ETH Price: $2,385.66 (-1.23%)

Transaction Decoder

Block:
14638512 at Apr-23-2022 02:44:25 AM +UTC
Transaction Fee:
0.00362102151806318 ETH $8.64
Gas Used:
106,708 Gas / 33.933927335 Gwei

Emitted Events:

323 Toke.Transfer( from=[Receiver] TransparentUpgradeableProxy, to=[Sender] 0x27406377d438009e0782bbdf390736c422c71d54, value=577976350132205870950 )
324 TransparentUpgradeableProxy.0x0502837c293951f8cf960d168bcedcf3e4531ffd7010af47fe48bbff7917d9b4( 0x0502837c293951f8cf960d168bcedcf3e4531ffd7010af47fe48bbff7917d9b4, 00000000000000000000000027406377d438009e0782bbdf390736c422c71d54, 0000000000000000000000000000000000000000000000000000000000000000, 00000000000000000000000000000000000000000000001f55087c31feed5f66 )

Account State Difference:

  Address   Before After State Difference Code
0x27406377...422C71D54
100.820553232281565361 Eth
Nonce: 647
100.816932210763502181 Eth
Nonce: 648
0.00362102151806318
0x2e9d6378...9F4a38C94
(F2Pool Old)
3,872.373063392448259639 Eth3,872.373223454448259639 Eth0.000160062
0x96F98Ed7...9F43417D3
(Tokemak: Staking)

Execution Trace

TransparentUpgradeableProxy.441a3e70( )
  • Staking.withdraw( amount=577976350132205870950, scheduleIdx=0 )
    • TransparentUpgradeableProxy.STATICCALL( )
      • Manager.DELEGATECALL( )
      • Toke.transfer( recipient=0x27406377d438009E0782BBDF390736c422C71D54, amount=577976350132205870950 ) => ( True )
        File 1 of 5: TransparentUpgradeableProxy
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./UpgradeableProxy.sol";
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         */
        contract TransparentUpgradeableProxy is UpgradeableProxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
             */
            constructor(address _logic, address admin_, bytes memory _data) public payable UpgradeableProxy(_logic, _data) {
                assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                _setAdmin(admin_);
            }
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             */
            modifier ifAdmin() {
                if (msg.sender == _admin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function admin() external ifAdmin returns (address admin_) {
                admin_ = _admin();
            }
            /**
             * @dev Returns the current implementation.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function implementation() external ifAdmin returns (address implementation_) {
                implementation_ = _implementation();
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
             */
            function changeAdmin(address newAdmin) external virtual ifAdmin {
                require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
                emit AdminChanged(_admin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
             */
            function upgradeTo(address newImplementation) external virtual ifAdmin {
                _upgradeTo(newImplementation);
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
             */
            function upgradeToAndCall(address newImplementation, bytes calldata data) external payable virtual ifAdmin {
                _upgradeTo(newImplementation);
                Address.functionDelegateCall(newImplementation, data);
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address adm) {
                bytes32 slot = _ADMIN_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    adm := sload(slot)
                }
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                bytes32 slot = _ADMIN_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    sstore(slot, newAdmin)
                }
            }
            /**
             * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
             */
            function _beforeFallback() internal virtual override {
                require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                super._beforeFallback();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./Proxy.sol";
        import "../utils/Address.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         *
         * Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
         * {TransparentUpgradeableProxy}.
         */
        contract UpgradeableProxy is Proxy {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializating the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) public payable {
                assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                _setImplementation(_logic);
                if(_data.length > 0) {
                    Address.functionDelegateCall(_logic, _data);
                }
            }
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                bytes32 slot = _IMPLEMENTATION_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    impl := sload(slot)
                }
            }
            /**
             * @dev Upgrades the proxy to a new implementation.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal virtual {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
                bytes32 slot = _IMPLEMENTATION_SLOT;
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    sstore(slot, newImplementation)
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internall call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 { revert(0, returndatasize()) }
                    default { return(0, returndatasize()) }
                }
            }
            /**
             * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internall call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback () external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive () external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overriden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.2 <0.8.0;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly { size := extcodesize(account) }
                return size > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: value }(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.staticcall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        

        File 2 of 5: Toke
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
        import "@openzeppelin/contracts/token/ERC20/ERC20Pausable.sol";
        import "@openzeppelin/contracts/access/Ownable.sol";
        contract Toke is ERC20Pausable, Ownable  {
            uint256 private constant SUPPLY = 100_000_000e18;
            constructor() public ERC20("Tokemak", "TOKE")  {        
                _mint(msg.sender, SUPPLY); // 100M
            }
            function pause() external onlyOwner {        
                _pause();
            }
            function unpause() external onlyOwner {        
                _unpause();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../../utils/Context.sol";
        import "./IERC20.sol";
        import "../../math/SafeMath.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         * For a generic mechanism see {ERC20PresetMinterPauser}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * We have followed general OpenZeppelin guidelines: functions revert instead
         * of returning `false` on failure. This behavior is nonetheless conventional
         * and does not conflict with the expectations of ERC20 applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         *
         * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
         * functions have been added to mitigate the well-known issues around setting
         * allowances. See {IERC20-approve}.
         */
        contract ERC20 is Context, IERC20 {
            using SafeMath for uint256;
            mapping (address => uint256) private _balances;
            mapping (address => mapping (address => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            uint8 private _decimals;
            /**
             * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
             * a default value of 18.
             *
             * To select a different value for {decimals}, use {_setupDecimals}.
             *
             * All three of these values are immutable: they can only be set once during
             * construction.
             */
            constructor (string memory name_, string memory symbol_) public {
                _name = name_;
                _symbol = symbol_;
                _decimals = 18;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5,05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
             * called.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual returns (uint8) {
                return _decimals;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual override returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual override returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `recipient` cannot be the zero address.
             * - the caller must have a balance of at least `amount`.
             */
            function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(_msgSender(), recipient, amount);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual override returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 amount) public virtual override returns (bool) {
                _approve(_msgSender(), spender, amount);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20}.
             *
             * Requirements:
             *
             * - `sender` and `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             * - the caller must have allowance for ``sender``'s tokens of at least
             * `amount`.
             */
            function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(sender, recipient, amount);
                _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                return true;
            }
            /**
             * @dev Atomically increases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                return true;
            }
            /**
             * @dev Atomically decreases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `spender` must have allowance for the caller of at least
             * `subtractedValue`.
             */
            function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                return true;
            }
            /**
             * @dev Moves tokens `amount` from `sender` to `recipient`.
             *
             * This is internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * Requirements:
             *
             * - `sender` cannot be the zero address.
             * - `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             */
            function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                require(sender != address(0), "ERC20: transfer from the zero address");
                require(recipient != address(0), "ERC20: transfer to the zero address");
                _beforeTokenTransfer(sender, recipient, amount);
                _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                _balances[recipient] = _balances[recipient].add(amount);
                emit Transfer(sender, recipient, amount);
            }
            /** @dev Creates `amount` tokens and assigns them to `account`, increasing
             * the total supply.
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             */
            function _mint(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: mint to the zero address");
                _beforeTokenTransfer(address(0), account, amount);
                _totalSupply = _totalSupply.add(amount);
                _balances[account] = _balances[account].add(amount);
                emit Transfer(address(0), account, amount);
            }
            /**
             * @dev Destroys `amount` tokens from `account`, reducing the
             * total supply.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             * - `account` must have at least `amount` tokens.
             */
            function _burn(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: burn from the zero address");
                _beforeTokenTransfer(account, address(0), amount);
                _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                _totalSupply = _totalSupply.sub(amount);
                emit Transfer(account, address(0), amount);
            }
            /**
             * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             */
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                require(owner != address(0), "ERC20: approve from the zero address");
                require(spender != address(0), "ERC20: approve to the zero address");
                _allowances[owner][spender] = amount;
                emit Approval(owner, spender, amount);
            }
            /**
             * @dev Sets {decimals} to a value other than the default one of 18.
             *
             * WARNING: This function should only be called from the constructor. Most
             * applications that interact with token contracts will not expect
             * {decimals} to ever change, and may work incorrectly if it does.
             */
            function _setupDecimals(uint8 decimals_) internal virtual {
                _decimals = decimals_;
            }
            /**
             * @dev Hook that is called before any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * will be to transferred to `to`.
             * - when `from` is zero, `amount` tokens will be minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./ERC20.sol";
        import "../../utils/Pausable.sol";
        /**
         * @dev ERC20 token with pausable token transfers, minting and burning.
         *
         * Useful for scenarios such as preventing trades until the end of an evaluation
         * period, or having an emergency switch for freezing all token transfers in the
         * event of a large bug.
         */
        abstract contract ERC20Pausable is ERC20, Pausable {
            /**
             * @dev See {ERC20-_beforeTokenTransfer}.
             *
             * Requirements:
             *
             * - the contract must not be paused.
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
                super._beforeTokenTransfer(from, to, amount);
                require(!paused(), "ERC20Pausable: token transfer while paused");
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor () internal {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20 {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Wrappers over Solidity's arithmetic operations with added overflow
         * checks.
         *
         * Arithmetic operations in Solidity wrap on overflow. This can easily result
         * in bugs, because programmers usually assume that an overflow raises an
         * error, which is the standard behavior in high level programming languages.
         * `SafeMath` restores this intuition by reverting the transaction when an
         * operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeMath {
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
            /**
             * @dev Returns the substraction of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
            /**
             * @dev Returns the addition of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `+` operator.
             *
             * Requirements:
             *
             * - Addition cannot overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a, "SafeMath: addition overflow");
                return c;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b <= a, "SafeMath: subtraction overflow");
                return a - b;
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `*` operator.
             *
             * Requirements:
             *
             * - Multiplication cannot overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                if (a == 0) return 0;
                uint256 c = a * b;
                require(c / a == b, "SafeMath: multiplication overflow");
                return c;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b > 0, "SafeMath: division by zero");
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b > 0, "SafeMath: modulo by zero");
                return a % b;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
             * overflow (when the result is negative).
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {trySub}.
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b <= a, errorMessage);
                return a - b;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting with custom message on
             * division by zero. The result is rounded towards zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryDiv}.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting with custom message when dividing by zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryMod}.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                return a % b;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./Context.sol";
        /**
         * @dev Contract module which allows children to implement an emergency stop
         * mechanism that can be triggered by an authorized account.
         *
         * This module is used through inheritance. It will make available the
         * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
         * the functions of your contract. Note that they will not be pausable by
         * simply including this module, only once the modifiers are put in place.
         */
        abstract contract Pausable is Context {
            /**
             * @dev Emitted when the pause is triggered by `account`.
             */
            event Paused(address account);
            /**
             * @dev Emitted when the pause is lifted by `account`.
             */
            event Unpaused(address account);
            bool private _paused;
            /**
             * @dev Initializes the contract in unpaused state.
             */
            constructor () internal {
                _paused = false;
            }
            /**
             * @dev Returns true if the contract is paused, and false otherwise.
             */
            function paused() public view virtual returns (bool) {
                return _paused;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is not paused.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            modifier whenNotPaused() {
                require(!paused(), "Pausable: paused");
                _;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is paused.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            modifier whenPaused() {
                require(paused(), "Pausable: not paused");
                _;
            }
            /**
             * @dev Triggers stopped state.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            function _pause() internal virtual whenNotPaused {
                _paused = true;
                emit Paused(_msgSender());
            }
            /**
             * @dev Returns to normal state.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            function _unpause() internal virtual whenPaused {
                _paused = false;
                emit Unpaused(_msgSender());
            }
        }
        

        File 3 of 5: Staking
        // SPDX-License-Identifier: MIT
        // solhint-disable max-states-count
        pragma solidity 0.6.11;
        pragma experimental ABIEncoderV2;
        import "../interfaces/IStaking.sol";
        import "../interfaces/IManager.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
        import {SafeMathUpgradeable as SafeMath} from "@openzeppelin/contracts-upgradeable/math/SafeMathUpgradeable.sol";
        import {MathUpgradeable as Math} from "@openzeppelin/contracts-upgradeable/math/MathUpgradeable.sol";
        import {IERC20Upgradeable as IERC20} from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
        import {SafeERC20Upgradeable as SafeERC20} from "@openzeppelin/contracts-upgradeable/token/ERC20/SafeERC20Upgradeable.sol";
        import {OwnableUpgradeable as Ownable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
        import {EnumerableSetUpgradeable as EnumerableSet} from "@openzeppelin/contracts-upgradeable/utils/EnumerableSetUpgradeable.sol";
        import {PausableUpgradeable as Pausable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
        import {ReentrancyGuardUpgradeable as ReentrancyGuard} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
        import "../interfaces/events/Destinations.sol";
        import "../interfaces/events/BalanceUpdateEvent.sol";
        import "../interfaces/IDelegateFunction.sol";
        import "../interfaces/events/IEventSender.sol";
        contract Staking is IStaking, Initializable, Ownable, Pausable, ReentrancyGuard, IEventSender {
            using SafeMath for uint256;
            using SafeERC20 for IERC20;
            using EnumerableSet for EnumerableSet.UintSet;
            IERC20 public tokeToken;
            IManager public manager;
            address public treasury;
            uint256 public withheldLiquidity; // DEPRECATED
            //userAddress -> withdrawalInfo
            mapping(address => WithdrawalInfo) public requestedWithdrawals; // DEPRECATED
            //userAddress -> -> scheduleIndex -> staking detail
            mapping(address => mapping(uint256 => StakingDetails)) public userStakings;
            //userAddress -> scheduleIdx[]
            mapping(address => uint256[]) public userStakingSchedules;
            //Schedule id/index counter
            uint256 public nextScheduleIndex;
            //scheduleIndex/id -> schedule
            mapping(uint256 => StakingSchedule) public schedules;
            //scheduleIndex/id[]
            EnumerableSet.UintSet private scheduleIdxs;
            //Can deposit into a non-public schedule
            mapping(address => bool) public override permissionedDepositors;
            bool public _eventSend;
            Destinations public destinations;
            IDelegateFunction public delegateFunction; //DEPRECATED
            // ScheduleIdx => notional address
            mapping(uint256 => address) public notionalAddresses;
            // address -> scheduleIdx -> WithdrawalInfo
            mapping(address => mapping(uint256 => WithdrawalInfo)) public withdrawalRequestsByIndex;
            modifier onlyPermissionedDepositors() {
                require(_isAllowedPermissionedDeposit(), "CALLER_NOT_PERMISSIONED");
                _;
            }
            modifier onEventSend() {
                if (_eventSend) {
                    _;
                }
            }
            function initialize(
                IERC20 _tokeToken,
                IManager _manager,
                address _treasury,
                address _scheduleZeroNotional
            ) public initializer {
                __Context_init_unchained();
                __Ownable_init_unchained();
                __Pausable_init_unchained();
                require(address(_tokeToken) != address(0), "INVALID_TOKETOKEN");
                require(address(_manager) != address(0), "INVALID_MANAGER");
                require(_treasury != address(0), "INVALID_TREASURY");
                tokeToken = _tokeToken;
                manager = _manager;
                treasury = _treasury;
                //We want to be sure the schedule used for LP staking is first
                //because the order in which withdraws happen need to start with LP stakes
                _addSchedule(
                    StakingSchedule({
                        cliff: 0,
                        duration: 1,
                        interval: 1,
                        setup: true,
                        isActive: true,
                        hardStart: 0,
                        isPublic: true
                    }),
                    _scheduleZeroNotional
                );
            }
            function addSchedule(StakingSchedule memory schedule, address notional)
                external
                override
                onlyOwner
            {
                _addSchedule(schedule, notional);
            }
            function setPermissionedDepositor(address account, bool canDeposit)
                external
                override
                onlyOwner
            {
                permissionedDepositors[account] = canDeposit;
                emit PermissionedDepositorSet(account, canDeposit);
            }
            function setUserSchedules(address account, uint256[] calldata userSchedulesIdxs)
                external
                override
                onlyOwner
            {
                userStakingSchedules[account] = userSchedulesIdxs;
                emit UserSchedulesSet(account, userSchedulesIdxs);
            }
            function getSchedules()
                external
                view
                override
                returns (StakingScheduleInfo[] memory retSchedules)
            {
                uint256 length = scheduleIdxs.length();
                retSchedules = new StakingScheduleInfo[](length);
                for (uint256 i = 0; i < length; i++) {
                    retSchedules[i] = StakingScheduleInfo(
                        schedules[scheduleIdxs.at(i)],
                        scheduleIdxs.at(i)
                    );
                }
            }
            function getStakes(address account)
                external
                view
                override
                returns (StakingDetails[] memory stakes)
            {
                stakes = _getStakes(account);
            }
            function setNotionalAddresses(uint256[] calldata scheduleIdxArr, address[] calldata addresses)
                external
                override
                onlyOwner
            {
                require(scheduleIdxArr.length == addresses.length, "MISMATCH_LENGTH");
                for (uint256 i = 0; i < scheduleIdxArr.length; i++) {
                    uint256 currentScheduleIdx = scheduleIdxArr[i];
                    address currentAddress = addresses[i];
                    require(scheduleIdxs.contains(currentScheduleIdx), "INDEX_DOESNT_EXIST");
                    require(currentAddress != address(0), "INVALID_ADDRESS");
                    notionalAddresses[currentScheduleIdx] = currentAddress;
                }
                emit NotionalAddressesSet(scheduleIdxArr, addresses);
            }
            function balanceOf(address account) public view override returns (uint256 value) {
                value = 0;
                uint256 scheduleCount = userStakingSchedules[account].length;
                for (uint256 i = 0; i < scheduleCount; i++) {
                    uint256 remaining = userStakings[account][userStakingSchedules[account][i]].initial.sub(
                        userStakings[account][userStakingSchedules[account][i]].withdrawn
                    );
                    uint256 slashed = userStakings[account][userStakingSchedules[account][i]].slashed;
                    if (remaining > slashed) {
                        value = value.add(remaining.sub(slashed));
                    }
                }
            }
            function availableForWithdrawal(address account, uint256 scheduleIndex)
                external
                view
                override
                returns (uint256)
            {
                return _availableForWithdrawal(account, scheduleIndex);
            }
            function unvested(address account, uint256 scheduleIndex)
                external
                view
                override
                returns (uint256 value)
            {
                value = 0;
                StakingDetails memory stake = userStakings[account][scheduleIndex];
                value = stake.initial.sub(_vested(account, scheduleIndex));
            }
            function vested(address account, uint256 scheduleIndex)
                external
                view
                override
                returns (uint256 value)
            {
                return _vested(account, scheduleIndex);
            }
            function deposit(uint256 amount, uint256 scheduleIndex) external override {
                _depositFor(msg.sender, amount, scheduleIndex);
            }
            function deposit(uint256 amount) external override {
                _depositFor(msg.sender, amount, 0);
            }
            function depositFor(
                address account,
                uint256 amount,
                uint256 scheduleIndex
            ) external override onlyPermissionedDepositors {
                _depositFor(account, amount, scheduleIndex);
            }
            function depositWithSchedule(
                address account,
                uint256 amount,
                StakingSchedule calldata schedule,
                address notional
            ) external override onlyPermissionedDepositors {
                uint256 scheduleIx = nextScheduleIndex;
                _addSchedule(schedule, notional);
                _depositFor(account, amount, scheduleIx);
            }
            function requestWithdrawal(uint256 amount, uint256 scheduleIdx) external override {
                require(amount > 0, "INVALID_AMOUNT");
                require(scheduleIdxs.contains(scheduleIdx), "INVALID_SCHEDULE");
                uint256 availableAmount = _availableForWithdrawal(msg.sender, scheduleIdx);
                require(availableAmount >= amount, "INSUFFICIENT_AVAILABLE");
                withdrawalRequestsByIndex[msg.sender][scheduleIdx].amount = amount;
                if (manager.getRolloverStatus()) {
                    withdrawalRequestsByIndex[msg.sender][scheduleIdx].minCycleIndex = manager
                        .getCurrentCycleIndex()
                        .add(2);
                } else {
                    withdrawalRequestsByIndex[msg.sender][scheduleIdx].minCycleIndex = manager
                        .getCurrentCycleIndex()
                        .add(1);
                }
                bytes32 eventSig = "Withdrawal Request";
                StakingDetails memory userStake = userStakings[msg.sender][scheduleIdx];
                uint256 voteTotal = userStake.initial.sub((userStake.slashed.add(userStake.withdrawn))).sub(
                    amount
                );
                encodeAndSendData(eventSig, msg.sender, scheduleIdx, voteTotal);
                emit WithdrawalRequested(msg.sender, scheduleIdx, amount);
            }
            function withdraw(uint256 amount, uint256 scheduleIdx)
                external
                override
                nonReentrant
                whenNotPaused
            {
                require(amount > 0, "NO_WITHDRAWAL");
                require(scheduleIdxs.contains(scheduleIdx), "INVALID_SCHEDULE");
                _withdraw(amount, scheduleIdx);
            }
            function withdraw(uint256 amount) external override whenNotPaused nonReentrant {
                require(amount > 0, "INVALID_AMOUNT");
                _withdraw(amount, 0);
            }
            function slash(
                address[] calldata accounts,
                uint256[] calldata amounts,
                uint256 scheduleIndex
            ) external override onlyOwner whenNotPaused {
                require(accounts.length == amounts.length, "LENGTH_MISMATCH");
                StakingSchedule storage schedule = schedules[scheduleIndex];
                require(schedule.setup, "INVALID_SCHEDULE");
                for (uint256 i = 0; i < accounts.length; i++) {
                    address account = accounts[i];
                    uint256 amount = amounts[i];
                    require(amount > 0, "INVALID_AMOUNT");
                    require(account != address(0), "INVALID_ADDRESS");
                    StakingDetails memory userStake = userStakings[account][scheduleIndex];
                    require(userStake.initial > 0, "NO_VESTING");
                    uint256 availableToSlash = 0;
                    uint256 remaining = userStake.initial.sub(userStake.withdrawn);
                    if (remaining > userStake.slashed) {
                        availableToSlash = remaining.sub(userStake.slashed);
                    }
                    require(availableToSlash >= amount, "INSUFFICIENT_AVAILABLE");
                    userStake.slashed = userStake.slashed.add(amount);
                    userStakings[account][scheduleIndex] = userStake;
                    uint256 totalLeft = userStake.initial.sub((userStake.slashed.add(userStake.withdrawn)));
                    if (withdrawalRequestsByIndex[account][scheduleIndex].amount > totalLeft) {
                        withdrawalRequestsByIndex[account][scheduleIndex].amount = totalLeft;
                    }
                    uint256 voteAmount = totalLeft.sub(
                        withdrawalRequestsByIndex[account][scheduleIndex].amount
                    );
                    bytes32 eventSig = "Slashed";
                    encodeAndSendData(eventSig, account, scheduleIndex, voteAmount);
                    tokeToken.safeTransfer(treasury, amount);
                    emit Slashed(account, amount, scheduleIndex);
                }
            }
            function setScheduleStatus(uint256 scheduleId, bool activeBool) external override onlyOwner {
                StakingSchedule storage schedule = schedules[scheduleId];
                schedule.isActive = activeBool;
                emit ScheduleStatusSet(scheduleId, activeBool);
            }
            function pause() external override onlyOwner {
                _pause();
            }
            function unpause() external override onlyOwner {
                _unpause();
            }
            function setDestinations(address _fxStateSender, address _destinationOnL2)
                external
                override
                onlyOwner
            {
                require(_fxStateSender != address(0), "INVALID_ADDRESS");
                require(_destinationOnL2 != address(0), "INVALID_ADDRESS");
                destinations.fxStateSender = IFxStateSender(_fxStateSender);
                destinations.destinationOnL2 = _destinationOnL2;
                emit DestinationsSet(_fxStateSender, _destinationOnL2);
            }
            function setEventSend(bool _eventSendSet) external override onlyOwner {
                require(destinations.destinationOnL2 != address(0), "DESTINATIONS_NOT_SET");
                _eventSend = _eventSendSet;
                emit EventSendSet(_eventSendSet);
            }
            function _availableForWithdrawal(address account, uint256 scheduleIndex)
                private
                view
                returns (uint256)
            {
                StakingDetails memory stake = userStakings[account][scheduleIndex];
                uint256 vestedWoWithdrawn = _vested(account, scheduleIndex).sub(stake.withdrawn);
                if (stake.slashed > vestedWoWithdrawn) return 0;
                return vestedWoWithdrawn.sub(stake.slashed);
            }
            function _depositFor(
                address account,
                uint256 amount,
                uint256 scheduleIndex
            ) private nonReentrant whenNotPaused {
                StakingSchedule memory schedule = schedules[scheduleIndex];
                require(amount > 0, "INVALID_AMOUNT");
                require(schedule.setup, "INVALID_SCHEDULE");
                require(schedule.isActive, "INACTIVE_SCHEDULE");
                require(account != address(0), "INVALID_ADDRESS");
                require(schedule.isPublic || _isAllowedPermissionedDeposit(), "PERMISSIONED_SCHEDULE");
                StakingDetails memory userStake = _updateStakingDetails(scheduleIndex, account, amount);
                bytes32 eventSig = "Deposit";
                uint256 voteTotal = userStake.initial.sub((userStake.slashed.add(userStake.withdrawn))).sub(
                    withdrawalRequestsByIndex[account][scheduleIndex].amount
                );
                encodeAndSendData(eventSig, account, scheduleIndex, voteTotal);
                tokeToken.safeTransferFrom(msg.sender, address(this), amount);
                emit Deposited(account, amount, scheduleIndex);
            }
            function _withdraw(uint256 amount, uint256 scheduleIdx) private {
                WithdrawalInfo memory request = withdrawalRequestsByIndex[msg.sender][scheduleIdx];
                require(amount <= request.amount, "INSUFFICIENT_AVAILABLE");
                require(request.minCycleIndex <= manager.getCurrentCycleIndex(), "INVALID_CYCLE");
                StakingDetails memory userStake = userStakings[msg.sender][scheduleIdx];
                userStake.withdrawn = userStake.withdrawn.add(amount);
                userStakings[msg.sender][scheduleIdx] = userStake;
                request.amount = request.amount.sub(amount);
                withdrawalRequestsByIndex[msg.sender][scheduleIdx] = request;
                if (request.amount == 0) {
                    delete withdrawalRequestsByIndex[msg.sender][scheduleIdx];
                }
                tokeToken.safeTransfer(msg.sender, amount);
                emit WithdrawCompleted(msg.sender, scheduleIdx, amount);
            }
            function _vested(address account, uint256 scheduleIndex) private view returns (uint256) {
                // solhint-disable-next-line not-rely-on-time
                uint256 timestamp = block.timestamp;
                uint256 value = 0;
                StakingDetails memory stake = userStakings[account][scheduleIndex];
                StakingSchedule memory schedule = schedules[scheduleIndex];
                uint256 cliffTimestamp = stake.started.add(schedule.cliff);
                if (cliffTimestamp <= timestamp) {
                    if (cliffTimestamp.add(schedule.duration) <= timestamp) {
                        value = stake.initial;
                    } else {
                        uint256 secondsStaked = Math.max(timestamp.sub(cliffTimestamp), 1);
                        //Precision loss is intentional. Enables the interval buckets
                        uint256 effectiveSecondsStaked = (secondsStaked.div(schedule.interval)).mul(
                            schedule.interval
                        );
                        value = stake.initial.mul(effectiveSecondsStaked).div(schedule.duration);
                    }
                }
                return value;
            }
            function _addSchedule(StakingSchedule memory schedule, address notional) private {
                require(schedule.duration > 0, "INVALID_DURATION");
                require(schedule.interval > 0, "INVALID_INTERVAL");
                require(notional != address(0), "INVALID_ADDRESS");
                schedule.setup = true;
                uint256 index = nextScheduleIndex;
                schedules[index] = schedule;
                notionalAddresses[index] = notional;
                require(scheduleIdxs.add(index), "ADD_FAIL");
                nextScheduleIndex = nextScheduleIndex.add(1);
                emit ScheduleAdded(
                    index,
                    schedule.cliff,
                    schedule.duration,
                    schedule.interval,
                    schedule.setup,
                    schedule.isActive,
                    schedule.hardStart,
                    notional
                );
            }
            function _getStakes(address account) private view returns (StakingDetails[] memory stakes) {
                uint256 stakeCnt = userStakingSchedules[account].length;
                stakes = new StakingDetails[](stakeCnt);
                for (uint256 i = 0; i < stakeCnt; i++) {
                    stakes[i] = userStakings[account][userStakingSchedules[account][i]];
                }
            }
            function _isAllowedPermissionedDeposit() private view returns (bool) {
                return permissionedDepositors[msg.sender] || msg.sender == owner();
            }
            function encodeAndSendData(
                bytes32 _eventSig,
                address _user,
                uint256 _scheduleIdx,
                uint256 _userBalance
            ) private onEventSend {
                require(address(destinations.fxStateSender) != address(0), "ADDRESS_NOT_SET");
                require(destinations.destinationOnL2 != address(0), "ADDRESS_NOT_SET");
                address notionalAddress = notionalAddresses[_scheduleIdx];
                bytes memory data = abi.encode(
                    BalanceUpdateEvent({
                        eventSig: _eventSig,
                        account: _user,
                        token: notionalAddress,
                        amount: _userBalance
                    })
                );
                destinations.fxStateSender.sendMessageToChild(destinations.destinationOnL2, data);
            }
            function _updateStakingDetails(
                uint256 scheduleIdx,
                address account,
                uint256 amount
            ) private returns (StakingDetails memory) {
                StakingDetails memory stake = userStakings[account][scheduleIdx];
                if (stake.started == 0) {
                    userStakingSchedules[account].push(scheduleIdx);
                    StakingSchedule memory schedule = schedules[scheduleIdx];
                    if (schedule.hardStart > 0) {
                        stake.started = schedule.hardStart;
                    } else {
                        //solhint-disable-next-line not-rely-on-time
                        stake.started = block.timestamp;
                    }
                }
                stake.initial = stake.initial.add(amount);
                stake.scheduleIx = scheduleIdx;
                userStakings[account][scheduleIdx] = stake;
                return stake;
            }
            function depositWithdrawEvent(
                address withdrawUser,
                uint256 withdrawAmount,
                uint256 withdrawScheduleIdx,
                address depositUser,
                uint256 depositAmount,
                uint256 depositScheduleIdx
            ) private {
                bytes32 withdrawEvent = "Withdraw";
                bytes32 depositEvent = "Deposit";
                encodeAndSendData(withdrawEvent, withdrawUser, withdrawScheduleIdx, withdrawAmount);
                encodeAndSendData(depositEvent, depositUser, depositScheduleIdx, depositAmount);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        pragma experimental ABIEncoderV2;
        /**
         *  @title Allows for the staking and vesting of TOKE for
         *  liquidity directors. Schedules can be added to enable various
         *  cliff+duration/interval unlock periods for vesting tokens.
         */
        interface IStaking {
            struct StakingSchedule {
                uint256 cliff; // Duration in seconds before staking starts
                uint256 duration; // Seconds it takes for entire amount to stake
                uint256 interval; // Seconds it takes for a chunk to stake
                bool setup; //Just so we know its there
                bool isActive; //Whether we can setup new stakes with the schedule
                uint256 hardStart; //Stakings will always start at this timestamp if set
                bool isPublic; //Schedule can be written to by any account
            }
            struct StakingScheduleInfo {
                StakingSchedule schedule;
                uint256 index;
            }
            struct StakingDetails {
                uint256 initial; //Initial amount of asset when stake was created, total amount to be staked before slashing
                uint256 withdrawn; //Amount that was staked and subsequently withdrawn
                uint256 slashed; //Amount that has been slashed
                uint256 started; //Timestamp at which the stake started
                uint256 scheduleIx;
            }
            struct WithdrawalInfo {
                uint256 minCycleIndex;
                uint256 amount;
            }
            struct QueuedTransfer {
                address from;
                uint256 scheduleIdxFrom;
                uint256 scheduleIdxTo;
                uint256 amount;
                address to;
            }
            event ScheduleAdded(
                uint256 scheduleIndex,
                uint256 cliff,
                uint256 duration,
                uint256 interval,
                bool setup,
                bool isActive,
                uint256 hardStart,
                address notional
            );
            event ScheduleRemoved(uint256 scheduleIndex);
            event WithdrawalRequested(address account, uint256 scheduleIdx, uint256 amount);
            event WithdrawCompleted(address account, uint256 scheduleIdx, uint256 amount);
            event Deposited(address account, uint256 amount, uint256 scheduleIx);
            event Slashed(address account, uint256 amount, uint256 scheduleIx);
            event PermissionedDepositorSet(address depositor, bool allowed);
            event UserSchedulesSet(address account, uint256[] userSchedulesIdxs);
            event NotionalAddressesSet(uint256[] scheduleIdxs, address[] addresses);
            event ScheduleStatusSet(uint256 scheduleId, bool isActive);
            event StakeTransferred(
                address from,
                uint256 scheduleFrom,
                uint256 scheduleTo,
                uint256 amount,
                address to
            );
            event ZeroSweep(address user, uint256 amount, uint256 scheduleFrom);
            event TransferApproverSet(address approverAddress);
            event TransferQueued(
                address from,
                uint256 scheduleFrom,
                uint256 scheduleTo,
                uint256 amount,
                address to
            );
            event QueuedTransferRemoved(
                address from,
                uint256 scheduleFrom,
                uint256 scheduleTo,
                uint256 amount,
                address to
            );
            event QueuedTransferRejected(
                address from,
                uint256 scheduleFrom,
                uint256 scheduleTo,
                uint256 amount,
                address to
            );
            ///@notice Allows for checking of user address in permissionedDepositors mapping
            ///@param account Address of account being checked
            ///@return Boolean, true if address exists in mapping
            function permissionedDepositors(address account) external returns (bool);
            ///@notice Allows owner to set a multitude of schedules that an address has access to
            ///@param account User address
            ///@param userSchedulesIdxs Array of schedule indexes
            function setUserSchedules(address account, uint256[] calldata userSchedulesIdxs) external;
            ///@notice Allows owner to add schedule
            ///@param schedule A StakingSchedule struct that contains all info needed to make a schedule
            ///@param notional Notional addrss for schedule, used to send balances to L2 for voting purposes
            function addSchedule(StakingSchedule memory schedule, address notional) external;
            ///@notice Gets all info on all schedules
            ///@return retSchedules An array of StakingScheduleInfo struct
            function getSchedules() external view returns (StakingScheduleInfo[] memory retSchedules);
            ///@notice Allows owner to set a permissioned depositor
            ///@param account User address
            ///@param canDeposit Boolean representing whether user can deposit
            function setPermissionedDepositor(address account, bool canDeposit) external;
            ///@notice Allows a user to get the stakes of an account
            ///@param account Address that is being checked for stakes
            ///@return stakes StakingDetails array containing info about account's stakes
            function getStakes(address account) external view returns (StakingDetails[] memory stakes);
            ///@notice Gets total value staked for an address across all schedules
            ///@param account Address for which total stake is being calculated
            ///@return value uint256 total of account
            function balanceOf(address account) external view returns (uint256 value);
            ///@notice Returns amount available to withdraw for an account and schedule Index
            ///@param account Address that is being checked for withdrawals
            ///@param scheduleIndex Index of schedule that is being checked for withdrawals
            function availableForWithdrawal(address account, uint256 scheduleIndex)
                external
                view
                returns (uint256);
            ///@notice Returns unvested amount for certain address and schedule index
            ///@param account Address being checked for unvested amount
            ///@param scheduleIndex Schedule index being checked for unvested amount
            ///@return value Uint256 representing unvested amount
            function unvested(address account, uint256 scheduleIndex) external view returns (uint256 value);
            ///@notice Returns vested amount for address and schedule index
            ///@param account Address being checked for vested amount
            ///@param scheduleIndex Schedule index being checked for vested amount
            ///@return value Uint256 vested
            function vested(address account, uint256 scheduleIndex) external view returns (uint256 value);
            ///@notice Allows user to deposit token to specific vesting / staking schedule
            ///@param amount Uint256 amount to be deposited
            ///@param scheduleIndex Uint256 representing schedule to user
            function deposit(uint256 amount, uint256 scheduleIndex) external;
            /// @notice Allows users to deposit into 0 schedule
            /// @param amount Deposit amount
            function deposit(uint256 amount) external;
            ///@notice Allows account to deposit on behalf of other account
            ///@param account Account to be deposited for
            ///@param amount Amount to be deposited
            ///@param scheduleIndex Index of schedule to be used for deposit
            function depositFor(
                address account,
                uint256 amount,
                uint256 scheduleIndex
            ) external;
            ///@notice Allows permissioned depositors to deposit into custom schedule
            ///@param account Address of account being deposited for
            ///@param amount Uint256 amount being deposited
            ///@param schedule StakingSchedule struct containing details needed for new schedule
            ///@param notional Notional address attached to schedule, allows for different voting weights on L2
            function depositWithSchedule(
                address account,
                uint256 amount,
                StakingSchedule calldata schedule,
                address notional
            ) external;
            ///@notice User can request withdrawal from staking contract at end of cycle
            ///@notice Performs checks to make sure amount <= amount available
            ///@param amount Amount to withdraw
            ///@param scheduleIdx Schedule index for withdrawal Request
            function requestWithdrawal(uint256 amount, uint256 scheduleIdx) external;
            ///@notice Allows for withdrawal after successful withdraw request and proper amount of cycles passed
            ///@param amount Amount to withdraw
            ///@param scheduleIdx Schedule to withdraw from
            function withdraw(uint256 amount, uint256 scheduleIdx) external;
            /// @notice Allows owner to set schedule to active or not
            /// @param scheduleIndex Schedule index to set isActive boolean
            /// @param activeBoolean Bool to set schedule active or not
            function setScheduleStatus(uint256 scheduleIndex, bool activeBoolean) external;
            /// @notice Pause deposits on the pool. Withdraws still allowed
            function pause() external;
            /// @notice Unpause deposits on the pool.
            function unpause() external;
            /// @notice Used to slash user funds when needed
            /// @notice accounts and amounts arrays must be same length
            /// @notice Only one scheduleIndex can be slashed at a time
            /// @dev Implementation must be restructed to owner account
            /// @param accounts Array of accounts to slash
            /// @param amounts Array of amounts that corresponds with accounts
            /// @param scheduleIndex scheduleIndex of users that are being slashed
            function slash(
                address[] calldata accounts,
                uint256[] calldata amounts,
                uint256 scheduleIndex
            ) external;
            /// @notice Set the address used to denote the token amount for a particular schedule
            /// @dev Relates to the Balance Tracker tracking of tokens and balances. Each schedule is tracked separately
            function setNotionalAddresses(uint256[] calldata scheduleIdxArr, address[] calldata addresses)
                external;
            /// @notice Withdraw from the default schedule. Must have a request in previously
            /// @param amount Amount to withdraw
            function withdraw(uint256 amount) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        pragma experimental ABIEncoderV2;
        /**
         *  @title Controls the transition and execution of liquidity deployment cycles.
         *  Accepts instructions that can move assets from the Pools to the Exchanges
         *  and back. Can also move assets to the treasury when appropriate.
         */
        interface IManager {
            // bytes can take on the form of deploying or recovering liquidity
            struct ControllerTransferData {
                bytes32 controllerId; // controller to target
                bytes data; // data the controller will pass
            }
            struct PoolTransferData {
                address pool; // pool to target
                uint256 amount; // amount to transfer
            }
            struct MaintenanceExecution {
                ControllerTransferData[] cycleSteps;
            }
            struct RolloverExecution {
                PoolTransferData[] poolData;
                ControllerTransferData[] cycleSteps;
                address[] poolsForWithdraw; //Pools to target for manager -> pool transfer
                bool complete; //Whether to mark the rollover complete
                string rewardsIpfsHash;
            }
            event ControllerRegistered(bytes32 id, address controller);
            event ControllerUnregistered(bytes32 id, address controller);
            event PoolRegistered(address pool);
            event PoolUnregistered(address pool);
            event CycleDurationSet(uint256 duration);
            event LiquidityMovedToManager(address pool, uint256 amount);
            event DeploymentStepExecuted(bytes32 controller, address adapaterAddress, bytes data);
            event LiquidityMovedToPool(address pool, uint256 amount);
            event CycleRolloverStarted(uint256 timestamp);
            event CycleRolloverComplete(uint256 timestamp);
            event NextCycleStartSet(uint256 nextCycleStartTime);
            event ManagerSwept(address[] addresses, uint256[] amounts);
            /// @notice Registers controller
            /// @param id Bytes32 id of controller
            /// @param controller Address of controller
            function registerController(bytes32 id, address controller) external;
            /// @notice Registers pool
            /// @param pool Address of pool
            function registerPool(address pool) external;
            /// @notice Unregisters controller
            /// @param id Bytes32 controller id
            function unRegisterController(bytes32 id) external;
            /// @notice Unregisters pool
            /// @param pool Address of pool
            function unRegisterPool(address pool) external;
            ///@notice Gets addresses of all pools registered
            ///@return Memory array of pool addresses
            function getPools() external view returns (address[] memory);
            ///@notice Gets ids of all controllers registered
            ///@return Memory array of Bytes32 controller ids
            function getControllers() external view returns (bytes32[] memory);
            ///@notice Allows for owner to set cycle duration
            ///@param duration Block durtation of cycle
            function setCycleDuration(uint256 duration) external;
            ///@notice Starts cycle rollover
            ///@dev Sets rolloverStarted state boolean to true
            function startCycleRollover() external;
            ///@notice Allows for controller commands to be executed midcycle
            ///@param params Contains data for controllers and params
            function executeMaintenance(MaintenanceExecution calldata params) external;
            ///@notice Allows for withdrawals and deposits for pools along with liq deployment
            ///@param params Contains various data for executing against pools and controllers
            function executeRollover(RolloverExecution calldata params) external;
            ///@notice Completes cycle rollover, publishes rewards hash to ipfs
            ///@param rewardsIpfsHash rewards hash uploaded to ipfs
            function completeRollover(string calldata rewardsIpfsHash) external;
            ///@notice Gets reward hash by cycle index
            ///@param index Cycle index to retrieve rewards hash
            ///@return String memory hash
            function cycleRewardsHashes(uint256 index) external view returns (string memory);
            ///@notice Gets current starting block
            ///@return uint256 with block number
            function getCurrentCycle() external view returns (uint256);
            ///@notice Gets current cycle index
            ///@return uint256 current cycle number
            function getCurrentCycleIndex() external view returns (uint256);
            ///@notice Gets current cycle duration
            ///@return uint256 in block of cycle duration
            function getCycleDuration() external view returns (uint256);
            ///@notice Gets cycle rollover status, true for rolling false for not
            ///@return Bool representing whether cycle is rolling over or not
            function getRolloverStatus() external view returns (bool);
            /// @notice Sets next cycle start time manually
            /// @param nextCycleStartTime uint256 that represents start of next cycle
            function setNextCycleStartTime(uint256 nextCycleStartTime) external;
            /// @notice Sweeps amanager contract for any leftover funds
            /// @param addresses array of addresses of pools to sweep funds into
            function sweep(address[] calldata addresses) external;
            /// @notice Setup a role using internal function _setupRole
            /// @param role keccak256 of the role keccak256("MY_ROLE");
            function setupRole(bytes32 role) external;
        }
        // SPDX-License-Identifier: MIT
        // solhint-disable-next-line compiler-version
        pragma solidity >=0.4.24 <0.8.0;
        import "../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             */
            bool private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Modifier to protect an initializer function from being invoked twice.
             */
            modifier initializer() {
                require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
                bool isTopLevelCall = !_initializing;
                if (isTopLevelCall) {
                    _initializing = true;
                    _initialized = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                }
            }
            /// @dev Returns true if and only if the function is running in the constructor
            function _isConstructor() private view returns (bool) {
                return !AddressUpgradeable.isContract(address(this));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Wrappers over Solidity's arithmetic operations with added overflow
         * checks.
         *
         * Arithmetic operations in Solidity wrap on overflow. This can easily result
         * in bugs, because programmers usually assume that an overflow raises an
         * error, which is the standard behavior in high level programming languages.
         * `SafeMath` restores this intuition by reverting the transaction when an
         * operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeMathUpgradeable {
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
            /**
             * @dev Returns the substraction of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
            /**
             * @dev Returns the addition of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `+` operator.
             *
             * Requirements:
             *
             * - Addition cannot overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a, "SafeMath: addition overflow");
                return c;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b <= a, "SafeMath: subtraction overflow");
                return a - b;
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `*` operator.
             *
             * Requirements:
             *
             * - Multiplication cannot overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                if (a == 0) return 0;
                uint256 c = a * b;
                require(c / a == b, "SafeMath: multiplication overflow");
                return c;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b > 0, "SafeMath: division by zero");
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b > 0, "SafeMath: modulo by zero");
                return a % b;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
             * overflow (when the result is negative).
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {trySub}.
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b <= a, errorMessage);
                return a - b;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting with custom message on
             * division by zero. The result is rounded towards zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryDiv}.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting with custom message when dividing by zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryMod}.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                return a % b;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Standard math utilities missing in the Solidity language.
         */
        library MathUpgradeable {
            /**
             * @dev Returns the largest of two numbers.
             */
            function max(uint256 a, uint256 b) internal pure returns (uint256) {
                return a >= b ? a : b;
            }
            /**
             * @dev Returns the smallest of two numbers.
             */
            function min(uint256 a, uint256 b) internal pure returns (uint256) {
                return a < b ? a : b;
            }
            /**
             * @dev Returns the average of two numbers. The result is rounded towards
             * zero.
             */
            function average(uint256 a, uint256 b) internal pure returns (uint256) {
                // (a + b) / 2 can overflow, so we distribute
                return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20Upgradeable {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./IERC20Upgradeable.sol";
        import "../../math/SafeMathUpgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20Upgradeable {
            using SafeMathUpgradeable for uint256;
            using AddressUpgradeable for address;
            function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
            function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
            /**
             * @dev Deprecated. This function has issues similar to the ones found in
             * {IERC20-approve}, and its usage is discouraged.
             *
             * Whenever possible, use {safeIncreaseAllowance} and
             * {safeDecreaseAllowance} instead.
             */
            function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
                // safeApprove should only be called when setting an initial allowance,
                // or when resetting it to zero. To increase and decrease it, use
                // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                // solhint-disable-next-line max-line-length
                require((value == 0) || (token.allowance(address(this), spender) == 0),
                    "SafeERC20: approve from non-zero to non-zero allowance"
                );
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
            function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
                uint256 newAllowance = token.allowance(address(this), spender).add(value);
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
            function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
                uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             */
            function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                // the target address contains contract code and also asserts for success in the low-level call.
                bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                if (returndata.length > 0) { // Return data is optional
                    // solhint-disable-next-line max-line-length
                    require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/Initializable.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            function __Ownable_init() internal initializer {
                __Context_init_unchained();
                __Ownable_init_unchained();
            }
            function __Ownable_init_unchained() internal initializer {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Library for managing
         * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
         * types.
         *
         * Sets have the following properties:
         *
         * - Elements are added, removed, and checked for existence in constant time
         * (O(1)).
         * - Elements are enumerated in O(n). No guarantees are made on the ordering.
         *
         * ```
         * contract Example {
         *     // Add the library methods
         *     using EnumerableSet for EnumerableSet.AddressSet;
         *
         *     // Declare a set state variable
         *     EnumerableSet.AddressSet private mySet;
         * }
         * ```
         *
         * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
         * and `uint256` (`UintSet`) are supported.
         */
        library EnumerableSetUpgradeable {
            // To implement this library for multiple types with as little code
            // repetition as possible, we write it in terms of a generic Set type with
            // bytes32 values.
            // The Set implementation uses private functions, and user-facing
            // implementations (such as AddressSet) are just wrappers around the
            // underlying Set.
            // This means that we can only create new EnumerableSets for types that fit
            // in bytes32.
            struct Set {
                // Storage of set values
                bytes32[] _values;
                // Position of the value in the `values` array, plus 1 because index 0
                // means a value is not in the set.
                mapping (bytes32 => uint256) _indexes;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function _add(Set storage set, bytes32 value) private returns (bool) {
                if (!_contains(set, value)) {
                    set._values.push(value);
                    // The value is stored at length-1, but we add 1 to all indexes
                    // and use 0 as a sentinel value
                    set._indexes[value] = set._values.length;
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function _remove(Set storage set, bytes32 value) private returns (bool) {
                // We read and store the value's index to prevent multiple reads from the same storage slot
                uint256 valueIndex = set._indexes[value];
                if (valueIndex != 0) { // Equivalent to contains(set, value)
                    // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                    // the array, and then remove the last element (sometimes called as 'swap and pop').
                    // This modifies the order of the array, as noted in {at}.
                    uint256 toDeleteIndex = valueIndex - 1;
                    uint256 lastIndex = set._values.length - 1;
                    // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
                    // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
                    bytes32 lastvalue = set._values[lastIndex];
                    // Move the last value to the index where the value to delete is
                    set._values[toDeleteIndex] = lastvalue;
                    // Update the index for the moved value
                    set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
                    // Delete the slot where the moved value was stored
                    set._values.pop();
                    // Delete the index for the deleted slot
                    delete set._indexes[value];
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function _contains(Set storage set, bytes32 value) private view returns (bool) {
                return set._indexes[value] != 0;
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function _length(Set storage set) private view returns (uint256) {
                return set._values.length;
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function _at(Set storage set, uint256 index) private view returns (bytes32) {
                require(set._values.length > index, "EnumerableSet: index out of bounds");
                return set._values[index];
            }
            // Bytes32Set
            struct Bytes32Set {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                return _add(set._inner, value);
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                return _remove(set._inner, value);
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
                return _contains(set._inner, value);
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(Bytes32Set storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
                return _at(set._inner, index);
            }
            // AddressSet
            struct AddressSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(AddressSet storage set, address value) internal returns (bool) {
                return _add(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(AddressSet storage set, address value) internal returns (bool) {
                return _remove(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(AddressSet storage set, address value) internal view returns (bool) {
                return _contains(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(AddressSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(AddressSet storage set, uint256 index) internal view returns (address) {
                return address(uint160(uint256(_at(set._inner, index))));
            }
            // UintSet
            struct UintSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(UintSet storage set, uint256 value) internal returns (bool) {
                return _add(set._inner, bytes32(value));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(UintSet storage set, uint256 value) internal returns (bool) {
                return _remove(set._inner, bytes32(value));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(UintSet storage set, uint256 value) internal view returns (bool) {
                return _contains(set._inner, bytes32(value));
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function length(UintSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(UintSet storage set, uint256 index) internal view returns (uint256) {
                return uint256(_at(set._inner, index));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./ContextUpgradeable.sol";
        import "../proxy/Initializable.sol";
        /**
         * @dev Contract module which allows children to implement an emergency stop
         * mechanism that can be triggered by an authorized account.
         *
         * This module is used through inheritance. It will make available the
         * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
         * the functions of your contract. Note that they will not be pausable by
         * simply including this module, only once the modifiers are put in place.
         */
        abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
            /**
             * @dev Emitted when the pause is triggered by `account`.
             */
            event Paused(address account);
            /**
             * @dev Emitted when the pause is lifted by `account`.
             */
            event Unpaused(address account);
            bool private _paused;
            /**
             * @dev Initializes the contract in unpaused state.
             */
            function __Pausable_init() internal initializer {
                __Context_init_unchained();
                __Pausable_init_unchained();
            }
            function __Pausable_init_unchained() internal initializer {
                _paused = false;
            }
            /**
             * @dev Returns true if the contract is paused, and false otherwise.
             */
            function paused() public view virtual returns (bool) {
                return _paused;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is not paused.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            modifier whenNotPaused() {
                require(!paused(), "Pausable: paused");
                _;
            }
            /**
             * @dev Modifier to make a function callable only when the contract is paused.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            modifier whenPaused() {
                require(paused(), "Pausable: not paused");
                _;
            }
            /**
             * @dev Triggers stopped state.
             *
             * Requirements:
             *
             * - The contract must not be paused.
             */
            function _pause() internal virtual whenNotPaused {
                _paused = true;
                emit Paused(_msgSender());
            }
            /**
             * @dev Returns to normal state.
             *
             * Requirements:
             *
             * - The contract must be paused.
             */
            function _unpause() internal virtual whenPaused {
                _paused = false;
                emit Unpaused(_msgSender());
            }
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../proxy/Initializable.sol";
        /**
         * @dev Contract module that helps prevent reentrant calls to a function.
         *
         * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
         * available, which can be applied to functions to make sure there are no nested
         * (reentrant) calls to them.
         *
         * Note that because there is a single `nonReentrant` guard, functions marked as
         * `nonReentrant` may not call one another. This can be worked around by making
         * those functions `private`, and then adding `external` `nonReentrant` entry
         * points to them.
         *
         * TIP: If you would like to learn more about reentrancy and alternative ways
         * to protect against it, check out our blog post
         * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
         */
        abstract contract ReentrancyGuardUpgradeable is Initializable {
            // Booleans are more expensive than uint256 or any type that takes up a full
            // word because each write operation emits an extra SLOAD to first read the
            // slot's contents, replace the bits taken up by the boolean, and then write
            // back. This is the compiler's defense against contract upgrades and
            // pointer aliasing, and it cannot be disabled.
            // The values being non-zero value makes deployment a bit more expensive,
            // but in exchange the refund on every call to nonReentrant will be lower in
            // amount. Since refunds are capped to a percentage of the total
            // transaction's gas, it is best to keep them low in cases like this one, to
            // increase the likelihood of the full refund coming into effect.
            uint256 private constant _NOT_ENTERED = 1;
            uint256 private constant _ENTERED = 2;
            uint256 private _status;
            function __ReentrancyGuard_init() internal initializer {
                __ReentrancyGuard_init_unchained();
            }
            function __ReentrancyGuard_init_unchained() internal initializer {
                _status = _NOT_ENTERED;
            }
            /**
             * @dev Prevents a contract from calling itself, directly or indirectly.
             * Calling a `nonReentrant` function from another `nonReentrant`
             * function is not supported. It is possible to prevent this from happening
             * by making the `nonReentrant` function external, and make it call a
             * `private` function that does the actual work.
             */
            modifier nonReentrant() {
                // On the first call to nonReentrant, _notEntered will be true
                require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
                // Any calls to nonReentrant after this point will fail
                _status = _ENTERED;
                _;
                // By storing the original value once again, a refund is triggered (see
                // https://eips.ethereum.org/EIPS/eip-2200)
                _status = _NOT_ENTERED;
            }
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        import "../../fxPortal/IFxStateSender.sol";
        /// @notice Configuration entity for sending events to Governance layer
        struct Destinations {
            IFxStateSender fxStateSender;
            address destinationOnL2;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        /// @notice Event sent to Governance layer when a users balance changes
        struct BalanceUpdateEvent {
            bytes32 eventSig;
            address account;
            address token;
            uint256 amount;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        pragma experimental ABIEncoderV2;
        import "./structs/DelegateMapView.sol";
        import "./structs/Signature.sol";
        /**
         *   @title Manages the state of an accounts delegation settings.
         *   Allows for various methods of validation as well as enabling
         *   different system functions to be delegated to different accounts
         */
        interface IDelegateFunction {
            struct AllowedFunctionSet {
                bytes32 id;
            }
            struct FunctionsListPayload {
                bytes32[] sets;
                uint256 nonce;
            }
            struct DelegatePayload {
                DelegateMap[] sets;
                uint256 nonce;
            }
            struct DelegateMap {
                bytes32 functionId;
                address otherParty;
                bool mustRelinquish;
            }
            struct Destination {
                address otherParty;
                bool mustRelinquish;
                bool pending;
            }
            struct DelegatedTo {
                address originalParty;
                bytes32 functionId;
            }
            event AllowedFunctionsSet(AllowedFunctionSet[] functions);
            event PendingDelegationAdded(address from, address to, bytes32 functionId, bool mustRelinquish);
            event PendingDelegationRemoved(
                address from,
                address to,
                bytes32 functionId,
                bool mustRelinquish
            );
            event DelegationRemoved(address from, address to, bytes32 functionId, bool mustRelinquish);
            event DelegationRelinquished(address from, address to, bytes32 functionId, bool mustRelinquish);
            event DelegationAccepted(address from, address to, bytes32 functionId, bool mustRelinquish);
            event DelegationRejected(address from, address to, bytes32 functionId, bool mustRelinquish);
            /// @notice Get the current nonce a contract wallet should use
            /// @param account Account to query
            /// @return nonce Nonce that should be used for next call
            function contractWalletNonces(address account) external returns (uint256 nonce);
            /// @notice Get an accounts current delegations
            /// @dev These may be in a pending state
            /// @param from Account that is delegating functions away
            /// @return maps List of delegations in various states of approval
            function getDelegations(address from) external view returns (DelegateMapView[] memory maps);
            /// @notice Get an accounts delegation of a specific function
            /// @dev These may be in a pending state
            /// @param from Account that is the delegation functions away
            /// @return map Delegation info
            function getDelegation(address from, bytes32 functionId)
                external
                view
                returns (DelegateMapView memory map);
            /// @notice Initiate delegation of one or more system functions to different account(s)
            /// @param sets Delegation instructions for the contract to initiate
            function delegate(DelegateMap[] memory sets) external;
            /// @notice Initiate delegation on behalf of a contract that supports ERC1271
            /// @param contractAddress Address of the ERC1271 contract used to verify the given signature
            /// @param delegatePayload Sets of DelegateMap objects
            /// @param signature Signature data
            /// @param signatureType Type of signature used (EIP712|EthSign)
            function delegateWithEIP1271(
                address contractAddress,
                DelegatePayload memory delegatePayload,
                bytes memory signature,
                SignatureType signatureType
            ) external;
            /// @notice Accept one or more delegations from another account
            /// @param incoming Delegation details being accepted
            function acceptDelegation(DelegatedTo[] calldata incoming) external;
            /// @notice Remove one or more delegation that you have previously setup
            function removeDelegation(bytes32[] calldata functionIds) external;
            /// @notice Remove one or more delegations that you have previously setup on behalf of a contract supporting EIP1271
            /// @param contractAddress Address of the ERC1271 contract used to verify the given signature
            /// @param functionsListPayload Sets of FunctionListPayload objects ({sets: bytes32[]})
            /// @param signature Signature data
            /// @param signatureType Type of signature used (EIP712|EthSign)
            function removeDelegationWithEIP1271(
                address contractAddress,
                FunctionsListPayload calldata functionsListPayload,
                bytes memory signature,
                SignatureType signatureType
            ) external;
            /// @notice Reject one or more delegations being sent to you
            /// @param rejections Delegations to reject
            function rejectDelegation(DelegatedTo[] calldata rejections) external;
            /// @notice Remove one or more delegations that you have previously accepted
            function relinquishDelegation(DelegatedTo[] calldata relinquish) external;
            /// @notice Cancel one or more delegations you have setup but that has not yet been accepted
            /// @param functionIds System functions you wish to retain control of
            function cancelPendingDelegation(bytes32[] calldata functionIds) external;
            /// @notice Cancel one or more delegations you have setup on behalf of a contract that supported EIP1271, but that has not yet been accepted
            /// @param contractAddress Address of the ERC1271 contract used to verify the given signature
            /// @param functionsListPayload Sets of FunctionListPayload objects ({sets: bytes32[]})
            /// @param signature Signature data
            /// @param signatureType Type of signature used (EIP712|EthSign)
            function cancelPendingDelegationWithEIP1271(
                address contractAddress,
                FunctionsListPayload calldata functionsListPayload,
                bytes memory signature,
                SignatureType signatureType
            ) external;
            /// @notice Add to the list of system functions that are allowed to be delegated
            /// @param functions New system function ids
            function setAllowedFunctions(AllowedFunctionSet[] calldata functions) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        pragma experimental ABIEncoderV2;
        import "./Destinations.sol";
        interface IEventSender {
            event DestinationsSet(address fxStateSender, address destinationOnL2);
            event EventSendSet(bool eventSendSet);
            /// @notice Configure the Polygon state sender root and destination for messages sent
            /// @param fxStateSender Address of Polygon State Sender Root contract
            /// @param destinationOnL2 Destination address of events sent. Should be our Event Proxy
            function setDestinations(address fxStateSender, address destinationOnL2) external;
            /// @notice Enables or disables the sending of events
            function setEventSend(bool eventSendSet) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.2 <0.8.0;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly { size := extcodesize(account) }
                return size > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: value }(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.staticcall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../proxy/Initializable.sol";
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal initializer {
                __Context_init_unchained();
            }
            function __Context_init_unchained() internal initializer {
            }
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0;
        interface IFxStateSender {
            function sendMessageToChild(address _receiver, bytes calldata _data) external;
        }// SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        /// @notice Stores votes and rewards delegation mapping in DelegateFunction
        struct DelegateMapView {
            bytes32 functionId;
            address otherParty;
            bool mustRelinquish;
            bool pending;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        /// @notice Denotes the type of signature being submitted to contracts that support multiple
        enum SignatureType {
            INVALID,
            // Specifically signTypedData_v4
            EIP712,
            // Specifically personal_sign
            ETHSIGN
        }
        

        File 4 of 5: TransparentUpgradeableProxy
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
        import "@openzeppelin/contracts/proxy/transparent/TransparentUpgradeableProxy.sol";
        import "@openzeppelin/contracts/proxy/transparent/ProxyAdmin.sol";
        // Kept for backwards compatibility with older versions of Hardhat and Truffle plugins.
        contract AdminUpgradeabilityProxy is TransparentUpgradeableProxy {
            constructor(address logic, address admin, bytes memory data) payable TransparentUpgradeableProxy(logic, admin, data) {}
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../Proxy.sol";
        import "./ERC1967Upgrade.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy, ERC1967Upgrade {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
             * function call, and allows initializating the storage of the proxy like a Solidity constructor.
             */
            constructor(address _logic, bytes memory _data) payable {
                assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
                _upgradeToAndCall(_logic, _data, false);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function _implementation() internal view virtual override returns (address impl) {
                return ERC1967Upgrade._getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Proxy.sol";
        /**
         * @dev This contract implements a proxy that is upgradeable by an admin.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches one of the admin functions exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
         * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
         * "admin cannot fallback to proxy target".
         *
         * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
         * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
         * to sudden errors when trying to call a function from the proxy implementation.
         *
         * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
         * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            /**
             * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
             * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
             */
            constructor(address _logic, address admin_, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
                _changeAdmin(admin_);
            }
            /**
             * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
             */
            modifier ifAdmin() {
                if (msg.sender == _getAdmin()) {
                    _;
                } else {
                    _fallback();
                }
            }
            /**
             * @dev Returns the current admin.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function admin() external ifAdmin returns (address admin_) {
                admin_ = _getAdmin();
            }
            /**
             * @dev Returns the current implementation.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
             * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function implementation() external ifAdmin returns (address implementation_) {
                implementation_ = _implementation();
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
             */
            function changeAdmin(address newAdmin) external virtual ifAdmin {
                _changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrade the implementation of the proxy.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
             */
            function upgradeTo(address newImplementation) external ifAdmin {
                _upgradeToAndCall(newImplementation, bytes(""), false);
            }
            /**
             * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
             * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
             * proxied contract.
             *
             * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
             */
            function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
                _upgradeToAndCall(newImplementation, data, true);
            }
            /**
             * @dev Returns the current admin.
             */
            function _admin() internal view virtual returns (address) {
                return _getAdmin();
            }
            /**
             * @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
             */
            function _beforeFallback() internal virtual override {
                require(msg.sender != _getAdmin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                super._beforeFallback();
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "./TransparentUpgradeableProxy.sol";
        import "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev Returns the current implementation of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyImplementation(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("implementation()")) == 0x5c60da1b
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Returns the current admin of `proxy`.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function getProxyAdmin(TransparentUpgradeableProxy proxy) public view virtual returns (address) {
                // We need to manually run the static call since the getter cannot be flagged as view
                // bytes4(keccak256("admin()")) == 0xf851a440
                (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
                require(success);
                return abi.decode(returndata, (address));
            }
            /**
             * @dev Changes the admin of `proxy` to `newAdmin`.
             *
             * Requirements:
             *
             * - This contract must be the current admin of `proxy`.
             */
            function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
                proxy.changeAdmin(newAdmin);
            }
            /**
             * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgrade(TransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
                proxy.upgradeTo(implementation);
            }
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
             * {TransparentUpgradeableProxy-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             */
            function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internall call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                // solhint-disable-next-line no-inline-assembly
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 { revert(0, returndatasize()) }
                    default { return(0, returndatasize()) }
                }
            }
            /**
             * @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
             * and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internall call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _beforeFallback();
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback () external payable virtual {
                _fallback();
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
             * is empty.
             */
            receive () external payable virtual {
                _fallback();
            }
            /**
             * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
             * call, or as part of the Solidity `fallback` or `receive` functions.
             *
             * If overriden should call `super._beforeFallback()`.
             */
            function _beforeFallback() internal virtual {
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.2;
        import "../beacon/IBeacon.sol";
        import "../../utils/Address.sol";
        import "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         *
         * _Available since v4.1._
         *
         * @custom:oz-upgrades-unsafe-allow delegatecall
         */
        abstract contract ERC1967Upgrade {
            // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
            bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Returns the current implementation address.
             */
            function _getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
                StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Perform implementation upgrade
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeTo(address newImplementation) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
            }
            /**
             * @dev Perform implementation upgrade with additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
            }
            /**
             * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
             *
             * Emits an {Upgraded} event.
             */
            function _upgradeToAndCallSecure(address newImplementation, bytes memory data, bool forceCall) internal {
                address oldImplementation = _getImplementation();
                // Initial upgrade and setup call
                _setImplementation(newImplementation);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(newImplementation, data);
                }
                // Perform rollback test if not already in progress
                StorageSlot.BooleanSlot storage rollbackTesting = StorageSlot.getBooleanSlot(_ROLLBACK_SLOT);
                if (!rollbackTesting.value) {
                    // Trigger rollback using upgradeTo from the new implementation
                    rollbackTesting.value = true;
                    Address.functionDelegateCall(
                        newImplementation,
                        abi.encodeWithSignature(
                            "upgradeTo(address)",
                            oldImplementation
                        )
                    );
                    rollbackTesting.value = false;
                    // Check rollback was effective
                    require(oldImplementation == _getImplementation(), "ERC1967Upgrade: upgrade breaks further upgrades");
                    // Finally reset to the new implementation and log the upgrade
                    _setImplementation(newImplementation);
                    emit Upgraded(newImplementation);
                }
            }
            /**
             * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
             * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
             *
             * Emits a {BeaconUpgraded} event.
             */
            function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0 || forceCall) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
             * validated in the constructor.
             */
            bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Returns the current admin.
             */
            function _getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                require(newAdmin != address(0), "ERC1967: new admin is the zero address");
                StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {AdminChanged} event.
             */
            function _changeAdmin(address newAdmin) internal {
                emit AdminChanged(_getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
             */
            bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Emitted when the beacon is upgraded.
             */
            event BeaconUpgraded(address indexed beacon);
            /**
             * @dev Returns the current beacon.
             */
            function _getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                require(
                    Address.isContract(newBeacon),
                    "ERC1967: new beacon is not a contract"
                );
                require(
                    Address.isContract(IBeacon(newBeacon).implementation()),
                    "ERC1967: beacon implementation is not a contract"
                );
                StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {BeaconProxy} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly { size := extcodesize(account) }
                return size > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: value }(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.staticcall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         *
         * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                assembly {
                    r.slot := slot
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * By default, the owner account will be the one that deploys the contract. This
         * can later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the deployer as the initial owner.
             */
            constructor () {
                address msgSender = _msgSender();
                _owner = msgSender;
                emit OwnershipTransferred(address(0), msgSender);
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                require(owner() == _msgSender(), "Ownable: caller is not the owner");
                _;
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions anymore. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby removing any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                emit OwnershipTransferred(_owner, address(0));
                _owner = address(0);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                require(newOwner != address(0), "Ownable: new owner is the zero address");
                emit OwnershipTransferred(_owner, newOwner);
                _owner = newOwner;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.0;
        import "../ERC1967/ERC1967Upgrade.sol";
        /**
         * @dev Base contract for building openzeppelin-upgrades compatible implementations for the {ERC1967Proxy}. It includes
         * publicly available upgrade functions that are called by the plugin and by the secure upgrade mechanism to verify
         * continuation of the upgradability.
         *
         * The {_authorizeUpgrade} function MUST be overridden to include access restriction to the upgrade mechanism.
         *
         * _Available since v4.1._
         */
        abstract contract UUPSUpgradeable is ERC1967Upgrade {
            function upgradeTo(address newImplementation) external virtual {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallSecure(newImplementation, bytes(""), false);
            }
            function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual {
                _authorizeUpgrade(newImplementation);
                _upgradeToAndCallSecure(newImplementation, data, true);
            }
            function _authorizeUpgrade(address newImplementation) internal virtual;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity ^0.8.2;
        import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
        abstract contract Proxiable is UUPSUpgradeable {
            function _authorizeUpgrade(address newImplementation) internal override {
                _beforeUpgrade(newImplementation);
            }
            function _beforeUpgrade(address newImplementation) internal virtual;
        }
        contract ChildOfProxiable is Proxiable {
            function _beforeUpgrade(address newImplementation) internal virtual override {}
        }
        

        File 5 of 5: Manager
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        pragma experimental ABIEncoderV2;
        import "../interfaces/IManager.sol";
        import "../interfaces/ILiquidityPool.sol";
        import "@openzeppelin/contracts/utils/Address.sol";
        import "@openzeppelin/contracts-upgradeable/proxy/Initializable.sol";
        import {IERC20Upgradeable as IERC20} from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
        import {SafeERC20Upgradeable as SafeERC20} from "@openzeppelin/contracts-upgradeable/token/ERC20/SafeERC20Upgradeable.sol";
        import {EnumerableSetUpgradeable as EnumerableSet} from "@openzeppelin/contracts-upgradeable/utils/EnumerableSetUpgradeable.sol";
        import {SafeMathUpgradeable as SafeMath} from "@openzeppelin/contracts-upgradeable/math/SafeMathUpgradeable.sol";
        import {AccessControlUpgradeable as AccessControl} from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
        import "../interfaces/events/Destinations.sol";
        import "../interfaces/events/CycleRolloverEvent.sol";
        import "../interfaces/events/IEventSender.sol";
        //solhint-disable not-rely-on-time 
        //solhint-disable var-name-mixedcase
        contract Manager is IManager, Initializable, AccessControl, IEventSender {
            using SafeMath for uint256;
            using SafeERC20 for IERC20;
            using Address for address;
            using EnumerableSet for EnumerableSet.AddressSet;
            using EnumerableSet for EnumerableSet.Bytes32Set;
            bytes32 public immutable ADMIN_ROLE = keccak256("ADMIN_ROLE");
            bytes32 public immutable ROLLOVER_ROLE = keccak256("ROLLOVER_ROLE");
            bytes32 public immutable MID_CYCLE_ROLE = keccak256("MID_CYCLE_ROLE");
            bytes32 public immutable START_ROLLOVER_ROLE = keccak256("START_ROLLOVER_ROLE");
            bytes32 public immutable ADD_LIQUIDITY_ROLE = keccak256("ADD_LIQUIDITY_ROLE");
            bytes32 public immutable REMOVE_LIQUIDITY_ROLE = keccak256("REMOVE_LIQUIDITY_ROLE");
            bytes32 public immutable MISC_OPERATION_ROLE = keccak256("MISC_OPERATION_ROLE");
            uint256 public currentCycle; // Start timestamp of current cycle
            uint256 public currentCycleIndex; // Uint representing current cycle
            uint256 public cycleDuration; // Cycle duration in seconds
            bool public rolloverStarted;
            // Bytes32 controller id => controller address
            mapping(bytes32 => address) public registeredControllers;
            // Cycle index => ipfs rewards hash
            mapping(uint256 => string) public override cycleRewardsHashes;
            EnumerableSet.AddressSet private pools;
            EnumerableSet.Bytes32Set private controllerIds;
            // Reentrancy Guard
            bool private _entered;
            bool public _eventSend;
            Destinations public destinations;
            uint256 public nextCycleStartTime;
            bool private isLogicContract;
            modifier onlyAdmin() {
                require(hasRole(ADMIN_ROLE, _msgSender()), "NOT_ADMIN_ROLE");
                _;
            }
            modifier onlyRollover() {
                require(hasRole(ROLLOVER_ROLE, _msgSender()), "NOT_ROLLOVER_ROLE");
                _;
            }
            modifier onlyMidCycle() {
                require(hasRole(MID_CYCLE_ROLE, _msgSender()), "NOT_MID_CYCLE_ROLE");
                _;
            }
            modifier nonReentrant() {
                require(!_entered, "ReentrancyGuard: reentrant call");
                _entered = true;
                _;
                _entered = false;
            }
            modifier onEventSend() {
                if (_eventSend) {
                    _;
                }
            }
            modifier onlyStartRollover() {
                require(hasRole(START_ROLLOVER_ROLE, _msgSender()), "NOT_START_ROLLOVER_ROLE");
                _;
            }
            constructor() public {
                isLogicContract = true;
            }
            function initialize(uint256 _cycleDuration, uint256 _nextCycleStartTime) public initializer {
                __Context_init_unchained();
                __AccessControl_init_unchained();
                cycleDuration = _cycleDuration;
                _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());
                _setupRole(ADMIN_ROLE, _msgSender());
                _setupRole(ROLLOVER_ROLE, _msgSender());
                _setupRole(MID_CYCLE_ROLE, _msgSender());
                _setupRole(START_ROLLOVER_ROLE, _msgSender());
                _setupRole(ADD_LIQUIDITY_ROLE, _msgSender());
                _setupRole(REMOVE_LIQUIDITY_ROLE, _msgSender());
                _setupRole(MISC_OPERATION_ROLE, _msgSender());
                setNextCycleStartTime(_nextCycleStartTime);
            }
            function registerController(bytes32 id, address controller) external override onlyAdmin {
                registeredControllers[id] = controller;
                require(controllerIds.add(id), "ADD_FAIL");
                emit ControllerRegistered(id, controller);
            }
            function unRegisterController(bytes32 id) external override onlyAdmin {
                emit ControllerUnregistered(id, registeredControllers[id]);
                delete registeredControllers[id];
                require(controllerIds.remove(id), "REMOVE_FAIL");
            }
            function registerPool(address pool) external override onlyAdmin {
                require(pools.add(pool), "ADD_FAIL");
                emit PoolRegistered(pool);
            }
            function unRegisterPool(address pool) external override onlyAdmin {
                require(pools.remove(pool), "REMOVE_FAIL");
                emit PoolUnregistered(pool);
            }
            function setCycleDuration(uint256 duration) external override onlyAdmin {
                require(duration > 60, "CYCLE_TOO_SHORT");
                cycleDuration = duration;
                emit CycleDurationSet(duration);
            }
            function setNextCycleStartTime(uint256 _nextCycleStartTime) public override onlyAdmin {
                // We are aware of the possibility of timestamp manipulation.  It does not pose any
                // risk based on the design of our system
                require(_nextCycleStartTime > block.timestamp, "MUST_BE_FUTURE");
                nextCycleStartTime = _nextCycleStartTime;
                emit NextCycleStartSet(_nextCycleStartTime);
            }
            function getPools() external view override returns (address[] memory) {
                uint256 poolsLength = pools.length();
                address[] memory returnData = new address[](poolsLength);
                for (uint256 i = 0; i < poolsLength; i++) {
                    returnData[i] = pools.at(i);
                }
                return returnData;
            }
            function getControllers() external view override returns (bytes32[] memory) {
                uint256 controllerIdsLength = controllerIds.length();
                bytes32[] memory returnData = new bytes32[](controllerIdsLength);
                for (uint256 i = 0; i < controllerIdsLength; i++) {
                    returnData[i] = controllerIds.at(i);
                }
                return returnData;
            }
            function completeRollover(string calldata rewardsIpfsHash) external override onlyRollover {
                // Can't be hit via test cases, going to leave in anyways in case we ever change code
                require(nextCycleStartTime > 0, "SET_BEFORE_ROLLOVER");
                // We are aware of the possibility of timestamp manipulation.  It does not pose any
                // risk based on the design of our system
                require(block.timestamp > nextCycleStartTime, "PREMATURE_EXECUTION");
                _completeRollover(rewardsIpfsHash);
            }
            /// @notice Used for mid-cycle adjustments
            function executeMaintenance(MaintenanceExecution calldata params)
                external
                override
                onlyMidCycle
                nonReentrant
            {
                for (uint256 x = 0; x < params.cycleSteps.length; x++) {
                    _executeControllerCommand(params.cycleSteps[x]);
                }
            }
            function executeRollover(RolloverExecution calldata params) external override onlyRollover nonReentrant {
                // We are aware of the possibility of timestamp manipulation.  It does not pose any
                // risk based on the design of our system
                require(block.timestamp > nextCycleStartTime, "PREMATURE_EXECUTION");
                // Transfer deployable liquidity out of the pools and into the manager
                for (uint256 i = 0; i < params.poolData.length; i++) {
                    require(pools.contains(params.poolData[i].pool), "INVALID_POOL");
                    ILiquidityPool pool = ILiquidityPool(params.poolData[i].pool);
                    IERC20 underlyingToken = pool.underlyer();
                    underlyingToken.safeTransferFrom(
                        address(pool),
                        address(this),
                        params.poolData[i].amount
                    );
                    emit LiquidityMovedToManager(params.poolData[i].pool, params.poolData[i].amount);
                }
                // Deploy or withdraw liquidity
                for (uint256 x = 0; x < params.cycleSteps.length; x++) {
                    _executeControllerCommand(params.cycleSteps[x]);
                }
                // Transfer recovered liquidity back into the pools; leave no funds in the manager
                for (uint256 y = 0; y < params.poolsForWithdraw.length; y++) {
                    require(pools.contains(params.poolsForWithdraw[y]), "INVALID_POOL");
                    ILiquidityPool pool = ILiquidityPool(params.poolsForWithdraw[y]);
                    IERC20 underlyingToken = pool.underlyer();
                    uint256 managerBalance = underlyingToken.balanceOf(address(this));
                    // transfer funds back to the pool if there are funds
                    if (managerBalance > 0) {
                        underlyingToken.safeTransfer(address(pool), managerBalance);
                    }
                    emit LiquidityMovedToPool(params.poolsForWithdraw[y], managerBalance);
                }
                if (params.complete) {
                    _completeRollover(params.rewardsIpfsHash);
                }
            }
            function sweep(address[] calldata poolAddresses) external override onlyRollover {
                uint256 length = poolAddresses.length;
                uint256[] memory amounts = new uint256[](length);
                for (uint256 i = 0; i < length; i++) {
                    address currentPoolAddress = poolAddresses[i];
                    require(pools.contains(currentPoolAddress), "INVALID_ADDRESS");
                    IERC20 underlyer = IERC20(ILiquidityPool(currentPoolAddress).underlyer());
                    uint256 amount = underlyer.balanceOf(address(this));
                    amounts[i] = amount;
                    
                    if (amount > 0) {
                        underlyer.safeTransfer(currentPoolAddress, amount);
                    }
                }
                emit ManagerSwept(poolAddresses, amounts);
            }
            function _executeControllerCommand(ControllerTransferData calldata transfer) private {
                require(!isLogicContract, "FORBIDDEN_CALL");
                address controllerAddress = registeredControllers[transfer.controllerId];
                require(controllerAddress != address(0), "INVALID_CONTROLLER");
                controllerAddress.functionDelegateCall(transfer.data, "CYCLE_STEP_EXECUTE_FAILED");
                emit DeploymentStepExecuted(transfer.controllerId, controllerAddress, transfer.data);
            }
            function startCycleRollover() external override onlyStartRollover {
                // We are aware of the possibility of timestamp manipulation.  It does not pose any
                // risk based on the design of our system
                require(block.timestamp > nextCycleStartTime, "PREMATURE_EXECUTION");
                rolloverStarted = true;
                bytes32 eventSig = "Cycle Rollover Start";
                encodeAndSendData(eventSig);
                emit CycleRolloverStarted(block.timestamp);
            }
            function _completeRollover(string calldata rewardsIpfsHash) private {
                currentCycle = nextCycleStartTime;
                nextCycleStartTime = nextCycleStartTime.add(cycleDuration);
                cycleRewardsHashes[currentCycleIndex] = rewardsIpfsHash;
                currentCycleIndex = currentCycleIndex.add(1);
                rolloverStarted = false;
                bytes32 eventSig = "Cycle Complete";
                encodeAndSendData(eventSig);
                emit CycleRolloverComplete(block.timestamp);
            }
            function getCurrentCycle() external view override returns (uint256) {
                return currentCycle;
            }
            function getCycleDuration() external view override returns (uint256) {
                return cycleDuration;
            }
            function getCurrentCycleIndex() external view override returns (uint256) {
                return currentCycleIndex;
            }
            function getRolloverStatus() external view override returns (bool) {
                return rolloverStarted;
            }
            function setDestinations(address _fxStateSender, address _destinationOnL2) external override onlyAdmin {
                require(_fxStateSender != address(0), "INVALID_ADDRESS");
                require(_destinationOnL2 != address(0), "INVALID_ADDRESS");
                destinations.fxStateSender = IFxStateSender(_fxStateSender);
                destinations.destinationOnL2 = _destinationOnL2;
                emit DestinationsSet(_fxStateSender, _destinationOnL2);
            }
            function setEventSend(bool _eventSendSet) external override onlyAdmin {
                require(destinations.destinationOnL2 != address(0), "DESTINATIONS_NOT_SET");
                
                _eventSend = _eventSendSet;
                emit EventSendSet(_eventSendSet);
            }
            function setupRole(bytes32 role) external override onlyAdmin {
                _setupRole(role, _msgSender());
            }
            function encodeAndSendData(bytes32 _eventSig) private onEventSend {
                require(address(destinations.fxStateSender) != address(0), "ADDRESS_NOT_SET");
                require(destinations.destinationOnL2 != address(0), "ADDRESS_NOT_SET");
                bytes memory data = abi.encode(CycleRolloverEvent({
                    eventSig: _eventSig,
                    cycleIndex: currentCycleIndex,
                    timestamp: currentCycle
                }));
                destinations.fxStateSender.sendMessageToChild(destinations.destinationOnL2, data);
            }
            // solhint-disable-next-line no-empty-blocks
            receive() external payable {}
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        pragma experimental ABIEncoderV2;
        /**
         *  @title Controls the transition and execution of liquidity deployment cycles.
         *  Accepts instructions that can move assets from the Pools to the Exchanges
         *  and back. Can also move assets to the treasury when appropriate.
         */
        interface IManager {
            // bytes can take on the form of deploying or recovering liquidity
            struct ControllerTransferData {
                bytes32 controllerId; // controller to target
                bytes data; // data the controller will pass
            }
            struct PoolTransferData {
                address pool; // pool to target
                uint256 amount; // amount to transfer
            }
            struct MaintenanceExecution {
                ControllerTransferData[] cycleSteps;
            }
            struct RolloverExecution {
                PoolTransferData[] poolData;
                ControllerTransferData[] cycleSteps;
                address[] poolsForWithdraw; //Pools to target for manager -> pool transfer
                bool complete; //Whether to mark the rollover complete
                string rewardsIpfsHash;
            }
            event ControllerRegistered(bytes32 id, address controller);
            event ControllerUnregistered(bytes32 id, address controller);
            event PoolRegistered(address pool);
            event PoolUnregistered(address pool);
            event CycleDurationSet(uint256 duration);
            event LiquidityMovedToManager(address pool, uint256 amount);
            event DeploymentStepExecuted(bytes32 controller, address adapaterAddress, bytes data);
            event LiquidityMovedToPool(address pool, uint256 amount);
            event CycleRolloverStarted(uint256 timestamp);
            event CycleRolloverComplete(uint256 timestamp);
            event NextCycleStartSet(uint256 nextCycleStartTime);
            event ManagerSwept(address[] addresses, uint256[] amounts);
            /// @notice Registers controller
            /// @param id Bytes32 id of controller
            /// @param controller Address of controller
            function registerController(bytes32 id, address controller) external;
            /// @notice Registers pool
            /// @param pool Address of pool
            function registerPool(address pool) external;
            /// @notice Unregisters controller
            /// @param id Bytes32 controller id
            function unRegisterController(bytes32 id) external;
            /// @notice Unregisters pool
            /// @param pool Address of pool
            function unRegisterPool(address pool) external;
            ///@notice Gets addresses of all pools registered
            ///@return Memory array of pool addresses
            function getPools() external view returns (address[] memory);
            ///@notice Gets ids of all controllers registered
            ///@return Memory array of Bytes32 controller ids
            function getControllers() external view returns (bytes32[] memory);
            ///@notice Allows for owner to set cycle duration
            ///@param duration Block durtation of cycle
            function setCycleDuration(uint256 duration) external;
            ///@notice Starts cycle rollover
            ///@dev Sets rolloverStarted state boolean to true
            function startCycleRollover() external;
            ///@notice Allows for controller commands to be executed midcycle
            ///@param params Contains data for controllers and params
            function executeMaintenance(MaintenanceExecution calldata params) external;
            ///@notice Allows for withdrawals and deposits for pools along with liq deployment
            ///@param params Contains various data for executing against pools and controllers
            function executeRollover(RolloverExecution calldata params) external;
            ///@notice Completes cycle rollover, publishes rewards hash to ipfs
            ///@param rewardsIpfsHash rewards hash uploaded to ipfs
            function completeRollover(string calldata rewardsIpfsHash) external;
            ///@notice Gets reward hash by cycle index
            ///@param index Cycle index to retrieve rewards hash
            ///@return String memory hash
            function cycleRewardsHashes(uint256 index) external view returns (string memory);
            ///@notice Gets current starting block
            ///@return uint256 with block number
            function getCurrentCycle() external view returns (uint256);
            ///@notice Gets current cycle index
            ///@return uint256 current cycle number
            function getCurrentCycleIndex() external view returns (uint256);
            ///@notice Gets current cycle duration
            ///@return uint256 in block of cycle duration
            function getCycleDuration() external view returns (uint256);
            ///@notice Gets cycle rollover status, true for rolling false for not
            ///@return Bool representing whether cycle is rolling over or not
            function getRolloverStatus() external view returns (bool);
            /// @notice Sets next cycle start time manually
            /// @param nextCycleStartTime uint256 that represents start of next cycle
            function setNextCycleStartTime(uint256 nextCycleStartTime) external;
            /// @notice Sweeps amanager contract for any leftover funds
            /// @param addresses array of addresses of pools to sweep funds into
            function sweep(address[] calldata addresses) external;
            /// @notice Setup a role using internal function _setupRole
            /// @param role keccak256 of the role keccak256("MY_ROLE");
            function setupRole(bytes32 role) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity 0.6.11;
        import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
        import "../interfaces/IManager.sol";
        /// @title Interface for Pool
        /// @notice Allows users to deposit ERC-20 tokens to be deployed to market makers.
        /// @notice Mints 1:1 tAsset on deposit, represeting an IOU for the undelrying token that is freely transferable.
        /// @notice Holders of tAsset earn rewards based on duration their tokens were deployed and the demand for that asset.
        /// @notice Holders of tAsset can redeem for underlying asset after issuing requestWithdrawal and waiting for the next cycle.
        interface ILiquidityPool {
            struct WithdrawalInfo {
                uint256 minCycle;
                uint256 amount;
            }
            event WithdrawalRequested(address requestor, uint256 amount);
            event DepositsPaused();
            event DepositsUnpaused();
            event BurnerRegistered(address burner, bool allowed);
            event Burned(address indexed account, address indexed burner, uint256 amount);
            /// @notice Transfers amount of underlying token from user to this pool and mints fToken to the msg.sender.
            /// @notice Depositor must have previously granted transfer approval to the pool via underlying token contract.
            /// @notice Liquidity deposited is deployed on the next cycle - unless a withdrawal request is submitted, in which case the liquidity will be withheld.
            function deposit(uint256 amount) external;
            /// @notice Transfers amount of underlying token from user to this pool and mints fToken to the account.
            /// @notice Depositor must have previously granted transfer approval to the pool via underlying token contract.
            /// @notice Liquidity deposited is deployed on the next cycle - unless a withdrawal request is submitted, in which case the liquidity will be withheld.
            function depositFor(address account, uint256 amount) external;
            /// @notice Requests that the manager prepare funds for withdrawal next cycle
            /// @notice Invoking this function when sender already has a currently pending request will overwrite that requested amount and reset the cycle timer
            /// @param amount Amount of fTokens requested to be redeemed
            function requestWithdrawal(uint256 amount) external;
            function approveManager(uint256 amount) external;
            /// @notice Sender must first invoke requestWithdrawal in a previous cycle
            /// @notice This function will burn the fAsset and transfers underlying asset back to sender
            /// @notice Will execute a partial withdrawal if either available liquidity or previously requested amount is insufficient
            /// @param amount Amount of fTokens to redeem, value can be in excess of available tokens, operation will be reduced to maximum permissible
            function withdraw(uint256 amount) external;
            /// @return Reference to the underlying ERC-20 contract
            function underlyer() external view returns (ERC20Upgradeable);
            /// @return Amount of liquidity that should not be deployed for market making (this liquidity will be used for completing requested withdrawals)
            function withheldLiquidity() external view returns (uint256);
            /// @notice Get withdraw requests for an account
            /// @param account User account to check
            /// @return minCycle Cycle - block number - that must be active before withdraw is allowed, amount Token amount requested
            function requestedWithdrawals(address account) external view returns (uint256, uint256);
            /// @notice Pause deposits on the pool. Withdraws still allowed
            function pause() external;
            /// @notice Unpause deposits on the pool.
            function unpause() external;
            // @notice Pause deposits only on the pool.
            function pauseDeposit() external;
            // @notice Unpause deposits only on the pool.
            function unpauseDeposit() external;
            ///@notice Registers address that is allowed or not allowed to burn 
            ///@dev Address registered as 'true' will be able to burn tAssets in its possession or that it has an allowance to
            ///@param burner Address that will be able / not able to burn tAssets
            ///@param allowedBurner Boolean that will register burner address as able to burn or not
            function registerBurner(address burner, bool allowedBurner) external;
            ///@notice Function allows address to burn tAssets in its posession
            ///@dev Address can burn all tAssets in its posession
            ///@dev Overages are prevented by interited functionality from _burn()
            ///@param amount Amount of tAsset to be burned
            ///@param account Address to be burned from
            function controlledBurn(uint256 amount, address account) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.2 <0.8.0;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly { size := extcodesize(account) }
                return size > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: value }(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.staticcall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionDelegateCall(target, data, "Address: low-level delegate call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a delegate call.
             *
             * _Available since v3.4._
             */
            function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                require(isContract(target), "Address: delegate call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // solhint-disable-next-line compiler-version
        pragma solidity >=0.4.24 <0.8.0;
        import "../utils/AddressUpgradeable.sol";
        /**
         * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
         * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
         * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
         * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
         *
         * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
         * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
         *
         * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
         * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
         */
        abstract contract Initializable {
            /**
             * @dev Indicates that the contract has been initialized.
             */
            bool private _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool private _initializing;
            /**
             * @dev Modifier to protect an initializer function from being invoked twice.
             */
            modifier initializer() {
                require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
                bool isTopLevelCall = !_initializing;
                if (isTopLevelCall) {
                    _initializing = true;
                    _initialized = true;
                }
                _;
                if (isTopLevelCall) {
                    _initializing = false;
                }
            }
            /// @dev Returns true if and only if the function is running in the constructor
            function _isConstructor() private view returns (bool) {
                return !AddressUpgradeable.isContract(address(this));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Interface of the ERC20 standard as defined in the EIP.
         */
        interface IERC20Upgradeable {
            /**
             * @dev Returns the amount of tokens in existence.
             */
            function totalSupply() external view returns (uint256);
            /**
             * @dev Returns the amount of tokens owned by `account`.
             */
            function balanceOf(address account) external view returns (uint256);
            /**
             * @dev Moves `amount` tokens from the caller's account to `recipient`.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transfer(address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Returns the remaining number of tokens that `spender` will be
             * allowed to spend on behalf of `owner` through {transferFrom}. This is
             * zero by default.
             *
             * This value changes when {approve} or {transferFrom} are called.
             */
            function allowance(address owner, address spender) external view returns (uint256);
            /**
             * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * IMPORTANT: Beware that changing an allowance with this method brings the risk
             * that someone may use both the old and the new allowance by unfortunate
             * transaction ordering. One possible solution to mitigate this race
             * condition is to first reduce the spender's allowance to 0 and set the
             * desired value afterwards:
             * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
             *
             * Emits an {Approval} event.
             */
            function approve(address spender, uint256 amount) external returns (bool);
            /**
             * @dev Moves `amount` tokens from `sender` to `recipient` using the
             * allowance mechanism. `amount` is then deducted from the caller's
             * allowance.
             *
             * Returns a boolean value indicating whether the operation succeeded.
             *
             * Emits a {Transfer} event.
             */
            function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
            /**
             * @dev Emitted when `value` tokens are moved from one account (`from`) to
             * another (`to`).
             *
             * Note that `value` may be zero.
             */
            event Transfer(address indexed from, address indexed to, uint256 value);
            /**
             * @dev Emitted when the allowance of a `spender` for an `owner` is set by
             * a call to {approve}. `value` is the new allowance.
             */
            event Approval(address indexed owner, address indexed spender, uint256 value);
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "./IERC20Upgradeable.sol";
        import "../../math/SafeMathUpgradeable.sol";
        import "../../utils/AddressUpgradeable.sol";
        /**
         * @title SafeERC20
         * @dev Wrappers around ERC20 operations that throw on failure (when the token
         * contract returns false). Tokens that return no value (and instead revert or
         * throw on failure) are also supported, non-reverting calls are assumed to be
         * successful.
         * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
         * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
         */
        library SafeERC20Upgradeable {
            using SafeMathUpgradeable for uint256;
            using AddressUpgradeable for address;
            function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
            }
            function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
                _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
            }
            /**
             * @dev Deprecated. This function has issues similar to the ones found in
             * {IERC20-approve}, and its usage is discouraged.
             *
             * Whenever possible, use {safeIncreaseAllowance} and
             * {safeDecreaseAllowance} instead.
             */
            function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
                // safeApprove should only be called when setting an initial allowance,
                // or when resetting it to zero. To increase and decrease it, use
                // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                // solhint-disable-next-line max-line-length
                require((value == 0) || (token.allowance(address(this), spender) == 0),
                    "SafeERC20: approve from non-zero to non-zero allowance"
                );
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
            }
            function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
                uint256 newAllowance = token.allowance(address(this), spender).add(value);
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
            function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
                uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
                _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
            }
            /**
             * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
             * on the return value: the return value is optional (but if data is returned, it must not be false).
             * @param token The token targeted by the call.
             * @param data The call data (encoded using abi.encode or one of its variants).
             */
            function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
                // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                // the target address contains contract code and also asserts for success in the low-level call.
                bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                if (returndata.length > 0) { // Return data is optional
                    // solhint-disable-next-line max-line-length
                    require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Library for managing
         * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
         * types.
         *
         * Sets have the following properties:
         *
         * - Elements are added, removed, and checked for existence in constant time
         * (O(1)).
         * - Elements are enumerated in O(n). No guarantees are made on the ordering.
         *
         * ```
         * contract Example {
         *     // Add the library methods
         *     using EnumerableSet for EnumerableSet.AddressSet;
         *
         *     // Declare a set state variable
         *     EnumerableSet.AddressSet private mySet;
         * }
         * ```
         *
         * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
         * and `uint256` (`UintSet`) are supported.
         */
        library EnumerableSetUpgradeable {
            // To implement this library for multiple types with as little code
            // repetition as possible, we write it in terms of a generic Set type with
            // bytes32 values.
            // The Set implementation uses private functions, and user-facing
            // implementations (such as AddressSet) are just wrappers around the
            // underlying Set.
            // This means that we can only create new EnumerableSets for types that fit
            // in bytes32.
            struct Set {
                // Storage of set values
                bytes32[] _values;
                // Position of the value in the `values` array, plus 1 because index 0
                // means a value is not in the set.
                mapping (bytes32 => uint256) _indexes;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function _add(Set storage set, bytes32 value) private returns (bool) {
                if (!_contains(set, value)) {
                    set._values.push(value);
                    // The value is stored at length-1, but we add 1 to all indexes
                    // and use 0 as a sentinel value
                    set._indexes[value] = set._values.length;
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function _remove(Set storage set, bytes32 value) private returns (bool) {
                // We read and store the value's index to prevent multiple reads from the same storage slot
                uint256 valueIndex = set._indexes[value];
                if (valueIndex != 0) { // Equivalent to contains(set, value)
                    // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
                    // the array, and then remove the last element (sometimes called as 'swap and pop').
                    // This modifies the order of the array, as noted in {at}.
                    uint256 toDeleteIndex = valueIndex - 1;
                    uint256 lastIndex = set._values.length - 1;
                    // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
                    // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
                    bytes32 lastvalue = set._values[lastIndex];
                    // Move the last value to the index where the value to delete is
                    set._values[toDeleteIndex] = lastvalue;
                    // Update the index for the moved value
                    set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
                    // Delete the slot where the moved value was stored
                    set._values.pop();
                    // Delete the index for the deleted slot
                    delete set._indexes[value];
                    return true;
                } else {
                    return false;
                }
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function _contains(Set storage set, bytes32 value) private view returns (bool) {
                return set._indexes[value] != 0;
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function _length(Set storage set) private view returns (uint256) {
                return set._values.length;
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function _at(Set storage set, uint256 index) private view returns (bytes32) {
                require(set._values.length > index, "EnumerableSet: index out of bounds");
                return set._values[index];
            }
            // Bytes32Set
            struct Bytes32Set {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                return _add(set._inner, value);
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
                return _remove(set._inner, value);
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
                return _contains(set._inner, value);
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(Bytes32Set storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
                return _at(set._inner, index);
            }
            // AddressSet
            struct AddressSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(AddressSet storage set, address value) internal returns (bool) {
                return _add(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(AddressSet storage set, address value) internal returns (bool) {
                return _remove(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(AddressSet storage set, address value) internal view returns (bool) {
                return _contains(set._inner, bytes32(uint256(uint160(value))));
            }
            /**
             * @dev Returns the number of values in the set. O(1).
             */
            function length(AddressSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(AddressSet storage set, uint256 index) internal view returns (address) {
                return address(uint160(uint256(_at(set._inner, index))));
            }
            // UintSet
            struct UintSet {
                Set _inner;
            }
            /**
             * @dev Add a value to a set. O(1).
             *
             * Returns true if the value was added to the set, that is if it was not
             * already present.
             */
            function add(UintSet storage set, uint256 value) internal returns (bool) {
                return _add(set._inner, bytes32(value));
            }
            /**
             * @dev Removes a value from a set. O(1).
             *
             * Returns true if the value was removed from the set, that is if it was
             * present.
             */
            function remove(UintSet storage set, uint256 value) internal returns (bool) {
                return _remove(set._inner, bytes32(value));
            }
            /**
             * @dev Returns true if the value is in the set. O(1).
             */
            function contains(UintSet storage set, uint256 value) internal view returns (bool) {
                return _contains(set._inner, bytes32(value));
            }
            /**
             * @dev Returns the number of values on the set. O(1).
             */
            function length(UintSet storage set) internal view returns (uint256) {
                return _length(set._inner);
            }
           /**
            * @dev Returns the value stored at position `index` in the set. O(1).
            *
            * Note that there are no guarantees on the ordering of values inside the
            * array, and it may change when more values are added or removed.
            *
            * Requirements:
            *
            * - `index` must be strictly less than {length}.
            */
            function at(UintSet storage set, uint256 index) internal view returns (uint256) {
                return uint256(_at(set._inner, index));
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        /**
         * @dev Wrappers over Solidity's arithmetic operations with added overflow
         * checks.
         *
         * Arithmetic operations in Solidity wrap on overflow. This can easily result
         * in bugs, because programmers usually assume that an overflow raises an
         * error, which is the standard behavior in high level programming languages.
         * `SafeMath` restores this intuition by reverting the transaction when an
         * operation overflows.
         *
         * Using this library instead of the unchecked operations eliminates an entire
         * class of bugs, so it's recommended to use it always.
         */
        library SafeMathUpgradeable {
            /**
             * @dev Returns the addition of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
            /**
             * @dev Returns the substraction of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
             *
             * _Available since v3.4._
             */
            function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
            /**
             * @dev Returns the division of two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
             *
             * _Available since v3.4._
             */
            function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
            /**
             * @dev Returns the addition of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `+` operator.
             *
             * Requirements:
             *
             * - Addition cannot overflow.
             */
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                require(c >= a, "SafeMath: addition overflow");
                return c;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting on
             * overflow (when the result is negative).
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b <= a, "SafeMath: subtraction overflow");
                return a - b;
            }
            /**
             * @dev Returns the multiplication of two unsigned integers, reverting on
             * overflow.
             *
             * Counterpart to Solidity's `*` operator.
             *
             * Requirements:
             *
             * - Multiplication cannot overflow.
             */
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                if (a == 0) return 0;
                uint256 c = a * b;
                require(c / a == b, "SafeMath: multiplication overflow");
                return c;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting on
             * division by zero. The result is rounded towards zero.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b > 0, "SafeMath: division by zero");
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting when dividing by zero.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b) internal pure returns (uint256) {
                require(b > 0, "SafeMath: modulo by zero");
                return a % b;
            }
            /**
             * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
             * overflow (when the result is negative).
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {trySub}.
             *
             * Counterpart to Solidity's `-` operator.
             *
             * Requirements:
             *
             * - Subtraction cannot overflow.
             */
            function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b <= a, errorMessage);
                return a - b;
            }
            /**
             * @dev Returns the integer division of two unsigned integers, reverting with custom message on
             * division by zero. The result is rounded towards zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryDiv}.
             *
             * Counterpart to Solidity's `/` operator. Note: this function uses a
             * `revert` opcode (which leaves remaining gas untouched) while Solidity
             * uses an invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                return a / b;
            }
            /**
             * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
             * reverting with custom message when dividing by zero.
             *
             * CAUTION: This function is deprecated because it requires allocating memory for the error
             * message unnecessarily. For custom revert reasons use {tryMod}.
             *
             * Counterpart to Solidity's `%` operator. This function uses a `revert`
             * opcode (which leaves remaining gas untouched) while Solidity uses an
             * invalid opcode to revert (consuming all remaining gas).
             *
             * Requirements:
             *
             * - The divisor cannot be zero.
             */
            function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
                require(b > 0, errorMessage);
                return a % b;
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../utils/EnumerableSetUpgradeable.sol";
        import "../utils/AddressUpgradeable.sol";
        import "../utils/ContextUpgradeable.sol";
        import "../proxy/Initializable.sol";
        /**
         * @dev Contract module that allows children to implement role-based access
         * control mechanisms.
         *
         * Roles are referred to by their `bytes32` identifier. These should be exposed
         * in the external API and be unique. The best way to achieve this is by
         * using `public constant` hash digests:
         *
         * ```
         * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
         * ```
         *
         * Roles can be used to represent a set of permissions. To restrict access to a
         * function call, use {hasRole}:
         *
         * ```
         * function foo() public {
         *     require(hasRole(MY_ROLE, msg.sender));
         *     ...
         * }
         * ```
         *
         * Roles can be granted and revoked dynamically via the {grantRole} and
         * {revokeRole} functions. Each role has an associated admin role, and only
         * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
         *
         * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
         * that only accounts with this role will be able to grant or revoke other
         * roles. More complex role relationships can be created by using
         * {_setRoleAdmin}.
         *
         * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
         * grant and revoke this role. Extra precautions should be taken to secure
         * accounts that have been granted it.
         */
        abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable {
            function __AccessControl_init() internal initializer {
                __Context_init_unchained();
                __AccessControl_init_unchained();
            }
            function __AccessControl_init_unchained() internal initializer {
            }
            using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet;
            using AddressUpgradeable for address;
            struct RoleData {
                EnumerableSetUpgradeable.AddressSet members;
                bytes32 adminRole;
            }
            mapping (bytes32 => RoleData) private _roles;
            bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
            /**
             * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
             *
             * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
             * {RoleAdminChanged} not being emitted signaling this.
             *
             * _Available since v3.1._
             */
            event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
            /**
             * @dev Emitted when `account` is granted `role`.
             *
             * `sender` is the account that originated the contract call, an admin role
             * bearer except when using {_setupRole}.
             */
            event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Emitted when `account` is revoked `role`.
             *
             * `sender` is the account that originated the contract call:
             *   - if using `revokeRole`, it is the admin role bearer
             *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
             */
            event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
            /**
             * @dev Returns `true` if `account` has been granted `role`.
             */
            function hasRole(bytes32 role, address account) public view returns (bool) {
                return _roles[role].members.contains(account);
            }
            /**
             * @dev Returns the number of accounts that have `role`. Can be used
             * together with {getRoleMember} to enumerate all bearers of a role.
             */
            function getRoleMemberCount(bytes32 role) public view returns (uint256) {
                return _roles[role].members.length();
            }
            /**
             * @dev Returns one of the accounts that have `role`. `index` must be a
             * value between 0 and {getRoleMemberCount}, non-inclusive.
             *
             * Role bearers are not sorted in any particular way, and their ordering may
             * change at any point.
             *
             * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
             * you perform all queries on the same block. See the following
             * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
             * for more information.
             */
            function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
                return _roles[role].members.at(index);
            }
            /**
             * @dev Returns the admin role that controls `role`. See {grantRole} and
             * {revokeRole}.
             *
             * To change a role's admin, use {_setRoleAdmin}.
             */
            function getRoleAdmin(bytes32 role) public view returns (bytes32) {
                return _roles[role].adminRole;
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function grantRole(bytes32 role, address account) public virtual {
                require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant");
                _grantRole(role, account);
            }
            /**
             * @dev Revokes `role` from `account`.
             *
             * If `account` had been granted `role`, emits a {RoleRevoked} event.
             *
             * Requirements:
             *
             * - the caller must have ``role``'s admin role.
             */
            function revokeRole(bytes32 role, address account) public virtual {
                require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke");
                _revokeRole(role, account);
            }
            /**
             * @dev Revokes `role` from the calling account.
             *
             * Roles are often managed via {grantRole} and {revokeRole}: this function's
             * purpose is to provide a mechanism for accounts to lose their privileges
             * if they are compromised (such as when a trusted device is misplaced).
             *
             * If the calling account had been granted `role`, emits a {RoleRevoked}
             * event.
             *
             * Requirements:
             *
             * - the caller must be `account`.
             */
            function renounceRole(bytes32 role, address account) public virtual {
                require(account == _msgSender(), "AccessControl: can only renounce roles for self");
                _revokeRole(role, account);
            }
            /**
             * @dev Grants `role` to `account`.
             *
             * If `account` had not been already granted `role`, emits a {RoleGranted}
             * event. Note that unlike {grantRole}, this function doesn't perform any
             * checks on the calling account.
             *
             * [WARNING]
             * ====
             * This function should only be called from the constructor when setting
             * up the initial roles for the system.
             *
             * Using this function in any other way is effectively circumventing the admin
             * system imposed by {AccessControl}.
             * ====
             */
            function _setupRole(bytes32 role, address account) internal virtual {
                _grantRole(role, account);
            }
            /**
             * @dev Sets `adminRole` as ``role``'s admin role.
             *
             * Emits a {RoleAdminChanged} event.
             */
            function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
                emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);
                _roles[role].adminRole = adminRole;
            }
            function _grantRole(bytes32 role, address account) private {
                if (_roles[role].members.add(account)) {
                    emit RoleGranted(role, account, _msgSender());
                }
            }
            function _revokeRole(bytes32 role, address account) private {
                if (_roles[role].members.remove(account)) {
                    emit RoleRevoked(role, account, _msgSender());
                }
            }
            uint256[49] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        import "../../fxPortal/IFxStateSender.sol";
        /// @notice Configuration entity for sending events to Governance layer
        struct Destinations {
            IFxStateSender fxStateSender;
            address destinationOnL2;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        /// @notice Event sent to Governance layer when a cycle rollover is complete
        struct CycleRolloverEvent {
            bytes32 eventSig;
            uint256 cycleIndex;
            uint256 timestamp;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.11;
        pragma experimental ABIEncoderV2;
        import "./Destinations.sol";
        interface IEventSender {
            event DestinationsSet(address fxStateSender, address destinationOnL2);
            event EventSendSet(bool eventSendSet);
            /// @notice Configure the Polygon state sender root and destination for messages sent
            /// @param fxStateSender Address of Polygon State Sender Root contract
            /// @param destinationOnL2 Destination address of events sent. Should be our Event Proxy
            function setDestinations(address fxStateSender, address destinationOnL2) external;
            /// @notice Enables or disables the sending of events
            function setEventSend(bool eventSendSet) external;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../../utils/ContextUpgradeable.sol";
        import "./IERC20Upgradeable.sol";
        import "../../math/SafeMathUpgradeable.sol";
        import "../../proxy/Initializable.sol";
        /**
         * @dev Implementation of the {IERC20} interface.
         *
         * This implementation is agnostic to the way tokens are created. This means
         * that a supply mechanism has to be added in a derived contract using {_mint}.
         * For a generic mechanism see {ERC20PresetMinterPauser}.
         *
         * TIP: For a detailed writeup see our guide
         * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
         * to implement supply mechanisms].
         *
         * We have followed general OpenZeppelin guidelines: functions revert instead
         * of returning `false` on failure. This behavior is nonetheless conventional
         * and does not conflict with the expectations of ERC20 applications.
         *
         * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
         * This allows applications to reconstruct the allowance for all accounts just
         * by listening to said events. Other implementations of the EIP may not emit
         * these events, as it isn't required by the specification.
         *
         * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
         * functions have been added to mitigate the well-known issues around setting
         * allowances. See {IERC20-approve}.
         */
        contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable {
            using SafeMathUpgradeable for uint256;
            mapping (address => uint256) private _balances;
            mapping (address => mapping (address => uint256)) private _allowances;
            uint256 private _totalSupply;
            string private _name;
            string private _symbol;
            uint8 private _decimals;
            /**
             * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
             * a default value of 18.
             *
             * To select a different value for {decimals}, use {_setupDecimals}.
             *
             * All three of these values are immutable: they can only be set once during
             * construction.
             */
            function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
                __Context_init_unchained();
                __ERC20_init_unchained(name_, symbol_);
            }
            function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
                _name = name_;
                _symbol = symbol_;
                _decimals = 18;
            }
            /**
             * @dev Returns the name of the token.
             */
            function name() public view virtual returns (string memory) {
                return _name;
            }
            /**
             * @dev Returns the symbol of the token, usually a shorter version of the
             * name.
             */
            function symbol() public view virtual returns (string memory) {
                return _symbol;
            }
            /**
             * @dev Returns the number of decimals used to get its user representation.
             * For example, if `decimals` equals `2`, a balance of `505` tokens should
             * be displayed to a user as `5,05` (`505 / 10 ** 2`).
             *
             * Tokens usually opt for a value of 18, imitating the relationship between
             * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
             * called.
             *
             * NOTE: This information is only used for _display_ purposes: it in
             * no way affects any of the arithmetic of the contract, including
             * {IERC20-balanceOf} and {IERC20-transfer}.
             */
            function decimals() public view virtual returns (uint8) {
                return _decimals;
            }
            /**
             * @dev See {IERC20-totalSupply}.
             */
            function totalSupply() public view virtual override returns (uint256) {
                return _totalSupply;
            }
            /**
             * @dev See {IERC20-balanceOf}.
             */
            function balanceOf(address account) public view virtual override returns (uint256) {
                return _balances[account];
            }
            /**
             * @dev See {IERC20-transfer}.
             *
             * Requirements:
             *
             * - `recipient` cannot be the zero address.
             * - the caller must have a balance of at least `amount`.
             */
            function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(_msgSender(), recipient, amount);
                return true;
            }
            /**
             * @dev See {IERC20-allowance}.
             */
            function allowance(address owner, address spender) public view virtual override returns (uint256) {
                return _allowances[owner][spender];
            }
            /**
             * @dev See {IERC20-approve}.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function approve(address spender, uint256 amount) public virtual override returns (bool) {
                _approve(_msgSender(), spender, amount);
                return true;
            }
            /**
             * @dev See {IERC20-transferFrom}.
             *
             * Emits an {Approval} event indicating the updated allowance. This is not
             * required by the EIP. See the note at the beginning of {ERC20}.
             *
             * Requirements:
             *
             * - `sender` and `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             * - the caller must have allowance for ``sender``'s tokens of at least
             * `amount`.
             */
            function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
                _transfer(sender, recipient, amount);
                _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
                return true;
            }
            /**
             * @dev Atomically increases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             */
            function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
                return true;
            }
            /**
             * @dev Atomically decreases the allowance granted to `spender` by the caller.
             *
             * This is an alternative to {approve} that can be used as a mitigation for
             * problems described in {IERC20-approve}.
             *
             * Emits an {Approval} event indicating the updated allowance.
             *
             * Requirements:
             *
             * - `spender` cannot be the zero address.
             * - `spender` must have allowance for the caller of at least
             * `subtractedValue`.
             */
            function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
                return true;
            }
            /**
             * @dev Moves tokens `amount` from `sender` to `recipient`.
             *
             * This is internal function is equivalent to {transfer}, and can be used to
             * e.g. implement automatic token fees, slashing mechanisms, etc.
             *
             * Emits a {Transfer} event.
             *
             * Requirements:
             *
             * - `sender` cannot be the zero address.
             * - `recipient` cannot be the zero address.
             * - `sender` must have a balance of at least `amount`.
             */
            function _transfer(address sender, address recipient, uint256 amount) internal virtual {
                require(sender != address(0), "ERC20: transfer from the zero address");
                require(recipient != address(0), "ERC20: transfer to the zero address");
                _beforeTokenTransfer(sender, recipient, amount);
                _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
                _balances[recipient] = _balances[recipient].add(amount);
                emit Transfer(sender, recipient, amount);
            }
            /** @dev Creates `amount` tokens and assigns them to `account`, increasing
             * the total supply.
             *
             * Emits a {Transfer} event with `from` set to the zero address.
             *
             * Requirements:
             *
             * - `to` cannot be the zero address.
             */
            function _mint(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: mint to the zero address");
                _beforeTokenTransfer(address(0), account, amount);
                _totalSupply = _totalSupply.add(amount);
                _balances[account] = _balances[account].add(amount);
                emit Transfer(address(0), account, amount);
            }
            /**
             * @dev Destroys `amount` tokens from `account`, reducing the
             * total supply.
             *
             * Emits a {Transfer} event with `to` set to the zero address.
             *
             * Requirements:
             *
             * - `account` cannot be the zero address.
             * - `account` must have at least `amount` tokens.
             */
            function _burn(address account, uint256 amount) internal virtual {
                require(account != address(0), "ERC20: burn from the zero address");
                _beforeTokenTransfer(account, address(0), amount);
                _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
                _totalSupply = _totalSupply.sub(amount);
                emit Transfer(account, address(0), amount);
            }
            /**
             * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
             *
             * This internal function is equivalent to `approve`, and can be used to
             * e.g. set automatic allowances for certain subsystems, etc.
             *
             * Emits an {Approval} event.
             *
             * Requirements:
             *
             * - `owner` cannot be the zero address.
             * - `spender` cannot be the zero address.
             */
            function _approve(address owner, address spender, uint256 amount) internal virtual {
                require(owner != address(0), "ERC20: approve from the zero address");
                require(spender != address(0), "ERC20: approve to the zero address");
                _allowances[owner][spender] = amount;
                emit Approval(owner, spender, amount);
            }
            /**
             * @dev Sets {decimals} to a value other than the default one of 18.
             *
             * WARNING: This function should only be called from the constructor. Most
             * applications that interact with token contracts will not expect
             * {decimals} to ever change, and may work incorrectly if it does.
             */
            function _setupDecimals(uint8 decimals_) internal virtual {
                _decimals = decimals_;
            }
            /**
             * @dev Hook that is called before any transfer of tokens. This includes
             * minting and burning.
             *
             * Calling conditions:
             *
             * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
             * will be to transferred to `to`.
             * - when `from` is zero, `amount` tokens will be minted for `to`.
             * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
             * - `from` and `to` are never both zero.
             *
             * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
             */
            function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
            uint256[44] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0 <0.8.0;
        import "../proxy/Initializable.sol";
        /*
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with GSN meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract ContextUpgradeable is Initializable {
            function __Context_init() internal initializer {
                __Context_init_unchained();
            }
            function __Context_init_unchained() internal initializer {
            }
            function _msgSender() internal view virtual returns (address payable) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes memory) {
                this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
                return msg.data;
            }
            uint256[50] private __gap;
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.2 <0.8.0;
        /**
         * @dev Collection of functions related to the address type
         */
        library AddressUpgradeable {
            /**
             * @dev Returns true if `account` is a contract.
             *
             * [IMPORTANT]
             * ====
             * It is unsafe to assume that an address for which this function returns
             * false is an externally-owned account (EOA) and not a contract.
             *
             * Among others, `isContract` will return false for the following
             * types of addresses:
             *
             *  - an externally-owned account
             *  - a contract in construction
             *  - an address where a contract will be created
             *  - an address where a contract lived, but was destroyed
             * ====
             */
            function isContract(address account) internal view returns (bool) {
                // This method relies on extcodesize, which returns 0 for contracts in
                // construction, since the code is only stored at the end of the
                // constructor execution.
                uint256 size;
                // solhint-disable-next-line no-inline-assembly
                assembly { size := extcodesize(account) }
                return size > 0;
            }
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                require(address(this).balance >= amount, "Address: insufficient balance");
                // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
                (bool success, ) = recipient.call{ value: amount }("");
                require(success, "Address: unable to send value, recipient may have reverted");
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain`call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason, it is bubbled up by this
             * function (like regular Solidity function calls).
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCall(target, data, "Address: low-level call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
             * `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
            }
            /**
             * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
             * with `errorMessage` as a fallback revert reason when `target` reverts.
             *
             * _Available since v3.1._
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
                require(address(this).balance >= value, "Address: insufficient balance for call");
                require(isContract(target), "Address: call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.call{ value: value }(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                return functionStaticCall(target, data, "Address: low-level static call failed");
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
             * but performing a static call.
             *
             * _Available since v3.3._
             */
            function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
                require(isContract(target), "Address: static call to non-contract");
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, bytes memory returndata) = target.staticcall(data);
                return _verifyCallResult(success, returndata, errorMessage);
            }
            function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
                if (success) {
                    return returndata;
                } else {
                    // Look for revert reason and bubble it up if present
                    if (returndata.length > 0) {
                        // The easiest way to bubble the revert reason is using memory via assembly
                        // solhint-disable-next-line no-inline-assembly
                        assembly {
                            let returndata_size := mload(returndata)
                            revert(add(32, returndata), returndata_size)
                        }
                    } else {
                        revert(errorMessage);
                    }
                }
            }
        }
        // SPDX-License-Identifier: MIT
        pragma solidity >=0.6.0;
        interface IFxStateSender {
            function sendMessageToChild(address _receiver, bytes calldata _data) external;
        }