Transaction Hash:
Block:
20863159 at Sep-30-2024 11:26:11 AM +UTC
Transaction Fee:
0.00223935875841852 ETH
$5.64
Gas Used:
292,086 Gas / 7.66677882 Gwei
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 14.590422821827899588 Eth | 14.590697645545299588 Eth | 0.0002748237174 | |
0xABeD1aF9...99c6ab5E3 |
0.005282594233162022 Eth
Nonce: 408
|
0.003043235474743502 Eth
Nonce: 409
| 0.00223935875841852 |
Execution Trace
TransparentUpgradeableProxy.9e2c8a5b( )
zStakeCorePool.unstake( _depositId=4, _amount=242823651624809844219 )
TransparentUpgradeableProxy.STATICCALL( )
-
zStakePoolFactory.DELEGATECALL( )
-
TransparentUpgradeableProxy.STATICCALL( )
-
zStakePoolFactory.DELEGATECALL( )
-
unstake[zStakePoolBase (ln:415)]
paused[zStakePoolBase (ln:416)]
_unstake[zStakePoolBase (ln:418)]
_sync[zStakePoolBase (ln:606)]
blockNumber[zStakePoolBase (ln:647)]
blockNumber[zStakePoolBase (ln:652)]
blockNumber[zStakePoolBase (ln:656)]
getRewardTokensPerBlock[zStakePoolBase (ln:658)]
totalWeight[zStakePoolBase (ln:660)]
rewardToWeight[zStakePoolBase (ln:662)]
Synchronized[zStakePoolBase (ln:665)]
_processRewards[zStakePoolBase (ln:608)]
_sync[zStakePoolBase (ln:681)]
blockNumber[zStakePoolBase (ln:647)]
blockNumber[zStakePoolBase (ln:652)]
blockNumber[zStakePoolBase (ln:656)]
getRewardTokensPerBlock[zStakePoolBase (ln:658)]
totalWeight[zStakePoolBase (ln:660)]
rewardToWeight[zStakePoolBase (ln:662)]
Synchronized[zStakePoolBase (ln:665)]
_pendingYieldRewards[zStakePoolBase (ln:684)]
weightToReward[zStakePoolBase (ln:503)]
Deposit[zStakePoolBase (ln:695)]
now256[zStakePoolBase (ln:697)]
now256[zStakePoolBase (ln:698)]
push[zStakePoolBase (ln:702)]
getPoolAddress[zStakePoolBase (ln:711)]
stakeAsPool[zStakePoolBase (ln:712)]
weightToReward[zStakePoolBase (ln:716)]
YieldClaimed[zStakePoolBase (ln:719)]
weightToReward[zStakePoolBase (ln:625)]
transferRewardYield[zStakePoolBase (ln:633)]
transferPoolToken[zStakePoolBase (ln:636)]
safeTransfer[zStakePoolBase (ln:832)]
_callOptionalReturn[SafeERC20 (ln:1207)]
functionCall[SafeERC20 (ln:1280)]
decode[SafeERC20 (ln:1288)]
encodeWithSelector[SafeERC20 (ln:1209)]
Unstaked[zStakePoolBase (ln:639)]
File 1 of 4: TransparentUpgradeableProxy
File 2 of 4: zStakeCorePool
File 3 of 4: TransparentUpgradeableProxy
File 4 of 4: zStakePoolFactory
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol"; import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol"; // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins. contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy { constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _getAdmin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { _changeAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeToAndCall(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeToAndCall(newImplementation, data, true); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./TransparentUpgradeableProxy.sol"; import "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev Returns the current implementation of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("implementation()")) == 0x5c60da1b (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b"); require(success); return abi.decode(returndata, (address)); } /** * @dev Returns the current admin of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("admin()")) == 0xf851a440 (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440"); require(success); return abi.decode(returndata, (address)); } /** * @dev Changes the admin of `proxy` to `newAdmin`. * * Requirements: * * - This contract must be the current admin of `proxy`. */ function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner { proxy.changeAdmin(newAdmin); } /** * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner { proxy.upgradeTo(implementation); } /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See * {TransparentUpgradeableProxy-upgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature( "upgradeTo(address)", oldImplementation ) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _setImplementation(newImplementation); emit Upgraded(newImplementation); } } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require( Address.isContract(newBeacon), "ERC1967: new beacon is not a contract" ); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify * continuation of the upgradability. * * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is ERC1967Upgrade { function upgradeTo(address newImplementation) external virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, bytes(""), false); } function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, data, true); } function _authorizeUpgrade(address newImplementation) internal virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; abstract contract Proxiable is UUPSUpgradeable { function _authorizeUpgrade(address newImplementation) internal override { _beforeUpgrade(newImplementation); } function _beforeUpgrade(address newImplementation) internal virtual; } contract ChildOfProxiable is Proxiable { function _beforeUpgrade(address newImplementation) internal virtual override {} }
File 2 of 4: zStakeCorePool
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "./zStakePoolBase.sol"; /** * @title Wild Core Pool - Fork of Illuvium Core Pool * * @notice Core pools represent permanent pools like WILD or WILD/ETH Pair pool, * core pools allow staking for arbitrary periods of time up to 1 year * * @dev See WildPoolBase for more details * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ contract zStakeCorePool is zStakePoolBase { /// @dev Flag indicating pool type, false means "core pool" bool public constant override isFlashPool = false; /// @dev Pool tokens value available in the pool; /// pool token examples are WILD (WILD core pool) or WILD/ETH pair (LP core pool) /// @dev For LP core pool this value doesnt' count for WILD tokens received as Vault rewards /// while for WILD core pool it does count for such tokens as well uint256 public poolTokenReserve; /** * @dev Creates/deploys an instance of the core pool * * @param _rewardToken WILD ERC20 Token address * @param _factory Pool factory zStakePoolFactory instance/address * @param _poolToken token the pool operates on, for example WILD or WILD/ETH pair * @param _initBlock initial block used to calculate the rewards * @param _weight number representing a weight of the pool, actual weight fraction * is calculated as that number divided by the total pools weight and doesn't exceed one */ function initialize( address _rewardToken, zStakePoolFactory _factory, address _poolToken, uint64 _initBlock, uint32 _weight ) initializer public { __zStakePoolBase__init(_rewardToken, _factory, _poolToken, _initBlock, _weight); } // Call this on the implementation contract (not the proxy) function initializeImplementation() public initializer { __Ownable_init(); _pause(); } /** * @notice Service function to calculate and pay pending vault and yield rewards to the sender * * @dev Internally executes similar function `_processRewards` from the parent smart contract * to calculate and pay yield rewards; adds vault rewards processing * * @dev Can be executed by anyone at any time, but has an effect only when * executed by deposit holder and when at least one block passes from the * previous reward processing * @dev Executed internally when "staking as a pool" (`stakeAsPool`) * @dev When timing conditions are not met (executed too frequently, or after factory * end block), function doesn't throw and exits silently */ function processRewards() external override { require(!paused(), "contract is paused"); _processRewards(msg.sender, true); } /** * @dev Executed internally by the pool itself (from the parent `zStakePoolBase` smart contract) * as part of yield rewards processing logic (`zStakePoolBase._processRewards` function) * * @param _staker an address which stakes (the yield reward) * @param _amount amount to be staked (yield reward amount) */ function stakeAsPool(address _staker, uint256 _amount) external { require(!paused(), "contract is paused"); require(factory.poolExists(msg.sender), "access denied"); _sync(); User storage user = users[_staker]; if (user.tokenAmount > 0) { _processRewards(_staker, false); } uint256 depositWeight = _amount * YEAR_STAKE_WEIGHT_MULTIPLIER; Deposit memory newDeposit = Deposit({ tokenAmount: _amount, lockedFrom: uint64(now256()), lockedUntil: uint64(now256() + rewardLockPeriod), weight: depositWeight, isYield: true }); user.tokenAmount += _amount; user.totalWeight += depositWeight; user.deposits.push(newDeposit); usersLockingWeight += depositWeight; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); // update `poolTokenReserve` only if this is a LP Core Pool (stakeAsPool can be executed only for LP pool) poolTokenReserve += _amount; } /** * @inheritdoc zStakePoolBase * * @dev Additionally to the parent smart contract, updates vault rewards of the holder, * and updates (increases) pool token reserve (pool tokens value available in the pool) */ function _stake( address _staker, uint256 _amount, uint64 _lockedUntil, bool _isYield ) internal override { super._stake(_staker, _amount, _lockedUntil, _isYield); poolTokenReserve += _amount; } /** * @inheritdoc zStakePoolBase * * @dev Additionally to the parent smart contract, updates vault rewards of the holder, * and updates (decreases) pool token reserve (pool tokens value available in the pool) */ function _unstake( address _staker, uint256 _depositId, uint256 _amount ) internal override { User storage user = users[_staker]; Deposit memory stakeDeposit = user.deposits[_depositId]; require( stakeDeposit.lockedFrom == 0 || now256() > stakeDeposit.lockedUntil, "deposit not yet unlocked" ); poolTokenReserve -= _amount; super._unstake(_staker, _depositId, _amount); } /** * @inheritdoc zStakePoolBase * * @dev Additionally to the parent smart contract, processes vault rewards of the holder, * and for reward pool pool updates (increases) pool token reserve (pool tokens value available in the pool) */ function _processRewards(address _staker, bool _withUpdate) internal override returns (uint256 pendingYield) { pendingYield = super._processRewards(_staker, _withUpdate); // update `poolTokenReserve` only if this is the reward Pool if (poolToken == rewardToken) { poolTokenReserve += pendingYield; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "./interfaces/IPool.sol"; import "./interfaces/ICorePool.sol"; import "./ReentrancyGuardUpgradeable.sol"; import "./zStakePoolFactory.sol"; import "./utils/SafeERC20.sol"; import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; /** * @title Pool Base - Fork of Illuvium Pool Base * * @notice An abstract contract containing common logic for a staking pool * * @dev Deployment and initialization. * Any pool deployed must be bound to the deployed pool factory (zStakePoolFactory) * Additionally, 3 token instance addresses must be defined on deployment: * - Reward token address * - pool token address, it can be the reward token address, LP pair address, and others * * @dev Pool weight defines the fraction of the yield current pool receives among the other pools, * pool factory is responsible for the weight synchronization between the pools. * @dev The weight is logically 10% for reward token pool and 90% for LP pool. * Since Solidity doesn't support fractions the weight is defined by the division of * pool weight by total pools weight (sum of all registered pools within the factory) * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ abstract contract zStakePoolBase is IPool, ReentrancyGuardUpgradeable, OwnableUpgradeable, PausableUpgradeable { /// @dev Data structure representing token holder using a pool struct User { // @dev Total staked amount uint256 tokenAmount; // @dev Total weight uint256 totalWeight; // @dev Auxiliary variable for yield calculation uint256 subYieldRewards; // @dev An array of holder's deposits Deposit[] deposits; } function isFlashPool() external view virtual override returns (bool) { return false; } /// @dev The reward token address public override rewardToken; /// @dev Token holder storage, maps token holder address to their data record mapping(address => User) public users; /// @dev Link to the pool factory zStakePoolFactory instance zStakePoolFactory public factory; /// @dev Link to the pool token instance, for example WILD or WILD/ETH pair address public override poolToken; /// @dev Pool weight uint32 public override weight; /// @dev Block number of the last yield distribution event uint64 public override lastYieldDistribution; /// @dev Used to calculate yield rewards /// @dev This value is different from "reward per token" used in locked pool /// @dev Note: stakes are different in duration and "weight" reflects that uint256 public override yieldRewardsPerWeight; /// @dev Used to calculate yield rewards, keeps track of the tokens weight locked in staking uint256 public override usersLockingWeight; /// @dev The duration of time to lock rewards uint256 public rewardLockPeriod; /** * @dev Stake weight is proportional to deposit amount and time locked, precisely * "deposit amount wei multiplied by (fraction of the year locked plus one)" * @dev To avoid significant precision loss due to multiplication by "fraction of the year" [0, 1], * weight is stored multiplied by 1e6 constant, as an integer * @dev Corner case 1: if time locked is zero, weight is deposit amount multiplied by 1e6 * @dev Corner case 2: if time locked is one year, fraction of the year locked is one, and * weight is a deposit amount multiplied by 2 * 1e6 */ uint256 internal constant WEIGHT_MULTIPLIER = 1e6; /** * @dev When we know beforehand that staking is done for a year, and fraction of the year locked is one, * we use simplified calculation and use the following constant instead previos one */ uint256 internal constant YEAR_STAKE_WEIGHT_MULTIPLIER = 2 * WEIGHT_MULTIPLIER; /** * @dev Rewards per weight are stored multiplied by 1e12, as integers. */ uint256 internal constant REWARD_PER_WEIGHT_MULTIPLIER = 1e12; /** * @dev Fired in _stake() and stake() * * @param _by an address which performed an operation, usually token holder * @param _from token holder address, the tokens will be returned to that address * @param amount amount of tokens staked */ event Staked(address indexed _by, address indexed _from, uint256 amount); /** * @dev Fired in _updateStakeLock() and updateStakeLock() * * @param _by an address which performed an operation * @param depositId updated deposit ID * @param lockedFrom deposit locked from value * @param lockedUntil updated deposit locked until value */ event StakeLockUpdated( address indexed _by, uint256 depositId, uint64 lockedFrom, uint64 lockedUntil ); /** * @dev Fired in _unstake() and unstake() * * @param _by an address which performed an operation, usually token holder * @param _to an address which received the unstaked tokens, usually token holder * @param amount amount of tokens unstaked */ event Unstaked(address indexed _by, address indexed _to, uint256 amount); /** * @dev Fired in _sync(), sync() and dependent functions (stake, unstake, etc.) * * @param _by an address which performed an operation * @param yieldRewardsPerWeight updated yield rewards per weight value * @param lastYieldDistribution usually, current block number */ event Synchronized( address indexed _by, uint256 yieldRewardsPerWeight, uint64 lastYieldDistribution ); /** * @dev Fired in _processRewards(), processRewards() and dependent functions (stake, unstake, etc.) * * @param _by an address which performed an operation * @param _to an address which claimed the yield reward * @param amount amount of yield paid */ event YieldClaimed(address indexed _by, address indexed _to, uint256 amount); /** * @dev Fired in setWeight() * * @param _by an address which performed an operation, always a factory * @param _fromVal old pool weight value * @param _toVal new pool weight value */ event PoolWeightUpdated(address indexed _by, uint32 _fromVal, uint32 _toVal); /** * @dev Overridden in sub-contracts to construct the pool * * @param _rewardToken Reward ERC20 Token address * @param _factory Pool factory zStakePoolFactory instance/address * @param _poolToken token the pool operates on, for example WILD or WILD/ETH pair * @param _initBlock initial block used to calculate the rewards * note: _initBlock can be set to the future effectively meaning _sync() calls will do nothing * @param _weight number representing a weight of the pool, actual weight fraction * is calculated as that number divided by the total pools weight and doesn't exceed one */ function __zStakePoolBase__init( address _rewardToken, zStakePoolFactory _factory, address _poolToken, uint64 _initBlock, uint32 _weight ) public initializer { __Ownable_init(); // verify the inputs are set require(address(_factory) != address(0), "factory address not set"); require(_poolToken != address(0), "pool token address not set"); require(_initBlock > 0, "init block not set"); require(_weight > 0, "pool weight not set"); // save the inputs into internal state variables factory = _factory; poolToken = _poolToken; weight = _weight; rewardToken = _rewardToken; // init the dependent internal state variables lastYieldDistribution = _initBlock; rewardLockPeriod = 365 days; } /** * @notice Calculates current yield rewards value available for address specified * * @param _staker an address to calculate yield rewards value for * @return calculated yield reward value for the given address */ function pendingYieldRewards(address _staker) external view override returns (uint256) { // `newYieldRewardsPerWeight` will store stored or recalculated value for `yieldRewardsPerWeight` uint256 newYieldRewardsPerWeight; // if smart contract state was not updated recently, `yieldRewardsPerWeight` value // is outdated and we need to recalculate it in order to calculate pending rewards correctly if (blockNumber() > lastYieldDistribution && usersLockingWeight != 0) { uint256 multiplier = blockNumber() - lastYieldDistribution; uint256 rewards = (multiplier * weight * factory.getRewardTokensPerBlock()) / factory.totalWeight(); // recalculated value for `yieldRewardsPerWeight` newYieldRewardsPerWeight = rewardToWeight(rewards, usersLockingWeight) + yieldRewardsPerWeight; } else { // if smart contract state is up to date, we don't recalculate newYieldRewardsPerWeight = yieldRewardsPerWeight; } // based on the rewards per weight value, calculate pending rewards; User memory user = users[_staker]; uint256 pending = weightToReward(user.totalWeight, newYieldRewardsPerWeight) - user.subYieldRewards; return pending; } /** * @notice Returns total staked token balance for the given address * * @param _user an address to query balance for * @return total staked token balance */ function balanceOf(address _user) external view override returns (uint256) { // read specified user token amount and return return users[_user].tokenAmount; } /** * @notice Returns information on the given deposit for the given address * * @dev See getDepositsLength * * @param _user an address to query deposit for * @param _depositId zero-indexed deposit ID for the address specified * @return deposit info as Deposit structure */ function getDeposit(address _user, uint256 _depositId) external view override returns (Deposit memory) { // read deposit at specified index and return return users[_user].deposits[_depositId]; } /** * @notice Returns number of deposits for the given address. Allows iteration over deposits. * * @dev See getDeposit * * @param _user an address to query deposit length for * @return number of deposits for the given address */ function getDepositsLength(address _user) external view override returns (uint256) { // read deposits array length and return return users[_user].deposits.length; } /** * @notice Stakes specified amount of tokens for the specified amount of time, * and pays pending yield rewards if any * * @dev Requires amount to stake to be greater than zero * * @param _amount amount of tokens to stake * @param _lockUntil stake period as unix timestamp; zero means no locking */ function stake(uint256 _amount, uint64 _lockUntil) external override { require(!paused(), "contract is paused"); // delegate call to an internal function _stake(msg.sender, _amount, _lockUntil, false); } /** * @notice Unstakes specified amount of tokens, and pays pending yield rewards if any * * @dev Requires amount to unstake to be greater than zero * * @param _depositId deposit ID to unstake from, zero-indexed * @param _amount amount of tokens to unstake */ function unstake(uint256 _depositId, uint256 _amount) external override { require(!paused(), "contract is paused"); // delegate call to an internal function _unstake(msg.sender, _depositId, _amount); } /** * @notice Extends locking period for a given deposit * * @dev Requires new lockedUntil value to be: * higher than the current one, and * in the future, but * no more than 1 year in the future * * @param depositId updated deposit ID * @param lockedUntil updated deposit locked until value */ function updateStakeLock(uint256 depositId, uint64 lockedUntil) external { require(!paused(), "contract is paused"); // Sync and give user rewards _sync(); _processRewards(msg.sender, false); // delegate call to an internal function _updateStakeLock(msg.sender, depositId, lockedUntil); // Update subyieldrewards so that the user is not owed anything User storage user = users[msg.sender]; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); } /** * @notice Service function to synchronize pool state with current time * * @dev Can be executed by anyone at any time, but has an effect only when * at least one block passes between synchronizations * @dev Executed internally when staking, unstaking, processing rewards in order * for calculations to be correct and to reflect state progress of the contract * @dev When timing conditions are not met (executed too frequently, or after factory * end block), function doesn't throw and exits silently */ function sync() external override { require(!paused(), "contract is paused"); // delegate call to an internal function _sync(); } /** * @notice Service function to calculate and pay pending yield rewards to the sender * * @dev Can be executed by anyone at any time, but has an effect only when * executed by deposit holder and when at least one block passes from the * previous reward processing * @dev Executed internally when staking and unstaking, executes sync() under the hood * before making further calculations and payouts * @dev When timing conditions are not met (executed too frequently, or after factory * end block), function doesn't throw and exits silently * */ function processRewards() external virtual override { require(!paused(), "contract is paused"); // delegate call to an internal function _processRewards(msg.sender, true); } /** * @dev Executed by the factory to modify pool weight; the factory is expected * to keep track of the total pools weight when updating * * @dev Set weight to zero to disable the pool * * @param _weight new weight to set for the pool */ function setWeight(uint32 _weight) external override { require(!paused(), "contract is paused"); // verify function is executed by the factory require(msg.sender == address(factory), "access denied"); // emit an event logging old and new weight values emit PoolWeightUpdated(msg.sender, weight, _weight); // set the new weight value weight = _weight; } /** * @dev Similar to public pendingYieldRewards, but performs calculations based on * current smart contract state only, not taking into account any additional * time/blocks which might have passed * * @param _staker an address to calculate yield rewards value for * @return pending calculated yield reward value for the given address */ function _pendingYieldRewards(address _staker) internal view returns (uint256 pending) { // read user data structure into memory User memory user = users[_staker]; // and perform the calculation using the values read return weightToReward(user.totalWeight, yieldRewardsPerWeight) - user.subYieldRewards; } /** * @dev Used internally, mostly by children implementations, see stake() * * @param _staker an address which stakes tokens and which will receive them back * @param _amount amount of tokens to stake * @param _lockUntil stake period as unix timestamp; zero means no locking * @param _isYield a flag indicating if that stake is created to store yield reward * from the previously unstaked stake */ function _stake( address _staker, uint256 _amount, uint64 _lockUntil, bool _isYield ) internal virtual { // validate the inputs require(_amount > 0, "zero amount"); require( _lockUntil == 0 || (_lockUntil > now256() && _lockUntil - now256() <= 365 days), "invalid lock interval" ); // update smart contract state _sync(); // get a link to user data struct, we will write to it later User storage user = users[_staker]; // process current pending rewards if any if (user.tokenAmount > 0) { _processRewards(_staker, false); } // in most of the cases added amount `addedAmount` is simply `_amount` // however for deflationary tokens this can be different // read the current balance uint256 previousBalance = IERC20(poolToken).balanceOf(address(this)); // transfer `_amount`; note: some tokens may get burnt here transferPoolTokenFrom(address(msg.sender), address(this), _amount); // read new balance, usually this is just the difference `previousBalance - _amount` uint256 newBalance = IERC20(poolToken).balanceOf(address(this)); // calculate real amount taking into account deflation uint256 addedAmount = newBalance - previousBalance; // set the `lockFrom` and `lockUntil` taking into account that // zero value for `_lockUntil` means "no locking" and leads to zero values // for both `lockFrom` and `lockUntil` uint64 lockFrom = _lockUntil > 0 ? uint64(now256()) : 0; uint64 lockUntil = _lockUntil; // stake weight formula rewards for locking uint256 stakeWeight = (((lockUntil - lockFrom) * WEIGHT_MULTIPLIER) / 365 days + WEIGHT_MULTIPLIER) * addedAmount; // makes sure stakeWeight is valid assert(stakeWeight > 0); // create and save the deposit (append it to deposits array) Deposit memory deposit = Deposit({ tokenAmount: addedAmount, weight: stakeWeight, lockedFrom: lockFrom, lockedUntil: lockUntil, isYield: _isYield }); // deposit ID is an index of the deposit in `deposits` array user.deposits.push(deposit); // update user record user.tokenAmount += addedAmount; user.totalWeight += stakeWeight; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); // update global variable usersLockingWeight += stakeWeight; // emit an event emit Staked(msg.sender, _staker, _amount); } /** * @dev Allows for the rewardLockPeriod to be modified. */ function changeRewardLockPeriod(uint256 _rewardLockPeriod) external onlyOwner { require(rewardLockPeriod != _rewardLockPeriod, "same rewardLockPeriod"); require(_rewardLockPeriod <= 365 days, "too long lock period"); rewardLockPeriod = _rewardLockPeriod; } /** * @dev Used internally, mostly by children implementations, see unstake() * * @param _staker an address which unstakes tokens (which previously staked them) * @param _depositId deposit ID to unstake from, zero-indexed * @param _amount amount of tokens to unstake */ function _unstake( address _staker, uint256 _depositId, uint256 _amount ) internal virtual { // verify an amount is set require(_amount > 0, "zero amount"); // get a link to user data struct, we will write to it later User storage user = users[_staker]; // get a link to the corresponding deposit, we may write to it later Deposit storage stakeDeposit = user.deposits[_depositId]; // deposit structure may get deleted, so we save isYield flag to be able to use it bool isYield = stakeDeposit.isYield; // verify available balance // if staker address ot deposit doesn't exist this check will fail as well require(stakeDeposit.tokenAmount >= _amount, "amount exceeds stake"); // update smart contract state _sync(); // and process current pending rewards if any _processRewards(_staker, false); // recalculate deposit weight uint256 previousWeight = stakeDeposit.weight; uint256 newWeight = (((stakeDeposit.lockedUntil - stakeDeposit.lockedFrom) * WEIGHT_MULTIPLIER) / 365 days + WEIGHT_MULTIPLIER) * (stakeDeposit.tokenAmount - _amount); // update the deposit, or delete it if its depleted if (stakeDeposit.tokenAmount - _amount == 0) { delete user.deposits[_depositId]; } else { stakeDeposit.tokenAmount -= _amount; stakeDeposit.weight = newWeight; } // update user record user.tokenAmount -= _amount; user.totalWeight = user.totalWeight - previousWeight + newWeight; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); // update global variable usersLockingWeight = usersLockingWeight - previousWeight + newWeight; // if the deposit was created by the pool itself as a yield reward if (isYield) { // @TODO: Replace this // Make it so it transfers tokens from escrow rewards pool to staker // mint the yield via the factory factory.transferRewardYield(msg.sender, _amount); } else { // otherwise just return tokens back to holder transferPoolToken(msg.sender, _amount); } // emit an event emit Unstaked(msg.sender, _staker, _amount); } /** * @dev Used internally, mostly by children implementations, see sync() * * @dev Updates smart contract state (`yieldRewardsPerWeight`, `lastYieldDistribution`), */ function _sync() internal virtual { if (blockNumber() <= lastYieldDistribution) { return; } // if locking weight is zero - update only `lastYieldDistribution` and exit if (usersLockingWeight == 0) { lastYieldDistribution = uint64(blockNumber()); return; } // to calculate the reward we need to know how many blocks passed, and reward per block uint256 currentBlock = blockNumber(); uint256 blocksPassed = currentBlock - lastYieldDistribution; uint256 rewardPerBlock = factory.getRewardTokensPerBlock(); // calculate the reward uint256 rewardAmount = (blocksPassed * rewardPerBlock * weight) / factory.totalWeight(); // update rewards per weight and `lastYieldDistribution` yieldRewardsPerWeight += rewardToWeight(rewardAmount, usersLockingWeight); lastYieldDistribution = uint64(currentBlock); // emit an event emit Synchronized(msg.sender, yieldRewardsPerWeight, lastYieldDistribution); } /** * @dev Used internally, mostly by children implementations, see processRewards() * * @param _staker an address which receives the reward (which has staked some tokens earlier) * @param _withUpdate flag allowing to disable synchronization (see sync()) if set to false * @return pendingYield the rewards calculated and optionally re-staked */ function _processRewards(address _staker, bool _withUpdate) internal virtual returns (uint256 pendingYield) { // update smart contract state if required if (_withUpdate) { _sync(); } // calculate pending yield rewards, this value will be returned pendingYield = _pendingYieldRewards(_staker); // if pending yield is zero - just return silently if (pendingYield == 0) return 0; // get link to a user data structure, we will write into it later User storage user = users[_staker]; if (poolToken == rewardToken) { // calculate pending yield weight, // 2e6 is the bonus weight when staking for 1 year uint256 depositWeight = pendingYield * YEAR_STAKE_WEIGHT_MULTIPLIER; // if the pool is the Reward Token Pool - create new Reward Token deposit // and save it - push it into deposits array Deposit memory newDeposit = Deposit({ tokenAmount: pendingYield, lockedFrom: uint64(now256()), lockedUntil: uint64(now256() + rewardLockPeriod), // staking yield for 1 year weight: depositWeight, isYield: true }); user.deposits.push(newDeposit); // update user record user.tokenAmount += pendingYield; user.totalWeight += depositWeight; // update global variable usersLockingWeight += depositWeight; } else { // for other pools - stake as pool // This will stake the rewards into the reward token pool address rewardPool = factory.getPoolAddress(rewardToken); ICorePool(rewardPool).stakeAsPool(_staker, pendingYield); } // update users's record for `subYieldRewards` if requested if (_withUpdate) { user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); } // emit an event emit YieldClaimed(msg.sender, _staker, pendingYield); } /** * @dev See updateStakeLock() * * @param _staker an address to update stake lock * @param _depositId updated deposit ID * @param _lockedUntil updated deposit locked until value */ function _updateStakeLock( address _staker, uint256 _depositId, uint64 _lockedUntil ) internal { // validate the input time require(_lockedUntil > now256(), "lock should be in the future"); // get a link to user data struct, we will write to it later User storage user = users[_staker]; // get a link to the corresponding deposit, we may write to it later Deposit storage stakeDeposit = user.deposits[_depositId]; // validate the input against deposit structure require(_lockedUntil > stakeDeposit.lockedUntil, "invalid new lock"); // verify locked from and locked until values if (stakeDeposit.lockedFrom == 0) { // Was never locked require(_lockedUntil - now256() <= 365 days, "max lock period is 365 days"); stakeDeposit.lockedFrom = uint64(now256()); } else { // Was locked (but for less than 365 days) require(_lockedUntil - stakeDeposit.lockedFrom <= 365 days, "max lock period is 365 days"); } // update locked until value, calculate new weight stakeDeposit.lockedUntil = _lockedUntil; uint256 newWeight = (((stakeDeposit.lockedUntil - stakeDeposit.lockedFrom) * WEIGHT_MULTIPLIER) / 365 days + WEIGHT_MULTIPLIER) * stakeDeposit.tokenAmount; // save previous weight uint256 previousWeight = stakeDeposit.weight; // update weight stakeDeposit.weight = newWeight; // update user total weight and global locking weight user.totalWeight = user.totalWeight - previousWeight + newWeight; usersLockingWeight = usersLockingWeight - previousWeight + newWeight; // emit an event emit StakeLockUpdated(_staker, _depositId, stakeDeposit.lockedFrom, _lockedUntil); } /** * @dev Converts stake weight (not to be mixed with the pool weight) to * token reward value, applying the 10^12 division on weight * * @param _weight stake weight * @param rewardPerWeight reward per weight * @return reward value normalized to 10^12 */ function weightToReward(uint256 _weight, uint256 rewardPerWeight) public pure returns (uint256) { // apply the formula and return return (_weight * rewardPerWeight) / REWARD_PER_WEIGHT_MULTIPLIER; } /** * @dev Converts reward value to stake weight (not to be mixed with the pool weight), * applying the 10^12 multiplication on the reward * - OR - * @dev Converts reward value to reward/weight if stake weight is supplied as second * function parameter instead of reward/weight * * @param reward yield reward * @param rewardPerWeight reward/weight (or stake weight) * @return stake weight (or reward/weight) */ function rewardToWeight(uint256 reward, uint256 rewardPerWeight) public pure returns (uint256) { // apply the reverse formula and return return (reward * REWARD_PER_WEIGHT_MULTIPLIER) / rewardPerWeight; } /** * @dev Testing time-dependent functionality is difficult and the best way of * doing it is to override block number in helper test smart contracts * * @return `block.number` in mainnet, custom values in testnets (if overridden) */ function blockNumber() public view virtual returns (uint256) { // return current block number return block.number; } /** * @dev Testing time-dependent functionality is difficult and the best way of * doing it is to override time in helper test smart contracts * * @return `block.timestamp` in mainnet, custom values in testnets (if overridden) */ function now256() public view virtual returns (uint256) { // return current block timestamp return block.timestamp; } /** * @dev Sets the pause status of the contract. */ function setPauseStatus(bool toPause) public onlyOwner { if (toPause) { require(!paused(), "Pausable: paused"); _pause(); } else { require(paused(), "Pausable: not paused"); _unpause(); } } /** * @dev Executes SafeERC20.safeTransfer on a pool token * * @dev Reentrancy safety enforced via `ReentrancyGuard.nonReentrant` */ function transferPoolToken(address _to, uint256 _value) internal nonReentrant { // just delegate call to the target SafeERC20.safeTransfer(IERC20(poolToken), _to, _value); } /** * @dev Executes SafeERC20.safeTransferFrom on a pool token * * @dev Reentrancy safety enforced via `ReentrancyGuard.nonReentrant` */ function transferPoolTokenFrom( address _from, address _to, uint256 _value ) internal nonReentrant { // just delegate call to the target SafeERC20.safeTransferFrom(IERC20(poolToken), _from, _to, _value); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.9; /** * @title Staking Pool - Fork of Illuvium * * @notice An abstraction representing a pool, see zStakePoolBase for details * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ interface IPool { /** * @dev Deposit is a key data structure used in staking, * it represents a unit of stake with its amount, weight and term (time interval) */ struct Deposit { // @dev token amount staked uint256 tokenAmount; // @dev stake weight uint256 weight; // @dev locking period - from uint64 lockedFrom; // @dev locking period - until uint64 lockedUntil; // @dev indicates if the stake was created as a yield reward bool isYield; } function rewardToken() external view returns (address); function poolToken() external view returns (address); function isFlashPool() external view returns (bool); function weight() external view returns (uint32); function lastYieldDistribution() external view returns (uint64); function yieldRewardsPerWeight() external view returns (uint256); function usersLockingWeight() external view returns (uint256); function pendingYieldRewards(address _user) external view returns (uint256); function balanceOf(address _user) external view returns (uint256); function getDeposit(address _user, uint256 _depositId) external view returns (Deposit memory); function getDepositsLength(address _user) external view returns (uint256); function stake(uint256 _amount, uint64 _lockedUntil) external; function unstake(uint256 _depositId, uint256 _amount) external; function sync() external; function processRewards() external; function setWeight(uint32 _weight) external; } // SPDX-License-Identifier: MIT pragma solidity 0.8.9; import "./IPool.sol"; interface ICorePool is IPool { function poolTokenReserve() external view returns (uint256); function stakeAsPool(address _staker, uint256 _amount) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "./interfaces/IPool.sol"; import "./zStakeCorePool.sol"; import "./utils/Ownable.sol"; import "./interfaces/IERC20.sol"; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; /** * @title Pool Factory - Fork of Illuvium Pool Factory * * @notice Pool Factory manages Yield farming pools, provides a single * public interface to access the pools, provides an interface for the pools * to mint yield rewards, access pool-related info, update weights, etc. * * @notice The factory is authorized (via its owner) to register new pools, change weights * of the existing pools, removing the pools (by changing their weights to zero) * * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ contract zStakePoolFactory is OwnableUpgradeable, PausableUpgradeable { /// @dev The reward token address public rewardToken; /// @dev The vault that cointains reward tokens which are to be given as staking rewards. address public rewardVault; /// @dev Auxiliary data structure used only in getPoolData() view function struct PoolData { // @dev pool token address (like WILD) address poolToken; // @dev pool address (like deployed core pool instance) address poolAddress; // @dev pool weight (200 for WILD pools, 800 for WILD/ETH pools - set during deployment) uint32 weight; // @dev flash pool flag bool isFlashPool; } /** * @dev WILD/block determines yield farming reward base * used by the yield pools controlled by the factory */ uint256 internal rewardTokensPerBlock; /** * @dev The yield is distributed proportionally to pool weights; * total weight is here to help in determining the proportion */ uint32 public totalWeight; /// @dev Maps pool token address (like WILD) -> pool address (like core pool instance) mapping(address => address) public pools; /// @dev Keeps track of registered pool addresses, maps pool address -> exists flag mapping(address => bool) public poolExists; /** * @dev Fired in createPool() and registerPool() * * @param _by an address which executed an action * @param poolToken pool token address (like WILD) * @param poolAddress deployed pool instance address * @param weight pool weight * @param isFlashPool flag indicating if pool is a flash pool */ event PoolRegistered( address indexed _by, address indexed poolToken, address indexed poolAddress, uint64 weight, bool isFlashPool ); /** * @dev Fired in changePoolWeight() * * @param _by an address which executed an action * @param poolAddress deployed pool instance address * @param weight new pool weight */ event WeightUpdated(address indexed _by, address indexed poolAddress, uint32 weight); /** * @dev Fired in updateWILDPerBlock() * * @param _by an address which executed an action * @param newIlvPerBlock new WILD/block value */ event WildRatioUpdated(address indexed _by, uint256 newIlvPerBlock); /** * @dev Creates/deploys a factory instance * * @param _rewardToken WILD ERC20 token address * @param _rewardsVault The vault which contains WILD tokens that are staking rewards * @param _rewardTokensPerBlock initial WILD/block value for rewards */ function initialize( address _rewardToken, address _rewardsVault, uint192 _rewardTokensPerBlock ) public initializer { __Ownable_init(); // verify the inputs are set require(_rewardTokensPerBlock > 0, "WILD/block not set"); // save the inputs into internal state variables rewardToken = _rewardToken; rewardVault = _rewardsVault; rewardTokensPerBlock = _rewardTokensPerBlock; } // Call this on the implementation contract (not the proxy) function initializeImplementation() public initializer { __Ownable_init(); _pause(); } /** * @notice Given a pool token retrieves corresponding pool address * * @dev A shortcut for `pools` mapping * * @param poolToken pool token address (like WILD) to query pool address for * @return pool address for the token specified */ function getPoolAddress(address poolToken) external view returns (address) { // read the mapping and return return pools[poolToken]; } /** * @notice Reads pool information for the pool defined by its pool token address, * designed to simplify integration with the front ends * * @param _poolToken pool token address to query pool information for * @return pool information packed in a PoolData struct */ function getPoolData(address _poolToken) public view returns (PoolData memory) { // get the pool address from the mapping address poolAddr = pools[_poolToken]; // throw if there is no pool registered for the token specified require(poolAddr != address(0), "pool not found"); // read pool information from the pool smart contract // via the pool interface (IPool) address poolToken = IPool(poolAddr).poolToken(); bool isFlashPool = IPool(poolAddr).isFlashPool(); uint32 weight = IPool(poolAddr).weight(); // create the in-memory structure and return it return PoolData({ poolToken: poolToken, poolAddress: poolAddr, weight: weight, isFlashPool: isFlashPool }); } /** * @dev Registers an already deployed pool instance within the factory * * @dev Can be executed by the pool factory owner only * * @param poolAddr address of the already deployed pool instance */ function registerPool(address poolAddr) public onlyOwner { require(!paused(), "contract is paused"); // read pool information from the pool smart contract // via the pool interface (IPool) address poolToken = IPool(poolAddr).poolToken(); bool isFlashPool = IPool(poolAddr).isFlashPool(); uint32 weight = IPool(poolAddr).weight(); // ensure that the pool is not already registered within the factory require(pools[poolToken] == address(0), "this pool is already registered"); // create pool structure, register it within the factory pools[poolToken] = poolAddr; poolExists[poolAddr] = true; // update total pool weight of the factory totalWeight += weight; // emit an event emit PoolRegistered(msg.sender, poolToken, poolAddr, weight, isFlashPool); } /** * @dev Transfers reward tokens from the rewards vault. Executed by Reward Token Pool only * * @dev Requires factory to have allowance on rewardVault * * @param _to an address to mint tokens to * @param _amount amount of reward tokens to transfer */ function transferRewardYield(address _to, uint256 _amount) external { require(!paused(), "contract is paused"); // verify that sender is a pool registered withing the factory require(poolExists[msg.sender], "access denied"); // transfer WILD tokens as required IERC20(rewardToken).transferFrom(rewardVault, _to, _amount); } /** * @dev Changes the weight of the pool; * executed by the pool itself or by the factory owner * * @param poolAddr address of the pool to change weight for * @param weight new weight value to set to */ function changePoolWeight(address poolAddr, uint32 weight) external { require(!paused(), "contract is paused"); // verify function is executed either by factory owner or by the pool itself require(msg.sender == owner() || poolExists[msg.sender]); // recalculate total weight totalWeight = totalWeight + weight - IPool(poolAddr).weight(); // set the new pool weight IPool(poolAddr).setWeight(weight); // emit an event emit WeightUpdated(msg.sender, poolAddr, weight); } /** * @dev Changes the amount of wild given per block * * @param perBlock Amount of wild given per block */ function changeRewardTokensPerBlock(uint256 perBlock) external { require(!paused(), "contract is paused"); require(rewardTokensPerBlock != perBlock, "No change"); rewardTokensPerBlock = perBlock; } /** * @dev Testing time-dependent functionality is difficult and the best way of * doing it is to override block number in helper test smart contracts * * @return `block.number` in mainnet, custom values in testnets (if overridden) */ function blockNumber() public view virtual returns (uint256) { // return current block number return block.number; } /** * @dev Returns amount of tokens to be given per block, may be upgraded in the future * * @return Amount of reward tokens to reward per block */ function getRewardTokensPerBlock() public view returns (uint256) { return rewardTokensPerBlock; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "../interfaces/IERC20.sol"; import "./AddressUpgradeable.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using AddressUpgradeable for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) - value; _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance) ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { address msgSender = msg.sender; _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == msg.sender, "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.9; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (utils/Address.sol) pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
File 3 of 4: TransparentUpgradeableProxy
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol"; import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol"; // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins. contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy { constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {} } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../Proxy.sol"; import "./ERC1967Upgrade.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy, ERC1967Upgrade { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`. * * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded * function call, and allows initializating the storage of the proxy like a Solidity constructor. */ constructor(address _logic, bytes memory _data) payable { assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1)); _upgradeToAndCall(_logic, _data, false); } /** * @dev Returns the current implementation address. */ function _implementation() internal view virtual override returns (address impl) { return ERC1967Upgrade._getImplementation(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Proxy.sol"; /** * @dev This contract implements a proxy that is upgradeable by an admin. * * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector * clashing], which can potentially be used in an attack, this contract uses the * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two * things that go hand in hand: * * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if * that call matches one of the admin functions exposed by the proxy itself. * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the * implementation. If the admin tries to call a function on the implementation it will fail with an error that says * "admin cannot fallback to proxy target". * * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due * to sudden errors when trying to call a function from the proxy implementation. * * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way, * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy. */ contract TransparentUpgradeableProxy is ERC1967Proxy { /** * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}. */ constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) { assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1)); _changeAdmin(admin_); } /** * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin. */ modifier ifAdmin() { if (msg.sender == _getAdmin()) { _; } else { _fallback(); } } /** * @dev Returns the current admin. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function admin() external ifAdmin returns (address admin_) { admin_ = _getAdmin(); } /** * @dev Returns the current implementation. * * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function implementation() external ifAdmin returns (address implementation_) { implementation_ = _implementation(); } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. * * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}. */ function changeAdmin(address newAdmin) external virtual ifAdmin { _changeAdmin(newAdmin); } /** * @dev Upgrade the implementation of the proxy. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}. */ function upgradeTo(address newImplementation) external ifAdmin { _upgradeToAndCall(newImplementation, bytes(""), false); } /** * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the * proxied contract. * * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}. */ function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin { _upgradeToAndCall(newImplementation, data, true); } /** * @dev Returns the current admin. */ function _admin() internal view virtual returns (address) { return _getAdmin(); } /** * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}. */ function _beforeFallback() internal virtual override { require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target"); super._beforeFallback(); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./TransparentUpgradeableProxy.sol"; import "../../access/Ownable.sol"; /** * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}. */ contract ProxyAdmin is Ownable { /** * @dev Returns the current implementation of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("implementation()")) == 0x5c60da1b (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b"); require(success); return abi.decode(returndata, (address)); } /** * @dev Returns the current admin of `proxy`. * * Requirements: * * - This contract must be the admin of `proxy`. */ function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) { // We need to manually run the static call since the getter cannot be flagged as view // bytes4(keccak256("admin()")) == 0xf851a440 (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440"); require(success); return abi.decode(returndata, (address)); } /** * @dev Changes the admin of `proxy` to `newAdmin`. * * Requirements: * * - This contract must be the current admin of `proxy`. */ function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner { proxy.changeAdmin(newAdmin); } /** * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner { proxy.upgradeTo(implementation); } /** * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See * {TransparentUpgradeableProxy-upgradeToAndCall}. * * Requirements: * * - This contract must be the admin of `proxy`. */ function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner { proxy.upgradeToAndCall{value: msg.value}(implementation, data); } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { // solhint-disable-next-line no-inline-assembly assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internall call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback () external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive () external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overriden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual { } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ * * @custom:oz-upgrades-unsafe-allow delegatecall */ abstract contract ERC1967Upgrade { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal { address oldImplementation = _getImplementation(); // Initial upgrade and setup call _setImplementation(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } // Perform rollback test if not already in progress StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT); if (!rollbackTesting.value) { // Trigger rollback using upgradeTo from the new implementation rollbackTesting.value = true; Address.functionDelegateCall( newImplementation, abi.encodeWithSignature( "upgradeTo(address)", oldImplementation ) ); rollbackTesting.value = false; // Check rollback was effective require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades"); // Finally reset to the new implementation and log the upgrade _setImplementation(newImplementation); emit Upgraded(newImplementation); } } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Emitted when the beacon is upgraded. */ event BeaconUpgraded(address indexed beacon); /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require( Address.isContract(newBeacon), "ERC1967: new beacon is not a contract" ); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ``` * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly { r.slot := slot } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify * continuation of the upgradability. * * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is ERC1967Upgrade { function upgradeTo(address newImplementation) external virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, bytes(""), false); } function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual { _authorizeUpgrade(newImplementation); _upgradeToAndCallSecure(newImplementation, data, true); } function _authorizeUpgrade(address newImplementation) internal virtual; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.2; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; abstract contract Proxiable is UUPSUpgradeable { function _authorizeUpgrade(address newImplementation) internal override { _beforeUpgrade(newImplementation); } function _beforeUpgrade(address newImplementation) internal virtual; } contract ChildOfProxiable is Proxiable { function _beforeUpgrade(address newImplementation) internal virtual override {} }
File 4 of 4: zStakePoolFactory
// SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "./interfaces/IPool.sol"; import "./zStakeCorePool.sol"; import "./utils/Ownable.sol"; import "./interfaces/IERC20.sol"; import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; /** * @title Pool Factory - Fork of Illuvium Pool Factory * * @notice Pool Factory manages Yield farming pools, provides a single * public interface to access the pools, provides an interface for the pools * to mint yield rewards, access pool-related info, update weights, etc. * * @notice The factory is authorized (via its owner) to register new pools, change weights * of the existing pools, removing the pools (by changing their weights to zero) * * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ contract zStakePoolFactory is OwnableUpgradeable, PausableUpgradeable { /// @dev The reward token address public rewardToken; /// @dev The vault that cointains reward tokens which are to be given as staking rewards. address public rewardVault; /// @dev Auxiliary data structure used only in getPoolData() view function struct PoolData { // @dev pool token address (like WILD) address poolToken; // @dev pool address (like deployed core pool instance) address poolAddress; // @dev pool weight (200 for WILD pools, 800 for WILD/ETH pools - set during deployment) uint32 weight; // @dev flash pool flag bool isFlashPool; } /** * @dev WILD/block determines yield farming reward base * used by the yield pools controlled by the factory */ uint256 internal rewardTokensPerBlock; /** * @dev The yield is distributed proportionally to pool weights; * total weight is here to help in determining the proportion */ uint32 public totalWeight; /// @dev Maps pool token address (like WILD) -> pool address (like core pool instance) mapping(address => address) public pools; /// @dev Keeps track of registered pool addresses, maps pool address -> exists flag mapping(address => bool) public poolExists; /** * @dev Fired in createPool() and registerPool() * * @param _by an address which executed an action * @param poolToken pool token address (like WILD) * @param poolAddress deployed pool instance address * @param weight pool weight * @param isFlashPool flag indicating if pool is a flash pool */ event PoolRegistered( address indexed _by, address indexed poolToken, address indexed poolAddress, uint64 weight, bool isFlashPool ); /** * @dev Fired in changePoolWeight() * * @param _by an address which executed an action * @param poolAddress deployed pool instance address * @param weight new pool weight */ event WeightUpdated(address indexed _by, address indexed poolAddress, uint32 weight); /** * @dev Fired in updateWILDPerBlock() * * @param _by an address which executed an action * @param newIlvPerBlock new WILD/block value */ event WildRatioUpdated(address indexed _by, uint256 newIlvPerBlock); /** * @dev Creates/deploys a factory instance * * @param _rewardToken WILD ERC20 token address * @param _rewardsVault The vault which contains WILD tokens that are staking rewards * @param _rewardTokensPerBlock initial WILD/block value for rewards */ function initialize( address _rewardToken, address _rewardsVault, uint192 _rewardTokensPerBlock ) public initializer { __Ownable_init(); // verify the inputs are set require(_rewardTokensPerBlock > 0, "WILD/block not set"); // save the inputs into internal state variables rewardToken = _rewardToken; rewardVault = _rewardsVault; rewardTokensPerBlock = _rewardTokensPerBlock; } // Call this on the implementation contract (not the proxy) function initializeImplementation() public initializer { __Ownable_init(); _pause(); } /** * @notice Given a pool token retrieves corresponding pool address * * @dev A shortcut for `pools` mapping * * @param poolToken pool token address (like WILD) to query pool address for * @return pool address for the token specified */ function getPoolAddress(address poolToken) external view returns (address) { // read the mapping and return return pools[poolToken]; } /** * @notice Reads pool information for the pool defined by its pool token address, * designed to simplify integration with the front ends * * @param _poolToken pool token address to query pool information for * @return pool information packed in a PoolData struct */ function getPoolData(address _poolToken) public view returns (PoolData memory) { // get the pool address from the mapping address poolAddr = pools[_poolToken]; // throw if there is no pool registered for the token specified require(poolAddr != address(0), "pool not found"); // read pool information from the pool smart contract // via the pool interface (IPool) address poolToken = IPool(poolAddr).poolToken(); bool isFlashPool = IPool(poolAddr).isFlashPool(); uint32 weight = IPool(poolAddr).weight(); // create the in-memory structure and return it return PoolData({ poolToken: poolToken, poolAddress: poolAddr, weight: weight, isFlashPool: isFlashPool }); } /** * @dev Registers an already deployed pool instance within the factory * * @dev Can be executed by the pool factory owner only * * @param poolAddr address of the already deployed pool instance */ function registerPool(address poolAddr) public onlyOwner { require(!paused(), "contract is paused"); // read pool information from the pool smart contract // via the pool interface (IPool) address poolToken = IPool(poolAddr).poolToken(); bool isFlashPool = IPool(poolAddr).isFlashPool(); uint32 weight = IPool(poolAddr).weight(); // ensure that the pool is not already registered within the factory require(pools[poolToken] == address(0), "this pool is already registered"); // create pool structure, register it within the factory pools[poolToken] = poolAddr; poolExists[poolAddr] = true; // update total pool weight of the factory totalWeight += weight; // emit an event emit PoolRegistered(msg.sender, poolToken, poolAddr, weight, isFlashPool); } /** * @dev Transfers reward tokens from the rewards vault. Executed by Reward Token Pool only * * @dev Requires factory to have allowance on rewardVault * * @param _to an address to mint tokens to * @param _amount amount of reward tokens to transfer */ function transferRewardYield(address _to, uint256 _amount) external { require(!paused(), "contract is paused"); // verify that sender is a pool registered withing the factory require(poolExists[msg.sender], "access denied"); // transfer WILD tokens as required IERC20(rewardToken).transferFrom(rewardVault, _to, _amount); } /** * @dev Changes the weight of the pool; * executed by the pool itself or by the factory owner * * @param poolAddr address of the pool to change weight for * @param weight new weight value to set to */ function changePoolWeight(address poolAddr, uint32 weight) external { require(!paused(), "contract is paused"); // verify function is executed either by factory owner or by the pool itself require(msg.sender == owner() || poolExists[msg.sender]); // recalculate total weight totalWeight = totalWeight + weight - IPool(poolAddr).weight(); // set the new pool weight IPool(poolAddr).setWeight(weight); // emit an event emit WeightUpdated(msg.sender, poolAddr, weight); } /** * @dev Changes the amount of wild given per block * * @param perBlock Amount of wild given per block */ function changeRewardTokensPerBlock(uint256 perBlock) external onlyOwner { require(!paused(), "contract is paused"); require(rewardTokensPerBlock != perBlock, "No change"); rewardTokensPerBlock = perBlock; } /** * @dev Testing time-dependent functionality is difficult and the best way of * doing it is to override block number in helper test smart contracts * * @return `block.number` in mainnet, custom values in testnets (if overridden) */ function blockNumber() public view virtual returns (uint256) { // return current block number return block.number; } /** * @dev Returns amount of tokens to be given per block, may be upgraded in the future * * @return Amount of reward tokens to reward per block */ function getRewardTokensPerBlock() public view returns (uint256) { return rewardTokensPerBlock; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.9; /** * @title Staking Pool - Fork of Illuvium * * @notice An abstraction representing a pool, see zStakePoolBase for details * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ interface IPool { /** * @dev Deposit is a key data structure used in staking, * it represents a unit of stake with its amount, weight and term (time interval) */ struct Deposit { // @dev token amount staked uint256 tokenAmount; // @dev stake weight uint256 weight; // @dev locking period - from uint64 lockedFrom; // @dev locking period - until uint64 lockedUntil; // @dev indicates if the stake was created as a yield reward bool isYield; } function rewardToken() external view returns (address); function poolToken() external view returns (address); function isFlashPool() external view returns (bool); function weight() external view returns (uint32); function lastYieldDistribution() external view returns (uint64); function yieldRewardsPerWeight() external view returns (uint256); function usersLockingWeight() external view returns (uint256); function pendingYieldRewards(address _user) external view returns (uint256); function balanceOf(address _user) external view returns (uint256); function getDeposit(address _user, uint256 _depositId) external view returns (Deposit memory); function getDepositsLength(address _user) external view returns (uint256); function stake(uint256 _amount, uint64 _lockedUntil) external; function unstake(uint256 _depositId, uint256 _amount) external; function sync() external; function processRewards() external; function setWeight(uint32 _weight) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "./zStakePoolBase.sol"; /** * @title Wild Core Pool - Fork of Illuvium Core Pool * * @notice Core pools represent permanent pools like WILD or WILD/ETH Pair pool, * core pools allow staking for arbitrary periods of time up to 1 year * * @dev See WildPoolBase for more details * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ contract zStakeCorePool is zStakePoolBase { /// @dev Flag indicating pool type, false means "core pool" bool public constant override isFlashPool = false; /// @dev Pool tokens value available in the pool; /// pool token examples are WILD (WILD core pool) or WILD/ETH pair (LP core pool) /// @dev For LP core pool this value doesnt' count for WILD tokens received as Vault rewards /// while for WILD core pool it does count for such tokens as well uint256 public poolTokenReserve; /** * @dev Creates/deploys an instance of the core pool * * @param _rewardToken WILD ERC20 Token address * @param _factory Pool factory zStakePoolFactory instance/address * @param _poolToken token the pool operates on, for example WILD or WILD/ETH pair * @param _initBlock initial block used to calculate the rewards * @param _weight number representing a weight of the pool, actual weight fraction * is calculated as that number divided by the total pools weight and doesn't exceed one */ function initialize( address _rewardToken, zStakePoolFactory _factory, address _poolToken, uint64 _initBlock, uint32 _weight ) initializer public { __zStakePoolBase__init(_rewardToken, _factory, _poolToken, _initBlock, _weight); } // Call this on the implementation contract (not the proxy) function initializeImplementation() public initializer { __Ownable_init(); _pause(); } /** * @notice Service function to calculate and pay pending vault and yield rewards to the sender * * @dev Internally executes similar function `_processRewards` from the parent smart contract * to calculate and pay yield rewards; adds vault rewards processing * * @dev Can be executed by anyone at any time, but has an effect only when * executed by deposit holder and when at least one block passes from the * previous reward processing * @dev Executed internally when "staking as a pool" (`stakeAsPool`) * @dev When timing conditions are not met (executed too frequently, or after factory * end block), function doesn't throw and exits silently */ function processRewards() external override { require(!paused(), "contract is paused"); _processRewards(msg.sender, true); } /** * @dev Executed internally by the pool itself (from the parent `zStakePoolBase` smart contract) * as part of yield rewards processing logic (`zStakePoolBase._processRewards` function) * * @param _staker an address which stakes (the yield reward) * @param _amount amount to be staked (yield reward amount) */ function stakeAsPool(address _staker, uint256 _amount) external { require(!paused(), "contract is paused"); require(factory.poolExists(msg.sender), "access denied"); _sync(); User storage user = users[_staker]; if (user.tokenAmount > 0) { _processRewards(_staker, false); } uint256 depositWeight = _amount * YEAR_STAKE_WEIGHT_MULTIPLIER; Deposit memory newDeposit = Deposit({ tokenAmount: _amount, lockedFrom: uint64(now256()), lockedUntil: uint64(now256() + rewardLockPeriod), weight: depositWeight, isYield: true }); user.tokenAmount += _amount; user.totalWeight += depositWeight; user.deposits.push(newDeposit); usersLockingWeight += depositWeight; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); // update `poolTokenReserve` only if this is a LP Core Pool (stakeAsPool can be executed only for LP pool) poolTokenReserve += _amount; } /** * @inheritdoc zStakePoolBase * * @dev Additionally to the parent smart contract, updates vault rewards of the holder, * and updates (increases) pool token reserve (pool tokens value available in the pool) */ function _stake( address _staker, uint256 _amount, uint64 _lockedUntil, bool _isYield ) internal override { super._stake(_staker, _amount, _lockedUntil, _isYield); poolTokenReserve += _amount; } /** * @inheritdoc zStakePoolBase * * @dev Additionally to the parent smart contract, updates vault rewards of the holder, * and updates (decreases) pool token reserve (pool tokens value available in the pool) */ function _unstake( address _staker, uint256 _depositId, uint256 _amount ) internal override { User storage user = users[_staker]; Deposit memory stakeDeposit = user.deposits[_depositId]; require( stakeDeposit.lockedFrom == 0 || now256() > stakeDeposit.lockedUntil, "deposit not yet unlocked" ); poolTokenReserve -= _amount; super._unstake(_staker, _depositId, _amount); } /** * @inheritdoc zStakePoolBase * * @dev Additionally to the parent smart contract, processes vault rewards of the holder, * and for reward pool pool updates (increases) pool token reserve (pool tokens value available in the pool) */ function _processRewards(address _staker, bool _withUpdate) internal override returns (uint256 pendingYield) { pendingYield = super._processRewards(_staker, _withUpdate); // update `poolTokenReserve` only if this is the reward Pool if (poolToken == rewardToken) { poolTokenReserve += pendingYield; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { address msgSender = msg.sender; _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == msg.sender, "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // SPDX-License-Identifier: MIT pragma solidity 0.8.9; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal initializer { __Context_init_unchained(); __Ownable_init_unchained(); } function __Ownable_init_unchained() internal initializer { _setOwner(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { require(!paused(), "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { require(paused(), "Pausable: not paused"); _; } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "./interfaces/IPool.sol"; import "./interfaces/ICorePool.sol"; import "./ReentrancyGuardUpgradeable.sol"; import "./zStakePoolFactory.sol"; import "./utils/SafeERC20.sol"; import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; /** * @title Pool Base - Fork of Illuvium Pool Base * * @notice An abstract contract containing common logic for a staking pool * * @dev Deployment and initialization. * Any pool deployed must be bound to the deployed pool factory (zStakePoolFactory) * Additionally, 3 token instance addresses must be defined on deployment: * - Reward token address * - pool token address, it can be the reward token address, LP pair address, and others * * @dev Pool weight defines the fraction of the yield current pool receives among the other pools, * pool factory is responsible for the weight synchronization between the pools. * @dev The weight is logically 10% for reward token pool and 90% for LP pool. * Since Solidity doesn't support fractions the weight is defined by the division of * pool weight by total pools weight (sum of all registered pools within the factory) * * @author Pedro Bergamini, reviewed by Basil Gorin, modified by Zer0 */ abstract contract zStakePoolBase is IPool, ReentrancyGuardUpgradeable, OwnableUpgradeable, PausableUpgradeable { /// @dev Data structure representing token holder using a pool struct User { // @dev Total staked amount uint256 tokenAmount; // @dev Total weight uint256 totalWeight; // @dev Auxiliary variable for yield calculation uint256 subYieldRewards; // @dev An array of holder's deposits Deposit[] deposits; } function isFlashPool() external view virtual override returns (bool) { return false; } /// @dev The reward token address public override rewardToken; /// @dev Token holder storage, maps token holder address to their data record mapping(address => User) public users; /// @dev Link to the pool factory zStakePoolFactory instance zStakePoolFactory public factory; /// @dev Link to the pool token instance, for example WILD or WILD/ETH pair address public override poolToken; /// @dev Pool weight uint32 public override weight; /// @dev Block number of the last yield distribution event uint64 public override lastYieldDistribution; /// @dev Used to calculate yield rewards /// @dev This value is different from "reward per token" used in locked pool /// @dev Note: stakes are different in duration and "weight" reflects that uint256 public override yieldRewardsPerWeight; /// @dev Used to calculate yield rewards, keeps track of the tokens weight locked in staking uint256 public override usersLockingWeight; /// @dev The duration of time to lock rewards uint256 public rewardLockPeriod; /** * @dev Stake weight is proportional to deposit