Transaction Hash:
Block:
19939813 at May-24-2024 12:42:35 PM +UTC
Transaction Fee:
0.00078841912710135 ETH
$1.93
Gas Used:
112,830 Gas / 6.987672845 Gwei
Emitted Events:
206 |
TruthGPT.Transfer( from=[Receiver] PinkLock02, to=[Sender] 0xcff2045c2a164cbf6c5d01add95a5e518e3e8b07, value=35137300000000000000000000 )
|
207 |
PinkLock02.LockVested( id=1008515, token=TruthGPT, owner=[Sender] 0xcff2045c2a164cbf6c5d01add95a5e518e3e8b07, amount=35137300000000000000000000, remaining=28748700000000000000000000, timestamp=1716554555 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x6293bBe5...8f993dA6A | |||||
0x71B5759d...C51057641 | (Big Back Bitcoin: Pink Lock) | ||||
0x95222290...5CC4BAfe5
Miner
| (beaverbuild) | 7.264284305388920327 Eth | 7.264288102271304977 Eth | 0.00000379688238465 | |
0xcFf2045c...18E3e8B07 |
0.007897913475929764 Eth
Nonce: 29
|
0.007109494348828414 Eth
Nonce: 30
| 0.00078841912710135 |
Execution Trace
unlock[PinkLock02 (ln:365)]
_getActualIndex[PinkLock02 (ln:366)]
revert[PinkLock02 (ln:759)]
_vestingUnlock[PinkLock02 (ln:372)]
_withdrawableTokens[PinkLock02 (ln:417)]
remove[PinkLock02 (ln:429)]
remove[PinkLock02 (ln:431)]
remove[PinkLock02 (ln:433)]
LockRemoved[PinkLock02 (ln:434)]
remove[PinkLock02 (ln:449)]
remove[PinkLock02 (ln:451)]
safeTransfer[PinkLock02 (ln:455)]
LockVested[PinkLock02 (ln:456)]
_normalUnlock[PinkLock02 (ln:374)]
remove[PinkLock02 (ln:388)]
remove[PinkLock02 (ln:390)]
remove[PinkLock02 (ln:400)]
remove[PinkLock02 (ln:402)]
remove[PinkLock02 (ln:406)]
safeTransfer[PinkLock02 (ln:407)]
LockRemoved[PinkLock02 (ln:408)]
File 1 of 2: PinkLock02
File 2 of 2: TruthGPT
// SPDX-License-Identifier: MIT pragma solidity =0.8.4; import "@openzeppelin/contracts/utils/Address.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import "./IPinkLock.sol"; import "./IUniswapV2Router02.sol"; import "./IUniswapV2Pair.sol"; import "./IUniswapV2Factory.sol"; import "./FullMath.sol"; contract PinkLock02 is IPinkLock { using Address for address payable; using EnumerableSet for EnumerableSet.AddressSet; using EnumerableSet for EnumerableSet.UintSet; using SafeERC20 for IERC20; struct Lock { uint256 id; address token; address owner; uint256 amount; uint256 lockDate; uint256 tgeDate; // TGE date for vesting locks, unlock date for normal locks uint256 tgeBps; // In bips. Is 0 for normal locks uint256 cycle; // Is 0 for normal locks uint256 cycleBps; // In bips. Is 0 for normal locks uint256 unlockedAmount; string description; } struct CumulativeLockInfo { address token; address factory; uint256 amount; } // ID padding from PinkLock v1, as there is a lack of a pausing mechanism // as of now the lastest id from v1 is about 22K, so this is probably a safe padding value. uint256 private constant ID_PADDING = 1_000_000; Lock[] private _locks; mapping(address => EnumerableSet.UintSet) private _userLpLockIds; mapping(address => EnumerableSet.UintSet) private _userNormalLockIds; EnumerableSet.AddressSet private _lpLockedTokens; EnumerableSet.AddressSet private _normalLockedTokens; mapping(address => CumulativeLockInfo) public cumulativeLockInfo; mapping(address => EnumerableSet.UintSet) private _tokenToLockIds; event LockAdded( uint256 indexed id, address token, address owner, uint256 amount, uint256 unlockDate ); event LockUpdated( uint256 indexed id, address token, address owner, uint256 newAmount, uint256 newUnlockDate ); event LockRemoved( uint256 indexed id, address token, address owner, uint256 amount, uint256 unlockedAt ); event LockVested( uint256 indexed id, address token, address owner, uint256 amount, uint256 remaining, uint256 timestamp ); event LockDescriptionChanged(uint256 lockId); event LockOwnerChanged(uint256 lockId, address owner, address newOwner); modifier validLock(uint256 lockId) { _getActualIndex(lockId); _; } function lock( address owner, address token, bool isLpToken, uint256 amount, uint256 unlockDate, string memory description ) external override returns (uint256 id) { require(token != address(0), "Invalid token"); require(amount > 0, "Amount should be greater than 0"); require( unlockDate > block.timestamp, "Unlock date should be in the future" ); id = _createLock( owner, token, isLpToken, amount, unlockDate, 0, 0, 0, description ); _safeTransferFromEnsureExactAmount( token, msg.sender, address(this), amount ); emit LockAdded(id, token, owner, amount, unlockDate); return id; } function vestingLock( address owner, address token, bool isLpToken, uint256 amount, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) external override returns (uint256 id) { require(token != address(0), "Invalid token"); require(amount > 0, "Amount should be greater than 0"); require(tgeDate > block.timestamp, "TGE date should be in the future"); require(cycle > 0, "Invalid cycle"); require(tgeBps > 0 && tgeBps < 10_000, "Invalid bips for TGE"); require(cycleBps > 0 && cycleBps < 10_000, "Invalid bips for cycle"); require( tgeBps + cycleBps <= 10_000, "Sum of TGE bps and cycle should be less than 10000" ); id = _createLock( owner, token, isLpToken, amount, tgeDate, tgeBps, cycle, cycleBps, description ); _safeTransferFromEnsureExactAmount( token, msg.sender, address(this), amount ); emit LockAdded(id, token, owner, amount, tgeDate); return id; } function multipleVestingLock( address[] calldata owners, uint256[] calldata amounts, address token, bool isLpToken, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) external override returns (uint256[] memory) { require(token != address(0), "Invalid token"); require(owners.length == amounts.length, "Length mismatched"); require(tgeDate > block.timestamp, "TGE date should be in the future"); require(cycle > 0, "Invalid cycle"); require(tgeBps > 0 && tgeBps < 10_000, "Invalid bips for TGE"); require(cycleBps > 0 && cycleBps < 10_000, "Invalid bips for cycle"); require( tgeBps + cycleBps <= 10_000, "Sum of TGE bps and cycle should be less than 10000" ); return _multipleVestingLock( owners, amounts, token, isLpToken, [tgeDate, tgeBps, cycle, cycleBps], description ); } function _multipleVestingLock( address[] calldata owners, uint256[] calldata amounts, address token, bool isLpToken, uint256[4] memory vestingSettings, // avoid stack too deep string memory description ) internal returns (uint256[] memory) { require(token != address(0), "Invalid token"); uint256 sumAmount = _sumAmount(amounts); uint256 count = owners.length; uint256[] memory ids = new uint256[](count); for (uint256 i = 0; i < count; i++) { ids[i] = _createLock( owners[i], token, isLpToken, amounts[i], vestingSettings[0], // TGE date vestingSettings[1], // TGE bps vestingSettings[2], // cycle vestingSettings[3], // cycle bps description ); emit LockAdded( ids[i], token, owners[i], amounts[i], vestingSettings[0] // TGE date ); } _safeTransferFromEnsureExactAmount( token, msg.sender, address(this), sumAmount ); return ids; } function _sumAmount(uint256[] calldata amounts) internal pure returns (uint256) { uint256 sum = 0; for (uint256 i = 0; i < amounts.length; i++) { if (amounts[i] == 0) { revert("Amount cant be zero"); } sum += amounts[i]; } return sum; } function _createLock( address owner, address token, bool isLpToken, uint256 amount, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) internal returns (uint256 id) { if (isLpToken) { address possibleFactoryAddress = _parseFactoryAddress(token); id = _lockLpToken( owner, token, possibleFactoryAddress, amount, tgeDate, tgeBps, cycle, cycleBps, description ); } else { id = _lockNormalToken( owner, token, amount, tgeDate, tgeBps, cycle, cycleBps, description ); } return id; } function _lockLpToken( address owner, address token, address factory, uint256 amount, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) private returns (uint256 id) { id = _registerLock( owner, token, amount, tgeDate, tgeBps, cycle, cycleBps, description ); _userLpLockIds[owner].add(id); _lpLockedTokens.add(token); CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[token]; if (tokenInfo.token == address(0)) { tokenInfo.token = token; tokenInfo.factory = factory; } tokenInfo.amount = tokenInfo.amount + amount; _tokenToLockIds[token].add(id); } function _lockNormalToken( address owner, address token, uint256 amount, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) private returns (uint256 id) { id = _registerLock( owner, token, amount, tgeDate, tgeBps, cycle, cycleBps, description ); _userNormalLockIds[owner].add(id); _normalLockedTokens.add(token); CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[token]; if (tokenInfo.token == address(0)) { tokenInfo.token = token; tokenInfo.factory = address(0); } tokenInfo.amount = tokenInfo.amount + amount; _tokenToLockIds[token].add(id); } function _registerLock( address owner, address token, uint256 amount, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) private returns (uint256 id) { id = _locks.length + ID_PADDING; Lock memory newLock = Lock({ id: id, token: token, owner: owner, amount: amount, lockDate: block.timestamp, tgeDate: tgeDate, tgeBps: tgeBps, cycle: cycle, cycleBps: cycleBps, unlockedAmount: 0, description: description }); _locks.push(newLock); } function unlock(uint256 lockId) external override validLock(lockId) { Lock storage userLock = _locks[_getActualIndex(lockId)]; require( userLock.owner == msg.sender, "You are not the owner of this lock" ); if (userLock.tgeBps > 0) { _vestingUnlock(userLock); } else { _normalUnlock(userLock); } } function _normalUnlock(Lock storage userLock) internal { require( block.timestamp >= userLock.tgeDate, "It is not time to unlock" ); require(userLock.unlockedAmount == 0, "Nothing to unlock"); CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[ userLock.token ]; bool isLpToken = tokenInfo.factory != address(0); if (isLpToken) { _userLpLockIds[msg.sender].remove(userLock.id); } else { _userNormalLockIds[msg.sender].remove(userLock.id); } uint256 unlockAmount = userLock.amount; if (tokenInfo.amount <= unlockAmount) { tokenInfo.amount = 0; } else { tokenInfo.amount = tokenInfo.amount - unlockAmount; } if (tokenInfo.amount == 0) { if (isLpToken) { _lpLockedTokens.remove(userLock.token); } else { _normalLockedTokens.remove(userLock.token); } } userLock.unlockedAmount = unlockAmount; _tokenToLockIds[userLock.token].remove(userLock.id); IERC20(userLock.token).safeTransfer(msg.sender, unlockAmount); emit LockRemoved( userLock.id, userLock.token, msg.sender, unlockAmount, block.timestamp ); } function _vestingUnlock(Lock storage userLock) internal { uint256 withdrawable = _withdrawableTokens(userLock); uint256 newTotalUnlockAmount = userLock.unlockedAmount + withdrawable; require( withdrawable > 0 && newTotalUnlockAmount <= userLock.amount, "Nothing to unlock" ); CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[ userLock.token ]; bool isLpToken = tokenInfo.factory != address(0); if (newTotalUnlockAmount == userLock.amount) { if (isLpToken) { _userLpLockIds[msg.sender].remove(userLock.id); } else { _userNormalLockIds[msg.sender].remove(userLock.id); } _tokenToLockIds[userLock.token].remove(userLock.id); emit LockRemoved( userLock.id, userLock.token, msg.sender, newTotalUnlockAmount, block.timestamp ); } if (tokenInfo.amount <= withdrawable) { tokenInfo.amount = 0; } else { tokenInfo.amount = tokenInfo.amount - withdrawable; } if (tokenInfo.amount == 0) { if (isLpToken) { _lpLockedTokens.remove(userLock.token); } else { _normalLockedTokens.remove(userLock.token); } } userLock.unlockedAmount = newTotalUnlockAmount; IERC20(userLock.token).safeTransfer(userLock.owner, withdrawable); emit LockVested( userLock.id, userLock.token, msg.sender, withdrawable, userLock.amount - userLock.unlockedAmount, block.timestamp ); } function withdrawableTokens(uint256 lockId) external view returns (uint256) { Lock memory userLock = getLockById(lockId); return _withdrawableTokens(userLock); } function _withdrawableTokens(Lock memory userLock) internal view returns (uint256) { if (userLock.amount == 0) return 0; if (userLock.unlockedAmount >= userLock.amount) return 0; if (block.timestamp < userLock.tgeDate) return 0; if (userLock.cycle == 0) return 0; uint256 tgeReleaseAmount = FullMath.mulDiv( userLock.amount, userLock.tgeBps, 10_000 ); uint256 cycleReleaseAmount = FullMath.mulDiv( userLock.amount, userLock.cycleBps, 10_000 ); uint256 currentTotal = 0; if (block.timestamp >= userLock.tgeDate) { currentTotal = (((block.timestamp - userLock.tgeDate) / userLock.cycle) * cycleReleaseAmount) + tgeReleaseAmount; // Truncation is expected here } uint256 withdrawable = 0; if (currentTotal > userLock.amount) { withdrawable = userLock.amount - userLock.unlockedAmount; } else { withdrawable = currentTotal - userLock.unlockedAmount; } return withdrawable; } function editLock( uint256 lockId, uint256 newAmount, uint256 newUnlockDate ) external override validLock(lockId) { Lock storage userLock = _locks[_getActualIndex(lockId)]; require( userLock.owner == msg.sender, "You are not the owner of this lock" ); require(userLock.unlockedAmount == 0, "Lock was unlocked"); if (newUnlockDate > 0) { require( newUnlockDate >= userLock.tgeDate && newUnlockDate > block.timestamp, "New unlock time should not be before old unlock time or current time" ); userLock.tgeDate = newUnlockDate; } if (newAmount > 0) { require( newAmount >= userLock.amount, "New amount should not be less than current amount" ); uint256 diff = newAmount - userLock.amount; if (diff > 0) { userLock.amount = newAmount; CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[ userLock.token ]; tokenInfo.amount = tokenInfo.amount + diff; _safeTransferFromEnsureExactAmount( userLock.token, msg.sender, address(this), diff ); } } emit LockUpdated( userLock.id, userLock.token, userLock.owner, userLock.amount, userLock.tgeDate ); } function editLockDescription(uint256 lockId, string memory description) external validLock(lockId) { Lock storage userLock = _locks[_getActualIndex(lockId)]; require( userLock.owner == msg.sender, "You are not the owner of this lock" ); userLock.description = description; emit LockDescriptionChanged(lockId); } function transferLockOwnership(uint256 lockId, address newOwner) public validLock(lockId) { Lock storage userLock = _locks[_getActualIndex(lockId)]; address currentOwner = userLock.owner; require( currentOwner == msg.sender, "You are not the owner of this lock" ); userLock.owner = newOwner; CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[ userLock.token ]; bool isLpToken = tokenInfo.factory != address(0); if (isLpToken) { _userLpLockIds[currentOwner].remove(lockId); _userLpLockIds[newOwner].add(lockId); } else { _userNormalLockIds[currentOwner].remove(lockId); _userNormalLockIds[newOwner].add(lockId); } emit LockOwnerChanged(lockId, currentOwner, newOwner); } function renounceLockOwnership(uint256 lockId) external { transferLockOwnership(lockId, address(0)); } function _safeTransferFromEnsureExactAmount( address token, address sender, address recipient, uint256 amount ) internal { uint256 oldRecipientBalance = IERC20(token).balanceOf(recipient); IERC20(token).safeTransferFrom(sender, recipient, amount); uint256 newRecipientBalance = IERC20(token).balanceOf(recipient); require( newRecipientBalance - oldRecipientBalance == amount, "Not enough token was transfered" ); } function getTotalLockCount() external view returns (uint256) { // Returns total lock count, regardless of whether it has been unlocked or not return _locks.length; } function getLockAt(uint256 index) external view returns (Lock memory) { return _locks[index]; } function getLockById(uint256 lockId) public view returns (Lock memory) { return _locks[_getActualIndex(lockId)]; } function allLpTokenLockedCount() public view returns (uint256) { return _lpLockedTokens.length(); } function allNormalTokenLockedCount() public view returns (uint256) { return _normalLockedTokens.length(); } function getCumulativeLpTokenLockInfoAt(uint256 index) external view returns (CumulativeLockInfo memory) { return cumulativeLockInfo[_lpLockedTokens.at(index)]; } function getCumulativeNormalTokenLockInfoAt(uint256 index) external view returns (CumulativeLockInfo memory) { return cumulativeLockInfo[_normalLockedTokens.at(index)]; } function getCumulativeLpTokenLockInfo(uint256 start, uint256 end) external view returns (CumulativeLockInfo[] memory) { if (end >= _lpLockedTokens.length()) { end = _lpLockedTokens.length() - 1; } uint256 length = end - start + 1; CumulativeLockInfo[] memory lockInfo = new CumulativeLockInfo[](length); uint256 currentIndex = 0; for (uint256 i = start; i <= end; i++) { lockInfo[currentIndex] = cumulativeLockInfo[_lpLockedTokens.at(i)]; currentIndex++; } return lockInfo; } function getCumulativeNormalTokenLockInfo(uint256 start, uint256 end) external view returns (CumulativeLockInfo[] memory) { if (end >= _normalLockedTokens.length()) { end = _normalLockedTokens.length() - 1; } uint256 length = end - start + 1; CumulativeLockInfo[] memory lockInfo = new CumulativeLockInfo[](length); uint256 currentIndex = 0; for (uint256 i = start; i <= end; i++) { lockInfo[currentIndex] = cumulativeLockInfo[ _normalLockedTokens.at(i) ]; currentIndex++; } return lockInfo; } function totalTokenLockedCount() external view returns (uint256) { return allLpTokenLockedCount() + allNormalTokenLockedCount(); } function lpLockCountForUser(address user) public view returns (uint256) { return _userLpLockIds[user].length(); } function lpLocksForUser(address user) external view returns (Lock[] memory) { uint256 length = _userLpLockIds[user].length(); Lock[] memory userLocks = new Lock[](length); for (uint256 i = 0; i < length; i++) { userLocks[i] = getLockById(_userLpLockIds[user].at(i)); } return userLocks; } function lpLockForUserAtIndex(address user, uint256 index) external view returns (Lock memory) { require(lpLockCountForUser(user) > index, "Invalid index"); return getLockById(_userLpLockIds[user].at(index)); } function normalLockCountForUser(address user) public view returns (uint256) { return _userNormalLockIds[user].length(); } function normalLocksForUser(address user) external view returns (Lock[] memory) { uint256 length = _userNormalLockIds[user].length(); Lock[] memory userLocks = new Lock[](length); for (uint256 i = 0; i < length; i++) { userLocks[i] = getLockById(_userNormalLockIds[user].at(i)); } return userLocks; } function normalLockForUserAtIndex(address user, uint256 index) external view returns (Lock memory) { require(normalLockCountForUser(user) > index, "Invalid index"); return getLockById(_userNormalLockIds[user].at(index)); } function totalLockCountForUser(address user) external view returns (uint256) { return normalLockCountForUser(user) + lpLockCountForUser(user); } function totalLockCountForToken(address token) external view returns (uint256) { return _tokenToLockIds[token].length(); } function getLocksForToken( address token, uint256 start, uint256 end ) public view returns (Lock[] memory) { if (end >= _tokenToLockIds[token].length()) { end = _tokenToLockIds[token].length() - 1; } uint256 length = end - start + 1; Lock[] memory locks = new Lock[](length); uint256 currentIndex = 0; for (uint256 i = start; i <= end; i++) { locks[currentIndex] = getLockById(_tokenToLockIds[token].at(i)); currentIndex++; } return locks; } function _getActualIndex(uint256 lockId) internal view returns (uint256) { if (lockId < ID_PADDING) { revert("Invalid lock id"); } uint256 actualIndex = lockId - ID_PADDING; require(actualIndex < _locks.length, "Invalid lock id"); return actualIndex; } function _parseFactoryAddress(address token) internal view returns (address) { address possibleFactoryAddress; try IUniswapV2Pair(token).factory() returns (address factory) { possibleFactoryAddress = factory; } catch { revert("This token is not a LP token"); } require( possibleFactoryAddress != address(0) && _isValidLpToken(token, possibleFactoryAddress), "This token is not a LP token." ); return possibleFactoryAddress; } function _isValidLpToken(address token, address factory) private view returns (bool) { IUniswapV2Pair pair = IUniswapV2Pair(token); address factoryPair = IUniswapV2Factory(factory).getPair( pair.token0(), pair.token1() ); return factoryPair == token; } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol) pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { return _values(set._inner); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly { result := store } return result; } } // SPDX-License-Identifier: MIT pragma solidity =0.8.4; interface IPinkLock { function lock( address owner, address token, bool isLpToken, uint256 amount, uint256 unlockDate, string memory description ) external returns (uint256 lockId); function vestingLock( address owner, address token, bool isLpToken, uint256 amount, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) external returns (uint256 lockId); function multipleVestingLock( address[] calldata owners, uint256[] calldata amounts, address token, bool isLpToken, uint256 tgeDate, uint256 tgeBps, uint256 cycle, uint256 cycleBps, string memory description ) external returns (uint256[] memory); function unlock(uint256 lockId) external; function editLock( uint256 lockId, uint256 newAmount, uint256 newUnlockDate ) external; } // SPDX-License-Identifier: MIT pragma solidity =0.8.4; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns ( uint256 amountA, uint256 amountB, uint256 liquidity ); function addLiquidityETH( address token, uint256 amountTokenDesired, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns ( uint256 amountToken, uint256 amountETH, uint256 liquidity ); function removeLiquidity( address tokenA, address tokenB, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB); function removeLiquidityETH( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external returns (uint256 amountToken, uint256 amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint256 amountA, uint256 amountB); function removeLiquidityETHWithPermit( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint256 amountToken, uint256 amountETH); function swapExactTokensForTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapTokensForExactTokens( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactETHForTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function swapTokensForExactETH( uint256 amountOut, uint256 amountInMax, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactTokensForETH( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapETHForExactTokens( uint256 amountOut, address[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function quote( uint256 amountA, uint256 reserveA, uint256 reserveB ) external pure returns (uint256 amountB); function getAmountOut( uint256 amountIn, uint256 reserveIn, uint256 reserveOut ) external pure returns (uint256 amountOut); function getAmountIn( uint256 amountOut, uint256 reserveIn, uint256 reserveOut ) external pure returns (uint256 amountIn); function getAmountsOut(uint256 amountIn, address[] calldata path) external view returns (uint256[] memory amounts); function getAmountsIn(uint256 amountOut, address[] calldata path) external view returns (uint256[] memory amounts); } interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external returns (uint256 amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint256 amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; } // SPDX-License-Identifier: MIT pragma solidity =0.8.4; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom( address from, address to, uint256 value ) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint256); function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Burn( address indexed sender, uint256 amount0, uint256 amount1, address indexed to ); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint256); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns ( uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast ); function price0CumulativeLast() external view returns (uint256); function price1CumulativeLast() external view returns (uint256); function kLast() external view returns (uint256); function mint(address to) external returns (uint256 liquidity); function burn(address to) external returns (uint256 amount0, uint256 amount1); function swap( uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data ) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // SPDX-License-Identifier: MIT pragma solidity =0.8.4; interface IUniswapV2Factory { event PairCreated( address indexed token0, address indexed token1, address pair, uint256 ); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint256) external view returns (address pair); function allPairsLength() external view returns (uint256); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // SPDX-License-Identifier: MIT pragma solidity >=0.4.0; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv( uint256 a, uint256 b, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. unchecked { uint256 twos = (type(uint256).max - denominator + 1) & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } } }
File 2 of 2: TruthGPT
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; interface IERC20 { function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return payable(msg.sender); } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. */ contract Ownable is Context { address private _owner; address private _previousOwner; uint256 private _lockTime; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), 'Ownable: caller is not the owner'); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), 'Ownable: new owner is the zero address'); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } function geUnlockTime() public view returns (uint256) { return _lockTime; } //Locks the contract for owner for the amount of time provided function lock(uint256 time) public virtual onlyOwner { _previousOwner = _owner; _owner = address(0); _lockTime = block.timestamp + time; emit OwnershipTransferred(_owner, address(0)); } //Unlocks the contract for owner when _lockTime is exceeds function unlock() public virtual { require(_previousOwner == msg.sender, "You don't have permission to unlock"); require(block.timestamp > _lockTime, 'Contract is locked until 7 days'); emit OwnershipTransferred(_owner, _previousOwner); _owner = _previousOwner; } } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, 'SafeMath: addition overflow'); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, 'SafeMath: subtraction overflow'); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, 'SafeMath: multiplication overflow'); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, 'SafeMath: division by zero'); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, 'SafeMath: modulo by zero'); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, 'Address: low-level call failed'); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, 'Address: low-level call with value failed'); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, 'Address: insufficient balance for call'); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue( address target, bytes memory data, uint256 weiValue, string memory errorMessage ) private returns (bytes memory) { require(isContract(target), 'Address: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{value: weiValue}(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable returns (uint[] memory amounts); function swapTokensForExactETH( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactTokensForETH( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapETHForExactTokens( uint amountOut, address[] calldata path, address to, uint deadline ) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } // pragma solidity >=0.6.2; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } contract TruthGPT is Context, IERC20, Ownable { using SafeMath for uint256; using Address for address; bool public inSwapAndLiquify; bool public swapAndLiquifyEnabled = true; mapping(address => uint256) private _tOwned; mapping(address => mapping(address => uint256)) private _allowances; mapping(address => bool) private _isExcludedFromFee; mapping(address => bool) public blacklists; address[] private _excluded; uint256 private constant _tTotal = 1000000000 * (10 ** 18); string private constant _name = 'TruthGPT'; string private constant _symbol = '$TRUTH'; uint8 private constant _decimals = 18; uint256 public _taxFee = 3; uint256 private _previousTaxFee = _taxFee; address public constant deadAddress = 0x000000000000000000000000000000000000dEaD; address payable public marketingWallet = payable(0x249e03B7DA8EEfa196781036C81FdbaB7FBDb562); IUniswapV2Router02 public uniswapV2Router; address public uniswapV2Pair; uint256 public numTokensSellToAddToLiquidity = 25000 * 10 ** 18; uint256 public _maxTxAmount = 1000000000 * 10 ** 18; event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap); event SwapAndLiquifyEnabledUpdated(bool enabled); event SwapAndLiquify(uint256 tokensSwapped, uint256 ethReceived); modifier lockTheSwap() { inSwapAndLiquify = true; _; inSwapAndLiquify = false; } constructor() { _tOwned[owner()] = _tTotal; IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); // mainnet router address // Create a uniswap pair for this new token uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()).createPair(address(this), _uniswapV2Router.WETH()); // set the rest of the contract variables uniswapV2Router = _uniswapV2Router; //exclude owner and this contract from fee _isExcludedFromFee[owner()] = true; _isExcludedFromFee[marketingWallet] = true; _isExcludedFromFee[address(this)] = true; emit Transfer(address(0), owner(), _tTotal); } function name() external pure returns (string memory) { return _name; } function symbol() external pure returns (string memory) { return _symbol; } function decimals() external pure returns (uint8) { return _decimals; } function totalSupply() public pure override returns (uint256) { return _tTotal; } function balanceOf(address account) public view override returns (uint256) { return _tOwned[account]; } function transfer(address recipient, uint256 amount) external override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) external view override returns (uint256) { return _allowances[owner][spender]; } function approve(address spender, uint256 amount) external override returns (bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, 'ERC20: transfer amount exceeds allowance') ); return true; } function increaseAllowance(address spender, uint256 addedValue) external virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) external virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, 'ERC20: decreased allowance below zero') ); return true; } function removeAllFee() private { if (_taxFee == 0) return; _previousTaxFee = _taxFee; _taxFee = 0; } function restoreAllFee() private { _taxFee = _previousTaxFee; } function _approve(address owner, address spender, uint256 amount) private { require(owner != address(0), 'ERC20: approve from the zero address'); require(spender != address(0), 'ERC20: approve to the zero address'); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _transfer(address from, address to, uint256 amount) private { require(!blacklists[to] && !blacklists[from], 'Blacklisted'); require(from != address(0), 'ERC20: transfer from the zero address'); require(amount > 0, 'Transfer amount must be greater than zero'); // is the token balance of this contract address over the min number of // tokens that we need to initiate a swap + liquidity lock? // also, don't get caught in a circular liquidity event. // also, don't swap & liquify if sender is uniswap pair. uint256 contractTokenBalance = balanceOf(address(this)); bool overMinTokenBalance = contractTokenBalance >= numTokensSellToAddToLiquidity; if (overMinTokenBalance && !inSwapAndLiquify && swapAndLiquifyEnabled && from != uniswapV2Pair) { contractTokenBalance = numTokensSellToAddToLiquidity; //add liquidity and send bnb to marketing wallet swapAndLiquify(contractTokenBalance); } //transfer amount, it will take tax _tokenTransfer(from, to, amount); } function swapAndLiquify(uint256 contractTokenBalance) private lockTheSwap { // capture the contract's current ETH balance. // this is so that we can capture exactly the amount of ETH that the // swap creates, and not make the liquidity event include any ETH that // has been manually sent to the contract uint256 initialBalance = address(this).balance; // swap tokens for ETH swapTokensForEth(contractTokenBalance); // <- this breaks the ETH -> HATE swap when swap+liquify is triggered // how much ETH did we just swap into? uint256 newBalance = address(this).balance.sub(initialBalance); marketingWallet.transfer(address(this).balance); emit SwapAndLiquify(contractTokenBalance, newBalance); } function swapTokensForEth(uint256 tokenAmount) private { // generate the uniswap pair path of token -> weth address[] memory path = new address[](2); path[0] = address(this); path[1] = uniswapV2Router.WETH(); _approve(address(this), address(uniswapV2Router), tokenAmount); // make the swap uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens( tokenAmount, 0, // accept any amount of ETH path, address(this), block.timestamp ); } //this method is responsible for taking all fee, if takeFee is true function _tokenTransfer(address sender, address recipient, uint256 amount) private { require(amount <= _maxTxAmount, 'Transfer amount exceeds the maxTxAmount.'); // excluded wallets if (_isExcludedFromFee[sender] || _isExcludedFromFee[recipient]) { _transferExcluded(sender, recipient, amount); } // buy and sell tax else if (recipient == uniswapV2Pair || sender == uniswapV2Pair) { _transferStandard(sender, recipient, amount); } // transfer non tax else { _transferExcluded(sender, recipient, amount); } } function _transferExcluded(address sender, address recipient, uint256 tAmount) private { _tOwned[sender] = _tOwned[sender].sub(tAmount); _tOwned[recipient] = _tOwned[recipient].add(tAmount); emit Transfer(sender, recipient, tAmount); } function _transferStandard(address sender, address recipient, uint256 tAmount) private { tAmount = takeTax(sender, tAmount); _tOwned[sender] = _tOwned[sender].sub(tAmount); _tOwned[recipient] = _tOwned[recipient].add(tAmount); emit Transfer(sender, recipient, tAmount); } function takeTax(address sender, uint256 amount) private returns (uint256) { if (_taxFee == 0) { return amount; } uint256 tax = amount.div(100).mul(_taxFee); amount = amount.sub(tax); _tOwned[address(this)] = _tOwned[address(this)].add(tax); emit Transfer(sender, address(this), tax); return amount; } function isExcludedFromFee(address account) external view returns (bool) { return _isExcludedFromFee[account]; } function includeInFee(address account) external onlyOwner { _isExcludedFromFee[account] = false; } function excludeFromFee(address account) external onlyOwner { _isExcludedFromFee[account] = true; } function blacklist(address _address, bool _isBlacklisting) external onlyOwner { blacklists[_address] = _isBlacklisting; } function setMarketingWallet(address payable newWallet) external onlyOwner { require(newWallet != address(0), 'invalid address'); marketingWallet = newWallet; } function setFeePercent(uint256 taxFee) external onlyOwner { require(taxFee <= 5, 'Tax is too high'); _taxFee = taxFee; } function setMaxTxAmount(uint256 maxTxAmount) external onlyOwner { _maxTxAmount = maxTxAmount; require(_maxTxAmount > totalSupply().div(400), 'value too low'); } function setNumTokensSellToAddToLiquidity(uint256 newAmount) external onlyOwner { numTokensSellToAddToLiquidity = newAmount; } function setSwapAndLiquifyEnabled(bool _enabled) external onlyOwner { swapAndLiquifyEnabled = _enabled; emit SwapAndLiquifyEnabledUpdated(_enabled); } //to recieve ETH from uniswapV2Router when swaping receive() external payable {} }