ETH Price: $2,554.60 (-3.29%)

Transaction Decoder

Block:
19630616 at Apr-11-2024 06:32:47 AM +UTC
Transaction Fee:
0.00043027982716551 ETH $1.10
Gas Used:
31,010 Gas / 13.875518451 Gwei

Account State Difference:

  Address   Before After State Difference Code
(Titan Builder)
7.818918936158115362 Eth7.818919503623005522 Eth0.00000056746489016
0x6FDBB852...fF0F6CaeE
0.015079858242492 Eth
Nonce: 43
0.01464957841532649 Eth
Nonce: 44
0.00043027982716551
0x790Ed3c4...aFed4C8F8

Execution Trace

Token.changeTax( _buyTax=3, _sellTax=9 )
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
interface IUniswapV2Factory {
    function createPair(
        address tokenA,
        address tokenB
    ) external returns (address pair);
}
interface IUniswapV2Router {
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
    function factory() external pure returns (address);
    function WETH() external pure returns (address);
    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
}
contract Token is ERC20, Ownable, Pausable {
    address public immutable ADDR_TEAM1 =
        0x4F6C335c334a569966838E748EC4037e27Be8686;
    uint256 public PREALLOC_TEAM1 = 5;
    address public immutable ADDR_TEAM2 =
        0x31e966784d32C301cF7545df7288eFA386aD0C33;
    uint256 public PREALLOC_TEAM2 = 5;
    // TODO
    address public immutable ADDR_INFLUENCER =
        0x56fE47B53e8975DAF48bbB4D16CE110e85D2F742;
    uint256 public PREALLOC_INFLUENCER = 5;
    address public immutable ADDR_STAKING =
        0xEA24922F66871994AE7C5a50302744f7C0EfF6a7;
    uint256 public PREALLOC_STAKING = 5;
    address public immutable ADDR_CEX =
        0xa0388403F81F4D0CE7B0869B10e91A68D62f5969;
    uint256 public PREALLOC_CEX = 5;
    uint256 public PREALLOC_LP = 60;
    uint256 public PREALLOC_AIRDROP = 10;
    uint256 public PREALLOC_BURN = 5;
    uint8 public remainingBurnCount = 2;
    // Tax System
    address public taxWallet = 0x43A5d37Dc152C2dd5C5588d2F7D03cd81A7c9259;
    uint256 public buyTax = 4;
    uint256 public sellTax = 4;
    uint256 public reservedTaxAmount;
    uint256 public totalTaxAmount;
    // Tax will be distributed if reserved amount is bigger than maxTaxReserveAmount
    uint256 public maxTaxReserveAmount = 50 * 10 ** decimals();
    uint256 public totalAirdropped;
    // Uniswap
    IUniswapV2Router public swapRouter;
    address public swapPair;
    uint256 public pairCreated;
    uint256 public MAX_SUPPLY = uint248(1e13 ether);
    bool public initialized;
    constructor() payable ERC20("ETFBULLRUN", "ETF") Ownable(msg.sender) {
        uint256 totalAllocation = PREALLOC_TEAM1 +
            PREALLOC_TEAM2 +
            PREALLOC_INFLUENCER +
            PREALLOC_STAKING +
            PREALLOC_CEX +
            PREALLOC_BURN +
            PREALLOC_AIRDROP +
            PREALLOC_LP;
        require(totalAllocation == 100, "Invalid Allocation");
    }
    function initialize() external payable onlyOwner {
        require(!initialized, "Alreay initialized");
        initialized = true;
        swapRouter = IUniswapV2Router(
            0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
        );
        swapPair = IUniswapV2Factory(swapRouter.factory()).createPair(
            address(this),
            swapRouter.WETH()
        );
        pairCreated = block.timestamp;
        _mint(ADDR_TEAM1, (MAX_SUPPLY * PREALLOC_TEAM1) / 100);
        _mint(ADDR_TEAM2, (MAX_SUPPLY * PREALLOC_TEAM2) / 100);
        _mint(ADDR_INFLUENCER, (MAX_SUPPLY * PREALLOC_INFLUENCER) / 100);
        _mint(
            address(this),
            (MAX_SUPPLY * (PREALLOC_BURN + PREALLOC_AIRDROP + PREALLOC_LP)) /
                100
        );
        _approve(msg.sender, address(swapRouter), type(uint256).max);
        _approve(address(this), address(swapRouter), type(uint256).max);
        // Create pool with 8% and 2 Ethers
        require(msg.value == 2 ether, "Invalid fund");
        _addLiquidity((MAX_SUPPLY * 8) / 100, 2 ether);
    }
    function _update(
        address from,
        address to,
        uint256 amount
    ) internal override whenNotPaused {
        uint256 taxAmount = 0;
        if (to == swapPair) {
            taxAmount = (amount * _getSellTax()) / 100;
        } else if (from == swapPair) {
            taxAmount = (amount * _getBuyTax()) / 100;
        } else if (from == address(0)) {
            // Revert if totalSupply is bigger than MAX_SUPPLY
            require(totalSupply() + amount < MAX_SUPPLY, "Exceeds MAX SUPPLY");
        }
        super._update(from, to, amount - taxAmount);
        if (taxAmount > 0) {
            _reserveTax(from, taxAmount);
        }
    }
    function _getBuyTax() private view returns (uint256) {
        // If current block timestamp is less than 10 after pair creation, then tax is 90%
        if (block.timestamp < pairCreated + 10 minutes) {
            return 90;
        }
        // After 10 minutes apply 6% tax
        if (block.timestamp < pairCreated + 20 minutes) {
            return 6;
        }
        // After 20 minutes apply 0% tax
        if (block.timestamp < pairCreated + 40 minutes) {
            return 0;
        }
        return buyTax;
    }
    function _getSellTax() private view returns (uint256) {
        // If current block timestamp is less than 10 after pair creation, then tax is 90%
        if (block.timestamp < pairCreated + 10 minutes) {
            return 90;
        }
        // After 10 minutes apply 6% tax
        if (block.timestamp < pairCreated + 20 minutes) {
            return 45;
        }
        // After 20 minutes apply 0% tax
        if (block.timestamp < pairCreated + 40 minutes) {
            return 25;
        }
        return sellTax;
    }
    function _reserveTax(address from, uint256 taxAmount) private {
        reservedTaxAmount += taxAmount;
        totalTaxAmount += taxAmount;
        super._update(from, address(this), taxAmount);
        if (reservedTaxAmount >= maxTaxReserveAmount) {
            _distributeTax();
        }
    }
    function _distributeTax() private {
        super._transfer(address(this), taxWallet, reservedTaxAmount);
