Transaction Hash:
Block:
18016337 at Aug-28-2023 11:12:47 PM +UTC
Transaction Fee:
0.001447445516109528 ETH
$3.39
Gas Used:
66,137 Gas / 21.885563544 Gwei
Emitted Events:
511 |
NounsAuctionHouseProxy.0x1159164c56f277e6fc99c11731bd380e0347deb969b75523398734c252706ea3( 0x1159164c56f277e6fc99c11731bd380e0347deb969b75523398734c252706ea3, 0x00000000000000000000000000000000000000000000000000000000000000c7, 0000000000000000000000002a31f0db0446dbf005cd25d1e642ca04f9cd0b6c, 000000000000000000000000000000000000000000000000039bb49f599a0000, 0000000000000000000000000000000000000000000000000000000000000000 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x2a31F0Db...4F9cD0B6c |
0.793223075243962004 Eth
Nonce: 344
|
0.531775629727852476 Eth
Nonce: 345
| 0.261447445516109528 | ||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 17.401279815824052116 Eth | 17.401286429524052116 Eth | 0.0000066137 | |
0x9d1e0eC3...Ef641Be38 | 0.25 Eth | 0.26 Eth | 0.01 | ||
0xcc1f0122...2B8A06B8b | 0.218046309207458433 Eth | 0.468046309207458433 Eth | 0.25 |
Execution Trace
ETH 0.26
NounsAuctionHouseProxy.659dd2b4( )
ETH 0.26
NounsAuctionHouse.createBid( nounId=199 )
- ETH 0.25
0xcc1f01220b9d9a2bcabb87da9cbc75e2b8a06b8b.CALL( )
- ETH 0.25
createBid[NounsAuctionHouse (ln:91)]
_safeTransferETHWithFallback[NounsAuctionHouse (ln:103)]
_safeTransferETH[NounsAuctionHouse (ln:226)]
deposit[NounsAuctionHouse (ln:227)]
transfer[NounsAuctionHouse (ln:228)]
payable[NounsAuctionHouse (ln:106)]
AuctionBid[NounsAuctionHouse (ln:112)]
AuctionExtended[NounsAuctionHouse (ln:114)]
File 1 of 2: NounsAuctionHouseProxy
File 2 of 2: NounsAuctionHouse
// SPDX-License-Identifier: GPL-3.0 /// @title The Nouns DAO auction house proxy /********************************* * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░██░░░████░░██░░░████░░░ * * ░░██████░░░████████░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * *********************************/ pragma solidity ^0.8.6; import { TransparentUpgradeableProxy } from '@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol'; contract NounsAuctionHouseProxy is TransparentUpgradeableProxy { constructor( address logic, address admin, bytes memory data ) TransparentUpgradeableProxy(logic, admin, data) {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (proxy/transparent/TransparentUpgradeableProxy.sol) pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor( address _logic, address admin_, bytes memory _data ) payable ERC1967Proxy(_logic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _getAdmin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { _changeAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeToAndCall(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeToAndCall(newImplementation, data, true); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall( address newImplementation, bytes memory data, bool forceCall ) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure( address newImplementation, bytes memory data, bool forceCall ) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature("upgradeTo(address)", oldImplementation) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _upgradeTo(newImplementation); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall( address newBeacon, bytes memory data, bool forceCall ) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (utils/Address.sol) pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (utils/StorageSlot.sol) pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } }
File 2 of 2: NounsAuctionHouse
// SPDX-License-Identifier: GPL-3.0 /// @title The CNNouns DAO auction house /********************************* * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░██░░░████░░██░░░████░░░ * * ░░██████░░░████████░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * *********************************/ // LICENSE // NounsAuctionHouse.sol is a modified version of Zora's AuctionHouse.sol: // https://github.com/ourzora/auction-house/blob/54a12ec1a6cf562e49f0a4917990474b11350a2d/contracts/AuctionHouse.sol // // AuctionHouse.sol source code Copyright Zora licensed under the GPL-3.0 license. // With modifications by Nounders DAO. // With modifications by CNNouns DAO. pragma solidity ^0.8.6; import { PausableUpgradeable } from '@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol'; import { ReentrancyGuardUpgradeable } from '@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol'; import { OwnableUpgradeable } from '@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol'; import { IERC20 } from '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import { ABDKMathQuad } from 'abdk-libraries-solidity/ABDKMathQuad.sol'; import { INounsAuctionHouse } from './interfaces/INounsAuctionHouse.sol'; import { INounsToken } from './interfaces/INounsToken.sol'; import { IWETH } from './interfaces/IWETH.sol'; contract NounsAuctionHouse is INounsAuctionHouse, PausableUpgradeable, ReentrancyGuardUpgradeable, OwnableUpgradeable { // The Nouns ERC721 token contract INounsToken public nouns; // The address of the WETH contract address public weth; // The minimum amount of time left in an auction after a new bid is created uint256 public timeBuffer; // The minimum price accepted in an auction uint256 public reservePrice; // The minimum percentage difference between the last bid amount and the current bid uint8 public minBidIncrementPercentage; // The base duration of a single auction uint256 public baseDuration; // The origin date for calculating duration uint256 public origin; // The active auction INounsAuctionHouse.Auction public auction; /** * @notice Initialize the auction house and base contracts, * populate configuration values, and pause the contract. * @dev This function can only be called once. */ function initialize( INounsToken _nouns, address _weth, uint256 _timeBuffer, uint256 _reservePrice, uint8 _minBidIncrementPercentage, uint256 _baseDuration ) external initializer { __Pausable_init(); __ReentrancyGuard_init(); __Ownable_init(); _pause(); nouns = _nouns; weth = _weth; timeBuffer = _timeBuffer; reservePrice = _reservePrice; minBidIncrementPercentage = _minBidIncrementPercentage; baseDuration = _baseDuration; origin = block.timestamp; } /** * @notice Settle the current auction, mint a new Noun, and put it up for auction. */ function settleCurrentAndCreateNewAuction() external override nonReentrant whenNotPaused { _settleAuction(); _createAuction(); } /** * @notice Settle the current auction. * @dev This function can only be called when the contract is paused. */ function settleAuction() external override whenPaused nonReentrant { _settleAuction(); } /** * @notice Create a bid for a Noun, with a given amount. * @dev This contract only accepts payment in ETH. */ function createBid(uint256 nounId) external payable override nonReentrant { INounsAuctionHouse.Auction memory _auction = auction; require(_auction.nounId == nounId, 'Noun not up for auction'); require(block.timestamp < _auction.endTime, 'Auction expired'); require(msg.value >= reservePrice, 'Must send at least reservePrice'); require( msg.value >= _auction.amount + ((_auction.amount * minBidIncrementPercentage) / 100), 'Must send more than last bid by minBidIncrementPercentage amount' ); address payable lastBidder = _auction.bidder; // Refund the last bidder, if applicable if (lastBidder != address(0)) { _safeTransferETHWithFallback(lastBidder, _auction.amount); } auction.amount = msg.value; auction.bidder = payable(msg.sender); // Extend the auction if the bid was received within `timeBuffer` of the auction end time bool extended = _auction.endTime - block.timestamp < timeBuffer; if (extended) { auction.endTime = _auction.endTime = block.timestamp + timeBuffer; } emit AuctionBid(_auction.nounId, msg.sender, msg.value, extended); if (extended) { emit AuctionExtended(_auction.nounId, _auction.endTime); } } /** * @notice Pause the Nouns auction house. * @dev This function can only be called by the owner when the * contract is unpaused. While no new auctions can be started when paused, * anyone can settle an ongoing auction. */ function pause() external override onlyOwner { _pause(); } /** * @notice Unpause the Nouns auction house. * @dev This function can only be called by the owner when the * contract is paused. If required, this function will start a new auction. */ function unpause() external override onlyOwner { _unpause(); if (auction.startTime == 0 || auction.settled) { _createAuction(); } } /** * @notice Set the auction time buffer. * @dev Only callable by the owner. */ function setTimeBuffer(uint256 _timeBuffer) external override onlyOwner { timeBuffer = _timeBuffer; emit AuctionTimeBufferUpdated(_timeBuffer); } /** * @notice Set the auction reserve price. * @dev Only callable by the owner. */ function setReservePrice(uint256 _reservePrice) external override onlyOwner { reservePrice = _reservePrice; emit AuctionReservePriceUpdated(_reservePrice); } /** * @notice Set the auction minimum bid increment percentage. * @dev Only callable by the owner. */ function setMinBidIncrementPercentage(uint8 _minBidIncrementPercentage) external override onlyOwner { minBidIncrementPercentage = _minBidIncrementPercentage; emit AuctionMinBidIncrementPercentageUpdated(_minBidIncrementPercentage); } /** * @notice Calculate a next auction duration. */ function _calcDuration(uint256 _timestamp) internal view returns (uint256) { // It implements a geometric sequence that doubles in 4 years with // an upper limit of 1.4 years uint256 interval = _timestamp - origin; if (interval >= 1135296000) { return 44236800; } else if (interval < 0) { interval = 0; } bytes16 x = ABDKMathQuad.fromUInt(interval); x = ABDKMathQuad.div(x, ABDKMathQuad.fromUInt(1460 * 86400)); x = ABDKMathQuad.pow_2(x); x = ABDKMathQuad.mul(x, ABDKMathQuad.fromUInt(baseDuration)); return ABDKMathQuad.toUInt(x); } /** * @notice Create an auction. * @dev Store the auction details in the `auction` state variable and emit an AuctionCreated event. * If the mint reverts, the minter was updated without pausing this contract first. To remedy this, * catch the revert and pause this contract. */ function _createAuction() internal { try nouns.mint() returns (uint256 nounId) { uint256 startTime = block.timestamp; uint256 endTime = startTime + _calcDuration(startTime); auction = Auction({ nounId: nounId, amount: 0, startTime: startTime, endTime: endTime, bidder: payable(0), settled: false }); emit AuctionCreated(nounId, startTime, endTime); } catch Error(string memory) { _pause(); } } /** * @notice Settle an auction, finalizing the bid and paying out to the owner. * @dev If there are no bids, the Noun is burned. */ function _settleAuction() internal { INounsAuctionHouse.Auction memory _auction = auction; require(_auction.startTime != 0, "Auction hasn't begun"); require(!_auction.settled, 'Auction has already been settled'); require(block.timestamp >= _auction.endTime, "Auction hasn't completed"); auction.settled = true; if (_auction.bidder == address(0)) { nouns.burn(_auction.nounId); } else { nouns.transferFrom(address(this), _auction.bidder, _auction.nounId); } if (_auction.amount > 0) { _safeTransferETHWithFallback(owner(), _auction.amount); } emit AuctionSettled(_auction.nounId, _auction.bidder, _auction.amount); } /** * @notice Transfer ETH. If the ETH transfer fails, wrap the ETH and try send it as WETH. */ function _safeTransferETHWithFallback(address to, uint256 amount) internal { if (!_safeTransferETH(to, amount)) { IWETH(weth).deposit{ value: amount }(); IERC20(weth).transfer(to, amount); } } /** * @notice Transfer ETH and return the success status. * @dev This function only forwards 30,000 gas to the callee. */ function _safeTransferETH(address to, uint256 value) internal returns (bool) { (bool success, ) = to.call{ value: value, gas: 30_000 }(new bytes(0)); return success; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: BSD-4-Clause /* * ABDK Math Quad Smart Contract Library. Copyright © 2019 by ABDK Consulting. * Author: Mikhail Vladimirov <[email protected]> */ pragma solidity ^0.8.0; /** * Smart contract library of mathematical functions operating with IEEE 754 * quadruple-precision binary floating-point numbers (quadruple precision * numbers). As long as quadruple precision numbers are 16-bytes long, they are * represented by bytes16 type. */ library ABDKMathQuad { /* * 0. */ bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000; /* * -0. */ bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000; /* * +Infinity. */ bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000; /* * -Infinity. */ bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000; /* * Canonical NaN value. */ bytes16 private constant NaN = 0x7FFF8000000000000000000000000000; /** * Convert signed 256-bit integer number into quadruple precision number. * * @param x signed 256-bit integer number * @return quadruple precision number */ function fromInt (int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { // We rely on overflow behavior here uint256 result = uint256 (x > 0 ? x : -x); uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112; if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into signed 256-bit integer number * rounding towards zero. Revert on overflow. * * @param x quadruple precision number * @return signed 256-bit integer number */ function toInt (bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; require (exponent <= 16638); // Overflow if (exponent < 16383) return 0; // Underflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000); return -int256 (result); // We rely on overflow behavior here } else { require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int256 (result); } } } /** * Convert unsigned 256-bit integer number into quadruple precision number. * * @param x unsigned 256-bit integer number * @return quadruple precision number */ function fromUInt (uint256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { uint256 result = x; uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into unsigned 256-bit integer number * rounding towards zero. Revert on underflow. Note, that negative floating * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer * without error, because they are rounded to zero. * * @param x quadruple precision number * @return unsigned 256-bit integer number */ function toUInt (bytes16 x) internal pure returns (uint256) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; if (exponent < 16383) return 0; // Underflow require (uint128 (x) < 0x80000000000000000000000000000000); // Negative require (exponent <= 16638); // Overflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16495) result >>= 16495 - exponent; else if (exponent > 16495) result <<= exponent - 16495; return result; } } /** * Convert signed 128.128 bit fixed point number into quadruple precision * number. * * @param x signed 128.128 bit fixed point number * @return quadruple precision number */ function from128x128 (int256 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { // We rely on overflow behavior here uint256 result = uint256 (x > 0 ? x : -x); uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16255 + msb << 112; if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into signed 128.128 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 128.128 bit fixed point number */ function to128x128 (bytes16 x) internal pure returns (int256) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; require (exponent <= 16510); // Overflow if (exponent < 16255) return 0; // Underflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16367) result >>= 16367 - exponent; else if (exponent > 16367) result <<= exponent - 16367; if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000); return -int256 (result); // We rely on overflow behavior here } else { require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int256 (result); } } } /** * Convert signed 64.64 bit fixed point number into quadruple precision * number. * * @param x signed 64.64 bit fixed point number * @return quadruple precision number */ function from64x64 (int128 x) internal pure returns (bytes16) { unchecked { if (x == 0) return bytes16 (0); else { // We rely on overflow behavior here uint256 result = uint128 (x > 0 ? x : -x); uint256 msb = mostSignificantBit (result); if (msb < 112) result <<= 112 - msb; else if (msb > 112) result >>= msb - 112; result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16319 + msb << 112; if (x < 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } } /** * Convert quadruple precision number into signed 64.64 bit fixed point * number. Revert on overflow. * * @param x quadruple precision number * @return signed 64.64 bit fixed point number */ function to64x64 (bytes16 x) internal pure returns (int128) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; require (exponent <= 16446); // Overflow if (exponent < 16319) return 0; // Underflow uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0x10000000000000000000000000000; if (exponent < 16431) result >>= 16431 - exponent; else if (exponent > 16431) result <<= exponent - 16431; if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative require (result <= 0x80000000000000000000000000000000); return -int128 (int256 (result)); // We rely on overflow behavior here } else { require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128 (int256 (result)); } } } /** * Convert octuple precision number into quadruple precision number. * * @param x octuple precision number * @return quadruple precision number */ function fromOctuple (bytes32 x) internal pure returns (bytes16) { unchecked { bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0; uint256 exponent = uint256 (x) >> 236 & 0x7FFFF; uint256 significand = uint256 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFFF) { if (significand > 0) return NaN; else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY; } if (exponent > 278526) return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY; else if (exponent < 245649) return negative ? NEGATIVE_ZERO : POSITIVE_ZERO; else if (exponent < 245761) { significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> 245885 - exponent; exponent = 0; } else { significand >>= 124; exponent -= 245760; } uint128 result = uint128 (significand | exponent << 112); if (negative) result |= 0x80000000000000000000000000000000; return bytes16 (result); } } /** * Convert quadruple precision number into octuple precision number. * * @param x quadruple precision number * @return octuple precision number */ function toOctuple (bytes16 x) internal pure returns (bytes32) { unchecked { uint256 exponent = uint128 (x) >> 112 & 0x7FFF; uint256 result = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit (result); result = result << 236 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 245649 + msb; } } else { result <<= 124; exponent += 245760; } result |= exponent << 236; if (uint128 (x) >= 0x80000000000000000000000000000000) result |= 0x8000000000000000000000000000000000000000000000000000000000000000; return bytes32 (result); } } /** * Convert double precision number into quadruple precision number. * * @param x double precision number * @return quadruple precision number */ function fromDouble (bytes8 x) internal pure returns (bytes16) { unchecked { uint256 exponent = uint64 (x) >> 52 & 0x7FF; uint256 result = uint64 (x) & 0xFFFFFFFFFFFFF; if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN else if (exponent == 0) { if (result > 0) { uint256 msb = mostSignificantBit (result); result = result << 112 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; exponent = 15309 + msb; } } else { result <<= 60; exponent += 15360; } result |= exponent << 112; if (x & 0x8000000000000000 > 0) result |= 0x80000000000000000000000000000000; return bytes16 (uint128 (result)); } } /** * Convert quadruple precision number into double precision number. * * @param x quadruple precision number * @return double precision number */ function toDouble (bytes16 x) internal pure returns (bytes8) { unchecked { bool negative = uint128 (x) >= 0x80000000000000000000000000000000; uint256 exponent = uint128 (x) >> 112 & 0x7FFF; uint256 significand = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (exponent == 0x7FFF) { if (significand > 0) return 0x7FF8000000000000; // NaN else return negative ? bytes8 (0xFFF0000000000000) : // -Infinity bytes8 (0x7FF0000000000000); // Infinity } if (exponent > 17406) return negative ? bytes8 (0xFFF0000000000000) : // -Infinity bytes8 (0x7FF0000000000000); // Infinity else if (exponent < 15309) return negative ? bytes8 (0x8000000000000000) : // -0 bytes8 (0x0000000000000000); // 0 else if (exponent < 15361) { significand = (significand | 0x10000000000000000000000000000) >> 15421 - exponent; exponent = 0; } else { significand >>= 60; exponent -= 15360; } uint64 result = uint64 (significand | exponent << 52); if (negative) result |= 0x8000000000000000; return bytes8 (result); } } /** * Test whether given quadruple precision number is NaN. * * @param x quadruple precision number * @return true if x is NaN, false otherwise */ function isNaN (bytes16 x) internal pure returns (bool) { unchecked { return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000; } } /** * Test whether given quadruple precision number is positive or negative * infinity. * * @param x quadruple precision number * @return true if x is positive or negative infinity, false otherwise */ function isInfinity (bytes16 x) internal pure returns (bool) { unchecked { return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000; } } /** * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x * is positive. Note that sign (-0) is zero. Revert if x is NaN. * * @param x quadruple precision number * @return sign of x */ function sign (bytes16 x) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN if (absoluteX == 0) return 0; else if (uint128 (x) >= 0x80000000000000000000000000000000) return -1; else return 1; } } /** * Calculate sign (x - y). Revert if either argument is NaN, or both * arguments are infinities of the same sign. * * @param x quadruple precision number * @param y quadruple precision number * @return sign (x - y) */ function cmp (bytes16 x, bytes16 y) internal pure returns (int8) { unchecked { uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN uint128 absoluteY = uint128 (y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; require (absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN // Not infinities of the same sign require (x != y || absoluteX < 0x7FFF0000000000000000000000000000); if (x == y) return 0; else { bool negativeX = uint128 (x) >= 0x80000000000000000000000000000000; bool negativeY = uint128 (y) >= 0x80000000000000000000000000000000; if (negativeX) { if (negativeY) return absoluteX > absoluteY ? -1 : int8 (1); else return -1; } else { if (negativeY) return 1; else return absoluteX > absoluteY ? int8 (1) : -1; } } } } /** * Test whether x equals y. NaN, infinity, and -infinity are not equal to * anything. * * @param x quadruple precision number * @param y quadruple precision number * @return true if x equals to y, false otherwise */ function eq (bytes16 x, bytes16 y) internal pure returns (bool) { unchecked { if (x == y) { return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000; } else return false; } } /** * Calculate x + y. Special values behave in the following way: * * NaN + x = NaN for any x. * Infinity + x = Infinity for any finite x. * -Infinity + x = -Infinity for any finite x. * Infinity + Infinity = Infinity. * -Infinity + -Infinity = -Infinity. * Infinity + -Infinity = -Infinity + Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function add (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 yExponent = uint128 (y) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x; else return NaN; } else return x; } else if (yExponent == 0x7FFF) return y; else { bool xSign = uint128 (x) >= 0x80000000000000000000000000000000; uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; bool ySign = uint128 (y) >= 0x80000000000000000000000000000000; uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y; else if (ySignifier == 0) return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x; else { int256 delta = int256 (xExponent) - int256 (yExponent); if (xSign == ySign) { if (delta > 112) return x; else if (delta > 0) ySignifier >>= uint256 (delta); else if (delta < -112) return y; else if (delta < 0) { xSignifier >>= uint256 (-delta); xExponent = yExponent; } xSignifier += ySignifier; if (xSignifier >= 0x20000000000000000000000000000) { xSignifier >>= 1; xExponent += 1; } if (xExponent == 0x7FFF) return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY; else { if (xSignifier < 0x10000000000000000000000000000) xExponent = 0; else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; return bytes16 (uint128 ( (xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier)); } } else { if (delta > 0) { xSignifier <<= 1; xExponent -= 1; } else if (delta < 0) { ySignifier <<= 1; xExponent = yExponent - 1; } if (delta > 112) ySignifier = 1; else if (delta > 1) ySignifier = (ySignifier - 1 >> uint256 (delta - 1)) + 1; else if (delta < -112) xSignifier = 1; else if (delta < -1) xSignifier = (xSignifier - 1 >> uint256 (-delta - 1)) + 1; if (xSignifier >= ySignifier) xSignifier -= ySignifier; else { xSignifier = ySignifier - xSignifier; xSign = ySign; } if (xSignifier == 0) return POSITIVE_ZERO; uint256 msb = mostSignificantBit (xSignifier); if (msb == 113) { xSignifier = xSignifier >> 1 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent += 1; } else if (msb < 112) { uint256 shift = 112 - msb; if (xExponent > shift) { xSignifier = xSignifier << shift & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent -= shift; } else { xSignifier <<= xExponent - 1; xExponent = 0; } } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF) return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY; else return bytes16 (uint128 ( (xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier)); } } } } } /** * Calculate x - y. Special values behave in the following way: * * NaN - x = NaN for any x. * Infinity - x = Infinity for any finite x. * -Infinity - x = -Infinity for any finite x. * Infinity - -Infinity = Infinity. * -Infinity - Infinity = -Infinity. * Infinity - Infinity = -Infinity - -Infinity = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function sub (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { return add (x, y ^ 0x80000000000000000000000000000000); } } /** * Calculate x * y. Special values behave in the following way: * * NaN * x = NaN for any x. * Infinity * x = Infinity for any finite positive x. * Infinity * x = -Infinity for any finite negative x. * -Infinity * x = -Infinity for any finite positive x. * -Infinity * x = Infinity for any finite negative x. * Infinity * 0 = NaN. * -Infinity * 0 = NaN. * Infinity * Infinity = Infinity. * Infinity * -Infinity = -Infinity. * -Infinity * Infinity = -Infinity. * -Infinity * -Infinity = Infinity. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function mul (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 yExponent = uint128 (y) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) { if (x == y) return x ^ y & 0x80000000000000000000000000000000; else if (x ^ y == 0x80000000000000000000000000000000) return x | y; else return NaN; } else { if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return x ^ y & 0x80000000000000000000000000000000; } } else if (yExponent == 0x7FFF) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return y ^ x & 0x80000000000000000000000000000000; } else { uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; xSignifier *= ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO; xExponent += yExponent; uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 : mostSignificantBit (xSignifier); if (xExponent + msb < 16496) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb < 16608) { // Subnormal if (xExponent < 16496) xSignifier >>= 16496 - xExponent; else if (xExponent > 16496) xSignifier <<= xExponent - 16496; xExponent = 0; } else if (xExponent + msb > 49373) { xExponent = 0x7FFF; xSignifier = 0; } else { if (msb > 112) xSignifier >>= msb - 112; else if (msb < 112) xSignifier <<= 112 - msb; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb - 16607; } return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) | xExponent << 112 | xSignifier)); } } } /** * Calculate x / y. Special values behave in the following way: * * NaN / x = NaN for any x. * x / NaN = NaN for any x. * Infinity / x = Infinity for any finite non-negative x. * Infinity / x = -Infinity for any finite negative x including -0. * -Infinity / x = -Infinity for any finite non-negative x. * -Infinity / x = Infinity for any finite negative x including -0. * x / Infinity = 0 for any finite non-negative x. * x / -Infinity = -0 for any finite non-negative x. * x / Infinity = -0 for any finite non-negative x including -0. * x / -Infinity = 0 for any finite non-negative x including -0. * * Infinity / Infinity = NaN. * Infinity / -Infinity = -NaN. * -Infinity / Infinity = -NaN. * -Infinity / -Infinity = NaN. * * Division by zero behaves in the following way: * * x / 0 = Infinity for any finite positive x. * x / -0 = -Infinity for any finite positive x. * x / 0 = -Infinity for any finite negative x. * x / -0 = Infinity for any finite negative x. * 0 / 0 = NaN. * 0 / -0 = NaN. * -0 / 0 = NaN. * -0 / -0 = NaN. * * @param x quadruple precision number * @param y quadruple precision number * @return quadruple precision number */ function div (bytes16 x, bytes16 y) internal pure returns (bytes16) { unchecked { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 yExponent = uint128 (y) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) { if (yExponent == 0x7FFF) return NaN; else return x ^ y & 0x80000000000000000000000000000000; } else if (yExponent == 0x7FFF) { if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN; else return POSITIVE_ZERO | (x ^ y) & 0x80000000000000000000000000000000; } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) { if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN; else return POSITIVE_INFINITY | (x ^ y) & 0x80000000000000000000000000000000; } else { uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (yExponent == 0) yExponent = 1; else ySignifier |= 0x10000000000000000000000000000; uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) { if (xSignifier != 0) { uint shift = 226 - mostSignificantBit (xSignifier); xSignifier <<= shift; xExponent = 1; yExponent += shift - 114; } } else { xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114; } xSignifier = xSignifier / ySignifier; if (xSignifier == 0) return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO; assert (xSignifier >= 0x1000000000000000000000000000); uint256 msb = xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit (xSignifier) : xSignifier >= 0x40000000000000000000000000000 ? 114 : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112; if (xExponent + msb > yExponent + 16497) { // Overflow xExponent = 0x7FFF; xSignifier = 0; } else if (xExponent + msb + 16380 < yExponent) { // Underflow xExponent = 0; xSignifier = 0; } else if (xExponent + msb + 16268 < yExponent) { // Subnormal if (xExponent + 16380 > yExponent) xSignifier <<= xExponent + 16380 - yExponent; else if (xExponent + 16380 < yExponent) xSignifier >>= yExponent - xExponent - 16380; xExponent = 0; } else { // Normal if (msb > 112) xSignifier >>= msb - 112; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; xExponent = xExponent + msb + 16269 - yExponent; } return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) | xExponent << 112 | xSignifier)); } } } /** * Calculate -x. * * @param x quadruple precision number * @return quadruple precision number */ function neg (bytes16 x) internal pure returns (bytes16) { unchecked { return x ^ 0x80000000000000000000000000000000; } } /** * Calculate |x|. * * @param x quadruple precision number * @return quadruple precision number */ function abs (bytes16 x) internal pure returns (bytes16) { unchecked { return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; } } /** * Calculate square root of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function sqrt (bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128 (x) > 0x80000000000000000000000000000000) return NaN; else { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return POSITIVE_ZERO; bool oddExponent = xExponent & 0x1 == 0; xExponent = xExponent + 16383 >> 1; if (oddExponent) { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 113; else { uint256 msb = mostSignificantBit (xSignifier); uint256 shift = (226 - msb) & 0xFE; xSignifier <<= shift; xExponent -= shift - 112 >> 1; } } else { if (xSignifier >= 0x10000000000000000000000000000) xSignifier <<= 112; else { uint256 msb = mostSignificantBit (xSignifier); uint256 shift = (225 - msb) & 0xFE; xSignifier <<= shift; xExponent -= shift - 112 >> 1; } } uint256 r = 0x10000000000000000000000000000; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; r = (r + xSignifier / r) >> 1; // Seven iterations should be enough uint256 r1 = xSignifier / r; if (r1 < r) r = r1; return bytes16 (uint128 (xExponent << 112 | r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)); } } } } /** * Calculate binary logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function log_2 (bytes16 x) internal pure returns (bytes16) { unchecked { if (uint128 (x) > 0x80000000000000000000000000000000) return NaN; else if (x == 0x3FFF0000000000000000000000000000) return POSITIVE_ZERO; else { uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; if (xExponent == 0x7FFF) return x; else { uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xSignifier == 0) return NEGATIVE_INFINITY; bool resultNegative; uint256 resultExponent = 16495; uint256 resultSignifier; if (xExponent >= 0x3FFF) { resultNegative = false; resultSignifier = xExponent - 0x3FFF; xSignifier <<= 15; } else { resultNegative = true; if (xSignifier >= 0x10000000000000000000000000000) { resultSignifier = 0x3FFE - xExponent; xSignifier <<= 15; } else { uint256 msb = mostSignificantBit (xSignifier); resultSignifier = 16493 - msb; xSignifier <<= 127 - msb; } } if (xSignifier == 0x80000000000000000000000000000000) { if (resultNegative) resultSignifier += 1; uint256 shift = 112 - mostSignificantBit (resultSignifier); resultSignifier <<= shift; resultExponent -= shift; } else { uint256 bb = resultNegative ? 1 : 0; while (resultSignifier < 0x10000000000000000000000000000) { resultSignifier <<= 1; resultExponent -= 1; xSignifier *= xSignifier; uint256 b = xSignifier >> 255; resultSignifier += b ^ bb; xSignifier >>= 127 + b; } } return bytes16 (uint128 ((resultNegative ? 0x80000000000000000000000000000000 : 0) | resultExponent << 112 | resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)); } } } } /** * Calculate natural logarithm of x. Return NaN on negative x excluding -0. * * @param x quadruple precision number * @return quadruple precision number */ function ln (bytes16 x) internal pure returns (bytes16) { unchecked { return mul (log_2 (x), 0x3FFE62E42FEFA39EF35793C7673007E5); } } /** * Calculate 2^x. * * @param x quadruple precision number * @return quadruple precision number */ function pow_2 (bytes16 x) internal pure returns (bytes16) { unchecked { bool xNegative = uint128 (x) > 0x80000000000000000000000000000000; uint256 xExponent = uint128 (x) >> 112 & 0x7FFF; uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xExponent == 0x7FFF && xSignifier != 0) return NaN; else if (xExponent > 16397) return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY; else if (xExponent < 16255) return 0x3FFF0000000000000000000000000000; else { if (xExponent == 0) xExponent = 1; else xSignifier |= 0x10000000000000000000000000000; if (xExponent > 16367) xSignifier <<= xExponent - 16367; else if (xExponent < 16367) xSignifier >>= 16367 - xExponent; if (xNegative && xSignifier > 0x406E00000000000000000000000000000000) return POSITIVE_ZERO; if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) return POSITIVE_INFINITY; uint256 resultExponent = xSignifier >> 128; xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; if (xNegative && xSignifier != 0) { xSignifier = ~xSignifier; resultExponent += 1; } uint256 resultSignifier = 0x80000000000000000000000000000000; if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128; if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128; if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128; if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10B5586CF9890F6298B92B71842A98363 >> 128; if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD >> 128; if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128; if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128; if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128; if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128; if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128; if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF >> 128; if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725 >> 128; if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128; if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128; if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000162E525EE054754457D5995292026 >> 128; if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC >> 128; if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128; if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128; if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000162E43F4F831060E02D839A9D16D >> 128; if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000B1721BCFC99D9F890EA06911763 >> 128; if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128; if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128; if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000162E430E5A18F6119E3C02282A5 >> 128; if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE >> 128; if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128; if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A >> 128; if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06 >> 128; if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9 >> 128; if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128; if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128; if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF >> 128; if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000B17217F80F4EF5AADDA45554 >> 128; if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD >> 128; if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128; if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000162E42FEFB2FED257559BDAA >> 128; if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128; if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128; if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128; if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000162E42FEFA494F1478FDE05 >> 128; if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000B17217F7D20CF927C8E94C >> 128; if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128; if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000002C5C85FDF477B662B26945 >> 128; if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000162E42FEFA3AE53369388C >> 128; if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000B17217F7D1D351A389D40 >> 128; if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128; if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E >> 128; if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000162E42FEFA39FE95583C2 >> 128; if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1 >> 128; if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128; if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000002C5C85FDF473E242EA38 >> 128; if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000162E42FEFA39F02B772C >> 128; if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A >> 128; if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128; if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000002C5C85FDF473DEA871F >> 128; if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000162E42FEFA39EF44D91 >> 128; if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000B17217F7D1CF79E949 >> 128; if (xSignifier & 0x800000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000058B90BFBE8E7BCE544 >> 128; if (xSignifier & 0x400000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA >> 128; if (xSignifier & 0x200000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000162E42FEFA39EF366F >> 128; if (xSignifier & 0x100000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000B17217F7D1CF79AFA >> 128; if (xSignifier & 0x80000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D >> 128; if (xSignifier & 0x40000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000002C5C85FDF473DE6B2 >> 128; if (xSignifier & 0x20000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000162E42FEFA39EF358 >> 128; if (xSignifier & 0x10000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000B17217F7D1CF79AB >> 128; if (xSignifier & 0x8000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5 >> 128; if (xSignifier & 0x4000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000002C5C85FDF473DE6A >> 128; if (xSignifier & 0x2000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000162E42FEFA39EF34 >> 128; if (xSignifier & 0x1000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000B17217F7D1CF799 >> 128; if (xSignifier & 0x800000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000058B90BFBE8E7BCC >> 128; if (xSignifier & 0x400000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000002C5C85FDF473DE5 >> 128; if (xSignifier & 0x200000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000162E42FEFA39EF2 >> 128; if (xSignifier & 0x100000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000B17217F7D1CF78 >> 128; if (xSignifier & 0x80000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000058B90BFBE8E7BB >> 128; if (xSignifier & 0x40000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000002C5C85FDF473DD >> 128; if (xSignifier & 0x20000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000162E42FEFA39EE >> 128; if (xSignifier & 0x10000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000B17217F7D1CF6 >> 128; if (xSignifier & 0x8000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000058B90BFBE8E7A >> 128; if (xSignifier & 0x4000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000002C5C85FDF473C >> 128; if (xSignifier & 0x2000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000162E42FEFA39D >> 128; if (xSignifier & 0x1000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000B17217F7D1CE >> 128; if (xSignifier & 0x800000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000058B90BFBE8E6 >> 128; if (xSignifier & 0x400000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000002C5C85FDF472 >> 128; if (xSignifier & 0x200000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000162E42FEFA38 >> 128; if (xSignifier & 0x100000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000B17217F7D1B >> 128; if (xSignifier & 0x80000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000058B90BFBE8D >> 128; if (xSignifier & 0x40000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000002C5C85FDF46 >> 128; if (xSignifier & 0x20000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000162E42FEFA2 >> 128; if (xSignifier & 0x10000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000B17217F7D0 >> 128; if (xSignifier & 0x8000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000058B90BFBE7 >> 128; if (xSignifier & 0x4000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000002C5C85FDF3 >> 128; if (xSignifier & 0x2000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000162E42FEF9 >> 128; if (xSignifier & 0x1000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000B17217F7C >> 128; if (xSignifier & 0x800000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000058B90BFBD >> 128; if (xSignifier & 0x400000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000002C5C85FDE >> 128; if (xSignifier & 0x200000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000162E42FEE >> 128; if (xSignifier & 0x100000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000B17217F6 >> 128; if (xSignifier & 0x80000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000058B90BFA >> 128; if (xSignifier & 0x40000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000002C5C85FC >> 128; if (xSignifier & 0x20000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000162E42FD >> 128; if (xSignifier & 0x10000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000B17217E >> 128; if (xSignifier & 0x8000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000058B90BE >> 128; if (xSignifier & 0x4000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000002C5C85E >> 128; if (xSignifier & 0x2000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000162E42E >> 128; if (xSignifier & 0x1000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000B17216 >> 128; if (xSignifier & 0x800000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000058B90A >> 128; if (xSignifier & 0x400000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000002C5C84 >> 128; if (xSignifier & 0x200000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000162E41 >> 128; if (xSignifier & 0x100000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000B1720 >> 128; if (xSignifier & 0x80000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000058B8F >> 128; if (xSignifier & 0x40000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000002C5C7 >> 128; if (xSignifier & 0x20000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000162E3 >> 128; if (xSignifier & 0x10000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000B171 >> 128; if (xSignifier & 0x8000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000058B8 >> 128; if (xSignifier & 0x4000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000002C5B >> 128; if (xSignifier & 0x2000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000162D >> 128; if (xSignifier & 0x1000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000B16 >> 128; if (xSignifier & 0x800 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000058A >> 128; if (xSignifier & 0x400 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000002C4 >> 128; if (xSignifier & 0x200 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000161 >> 128; if (xSignifier & 0x100 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000000B0 >> 128; if (xSignifier & 0x80 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000057 >> 128; if (xSignifier & 0x40 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000002B >> 128; if (xSignifier & 0x20 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000015 >> 128; if (xSignifier & 0x10 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000000A >> 128; if (xSignifier & 0x8 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000004 >> 128; if (xSignifier & 0x4 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000001 >> 128; if (!xNegative) { resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent += 0x3FFF; } else if (resultExponent <= 0x3FFE) { resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF; resultExponent = 0x3FFF - resultExponent; } else { resultSignifier = resultSignifier >> resultExponent - 16367; resultExponent = 0; } return bytes16 (uint128 (resultExponent << 112 | resultSignifier)); } } } /** * Calculate e^x. * * @param x quadruple precision number * @return quadruple precision number */ function exp (bytes16 x) internal pure returns (bytes16) { unchecked { return pow_2 (mul (x, 0x3FFF71547652B82FE1777D0FFDA0D23A)); } } /** * Get index of the most significant non-zero bit in binary representation of * x. Reverts if x is zero. * * @return index of the most significant non-zero bit in binary representation * of x */ function mostSignificantBit (uint256 x) private pure returns (uint256) { unchecked { require (x > 0); uint256 result = 0; if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; } if (x >= 0x10000000000000000) { x >>= 64; result += 64; } if (x >= 0x100000000) { x >>= 32; result += 32; } if (x >= 0x10000) { x >>= 16; result += 16; } if (x >= 0x100) { x >>= 8; result += 8; } if (x >= 0x10) { x >>= 4; result += 4; } if (x >= 0x4) { x >>= 2; result += 2; } if (x >= 0x2) result += 1; // No need to shift x anymore return result; } } } // SPDX-License-Identifier: GPL-3.0 /// @title Interface for Noun Auction Houses /********************************* * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░██░░░████░░██░░░████░░░ * * ░░██████░░░████████░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * *********************************/ pragma solidity ^0.8.6; interface INounsAuctionHouse { struct Auction { // ID for the Noun (ERC721 token ID) uint256 nounId; // The current highest bid amount uint256 amount; // The time that the auction started uint256 startTime; // The time that the auction is scheduled to end uint256 endTime; // The address of the current highest bid address payable bidder; // Whether or not the auction has been settled bool settled; } event AuctionCreated(uint256 indexed nounId, uint256 startTime, uint256 endTime); event AuctionBid(uint256 indexed nounId, address sender, uint256 value, bool extended); event AuctionExtended(uint256 indexed nounId, uint256 endTime); event AuctionSettled(uint256 indexed nounId, address winner, uint256 amount); event AuctionTimeBufferUpdated(uint256 timeBuffer); event AuctionReservePriceUpdated(uint256 reservePrice); event AuctionMinBidIncrementPercentageUpdated(uint256 minBidIncrementPercentage); function settleAuction() external; function settleCurrentAndCreateNewAuction() external; function createBid(uint256 nounId) external payable; function pause() external; function unpause() external; function setTimeBuffer(uint256 timeBuffer) external; function setReservePrice(uint256 reservePrice) external; function setMinBidIncrementPercentage(uint8 minBidIncrementPercentage) external; } // SPDX-License-Identifier: GPL-3.0 /// @title Interface for NounsToken /********************************* * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░██░░░████░░██░░░████░░░ * * ░░██████░░░████████░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * *********************************/ pragma solidity ^0.8.6; import { IERC721 } from '@openzeppelin/contracts/token/ERC721/IERC721.sol'; import { INounsDescriptorMinimal } from './INounsDescriptorMinimal.sol'; import { INounsSeeder } from './INounsSeeder.sol'; interface INounsToken is IERC721 { event NounCreated(uint256 indexed tokenId, INounsSeeder.Seed seed); event NounBurned(uint256 indexed tokenId); event NoundersDAOUpdated(address noundersDAO); event MinterUpdated(address minter); event MinterLocked(); event DescriptorUpdated(INounsDescriptorMinimal descriptor); event DescriptorLocked(); event SeederUpdated(INounsSeeder seeder); event SeederLocked(); function mint() external returns (uint256); function burn(uint256 tokenId) external; function dataURI(uint256 tokenId) external returns (string memory); function setNoundersDAO(address noundersDAO) external; function setMinter(address minter) external; function lockMinter() external; function setDescriptor(INounsDescriptorMinimal descriptor) external; function lockDescriptor() external; function setSeeder(INounsSeeder seeder) external; function lockSeeder() external; } // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.6; interface IWETH { function deposit() external payable; function withdraw(uint256 wad) external; function transfer(address to, uint256 value) external returns (bool); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (proxy/utils/Initializable.sol) pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() initializer {} * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; } // SPDX-License-Identifier: GPL-3.0 /// @title Common interface for NounsDescriptor versions, as used by NounsToken and NounsSeeder. /********************************* * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░██░░░████░░██░░░████░░░ * * ░░██████░░░████████░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * *********************************/ pragma solidity ^0.8.6; // LICENSE // This file is a modified version of nounsDAO's INounsDescriptorMinimal.sol: // https://github.com/nounsDAO/nouns-monorepo/blob/854b9b64770401da71503972c65c4f9eda060ba6/packages/nouns-contracts/contracts/interfaces/INounsDescriptorMinimal.sol // // INounsDescriptorMinimal.sol licensed under the GPL-3.0 license. // With modifications by CNNouns DAO. import { INounsSeeder } from './INounsSeeder.sol'; interface INounsDescriptorMinimal { /// /// USED BY TOKEN /// function tokenURI(uint256 tokenId, INounsSeeder.Seed memory seed) external view returns (string memory); function dataURI(uint256 tokenId, INounsSeeder.Seed memory seed) external view returns (string memory); /// /// USED BY SEEDER /// function backgroundCount() external view returns (uint256); function bodyCount() external view returns (uint256); function headCount() external view returns (uint256); function glassesCount() external view returns (uint256); function skillCount() external view returns (uint256); } // SPDX-License-Identifier: GPL-3.0 /// @title Interface for NounsSeeder /********************************* * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░██░░░████░░██░░░████░░░ * * ░░██████░░░████████░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░██░░██░░░████░░██░░░████░░░ * * ░░░░░░█████████░░█████████░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * * ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ * *********************************/ pragma solidity ^0.8.6; // LICENSE // This file is a modified version of nounsDAO's INounsSeeder.sol: // https://github.com/nounsDAO/nouns-monorepo/blob/854b9b64770401da71503972c65c4f9eda060ba6/packages/nouns-contracts/contracts/interfaces/INounsSeeder.sol // // INounsSeeder.sol licensed under the GPL-3.0 license. // With modifications by CNNouns DAO. import { INounsDescriptorMinimal } from './INounsDescriptorMinimal.sol'; interface INounsSeeder { struct Seed { uint48 background; uint48 body; uint48 head; uint48 glasses; uint48 skill; } function generateSeed(uint256 nounId, INounsDescriptorMinimal descriptor) external view returns (Seed memory); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }