Transaction Hash:
Block:
15237290 at Jul-29-2022 12:18:32 PM +UTC
Transaction Fee:
0.00365328875402876 ETH
$8.84
Gas Used:
143,990 Gas / 25.371822724 Gwei
Emitted Events:
196 |
ExitNFT.Transfer( from=[Sender] 0x689bcb53d875ad65cf6b8a27533d143e9b694b6e, to=0x00000000...000000000, tokenId=564561315956787272015678254936402361878273065014 )
|
197 |
MaticToken.Transfer( from=DepositManagerProxy, to=[Sender] 0x689bcb53d875ad65cf6b8a27533d143e9b694b6e, value=5609514869403656763594 )
|
198 |
WithdrawManagerProxy.Withdraw( exitId=564561315956787272015678254936402361878273065014, user=[Sender] 0x689bcb53d875ad65cf6b8a27533d143e9b694b6e, token=MaticToken, amount=5609514869403656763594 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x689bCb53...E9b694B6e |
0.108209970298712094 Eth
Nonce: 28
|
0.104556681544683334 Eth
Nonce: 29
| 0.00365328875402876 | ||
0x749C1e75...1A84Aa1EC | |||||
0x7D1AfA7B...8AaCfeBB0 | |||||
0xDF741564...6F9fABAca | (Polygon (Matic): Exit NFT) | ||||
0xEA674fdD...16B898ec8
Miner
| (Ethermine) | 525.095670296182204958 Eth | 525.095816189608333408 Eth | 0.00014589342612845 |
Execution Trace
WithdrawManagerProxy.0f6795f2( )
WithdrawManager.processExits( _token=0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0 )
-
PriorityQueue.STATICCALL( )
-
PriorityQueue.STATICCALL( )
-
PriorityQueue.CALL( )
-
ExitNFT.exists( tokenId=564561315956787272015678254936402361878273065014 ) => ( True )
-
ExitNFT.ownerOf( tokenId=564561315956787272015678254936402361878273065014 ) => ( 0x689bCb53d875AD65CF6b8a27533d143E9b694B6e )
ExitNFT.burn( _tokenId=564561315956787272015678254936402361878273065014 )
-
Registry.STATICCALL( )
-
ERC20PredicateBurnOnly.onFinalizeExit( data=0x00000000000000000000000062E3CE12000000000000000003BA61FA000000360000000000000000000000007D1AFA7B718FB893DB30A3ABC0CFC608AACFEBB0000000000000000000000000689BCB53D875AD65CF6B8A27533D143E9B694B6E00000000000000000000000000000000000000000000013017A8353D34B1B8CA )
DepositManagerProxy.49f4cc17( )
DepositManager.transferAssets( _token=0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0, _user=0x689bCb53d875AD65CF6b8a27533d143E9b694B6e, _amountOrNFTId=5609514869403656763594 )
-
Registry.predicates( 0x158d5fa3Ef8e4dDA8a5367deCF76b94E7efFCe95 ) => ( _type=1 )
-
Registry.STATICCALL( )
-
Registry.isERC721( 0x7D1AfA7B718fb893dB30A3aBc0Cfc608AaCfeBB0 ) => ( False )
-
MaticToken.transfer( to=0x689bCb53d875AD65CF6b8a27533d143E9b694B6e, value=5609514869403656763594 ) => ( True )
-
-
PriorityQueue.STATICCALL( )
-
processExits[WithdrawManager (ln:3453)]
currentSize[WithdrawManager (ln:3459)]
gasleft[WithdrawManager (ln:3459)]
getMin[WithdrawManager (ln:3460)]
delMin[WithdrawManager (ln:3467)]
exists[WithdrawManager (ln:3469)]
ownerOf[WithdrawManager (ln:3470)]
burn[WithdrawManager (ln:3472)]
call[WithdrawManager (ln:3476)]
encodeWithSignature[WithdrawManager (ln:3477)]
encodeExitForProcessExit[WithdrawManager (ln:3477)]
Withdraw[WithdrawManager (ln:3480)]
send[WithdrawManager (ln:3484)]
File 1 of 9: WithdrawManagerProxy
File 2 of 9: ExitNFT
File 3 of 9: DepositManagerProxy
File 4 of 9: MaticToken
File 5 of 9: WithdrawManager
File 6 of 9: PriorityQueue
File 7 of 9: Registry
File 8 of 9: ERC20PredicateBurnOnly
File 9 of 9: DepositManager
// File: contracts/common/governance/IGovernance.sol pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } // File: contracts/common/governance/Governable.sol pragma solidity ^0.5.2; contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { require(msg.sender == address(governance), "Only governance contract is authorized"); _; } } // File: contracts/root/withdrawManager/IWithdrawManager.sol pragma solidity ^0.5.2; contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } // File: contracts/common/Registry.sol pragma solidity ^0.5.2; contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/common/misc/ProxyStorage.sol pragma solidity ^0.5.2; contract ProxyStorage is Ownable { address internal proxyTo; } // File: contracts/common/misc/ERCProxy.sol /* * SPDX-License-Identitifer: MIT */ pragma solidity ^0.5.2; // See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-897.md interface ERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/misc/DelegateProxy.sol pragma solidity ^0.5.2; contract DelegateProxy is ERCProxy { function proxyType() external pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external view returns (address); function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall(sub(gas, 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0) let size := returndatasize let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } // File: contracts/common/misc/Proxy.sol pragma solidity ^0.5.2; contract Proxy is ProxyStorage, DelegateProxy { event ProxyUpdated(address indexed _new, address indexed _old); event OwnerUpdate(address _prevOwner, address _newOwner); constructor(address _proxyTo) public { updateImplementation(_proxyTo); } function() external payable { // require(currentContract != 0, "If app code has not been set yet, do not call"); // Todo: filter out some calls or handle in the end fallback delegatedFwd(proxyTo, msg.data); } function implementation() external view returns (address) { return proxyTo; } function updateImplementation(address _newProxyTo) public onlyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, proxyTo); proxyTo = _newProxyTo; } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: solidity-rlp/contracts/RLPReader.sol /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns */ pragma solidity ^0.5.0; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint256 len; uint256 memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint256 nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint256 ptr = self.nextPtr; uint256 itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint256 memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint256 ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param item RLP encoded bytes */ function rlpLen(RLPItem memory item) internal pure returns (uint256) { return item.len; } /* * @param item RLP encoded bytes */ function payloadLen(RLPItem memory item) internal pure returns (uint256) { return item.len - _payloadOffset(item.memPtr); } /* * @param item RLP encoded list in bytes */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint256 items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint256 memPtr = item.memPtr + _payloadOffset(item.memPtr); uint256 dataLen; for (uint256 i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint256 memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint256 ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint256 result; uint256 memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } return result == 0 ? false : true; } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint256) { require(item.len > 0 && item.len <= 33); uint256 offset = _payloadOffset(item.memPtr); uint256 len = item.len - offset; uint256 result; uint256 memPtr = item.memPtr + offset; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint256) { // one byte prefix require(item.len == 33); uint256 result; uint256 memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); uint256 offset = _payloadOffset(item.memPtr); uint256 len = item.len - offset; // data length bytes memory result = new bytes(len); uint256 destPtr; assembly { destPtr := add(0x20, result) } copy(item.memPtr + offset, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint256) { if (item.len == 0) return 0; uint256 count = 0; uint256 currPtr = item.memPtr + _payloadOffset(item.memPtr); uint256 endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint256 memPtr) private pure returns (uint256) { uint256 itemLen; uint256 byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint256 memPtr) private pure returns (uint256) { uint256 byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy( uint256 src, uint256 dest, uint256 len ) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint256 mask = 256**(WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } // File: openzeppelin-solidity/contracts/math/SafeMath.sol pragma solidity ^0.5.2; /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: contracts/common/mixin/ChainIdMixin.sol pragma solidity ^0.5.2; contract ChainIdMixin { bytes public constant networkId = hex"89"; uint256 public constant CHAINID = 137; } // File: contracts/root/RootChainStorage.sol pragma solidity ^0.5.2; contract RootChainHeader { event NewHeaderBlock( address indexed proposer, uint256 indexed headerBlockId, uint256 indexed reward, uint256 start, uint256 end, bytes32 root ); // housekeeping event event ResetHeaderBlock(address indexed proposer, uint256 indexed headerBlockId); struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } } contract RootChainStorage is ProxyStorage, RootChainHeader, ChainIdMixin { bytes32 public heimdallId; uint8 public constant VOTE_TYPE = 2; uint16 internal constant MAX_DEPOSITS = 10000; uint256 public _nextHeaderBlock = MAX_DEPOSITS; uint256 internal _blockDepositId = 1; mapping(uint256 => HeaderBlock) public headerBlocks; Registry internal registry; } // File: contracts/staking/stakeManager/IStakeManager.sol pragma solidity ^0.5.2; contract IStakeManager { // validator replacement function startAuction(uint256 validatorId, uint256 amount) external; function confirmAuctionBid( uint256 validatorId, uint256 heimdallFee, bool acceptDelegation, bytes calldata signerPubkey ) external; function transferFunds( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function delegationDeposit( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function stake( uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes calldata signerPubkey ) external; function unstake(uint256 validatorId) external; function totalStakedFor(address addr) external view returns (uint256); function supportsHistory() external pure returns (bool); function stakeFor( address user, uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes memory signerPubkey ) public; function checkSignatures( uint256 blockInterval, bytes32 voteHash, bytes32 stateRoot, address proposer, bytes memory sigs ) public returns (uint256); function updateValidatorState(uint256 validatorId, int256 amount) public; function ownerOf(uint256 tokenId) public view returns (address); function slash(bytes memory slashingInfoList) public returns (uint256); function validatorStake(uint256 validatorId) public view returns (uint256); function epoch() public view returns (uint256); function withdrawalDelay() public view returns (uint256); } // File: contracts/root/IRootChain.sol pragma solidity ^0.5.2; interface IRootChain { function slash() external; function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external; function getLastChildBlock() external view returns (uint256); function currentHeaderBlock() external view returns (uint256); } // File: contracts/root/RootChain.sol pragma solidity ^0.5.2; contract RootChain is RootChainStorage, IRootChain { using SafeMath for uint256; using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; modifier onlyDepositManager() { require(msg.sender == registry.getDepositManagerAddress(), "UNAUTHORIZED_DEPOSIT_MANAGER_ONLY"); _; } function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external { (address proposer, uint256 start, uint256 end, bytes32 rootHash, bytes32 accountHash, uint256 _borChainID) = abi .decode(data, (address, uint256, uint256, bytes32, bytes32, uint256)); require(CHAINID == _borChainID, "Invalid bor chain id"); require(_buildHeaderBlock(proposer, start, end, rootHash), "INCORRECT_HEADER_DATA"); // check if it is better to keep it in local storage instead IStakeManager stakeManager = IStakeManager(registry.getStakeManagerAddress()); uint256 _reward = stakeManager.checkSignatures( end.sub(start).add(1), /** prefix 01 to data 01 represents positive vote on data and 00 is negative vote malicious validator can try to send 2/3 on negative vote so 01 is appended */ keccak256(abi.encodePacked(bytes(hex"01"), data)), accountHash, proposer, sigs ); require(_reward != 0, "Invalid checkpoint"); emit NewHeaderBlock(proposer, _nextHeaderBlock, _reward, start, end, rootHash); _nextHeaderBlock = _nextHeaderBlock.add(MAX_DEPOSITS); _blockDepositId = 1; } function updateDepositId(uint256 numDeposits) external onlyDepositManager returns (uint256 depositId) { depositId = currentHeaderBlock().add(_blockDepositId); // deposit ids will be (_blockDepositId, _blockDepositId + 1, .... _blockDepositId + numDeposits - 1) _blockDepositId = _blockDepositId.add(numDeposits); require( // Since _blockDepositId is initialized to 1; only (MAX_DEPOSITS - 1) deposits per header block are allowed _blockDepositId <= MAX_DEPOSITS, "TOO_MANY_DEPOSITS" ); } function getLastChildBlock() external view returns (uint256) { return headerBlocks[currentHeaderBlock()].end; } function slash() external { //TODO: future implementation } function currentHeaderBlock() public view returns (uint256) { return _nextHeaderBlock.sub(MAX_DEPOSITS); } function _buildHeaderBlock( address proposer, uint256 start, uint256 end, bytes32 rootHash ) private returns (bool) { uint256 nextChildBlock; /* The ID of the 1st header block is MAX_DEPOSITS. if _nextHeaderBlock == MAX_DEPOSITS, then the first header block is yet to be submitted, hence nextChildBlock = 0 */ if (_nextHeaderBlock > MAX_DEPOSITS) { nextChildBlock = headerBlocks[currentHeaderBlock()].end + 1; } if (nextChildBlock != start) { return false; } HeaderBlock memory headerBlock = HeaderBlock({ root: rootHash, start: nextChildBlock, end: end, createdAt: now, proposer: proposer }); headerBlocks[_nextHeaderBlock] = headerBlock; return true; } // Housekeeping function. @todo remove later function setNextHeaderBlock(uint256 _value) public onlyOwner { require(_value % MAX_DEPOSITS == 0, "Invalid value"); for (uint256 i = _value; i < _nextHeaderBlock; i += MAX_DEPOSITS) { delete headerBlocks[i]; } _nextHeaderBlock = _value; _blockDepositId = 1; emit ResetHeaderBlock(msg.sender, _nextHeaderBlock); } // Housekeeping function. @todo remove later function setHeimdallId(string memory _heimdallId) public onlyOwner { heimdallId = keccak256(abi.encodePacked(_heimdallId)); } } // File: openzeppelin-solidity/contracts/introspection/IERC165.sol pragma solidity ^0.5.2; /** * @title IERC165 * @dev https://eips.ethereum.org/EIPS/eip-165 */ interface IERC165 { /** * @notice Query if a contract implements an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @dev Interface identification is specified in ERC-165. This function * uses less than 30,000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic interface * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); function balanceOf(address owner) public view returns (uint256 balance); function ownerOf(uint256 tokenId) public view returns (address owner); function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function transferFrom( address from, address to, uint256 tokenId ) public; function safeTransferFrom( address from, address to, uint256 tokenId ) public; function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory data ) public; } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721Receiver.sol pragma solidity ^0.5.2; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ contract IERC721Receiver { /** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a `safeTransfer`. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */ function onERC721Received( address operator, address from, uint256 tokenId, bytes memory data ) public returns (bytes4); } // File: openzeppelin-solidity/contracts/utils/Address.sol pragma solidity ^0.5.2; /** * Utility library of inline functions on addresses */ library Address { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param account address of the account to check * @return whether the target address is a contract */ function isContract(address account) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } } // File: openzeppelin-solidity/contracts/drafts/Counters.sol pragma solidity ^0.5.2; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids * * Include with `using Counters for Counters.Counter;` * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the SafeMath * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never * directly accessed. */ library Counters { using SafeMath for uint256; struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { counter._value += 1; } function decrement(Counter storage counter) internal { counter._value = counter._value.sub(1); } } // File: openzeppelin-solidity/contracts/introspection/ERC165.sol pragma solidity ^0.5.2; /** * @title ERC165 * @author Matt Condon (@shrugs) * @dev Implements ERC165 using a lookup table. */ contract ERC165 is IERC165 { bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /* * 0x01ffc9a7 === * bytes4(keccak256('supportsInterface(bytes4)')) */ /** * @dev a mapping of interface id to whether or not it's supported */ mapping(bytes4 => bool) private _supportedInterfaces; /** * @dev A contract implementing SupportsInterfaceWithLookup * implement ERC165 itself */ constructor() internal { _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev implement supportsInterface(bytes4) using a lookup table */ function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev internal method for registering an interface */ function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff); _supportedInterfaces[interfaceId] = true; } } // File: openzeppelin-solidity/contracts/token/ERC721/ERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract ERC721 is ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping(uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping(address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * 0x80ac58cd === * bytes4(keccak256('balanceOf(address)')) ^ * bytes4(keccak256('ownerOf(uint256)')) ^ * bytes4(keccak256('approve(address,uint256)')) ^ * bytes4(keccak256('getApproved(uint256)')) ^ * bytes4(keccak256('setApprovalForAll(address,bool)')) ^ * bytes4(keccak256('isApprovedForAll(address,address)')) ^ * bytes4(keccak256('transferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) */ constructor() public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0)); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0)); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner); require(msg.sender == owner || isApprovedForAll(owner, msg.sender)); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId)); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != msg.sender); _operatorApprovals[msg.sender][to] = approved; emit ApprovalForAll(msg.sender, to, approved); } /** * @dev Tells whether an operator is approved by a given owner * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address * Usage of this method is discouraged, use `safeTransferFrom` whenever possible * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom( address from, address to, uint256 tokenId ) public { require(_isApprovedOrOwner(msg.sender, tokenId)); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom( address from, address to, uint256 tokenId ) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public { transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data)); } /** * @dev Returns whether the specified token exists * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to mint a new token * Reverts if the given token ID already exists * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0)); require(!_exists(tokenId)); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * Deprecated, use _burn(uint256) instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom( address from, address to, uint256 tokenId ) internal { require(ownerOf(tokenId) == from); require(to != address(0)); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke `onERC721Received` on a target address * The call is not executed if the target address is not a contract * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) internal returns (bool) { if (!to.isContract()) { return true; } bytes4 retval = IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data); return (retval == _ERC721_RECEIVED); } /** * @dev Private function to clear current approval of a given token ID * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } } // File: contracts/root/withdrawManager/ExitNFT.sol pragma solidity ^0.5.2; contract ExitNFT is ERC721 { Registry internal registry; modifier onlyWithdrawManager() { require(msg.sender == registry.getWithdrawManagerAddress(), "UNAUTHORIZED_WITHDRAW_MANAGER_ONLY"); _; } constructor(address _registry) public { registry = Registry(_registry); } function mint(address _owner, uint256 _tokenId) external onlyWithdrawManager { _mint(_owner, _tokenId); } function burn(uint256 _tokenId) external onlyWithdrawManager { _burn(_tokenId); } function exists(uint256 tokenId) public view returns (bool) { return _exists(tokenId); } } // File: contracts/root/withdrawManager/WithdrawManagerStorage.sol pragma solidity ^0.5.2; contract ExitsDataStructure { struct Input { address utxoOwner; address predicate; address token; } struct PlasmaExit { uint256 receiptAmountOrNFTId; bytes32 txHash; address owner; address token; bool isRegularExit; address predicate; // Mapping from age of input to Input mapping(uint256 => Input) inputs; } } contract WithdrawManagerHeader is ExitsDataStructure { event Withdraw(uint256 indexed exitId, address indexed user, address indexed token, uint256 amount); event ExitStarted( address indexed exitor, uint256 indexed exitId, address indexed token, uint256 amount, bool isRegularExit ); event ExitUpdated(uint256 indexed exitId, uint256 indexed age, address signer); event ExitPeriodUpdate(uint256 indexed oldExitPeriod, uint256 indexed newExitPeriod); event ExitCancelled(uint256 indexed exitId); } contract WithdrawManagerStorage is ProxyStorage, WithdrawManagerHeader { // 0.5 week = 7 * 86400 / 2 = 302400 uint256 public HALF_EXIT_PERIOD = 302400; // Bonded exits collaterized at 0.1 ETH uint256 internal constant BOND_AMOUNT = 10**17; Registry internal registry; RootChain internal rootChain; mapping(uint128 => bool) isKnownExit; mapping(uint256 => PlasmaExit) public exits; // mapping with token => (owner => exitId) keccak(token+owner) keccak(token+owner+tokenId) mapping(bytes32 => uint256) public ownerExits; mapping(address => address) public exitsQueues; ExitNFT public exitNft; // ERC721, ERC20 and Weth transfers require 155000, 100000, 52000 gas respectively // Processing each exit in a while loop iteration requires ~52000 gas (@todo check if this changed) // uint32 constant internal ITERATION_GAS = 52000; // So putting an upper limit of 155000 + 52000 + leeway uint32 public ON_FINALIZE_GAS_LIMIT = 300000; uint256 public exitWindow; } // File: contracts/root/withdrawManager/WithdrawManagerProxy.sol pragma solidity ^0.5.2; contract WithdrawManagerProxy is Proxy, WithdrawManagerStorage { constructor( address _proxyTo, address _registry, address _rootChain, address _exitNft ) public Proxy(_proxyTo) { registry = Registry(_registry); rootChain = RootChain(_rootChain); exitNft = ExitNFT(_exitNft); } }
File 2 of 9: ExitNFT
/** Matic network contracts */ pragma solidity ^0.5.2; /** * @title IERC165 * @dev https://eips.ethereum.org/EIPS/eip-165 */ interface IERC165 { /** * @notice Query if a contract implements an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @dev Interface identification is specified in ERC-165. This function * uses less than 30,000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } /** * @title ERC721 Non-Fungible Token Standard basic interface * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); function balanceOf(address owner) public view returns (uint256 balance); function ownerOf(uint256 tokenId) public view returns (address owner); function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function transferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; } /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ contract IERC721Receiver { /** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a `safeTransfer`. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */ function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data) public returns (bytes4); } /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } /** * Utility library of inline functions on addresses */ library Address { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param account address of the account to check * @return whether the target address is a contract */ function isContract(address account) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } } /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids * * Include with `using Counters for Counters.Counter;` * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the SafeMath * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never * directly accessed. */ library Counters { using SafeMath for uint256; struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { counter._value += 1; } function decrement(Counter storage counter) internal { counter._value = counter._value.sub(1); } } /** * @title ERC165 * @author Matt Condon (@shrugs) * @dev Implements ERC165 using a lookup table. */ contract ERC165 is IERC165 { bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /* * 0x01ffc9a7 === * bytes4(keccak256('supportsInterface(bytes4)')) */ /** * @dev a mapping of interface id to whether or not it's supported */ mapping(bytes4 => bool) private _supportedInterfaces; /** * @dev A contract implementing SupportsInterfaceWithLookup * implement ERC165 itself */ constructor () internal { _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev implement supportsInterface(bytes4) using a lookup table */ function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev internal method for registering an interface */ function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff); _supportedInterfaces[interfaceId] = true; } } contract ERC721 is ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * 0x80ac58cd === * bytes4(keccak256('balanceOf(address)')) ^ * bytes4(keccak256('ownerOf(uint256)')) ^ * bytes4(keccak256('approve(address,uint256)')) ^ * bytes4(keccak256('getApproved(uint256)')) ^ * bytes4(keccak256('setApprovalForAll(address,bool)')) ^ * bytes4(keccak256('isApprovedForAll(address,address)')) ^ * bytes4(keccak256('transferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) */ constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0)); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0)); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner); require(msg.sender == owner || isApprovedForAll(owner, msg.sender)); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId)); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != msg.sender); _operatorApprovals[msg.sender][to] = approved; emit ApprovalForAll(msg.sender, to, approved); } /** * @dev Tells whether an operator is approved by a given owner * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address * Usage of this method is discouraged, use `safeTransferFrom` whenever possible * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { require(_isApprovedOrOwner(msg.sender, tokenId)); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data)); } /** * @dev Returns whether the specified token exists * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to mint a new token * Reverts if the given token ID already exists * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0)); require(!_exists(tokenId)); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * Deprecated, use _burn(uint256) instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from); require(to != address(0)); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke `onERC721Received` on a target address * The call is not executed if the target address is not a contract * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } bytes4 retval = IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data); return (retval == _ERC721_RECEIVED); } /** * @dev Private function to clear current approval of a given token ID * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } } interface IGovernance { function update(address target, bytes calldata data) external; } contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { require( msg.sender == address(governance), "Only governance contract is authorized" ); _; } } contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } contract ExitNFT is ERC721 { Registry internal registry; modifier onlyWithdrawManager() { require( msg.sender == registry.getWithdrawManagerAddress(), "UNAUTHORIZED_WITHDRAW_MANAGER_ONLY" ); _; } constructor(address _registry) public { registry = Registry(_registry); } function mint(address _owner, uint256 _tokenId) external onlyWithdrawManager { _mint(_owner, _tokenId); } function burn(uint256 _tokenId) external onlyWithdrawManager { _burn(_tokenId); } function exists(uint256 tokenId) public view returns (bool) { return _exists(tokenId); } }
File 3 of 9: DepositManagerProxy
// File: contracts/common/governance/IGovernance.sol pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } // File: contracts/common/governance/Governable.sol pragma solidity ^0.5.2; contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { require( msg.sender == address(governance), "Only governance contract is authorized" ); _; } } // File: contracts/root/withdrawManager/IWithdrawManager.sol pragma solidity ^0.5.2; contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } // File: contracts/common/Registry.sol pragma solidity ^0.5.2; contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } // File: solidity-rlp/contracts/RLPReader.sol /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns */ pragma solidity ^0.5.0; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param item RLP encoded bytes */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param item RLP encoded bytes */ function payloadLen(RLPItem memory item) internal pure returns (uint) { return item.len - _payloadOffset(item.memPtr); } /* * @param item RLP encoded list in bytes */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } return result == 0 ? false : true; } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; uint result; uint memPtr = item.memPtr + offset; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; // data length bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(item.memPtr + offset, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } // File: openzeppelin-solidity/contracts/math/SafeMath.sol pragma solidity ^0.5.2; /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/common/misc/ProxyStorage.sol pragma solidity ^0.5.2; contract ProxyStorage is Ownable { address internal proxyTo; } // File: contracts/common/mixin/ChainIdMixin.sol pragma solidity ^0.5.2; contract ChainIdMixin { bytes constant public networkId = hex"89"; uint256 constant public CHAINID = 137; } // File: contracts/root/RootChainStorage.sol pragma solidity ^0.5.2; contract RootChainHeader { event NewHeaderBlock( address indexed proposer, uint256 indexed headerBlockId, uint256 indexed reward, uint256 start, uint256 end, bytes32 root ); // housekeeping event event ResetHeaderBlock(address indexed proposer, uint256 indexed headerBlockId); struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } } contract RootChainStorage is ProxyStorage, RootChainHeader, ChainIdMixin { bytes32 public heimdallId; uint8 public constant VOTE_TYPE = 2; uint16 internal constant MAX_DEPOSITS = 10000; uint256 public _nextHeaderBlock = MAX_DEPOSITS; uint256 internal _blockDepositId = 1; mapping(uint256 => HeaderBlock) public headerBlocks; Registry internal registry; } // File: contracts/staking/stakeManager/IStakeManager.sol pragma solidity ^0.5.2; contract IStakeManager { // validator replacement function startAuction(uint256 validatorId, uint256 amount) external; function confirmAuctionBid( uint256 validatorId, uint256 heimdallFee, bool acceptDelegation, bytes calldata signerPubkey ) external; function transferFunds( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function delegationDeposit( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function stake( uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes calldata signerPubkey ) external; function unstake(uint256 validatorId) external; function totalStakedFor(address addr) external view returns (uint256); function supportsHistory() external pure returns (bool); function stakeFor( address user, uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes memory signerPubkey ) public; function checkSignatures( uint256 blockInterval, bytes32 voteHash, bytes32 stateRoot, address proposer, bytes memory sigs ) public returns (uint256); function updateValidatorState(uint256 validatorId, int256 amount) public; function ownerOf(uint256 tokenId) public view returns (address); function slash(bytes memory slashingInfoList) public returns (uint256); function validatorStake(uint256 validatorId) public view returns (uint256); function epoch() public view returns (uint256); function withdrawalDelay() public view returns (uint256); } // File: contracts/root/IRootChain.sol pragma solidity ^0.5.2; interface IRootChain { function slash() external; function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external; function getLastChildBlock() external view returns (uint256); function currentHeaderBlock() external view returns (uint256); } // File: contracts/root/RootChain.sol pragma solidity ^0.5.2; contract RootChain is RootChainStorage, IRootChain { using SafeMath for uint256; using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; modifier onlyDepositManager() { require(msg.sender == registry.getDepositManagerAddress(), "UNAUTHORIZED_DEPOSIT_MANAGER_ONLY"); _; } function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external { (address proposer, uint256 start, uint256 end, bytes32 rootHash, bytes32 accountHash, uint256 _borChainID) = abi .decode(data, (address, uint256, uint256, bytes32, bytes32, uint256)); require(CHAINID == _borChainID, "Invalid bor chain id"); require(_buildHeaderBlock(proposer, start, end, rootHash), "INCORRECT_HEADER_DATA"); // check if it is better to keep it in local storage instead IStakeManager stakeManager = IStakeManager(registry.getStakeManagerAddress()); uint256 _reward = stakeManager.checkSignatures( end.sub(start).add(1), /** prefix 01 to data 01 represents positive vote on data and 00 is negative vote malicious validator can try to send 2/3 on negative vote so 01 is appended */ keccak256(abi.encodePacked(bytes(hex"01"), data)), accountHash, proposer, sigs ); require(_reward != 0, "Invalid checkpoint"); emit NewHeaderBlock(proposer, _nextHeaderBlock, _reward, start, end, rootHash); _nextHeaderBlock = _nextHeaderBlock.add(MAX_DEPOSITS); _blockDepositId = 1; } function updateDepositId(uint256 numDeposits) external onlyDepositManager returns (uint256 depositId) { depositId = currentHeaderBlock().add(_blockDepositId); // deposit ids will be (_blockDepositId, _blockDepositId + 1, .... _blockDepositId + numDeposits - 1) _blockDepositId = _blockDepositId.add(numDeposits); require( // Since _blockDepositId is initialized to 1; only (MAX_DEPOSITS - 1) deposits per header block are allowed _blockDepositId <= MAX_DEPOSITS, "TOO_MANY_DEPOSITS" ); } function getLastChildBlock() external view returns (uint256) { return headerBlocks[currentHeaderBlock()].end; } function slash() external { //TODO: future implementation } function currentHeaderBlock() public view returns (uint256) { return _nextHeaderBlock.sub(MAX_DEPOSITS); } function _buildHeaderBlock( address proposer, uint256 start, uint256 end, bytes32 rootHash ) private returns (bool) { uint256 nextChildBlock; /* The ID of the 1st header block is MAX_DEPOSITS. if _nextHeaderBlock == MAX_DEPOSITS, then the first header block is yet to be submitted, hence nextChildBlock = 0 */ if (_nextHeaderBlock > MAX_DEPOSITS) { nextChildBlock = headerBlocks[currentHeaderBlock()].end + 1; } if (nextChildBlock != start) { return false; } HeaderBlock memory headerBlock = HeaderBlock({ root: rootHash, start: nextChildBlock, end: end, createdAt: now, proposer: proposer }); headerBlocks[_nextHeaderBlock] = headerBlock; return true; } // Housekeeping function. @todo remove later function setNextHeaderBlock(uint256 _value) public onlyOwner { require(_value % MAX_DEPOSITS == 0, "Invalid value"); for (uint256 i = _value; i < _nextHeaderBlock; i += MAX_DEPOSITS) { delete headerBlocks[i]; } _nextHeaderBlock = _value; _blockDepositId = 1; emit ResetHeaderBlock(msg.sender, _nextHeaderBlock); } // Housekeeping function. @todo remove later function setHeimdallId(string memory _heimdallId) public onlyOwner { heimdallId = keccak256(abi.encodePacked(_heimdallId)); } } // File: contracts/root/stateSyncer/StateSender.sol pragma solidity ^0.5.2; contract StateSender is Ownable { using SafeMath for uint256; uint256 public counter; mapping(address => address) public registrations; event NewRegistration( address indexed user, address indexed sender, address indexed receiver ); event RegistrationUpdated( address indexed user, address indexed sender, address indexed receiver ); event StateSynced( uint256 indexed id, address indexed contractAddress, bytes data ); modifier onlyRegistered(address receiver) { require(registrations[receiver] == msg.sender, "Invalid sender"); _; } function syncState(address receiver, bytes calldata data) external onlyRegistered(receiver) { counter = counter.add(1); emit StateSynced(counter, receiver, data); } // register new contract for state sync function register(address sender, address receiver) public { require( isOwner() || registrations[receiver] == msg.sender, "StateSender.register: Not authorized to register" ); registrations[receiver] = sender; if (registrations[receiver] == address(0)) { emit NewRegistration(msg.sender, sender, receiver); } else { emit RegistrationUpdated(msg.sender, sender, receiver); } } } // File: contracts/common/mixin/Lockable.sol pragma solidity ^0.5.2; contract Lockable is Governable { bool public locked; modifier onlyWhenUnlocked() { require(!locked, "Is Locked"); _; } constructor(address _governance) public Governable(_governance) {} function lock() external onlyGovernance { locked = true; } function unlock() external onlyGovernance { locked = false; } } // File: contracts/root/depositManager/DepositManagerStorage.sol pragma solidity ^0.5.2; contract DepositManagerHeader { event NewDepositBlock(address indexed owner, address indexed token, uint256 amountOrNFTId, uint256 depositBlockId); event MaxErc20DepositUpdate(uint256 indexed oldLimit, uint256 indexed newLimit); struct DepositBlock { bytes32 depositHash; uint256 createdAt; } } contract DepositManagerStorage is ProxyStorage, Lockable, DepositManagerHeader { Registry public registry; RootChain public rootChain; StateSender public stateSender; mapping(uint256 => DepositBlock) public deposits; address public childChain; uint256 public maxErc20Deposit = 100 * (10**18); } // File: contracts/common/misc/ERCProxy.sol /* * SPDX-License-Identitifer: MIT */ pragma solidity ^0.5.2; // See https://github.com/ethereum/EIPs/blob/master/EIPS/eip-897.md interface ERCProxy { function proxyType() external pure returns (uint256 proxyTypeId); function implementation() external view returns (address codeAddr); } // File: contracts/common/misc/DelegateProxy.sol pragma solidity ^0.5.2; contract DelegateProxy is ERCProxy { function proxyType() external pure returns (uint256 proxyTypeId) { // Upgradeable proxy proxyTypeId = 2; } function implementation() external view returns (address); function delegatedFwd(address _dst, bytes memory _calldata) internal { // solium-disable-next-line security/no-inline-assembly assembly { let result := delegatecall( sub(gas, 10000), _dst, add(_calldata, 0x20), mload(_calldata), 0, 0 ) let size := returndatasize let ptr := mload(0x40) returndatacopy(ptr, 0, size) // revert instead of invalid() bc if the underlying call failed with invalid() it already wasted gas. // if the call returned error data, forward it switch result case 0 { revert(ptr, size) } default { return(ptr, size) } } } } // File: contracts/common/misc/Proxy.sol pragma solidity ^0.5.2; contract Proxy is ProxyStorage, DelegateProxy { event ProxyUpdated(address indexed _new, address indexed _old); event OwnerUpdate(address _prevOwner, address _newOwner); constructor(address _proxyTo) public { updateImplementation(_proxyTo); } function() external payable { // require(currentContract != 0, "If app code has not been set yet, do not call"); // Todo: filter out some calls or handle in the end fallback delegatedFwd(proxyTo, msg.data); } function implementation() external view returns (address) { return proxyTo; } function updateImplementation(address _newProxyTo) public onlyOwner { require(_newProxyTo != address(0x0), "INVALID_PROXY_ADDRESS"); require(isContract(_newProxyTo), "DESTINATION_ADDRESS_IS_NOT_A_CONTRACT"); emit ProxyUpdated(_newProxyTo, proxyTo); proxyTo = _newProxyTo; } function isContract(address _target) internal view returns (bool) { if (_target == address(0)) { return false; } uint256 size; assembly { size := extcodesize(_target) } return size > 0; } } // File: contracts/root/depositManager/DepositManagerProxy.sol pragma solidity ^0.5.2; contract DepositManagerProxy is Proxy, DepositManagerStorage { constructor( address _proxyTo, address _registry, address _rootChain, address _governance ) public Proxy(_proxyTo) Lockable(_governance) { registry = Registry(_registry); rootChain = RootChain(_rootChain); } }
File 4 of 9: MaticToken
pragma solidity 0.5.2; // File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol /** * @title ERC20 interface * @dev see https://github.com/ethereum/EIPs/issues/20 */ interface IERC20 { function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } // File: openzeppelin-solidity/contracts/math/SafeMath.sol /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md * Originally based on code by FirstBlood: * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol * * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for * all accounts just by listening to said events. Note that this isn't required by the specification, and other * compliant implementations may not do it. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; /** * @dev Total number of tokens in existence */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev Gets the balance of the specified address. * @param owner The address to query the balance of. * @return An uint256 representing the amount owned by the passed address. */ function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } /** * @dev Function to check the amount of tokens that an owner allowed to a spender. * @param owner address The address which owns the funds. * @param spender address The address which will spend the funds. * @return A uint256 specifying the amount of tokens still available for the spender. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowed[owner][spender]; } /** * @dev Transfer token for a specified address * @param to The address to transfer to. * @param value The amount to be transferred. */ function transfer(address to, uint256 value) public returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. */ function approve(address spender, uint256 value) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = value; emit Approval(msg.sender, spender, value); return true; } /** * @dev Transfer tokens from one address to another. * Note that while this function emits an Approval event, this is not required as per the specification, * and other compliant implementations may not emit the event. * @param from address The address which you want to send tokens from * @param to address The address which you want to transfer to * @param value uint256 the amount of tokens to be transferred */ function transferFrom(address from, address to, uint256 value) public returns (bool) { _allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value); _transfer(from, to, value); emit Approval(from, msg.sender, _allowed[from][msg.sender]); return true; } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when allowed_[_spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param addedValue The amount of tokens to increase the allowance by. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = _allowed[msg.sender][spender].add(addedValue); emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); return true; } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when allowed_[_spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = _allowed[msg.sender][spender].sub(subtractedValue); emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); return true; } /** * @dev Transfer token for a specified addresses * @param from The address to transfer from. * @param to The address to transfer to. * @param value The amount to be transferred. */ function _transfer(address from, address to, uint256 value) internal { require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(from, to, value); } /** * @dev Internal function that mints an amount of the token and assigns it to * an account. This encapsulates the modification of balances such that the * proper events are emitted. * @param account The account that will receive the created tokens. * @param value The amount that will be created. */ function _mint(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.add(value); _balances[account] = _balances[account].add(value); emit Transfer(address(0), account, value); } /** * @dev Internal function that burns an amount of the token of a given * account. * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burn(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } /** * @dev Internal function that burns an amount of the token of a given * account, deducting from the sender's allowance for said account. Uses the * internal burn function. * Emits an Approval event (reflecting the reduced allowance). * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burnFrom(address account, uint256 value) internal { _allowed[account][msg.sender] = _allowed[account][msg.sender].sub(value); _burn(account, value); emit Approval(account, msg.sender, _allowed[account][msg.sender]); } } // File: openzeppelin-solidity/contracts/access/Roles.sol /** * @title Roles * @dev Library for managing addresses assigned to a Role. */ library Roles { struct Role { mapping (address => bool) bearer; } /** * @dev give an account access to this role */ function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; } /** * @dev remove an account's access to this role */ function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; } /** * @dev check if an account has this role * @return bool */ function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; } } // File: openzeppelin-solidity/contracts/access/roles/PauserRole.sol contract PauserRole { using Roles for Roles.Role; event PauserAdded(address indexed account); event PauserRemoved(address indexed account); Roles.Role private _pausers; constructor () internal { _addPauser(msg.sender); } modifier onlyPauser() { require(isPauser(msg.sender)); _; } function isPauser(address account) public view returns (bool) { return _pausers.has(account); } function addPauser(address account) public onlyPauser { _addPauser(account); } function renouncePauser() public { _removePauser(msg.sender); } function _addPauser(address account) internal { _pausers.add(account); emit PauserAdded(account); } function _removePauser(address account) internal { _pausers.remove(account); emit PauserRemoved(account); } } // File: openzeppelin-solidity/contracts/lifecycle/Pausable.sol /** * @title Pausable * @dev Base contract which allows children to implement an emergency stop mechanism. */ contract Pausable is PauserRole { event Paused(address account); event Unpaused(address account); bool private _paused; constructor () internal { _paused = false; } /** * @return true if the contract is paused, false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!_paused); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(_paused); _; } /** * @dev called by the owner to pause, triggers stopped state */ function pause() public onlyPauser whenNotPaused { _paused = true; emit Paused(msg.sender); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() public onlyPauser whenPaused { _paused = false; emit Unpaused(msg.sender); } } // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Pausable.sol /** * @title Pausable token * @dev ERC20 modified with pausable transfers. **/ contract ERC20Pausable is ERC20, Pausable { function transfer(address to, uint256 value) public whenNotPaused returns (bool) { return super.transfer(to, value); } function transferFrom(address from, address to, uint256 value) public whenNotPaused returns (bool) { return super.transferFrom(from, to, value); } function approve(address spender, uint256 value) public whenNotPaused returns (bool) { return super.approve(spender, value); } function increaseAllowance(address spender, uint addedValue) public whenNotPaused returns (bool success) { return super.increaseAllowance(spender, addedValue); } function decreaseAllowance(address spender, uint subtractedValue) public whenNotPaused returns (bool success) { return super.decreaseAllowance(spender, subtractedValue); } } // File: openzeppelin-solidity/contracts/token/ERC20/ERC20Detailed.sol /** * @title ERC20Detailed token * @dev The decimals are only for visualization purposes. * All the operations are done using the smallest and indivisible token unit, * just as on Ethereum all the operations are done in wei. */ contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor (string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } /** * @return the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @return the symbol of the token. */ function symbol() public view returns (string memory) { return _symbol; } /** * @return the number of decimals of the token. */ function decimals() public view returns (uint8) { return _decimals; } } // File: contracts/MaticToken.sol contract MaticToken is ERC20Pausable, ERC20Detailed { constructor (string memory name, string memory symbol, uint8 decimals, uint256 totalSupply) public ERC20Detailed (name, symbol, decimals) { _mint(msg.sender, totalSupply); } }
File 5 of 9: WithdrawManager
// File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol pragma solidity ^0.5.2; /** * @title ERC20 interface * @dev see https://eips.ethereum.org/EIPS/eip-20 */ interface IERC20 { function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } // File: openzeppelin-solidity/contracts/math/SafeMath.sol pragma solidity ^0.5.2; /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol pragma solidity ^0.5.2; /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * https://eips.ethereum.org/EIPS/eip-20 * Originally based on code by FirstBlood: * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol * * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for * all accounts just by listening to said events. Note that this isn't required by the specification, and other * compliant implementations may not do it. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; /** * @dev Total number of tokens in existence */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev Gets the balance of the specified address. * @param owner The address to query the balance of. * @return A uint256 representing the amount owned by the passed address. */ function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } /** * @dev Function to check the amount of tokens that an owner allowed to a spender. * @param owner address The address which owns the funds. * @param spender address The address which will spend the funds. * @return A uint256 specifying the amount of tokens still available for the spender. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowed[owner][spender]; } /** * @dev Transfer token to a specified address * @param to The address to transfer to. * @param value The amount to be transferred. */ function transfer(address to, uint256 value) public returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. */ function approve(address spender, uint256 value) public returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev Transfer tokens from one address to another. * Note that while this function emits an Approval event, this is not required as per the specification, * and other compliant implementations may not emit the event. * @param from address The address which you want to send tokens from * @param to address The address which you want to transfer to * @param value uint256 the amount of tokens to be transferred */ function transferFrom(address from, address to, uint256 value) public returns (bool) { _transfer(from, to, value); _approve(from, msg.sender, _allowed[from][msg.sender].sub(value)); return true; } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when _allowed[msg.sender][spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param addedValue The amount of tokens to increase the allowance by. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].add(addedValue)); return true; } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when _allowed[msg.sender][spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].sub(subtractedValue)); return true; } /** * @dev Transfer token for a specified addresses * @param from The address to transfer from. * @param to The address to transfer to. * @param value The amount to be transferred. */ function _transfer(address from, address to, uint256 value) internal { require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(from, to, value); } /** * @dev Internal function that mints an amount of the token and assigns it to * an account. This encapsulates the modification of balances such that the * proper events are emitted. * @param account The account that will receive the created tokens. * @param value The amount that will be created. */ function _mint(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.add(value); _balances[account] = _balances[account].add(value); emit Transfer(address(0), account, value); } /** * @dev Internal function that burns an amount of the token of a given * account. * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burn(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } /** * @dev Approve an address to spend another addresses' tokens. * @param owner The address that owns the tokens. * @param spender The address that will spend the tokens. * @param value The number of tokens that can be spent. */ function _approve(address owner, address spender, uint256 value) internal { require(spender != address(0)); require(owner != address(0)); _allowed[owner][spender] = value; emit Approval(owner, spender, value); } /** * @dev Internal function that burns an amount of the token of a given * account, deducting from the sender's allowance for said account. Uses the * internal burn function. * Emits an Approval event (reflecting the reduced allowance). * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burnFrom(address account, uint256 value) internal { _burn(account, value); _approve(account, msg.sender, _allowed[account][msg.sender].sub(value)); } } // File: openzeppelin-solidity/contracts/introspection/IERC165.sol pragma solidity ^0.5.2; /** * @title IERC165 * @dev https://eips.ethereum.org/EIPS/eip-165 */ interface IERC165 { /** * @notice Query if a contract implements an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @dev Interface identification is specified in ERC-165. This function * uses less than 30,000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic interface * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); function balanceOf(address owner) public view returns (uint256 balance); function ownerOf(uint256 tokenId) public view returns (address owner); function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function transferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721Receiver.sol pragma solidity ^0.5.2; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ contract IERC721Receiver { /** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a `safeTransfer`. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */ function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data) public returns (bytes4); } // File: openzeppelin-solidity/contracts/utils/Address.sol pragma solidity ^0.5.2; /** * Utility library of inline functions on addresses */ library Address { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param account address of the account to check * @return whether the target address is a contract */ function isContract(address account) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } } // File: openzeppelin-solidity/contracts/drafts/Counters.sol pragma solidity ^0.5.2; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids * * Include with `using Counters for Counters.Counter;` * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the SafeMath * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never * directly accessed. */ library Counters { using SafeMath for uint256; struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { counter._value += 1; } function decrement(Counter storage counter) internal { counter._value = counter._value.sub(1); } } // File: openzeppelin-solidity/contracts/introspection/ERC165.sol pragma solidity ^0.5.2; /** * @title ERC165 * @author Matt Condon (@shrugs) * @dev Implements ERC165 using a lookup table. */ contract ERC165 is IERC165 { bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /* * 0x01ffc9a7 === * bytes4(keccak256('supportsInterface(bytes4)')) */ /** * @dev a mapping of interface id to whether or not it's supported */ mapping(bytes4 => bool) private _supportedInterfaces; /** * @dev A contract implementing SupportsInterfaceWithLookup * implement ERC165 itself */ constructor () internal { _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev implement supportsInterface(bytes4) using a lookup table */ function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev internal method for registering an interface */ function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff); _supportedInterfaces[interfaceId] = true; } } // File: openzeppelin-solidity/contracts/token/ERC721/ERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract ERC721 is ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * 0x80ac58cd === * bytes4(keccak256('balanceOf(address)')) ^ * bytes4(keccak256('ownerOf(uint256)')) ^ * bytes4(keccak256('approve(address,uint256)')) ^ * bytes4(keccak256('getApproved(uint256)')) ^ * bytes4(keccak256('setApprovalForAll(address,bool)')) ^ * bytes4(keccak256('isApprovedForAll(address,address)')) ^ * bytes4(keccak256('transferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) */ constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0)); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0)); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner); require(msg.sender == owner || isApprovedForAll(owner, msg.sender)); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId)); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != msg.sender); _operatorApprovals[msg.sender][to] = approved; emit ApprovalForAll(msg.sender, to, approved); } /** * @dev Tells whether an operator is approved by a given owner * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address * Usage of this method is discouraged, use `safeTransferFrom` whenever possible * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { require(_isApprovedOrOwner(msg.sender, tokenId)); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data)); } /** * @dev Returns whether the specified token exists * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to mint a new token * Reverts if the given token ID already exists * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0)); require(!_exists(tokenId)); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * Deprecated, use _burn(uint256) instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from); require(to != address(0)); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke `onERC721Received` on a target address * The call is not executed if the target address is not a contract * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } bytes4 retval = IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data); return (retval == _ERC721_RECEIVED); } /** * @dev Private function to clear current approval of a given token ID * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } } // File: openzeppelin-solidity/contracts/math/Math.sol pragma solidity ^0.5.2; /** * @title Math * @dev Assorted math operations */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Calculates the average of two numbers. Since these are integers, * averages of an even and odd number cannot be represented, and will be * rounded down. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } } // File: solidity-rlp/contracts/RLPReader.sol /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns */ pragma solidity ^0.5.0; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param item RLP encoded bytes */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param item RLP encoded bytes */ function payloadLen(RLPItem memory item) internal pure returns (uint) { return item.len - _payloadOffset(item.memPtr); } /* * @param item RLP encoded list in bytes */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } return result == 0 ? false : true; } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; uint result; uint memPtr = item.memPtr + offset; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; // data length bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(item.memPtr + offset, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } // File: contracts/common/lib/Merkle.sol pragma solidity ^0.5.2; library Merkle { function checkMembership( bytes32 leaf, uint256 index, bytes32 rootHash, bytes memory proof ) internal pure returns (bool) { require(proof.length % 32 == 0, "Invalid proof length"); uint256 proofHeight = proof.length / 32; // Proof of size n means, height of the tree is n+1. // In a tree of height n+1, max #leafs possible is 2 ^ n require(index < 2 ** proofHeight, "Leaf index is too big"); bytes32 proofElement; bytes32 computedHash = leaf; for (uint256 i = 32; i <= proof.length; i += 32) { assembly { proofElement := mload(add(proof, i)) } if (index % 2 == 0) { computedHash = keccak256( abi.encodePacked(computedHash, proofElement) ); } else { computedHash = keccak256( abi.encodePacked(proofElement, computedHash) ); } index = index / 2; } return computedHash == rootHash; } } // File: contracts/common/lib/MerklePatriciaProof.sol /* * @title MerklePatriciaVerifier * @author Sam Mayo ([email protected]) * * @dev Library for verifing merkle patricia proofs. */ pragma solidity ^0.5.2; library MerklePatriciaProof { /* * @dev Verifies a merkle patricia proof. * @param value The terminating value in the trie. * @param encodedPath The path in the trie leading to value. * @param rlpParentNodes The rlp encoded stack of nodes. * @param root The root hash of the trie. * @return The boolean validity of the proof. */ function verify( bytes memory value, bytes memory encodedPath, bytes memory rlpParentNodes, bytes32 root ) internal pure returns (bool) { RLPReader.RLPItem memory item = RLPReader.toRlpItem(rlpParentNodes); RLPReader.RLPItem[] memory parentNodes = RLPReader.toList(item); bytes memory currentNode; RLPReader.RLPItem[] memory currentNodeList; bytes32 nodeKey = root; uint256 pathPtr = 0; bytes memory path = _getNibbleArray(encodedPath); if (path.length == 0) { return false; } for (uint256 i = 0; i < parentNodes.length; i++) { if (pathPtr > path.length) { return false; } currentNode = RLPReader.toRlpBytes(parentNodes[i]); if (nodeKey != keccak256(currentNode)) { return false; } currentNodeList = RLPReader.toList(parentNodes[i]); if (currentNodeList.length == 17) { if (pathPtr == path.length) { if ( keccak256(RLPReader.toBytes(currentNodeList[16])) == keccak256(value) ) { return true; } else { return false; } } uint8 nextPathNibble = uint8(path[pathPtr]); if (nextPathNibble > 16) { return false; } nodeKey = bytes32( RLPReader.toUintStrict(currentNodeList[nextPathNibble]) ); pathPtr += 1; } else if (currentNodeList.length == 2) { uint256 traversed = _nibblesToTraverse( RLPReader.toBytes(currentNodeList[0]), path, pathPtr ); if (pathPtr + traversed == path.length) { //leaf node if ( keccak256(RLPReader.toBytes(currentNodeList[1])) == keccak256(value) ) { return true; } else { return false; } } //extension node if (traversed == 0) { return false; } pathPtr += traversed; nodeKey = bytes32(RLPReader.toUintStrict(currentNodeList[1])); } else { return false; } } } function _nibblesToTraverse( bytes memory encodedPartialPath, bytes memory path, uint256 pathPtr ) private pure returns (uint256) { uint256 len; // encodedPartialPath has elements that are each two hex characters (1 byte), but partialPath // and slicedPath have elements that are each one hex character (1 nibble) bytes memory partialPath = _getNibbleArray(encodedPartialPath); bytes memory slicedPath = new bytes(partialPath.length); // pathPtr counts nibbles in path // partialPath.length is a number of nibbles for (uint256 i = pathPtr; i < pathPtr + partialPath.length; i++) { bytes1 pathNibble = path[i]; slicedPath[i - pathPtr] = pathNibble; } if (keccak256(partialPath) == keccak256(slicedPath)) { len = partialPath.length; } else { len = 0; } return len; } // bytes b must be hp encoded function _getNibbleArray(bytes memory b) private pure returns (bytes memory) { bytes memory nibbles; if (b.length > 0) { uint8 offset; uint8 hpNibble = uint8(_getNthNibbleOfBytes(0, b)); if (hpNibble == 1 || hpNibble == 3) { nibbles = new bytes(b.length * 2 - 1); bytes1 oddNibble = _getNthNibbleOfBytes(1, b); nibbles[0] = oddNibble; offset = 1; } else { nibbles = new bytes(b.length * 2 - 2); offset = 0; } for (uint256 i = offset; i < nibbles.length; i++) { nibbles[i] = _getNthNibbleOfBytes(i - offset + 2, b); } } return nibbles; } function _getNthNibbleOfBytes(uint256 n, bytes memory str) private pure returns (bytes1) { return bytes1( n % 2 == 0 ? uint8(str[n / 2]) / 0x10 : uint8(str[n / 2]) % 0x10 ); } } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/common/lib/PriorityQueue.sol pragma solidity ^0.5.2; /** * @title PriorityQueue * @dev A priority queue implementation. */ contract PriorityQueue is Ownable { using SafeMath for uint256; uint256[] heapList; uint256 public currentSize; constructor() public { heapList = [0]; } /** * @dev Inserts an element into the priority queue. * @param _priority Priority to insert. * @param _value Some additional value. */ function insert(uint256 _priority, uint256 _value) public onlyOwner { uint256 element = (_priority << 128) | _value; heapList.push(element); currentSize = currentSize.add(1); _percUp(currentSize); } /** * @dev Returns the top element of the heap. * @return The smallest element in the priority queue. */ function getMin() public view returns (uint256, uint256) { return _splitElement(heapList[1]); } /** * @dev Deletes the top element of the heap and shifts everything up. * @return The smallest element in the priorty queue. */ function delMin() public onlyOwner returns (uint256, uint256) { uint256 retVal = heapList[1]; heapList[1] = heapList[currentSize]; delete heapList[currentSize]; currentSize = currentSize.sub(1); _percDown(1); heapList.length = heapList.length.sub(1); return _splitElement(retVal); } /** * @dev Determines the minimum child of a given node in the tree. * @param _index Index of the node in the tree. * @return The smallest child node. */ function _minChild(uint256 _index) private view returns (uint256) { if (_index.mul(2).add(1) > currentSize) { return _index.mul(2); } else { if (heapList[_index.mul(2)] < heapList[_index.mul(2).add(1)]) { return _index.mul(2); } else { return _index.mul(2).add(1); } } } /** * @dev Bubbles the element at some index up. */ function _percUp(uint256 _index) private { uint256 index = _index; uint256 j = index; uint256 newVal = heapList[index]; while (newVal < heapList[index.div(2)]) { heapList[index] = heapList[index.div(2)]; index = index.div(2); } if (index != j) { heapList[index] = newVal; } } /** * @dev Bubbles the element at some index down. */ function _percDown(uint256 _index) private { uint256 index = _index; uint256 j = index; uint256 newVal = heapList[index]; uint256 mc = _minChild(index); while (mc <= currentSize && newVal > heapList[mc]) { heapList[index] = heapList[mc]; index = mc; mc = _minChild(index); } if (index != j) { heapList[index] = newVal; } } /** * @dev Split an element into its priority and value. * @param _element Element to decode. * @return A tuple containing the priority and value. */ function _splitElement(uint256 _element) private pure returns (uint256, uint256) { uint256 priority = _element >> 128; uint256 value = uint256(uint128(_element)); return (priority, value); } } // File: contracts/common/lib/BytesLib.sol pragma solidity ^0.5.2; library BytesLib { function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) { require(_bytes.length >= (_start + _length)); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } // Pad a bytes array to 32 bytes function leftPad(bytes memory _bytes) internal pure returns (bytes memory) { // may underflow if bytes.length < 32. Hence using SafeMath.sub bytes memory newBytes = new bytes(SafeMath.sub(32, _bytes.length)); return concat(newBytes, _bytes); } function toBytes32(bytes memory b) internal pure returns (bytes32) { require(b.length >= 32, "Bytes array should atleast be 32 bytes"); bytes32 out; for (uint256 i = 0; i < 32; i++) { out |= bytes32(b[i] & 0xFF) >> (i * 8); } return out; } function toBytes4(bytes memory b) internal pure returns (bytes4 result) { assembly { result := mload(add(b, 32)) } } function fromBytes32(bytes32 x) internal pure returns (bytes memory) { bytes memory b = new bytes(32); for (uint256 i = 0; i < 32; i++) { b[i] = bytes1(uint8(uint256(x) / (2**(8 * (31 - i))))); } return b; } function fromUint(uint256 _num) internal pure returns (bytes memory _ret) { _ret = new bytes(32); assembly { mstore(add(_ret, 32), _num) } } function toUint(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= (_start + 32)); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= (_start + 20)); address tempAddress; assembly { tempAddress := div( mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000 ) } return tempAddress; } } // File: contracts/common/lib/ExitPayloadReader.sol pragma solidity 0.5.17; library ExitPayloadReader { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; uint8 constant WORD_SIZE = 32; struct ExitPayload { RLPReader.RLPItem[] data; } struct Receipt { RLPReader.RLPItem[] data; bytes raw; uint256 logIndex; } struct Log { RLPReader.RLPItem data; RLPReader.RLPItem[] list; } struct LogTopics { RLPReader.RLPItem[] data; } function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) { RLPReader.RLPItem[] memory payloadData = data .toRlpItem() .toList(); return ExitPayload(payloadData); } function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } function getHeaderNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[0].toUint(); } function getBlockProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[1].toBytes(); } function getBlockNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[2].toUint(); } function getBlockTime(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[3].toUint(); } function getTxRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[4].toUint()); } function getReceiptRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[5].toUint()); } function getReceipt(ExitPayload memory payload) internal pure returns(Receipt memory receipt) { receipt.raw = payload.data[6].toBytes(); RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem(); if (receiptItem.isList()) { // legacy tx receipt.data = receiptItem.toList(); } else { // pop first byte before parsting receipt bytes memory typedBytes = receipt.raw; bytes memory result = new bytes(typedBytes.length - 1); uint256 srcPtr; uint256 destPtr; assembly { srcPtr := add(33, typedBytes) destPtr := add(0x20, result) } copy(srcPtr, destPtr, result.length); receipt.data = result.toRlpItem().toList(); } receipt.logIndex = getReceiptLogIndex(payload); return receipt; } function getReceiptProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[7].toBytes(); } function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[8].toBytes(); } function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[8].toUint(); } function getReceiptLogIndex(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[9].toUint(); } function getTx(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[10].toBytes(); } function getTxProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[11].toBytes(); } // Receipt methods function toBytes(Receipt memory receipt) internal pure returns(bytes memory) { return receipt.raw; } function getLog(Receipt memory receipt) internal pure returns(Log memory) { RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex]; return Log(logData, logData.toList()); } // Log methods function getEmitter(Log memory log) internal pure returns(address) { return RLPReader.toAddress(log.list[0]); } function getTopics(Log memory log) internal pure returns(LogTopics memory) { return LogTopics(log.list[1].toList()); } function getData(Log memory log) internal pure returns(bytes memory) { return log.list[2].toBytes(); } function toRlpBytes(Log memory log) internal pure returns(bytes memory) { return log.data.toRlpBytes(); } // LogTopics methods function getField(LogTopics memory topics, uint256 index) internal pure returns(RLPReader.RLPItem memory) { return topics.data[index]; } } // File: contracts/common/governance/IGovernance.sol pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } // File: contracts/common/governance/Governable.sol pragma solidity ^0.5.2; contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { _assertGovernance(); _; } function _assertGovernance() private view { require( msg.sender == address(governance), "Only governance contract is authorized" ); } } // File: contracts/root/withdrawManager/IWithdrawManager.sol pragma solidity ^0.5.2; contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } // File: contracts/common/Registry.sol pragma solidity ^0.5.2; contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } // File: contracts/root/withdrawManager/ExitNFT.sol pragma solidity ^0.5.2; contract ExitNFT is ERC721 { Registry internal registry; modifier onlyWithdrawManager() { require( msg.sender == registry.getWithdrawManagerAddress(), "UNAUTHORIZED_WITHDRAW_MANAGER_ONLY" ); _; } constructor(address _registry) public { registry = Registry(_registry); } function mint(address _owner, uint256 _tokenId) external onlyWithdrawManager { _mint(_owner, _tokenId); } function burn(uint256 _tokenId) external onlyWithdrawManager { _burn(_tokenId); } function exists(uint256 tokenId) public view returns (bool) { return _exists(tokenId); } } // File: openzeppelin-solidity/contracts/token/ERC721/ERC721Holder.sol pragma solidity ^0.5.2; contract ERC721Holder is IERC721Receiver { function onERC721Received(address, address, uint256, bytes memory) public returns (bytes4) { return this.onERC721Received.selector; } } // File: openzeppelin-solidity/contracts/token/ERC20/SafeERC20.sol pragma solidity ^0.5.2; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require((value == 0) || (token.allowance(address(this), spender) == 0)); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must equal true). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. // A Solidity high level call has three parts: // 1. The target address is checked to verify it contains contract code // 2. The call itself is made, and success asserted // 3. The return value is decoded, which in turn checks the size of the returned data. require(address(token).isContract()); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool))); } } } // File: contracts/common/tokens/WETH.sol pragma solidity ^0.5.2; contract WETH is ERC20 { event Deposit(address indexed dst, uint256 wad); event Withdrawal(address indexed src, uint256 wad); function deposit() public payable; function withdraw(uint256 wad) public; function withdraw(uint256 wad, address user) public; } // File: contracts/root/depositManager/IDepositManager.sol pragma solidity ^0.5.2; interface IDepositManager { function depositEther() external payable; function transferAssets( address _token, address _user, uint256 _amountOrNFTId ) external; function depositERC20(address _token, uint256 _amount) external; function depositERC721(address _token, uint256 _tokenId) external; } // File: contracts/common/misc/ProxyStorage.sol pragma solidity ^0.5.2; contract ProxyStorage is Ownable { address internal proxyTo; } // File: contracts/common/mixin/ChainIdMixin.sol pragma solidity ^0.5.2; contract ChainIdMixin { bytes constant public networkId = hex"89"; uint256 constant public CHAINID = 137; } // File: contracts/root/RootChainStorage.sol pragma solidity ^0.5.2; contract RootChainHeader { event NewHeaderBlock( address indexed proposer, uint256 indexed headerBlockId, uint256 indexed reward, uint256 start, uint256 end, bytes32 root ); // housekeeping event event ResetHeaderBlock(address indexed proposer, uint256 indexed headerBlockId); struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } } contract RootChainStorage is ProxyStorage, RootChainHeader, ChainIdMixin { bytes32 public heimdallId; uint8 public constant VOTE_TYPE = 2; uint16 internal constant MAX_DEPOSITS = 10000; uint256 public _nextHeaderBlock = MAX_DEPOSITS; uint256 internal _blockDepositId = 1; mapping(uint256 => HeaderBlock) public headerBlocks; Registry internal registry; } // File: contracts/staking/stakeManager/IStakeManager.sol pragma solidity 0.5.17; contract IStakeManager { // validator replacement function startAuction( uint256 validatorId, uint256 amount, bool acceptDelegation, bytes calldata signerPubkey ) external; function confirmAuctionBid(uint256 validatorId, uint256 heimdallFee) external; function transferFunds( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function delegationDeposit( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function unstake(uint256 validatorId) external; function totalStakedFor(address addr) external view returns (uint256); function stakeFor( address user, uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes memory signerPubkey ) public; function checkSignatures( uint256 blockInterval, bytes32 voteHash, bytes32 stateRoot, address proposer, uint[3][] calldata sigs ) external returns (uint256); function updateValidatorState(uint256 validatorId, int256 amount) public; function ownerOf(uint256 tokenId) public view returns (address); function slash(bytes calldata slashingInfoList) external returns (uint256); function validatorStake(uint256 validatorId) public view returns (uint256); function epoch() public view returns (uint256); function getRegistry() public view returns (address); function withdrawalDelay() public view returns (uint256); function delegatedAmount(uint256 validatorId) public view returns(uint256); function decreaseValidatorDelegatedAmount(uint256 validatorId, uint256 amount) public; function withdrawDelegatorsReward(uint256 validatorId) public returns(uint256); function delegatorsReward(uint256 validatorId) public view returns(uint256); function dethroneAndStake( address auctionUser, uint256 heimdallFee, uint256 validatorId, uint256 auctionAmount, bool acceptDelegation, bytes calldata signerPubkey ) external; } // File: contracts/root/IRootChain.sol pragma solidity ^0.5.2; interface IRootChain { function slash() external; function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external; function submitCheckpoint(bytes calldata data, uint[3][] calldata sigs) external; function getLastChildBlock() external view returns (uint256); function currentHeaderBlock() external view returns (uint256); } // File: contracts/root/RootChain.sol pragma solidity ^0.5.2; contract RootChain is RootChainStorage, IRootChain { using SafeMath for uint256; using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; modifier onlyDepositManager() { require(msg.sender == registry.getDepositManagerAddress(), "UNAUTHORIZED_DEPOSIT_MANAGER_ONLY"); _; } function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external { revert(); } function submitCheckpoint(bytes calldata data, uint[3][] calldata sigs) external { (address proposer, uint256 start, uint256 end, bytes32 rootHash, bytes32 accountHash, uint256 _borChainID) = abi .decode(data, (address, uint256, uint256, bytes32, bytes32, uint256)); require(CHAINID == _borChainID, "Invalid bor chain id"); require(_buildHeaderBlock(proposer, start, end, rootHash), "INCORRECT_HEADER_DATA"); // check if it is better to keep it in local storage instead IStakeManager stakeManager = IStakeManager(registry.getStakeManagerAddress()); uint256 _reward = stakeManager.checkSignatures( end.sub(start).add(1), /** prefix 01 to data 01 represents positive vote on data and 00 is negative vote malicious validator can try to send 2/3 on negative vote so 01 is appended */ keccak256(abi.encodePacked(bytes(hex"01"), data)), accountHash, proposer, sigs ); require(_reward != 0, "Invalid checkpoint"); emit NewHeaderBlock(proposer, _nextHeaderBlock, _reward, start, end, rootHash); _nextHeaderBlock = _nextHeaderBlock.add(MAX_DEPOSITS); _blockDepositId = 1; } function updateDepositId(uint256 numDeposits) external onlyDepositManager returns (uint256 depositId) { depositId = currentHeaderBlock().add(_blockDepositId); // deposit ids will be (_blockDepositId, _blockDepositId + 1, .... _blockDepositId + numDeposits - 1) _blockDepositId = _blockDepositId.add(numDeposits); require( // Since _blockDepositId is initialized to 1; only (MAX_DEPOSITS - 1) deposits per header block are allowed _blockDepositId <= MAX_DEPOSITS, "TOO_MANY_DEPOSITS" ); } function getLastChildBlock() external view returns (uint256) { return headerBlocks[currentHeaderBlock()].end; } function slash() external { //TODO: future implementation } function currentHeaderBlock() public view returns (uint256) { return _nextHeaderBlock.sub(MAX_DEPOSITS); } function _buildHeaderBlock( address proposer, uint256 start, uint256 end, bytes32 rootHash ) private returns (bool) { uint256 nextChildBlock; /* The ID of the 1st header block is MAX_DEPOSITS. if _nextHeaderBlock == MAX_DEPOSITS, then the first header block is yet to be submitted, hence nextChildBlock = 0 */ if (_nextHeaderBlock > MAX_DEPOSITS) { nextChildBlock = headerBlocks[currentHeaderBlock()].end + 1; } if (nextChildBlock != start) { return false; } HeaderBlock memory headerBlock = HeaderBlock({ root: rootHash, start: nextChildBlock, end: end, createdAt: now, proposer: proposer }); headerBlocks[_nextHeaderBlock] = headerBlock; return true; } // Housekeeping function. @todo remove later function setNextHeaderBlock(uint256 _value) public onlyOwner { require(_value % MAX_DEPOSITS == 0, "Invalid value"); for (uint256 i = _value; i < _nextHeaderBlock; i += MAX_DEPOSITS) { delete headerBlocks[i]; } _nextHeaderBlock = _value; _blockDepositId = 1; emit ResetHeaderBlock(msg.sender, _nextHeaderBlock); } // Housekeeping function. @todo remove later function setHeimdallId(string memory _heimdallId) public onlyOwner { heimdallId = keccak256(abi.encodePacked(_heimdallId)); } } // File: contracts/root/stateSyncer/StateSender.sol pragma solidity ^0.5.2; contract StateSender is Ownable { using SafeMath for uint256; uint256 public counter; mapping(address => address) public registrations; event NewRegistration( address indexed user, address indexed sender, address indexed receiver ); event RegistrationUpdated( address indexed user, address indexed sender, address indexed receiver ); event StateSynced( uint256 indexed id, address indexed contractAddress, bytes data ); modifier onlyRegistered(address receiver) { require(registrations[receiver] == msg.sender, "Invalid sender"); _; } function syncState(address receiver, bytes calldata data) external onlyRegistered(receiver) { counter = counter.add(1); emit StateSynced(counter, receiver, data); } // register new contract for state sync function register(address sender, address receiver) public { require( isOwner() || registrations[receiver] == msg.sender, "StateSender.register: Not authorized to register" ); registrations[receiver] = sender; if (registrations[receiver] == address(0)) { emit NewRegistration(msg.sender, sender, receiver); } else { emit RegistrationUpdated(msg.sender, sender, receiver); } } } // File: contracts/common/mixin/Lockable.sol pragma solidity ^0.5.2; contract Lockable { bool public locked; modifier onlyWhenUnlocked() { _assertUnlocked(); _; } function _assertUnlocked() private view { require(!locked, "locked"); } function lock() public { locked = true; } function unlock() public { locked = false; } } // File: contracts/common/mixin/GovernanceLockable.sol pragma solidity ^0.5.2; contract GovernanceLockable is Lockable, Governable { constructor(address governance) public Governable(governance) {} function lock() public onlyGovernance { super.lock(); } function unlock() public onlyGovernance { super.unlock(); } } // File: contracts/root/depositManager/DepositManagerStorage.sol pragma solidity ^0.5.2; contract DepositManagerHeader { event NewDepositBlock(address indexed owner, address indexed token, uint256 amountOrNFTId, uint256 depositBlockId); event MaxErc20DepositUpdate(uint256 indexed oldLimit, uint256 indexed newLimit); struct DepositBlock { bytes32 depositHash; uint256 createdAt; } } contract DepositManagerStorage is ProxyStorage, GovernanceLockable, DepositManagerHeader { Registry public registry; RootChain public rootChain; StateSender public stateSender; mapping(uint256 => DepositBlock) public deposits; address public childChain; uint256 public maxErc20Deposit = 100 * (10**18); } // File: contracts/root/depositManager/DepositManager.sol pragma solidity ^0.5.2; contract DepositManager is DepositManagerStorage, IDepositManager, ERC721Holder { using SafeMath for uint256; using SafeERC20 for IERC20; modifier isTokenMapped(address _token) { require(registry.isTokenMapped(_token), "TOKEN_NOT_SUPPORTED"); _; } modifier isPredicateAuthorized() { require(uint8(registry.predicates(msg.sender)) != 0, "Not a valid predicate"); _; } constructor() public GovernanceLockable(address(0x0)) {} // deposit ETH by sending to this contract function() external payable { depositEther(); } function updateMaxErc20Deposit(uint256 maxDepositAmount) public onlyGovernance { require(maxDepositAmount != 0); emit MaxErc20DepositUpdate(maxErc20Deposit, maxDepositAmount); maxErc20Deposit = maxDepositAmount; } function transferAssets( address _token, address _user, uint256 _amountOrNFTId ) external isPredicateAuthorized { address wethToken = registry.getWethTokenAddress(); if (registry.isERC721(_token)) { IERC721(_token).transferFrom(address(this), _user, _amountOrNFTId); } else if (_token == wethToken) { WETH t = WETH(_token); t.withdraw(_amountOrNFTId, _user); } else { require(IERC20(_token).transfer(_user, _amountOrNFTId), "TRANSFER_FAILED"); } } function depositERC20(address _token, uint256 _amount) external { depositERC20ForUser(_token, msg.sender, _amount); } function depositERC721(address _token, uint256 _tokenId) external { depositERC721ForUser(_token, msg.sender, _tokenId); } function depositBulk( address[] calldata _tokens, uint256[] calldata _amountOrTokens, address _user ) external onlyWhenUnlocked // unlike other deposit functions, depositBulk doesn't invoke _safeCreateDepositBlock { require(_tokens.length == _amountOrTokens.length, "Invalid Input"); uint256 depositId = rootChain.updateDepositId(_tokens.length); Registry _registry = registry; for (uint256 i = 0; i < _tokens.length; i++) { // will revert if token is not mapped if (_registry.isTokenMappedAndIsErc721(_tokens[i])) { _safeTransferERC721(msg.sender, _tokens[i], _amountOrTokens[i]); } else { IERC20(_tokens[i]).safeTransferFrom(msg.sender, address(this), _amountOrTokens[i]); } _createDepositBlock(_user, _tokens[i], _amountOrTokens[i], depositId); depositId = depositId.add(1); } } /** * @dev Caches childChain and stateSender (frequently used variables) from registry */ function updateChildChainAndStateSender() public { (address _childChain, address _stateSender) = registry.getChildChainAndStateSender(); require( _stateSender != address(stateSender) || _childChain != childChain, "Atleast one of stateSender or childChain address should change" ); childChain = _childChain; stateSender = StateSender(_stateSender); } function depositERC20ForUser( address _token, address _user, uint256 _amount ) public { require(_amount <= maxErc20Deposit, "exceed maximum deposit amount"); IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount); _safeCreateDepositBlock(_user, _token, _amount); } function depositERC721ForUser( address _token, address _user, uint256 _tokenId ) public { require(registry.isTokenMappedAndIsErc721(_token), "not erc721"); _safeTransferERC721(msg.sender, _token, _tokenId); _safeCreateDepositBlock(_user, _token, _tokenId); } // @todo: write depositEtherForUser function depositEther() public payable { address wethToken = registry.getWethTokenAddress(); WETH t = WETH(wethToken); t.deposit.value(msg.value)(); _safeCreateDepositBlock(msg.sender, wethToken, msg.value); } function _safeCreateDepositBlock( address _user, address _token, uint256 _amountOrToken ) internal onlyWhenUnlocked isTokenMapped(_token) { _createDepositBlock( _user, _token, _amountOrToken, rootChain.updateDepositId(1) /* returns _depositId */ ); } function _createDepositBlock( address _user, address _token, uint256 _amountOrToken, uint256 _depositId ) internal { deposits[_depositId] = DepositBlock(keccak256(abi.encodePacked(_user, _token, _amountOrToken)), now); stateSender.syncState(childChain, abi.encode(_user, _token, _amountOrToken, _depositId)); emit NewDepositBlock(_user, _token, _amountOrToken, _depositId); } // Housekeeping function. @todo remove later function updateRootChain(address _rootChain) public onlyOwner { rootChain = RootChain(_rootChain); } function _safeTransferERC721(address _user, address _token, uint256 _tokenId) private { IERC721(_token).safeTransferFrom(_user, address(this), _tokenId); } } // File: contracts/common/lib/Common.sol pragma solidity ^0.5.2; library Common { function getV(bytes memory v, uint16 chainId) public pure returns (uint8) { if (chainId > 0) { return uint8( BytesLib.toUint(BytesLib.leftPad(v), 0) - (chainId * 2) - 8 ); } else { return uint8(BytesLib.toUint(BytesLib.leftPad(v), 0)); } } //assemble the given address bytecode. If bytecode exists then the _addr is a contract. function isContract(address _addr) public view returns (bool) { uint256 length; assembly { //retrieve the size of the code on target address, this needs assembly length := extcodesize(_addr) } return (length > 0); } // convert bytes to uint8 function toUint8(bytes memory _arg) public pure returns (uint8) { return uint8(_arg[0]); } function toUint16(bytes memory _arg) public pure returns (uint16) { return (uint16(uint8(_arg[0])) << 8) | uint16(uint8(_arg[1])); } } // File: contracts/common/lib/RLPEncode.sol // Library for RLP encoding a list of bytes arrays. // Modeled after ethereumjs/rlp (https://github.com/ethereumjs/rlp) // [Very] modified version of Sam Mayo's library. pragma solidity ^0.5.2; library RLPEncode { // Encode an item (bytes memory) function encodeItem(bytes memory self) internal pure returns (bytes memory) { bytes memory encoded; if (self.length == 1 && uint8(self[0] & 0xFF) < 0x80) { encoded = new bytes(1); encoded = self; } else { encoded = BytesLib.concat(encodeLength(self.length, 128), self); } return encoded; } // Encode a list of items function encodeList(bytes[] memory self) internal pure returns (bytes memory) { bytes memory encoded; for (uint256 i = 0; i < self.length; i++) { encoded = BytesLib.concat(encoded, encodeItem(self[i])); } return BytesLib.concat(encodeLength(encoded.length, 192), encoded); } // Hack to encode nested lists. If you have a list as an item passed here, included // pass = true in that index. E.g. // [item, list, item] --> pass = [false, true, false] // function encodeListWithPasses(bytes[] memory self, bool[] pass) internal pure returns (bytes memory) { // bytes memory encoded; // for (uint i=0; i < self.length; i++) { // if (pass[i] == true) { // encoded = BytesLib.concat(encoded, self[i]); // } else { // encoded = BytesLib.concat(encoded, encodeItem(self[i])); // } // } // return BytesLib.concat(encodeLength(encoded.length, 192), encoded); // } // Generate the prefix for an item or the entire list based on RLP spec function encodeLength(uint256 L, uint256 offset) internal pure returns (bytes memory) { if (L < 56) { bytes memory prefix = new bytes(1); prefix[0] = bytes1(uint8(L + offset)); return prefix; } else { // lenLen is the length of the hex representation of the data length uint256 lenLen; uint256 i = 0x1; while (L / i != 0) { lenLen++; i *= 0x100; } bytes memory prefix0 = getLengthBytes(offset + 55 + lenLen); bytes memory prefix1 = getLengthBytes(L); return BytesLib.concat(prefix0, prefix1); } } function getLengthBytes(uint256 x) internal pure returns (bytes memory b) { // Figure out if we need 1 or two bytes to express the length. // 1 byte gets us to max 255 // 2 bytes gets us to max 65535 (no payloads will be larger than this) uint256 nBytes = 1; if (x > 255) { nBytes = 2; } b = new bytes(nBytes); // Encode the length and return it for (uint256 i = 0; i < nBytes; i++) { b[i] = bytes1(uint8(x / (2**(8 * (nBytes - 1 - i))))); } } } // File: contracts/root/withdrawManager/WithdrawManagerStorage.sol pragma solidity ^0.5.2; contract ExitsDataStructure { struct Input { address utxoOwner; address predicate; address token; } struct PlasmaExit { uint256 receiptAmountOrNFTId; bytes32 txHash; address owner; address token; bool isRegularExit; address predicate; // Mapping from age of input to Input mapping(uint256 => Input) inputs; } } contract WithdrawManagerHeader is ExitsDataStructure { event Withdraw(uint256 indexed exitId, address indexed user, address indexed token, uint256 amount); event ExitStarted( address indexed exitor, uint256 indexed exitId, address indexed token, uint256 amount, bool isRegularExit ); event ExitUpdated(uint256 indexed exitId, uint256 indexed age, address signer); event ExitPeriodUpdate(uint256 indexed oldExitPeriod, uint256 indexed newExitPeriod); event ExitCancelled(uint256 indexed exitId); } contract WithdrawManagerStorage is ProxyStorage, WithdrawManagerHeader { // 0.5 week = 7 * 86400 / 2 = 302400 uint256 public HALF_EXIT_PERIOD = 302400; // Bonded exits collaterized at 0.1 ETH uint256 internal constant BOND_AMOUNT = 10**17; Registry internal registry; RootChain internal rootChain; mapping(uint128 => bool) isKnownExit; mapping(uint256 => PlasmaExit) public exits; // mapping with token => (owner => exitId) keccak(token+owner) keccak(token+owner+tokenId) mapping(bytes32 => uint256) public ownerExits; mapping(address => address) public exitsQueues; ExitNFT public exitNft; // ERC721, ERC20 and Weth transfers require 155000, 100000, 52000 gas respectively // Processing each exit in a while loop iteration requires ~52000 gas (@todo check if this changed) // uint32 constant internal ITERATION_GAS = 52000; // So putting an upper limit of 155000 + 52000 + leeway uint32 public ON_FINALIZE_GAS_LIMIT = 300000; uint256 public exitWindow; } // File: contracts/root/predicates/IPredicate.sol pragma solidity ^0.5.2; interface IPredicate { /** * @notice Verify the deprecation of a state update * @param exit ABI encoded PlasmaExit data * @param inputUtxo ABI encoded Input UTXO data * @param challengeData RLP encoded data of the challenge reference tx that encodes the following fields * headerNumber Header block number of which the reference tx was a part of * blockProof Proof that the block header (in the child chain) is a leaf in the submitted merkle root * blockNumber Block number of which the reference tx is a part of * blockTime Reference tx block time * blocktxRoot Transactions root of block * blockReceiptsRoot Receipts root of block * receipt Receipt of the reference transaction * receiptProof Merkle proof of the reference receipt * branchMask Merkle proof branchMask for the receipt * logIndex Log Index to read from the receipt * tx Challenge transaction * txProof Merkle proof of the challenge tx * @return Whether or not the state is deprecated */ function verifyDeprecation( bytes calldata exit, bytes calldata inputUtxo, bytes calldata challengeData ) external returns (bool); function interpretStateUpdate(bytes calldata state) external view returns (bytes memory); function onFinalizeExit(bytes calldata data) external; } contract PredicateUtils is ExitsDataStructure, ChainIdMixin { using RLPReader for RLPReader.RLPItem; // Bonded exits collaterized at 0.1 ETH uint256 private constant BOND_AMOUNT = 10**17; IWithdrawManager internal withdrawManager; IDepositManager internal depositManager; modifier onlyWithdrawManager() { require( msg.sender == address(withdrawManager), "ONLY_WITHDRAW_MANAGER" ); _; } modifier isBondProvided() { require(msg.value == BOND_AMOUNT, "Invalid Bond amount"); _; } function onFinalizeExit(bytes calldata data) external onlyWithdrawManager { (, address token, address exitor, uint256 tokenId) = decodeExitForProcessExit( data ); depositManager.transferAssets(token, exitor, tokenId); } function sendBond() internal { address(uint160(address(withdrawManager))).transfer(BOND_AMOUNT); } function getAddressFromTx(RLPReader.RLPItem[] memory txList) internal pure returns (address signer, bytes32 txHash) { bytes[] memory rawTx = new bytes[](9); for (uint8 i = 0; i <= 5; i++) { rawTx[i] = txList[i].toBytes(); } rawTx[6] = networkId; rawTx[7] = hex""; // [7] and [8] have something to do with v, r, s values rawTx[8] = hex""; txHash = keccak256(RLPEncode.encodeList(rawTx)); signer = ecrecover( txHash, Common.getV(txList[6].toBytes(), Common.toUint16(networkId)), bytes32(txList[7].toUint()), bytes32(txList[8].toUint()) ); } function decodeExit(bytes memory data) internal pure returns (PlasmaExit memory) { (address owner, address token, uint256 amountOrTokenId, bytes32 txHash, bool isRegularExit) = abi .decode(data, (address, address, uint256, bytes32, bool)); return PlasmaExit( amountOrTokenId, txHash, owner, token, isRegularExit, address(0) /* predicate value is not required */ ); } function decodeExitForProcessExit(bytes memory data) internal pure returns (uint256 exitId, address token, address exitor, uint256 tokenId) { (exitId, token, exitor, tokenId) = abi.decode( data, (uint256, address, address, uint256) ); } function decodeInputUtxo(bytes memory data) internal pure returns (uint256 age, address signer, address predicate, address token) { (age, signer, predicate, token) = abi.decode( data, (uint256, address, address, address) ); } } contract IErcPredicate is IPredicate, PredicateUtils { enum ExitType {Invalid, OutgoingTransfer, IncomingTransfer, Burnt} struct ExitTxData { uint256 amountOrToken; bytes32 txHash; address childToken; address signer; ExitType exitType; } struct ReferenceTxData { uint256 closingBalance; uint256 age; address childToken; address rootToken; } uint256 internal constant MAX_LOGS = 10; constructor(address _withdrawManager, address _depositManager) public { withdrawManager = IWithdrawManager(_withdrawManager); depositManager = IDepositManager(_depositManager); } } // File: contracts/root/withdrawManager/WithdrawManager.sol pragma solidity ^0.5.2; contract WithdrawManager is WithdrawManagerStorage, IWithdrawManager { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; using Merkle for bytes32; using ExitPayloadReader for bytes; using ExitPayloadReader for ExitPayloadReader.ExitPayload; using ExitPayloadReader for ExitPayloadReader.Receipt; using ExitPayloadReader for ExitPayloadReader.Log; using ExitPayloadReader for ExitPayloadReader.LogTopics; modifier isBondProvided() { require(msg.value == BOND_AMOUNT, "Invalid Bond amount"); _; } modifier isPredicateAuthorized() { require(registry.predicates(msg.sender) != Registry.Type.Invalid, "PREDICATE_NOT_AUTHORIZED"); _; } modifier checkPredicateAndTokenMapping(address rootToken) { Registry.Type _type = registry.predicates(msg.sender); require(registry.rootToChildToken(rootToken) != address(0x0), "rootToken not supported"); if (_type == Registry.Type.ERC20) { require(registry.isERC721(rootToken) == false, "Predicate supports only ERC20 tokens"); } else if (_type == Registry.Type.ERC721) { require(registry.isERC721(rootToken) == true, "Predicate supports only ERC721 tokens"); } else if (_type == Registry.Type.Custom) {} else { revert("PREDICATE_NOT_AUTHORIZED"); } _; } /** * @dev Receive bond for bonded exits */ function() external payable {} function createExitQueue(address token) external { require(msg.sender == address(registry), "UNAUTHORIZED_REGISTRY_ONLY"); exitsQueues[token] = address(new PriorityQueue()); } /** During coverage tests verifyInclusion fails co compile with "stack too deep" error. */ struct VerifyInclusionVars { uint256 headerNumber; uint256 blockNumber; uint256 createdAt; uint256 branchMask; bytes32 txRoot; bytes32 receiptRoot; bytes branchMaskBytes; } /** * @dev Verify the inclusion of the receipt in the checkpoint * @param data RLP encoded data of the reference tx(s) that encodes the following fields for each tx * headerNumber Header block number of which the reference tx was a part of * blockProof Proof that the block header (in the child chain) is a leaf in the submitted merkle root * blockNumber Block number of which the reference tx is a part of * blockTime Reference tx block time * blocktxRoot Transactions root of block * blockReceiptsRoot Receipts root of block * receipt Receipt of the reference transaction * receiptProof Merkle proof of the reference receipt * branchMask Merkle proof branchMask for the receipt * logIndex Log Index to read from the receipt * @param offset offset in the data array * @param verifyTxInclusion Whether to also verify the inclusion of the raw tx in the txRoot * @return ageOfInput Measure of the position of the receipt and the log in the child chain */ function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns ( uint256 /* ageOfInput */ ) { ExitPayloadReader.ExitPayload memory payload = data.toExitPayload(); VerifyInclusionVars memory vars; vars.headerNumber = payload.getHeaderNumber(); vars.branchMaskBytes = payload.getBranchMaskAsBytes(); require(vars.branchMaskBytes[0] == 0, "incorrect mask"); vars.txRoot = payload.getTxRoot(); vars.receiptRoot = payload.getReceiptRoot(); require( MerklePatriciaProof.verify( payload.getReceipt().toBytes(), vars.branchMaskBytes, payload.getReceiptProof(), vars.receiptRoot ), "INVALID_RECEIPT_MERKLE_PROOF" ); if (verifyTxInclusion) { require( MerklePatriciaProof.verify( payload.getTx(), vars.branchMaskBytes, payload.getTxProof(), vars.txRoot ), "INVALID_TX_MERKLE_PROOF" ); } vars.blockNumber = payload.getBlockNumber(); vars.createdAt = checkBlockMembershipInCheckpoint( vars.blockNumber, payload.getBlockTime(), vars.txRoot, vars.receiptRoot, vars.headerNumber, payload.getBlockProof() ); vars.branchMask = payload.getBranchMaskAsUint(); require( vars.branchMask & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000 == 0, "Branch mask should be 32 bits" ); // ageOfInput is denoted as // 1 reserve bit (see last 2 lines in comment) // 128 bits for exitableAt timestamp // 95 bits for child block number // 32 bits for receiptPos + logIndex * MAX_LOGS + oIndex // In predicates, the exitId will be evaluated by shifting the ageOfInput left by 1 bit // (Only in erc20Predicate) Last bit is to differentiate whether the sender or receiver of the in-flight tx is starting an exit return (getExitableAt(vars.createdAt) << 127) | (vars.blockNumber << 32) | vars.branchMask; } function startExitWithDepositedTokens( uint256 depositId, address token, uint256 amountOrToken ) external payable isBondProvided { // (bytes32 depositHash, uint256 createdAt) = getDepositManager().deposits(depositId); // require(keccak256(abi.encodePacked(msg.sender, token, amountOrToken)) == depositHash, "UNAUTHORIZED_EXIT"); // uint256 ageOfInput = getExitableAt(createdAt) << 127 | (depositId % 10000 /* MAX_DEPOSITS */); // uint256 exitId = ageOfInput << 1; // address predicate = registry.isTokenMappedAndGetPredicate(token); // _addExitToQueue( // msg.sender, // token, // amountOrToken, // bytes32(0), /* txHash */ // false, /* isRegularExit */ // exitId, // predicate // ); // _addInput( // exitId, // ageOfInput, // msg.sender, /* utxoOwner */ // predicate, // token // ); } function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external checkPredicateAndTokenMapping(rootToken) { require(registry.rootToChildToken(rootToken) == childToken, "INVALID_ROOT_TO_CHILD_TOKEN_MAPPING"); _addExitToQueue(exitor, rootToken, exitAmountOrTokenId, txHash, isRegularExit, priority, msg.sender); } function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external { PlasmaExit storage exit = exits[exitId]; Input storage input = exit.inputs[inputId]; require(exit.owner != address(0x0) && input.utxoOwner != address(0x0), "Invalid exit or input id"); require(registry.predicates(adjudicatorPredicate) != Registry.Type.Invalid, "INVALID_PREDICATE"); require( IPredicate(adjudicatorPredicate).verifyDeprecation( encodeExit(exit), encodeInputUtxo(inputId, input), challengeData ), "Challenge failed" ); // In the call to burn(exitId), there is an implicit check that prevents challenging the same exit twice ExitNFT(exitNft).burn(exitId); // Send bond amount to challenger msg.sender.send(BOND_AMOUNT); // delete exits[exitId]; emit ExitCancelled(exitId); } function processExits(address _token) public { uint256 exitableAt; uint256 exitId; PriorityQueue exitQueue = PriorityQueue(exitsQueues[_token]); while (exitQueue.currentSize() > 0 && gasleft() > ON_FINALIZE_GAS_LIMIT) { (exitableAt, exitId) = exitQueue.getMin(); exitId = (exitableAt << 128) | exitId; PlasmaExit memory currentExit = exits[exitId]; // Stop processing exits if the exit that is next is queue is still in its challenge period if (exitableAt > block.timestamp) return; exitQueue.delMin(); // If the exitNft was deleted as a result of a challenge, skip processing this exit if (!exitNft.exists(exitId)) continue; address exitor = exitNft.ownerOf(exitId); exits[exitId].owner = exitor; exitNft.burn(exitId); // If finalizing a particular exit is reverting, it will block any following exits from being processed. // Hence, call predicate.onFinalizeExit in a revertless manner. // (bool success, bytes memory result) = currentExit.predicate.call( abi.encodeWithSignature("onFinalizeExit(bytes)", encodeExitForProcessExit(exitId)) ); emit Withdraw(exitId, exitor, _token, currentExit.receiptAmountOrNFTId); if (!currentExit.isRegularExit) { // return the bond amount if this was a MoreVp style exit address(uint160(exitor)).send(BOND_AMOUNT); } } } function processExitsBatch(address[] calldata _tokens) external { for (uint256 i = 0; i < _tokens.length; i++) { processExits(_tokens[i]); } } /** * @dev Add a state update (UTXO style input) to an exit * @param exitId Exit ID * @param age age of the UTXO style input * @param utxoOwner User for whom the input acts as a proof-of-funds * (alternate expression) User who could have potentially spent this UTXO * @param token Token (Think of it like Utxo color) */ function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external isPredicateAuthorized { PlasmaExit storage exitObject = exits[exitId]; require(exitObject.owner != address(0x0), "INVALID_EXIT_ID"); _addInput( exitId, age, utxoOwner, /* predicate */ msg.sender, token ); } function _addInput( uint256 exitId, uint256 age, address utxoOwner, address predicate, address token ) internal { exits[exitId].inputs[age] = Input(utxoOwner, predicate, token); emit ExitUpdated(exitId, age, utxoOwner); } function encodeExit(PlasmaExit storage exit) internal view returns (bytes memory) { return abi.encode( exit.owner, registry.rootToChildToken(exit.token), exit.receiptAmountOrNFTId, exit.txHash, exit.isRegularExit ); } function encodeExitForProcessExit(uint256 exitId) internal view returns (bytes memory) { PlasmaExit storage exit = exits[exitId]; return abi.encode(exitId, exit.token, exit.owner, exit.receiptAmountOrNFTId); } function encodeInputUtxo(uint256 age, Input storage input) internal view returns (bytes memory) { return abi.encode(age, input.utxoOwner, input.predicate, registry.rootToChildToken(input.token)); } function _addExitToQueue( address exitor, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 exitId, address predicate ) internal { require(exits[exitId].token == address(0x0), "EXIT_ALREADY_EXISTS"); exits[exitId] = PlasmaExit( exitAmountOrTokenId, txHash, exitor, rootToken, isRegularExit, predicate ); PlasmaExit storage _exitObject = exits[exitId]; bytes32 key = getKey(_exitObject.token, _exitObject.owner, _exitObject.receiptAmountOrNFTId); if (isRegularExit) { require(!isKnownExit[uint128(exitId)], "KNOWN_EXIT"); isKnownExit[uint128(exitId)] = true; } else { // a user cannot start 2 MoreVP exits for the same erc20 token or nft require(ownerExits[key] == 0, "EXIT_ALREADY_IN_PROGRESS"); ownerExits[key] = exitId; } PriorityQueue queue = PriorityQueue(exitsQueues[_exitObject.token]); // Way priority queue is implemented is such that it expects 2 uint256 params with most significant 128 bits masked out // This is a workaround to split exitId, which otherwise is conclusive in itself // exitId >> 128 gives 128 most significant bits // uint256(uint128(exitId)) gives 128 least significant bits // @todo Fix this mess queue.insert(exitId >> 128, uint256(uint128(exitId))); // create exit nft exitNft.mint(_exitObject.owner, exitId); emit ExitStarted(exitor, exitId, rootToken, exitAmountOrTokenId, isRegularExit); } function checkBlockMembershipInCheckpoint( uint256 blockNumber, uint256 blockTime, bytes32 txRoot, bytes32 receiptRoot, uint256 headerNumber, bytes memory blockProof ) internal view returns ( uint256 /* createdAt */ ) { (bytes32 headerRoot, uint256 startBlock, , uint256 createdAt, ) = rootChain.headerBlocks(headerNumber); require( keccak256(abi.encodePacked(blockNumber, blockTime, txRoot, receiptRoot)).checkMembership( blockNumber - startBlock, headerRoot, blockProof ), "WITHDRAW_BLOCK_NOT_A_PART_OF_SUBMITTED_HEADER" ); return createdAt; } function getKey( address token, address exitor, uint256 amountOrToken ) internal view returns (bytes32 key) { if (registry.isERC721(token)) { key = keccak256(abi.encodePacked(token, exitor, amountOrToken)); } else { // validate amount require(amountOrToken > 0, "CANNOT_EXIT_ZERO_AMOUNTS"); key = keccak256(abi.encodePacked(token, exitor)); } } function getDepositManager() internal view returns (DepositManager) { return DepositManager(address(uint160(registry.getDepositManagerAddress()))); } function getExitableAt(uint256 createdAt) internal view returns (uint256) { return Math.max(createdAt + 2 * HALF_EXIT_PERIOD, now + HALF_EXIT_PERIOD); } // Housekeeping function. @todo remove later function updateExitPeriod(uint256 halfExitPeriod) public onlyOwner { emit ExitPeriodUpdate(HALF_EXIT_PERIOD, halfExitPeriod); HALF_EXIT_PERIOD = halfExitPeriod; } }
File 6 of 9: PriorityQueue
/** Matic network contracts */ pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } /** * @title PriorityQueue * @dev A priority queue implementation. */ contract PriorityQueue is Ownable { using SafeMath for uint256; uint256[] heapList; uint256 public currentSize; constructor() public { heapList = [0]; } /** * @dev Inserts an element into the priority queue. * @param _priority Priority to insert. * @param _value Some additional value. */ function insert(uint256 _priority, uint256 _value) public onlyOwner { uint256 element = (_priority << 128) | _value; heapList.push(element); currentSize = currentSize.add(1); _percUp(currentSize); } /** * @dev Returns the top element of the heap. * @return The smallest element in the priority queue. */ function getMin() public view returns (uint256, uint256) { return _splitElement(heapList[1]); } /** * @dev Deletes the top element of the heap and shifts everything up. * @return The smallest element in the priorty queue. */ function delMin() public onlyOwner returns (uint256, uint256) { uint256 retVal = heapList[1]; heapList[1] = heapList[currentSize]; delete heapList[currentSize]; currentSize = currentSize.sub(1); _percDown(1); heapList.length = heapList.length.sub(1); return _splitElement(retVal); } /** * @dev Determines the minimum child of a given node in the tree. * @param _index Index of the node in the tree. * @return The smallest child node. */ function _minChild(uint256 _index) private view returns (uint256) { if (_index.mul(2).add(1) > currentSize) { return _index.mul(2); } else { if (heapList[_index.mul(2)] < heapList[_index.mul(2).add(1)]) { return _index.mul(2); } else { return _index.mul(2).add(1); } } } /** * @dev Bubbles the element at some index up. */ function _percUp(uint256 _index) private { uint256 index = _index; uint256 j = index; uint256 newVal = heapList[index]; while (newVal < heapList[index.div(2)]) { heapList[index] = heapList[index.div(2)]; index = index.div(2); } if (index != j) { heapList[index] = newVal; } } /** * @dev Bubbles the element at some index down. */ function _percDown(uint256 _index) private { uint256 index = _index; uint256 j = index; uint256 newVal = heapList[index]; uint256 mc = _minChild(index); while (mc <= currentSize && newVal > heapList[mc]) { heapList[index] = heapList[mc]; index = mc; mc = _minChild(index); } if (index != j) { heapList[index] = newVal; } } /** * @dev Split an element into its priority and value. * @param _element Element to decode. * @return A tuple containing the priority and value. */ function _splitElement(uint256 _element) private pure returns (uint256, uint256) { uint256 priority = _element >> 128; uint256 value = uint256(uint128(_element)); return (priority, value); } }
File 7 of 9: Registry
/** Matic network contracts */ pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { require( msg.sender == address(governance), "Only governance contract is authorized" ); _; } } contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } }
File 8 of 9: ERC20PredicateBurnOnly
// File: openzeppelin-solidity/contracts/math/SafeMath.sol pragma solidity ^0.5.2; /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: contracts/common/lib/BytesLib.sol pragma solidity ^0.5.2; library BytesLib { function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore( 0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. ) ) } return tempBytes; } function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) { require(_bytes.length >= (_start + _length)); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } // Pad a bytes array to 32 bytes function leftPad(bytes memory _bytes) internal pure returns (bytes memory) { // may underflow if bytes.length < 32. Hence using SafeMath.sub bytes memory newBytes = new bytes(SafeMath.sub(32, _bytes.length)); return concat(newBytes, _bytes); } function toBytes32(bytes memory b) internal pure returns (bytes32) { require(b.length >= 32, "Bytes array should atleast be 32 bytes"); bytes32 out; for (uint256 i = 0; i < 32; i++) { out |= bytes32(b[i] & 0xFF) >> (i * 8); } return out; } function toBytes4(bytes memory b) internal pure returns (bytes4 result) { assembly { result := mload(add(b, 32)) } } function fromBytes32(bytes32 x) internal pure returns (bytes memory) { bytes memory b = new bytes(32); for (uint256 i = 0; i < 32; i++) { b[i] = bytes1(uint8(uint256(x) / (2**(8 * (31 - i))))); } return b; } function fromUint(uint256 _num) internal pure returns (bytes memory _ret) { _ret = new bytes(32); assembly { mstore(add(_ret, 32), _num) } } function toUint(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= (_start + 32)); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= (_start + 20)); address tempAddress; assembly { tempAddress := div( mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000 ) } return tempAddress; } } // File: contracts/common/lib/Common.sol pragma solidity ^0.5.2; library Common { function getV(bytes memory v, uint16 chainId) public pure returns (uint8) { if (chainId > 0) { return uint8( BytesLib.toUint(BytesLib.leftPad(v), 0) - (chainId * 2) - 8 ); } else { return uint8(BytesLib.toUint(BytesLib.leftPad(v), 0)); } } //assemble the given address bytecode. If bytecode exists then the _addr is a contract. function isContract(address _addr) public view returns (bool) { uint256 length; assembly { //retrieve the size of the code on target address, this needs assembly length := extcodesize(_addr) } return (length > 0); } // convert bytes to uint8 function toUint8(bytes memory _arg) public pure returns (uint8) { return uint8(_arg[0]); } function toUint16(bytes memory _arg) public pure returns (uint16) { return (uint16(uint8(_arg[0])) << 8) | uint16(uint8(_arg[1])); } } // File: openzeppelin-solidity/contracts/math/Math.sol pragma solidity ^0.5.2; /** * @title Math * @dev Assorted math operations */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Calculates the average of two numbers. Since these are integers, * averages of an even and odd number cannot be represented, and will be * rounded down. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } } // File: contracts/common/lib/RLPEncode.sol // Library for RLP encoding a list of bytes arrays. // Modeled after ethereumjs/rlp (https://github.com/ethereumjs/rlp) // [Very] modified version of Sam Mayo's library. pragma solidity ^0.5.2; library RLPEncode { // Encode an item (bytes memory) function encodeItem(bytes memory self) internal pure returns (bytes memory) { bytes memory encoded; if (self.length == 1 && uint8(self[0] & 0xFF) < 0x80) { encoded = new bytes(1); encoded = self; } else { encoded = BytesLib.concat(encodeLength(self.length, 128), self); } return encoded; } // Encode a list of items function encodeList(bytes[] memory self) internal pure returns (bytes memory) { bytes memory encoded; for (uint256 i = 0; i < self.length; i++) { encoded = BytesLib.concat(encoded, encodeItem(self[i])); } return BytesLib.concat(encodeLength(encoded.length, 192), encoded); } // Hack to encode nested lists. If you have a list as an item passed here, included // pass = true in that index. E.g. // [item, list, item] --> pass = [false, true, false] // function encodeListWithPasses(bytes[] memory self, bool[] pass) internal pure returns (bytes memory) { // bytes memory encoded; // for (uint i=0; i < self.length; i++) { // if (pass[i] == true) { // encoded = BytesLib.concat(encoded, self[i]); // } else { // encoded = BytesLib.concat(encoded, encodeItem(self[i])); // } // } // return BytesLib.concat(encodeLength(encoded.length, 192), encoded); // } // Generate the prefix for an item or the entire list based on RLP spec function encodeLength(uint256 L, uint256 offset) internal pure returns (bytes memory) { if (L < 56) { bytes memory prefix = new bytes(1); prefix[0] = bytes1(uint8(L + offset)); return prefix; } else { // lenLen is the length of the hex representation of the data length uint256 lenLen; uint256 i = 0x1; while (L / i != 0) { lenLen++; i *= 0x100; } bytes memory prefix0 = getLengthBytes(offset + 55 + lenLen); bytes memory prefix1 = getLengthBytes(L); return BytesLib.concat(prefix0, prefix1); } } function getLengthBytes(uint256 x) internal pure returns (bytes memory b) { // Figure out if we need 1 or two bytes to express the length. // 1 byte gets us to max 255 // 2 bytes gets us to max 65535 (no payloads will be larger than this) uint256 nBytes = 1; if (x > 255) { nBytes = 2; } b = new bytes(nBytes); // Encode the length and return it for (uint256 i = 0; i < nBytes; i++) { b[i] = bytes1(uint8(x / (2**(8 * (nBytes - 1 - i))))); } } } // File: solidity-rlp/contracts/RLPReader.sol /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns */ pragma solidity ^0.5.0; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param item RLP encoded bytes */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param item RLP encoded bytes */ function payloadLen(RLPItem memory item) internal pure returns (uint) { return item.len - _payloadOffset(item.memPtr); } /* * @param item RLP encoded list in bytes */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } return result == 0 ? false : true; } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; uint result; uint memPtr = item.memPtr + offset; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; // data length bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(item.memPtr + offset, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } // File: contracts/common/lib/ExitPayloadReader.sol pragma solidity 0.5.17; library ExitPayloadReader { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; uint8 constant WORD_SIZE = 32; struct ExitPayload { RLPReader.RLPItem[] data; } struct Receipt { RLPReader.RLPItem[] data; bytes raw; uint256 logIndex; } struct Log { RLPReader.RLPItem data; RLPReader.RLPItem[] list; } struct LogTopics { RLPReader.RLPItem[] data; } function toExitPayload(bytes memory data) internal pure returns (ExitPayload memory) { RLPReader.RLPItem[] memory payloadData = data .toRlpItem() .toList(); return ExitPayload(payloadData); } function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } function getHeaderNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[0].toUint(); } function getBlockProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[1].toBytes(); } function getBlockNumber(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[2].toUint(); } function getBlockTime(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[3].toUint(); } function getTxRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[4].toUint()); } function getReceiptRoot(ExitPayload memory payload) internal pure returns(bytes32) { return bytes32(payload.data[5].toUint()); } function getReceipt(ExitPayload memory payload) internal pure returns(Receipt memory receipt) { receipt.raw = payload.data[6].toBytes(); RLPReader.RLPItem memory receiptItem = receipt.raw.toRlpItem(); if (receiptItem.isList()) { // legacy tx receipt.data = receiptItem.toList(); } else { // pop first byte before parsting receipt bytes memory typedBytes = receipt.raw; bytes memory result = new bytes(typedBytes.length - 1); uint256 srcPtr; uint256 destPtr; assembly { srcPtr := add(33, typedBytes) destPtr := add(0x20, result) } copy(srcPtr, destPtr, result.length); receipt.data = result.toRlpItem().toList(); } receipt.logIndex = getReceiptLogIndex(payload); return receipt; } function getReceiptProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[7].toBytes(); } function getBranchMaskAsBytes(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[8].toBytes(); } function getBranchMaskAsUint(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[8].toUint(); } function getReceiptLogIndex(ExitPayload memory payload) internal pure returns(uint256) { return payload.data[9].toUint(); } function getTx(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[10].toBytes(); } function getTxProof(ExitPayload memory payload) internal pure returns(bytes memory) { return payload.data[11].toBytes(); } // Receipt methods function toBytes(Receipt memory receipt) internal pure returns(bytes memory) { return receipt.raw; } function getLog(Receipt memory receipt) internal pure returns(Log memory) { RLPReader.RLPItem memory logData = receipt.data[3].toList()[receipt.logIndex]; return Log(logData, logData.toList()); } // Log methods function getEmitter(Log memory log) internal pure returns(address) { return RLPReader.toAddress(log.list[0]); } function getTopics(Log memory log) internal pure returns(LogTopics memory) { return LogTopics(log.list[1].toList()); } function getData(Log memory log) internal pure returns(bytes memory) { return log.list[2].toBytes(); } function toRlpBytes(Log memory log) internal pure returns(bytes memory) { return log.data.toRlpBytes(); } // LogTopics methods function getField(LogTopics memory topics, uint256 index) internal pure returns(RLPReader.RLPItem memory) { return topics.data[index]; } } // File: contracts/root/withdrawManager/IWithdrawManager.sol pragma solidity ^0.5.2; contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } // File: contracts/root/depositManager/IDepositManager.sol pragma solidity ^0.5.2; interface IDepositManager { function depositEther() external payable; function transferAssets( address _token, address _user, uint256 _amountOrNFTId ) external; function depositERC20(address _token, uint256 _amount) external; function depositERC721(address _token, uint256 _tokenId) external; } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/common/misc/ProxyStorage.sol pragma solidity ^0.5.2; contract ProxyStorage is Ownable { address internal proxyTo; } // File: contracts/common/governance/IGovernance.sol pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } // File: contracts/common/governance/Governable.sol pragma solidity ^0.5.2; contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { _assertGovernance(); _; } function _assertGovernance() private view { require( msg.sender == address(governance), "Only governance contract is authorized" ); } } // File: contracts/common/Registry.sol pragma solidity ^0.5.2; contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } // File: contracts/common/mixin/ChainIdMixin.sol pragma solidity ^0.5.2; contract ChainIdMixin { bytes constant public networkId = hex"3A99"; uint256 constant public CHAINID = 15001; } // File: contracts/root/RootChainStorage.sol pragma solidity ^0.5.2; contract RootChainHeader { event NewHeaderBlock( address indexed proposer, uint256 indexed headerBlockId, uint256 indexed reward, uint256 start, uint256 end, bytes32 root ); // housekeeping event event ResetHeaderBlock(address indexed proposer, uint256 indexed headerBlockId); struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } } contract RootChainStorage is ProxyStorage, RootChainHeader, ChainIdMixin { bytes32 public heimdallId; uint8 public constant VOTE_TYPE = 2; uint16 internal constant MAX_DEPOSITS = 10000; uint256 public _nextHeaderBlock = MAX_DEPOSITS; uint256 internal _blockDepositId = 1; mapping(uint256 => HeaderBlock) public headerBlocks; Registry internal registry; } // File: contracts/staking/stakeManager/IStakeManager.sol pragma solidity 0.5.17; contract IStakeManager { // validator replacement function startAuction( uint256 validatorId, uint256 amount, bool acceptDelegation, bytes calldata signerPubkey ) external; function confirmAuctionBid(uint256 validatorId, uint256 heimdallFee) external; function transferFunds( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function delegationDeposit( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function unstake(uint256 validatorId) external; function totalStakedFor(address addr) external view returns (uint256); function stakeFor( address user, uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes memory signerPubkey ) public; function checkSignatures( uint256 blockInterval, bytes32 voteHash, bytes32 stateRoot, address proposer, uint[3][] calldata sigs ) external returns (uint256); function updateValidatorState(uint256 validatorId, int256 amount) public; function ownerOf(uint256 tokenId) public view returns (address); function slash(bytes calldata slashingInfoList) external returns (uint256); function validatorStake(uint256 validatorId) public view returns (uint256); function epoch() public view returns (uint256); function getRegistry() public view returns (address); function withdrawalDelay() public view returns (uint256); function delegatedAmount(uint256 validatorId) public view returns(uint256); function decreaseValidatorDelegatedAmount(uint256 validatorId, uint256 amount) public; function withdrawDelegatorsReward(uint256 validatorId) public returns(uint256); function delegatorsReward(uint256 validatorId) public view returns(uint256); function dethroneAndStake( address auctionUser, uint256 heimdallFee, uint256 validatorId, uint256 auctionAmount, bool acceptDelegation, bytes calldata signerPubkey ) external; } // File: contracts/root/IRootChain.sol pragma solidity ^0.5.2; interface IRootChain { function slash() external; function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external; function submitCheckpoint(bytes calldata data, uint[3][] calldata sigs) external; function getLastChildBlock() external view returns (uint256); function currentHeaderBlock() external view returns (uint256); } // File: contracts/root/RootChain.sol pragma solidity ^0.5.2; contract RootChain is RootChainStorage, IRootChain { using SafeMath for uint256; using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; modifier onlyDepositManager() { require(msg.sender == registry.getDepositManagerAddress(), "UNAUTHORIZED_DEPOSIT_MANAGER_ONLY"); _; } function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external { revert(); } function submitCheckpoint(bytes calldata data, uint[3][] calldata sigs) external { (address proposer, uint256 start, uint256 end, bytes32 rootHash, bytes32 accountHash, uint256 _borChainID) = abi .decode(data, (address, uint256, uint256, bytes32, bytes32, uint256)); require(CHAINID == _borChainID, "Invalid bor chain id"); require(_buildHeaderBlock(proposer, start, end, rootHash), "INCORRECT_HEADER_DATA"); // check if it is better to keep it in local storage instead IStakeManager stakeManager = IStakeManager(registry.getStakeManagerAddress()); uint256 _reward = stakeManager.checkSignatures( end.sub(start).add(1), /** prefix 01 to data 01 represents positive vote on data and 00 is negative vote malicious validator can try to send 2/3 on negative vote so 01 is appended */ keccak256(abi.encodePacked(bytes(hex"01"), data)), accountHash, proposer, sigs ); require(_reward != 0, "Invalid checkpoint"); emit NewHeaderBlock(proposer, _nextHeaderBlock, _reward, start, end, rootHash); _nextHeaderBlock = _nextHeaderBlock.add(MAX_DEPOSITS); _blockDepositId = 1; } function updateDepositId(uint256 numDeposits) external onlyDepositManager returns (uint256 depositId) { depositId = currentHeaderBlock().add(_blockDepositId); // deposit ids will be (_blockDepositId, _blockDepositId + 1, .... _blockDepositId + numDeposits - 1) _blockDepositId = _blockDepositId.add(numDeposits); require( // Since _blockDepositId is initialized to 1; only (MAX_DEPOSITS - 1) deposits per header block are allowed _blockDepositId <= MAX_DEPOSITS, "TOO_MANY_DEPOSITS" ); } function getLastChildBlock() external view returns (uint256) { return headerBlocks[currentHeaderBlock()].end; } function slash() external { //TODO: future implementation } function currentHeaderBlock() public view returns (uint256) { return _nextHeaderBlock.sub(MAX_DEPOSITS); } function _buildHeaderBlock( address proposer, uint256 start, uint256 end, bytes32 rootHash ) private returns (bool) { uint256 nextChildBlock; /* The ID of the 1st header block is MAX_DEPOSITS. if _nextHeaderBlock == MAX_DEPOSITS, then the first header block is yet to be submitted, hence nextChildBlock = 0 */ if (_nextHeaderBlock > MAX_DEPOSITS) { nextChildBlock = headerBlocks[currentHeaderBlock()].end + 1; } if (nextChildBlock != start) { return false; } HeaderBlock memory headerBlock = HeaderBlock({ root: rootHash, start: nextChildBlock, end: end, createdAt: now, proposer: proposer }); headerBlocks[_nextHeaderBlock] = headerBlock; return true; } // Housekeeping function. @todo remove later function setNextHeaderBlock(uint256 _value) public onlyOwner { require(_value % MAX_DEPOSITS == 0, "Invalid value"); for (uint256 i = _value; i < _nextHeaderBlock; i += MAX_DEPOSITS) { delete headerBlocks[i]; } _nextHeaderBlock = _value; _blockDepositId = 1; emit ResetHeaderBlock(msg.sender, _nextHeaderBlock); } // Housekeeping function. @todo remove later function setHeimdallId(string memory _heimdallId) public onlyOwner { heimdallId = keccak256(abi.encodePacked(_heimdallId)); } } // File: openzeppelin-solidity/contracts/introspection/IERC165.sol pragma solidity ^0.5.2; /** * @title IERC165 * @dev https://eips.ethereum.org/EIPS/eip-165 */ interface IERC165 { /** * @notice Query if a contract implements an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @dev Interface identification is specified in ERC-165. This function * uses less than 30,000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic interface * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); function balanceOf(address owner) public view returns (uint256 balance); function ownerOf(uint256 tokenId) public view returns (address owner); function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function transferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721Receiver.sol pragma solidity ^0.5.2; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ contract IERC721Receiver { /** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a `safeTransfer`. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */ function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data) public returns (bytes4); } // File: openzeppelin-solidity/contracts/utils/Address.sol pragma solidity ^0.5.2; /** * Utility library of inline functions on addresses */ library Address { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param account address of the account to check * @return whether the target address is a contract */ function isContract(address account) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } } // File: openzeppelin-solidity/contracts/drafts/Counters.sol pragma solidity ^0.5.2; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented or decremented by one. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids * * Include with `using Counters for Counters.Counter;` * Since it is not possible to overflow a 256 bit integer with increments of one, `increment` can skip the SafeMath * overflow check, thereby saving gas. This does assume however correct usage, in that the underlying `_value` is never * directly accessed. */ library Counters { using SafeMath for uint256; struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { counter._value += 1; } function decrement(Counter storage counter) internal { counter._value = counter._value.sub(1); } } // File: openzeppelin-solidity/contracts/introspection/ERC165.sol pragma solidity ^0.5.2; /** * @title ERC165 * @author Matt Condon (@shrugs) * @dev Implements ERC165 using a lookup table. */ contract ERC165 is IERC165 { bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7; /* * 0x01ffc9a7 === * bytes4(keccak256('supportsInterface(bytes4)')) */ /** * @dev a mapping of interface id to whether or not it's supported */ mapping(bytes4 => bool) private _supportedInterfaces; /** * @dev A contract implementing SupportsInterfaceWithLookup * implement ERC165 itself */ constructor () internal { _registerInterface(_INTERFACE_ID_ERC165); } /** * @dev implement supportsInterface(bytes4) using a lookup table */ function supportsInterface(bytes4 interfaceId) external view returns (bool) { return _supportedInterfaces[interfaceId]; } /** * @dev internal method for registering an interface */ function _registerInterface(bytes4 interfaceId) internal { require(interfaceId != 0xffffffff); _supportedInterfaces[interfaceId] = true; } } // File: openzeppelin-solidity/contracts/token/ERC721/ERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic implementation * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract ERC721 is ERC165, IERC721 { using SafeMath for uint256; using Address for address; using Counters for Counters.Counter; // Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` // which can be also obtained as `IERC721Receiver(0).onERC721Received.selector` bytes4 private constant _ERC721_RECEIVED = 0x150b7a02; // Mapping from token ID to owner mapping (uint256 => address) private _tokenOwner; // Mapping from token ID to approved address mapping (uint256 => address) private _tokenApprovals; // Mapping from owner to number of owned token mapping (address => Counters.Counter) private _ownedTokensCount; // Mapping from owner to operator approvals mapping (address => mapping (address => bool)) private _operatorApprovals; bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd; /* * 0x80ac58cd === * bytes4(keccak256('balanceOf(address)')) ^ * bytes4(keccak256('ownerOf(uint256)')) ^ * bytes4(keccak256('approve(address,uint256)')) ^ * bytes4(keccak256('getApproved(uint256)')) ^ * bytes4(keccak256('setApprovalForAll(address,bool)')) ^ * bytes4(keccak256('isApprovedForAll(address,address)')) ^ * bytes4(keccak256('transferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256)')) ^ * bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) */ constructor () public { // register the supported interfaces to conform to ERC721 via ERC165 _registerInterface(_INTERFACE_ID_ERC721); } /** * @dev Gets the balance of the specified address * @param owner address to query the balance of * @return uint256 representing the amount owned by the passed address */ function balanceOf(address owner) public view returns (uint256) { require(owner != address(0)); return _ownedTokensCount[owner].current(); } /** * @dev Gets the owner of the specified token ID * @param tokenId uint256 ID of the token to query the owner of * @return address currently marked as the owner of the given token ID */ function ownerOf(uint256 tokenId) public view returns (address) { address owner = _tokenOwner[tokenId]; require(owner != address(0)); return owner; } /** * @dev Approves another address to transfer the given token ID * The zero address indicates there is no approved address. * There can only be one approved address per token at a given time. * Can only be called by the token owner or an approved operator. * @param to address to be approved for the given token ID * @param tokenId uint256 ID of the token to be approved */ function approve(address to, uint256 tokenId) public { address owner = ownerOf(tokenId); require(to != owner); require(msg.sender == owner || isApprovedForAll(owner, msg.sender)); _tokenApprovals[tokenId] = to; emit Approval(owner, to, tokenId); } /** * @dev Gets the approved address for a token ID, or zero if no address set * Reverts if the token ID does not exist. * @param tokenId uint256 ID of the token to query the approval of * @return address currently approved for the given token ID */ function getApproved(uint256 tokenId) public view returns (address) { require(_exists(tokenId)); return _tokenApprovals[tokenId]; } /** * @dev Sets or unsets the approval of a given operator * An operator is allowed to transfer all tokens of the sender on their behalf * @param to operator address to set the approval * @param approved representing the status of the approval to be set */ function setApprovalForAll(address to, bool approved) public { require(to != msg.sender); _operatorApprovals[msg.sender][to] = approved; emit ApprovalForAll(msg.sender, to, approved); } /** * @dev Tells whether an operator is approved by a given owner * @param owner owner address which you want to query the approval of * @param operator operator address which you want to query the approval of * @return bool whether the given operator is approved by the given owner */ function isApprovedForAll(address owner, address operator) public view returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Transfers the ownership of a given token ID to another address * Usage of this method is discouraged, use `safeTransferFrom` whenever possible * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function transferFrom(address from, address to, uint256 tokenId) public { require(_isApprovedOrOwner(msg.sender, tokenId)); _transferFrom(from, to, tokenId); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev Safely transfers the ownership of a given token ID to another address * If the target address is a contract, it must implement `onERC721Received`, * which is called upon a safe transfer, and return the magic value * `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`; otherwise, * the transfer is reverted. * Requires the msg.sender to be the owner, approved, or operator * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred * @param _data bytes data to send along with a safe transfer check */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public { transferFrom(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data)); } /** * @dev Returns whether the specified token exists * @param tokenId uint256 ID of the token to query the existence of * @return bool whether the token exists */ function _exists(uint256 tokenId) internal view returns (bool) { address owner = _tokenOwner[tokenId]; return owner != address(0); } /** * @dev Returns whether the given spender can transfer a given token ID * @param spender address of the spender to query * @param tokenId uint256 ID of the token to be transferred * @return bool whether the msg.sender is approved for the given token ID, * is an operator of the owner, or is the owner of the token */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view returns (bool) { address owner = ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Internal function to mint a new token * Reverts if the given token ID already exists * @param to The address that will own the minted token * @param tokenId uint256 ID of the token to be minted */ function _mint(address to, uint256 tokenId) internal { require(to != address(0)); require(!_exists(tokenId)); _tokenOwner[tokenId] = to; _ownedTokensCount[to].increment(); emit Transfer(address(0), to, tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * Deprecated, use _burn(uint256) instead. * @param owner owner of the token to burn * @param tokenId uint256 ID of the token being burned */ function _burn(address owner, uint256 tokenId) internal { require(ownerOf(tokenId) == owner); _clearApproval(tokenId); _ownedTokensCount[owner].decrement(); _tokenOwner[tokenId] = address(0); emit Transfer(owner, address(0), tokenId); } /** * @dev Internal function to burn a specific token * Reverts if the token does not exist * @param tokenId uint256 ID of the token being burned */ function _burn(uint256 tokenId) internal { _burn(ownerOf(tokenId), tokenId); } /** * @dev Internal function to transfer ownership of a given token ID to another address. * As opposed to transferFrom, this imposes no restrictions on msg.sender. * @param from current owner of the token * @param to address to receive the ownership of the given token ID * @param tokenId uint256 ID of the token to be transferred */ function _transferFrom(address from, address to, uint256 tokenId) internal { require(ownerOf(tokenId) == from); require(to != address(0)); _clearApproval(tokenId); _ownedTokensCount[from].decrement(); _ownedTokensCount[to].increment(); _tokenOwner[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Internal function to invoke `onERC721Received` on a target address * The call is not executed if the target address is not a contract * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data) internal returns (bool) { if (!to.isContract()) { return true; } bytes4 retval = IERC721Receiver(to).onERC721Received(msg.sender, from, tokenId, _data); return (retval == _ERC721_RECEIVED); } /** * @dev Private function to clear current approval of a given token ID * @param tokenId uint256 ID of the token to be transferred */ function _clearApproval(uint256 tokenId) private { if (_tokenApprovals[tokenId] != address(0)) { _tokenApprovals[tokenId] = address(0); } } } // File: contracts/root/withdrawManager/ExitNFT.sol pragma solidity ^0.5.2; contract ExitNFT is ERC721 { Registry internal registry; modifier onlyWithdrawManager() { require( msg.sender == registry.getWithdrawManagerAddress(), "UNAUTHORIZED_WITHDRAW_MANAGER_ONLY" ); _; } constructor(address _registry) public { registry = Registry(_registry); } function mint(address _owner, uint256 _tokenId) external onlyWithdrawManager { _mint(_owner, _tokenId); } function burn(uint256 _tokenId) external onlyWithdrawManager { _burn(_tokenId); } function exists(uint256 tokenId) public view returns (bool) { return _exists(tokenId); } } // File: contracts/root/withdrawManager/WithdrawManagerStorage.sol pragma solidity ^0.5.2; contract ExitsDataStructure { struct Input { address utxoOwner; address predicate; address token; } struct PlasmaExit { uint256 receiptAmountOrNFTId; bytes32 txHash; address owner; address token; bool isRegularExit; address predicate; // Mapping from age of input to Input mapping(uint256 => Input) inputs; } } contract WithdrawManagerHeader is ExitsDataStructure { event Withdraw(uint256 indexed exitId, address indexed user, address indexed token, uint256 amount); event ExitStarted( address indexed exitor, uint256 indexed exitId, address indexed token, uint256 amount, bool isRegularExit ); event ExitUpdated(uint256 indexed exitId, uint256 indexed age, address signer); event ExitPeriodUpdate(uint256 indexed oldExitPeriod, uint256 indexed newExitPeriod); event ExitCancelled(uint256 indexed exitId); } contract WithdrawManagerStorage is ProxyStorage, WithdrawManagerHeader { // 0.5 week = 7 * 86400 / 2 = 302400 uint256 public HALF_EXIT_PERIOD = 302400; // Bonded exits collaterized at 0.1 ETH uint256 internal constant BOND_AMOUNT = 10**17; Registry internal registry; RootChain internal rootChain; mapping(uint128 => bool) isKnownExit; mapping(uint256 => PlasmaExit) public exits; // mapping with token => (owner => exitId) keccak(token+owner) keccak(token+owner+tokenId) mapping(bytes32 => uint256) public ownerExits; mapping(address => address) public exitsQueues; ExitNFT public exitNft; // ERC721, ERC20 and Weth transfers require 155000, 100000, 52000 gas respectively // Processing each exit in a while loop iteration requires ~52000 gas (@todo check if this changed) // uint32 constant internal ITERATION_GAS = 52000; // So putting an upper limit of 155000 + 52000 + leeway uint32 public ON_FINALIZE_GAS_LIMIT = 300000; uint256 public exitWindow; } // File: contracts/root/predicates/IPredicate.sol pragma solidity ^0.5.2; interface IPredicate { /** * @notice Verify the deprecation of a state update * @param exit ABI encoded PlasmaExit data * @param inputUtxo ABI encoded Input UTXO data * @param challengeData RLP encoded data of the challenge reference tx that encodes the following fields * headerNumber Header block number of which the reference tx was a part of * blockProof Proof that the block header (in the child chain) is a leaf in the submitted merkle root * blockNumber Block number of which the reference tx is a part of * blockTime Reference tx block time * blocktxRoot Transactions root of block * blockReceiptsRoot Receipts root of block * receipt Receipt of the reference transaction * receiptProof Merkle proof of the reference receipt * branchMask Merkle proof branchMask for the receipt * logIndex Log Index to read from the receipt * tx Challenge transaction * txProof Merkle proof of the challenge tx * @return Whether or not the state is deprecated */ function verifyDeprecation( bytes calldata exit, bytes calldata inputUtxo, bytes calldata challengeData ) external returns (bool); function interpretStateUpdate(bytes calldata state) external view returns (bytes memory); function onFinalizeExit(bytes calldata data) external; } contract PredicateUtils is ExitsDataStructure, ChainIdMixin { using RLPReader for RLPReader.RLPItem; // Bonded exits collaterized at 0.1 ETH uint256 private constant BOND_AMOUNT = 10**17; IWithdrawManager internal withdrawManager; IDepositManager internal depositManager; modifier onlyWithdrawManager() { require( msg.sender == address(withdrawManager), "ONLY_WITHDRAW_MANAGER" ); _; } modifier isBondProvided() { require(msg.value == BOND_AMOUNT, "Invalid Bond amount"); _; } function onFinalizeExit(bytes calldata data) external onlyWithdrawManager { (, address token, address exitor, uint256 tokenId) = decodeExitForProcessExit( data ); depositManager.transferAssets(token, exitor, tokenId); } function sendBond() internal { address(uint160(address(withdrawManager))).transfer(BOND_AMOUNT); } function getAddressFromTx(RLPReader.RLPItem[] memory txList) internal pure returns (address signer, bytes32 txHash) { bytes[] memory rawTx = new bytes[](9); for (uint8 i = 0; i <= 5; i++) { rawTx[i] = txList[i].toBytes(); } rawTx[6] = networkId; rawTx[7] = hex""; // [7] and [8] have something to do with v, r, s values rawTx[8] = hex""; txHash = keccak256(RLPEncode.encodeList(rawTx)); signer = ecrecover( txHash, Common.getV(txList[6].toBytes(), Common.toUint16(networkId)), bytes32(txList[7].toUint()), bytes32(txList[8].toUint()) ); } function decodeExit(bytes memory data) internal pure returns (PlasmaExit memory) { (address owner, address token, uint256 amountOrTokenId, bytes32 txHash, bool isRegularExit) = abi .decode(data, (address, address, uint256, bytes32, bool)); return PlasmaExit( amountOrTokenId, txHash, owner, token, isRegularExit, address(0) /* predicate value is not required */ ); } function decodeExitForProcessExit(bytes memory data) internal pure returns (uint256 exitId, address token, address exitor, uint256 tokenId) { (exitId, token, exitor, tokenId) = abi.decode( data, (uint256, address, address, uint256) ); } function decodeInputUtxo(bytes memory data) internal pure returns (uint256 age, address signer, address predicate, address token) { (age, signer, predicate, token) = abi.decode( data, (uint256, address, address, address) ); } } contract IErcPredicate is IPredicate, PredicateUtils { enum ExitType {Invalid, OutgoingTransfer, IncomingTransfer, Burnt} struct ExitTxData { uint256 amountOrToken; bytes32 txHash; address childToken; address signer; ExitType exitType; } struct ReferenceTxData { uint256 closingBalance; uint256 age; address childToken; address rootToken; } uint256 internal constant MAX_LOGS = 10; constructor(address _withdrawManager, address _depositManager) public { withdrawManager = IWithdrawManager(_withdrawManager); depositManager = IDepositManager(_depositManager); } } // File: contracts/root/predicates/ERC20PredicateBurnOnly.sol pragma solidity ^0.5.2; contract ERC20PredicateBurnOnly is IErcPredicate { using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; using SafeMath for uint256; using ExitPayloadReader for bytes; using ExitPayloadReader for ExitPayloadReader.ExitPayload; using ExitPayloadReader for ExitPayloadReader.Receipt; using ExitPayloadReader for ExitPayloadReader.Log; using ExitPayloadReader for ExitPayloadReader.LogTopics; // keccak256('Withdraw(address,address,uint256,uint256,uint256)') bytes32 constant WITHDRAW_EVENT_SIG = 0xebff2602b3f468259e1e99f613fed6691f3a6526effe6ef3e768ba7ae7a36c4f; constructor( address _withdrawManager, address _depositManager ) public IErcPredicate(_withdrawManager, _depositManager) { } function startExitWithBurntTokens(bytes calldata data) external { ExitPayloadReader.ExitPayload memory payload = data.toExitPayload(); ExitPayloadReader.Receipt memory receipt = payload.getReceipt(); uint256 logIndex = payload.getReceiptLogIndex(); require(logIndex < MAX_LOGS, "Supporting a max of 10 logs"); uint256 age = withdrawManager.verifyInclusion( data, 0, /* offset */ false /* verifyTxInclusion */ ); ExitPayloadReader.Log memory log = receipt.getLog(); // "address" (contract address that emitted the log) field in the receipt address childToken = log.getEmitter(); ExitPayloadReader.LogTopics memory topics = log.getTopics(); // now, inputItems[i] refers to i-th (0-based) topic in the topics array // event Withdraw(address indexed token, address indexed from, uint256 amountOrTokenId, uint256 input1, uint256 output1) require( bytes32(topics.getField(0).toUint()) == WITHDRAW_EVENT_SIG, "Not a withdraw event signature" ); require( msg.sender == address(topics.getField(2).toUint()), // from "Withdrawer and burn exit tx do not match" ); address rootToken = address(topics.getField(1).toUint()); uint256 exitAmount = BytesLib.toUint(log.getData(), 0); // amountOrTokenId withdrawManager.addExitToQueue( msg.sender, childToken, rootToken, exitAmount, bytes32(0x0), true, /* isRegularExit */ age << 1 ); } function verifyDeprecation( bytes calldata exit, bytes calldata inputUtxo, bytes calldata challengeData ) external returns (bool) {} function interpretStateUpdate(bytes calldata state) external view returns (bytes memory) {} }
File 9 of 9: DepositManager
// File: openzeppelin-solidity/contracts/token/ERC721/IERC721Receiver.sol pragma solidity ^0.5.2; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ contract IERC721Receiver { /** * @notice Handle the receipt of an NFT * @dev The ERC721 smart contract calls this function on the recipient * after a `safeTransfer`. This function MUST return the function selector, * otherwise the caller will revert the transaction. The selector to be * returned can be obtained as `this.onERC721Received.selector`. This * function MAY throw to revert and reject the transfer. * Note: the ERC721 contract address is always the message sender. * @param operator The address which called `safeTransferFrom` function * @param from The address which previously owned the token * @param tokenId The NFT identifier which is being transferred * @param data Additional data with no specified format * @return bytes4 `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` */ function onERC721Received(address operator, address from, uint256 tokenId, bytes memory data) public returns (bytes4); } // File: openzeppelin-solidity/contracts/token/ERC721/ERC721Holder.sol pragma solidity ^0.5.2; contract ERC721Holder is IERC721Receiver { function onERC721Received(address, address, uint256, bytes memory) public returns (bytes4) { return this.onERC721Received.selector; } } // File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol pragma solidity ^0.5.2; /** * @title ERC20 interface * @dev see https://eips.ethereum.org/EIPS/eip-20 */ interface IERC20 { function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } // File: openzeppelin-solidity/contracts/introspection/IERC165.sol pragma solidity ^0.5.2; /** * @title IERC165 * @dev https://eips.ethereum.org/EIPS/eip-165 */ interface IERC165 { /** * @notice Query if a contract implements an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @dev Interface identification is specified in ERC-165. This function * uses less than 30,000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: openzeppelin-solidity/contracts/token/ERC721/IERC721.sol pragma solidity ^0.5.2; /** * @title ERC721 Non-Fungible Token Standard basic interface * @dev see https://eips.ethereum.org/EIPS/eip-721 */ contract IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); function balanceOf(address owner) public view returns (uint256 balance); function ownerOf(uint256 tokenId) public view returns (address owner); function approve(address to, uint256 tokenId) public; function getApproved(uint256 tokenId) public view returns (address operator); function setApprovalForAll(address operator, bool _approved) public; function isApprovedForAll(address owner, address operator) public view returns (bool); function transferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId) public; function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public; } // File: openzeppelin-solidity/contracts/math/SafeMath.sol pragma solidity ^0.5.2; /** * @title SafeMath * @dev Unsigned math operations with safety checks that revert on error */ library SafeMath { /** * @dev Multiplies two unsigned integers, reverts on overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } /** * @dev Integer division of two unsigned integers truncating the quotient, reverts on division by zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Subtracts two unsigned integers, reverts on overflow (i.e. if subtrahend is greater than minuend). */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } /** * @dev Adds two unsigned integers, reverts on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } /** * @dev Divides two unsigned integers and returns the remainder (unsigned integer modulo), * reverts when dividing by zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } // File: openzeppelin-solidity/contracts/utils/Address.sol pragma solidity ^0.5.2; /** * Utility library of inline functions on addresses */ library Address { /** * Returns whether the target address is a contract * @dev This function will return false if invoked during the constructor of a contract, * as the code is not actually created until after the constructor finishes. * @param account address of the account to check * @return whether the target address is a contract */ function isContract(address account) internal view returns (bool) { uint256 size; // XXX Currently there is no better way to check if there is a contract in an address // than to check the size of the code at that address. // See https://ethereum.stackexchange.com/a/14016/36603 // for more details about how this works. // TODO Check this again before the Serenity release, because all addresses will be // contracts then. // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } } // File: openzeppelin-solidity/contracts/token/ERC20/SafeERC20.sol pragma solidity ^0.5.2; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require((value == 0) || (token.allowance(address(this), spender) == 0)); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must equal true). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. // A Solidity high level call has three parts: // 1. The target address is checked to verify it contains contract code // 2. The call itself is made, and success asserted // 3. The return value is decoded, which in turn checks the size of the returned data. require(address(token).isContract()); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool))); } } } // File: contracts/common/governance/IGovernance.sol pragma solidity ^0.5.2; interface IGovernance { function update(address target, bytes calldata data) external; } // File: contracts/common/governance/Governable.sol pragma solidity ^0.5.2; contract Governable { IGovernance public governance; constructor(address _governance) public { governance = IGovernance(_governance); } modifier onlyGovernance() { _assertGovernance(); _; } function _assertGovernance() private view { require( msg.sender == address(governance), "Only governance contract is authorized" ); } } // File: contracts/root/withdrawManager/IWithdrawManager.sol pragma solidity ^0.5.2; contract IWithdrawManager { function createExitQueue(address token) external; function verifyInclusion( bytes calldata data, uint8 offset, bool verifyTxInclusion ) external view returns (uint256 age); function addExitToQueue( address exitor, address childToken, address rootToken, uint256 exitAmountOrTokenId, bytes32 txHash, bool isRegularExit, uint256 priority ) external; function addInput( uint256 exitId, uint256 age, address utxoOwner, address token ) external; function challengeExit( uint256 exitId, uint256 inputId, bytes calldata challengeData, address adjudicatorPredicate ) external; } // File: contracts/common/Registry.sol pragma solidity ^0.5.2; contract Registry is Governable { // @todo hardcode constants bytes32 private constant WETH_TOKEN = keccak256("wethToken"); bytes32 private constant DEPOSIT_MANAGER = keccak256("depositManager"); bytes32 private constant STAKE_MANAGER = keccak256("stakeManager"); bytes32 private constant VALIDATOR_SHARE = keccak256("validatorShare"); bytes32 private constant WITHDRAW_MANAGER = keccak256("withdrawManager"); bytes32 private constant CHILD_CHAIN = keccak256("childChain"); bytes32 private constant STATE_SENDER = keccak256("stateSender"); bytes32 private constant SLASHING_MANAGER = keccak256("slashingManager"); address public erc20Predicate; address public erc721Predicate; mapping(bytes32 => address) public contractMap; mapping(address => address) public rootToChildToken; mapping(address => address) public childToRootToken; mapping(address => bool) public proofValidatorContracts; mapping(address => bool) public isERC721; enum Type {Invalid, ERC20, ERC721, Custom} struct Predicate { Type _type; } mapping(address => Predicate) public predicates; event TokenMapped(address indexed rootToken, address indexed childToken); event ProofValidatorAdded(address indexed validator, address indexed from); event ProofValidatorRemoved(address indexed validator, address indexed from); event PredicateAdded(address indexed predicate, address indexed from); event PredicateRemoved(address indexed predicate, address indexed from); event ContractMapUpdated(bytes32 indexed key, address indexed previousContract, address indexed newContract); constructor(address _governance) public Governable(_governance) {} function updateContractMap(bytes32 _key, address _address) external onlyGovernance { emit ContractMapUpdated(_key, contractMap[_key], _address); contractMap[_key] = _address; } /** * @dev Map root token to child token * @param _rootToken Token address on the root chain * @param _childToken Token address on the child chain * @param _isERC721 Is the token being mapped ERC721 */ function mapToken( address _rootToken, address _childToken, bool _isERC721 ) external onlyGovernance { require(_rootToken != address(0x0) && _childToken != address(0x0), "INVALID_TOKEN_ADDRESS"); rootToChildToken[_rootToken] = _childToken; childToRootToken[_childToken] = _rootToken; isERC721[_rootToken] = _isERC721; IWithdrawManager(contractMap[WITHDRAW_MANAGER]).createExitQueue(_rootToken); emit TokenMapped(_rootToken, _childToken); } function addErc20Predicate(address predicate) public onlyGovernance { require(predicate != address(0x0), "Can not add null address as predicate"); erc20Predicate = predicate; addPredicate(predicate, Type.ERC20); } function addErc721Predicate(address predicate) public onlyGovernance { erc721Predicate = predicate; addPredicate(predicate, Type.ERC721); } function addPredicate(address predicate, Type _type) public onlyGovernance { require(predicates[predicate]._type == Type.Invalid, "Predicate already added"); predicates[predicate]._type = _type; emit PredicateAdded(predicate, msg.sender); } function removePredicate(address predicate) public onlyGovernance { require(predicates[predicate]._type != Type.Invalid, "Predicate does not exist"); delete predicates[predicate]; emit PredicateRemoved(predicate, msg.sender); } function getValidatorShareAddress() public view returns (address) { return contractMap[VALIDATOR_SHARE]; } function getWethTokenAddress() public view returns (address) { return contractMap[WETH_TOKEN]; } function getDepositManagerAddress() public view returns (address) { return contractMap[DEPOSIT_MANAGER]; } function getStakeManagerAddress() public view returns (address) { return contractMap[STAKE_MANAGER]; } function getSlashingManagerAddress() public view returns (address) { return contractMap[SLASHING_MANAGER]; } function getWithdrawManagerAddress() public view returns (address) { return contractMap[WITHDRAW_MANAGER]; } function getChildChainAndStateSender() public view returns (address, address) { return (contractMap[CHILD_CHAIN], contractMap[STATE_SENDER]); } function isTokenMapped(address _token) public view returns (bool) { return rootToChildToken[_token] != address(0x0); } function isTokenMappedAndIsErc721(address _token) public view returns (bool) { require(isTokenMapped(_token), "TOKEN_NOT_MAPPED"); return isERC721[_token]; } function isTokenMappedAndGetPredicate(address _token) public view returns (address) { if (isTokenMappedAndIsErc721(_token)) { return erc721Predicate; } return erc20Predicate; } function isChildTokenErc721(address childToken) public view returns (bool) { address rootToken = childToRootToken[childToken]; require(rootToken != address(0x0), "Child token is not mapped"); return isERC721[rootToken]; } } // File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol pragma solidity ^0.5.2; /** * @title Standard ERC20 token * * @dev Implementation of the basic standard token. * https://eips.ethereum.org/EIPS/eip-20 * Originally based on code by FirstBlood: * https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol * * This implementation emits additional Approval events, allowing applications to reconstruct the allowance status for * all accounts just by listening to said events. Note that this isn't required by the specification, and other * compliant implementations may not do it. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; /** * @dev Total number of tokens in existence */ function totalSupply() public view returns (uint256) { return _totalSupply; } /** * @dev Gets the balance of the specified address. * @param owner The address to query the balance of. * @return A uint256 representing the amount owned by the passed address. */ function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } /** * @dev Function to check the amount of tokens that an owner allowed to a spender. * @param owner address The address which owns the funds. * @param spender address The address which will spend the funds. * @return A uint256 specifying the amount of tokens still available for the spender. */ function allowance(address owner, address spender) public view returns (uint256) { return _allowed[owner][spender]; } /** * @dev Transfer token to a specified address * @param to The address to transfer to. * @param value The amount to be transferred. */ function transfer(address to, uint256 value) public returns (bool) { _transfer(msg.sender, to, value); return true; } /** * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender. * Beware that changing an allowance with this method brings the risk that someone may use both the old * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. */ function approve(address spender, uint256 value) public returns (bool) { _approve(msg.sender, spender, value); return true; } /** * @dev Transfer tokens from one address to another. * Note that while this function emits an Approval event, this is not required as per the specification, * and other compliant implementations may not emit the event. * @param from address The address which you want to send tokens from * @param to address The address which you want to transfer to * @param value uint256 the amount of tokens to be transferred */ function transferFrom(address from, address to, uint256 value) public returns (bool) { _transfer(from, to, value); _approve(from, msg.sender, _allowed[from][msg.sender].sub(value)); return true; } /** * @dev Increase the amount of tokens that an owner allowed to a spender. * approve should be called when _allowed[msg.sender][spender] == 0. To increment * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param addedValue The amount of tokens to increase the allowance by. */ function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].add(addedValue)); return true; } /** * @dev Decrease the amount of tokens that an owner allowed to a spender. * approve should be called when _allowed[msg.sender][spender] == 0. To decrement * allowed value is better to use this function to avoid 2 calls (and wait until * the first transaction is mined) * From MonolithDAO Token.sol * Emits an Approval event. * @param spender The address which will spend the funds. * @param subtractedValue The amount of tokens to decrease the allowance by. */ function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].sub(subtractedValue)); return true; } /** * @dev Transfer token for a specified addresses * @param from The address to transfer from. * @param to The address to transfer to. * @param value The amount to be transferred. */ function _transfer(address from, address to, uint256 value) internal { require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(from, to, value); } /** * @dev Internal function that mints an amount of the token and assigns it to * an account. This encapsulates the modification of balances such that the * proper events are emitted. * @param account The account that will receive the created tokens. * @param value The amount that will be created. */ function _mint(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.add(value); _balances[account] = _balances[account].add(value); emit Transfer(address(0), account, value); } /** * @dev Internal function that burns an amount of the token of a given * account. * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burn(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } /** * @dev Approve an address to spend another addresses' tokens. * @param owner The address that owns the tokens. * @param spender The address that will spend the tokens. * @param value The number of tokens that can be spent. */ function _approve(address owner, address spender, uint256 value) internal { require(spender != address(0)); require(owner != address(0)); _allowed[owner][spender] = value; emit Approval(owner, spender, value); } /** * @dev Internal function that burns an amount of the token of a given * account, deducting from the sender's allowance for said account. Uses the * internal burn function. * Emits an Approval event (reflecting the reduced allowance). * @param account The account whose tokens will be burnt. * @param value The amount that will be burnt. */ function _burnFrom(address account, uint256 value) internal { _burn(account, value); _approve(account, msg.sender, _allowed[account][msg.sender].sub(value)); } } // File: contracts/common/tokens/WETH.sol pragma solidity ^0.5.2; contract WETH is ERC20 { event Deposit(address indexed dst, uint256 wad); event Withdrawal(address indexed src, uint256 wad); function deposit() public payable; function withdraw(uint256 wad) public; function withdraw(uint256 wad, address user) public; } // File: contracts/root/depositManager/IDepositManager.sol pragma solidity ^0.5.2; interface IDepositManager { function depositEther() external payable; function transferAssets( address _token, address _user, uint256 _amountOrNFTId ) external; function depositERC20(address _token, uint256 _amount) external; function depositERC721(address _token, uint256 _tokenId) external; } // File: solidity-rlp/contracts/RLPReader.sol /* * @author Hamdi Allam [email protected] * Please reach out with any questions or concerns */ pragma solidity ^0.5.0; library RLPReader { uint8 constant STRING_SHORT_START = 0x80; uint8 constant STRING_LONG_START = 0xb8; uint8 constant LIST_SHORT_START = 0xc0; uint8 constant LIST_LONG_START = 0xf8; uint8 constant WORD_SIZE = 32; struct RLPItem { uint len; uint memPtr; } struct Iterator { RLPItem item; // Item that's being iterated over. uint nextPtr; // Position of the next item in the list. } /* * @dev Returns the next element in the iteration. Reverts if it has not next element. * @param self The iterator. * @return The next element in the iteration. */ function next(Iterator memory self) internal pure returns (RLPItem memory) { require(hasNext(self)); uint ptr = self.nextPtr; uint itemLength = _itemLength(ptr); self.nextPtr = ptr + itemLength; return RLPItem(itemLength, ptr); } /* * @dev Returns true if the iteration has more elements. * @param self The iterator. * @return true if the iteration has more elements. */ function hasNext(Iterator memory self) internal pure returns (bool) { RLPItem memory item = self.item; return self.nextPtr < item.memPtr + item.len; } /* * @param item RLP encoded bytes */ function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) { uint memPtr; assembly { memPtr := add(item, 0x20) } return RLPItem(item.length, memPtr); } /* * @dev Create an iterator. Reverts if item is not a list. * @param self The RLP item. * @return An 'Iterator' over the item. */ function iterator(RLPItem memory self) internal pure returns (Iterator memory) { require(isList(self)); uint ptr = self.memPtr + _payloadOffset(self.memPtr); return Iterator(self, ptr); } /* * @param item RLP encoded bytes */ function rlpLen(RLPItem memory item) internal pure returns (uint) { return item.len; } /* * @param item RLP encoded bytes */ function payloadLen(RLPItem memory item) internal pure returns (uint) { return item.len - _payloadOffset(item.memPtr); } /* * @param item RLP encoded list in bytes */ function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) { require(isList(item)); uint items = numItems(item); RLPItem[] memory result = new RLPItem[](items); uint memPtr = item.memPtr + _payloadOffset(item.memPtr); uint dataLen; for (uint i = 0; i < items; i++) { dataLen = _itemLength(memPtr); result[i] = RLPItem(dataLen, memPtr); memPtr = memPtr + dataLen; } return result; } // @return indicator whether encoded payload is a list. negate this function call for isData. function isList(RLPItem memory item) internal pure returns (bool) { if (item.len == 0) return false; uint8 byte0; uint memPtr = item.memPtr; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < LIST_SHORT_START) return false; return true; } /** RLPItem conversions into data types **/ // @returns raw rlp encoding in bytes function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) { bytes memory result = new bytes(item.len); if (result.length == 0) return result; uint ptr; assembly { ptr := add(0x20, result) } copy(item.memPtr, ptr, item.len); return result; } // any non-zero byte is considered true function toBoolean(RLPItem memory item) internal pure returns (bool) { require(item.len == 1); uint result; uint memPtr = item.memPtr; assembly { result := byte(0, mload(memPtr)) } return result == 0 ? false : true; } function toAddress(RLPItem memory item) internal pure returns (address) { // 1 byte for the length prefix require(item.len == 21); return address(toUint(item)); } function toUint(RLPItem memory item) internal pure returns (uint) { require(item.len > 0 && item.len <= 33); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; uint result; uint memPtr = item.memPtr + offset; assembly { result := mload(memPtr) // shfit to the correct location if neccesary if lt(len, 32) { result := div(result, exp(256, sub(32, len))) } } return result; } // enforces 32 byte length function toUintStrict(RLPItem memory item) internal pure returns (uint) { // one byte prefix require(item.len == 33); uint result; uint memPtr = item.memPtr + 1; assembly { result := mload(memPtr) } return result; } function toBytes(RLPItem memory item) internal pure returns (bytes memory) { require(item.len > 0); uint offset = _payloadOffset(item.memPtr); uint len = item.len - offset; // data length bytes memory result = new bytes(len); uint destPtr; assembly { destPtr := add(0x20, result) } copy(item.memPtr + offset, destPtr, len); return result; } /* * Private Helpers */ // @return number of payload items inside an encoded list. function numItems(RLPItem memory item) private pure returns (uint) { if (item.len == 0) return 0; uint count = 0; uint currPtr = item.memPtr + _payloadOffset(item.memPtr); uint endPtr = item.memPtr + item.len; while (currPtr < endPtr) { currPtr = currPtr + _itemLength(currPtr); // skip over an item count++; } return count; } // @return entire rlp item byte length function _itemLength(uint memPtr) private pure returns (uint) { uint itemLen; uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) itemLen = 1; else if (byte0 < STRING_LONG_START) itemLen = byte0 - STRING_SHORT_START + 1; else if (byte0 < LIST_SHORT_START) { assembly { let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is memPtr := add(memPtr, 1) // skip over the first byte /* 32 byte word size */ let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len itemLen := add(dataLen, add(byteLen, 1)) } } else if (byte0 < LIST_LONG_START) { itemLen = byte0 - LIST_SHORT_START + 1; } else { assembly { let byteLen := sub(byte0, 0xf7) memPtr := add(memPtr, 1) let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length itemLen := add(dataLen, add(byteLen, 1)) } } return itemLen; } // @return number of bytes until the data function _payloadOffset(uint memPtr) private pure returns (uint) { uint byte0; assembly { byte0 := byte(0, mload(memPtr)) } if (byte0 < STRING_SHORT_START) return 0; else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START)) return 1; else if (byte0 < LIST_SHORT_START) // being explicit return byte0 - (STRING_LONG_START - 1) + 1; else return byte0 - (LIST_LONG_START - 1) + 1; } /* * @param src Pointer to source * @param dest Pointer to destination * @param len Amount of memory to copy from the source */ function copy(uint src, uint dest, uint len) private pure { if (len == 0) return; // copy as many word sizes as possible for (; len >= WORD_SIZE; len -= WORD_SIZE) { assembly { mstore(dest, mload(src)) } src += WORD_SIZE; dest += WORD_SIZE; } // left over bytes. Mask is used to remove unwanted bytes from the word uint mask = 256 ** (WORD_SIZE - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) // zero out src let destpart := and(mload(dest), mask) // retrieve the bytes mstore(dest, or(destpart, srcpart)) } } } // File: openzeppelin-solidity/contracts/ownership/Ownable.sol pragma solidity ^0.5.2; /** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns (bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. * @notice Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } // File: contracts/common/misc/ProxyStorage.sol pragma solidity ^0.5.2; contract ProxyStorage is Ownable { address internal proxyTo; } // File: contracts/common/mixin/ChainIdMixin.sol pragma solidity ^0.5.2; contract ChainIdMixin { bytes constant public networkId = hex"3A99"; uint256 constant public CHAINID = 15001; } // File: contracts/root/RootChainStorage.sol pragma solidity ^0.5.2; contract RootChainHeader { event NewHeaderBlock( address indexed proposer, uint256 indexed headerBlockId, uint256 indexed reward, uint256 start, uint256 end, bytes32 root ); // housekeeping event event ResetHeaderBlock(address indexed proposer, uint256 indexed headerBlockId); struct HeaderBlock { bytes32 root; uint256 start; uint256 end; uint256 createdAt; address proposer; } } contract RootChainStorage is ProxyStorage, RootChainHeader, ChainIdMixin { bytes32 public heimdallId; uint8 public constant VOTE_TYPE = 2; uint16 internal constant MAX_DEPOSITS = 10000; uint256 public _nextHeaderBlock = MAX_DEPOSITS; uint256 internal _blockDepositId = 1; mapping(uint256 => HeaderBlock) public headerBlocks; Registry internal registry; } // File: contracts/staking/stakeManager/IStakeManager.sol pragma solidity 0.5.17; contract IStakeManager { // validator replacement function startAuction( uint256 validatorId, uint256 amount, bool acceptDelegation, bytes calldata signerPubkey ) external; function confirmAuctionBid(uint256 validatorId, uint256 heimdallFee) external; function transferFunds( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function delegationDeposit( uint256 validatorId, uint256 amount, address delegator ) external returns (bool); function unstake(uint256 validatorId) external; function totalStakedFor(address addr) external view returns (uint256); function stakeFor( address user, uint256 amount, uint256 heimdallFee, bool acceptDelegation, bytes memory signerPubkey ) public; function checkSignatures( uint256 blockInterval, bytes32 voteHash, bytes32 stateRoot, address proposer, uint[3][] calldata sigs ) external returns (uint256); function updateValidatorState(uint256 validatorId, int256 amount) public; function ownerOf(uint256 tokenId) public view returns (address); function slash(bytes calldata slashingInfoList) external returns (uint256); function validatorStake(uint256 validatorId) public view returns (uint256); function epoch() public view returns (uint256); function getRegistry() public view returns (address); function withdrawalDelay() public view returns (uint256); function delegatedAmount(uint256 validatorId) public view returns(uint256); function decreaseValidatorDelegatedAmount(uint256 validatorId, uint256 amount) public; function withdrawDelegatorsReward(uint256 validatorId) public returns(uint256); function delegatorsReward(uint256 validatorId) public view returns(uint256); function dethroneAndStake( address auctionUser, uint256 heimdallFee, uint256 validatorId, uint256 auctionAmount, bool acceptDelegation, bytes calldata signerPubkey ) external; } // File: contracts/root/IRootChain.sol pragma solidity ^0.5.2; interface IRootChain { function slash() external; function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external; function submitCheckpoint(bytes calldata data, uint[3][] calldata sigs) external; function getLastChildBlock() external view returns (uint256); function currentHeaderBlock() external view returns (uint256); } // File: contracts/root/RootChain.sol pragma solidity ^0.5.2; contract RootChain is RootChainStorage, IRootChain { using SafeMath for uint256; using RLPReader for bytes; using RLPReader for RLPReader.RLPItem; modifier onlyDepositManager() { require(msg.sender == registry.getDepositManagerAddress(), "UNAUTHORIZED_DEPOSIT_MANAGER_ONLY"); _; } function submitHeaderBlock(bytes calldata data, bytes calldata sigs) external { revert(); } function submitCheckpoint(bytes calldata data, uint[3][] calldata sigs) external { (address proposer, uint256 start, uint256 end, bytes32 rootHash, bytes32 accountHash, uint256 _borChainID) = abi .decode(data, (address, uint256, uint256, bytes32, bytes32, uint256)); require(CHAINID == _borChainID, "Invalid bor chain id"); require(_buildHeaderBlock(proposer, start, end, rootHash), "INCORRECT_HEADER_DATA"); // check if it is better to keep it in local storage instead IStakeManager stakeManager = IStakeManager(registry.getStakeManagerAddress()); uint256 _reward = stakeManager.checkSignatures( end.sub(start).add(1), /** prefix 01 to data 01 represents positive vote on data and 00 is negative vote malicious validator can try to send 2/3 on negative vote so 01 is appended */ keccak256(abi.encodePacked(bytes(hex"01"), data)), accountHash, proposer, sigs ); require(_reward != 0, "Invalid checkpoint"); emit NewHeaderBlock(proposer, _nextHeaderBlock, _reward, start, end, rootHash); _nextHeaderBlock = _nextHeaderBlock.add(MAX_DEPOSITS); _blockDepositId = 1; } function updateDepositId(uint256 numDeposits) external onlyDepositManager returns (uint256 depositId) { depositId = currentHeaderBlock().add(_blockDepositId); // deposit ids will be (_blockDepositId, _blockDepositId + 1, .... _blockDepositId + numDeposits - 1) _blockDepositId = _blockDepositId.add(numDeposits); require( // Since _blockDepositId is initialized to 1; only (MAX_DEPOSITS - 1) deposits per header block are allowed _blockDepositId <= MAX_DEPOSITS, "TOO_MANY_DEPOSITS" ); } function getLastChildBlock() external view returns (uint256) { return headerBlocks[currentHeaderBlock()].end; } function slash() external { //TODO: future implementation } function currentHeaderBlock() public view returns (uint256) { return _nextHeaderBlock.sub(MAX_DEPOSITS); } function _buildHeaderBlock( address proposer, uint256 start, uint256 end, bytes32 rootHash ) private returns (bool) { uint256 nextChildBlock; /* The ID of the 1st header block is MAX_DEPOSITS. if _nextHeaderBlock == MAX_DEPOSITS, then the first header block is yet to be submitted, hence nextChildBlock = 0 */ if (_nextHeaderBlock > MAX_DEPOSITS) { nextChildBlock = headerBlocks[currentHeaderBlock()].end + 1; } if (nextChildBlock != start) { return false; } HeaderBlock memory headerBlock = HeaderBlock({ root: rootHash, start: nextChildBlock, end: end, createdAt: now, proposer: proposer }); headerBlocks[_nextHeaderBlock] = headerBlock; return true; } // Housekeeping function. @todo remove later function setNextHeaderBlock(uint256 _value) public onlyOwner { require(_value % MAX_DEPOSITS == 0, "Invalid value"); for (uint256 i = _value; i < _nextHeaderBlock; i += MAX_DEPOSITS) { delete headerBlocks[i]; } _nextHeaderBlock = _value; _blockDepositId = 1; emit ResetHeaderBlock(msg.sender, _nextHeaderBlock); } // Housekeeping function. @todo remove later function setHeimdallId(string memory _heimdallId) public onlyOwner { heimdallId = keccak256(abi.encodePacked(_heimdallId)); } } // File: contracts/root/stateSyncer/StateSender.sol pragma solidity ^0.5.2; contract StateSender is Ownable { using SafeMath for uint256; uint256 public counter; mapping(address => address) public registrations; event NewRegistration( address indexed user, address indexed sender, address indexed receiver ); event RegistrationUpdated( address indexed user, address indexed sender, address indexed receiver ); event StateSynced( uint256 indexed id, address indexed contractAddress, bytes data ); modifier onlyRegistered(address receiver) { require(registrations[receiver] == msg.sender, "Invalid sender"); _; } function syncState(address receiver, bytes calldata data) external onlyRegistered(receiver) { counter = counter.add(1); emit StateSynced(counter, receiver, data); } // register new contract for state sync function register(address sender, address receiver) public { require( isOwner() || registrations[receiver] == msg.sender, "StateSender.register: Not authorized to register" ); registrations[receiver] = sender; if (registrations[receiver] == address(0)) { emit NewRegistration(msg.sender, sender, receiver); } else { emit RegistrationUpdated(msg.sender, sender, receiver); } } } // File: contracts/common/mixin/Lockable.sol pragma solidity ^0.5.2; contract Lockable { bool public locked; modifier onlyWhenUnlocked() { _assertUnlocked(); _; } function _assertUnlocked() private view { require(!locked, "locked"); } function lock() public { locked = true; } function unlock() public { locked = false; } } // File: contracts/common/mixin/GovernanceLockable.sol pragma solidity ^0.5.2; contract GovernanceLockable is Lockable, Governable { constructor(address governance) public Governable(governance) {} function lock() public onlyGovernance { super.lock(); } function unlock() public onlyGovernance { super.unlock(); } } // File: contracts/root/depositManager/DepositManagerStorage.sol pragma solidity ^0.5.2; contract DepositManagerHeader { event NewDepositBlock(address indexed owner, address indexed token, uint256 amountOrNFTId, uint256 depositBlockId); event MaxErc20DepositUpdate(uint256 indexed oldLimit, uint256 indexed newLimit); struct DepositBlock { bytes32 depositHash; uint256 createdAt; } } contract DepositManagerStorage is ProxyStorage, GovernanceLockable, DepositManagerHeader { Registry public registry; RootChain public rootChain; StateSender public stateSender; mapping(uint256 => DepositBlock) public deposits; address public childChain; uint256 public maxErc20Deposit = 100 * (10**18); } // File: contracts/root/depositManager/DepositManager.sol pragma solidity ^0.5.2; contract DepositManager is DepositManagerStorage, IDepositManager, ERC721Holder { using SafeMath for uint256; using SafeERC20 for IERC20; modifier isTokenMapped(address _token) { require(registry.isTokenMapped(_token), "TOKEN_NOT_SUPPORTED"); _; } modifier isPredicateAuthorized() { require(uint8(registry.predicates(msg.sender)) != 0, "Not a valid predicate"); _; } constructor() public GovernanceLockable(address(0x0)) {} // deposit ETH by sending to this contract function() external payable { depositEther(); } function updateMaxErc20Deposit(uint256 maxDepositAmount) public onlyGovernance { require(maxDepositAmount != 0); emit MaxErc20DepositUpdate(maxErc20Deposit, maxDepositAmount); maxErc20Deposit = maxDepositAmount; } function transferAssets( address _token, address _user, uint256 _amountOrNFTId ) external isPredicateAuthorized { address wethToken = registry.getWethTokenAddress(); if (registry.isERC721(_token)) { IERC721(_token).transferFrom(address(this), _user, _amountOrNFTId); } else if (_token == wethToken) { WETH t = WETH(_token); t.withdraw(_amountOrNFTId, _user); } else { require(IERC20(_token).transfer(_user, _amountOrNFTId), "TRANSFER_FAILED"); } } function depositERC20(address _token, uint256 _amount) external { depositERC20ForUser(_token, msg.sender, _amount); } function depositERC721(address _token, uint256 _tokenId) external { depositERC721ForUser(_token, msg.sender, _tokenId); } function depositBulk( address[] calldata _tokens, uint256[] calldata _amountOrTokens, address _user ) external onlyWhenUnlocked // unlike other deposit functions, depositBulk doesn't invoke _safeCreateDepositBlock { require(_tokens.length == _amountOrTokens.length, "Invalid Input"); uint256 depositId = rootChain.updateDepositId(_tokens.length); Registry _registry = registry; for (uint256 i = 0; i < _tokens.length; i++) { // will revert if token is not mapped if (_registry.isTokenMappedAndIsErc721(_tokens[i])) { _safeTransferERC721(msg.sender, _tokens[i], _amountOrTokens[i]); } else { IERC20(_tokens[i]).safeTransferFrom(msg.sender, address(this), _amountOrTokens[i]); } _createDepositBlock(_user, _tokens[i], _amountOrTokens[i], depositId); depositId = depositId.add(1); } } /** * @dev Caches childChain and stateSender (frequently used variables) from registry */ function updateChildChainAndStateSender() public { (address _childChain, address _stateSender) = registry.getChildChainAndStateSender(); require( _stateSender != address(stateSender) || _childChain != childChain, "Atleast one of stateSender or childChain address should change" ); childChain = _childChain; stateSender = StateSender(_stateSender); } function depositERC20ForUser( address _token, address _user, uint256 _amount ) public { require(_amount <= maxErc20Deposit, "exceed maximum deposit amount"); IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount); _safeCreateDepositBlock(_user, _token, _amount); } function depositERC721ForUser( address _token, address _user, uint256 _tokenId ) public { require(registry.isTokenMappedAndIsErc721(_token), "not erc721"); _safeTransferERC721(msg.sender, _token, _tokenId); _safeCreateDepositBlock(_user, _token, _tokenId); } // @todo: write depositEtherForUser function depositEther() public payable { address wethToken = registry.getWethTokenAddress(); WETH t = WETH(wethToken); t.deposit.value(msg.value)(); _safeCreateDepositBlock(msg.sender, wethToken, msg.value); } function _safeCreateDepositBlock( address _user, address _token, uint256 _amountOrToken ) internal onlyWhenUnlocked isTokenMapped(_token) { _createDepositBlock( _user, _token, _amountOrToken, rootChain.updateDepositId(1) /* returns _depositId */ ); } function _createDepositBlock( address _user, address _token, uint256 _amountOrToken, uint256 _depositId ) internal { deposits[_depositId] = DepositBlock(keccak256(abi.encodePacked(_user, _token, _amountOrToken)), now); stateSender.syncState(childChain, abi.encode(_user, _token, _amountOrToken, _depositId)); emit NewDepositBlock(_user, _token, _amountOrToken, _depositId); } // Housekeeping function. @todo remove later function updateRootChain(address _rootChain) public onlyOwner { rootChain = RootChain(_rootChain); } function _safeTransferERC721(address _user, address _token, uint256 _tokenId) private { IERC721(_token).safeTransferFrom(_user, address(this), _tokenId); } }