        reservedTaxAmount = 0;
    }
    function _swapTokensForEth(uint256 tokenAmount) private {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = swapRouter.WETH();
        swapRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(
            tokenAmount,
            0,
            path,
            address(this),
            (block.timestamp)
        );
    }
    function _addLiquidity(uint256 tokenAmount, uint256 ethAmount) private {
        swapRouter.addLiquidityETH{value: ethAmount}(
            address(this),
            tokenAmount,
            0,
            0,
            owner(),
            block.timestamp
        );
    }
    function changeTax(uint256 _buyTax, uint256 _sellTax) external onlyOwner {
        buyTax = _buyTax;
        sellTax = _sellTax;
    }
    function changeTaxWallet(address _taxWallet) external onlyOwner {
        taxWallet = _taxWallet;
    }
    function claimTax() external onlyOwner {
        _distributeTax();
    }
    function unlockAllocation() external onlyOwner {
        require(block.timestamp > pairCreated + 30 days, "Wait 30 days");
        _mint(ADDR_STAKING, (MAX_SUPPLY * PREALLOC_STAKING) / 100);
        _mint(ADDR_CEX, (MAX_SUPPLY * PREALLOC_CEX) / 100);
    }
    function addLiquidity(uint256 tokenAmount) external payable onlyOwner {
        _addLiquidity(tokenAmount, msg.value);
    }
    // First burn 50% and later burn the rest
    function burn() external onlyOwner {
        require(remainingBurnCount > 0, "Alreay burned");
        remainingBurnCount--;
        _burn(address(this), (MAX_SUPPLY * (PREALLOC_BURN)) / 100 / 2);
    }
    function airdrop(
        address[] memory addresses,
        uint256[] memory amounts
    ) external onlyOwner {
        require(addresses.length == amounts.length, "Invalid data");
        uint256 i = 0;
        uint256 total = 0;
        for (i = 0; i < addresses.length; i++) {
            total += amounts[i];
        }
        require(
            totalAirdropped + total <= (MAX_SUPPLY * PREALLOC_AIRDROP) / 100,
            "Exceeds airdrop allocation"
        );
        totalAirdropped += total;
        for (i = 0; i < addresses.length; i++) {
            _mint(addresses[i], amounts[i]);
        }
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);
    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);
    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();
    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();
    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }
    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }
    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }
    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }
    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }
    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }
    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }
    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;
    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);
    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }
    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }
    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }
    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }
    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }
    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;
    mapping(address account => mapping(address spender => uint256)) private _allowances;
    uint256 private _totalSupply;
    string private _name;
    string private _symbol;
    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }
    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }
    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }
    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }
    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }
    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }
    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }
    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }
    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }
    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }
    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }
    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }
        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }
        emit Transfer(from, to, value);
    }
    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }
    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }
    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }
    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }
    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }
    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);
    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);
    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);
    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}
/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);
    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);
    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);
    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);
    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);
    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);
    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}
/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);
    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);
    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);
    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);
    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);
    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);
    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);
    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);
    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);
    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);
    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);
    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);
    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);
    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}