amount and time locked, precisely * "deposit amount wei multiplied by (fraction of the year locked plus one)" * @dev To avoid significant precision loss due to multiplication by "fraction of the year" [0, 1], * weight is stored multiplied by 1e6 constant, as an integer * @dev Corner case 1: if time locked is zero, weight is deposit amount multiplied by 1e6 * @dev Corner case 2: if time locked is one year, fraction of the year locked is one, and * weight is a deposit amount multiplied by 2 * 1e6 */ uint256 internal constant WEIGHT_MULTIPLIER = 1e6; /** * @dev When we know beforehand that staking is done for a year, and fraction of the year locked is one, * we use simplified calculation and use the following constant instead previos one */ uint256 internal constant YEAR_STAKE_WEIGHT_MULTIPLIER = 2 * WEIGHT_MULTIPLIER; /** * @dev Rewards per weight are stored multiplied by 1e12, as integers. */ uint256 internal constant REWARD_PER_WEIGHT_MULTIPLIER = 1e12; /** * @dev Fired in _stake() and stake() * * @param _by an address which performed an operation, usually token holder * @param _from token holder address, the tokens will be returned to that address * @param amount amount of tokens staked */ event Staked(address indexed _by, address indexed _from, uint256 amount); /** * @dev Fired in _updateStakeLock() and updateStakeLock() * * @param _by an address which performed an operation * @param depositId updated deposit ID * @param lockedFrom deposit locked from value * @param lockedUntil updated deposit locked until value */ event StakeLockUpdated( address indexed _by, uint256 depositId, uint64 lockedFrom, uint64 lockedUntil ); /** * @dev Fired in _unstake() and unstake() * * @param _by an address which performed an operation, usually token holder * @param _to an address which received the unstaked tokens, usually token holder * @param amount amount of tokens unstaked */ event Unstaked(address indexed _by, address indexed _to, uint256 amount); /** * @dev Fired in _sync(), sync() and dependent functions (stake, unstake, etc.) * * @param _by an address which performed an operation * @param yieldRewardsPerWeight updated yield rewards per weight value * @param lastYieldDistribution usually, current block number */ event Synchronized( address indexed _by, uint256 yieldRewardsPerWeight, uint64 lastYieldDistribution ); /** * @dev Fired in _processRewards(), processRewards() and dependent functions (stake, unstake, etc.) * * @param _by an address which performed an operation * @param _to an address which claimed the yield reward * @param amount amount of yield paid */ event YieldClaimed(address indexed _by, address indexed _to, uint256 amount); /** * @dev Fired in setWeight() * * @param _by an address which performed an operation, always a factory * @param _fromVal old pool weight value * @param _toVal new pool weight value */ event PoolWeightUpdated(address indexed _by, uint32 _fromVal, uint32 _toVal); /** * @dev Overridden in sub-contracts to construct the pool * * @param _rewardToken Reward ERC20 Token address * @param _factory Pool factory zStakePoolFactory instance/address * @param _poolToken token the pool operates on, for example WILD or WILD/ETH pair * @param _initBlock initial block used to calculate the rewards * note: _initBlock can be set to the future effectively meaning _sync() calls will do nothing * @param _weight number representing a weight of the pool, actual weight fraction * is calculated as that number divided by the total pools weight and doesn't exceed one */ function __zStakePoolBase__init( address _rewardToken, zStakePoolFactory _factory, address _poolToken, uint64 _initBlock, uint32 _weight ) public initializer { __Ownable_init(); // verify the inputs are set require(address(_factory) != address(0), "factory address not set"); require(_poolToken != address(0), "pool token address not set"); require(_initBlock > 0, "init block not set"); require(_weight > 0, "pool weight not set"); // save the inputs into internal state variables factory = _factory; poolToken = _poolToken; weight = _weight; rewardToken = _rewardToken; // init the dependent internal state variables lastYieldDistribution = _initBlock; rewardLockPeriod = 365 days; } /** * @notice Calculates current yield rewards value available for address specified * * @param _staker an address to calculate yield rewards value for * @return calculated yield reward value for the given address */ function pendingYieldRewards(address _staker) external view override returns (uint256) { // `newYieldRewardsPerWeight` will store stored or recalculated value for `yieldRewardsPerWeight` uint256 newYieldRewardsPerWeight; // if smart contract state was not updated recently, `yieldRewardsPerWeight` value // is outdated and we need to recalculate it in order to calculate pending rewards correctly if (blockNumber() > lastYieldDistribution && usersLockingWeight != 0) { uint256 multiplier = blockNumber() - lastYieldDistribution; uint256 rewards = (multiplier * weight * factory.getRewardTokensPerBlock()) / factory.totalWeight(); // recalculated value for `yieldRewardsPerWeight` newYieldRewardsPerWeight = rewardToWeight(rewards, usersLockingWeight) + yieldRewardsPerWeight; } else { // if smart contract state is up to date, we don't recalculate newYieldRewardsPerWeight = yieldRewardsPerWeight; } // based on the rewards per weight value, calculate pending rewards; User memory user = users[_staker]; uint256 pending = weightToReward(user.totalWeight, newYieldRewardsPerWeight) - user.subYieldRewards; return pending; } /** * @notice Returns total staked token balance for the given address * * @param _user an address to query balance for * @return total staked token balance */ function balanceOf(address _user) external view override returns (uint256) { // read specified user token amount and return return users[_user].tokenAmount; } /** * @notice Returns information on the given deposit for the given address * * @dev See getDepositsLength * * @param _user an address to query deposit for * @param _depositId zero-indexed deposit ID for the address specified * @return deposit info as Deposit structure */ function getDeposit(address _user, uint256 _depositId) external view override returns (Deposit memory) { // read deposit at specified index and return return users[_user].deposits[_depositId]; } /** * @notice Returns number of deposits for the given address. Allows iteration over deposits. * * @dev See getDeposit * * @param _user an address to query deposit length for * @return number of deposits for the given address */ function getDepositsLength(address _user) external view override returns (uint256) { // read deposits array length and return return users[_user].deposits.length; } /** * @notice Stakes specified amount of tokens for the specified amount of time, * and pays pending yield rewards if any * * @dev Requires amount to stake to be greater than zero * * @param _amount amount of tokens to stake * @param _lockUntil stake period as unix timestamp; zero means no locking */ function stake(uint256 _amount, uint64 _lockUntil) external override { require(!paused(), "contract is paused"); // delegate call to an internal function _stake(msg.sender, _amount, _lockUntil, false); } /** * @notice Unstakes specified amount of tokens, and pays pending yield rewards if any * * @dev Requires amount to unstake to be greater than zero * * @param _depositId deposit ID to unstake from, zero-indexed * @param _amount amount of tokens to unstake */ function unstake(uint256 _depositId, uint256 _amount) external override { require(!paused(), "contract is paused"); // delegate call to an internal function _unstake(msg.sender, _depositId, _amount); } /** * @notice Extends locking period for a given deposit * * @dev Requires new lockedUntil value to be: * higher than the current one, and * in the future, but * no more than 1 year in the future * * @param depositId updated deposit ID * @param lockedUntil updated deposit locked until value */ function updateStakeLock(uint256 depositId, uint64 lockedUntil) external { require(!paused(), "contract is paused"); // Sync and give user rewards _sync(); _processRewards(msg.sender, false); // delegate call to an internal function _updateStakeLock(msg.sender, depositId, lockedUntil); // Update subyieldrewards so that the user is not owed anything User storage user = users[msg.sender]; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); } /** * @notice Service function to synchronize pool state with current time * * @dev Can be executed by anyone at any time, but has an effect only when * at least one block passes between synchronizations * @dev Executed internally when staking, unstaking, processing rewards in order * for calculations to be correct and to reflect state progress of the contract * @dev When timing conditions are not met (executed too frequently, or after factory * end block), function doesn't throw and exits silently */ function sync() external override { require(!paused(), "contract is paused"); // delegate call to an internal function _sync(); } /** * @notice Service function to calculate and pay pending yield rewards to the sender * * @dev Can be executed by anyone at any time, but has an effect only when * executed by deposit holder and when at least one block passes from the * previous reward processing * @dev Executed internally when staking and unstaking, executes sync() under the hood * before making further calculations and payouts * @dev When timing conditions are not met (executed too frequently, or after factory * end block), function doesn't throw and exits silently * */ function processRewards() external virtual override { require(!paused(), "contract is paused"); // delegate call to an internal function _processRewards(msg.sender, true); } /** * @dev Executed by the factory to modify pool weight; the factory is expected * to keep track of the total pools weight when updating * * @dev Set weight to zero to disable the pool * * @param _weight new weight to set for the pool */ function setWeight(uint32 _weight) external override { require(!paused(), "contract is paused"); // verify function is executed by the factory require(msg.sender == address(factory), "access denied"); // emit an event logging old and new weight values emit PoolWeightUpdated(msg.sender, weight, _weight); // set the new weight value weight = _weight; } /** * @dev Similar to public pendingYieldRewards, but performs calculations based on * current smart contract state only, not taking into account any additional * time/blocks which might have passed * * @param _staker an address to calculate yield rewards value for * @return pending calculated yield reward value for the given address */ function _pendingYieldRewards(address _staker) internal view returns (uint256 pending) { // read user data structure into memory User memory user = users[_staker]; // and perform the calculation using the values read return weightToReward(user.totalWeight, yieldRewardsPerWeight) - user.subYieldRewards; } /** * @dev Used internally, mostly by children implementations, see stake() * * @param _staker an address which stakes tokens and which will receive them back * @param _amount amount of tokens to stake * @param _lockUntil stake period as unix timestamp; zero means no locking * @param _isYield a flag indicating if that stake is created to store yield reward * from the previously unstaked stake */ function _stake( address _staker, uint256 _amount, uint64 _lockUntil, bool _isYield ) internal virtual { // validate the inputs require(_amount > 0, "zero amount"); require( _lockUntil == 0 || (_lockUntil > now256() && _lockUntil - now256() <= 365 days), "invalid lock interval" ); // update smart contract state _sync(); // get a link to user data struct, we will write to it later User storage user = users[_staker]; // process current pending rewards if any if (user.tokenAmount > 0) { _processRewards(_staker, false); } // in most of the cases added amount `addedAmount` is simply `_amount` // however for deflationary tokens this can be different // read the current balance uint256 previousBalance = IERC20(poolToken).balanceOf(address(this)); // transfer `_amount`; note: some tokens may get burnt here transferPoolTokenFrom(address(msg.sender), address(this), _amount); // read new balance, usually this is just the difference `previousBalance - _amount` uint256 newBalance = IERC20(poolToken).balanceOf(address(this)); // calculate real amount taking into account deflation uint256 addedAmount = newBalance - previousBalance; // set the `lockFrom` and `lockUntil` taking into account that // zero value for `_lockUntil` means "no locking" and leads to zero values // for both `lockFrom` and `lockUntil` uint64 lockFrom = _lockUntil > 0 ? uint64(now256()) : 0; uint64 lockUntil = _lockUntil; // stake weight formula rewards for locking uint256 stakeWeight = (((lockUntil - lockFrom) * WEIGHT_MULTIPLIER) / 365 days + WEIGHT_MULTIPLIER) * addedAmount; // makes sure stakeWeight is valid assert(stakeWeight > 0); // create and save the deposit (append it to deposits array) Deposit memory deposit = Deposit({ tokenAmount: addedAmount, weight: stakeWeight, lockedFrom: lockFrom, lockedUntil: lockUntil, isYield: _isYield }); // deposit ID is an index of the deposit in `deposits` array user.deposits.push(deposit); // update user record user.tokenAmount += addedAmount; user.totalWeight += stakeWeight; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); // update global variable usersLockingWeight += stakeWeight; // emit an event emit Staked(msg.sender, _staker, _amount); } /** * @dev Allows for the rewardLockPeriod to be modified. */ function changeRewardLockPeriod(uint256 _rewardLockPeriod) external onlyOwner { require(rewardLockPeriod != _rewardLockPeriod, "same rewardLockPeriod"); require(_rewardLockPeriod <= 365 days, "too long lock period"); rewardLockPeriod = _rewardLockPeriod; } /** * @dev Used internally, mostly by children implementations, see unstake() * * @param _staker an address which unstakes tokens (which previously staked them) * @param _depositId deposit ID to unstake from, zero-indexed * @param _amount amount of tokens to unstake */ function _unstake( address _staker, uint256 _depositId, uint256 _amount ) internal virtual { // verify an amount is set require(_amount > 0, "zero amount"); // get a link to user data struct, we will write to it later User storage user = users[_staker]; // get a link to the corresponding deposit, we may write to it later Deposit storage stakeDeposit = user.deposits[_depositId]; // deposit structure may get deleted, so we save isYield flag to be able to use it bool isYield = stakeDeposit.isYield; // verify available balance // if staker address ot deposit doesn't exist this check will fail as well require(stakeDeposit.tokenAmount >= _amount, "amount exceeds stake"); // update smart contract state _sync(); // and process current pending rewards if any _processRewards(_staker, false); // recalculate deposit weight uint256 previousWeight = stakeDeposit.weight; uint256 newWeight = (((stakeDeposit.lockedUntil - stakeDeposit.lockedFrom) * WEIGHT_MULTIPLIER) / 365 days + WEIGHT_MULTIPLIER) * (stakeDeposit.tokenAmount - _amount); // update the deposit, or delete it if its depleted if (stakeDeposit.tokenAmount - _amount == 0) { delete user.deposits[_depositId]; } else { stakeDeposit.tokenAmount -= _amount; stakeDeposit.weight = newWeight; } // update user record user.tokenAmount -= _amount; user.totalWeight = user.totalWeight - previousWeight + newWeight; user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); // update global variable usersLockingWeight = usersLockingWeight - previousWeight + newWeight; // if the deposit was created by the pool itself as a yield reward if (isYield) { // @TODO: Replace this // Make it so it transfers tokens from escrow rewards pool to staker // mint the yield via the factory factory.transferRewardYield(msg.sender, _amount); } else { // otherwise just return tokens back to holder transferPoolToken(msg.sender, _amount); } // emit an event emit Unstaked(msg.sender, _staker, _amount); } /** * @dev Used internally, mostly by children implementations, see sync() * * @dev Updates smart contract state (`yieldRewardsPerWeight`, `lastYieldDistribution`), */ function _sync() internal virtual { if (blockNumber() <= lastYieldDistribution) { return; } // if locking weight is zero - update only `lastYieldDistribution` and exit if (usersLockingWeight == 0) { lastYieldDistribution = uint64(blockNumber()); return; } // to calculate the reward we need to know how many blocks passed, and reward per block uint256 currentBlock = blockNumber(); uint256 blocksPassed = currentBlock - lastYieldDistribution; uint256 rewardPerBlock = factory.getRewardTokensPerBlock(); // calculate the reward uint256 rewardAmount = (blocksPassed * rewardPerBlock * weight) / factory.totalWeight(); // update rewards per weight and `lastYieldDistribution` yieldRewardsPerWeight += rewardToWeight(rewardAmount, usersLockingWeight); lastYieldDistribution = uint64(currentBlock); // emit an event emit Synchronized(msg.sender, yieldRewardsPerWeight, lastYieldDistribution); } /** * @dev Used internally, mostly by children implementations, see processRewards() * * @param _staker an address which receives the reward (which has staked some tokens earlier) * @param _withUpdate flag allowing to disable synchronization (see sync()) if set to false * @return pendingYield the rewards calculated and optionally re-staked */ function _processRewards(address _staker, bool _withUpdate) internal virtual returns (uint256 pendingYield) { // update smart contract state if required if (_withUpdate) { _sync(); } // calculate pending yield rewards, this value will be returned pendingYield = _pendingYieldRewards(_staker); // if pending yield is zero - just return silently if (pendingYield == 0) return 0; // get link to a user data structure, we will write into it later User storage user = users[_staker]; if (poolToken == rewardToken) { // calculate pending yield weight, // 2e6 is the bonus weight when staking for 1 year uint256 depositWeight = pendingYield * YEAR_STAKE_WEIGHT_MULTIPLIER; // if the pool is the Reward Token Pool - create new Reward Token deposit // and save it - push it into deposits array Deposit memory newDeposit = Deposit({ tokenAmount: pendingYield, lockedFrom: uint64(now256()), lockedUntil: uint64(now256() + rewardLockPeriod), // staking yield for 1 year weight: depositWeight, isYield: true }); user.deposits.push(newDeposit); // update user record user.tokenAmount += pendingYield; user.totalWeight += depositWeight; // update global variable usersLockingWeight += depositWeight; } else { // for other pools - stake as pool // This will stake the rewards into the reward token pool address rewardPool = factory.getPoolAddress(rewardToken); ICorePool(rewardPool).stakeAsPool(_staker, pendingYield); } // update users's record for `subYieldRewards` if requested if (_withUpdate) { user.subYieldRewards = weightToReward(user.totalWeight, yieldRewardsPerWeight); } // emit an event emit YieldClaimed(msg.sender, _staker, pendingYield); } /** * @dev See updateStakeLock() * * @param _staker an address to update stake lock * @param _depositId updated deposit ID * @param _lockedUntil updated deposit locked until value */ function _updateStakeLock( address _staker, uint256 _depositId, uint64 _lockedUntil ) internal { // validate the input time require(_lockedUntil > now256(), "lock should be in the future"); // get a link to user data struct, we will write to it later User storage user = users[_staker]; // get a link to the corresponding deposit, we may write to it later Deposit storage stakeDeposit = user.deposits[_depositId]; // validate the input against deposit structure require(_lockedUntil > stakeDeposit.lockedUntil, "invalid new lock"); // verify locked from and locked until values if (stakeDeposit.lockedFrom == 0) { // Was never locked require(_lockedUntil - now256() <= 365 days, "max lock period is 365 days"); stakeDeposit.lockedFrom = uint64(now256()); } else { // Was locked (but for less than 365 days) require(_lockedUntil - stakeDeposit.lockedFrom <= 365 days, "max lock period is 365 days"); } // update locked until value, calculate new weight stakeDeposit.lockedUntil = _lockedUntil; uint256 newWeight = (((stakeDeposit.lockedUntil - stakeDeposit.lockedFrom) * WEIGHT_MULTIPLIER) / 365 days + WEIGHT_MULTIPLIER) * stakeDeposit.tokenAmount; // save previous weight uint256 previousWeight = stakeDeposit.weight; // update weight stakeDeposit.weight = newWeight; // update user total weight and global locking weight user.totalWeight = user.totalWeight - previousWeight + newWeight; usersLockingWeight = usersLockingWeight - previousWeight + newWeight; // emit an event emit StakeLockUpdated(_staker, _depositId, stakeDeposit.lockedFrom, _lockedUntil); } /** * @dev Converts stake weight (not to be mixed with the pool weight) to * token reward value, applying the 10^12 division on weight * * @param _weight stake weight * @param rewardPerWeight reward per weight * @return reward value normalized to 10^12 */ function weightToReward(uint256 _weight, uint256 rewardPerWeight) public pure returns (uint256) { // apply the formula and return return (_weight * rewardPerWeight) / REWARD_PER_WEIGHT_MULTIPLIER; } /** * @dev Converts reward value to stake weight (not to be mixed with the pool weight), * applying the 10^12 multiplication on the reward * - OR - * @dev Converts reward value to reward/weight if stake weight is supplied as second * function parameter instead of reward/weight * * @param reward yield reward * @param rewardPerWeight reward/weight (or stake weight) * @return stake weight (or reward/weight) */ function rewardToWeight(uint256 reward, uint256 rewardPerWeight) public pure returns (uint256) { // apply the reverse formula and return return (reward * REWARD_PER_WEIGHT_MULTIPLIER) / rewardPerWeight; } /** * @dev Testing time-dependent functionality is difficult and the best way of * doing it is to override block number in helper test smart contracts * * @return `block.number` in mainnet, custom values in testnets (if overridden) */ function blockNumber() public view virtual returns (uint256) { // return current block number return block.number; } /** * @dev Testing time-dependent functionality is difficult and the best way of * doing it is to override time in helper test smart contracts * * @return `block.timestamp` in mainnet, custom values in testnets (if overridden) */ function now256() public view virtual returns (uint256) { // return current block timestamp return block.timestamp; } /** * @dev Sets the pause status of the contract. */ function setPauseStatus(bool toPause) public onlyOwner { if (toPause) { require(!paused(), "Pausable: paused"); _pause(); } else { require(paused(), "Pausable: not paused"); _unpause(); } } /** * @dev Executes SafeERC20.safeTransfer on a pool token * * @dev Reentrancy safety enforced via `ReentrancyGuard.nonReentrant` */ function transferPoolToken(address _to, uint256 _value) internal nonReentrant { // just delegate call to the target SafeERC20.safeTransfer(IERC20(poolToken), _to, _value); } /** * @dev Executes SafeERC20.safeTransferFrom on a pool token * * @dev Reentrancy safety enforced via `ReentrancyGuard.nonReentrant` */ function transferPoolTokenFrom( address _from, address _to, uint256 _value ) internal nonReentrant { // just delegate call to the target SafeERC20.safeTransferFrom(IERC20(poolToken), _from, _to, _value); } } // SPDX-License-Identifier: MIT pragma solidity 0.8.9; import "./IPool.sol"; interface ICorePool is IPool { function poolTokenReserve() external view returns (uint256); function stakeAsPool(address _staker, uint256 _amount) external; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } uint256[49] private __gap; } // SPDX-License-Identifier: MIT pragma solidity ^0.8.9; import "../interfaces/IERC20.sol"; import "./AddressUpgradeable.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using AddressUpgradeable for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance) ); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) - value; _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance) ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } } // SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } uint256[50] private __gap; } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (utils/Address.sol) pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }