPL-3.0
      /// @title Interface for Noun Auction Houses
      /*********************************
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░██░░░████░░██░░░████░░░ *
       * ░░██████░░░████████░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       *********************************/
      pragma solidity ^0.8.6;
      interface INounsAuctionHouse {
          struct Auction {
              // ID for the Noun (ERC721 token ID)
              uint256 nounId;
              // The current highest bid amount
              uint256 amount;
              // The time that the auction started
              uint256 startTime;
              // The time that the auction is scheduled to end
              uint256 endTime;
              // The address of the current highest bid
              address payable bidder;
              // Whether or not the auction has been settled
              bool settled;
          }
          event AuctionCreated(uint256 indexed nounId, uint256 startTime, uint256 endTime);
          event AuctionBid(uint256 indexed nounId, address sender, uint256 value, bool extended);
          event AuctionExtended(uint256 indexed nounId, uint256 endTime);
          event AuctionSettled(uint256 indexed nounId, address winner, uint256 amount);
          event AuctionTimeBufferUpdated(uint256 timeBuffer);
          event AuctionReservePriceUpdated(uint256 reservePrice);
          event AuctionMinBidIncrementPercentageUpdated(uint256 minBidIncrementPercentage);
          function settleAuction() external;
          function settleCurrentAndCreateNewAuction() external;
          function createBid(uint256 nounId) external payable;
          function pause() external;
          function unpause() external;
          function setTimeBuffer(uint256 timeBuffer) external;
          function setReservePrice(uint256 reservePrice) external;
          function setMinBidIncrementPercentage(uint8 minBidIncrementPercentage) external;
      }
      // SPDX-License-Identifier: GPL-3.0
      /// @title Interface for NounsToken
      /*********************************
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░██░░░████░░██░░░████░░░ *
       * ░░██████░░░████████░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       *********************************/
      pragma solidity ^0.8.6;
      import { IERC721 } from '@openzeppelin/contracts/token/ERC721/IERC721.sol';
      import { INounsDescriptorMinimal } from './INounsDescriptorMinimal.sol';
      import { INounsSeeder } from './INounsSeeder.sol';
      interface INounsToken is IERC721 {
          event NounCreated(uint256 indexed tokenId, INounsSeeder.Seed seed);
          event NounBurned(uint256 indexed tokenId);
          event NoundersDAOUpdated(address noundersDAO);
          event MinterUpdated(address minter);
          event MinterLocked();
          event DescriptorUpdated(INounsDescriptorMinimal descriptor);
          event DescriptorLocked();
          event SeederUpdated(INounsSeeder seeder);
          event SeederLocked();
          function mint() external returns (uint256);
          function burn(uint256 tokenId) external;
          function dataURI(uint256 tokenId) external returns (string memory);
          function setNoundersDAO(address noundersDAO) external;
          function setMinter(address minter) external;
          function lockMinter() external;
          function setDescriptor(INounsDescriptorMinimal descriptor) external;
          function lockDescriptor() external;
          function setSeeder(INounsSeeder seeder) external;
          function lockSeeder() external;
      }
      // SPDX-License-Identifier: GPL-3.0
      pragma solidity ^0.8.6;
      interface IWETH {
          function deposit() external payable;
          function withdraw(uint256 wad) external;
          function transfer(address to, uint256 value) external returns (bool);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (utils/Context.sol)
      pragma solidity ^0.8.0;
      import "../proxy/utils/Initializable.sol";
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract ContextUpgradeable is Initializable {
          function __Context_init() internal initializer {
              __Context_init_unchained();
          }
          function __Context_init_unchained() internal initializer {
          }
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
          uint256[50] private __gap;
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (proxy/utils/Initializable.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
       * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
       * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
       * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
       *
       * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
       * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
       *
       * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
       * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
       *
       * [CAUTION]
       * ====
       * Avoid leaving a contract uninitialized.
       *
       * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
       * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
       * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
       *
       * [.hljs-theme-light.nopadding]
       * ```
       * /// @custom:oz-upgrades-unsafe-allow constructor
       * constructor() initializer {}
       * ```
       * ====
       */
      abstract contract Initializable {
          /**
           * @dev Indicates that the contract has been initialized.
           */
          bool private _initialized;
          /**
           * @dev Indicates that the contract is in the process of being initialized.
           */
          bool private _initializing;
          /**
           * @dev Modifier to protect an initializer function from being invoked twice.
           */
          modifier initializer() {
              require(_initializing || !_initialized, "Initializable: contract is already initialized");
              bool isTopLevelCall = !_initializing;
              if (isTopLevelCall) {
                  _initializing = true;
                  _initialized = true;
              }
              _;
              if (isTopLevelCall) {
                  _initializing = false;
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (token/ERC721/IERC721.sol)
      pragma solidity ^0.8.0;
      import "../../utils/introspection/IERC165.sol";
      /**
       * @dev Required interface of an ERC721 compliant contract.
       */
      interface IERC721 is IERC165 {
          /**
           * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
           */
          event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
           */
          event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
          /**
           * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
           */
          event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
          /**
           * @dev Returns the number of tokens in ``owner``'s account.
           */
          function balanceOf(address owner) external view returns (uint256 balance);
          /**
           * @dev Returns the owner of the `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function ownerOf(uint256 tokenId) external view returns (address owner);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
           * are aware of the ERC721 protocol to prevent tokens from being forever locked.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external;
          /**
           * @dev Transfers `tokenId` token from `from` to `to`.
           *
           * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address from,
              address to,
              uint256 tokenId
          ) external;
          /**
           * @dev Gives permission to `to` to transfer `tokenId` token to another account.
           * The approval is cleared when the token is transferred.
           *
           * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
           *
           * Requirements:
           *
           * - The caller must own the token or be an approved operator.
           * - `tokenId` must exist.
           *
           * Emits an {Approval} event.
           */
          function approve(address to, uint256 tokenId) external;
          /**
           * @dev Returns the account approved for `tokenId` token.
           *
           * Requirements:
           *
           * - `tokenId` must exist.
           */
          function getApproved(uint256 tokenId) external view returns (address operator);
          /**
           * @dev Approve or remove `operator` as an operator for the caller.
           * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
           *
           * Requirements:
           *
           * - The `operator` cannot be the caller.
           *
           * Emits an {ApprovalForAll} event.
           */
          function setApprovalForAll(address operator, bool _approved) external;
          /**
           * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
           *
           * See {setApprovalForAll}
           */
          function isApprovedForAll(address owner, address operator) external view returns (bool);
          /**
           * @dev Safely transfers `tokenId` token from `from` to `to`.
           *
           * Requirements:
           *
           * - `from` cannot be the zero address.
           * - `to` cannot be the zero address.
           * - `tokenId` token must exist and be owned by `from`.
           * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
           * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
           *
           * Emits a {Transfer} event.
           */
          function safeTransferFrom(
              address from,
              address to,
              uint256 tokenId,
              bytes calldata data
          ) external;
      }
      // SPDX-License-Identifier: GPL-3.0
      /// @title Common interface for NounsDescriptor versions, as used by NounsToken and NounsSeeder.
      /*********************************
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░██░░░████░░██░░░████░░░ *
       * ░░██████░░░████████░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       *********************************/
      pragma solidity ^0.8.6;
      // LICENSE
      // This file is a modified version of nounsDAO's INounsDescriptorMinimal.sol:
      // https://github.com/nounsDAO/nouns-monorepo/blob/854b9b64770401da71503972c65c4f9eda060ba6/packages/nouns-contracts/contracts/interfaces/INounsDescriptorMinimal.sol
      //
      // INounsDescriptorMinimal.sol licensed under the GPL-3.0 license.
      // With modifications by CNNouns DAO.
      import { INounsSeeder } from './INounsSeeder.sol';
      interface INounsDescriptorMinimal {
          ///
          /// USED BY TOKEN
          ///
          function tokenURI(uint256 tokenId, INounsSeeder.Seed memory seed) external view returns (string memory);
          function dataURI(uint256 tokenId, INounsSeeder.Seed memory seed) external view returns (string memory);
          ///
          /// USED BY SEEDER
          ///
          function backgroundCount() external view returns (uint256);
          function bodyCount() external view returns (uint256);
          function headCount() external view returns (uint256);
          function glassesCount() external view returns (uint256);
          function skillCount() external view returns (uint256);
      }
      // SPDX-License-Identifier: GPL-3.0
      /// @title Interface for NounsSeeder
      /*********************************
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░██░░░████░░██░░░████░░░ *
       * ░░██████░░░████████░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░██░░██░░░████░░██░░░████░░░ *
       * ░░░░░░█████████░░█████████░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ *
       *********************************/
      pragma solidity ^0.8.6;
      // LICENSE
      // This file is a modified version of nounsDAO's INounsSeeder.sol:
      // https://github.com/nounsDAO/nouns-monorepo/blob/854b9b64770401da71503972c65c4f9eda060ba6/packages/nouns-contracts/contracts/interfaces/INounsSeeder.sol
      //
      // INounsSeeder.sol licensed under the GPL-3.0 license.
      // With modifications by CNNouns DAO.
      import { INounsDescriptorMinimal } from './INounsDescriptorMinimal.sol';
      interface INounsSeeder {
          struct Seed {
              uint48 background;
              uint48 body;
              uint48 head;
              uint48 glasses;
              uint48 skill;
          }
          function generateSeed(uint256 nounId, INounsDescriptorMinimal descriptor) external view returns (Seed memory);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.0 (utils/introspection/IERC165.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
          /**
           * @dev Returns true if this contract implements the interface defined by
           * `interfaceId`. See the corresponding
           * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
           * to learn more about how these ids are created.
           *
           * This function call must use less than 30 000 gas.
           */
          function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }